WO2020027149A1 - 近赤外線と遠赤外線を併用する有機電子素子の製造方法及び有機電子素子の製造装置 - Google Patents

近赤外線と遠赤外線を併用する有機電子素子の製造方法及び有機電子素子の製造装置 Download PDF

Info

Publication number
WO2020027149A1
WO2020027149A1 PCT/JP2019/029880 JP2019029880W WO2020027149A1 WO 2020027149 A1 WO2020027149 A1 WO 2020027149A1 JP 2019029880 W JP2019029880 W JP 2019029880W WO 2020027149 A1 WO2020027149 A1 WO 2020027149A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
plastic substrate
main surface
coating film
organic electronic
Prior art date
Application number
PCT/JP2019/029880
Other languages
English (en)
French (fr)
Inventor
秀益 吉岡
青木 道郎
泰雄 大竹
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2020027149A1 publication Critical patent/WO2020027149A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing an organic electronic device and an apparatus for manufacturing an organic electronic device.
  • An organic electronic element such as an organic electroluminescence element (hereinafter, sometimes referred to as an “organic EL element”), an organic photoelectric conversion element, or an organic thin film transistor has a functional layer provided on a substrate and having a predetermined function.
  • organic EL element organic electroluminescence element
  • organic photoelectric conversion element organic photoelectric conversion element
  • organic thin film transistor has a functional layer provided on a substrate and having a predetermined function.
  • Patent Document 1 As an example of the method of forming the functional layer, the technique of Patent Document 1 is known.
  • a coating liquid containing a polymer compound having a crosslinkable group and being a material of a functional layer (conductive thin film in Patent Literature 1) is formed on a substrate to form a coating film. I do. Thereafter, the coating film is irradiated with infrared rays by an infrared heater, and the crosslinkable groups are cross-linked by the infrared rays, whereby the coating film is heated and cured to form a functional layer.
  • Infrared lamps are sometimes used as means for irradiating infrared rays.
  • a plurality of infrared lamps are provided at predetermined intervals in a heating furnace.
  • temperature unevenness occurs in the heated plastic substrate, and the plastic substrate may be deformed such as wrinkles due to the temperature unevenness. Then, there is a problem that the yield of the organic electronic element is reduced.
  • One aspect of the present invention is to provide a method for manufacturing an organic electronic device and an apparatus for manufacturing an organic electronic device that can improve the yield.
  • the method for manufacturing an organic electronic device is a method for manufacturing an organic electronic device, which comprises applying a coating liquid for a functional layer having a predetermined function to one main surface of a plastic substrate.
  • a plurality of near-infrared lamps irradiate near-infrared rays from one main surface side of the plastic substrate on which is formed, and far-infrared rays are emitted from a plurality of far-infrared heaters from the other main surface side opposite to the one main surface. Irradiate.
  • near-infrared rays are irradiated from a plurality of near-infrared lamps from one main surface side of the plastic substrate, and the other main surface is opposite to the one main surface.
  • Far infrared rays are emitted from the other main surface side by a plurality of far infrared heaters.
  • the plastic substrate is heated on one main surface side by the near infrared ray of the near-infrared lamp and on the other main surface side by the far infrared ray of the far-infrared heater.
  • the temperature unevenness caused by the near-infrared lamp can be eliminated by the far-infrared heater. Therefore, it is possible to suppress the occurrence of temperature unevenness in the plastic substrate. Therefore, deformation of the plastic substrate due to temperature unevenness can be suppressed. As a result, the yield can be improved.
  • the coating liquid contains a material having a crosslinkable group
  • the coating film may be heated and cured by crosslinking the crosslinkable group with infrared rays.
  • the infrared rays are applied to the coating film while transporting the plastic substrate in an infrared heating furnace, and the plurality of near-infrared lamps are spaced apart by 50 mm or more and 100 mm or less in the transport direction of the plastic substrate. May be arranged with a gap.
  • the difference between the temperature immediately below the near-infrared lamp and the temperature between adjacent near-infrared lamps can be reduced. Therefore, occurrence of temperature unevenness can be suppressed.
  • the sum of the areas of the projection surfaces of the plurality of far-infrared heaters with respect to the other main surface in the direction opposite to the one main surface and the other main surface is the sum of the areas of the plastic substrates existing in the infrared heating furnace. It may be 30% or more with respect to the surface area of the other main surface. Thereby, the plastic substrate can be effectively heated.
  • At least one of the plurality of far-infrared heaters is disposed in each of the plurality of regions, and the temperature may be adjustable for each region.
  • the temperature can be adjusted for each region in the infrared heating furnace. Therefore, the temperature in the infrared heating furnace can be adjusted more accurately. As a result, the occurrence of temperature unevenness can be suppressed, and the deformation of the plastic substrate due to the temperature unevenness can be suppressed.
  • the length in the width direction orthogonal to the transport direction of the plastic substrate may be 0.3 m or less.
  • an inert gas may be sprayed on at least one of the one main surface and the other main surface of the plastic substrate.
  • an upward airflow (convection) may be generated by air heated from the surface thereof.
  • temperature unevenness may occur. Therefore, in one embodiment, an inert gas is blown onto at least one of the one main surface and the other main surface of the plastic substrate.
  • the method includes a step of forming a base layer on one main surface of a plastic substrate, and in the step of forming a coating film, a coating film may be formed on the base layer.
  • an underlayer for example, an electrode or the like
  • An apparatus for manufacturing an organic electronic element is an apparatus for manufacturing an organic electronic element, in which a coating liquid for a functional layer having a predetermined function is applied on one main surface side of a plastic substrate.
  • An infrared heating furnace that irradiates infrared rays to the formed coating film and heats and cures the coating film is provided.
  • the infrared heating furnace irradiates near infrared rays from one main surface side of the plastic substrate on which the coating film is formed.
  • a plurality of near-infrared lamps, and a plurality of far-infrared heaters that irradiate far-infrared rays from the other main surface opposite to the one main surface.
  • the infrared heating furnace has a plurality of near-infrared lamps and a plurality of far-infrared heaters.
  • the plastic substrate is heated on one main surface side by the near infrared ray of the near-infrared lamp and on the other main surface side by the far infrared ray of the far-infrared heater.
  • the temperature unevenness caused by the near-infrared lamp can be eliminated by the far-infrared heater. Therefore, it is possible to suppress the occurrence of temperature unevenness in the plastic substrate. Therefore, deformation of the plastic substrate due to temperature unevenness can be suppressed. As a result, the yield can be improved.
  • the yield can be improved.
  • FIG. 1 is a diagram showing a configuration of an organic EL device manufactured by a method for manufacturing an organic electronic device according to one embodiment.
  • FIG. 2 is a flowchart showing a method of manufacturing the organic EL device shown in FIG.
  • FIG. 3 is a diagram schematically showing an infrared heating furnace.
  • FIG. 4 is a view of the far infrared heater in the infrared heating furnace as viewed from the Y direction.
  • FIG. 5 is a diagram showing a projection surface of the far-infrared heater on the plastic substrate.
  • the organic EL element 10 manufactured by the method for manufacturing an organic EL element (organic electronic element) according to an embodiment schematically illustrated in FIG. 1 is, for example, a curved or planar illumination device, for example, as a light source of a scanner. It can be used for a planar light source used and a display device.
  • the organic EL element 10 includes a plastic substrate 12, an anode 14, an organic EL unit 16, and a cathode 18.
  • the organic EL element 10 can take a form in which light is emitted from the anode 14 side or a form in which light is emitted from the cathode 18 side.
  • a mode in which light is emitted from the anode 14 side will be described unless otherwise specified.
  • the plastic substrate 12 has a property of transmitting visible light (light having a wavelength of 400 nm to 800 nm).
  • the plastic substrate 12 has, for example, a film shape and has flexibility.
  • the thickness of the plastic substrate 12 is, for example, 30 ⁇ m or more and 700 ⁇ m or less.
  • the plastic substrate 12 has one main surface 12a and the other main surface 12b opposite to the one main surface 12a.
  • plastic material examples include polyether sulfone (PES); polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyethylene (PE), polypropylene (PP), and cyclic polyolefin.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PE polyethylene
  • PP polypropylene
  • cyclic polyolefin Polyamide resins; Polycarbonate resins; Polystyrene resins; Polyvinyl alcohol resins; Saponified ethylene-vinyl acetate copolymers; Polyacrylonitrile resins; Acetal resins; Polyimide resins;
  • a drive circuit for example, a circuit including a thin film transistor for driving the organic EL element 10 may be formed on the plastic substrate 12.
  • Such a drive circuit is usually made of a transparent material.
  • a barrier film may be formed on the plastic substrate 12.
  • the barrier film has a function of blocking moisture.
  • the barrier film may have a function of blocking a gas (for example, oxygen).
  • the barrier film may be, for example, a film made of silicon, oxygen, and carbon, or a film made of silicon, oxygen, carbon, and nitrogen.
  • examples of the material of the barrier film include silicon oxide, silicon nitride, and silicon oxynitride.
  • An example of the thickness of the barrier film is 100 nm or more and 10 ⁇ m or less.
  • the anode 14 is provided on one main surface 12 a of the plastic substrate 12. In a mode in which the barrier film is formed on the plastic substrate 12, the anode 14 is provided on the barrier film.
  • an electrode exhibiting light transmittance is used.
  • a thin film of a metal oxide, a metal sulfide, a metal, or the like having a high electric conductivity can be used, and a thin film having a high light transmittance is preferably used.
  • the anode 14 may have a network structure made of a conductor (for example, a metal).
  • Examples of the material of the anode 14 include indium oxide, zinc oxide, tin oxide, indium tin oxide (Indium Tin Oxide: abbreviated ITO), indium zinc oxide (Indium Zinc Oxide: abbreviated IZO), gold, platinum, silver, and copper. And the like. Among them, ITO, IZO or tin oxide is preferable.
  • the thickness of the anode 14 can be determined in consideration of light transmittance, electric conductivity, and the like.
  • the thickness of the anode 14 is usually 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • the organic EL section 16 is provided on the anode 14.
  • the organic EL section 16 is a functional section that contributes to light emission of the organic EL element 10 such as movement of charges and recombination of charges according to voltages applied to the anode 14 and the cathode 18.
  • the organic EL section 16 includes a hole injection layer FL1, a hole transport layer FL2, a light-emitting layer FL3, an electron transport layer FL4, and an electron injection layer FL5, and is a laminate in which these layers are sequentially stacked from the anode 14 side.
  • the hole injection layer FL1, the hole transport layer FL2, the light emitting layer FL3, the electron transport layer FL4, and the electron injection layer FL5 are functional layers each having a predetermined function.
  • the organic EL unit 16 is not limited to the illustrated one as long as the organic EL unit 16 includes the light emitting layer FL3.
  • the hole injection layer FL1 is provided on the anode 14, and has a function of improving the efficiency of hole injection from the anode 14 to the light emitting layer FL3.
  • the optimal value of the thickness of the hole injection layer FL1 differs depending on the material used, and is appropriately set so that the driving voltage and the luminous efficiency have appropriate values.
  • the thickness of the hole injection layer FL1 is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • a known hole injection material can be used as the material of the hole injection layer FL1.
  • the hole injection material include oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide and aluminum oxide, polythiophene derivatives such as polyethylene dioxythiophene (PEDOT), phenylamine compounds, star burst type amine compounds, phthalocyanine compounds, and amorphous materials. Mention may be made of carbon and polyaniline.
  • the hole transport layer FL2 is provided on the hole injection layer FL1, and has a function of improving hole injection from the anode 14, the hole injection layer FL1 or the hole transport layer FL2 closer to the anode 14 to the light emitting layer FL3. It is a layer which has.
  • the optimum value of the thickness of the hole transport layer FL2 differs depending on the material used, and is appropriately set so that the drive voltage and the luminous efficiency have appropriate values.
  • the thickness of the hole transport layer FL2 is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • a known hole transport material can be used as the material of the hole transport layer FL2.
  • a material of the hole transport layer FL2 for example, polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, polysiloxane having an aromatic amine in a side chain or a main chain or a derivative thereof, pyrazoline or a derivative thereof, arylamine or a derivative thereof, Stilbene or its derivative, triphenyldiamine or its derivative, polyaniline or its derivative, polythiophene or its derivative, polyarylamine or its derivative, polypyrrole or its derivative, poly (p-phenylenevinylene) or its derivative, or poly (2, 5-thienylenevinylene) or a derivative thereof.
  • a hole transport layer material disclosed in JP-A-2012-144722 can be mentioned.
  • the light emitting layer FL3 is provided on the hole transport layer FL2, and has a function of emitting light of a predetermined wavelength.
  • the optimum value of the thickness of the light emitting layer FL3 differs depending on the material used, and is appropriately set so that the driving voltage and the light emission efficiency have appropriate values.
  • the light-emitting layer FL3 is usually formed of an organic substance that mainly emits fluorescence and / or phosphorescence, or an organic substance and a dopant that assists the organic substance.
  • the dopant is added, for example, to improve the luminous efficiency, change the luminous wavelength, and the like.
  • the organic substance contained in the light emitting layer FL3 may be a low molecular compound or a high molecular compound.
  • Examples of the light-emitting material that constitutes the light-emitting layer FL3 include the following dye-based materials, metal complex-based materials, polymer-based materials, and other organic materials that mainly emit fluorescence and / or phosphorescence, and dopant materials.
  • Examples of the dye-based light-emitting material include cyclopendamine or a derivative thereof, tetraphenylbutadiene or a derivative thereof, triphenylamine or a derivative thereof, oxadiazole or a derivative thereof, pyrazoloquinoline or a derivative thereof, and distyrylbenzene or a derivative thereof.
  • Distyryl arylene or its derivative pyrrole or its derivative, thiophene ring compound, pyridine ring compound, perinone or its derivative, perylene or its derivative, oligothiophene or its derivative, oxadiazole dimer or its derivative, pyrazoline dimer or its Derivatives, quinacridone or its derivatives, coumarin or its derivatives, and the like.
  • metal complex-based light-emitting materials examples include rare earth metals such as Tb, Eu, and Dy, or Al, Zn, Be, Pt, Ir, and the like as central metals, oxadiazole, thiadiazole, phenylpyridine, and phenylbenzoimidazole. And metal complexes having a quinoline structure or the like as a ligand.
  • the metal complex examples include a metal complex having light emission from a triplet excited state such as an iridium complex, a platinum complex, an aluminum quinolinol complex, a benzoquinolinol beryllium complex, a benzooxazolyl zinc complex, a benzothiazole zinc complex, an azomethyl zinc complex, Porphyrin zinc complex, phenanthroline europium complex and the like.
  • a metal complex having light emission from a triplet excited state such as an iridium complex, a platinum complex, an aluminum quinolinol complex, a benzoquinolinol beryllium complex, a benzooxazolyl zinc complex, a benzothiazole zinc complex, an azomethyl zinc complex, Porphyrin zinc complex, phenanthroline europium complex and the like.
  • polymer light-emitting material examples include polyparaphenylene vinylene or a derivative thereof, polythiophene or a derivative thereof, polyparaphenylene or a derivative thereof, polysilane or a derivative thereof, polyacetylene or a derivative thereof, polyfluorene or a derivative thereof, and polyvinyl carbazole or a derivative thereof.
  • derivatives, materials obtained by polymerizing at least one of the above-described dye materials and metal complex materials, and the like are included.
  • the dopant material for example, perylene or its derivative, coumarin or its derivative, rubrene or its derivative, quinacridone or its derivative, squarium or its derivative, porphyrin or its derivative, styryl dye, tetracene or its derivative, pyrazolone or its derivative, decacyclene Or a derivative thereof, phenoxazone or a derivative thereof, and the like.
  • the electron transport layer FL4 is provided over the light-emitting layer FL3 and has a function of improving electron injection from the cathode 18, the electron injection layer FL5, or the electron transport layer FL4 closer to the cathode 18 to the light-emitting layer FL3. is there.
  • the optimum value of the thickness of the electron transport layer FL4 differs depending on the material used, and is appropriately set so that the driving voltage and the luminous efficiency have appropriate values.
  • the thickness of the electron transport layer FL4 is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • a known electron transporting material can be used as the material of the electron transporting layer FL4.
  • Examples of the electron transport material constituting the electron transport layer FL4 include, for example, oxadiazole derivative, anthraquinodimethane or its derivative, benzoquinone or its derivative, naphthoquinone or its derivative, anthraquinone or its derivative, tetracyanoanthraquinodimethane or its derivative.
  • the electron injection layer FL5 is provided on the electron transport layer FL4 and has a function of improving the efficiency of electron injection from the cathode 18 into the light emitting layer FL3.
  • the optimum value of the thickness of the electron injection layer FL5 differs depending on the material used, and is appropriately set so that the driving voltage and the luminous efficiency have appropriate values.
  • the thickness of the electron injection layer FL5 is, for example, 1 nm to 1 ⁇ m.
  • a known electron injection material can be used for the material of the electron injection layer FL5.
  • the material of the electron injection layer FL5 include an alkali metal, an alkaline earth metal, an alloy containing at least one of alkali metals and alkaline earth metals, an oxide of an alkali metal or an alkaline earth metal, a halide, and a carbonate. Salts and mixtures of these substances are exemplified.
  • alkali metals, oxides, halides and carbonates of alkali metals include lithium, sodium, potassium, rubidium, cesium, lithium oxide, lithium fluoride, sodium oxide, sodium fluoride, potassium oxide, potassium fluoride, and potassium oxide.
  • Examples include rubidium, rubidium fluoride, cesium oxide, cesium fluoride, lithium carbonate, and the like.
  • alkaline earth metals, oxides, halides and carbonates of alkaline earth metals include magnesium, calcium, barium, strontium, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, barium oxide, barium fluoride , Strontium oxide, strontium fluoride, magnesium carbonate and the like.
  • a layer in which a conventionally known organic material having an electron transporting property and an organic metal complex having an alkali metal are mixed can be used as the electron injection layer FL5.
  • an ionic polymer compound containing an alkali metal salt in a side chain described in WO 12/133229 can be used as the electron injection layer FL5.
  • the cathode 18 is provided on the organic EL section 16.
  • the optimum thickness of the cathode 18 varies depending on the material used, and is set in consideration of electric conductivity, durability, and the like.
  • the thickness of the cathode 18 is usually 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • Examples of the material of the cathode 18 include alkali metals, alkaline earth metals, transition metals, and metals of Group 13 of the periodic table.
  • a transparent conductive electrode made of a conductive metal oxide, a conductive organic substance, or the like may be used.
  • the organic EL element 10 is manufactured using a flexible (or long) flexible plastic substrate 12.
  • the strip-shaped plastic substrate 12 is, for example, a plastic substrate whose length in the longitudinal direction is 10 times or more the width direction (transverse direction).
  • the width of the plastic substrate 12 is, for example, 0.2 m to 1.0 m.
  • the method for manufacturing the organic EL element 10 includes an anode forming step (forming step) S10, an organic EL section forming step S12, and a cathode forming step S14.
  • an anode (base layer) 14 is formed on the plastic substrate 12.
  • a plurality of organic EL element formation regions are set in the longitudinal direction of the plastic substrate 12, and the anodes 14 are formed in each of the organic EL element formation regions.
  • the anode 14 can be formed by a known method in manufacturing an organic EL device. Examples of the method for forming the anode 14 include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and a coating method.
  • an ink-jet printing method may be used, but any other known application method may be used as long as the application method can form the anode 14.
  • Known coating methods other than the inkjet printing method include, for example, microgravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, spray coating method, screen printing method, flexographic printing method, offset printing method And a nozzle printing method.
  • the solvent of the coating solution containing the material of the anode 14 may be any solvent that can dissolve the material of the anode 14.
  • the solvent include chloride solvents such as chloroform, methylene chloride and dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone and methyl ethyl ketone, ethyl acetate, butyl acetate, and ethyl cell. Ester solvents such as solve acetate and the like.
  • the organic EL section 16 is formed on the anode 14. Specifically, the organic EL section 16 is formed by sequentially stacking the hole injection layer FL1, the hole transport layer FL2, the light emitting layer FL3, the electron transport layer FL4, and the electron injection layer FL5 on the anode 14.
  • the hole injection layer FL1, the hole transport layer FL2, the light emitting layer FL3, the electron transport layer FL4, and the electron injection layer FL5 are referred to as a functional layer FL, and a method for forming the functional layer FL (a method for manufacturing the functional layer) will be described.
  • a layer that has been formed before the formation of the functional layer FL to be formed is illustrated as a base layer UL.
  • the functional layer FL to be formed is the hole injection layer FL1
  • the underlayer UL is the anode 14
  • the functional layer FL to be formed is the hole transport layer FL2
  • the underlayer UL is connected to the anode 14.
  • the functional layer FL to be formed is the light emitting layer FL3
  • the underlayer UL is the anode 14
  • the underlayer UL when the functional layer FL to be formed is the electron transport layer FL4 or the electron injection layer FL5 is defined in the same manner.
  • the method for forming the functional layer FL includes a coating film forming step and a heating step.
  • the coating film forming step and the heating step are sequentially performed while the belt-shaped plastic substrate 12 is transported by rollers in the longitudinal direction (the direction of the arrow in FIG. 3).
  • a coating liquid (a coating liquid for the functional layer FL) containing a material to be the functional layer FL is supplied from a coating device (not shown) to one of the main surfaces 12a of the plastic substrate 12 (specifically, the lower side). (On the ground layer UL) to form a coating film C.
  • Examples of the coating method performed while transporting the belt-shaped plastic substrate 12 as in the present embodiment include a slit coating method (die coating method), a microgravure coating method, a gravure coating method, a bar coating method, a roll coating method, and the like. Examples thereof include a wire bar coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an inkjet printing method, and a nozzle printing method.
  • the application method is an inkjet printing method
  • the application device 20 may be any inkjet device including an inkjet nozzle.
  • the solvent of the coating solution containing the material of the functional layer FL may be any solvent that can dissolve the material of the functional layer FL.
  • the solvent may be the same as the solvent described in the description of the anode forming step S10.
  • the coating liquid may include a material having a crosslinkable group.
  • the material having a crosslinkable group include an organic compound having a crosslinkable group and a crosslinking agent.
  • the crosslinkable group is a substituent capable of causing a crosslinking reaction of the compound under predetermined conditions.
  • crosslinkable group examples include a vinyl group, an ethynyl group, a butenyl group, an acryloyl group, an acryloyloxyalkyl group, an acryloylamide group, a methacryloyl group, a methacryloyloxyalkyl group, a methacryloylamide group, a vinyl ether group, a vinylamino group, and a silanol group.
  • a compound having a small ring for example, cyclopropane, cyclobutane, epoxide, oxetane, diketene, episulfide, a three- or four-membered lactone, and a three- or four-membered lactam).
  • a group excluding an atom is exemplified.
  • crosslinking agent examples include a vinyl group, an ethynyl group, a butenyl group, an acryloyl group, an acryloyloxyalkyl group, an acryloylamide group, a methacryloyl group, a methacryloyloxyalkyl group, a methacryloylamide group, a vinyl ether group, a vinylamino group, and a silanol group.
  • a compound having a small ring eg, cyclopropane, cyclobutane, epoxide, oxetane, diketene, episulfide, a three- or four-membered lactone, and a three- or four-membered lactam.
  • a polyfunctional acrylate is preferable, and examples thereof include dipentaerythritol hexaacrylate (DPHA) and trispentaerythritol octaacrylate (TPEA).
  • the coating film C formed on the plastic substrate 12 in the coating film forming step is carried into the infrared heating furnace 24 provided on the transfer path along with the transfer of the plastic substrate 12.
  • the coating film C is heated and cured in the infrared heating furnace 24 to form the functional layer FL.
  • the infrared heating furnace 24 includes a housing 26, a near-infrared lamp 28, a first nozzle 30, a far-infrared heater 32, and a second nozzle 34.
  • the operation of each device of the infrared heating furnace 24 is controlled by a control device (not shown).
  • the infrared heating furnace 24 constitutes an apparatus for manufacturing the organic EL element 10.
  • the X, Y, and Z directions shown in FIGS. 3 and 4 will be used as appropriate.
  • the housing 26 houses a near-infrared lamp 28, a first nozzle 30, a far-infrared heater 32, and a second nozzle 34.
  • the housing 26 forms a heating space S for heating the coating film C.
  • the longitudinal direction of the case 26 is the X direction
  • the height direction (vertical direction) of the case 26 is the Y direction
  • the width direction of the case 26 is the Z direction.
  • the X direction of the housing 26 corresponds to the transport direction of the plastic substrate 12
  • the Z direction of the housing 26 corresponds to the width direction of the plastic substrate 12.
  • the housing 26 has a box shape.
  • the housing 26 is formed of, for example, stainless steel (SUS).
  • the casing 26 has a carry-in port 26a through which the plastic substrate 12 is carried into the casing 26, and a carry-out port 26b through which the plastic substrate 12 is carried out of the casing 26.
  • the length of the housing 26 in the X direction is, for example, 3.9 m.
  • the surface area of one main surface 12a or the other main surface 12b of the plastic substrate 12 existing in the housing 26 is 2.3 m 2 .
  • the near-infrared lamp 28 emits near-infrared rays. As shown in FIG. 3, the near-infrared lamp 28 is disposed in the housing 26 at a position above the plastic substrate 12 (on the one main surface 12 a side). A plurality of near-infrared lamps 28 are provided. The near-infrared lamp 28 extends in the Z direction of the housing 26, that is, in a direction perpendicular to the extending direction of the plastic substrate 12 (the width direction of the plastic substrate 12). The plurality of near-infrared lamps 28 are arranged at predetermined intervals along the X direction of the housing 26.
  • the distance between the adjacent near-infrared lamps 28 (the distance between the centers of the near-infrared lamps 28) is set to 50 mm to 100 mm.
  • the near-infrared lamp 28 normally emits infrared light having a wavelength range of 1.2 ⁇ m to 10.0 ⁇ m.
  • the first nozzle 30 injects an inert gas.
  • the first nozzle 30 is disposed in the housing 26 at a position above the plastic substrate 12 (on one side of the main surface 12 a). Thereby, the first nozzle 30 injects an inert gas from above the plastic substrate 12 toward the plastic substrate 12, and blows the inert gas onto one main surface 12 a of the plastic substrate 12.
  • a plurality of first nozzles 30 are provided.
  • the first nozzle 30 is arranged, for example, between a pair of near-infrared lamps 28 facing the housing 26 in the X direction.
  • An example of the inert gas is argon gas. The pressure of the inert gas injected from the first nozzle 30 is appropriately set.
  • the far-infrared heater 32 emits far-infrared rays. As shown in FIG. 3, the far-infrared heater 32 is disposed in the housing 26 at a position below the plastic substrate 12 (on the other main surface 12b side). A plurality of far-infrared heaters 32 are provided. As shown in FIG. 3, the far-infrared heater 32 is disposed at a position below the plastic substrate 12 and at a position corresponding to a position between a pair of near-infrared lamps 28 facing the housing 26 in the X direction. I have. In the present embodiment, the far infrared heater 32 is disposed at a position facing the first nozzle 30 in the height direction of the housing 26.
  • FIG. 4 is a view of the far-infrared heater 32 viewed from the Y direction.
  • a plurality (three in FIG. 4) of far-infrared heaters 32 are arranged at predetermined intervals in the Z direction of the housing 26 (vertical direction in FIG. 4).
  • a plurality (ten in FIG. 4) of far-infrared heaters 32 are arranged at predetermined intervals in the X direction of the housing 26 (the left-right direction in FIG. 4).
  • the projection plane PS is a projection of the far-infrared heater 32 onto the other main surface 12b in the direction (Y direction) where one main surface 12a and the other main surface 12b of the plastic substrate 12 face each other.
  • the projection surface PS is a surface on which the far-infrared heater 32 overlaps the plastic substrate 12 when viewed from the Y direction orthogonal to the plastic substrate 12.
  • the projection plane PS has a rectangular shape (rectangular shape).
  • the total area (horizontal projection area) of the plurality of projection planes PS is 30% or more with respect to the surface area of the other main surface 12b of the plastic substrate 12 existing in the infrared heating furnace 24.
  • far-infrared heaters 32 are arranged in a plurality of regions.
  • the area is divided into six areas A1 to A6.
  • At least one far-infrared heater 32 is arranged in each of the regions A1 to A6.
  • a plurality of (five in FIG. 4) far infrared heaters 32 are arranged in each of the regions A1 to A6.
  • the length L (dimension in the Z direction) of each of the regions A1 to A6 in the width direction is set to be 0.2 m or more and 0.3 m or less.
  • the length L in the width direction of each of the regions A1 to A6 may be the same as the length in the width direction of the far-infrared heater 32, or may be larger than the length in the width direction of the far-infrared heater 32.
  • the total area of the projection plane PS of the far-infrared heater 32 disposed in each of the regions A1 to A6 is set to 1.2 m 2 .
  • the temperature of the far infrared heater 32 can be adjusted (controlled) for each of the regions A1 to A6 (in units of each of the regions A1 to A6).
  • the temperature of the far-infrared heater 32 in the area A1 and the temperature of the far-infrared heater 32 in the area A5 can be changed.
  • the far-infrared heater 32 is, for example, a ceramic heater.
  • the temperature of the far infrared heater 32 is, for example, 100 ° C. to 300 ° C.
  • the far-infrared heater 32 normally emits infrared light having a peak wavelength range of 4 ⁇ m to 8 ⁇ m.
  • the average emissivity of the surface of the far-infrared heater 32 in the wavelength range of 5 ⁇ m to 10 ⁇ m is preferably 0.3 or more, more preferably 0.8 or more.
  • the second nozzle 34 injects an inert gas.
  • the second nozzle 34 is disposed in the housing 26 at a position below the plastic substrate 12 (on the other main surface 12b side). Thereby, the second nozzle 34 injects an inert gas from below the plastic substrate 12 toward the plastic substrate 12, and blows the inert gas to the other main surface 12 b of the plastic substrate 12.
  • a plurality of second nozzles 34 are provided.
  • the second nozzle 34 is disposed, for example, between a pair of far-infrared heaters 32 facing the housing 26 in the X direction.
  • An example of the inert gas is argon gas.
  • the pressure of the inert gas injected from the second nozzle 34 may be set as appropriate, and is, for example, equivalent to the pressure of the inert gas injected from the first nozzle 30.
  • the near-infrared lamp 28 irradiates the near-infrared light to the coating film C and the far-infrared light.
  • the heater 32 irradiates the plastic substrate 12 with far infrared rays.
  • the coating film C is cured by heating to form the functional layer FL.
  • a crosslinking reaction including a polymerization reaction
  • the crosslinkable groups are crosslinked, and the coating film C is cured to form the functional layer FL.
  • the functional layer FL thus formed on the plastic substrate 12 is carried out from the carry-out port 26b.
  • the transport speed of the plastic substrate 12 is adjusted so that the coating film C is heated and cured by the infrared rays emitted from the near-infrared lamp 28 while passing through the infrared heating furnace 24 to form the functional layer FL. Good.
  • the inert gas G is supplied into the housing 26 from the first nozzle 30 and the second nozzle 34, and the inside of the housing 26 is brought into an inert gas atmosphere. deep.
  • the method of forming the functional layer FL is sequentially performed. It is formed on the anode 14. These can be performed continuously while transporting the plastic substrate 12 in its longitudinal direction.
  • the cathode 18 is formed on the organic EL section 16.
  • the method for forming the cathode 18 can be the same as the method for forming the anode 14, and thus the description is omitted.
  • the cutting step is performed after the cathode formation step S16. Is performed to cut out the organic EL element 10.
  • a sealing step of sealing the organic EL element 10 with a sealing member may be performed.
  • the plastic substrate 12 is unwound from a first roll (unwinding roll) on which the strip-shaped plastic substrate 12 is wound, and a second roll (winding).
  • Roll-to-roll method which is sequentially performed during winding on a roll).
  • the method for forming the functional layer FL shown in FIG. 3 corresponds to a partially enlarged view when the organic EL section 16 is formed by a roll-to-roll method.
  • Any of the anode forming step S10, the organic EL section forming step S14, and the cathode forming step S16 may be performed by a roll-to-roll method.
  • near infrared rays are irradiated from the one main surface 12a side of the plastic substrate 12 by the plurality of near infrared lamps 28, and Far infrared rays are emitted from a plurality of far infrared heaters 32 from the other main surface 12 b side of the substrate 12.
  • the plastic substrate 12 is heated on one main surface 12a side by the near infrared rays of the near infrared lamp 28 and on the other main surface 12b side by the far infrared rays of the far infrared heater 32.
  • the uneven temperature caused by the near-infrared lamp 28 can be eliminated by the far-infrared heater 32. Therefore, it is possible to suppress the occurrence of temperature unevenness in the plastic substrate 12. Therefore, deformation of the plastic substrate 12 due to temperature unevenness can be suppressed. As a result, the yield can be improved.
  • the coating film C is irradiated with infrared rays while transporting the plastic substrate 12 in the infrared heating furnace 24 in the heating step.
  • the near-infrared lamps 28 are arranged at intervals of 50 mm or more and 100 mm or less in the transport direction of the plastic substrate 12. Thereby, the difference between the temperature of the near-infrared lamp 28 and the temperature between the adjacent near-infrared lamps 28 can be reduced. Therefore, occurrence of temperature unevenness can be suppressed.
  • the other main surface 12b in the direction in which the one main surface 12a and the other main surface 12b of the plastic substrate 12 face each other Is greater than or equal to 30% of the surface area of the other main surface 12b of the plastic substrate 12 existing in the infrared heating furnace 24. Thereby, the plastic substrate 12 can be effectively heated.
  • the plurality of far-infrared heaters 32 used in the heating step are arranged in each of the plurality of regions A1 to A6, and the temperature is adjusted for each of the regions A1 to A6. It is possible. Thereby, the temperature can be adjusted for each of the regions A1 to A6 in the infrared heating furnace 24. Therefore, the temperature in the infrared heating furnace 24 can be adjusted more accurately. As a result, the occurrence of temperature unevenness can be suppressed, and the deformation of the plastic substrate 12 caused by the temperature unevenness can be suppressed.
  • the length L in the width direction orthogonal to the transport direction of the plastic substrate 12 in each of the plurality of regions A1 to A6 is , 0.3 m or less.
  • the temperature can be more accurately adjusted for each of the regions A1 to A6.
  • the effect of the length L in the width direction of the plurality of regions A1 to A6 is hardly affected by changes in the size of the infrared heating furnace 24, the transfer speed of the plastic substrate 12, and the like. Therefore, by setting the length L in the width direction of the plurality of regions A1 to A6 to 0.3 m or less, temperature control can be accurately performed without depending on changes in the use environment.
  • an inert gas is blown onto one main surface 12a and the other main surface 12b of the plastic substrate 12.
  • a heated air convection
  • temperature unevenness may occur. Therefore, in the present embodiment, an inert gas is blown onto one main surface 12a and the other main surface 12b of the plastic substrate 12.
  • the near-infrared lamp 28 used for the heating step is disposed above the housing 26, and the far-infrared heater 32 is disposed below the housing 26. I have.
  • the far-infrared heater 32 is disposed at a position corresponding to a position between a pair of near-infrared lamps 28 facing the housing 26 in the X direction. Thereby, the temperature between the near-infrared lamps 28 can be prevented from lowering by the far-infrared heater 32. Therefore, the occurrence of temperature unevenness can be further suppressed.
  • the method for manufacturing the organic EL element 10 includes a step of forming a base layer UL on one main surface 12 a of the plastic substrate 12.
  • a coating film C is formed on the underlayer UL.
  • an underlayer UL including the anode 14 can be formed between the plastic substrate 12 and the organic EL section 16.
  • the far-infrared heater 32 is disposed in the plurality of regions A1 to A6, and the temperature of the far-infrared heater 32 is adjusted for each of the regions A1 to A6.
  • the far-infrared heater 32 may not be arranged for each area.
  • an example in which the area is partitioned into six areas A1 to A6 has been described as an example, but the number of areas is not limited to this.
  • an inert gas is blown onto one main surface 12a and the other main surface 12b of the plastic substrate 12
  • an inert gas may be blown to only one of the one main surface 12a and the other main surface 12b of the plastic substrate 12.
  • the infrared heating furnace 24 has the first nozzle 30 and the second nozzle 34 .
  • the infrared heating furnace 24 only needs to include at least one of the first nozzle 30 and the second nozzle 34.
  • the organic EL section may be a laminate including a functional layer other than the light emitting layer as described above.
  • Examples of the layer structure of the organic EL device including various functional layers are shown below.
  • these layers may be referred to as an electron block layer.
  • these layers may be referred to as a hole block layer.
  • the organic EL element may have a single light emitting layer or two or more light emitting layers.
  • a laminated structure disposed between an anode and a cathode is referred to as “structural unit I”
  • an organic EL having two light-emitting layers Examples of the element configuration include a layer configuration shown in j) below.
  • the layer configurations of the two (structural units I) may be the same or different.
  • J anode / (structural unit I) / charge generating layer / (structural unit I) / cathode
  • the charge generation layer is a layer that generates holes and electrons when an electric field is applied.
  • Examples of the charge generation layer include a thin film made of vanadium oxide, ITO, molybdenum oxide, or the like.
  • an organic EL device having three or more light-emitting layers may have, for example, the following layer configuration shown in (k). it can. (K) anode / (structural unit II) x / (structural unit I) / cathode
  • (structural unit II) x represents a laminate in which (structural unit II) is laminated in x stages.
  • the layer configuration of the plurality (structural unit II) may be the same or different.
  • An organic EL element may be formed by directly laminating a plurality of light emitting layers without providing a charge generation layer.
  • a cathode may be provided on the side of the plastic substrate.
  • the method for manufacturing an organic electronic device having an organic functional layer includes, in addition to the organic EL devices exemplified above, organic transistors (organic electronic devices), organic photoelectric conversion devices (organic electronic devices), and organic solar cells ((organic electronic devices)).
  • the present invention can be applied to a method for manufacturing an organic electronic device having a predetermined functional layer.
  • the infrared heating furnace includes a box-shaped housing, a near-infrared lamp, and a far-infrared heater.
  • the near-infrared lamp was arranged above the housing, and the far-infrared heater was arranged below the housing.
  • the surface of the far infrared heater was formed of an infrared radiation material having an average emissivity of 0.8 or more in a wavelength range of 5 ⁇ m to 10 ⁇ m.
  • the infrared radiation material is exposed to the lower surface of the plastic substrate.
  • the average emissivity on the surface of the far-infrared heater can be changed, for example, by covering the surface with aluminum foil or the like.
  • the total output of the near-infrared lamp was 15 kW, and the total output of the far-infrared heater was 3.6 kW.
  • the temperature distribution of the plastic substrate was measured while the plastic substrate was being conveyed after the inside of the casing became constant temperature, the temperature of the plastic substrate was 150 ° C., and the temperature distribution was ⁇ 4.5 ° C. In the example, no deformation of the plastic substrate was confirmed.
  • SYMBOLS 10 Organic EL element (organic electronic element), 12 ... Plastic substrate, 12a ... One main surface, 12b ... The other main surface, 14 ... Anode (underlayer), 28 ... Near infrared lamp, 32 ... Far infrared heater, A1 to A6 region, C coating film, FL1 hole injection layer (functional layer), FL2 hole transport layer (functional layer), FL3 light emitting layer (functional layer), FL4 electron transport layer (functional layer) ), FL5: electron injection layer (functional layer), PS: projection plane, UL: base layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Photovoltaic Devices (AREA)

Abstract

有機電子素子10の製造方法は、所定の機能を有する機能層FL用の塗布液をプラスチック基板12の一方の主面12a側に塗布して塗布膜Cを形成する塗布膜形成工程と、赤外線加熱炉24内で塗布膜Cに赤外線を照射して塗布膜を加熱硬化させることによって、機能層FLを形成する加熱工程と、を備え、加熱工程では、塗布膜Cが形成されたプラスチック基板12の一方の主面12a側から複数の近赤外線ランプ28により近赤外線を照射すると共に、一方の主面12aとは反対側の他方の主面12b側から複数の遠赤外線ヒータ32により遠赤外線を照射する。

Description

近赤外線と遠赤外線を併用する有機電子素子の製造方法及び有機電子素子の製造装置
 本発明は、有機電子素子の製造方法及び有機電子素子の製造装置に関する。
 有機エレクトロルミネッセンス素子(以下、「有機EL素子」という場合がある)、有機光電変換素子、有機薄膜トランジスタ等の有機電子素子は、基板上に設けられており所定の機能を有する機能層を有する。
 上記機能層の形成方法の例として、特許文献1の技術が知られている。特許文献1では、最初に、架橋性基を有しており、機能層(特許文献1における導電性薄膜)の材料である高分子化合物を含む塗布液を基板上に塗布して塗布膜を形成する。その後、塗布膜に赤外線ヒータによって赤外線を照射し、その赤外線により架橋性基を架橋させることで塗布膜を加熱硬化して、機能層を形成する。
国際公開第2013/180036号
 赤外線を照射する手段としては、赤外線ランプが用いられることがある。一般的に、赤外線ランプは、加熱炉内において、所定の間隔をあけて複数設けられている。この場合、例えば、赤外線ランプの直下の温度と、隣り合う赤外線ランプの間の温度には差が生じるため、加熱炉内に温度ムラが生じ得る。これにより、加熱されるプラスチック基板に温度ムラが生じ、温度ムラに起因してプラスチック基板にシワ等の変形が生じるおそれがある。そうすると、有機電子素子の歩留まりが低下するという問題がある。
 本発明の一側面は、歩留まりの向上を図ることができる有機電子素子の製造方法及び有機電子素子の製造装置を提供することを目的とする。
 本発明の一側面に係る有機電子素子の製造方法は、有機電子素子の製造方法であって、所定の機能を有する機能層用の塗布液をプラスチック基板の一方の主面側に塗布して塗布膜を形成する塗布膜形成工程と、赤外線加熱炉内で塗布膜に赤外線を照射して塗布膜を加熱硬化させることによって、機能層を形成する加熱工程と、を含み、加熱工程では、塗布膜が形成されたプラスチック基板の一方の主面側から複数の近赤外線ランプにより近赤外線を照射すると共に、一方の主面とは反対側の他方の主面側から複数の遠赤外線ヒータにより遠赤外線を照射する。
 本発明の一側面に係る有機電子素子の製造方法では、加熱工程において、プラスチック基板の一方の主面側から複数の近赤外線ランプにより近赤外線を照射すると共に、一方の主面とは反対側の他方の主面側から複数の遠赤外線ヒータにより遠赤外線を照射する。これにより、プラスチック基板は、一方の主面側が近赤外線ランプの近赤外線により加熱されると共に、他方の主面側が遠赤外線ヒータの遠赤外線により加熱される。この構成では、近赤外線ランプにより生じる温度ムラを、遠赤外線ヒータにより解消することができる。そのため、プラスチック基板に温度ムラが生じることを抑制できる。したがって、温度ムラに起因するプラスチック基板の変形を抑制できる。その結果、歩留まりの向上を図ることができる。
 一実施形態においては、塗布液は、架橋性基を有する材料を含んでおり、加熱工程では、赤外線により架橋性基を架橋させることによって、塗布膜を加熱硬化させてもよい。
 一実施形態においては、加熱工程では、赤外線加熱炉内において、プラスチック基板を搬送しながら赤外線を塗布膜に照射し、複数の近赤外線ランプは、プラスチック基板の搬送方向において、50mm以上100mm以下の間隔をあけて配置されていてもよい。これにより、近赤外線ランプの直下の温度と、隣り合う近赤外線ランプの間の温度との差を小さくすることができる。したがって、温度ムラの発生を抑制できる。
 一実施形態においては、一方の主面と他方の主面との対向方向における、他方の主面に対する複数の遠赤外線ヒータの投影面の面積の合計は、赤外線加熱炉内に存在するプラスチック基板の他方の主面の表面積に対して30%以上であってもよい。これにより、プラスチック基板を効果的に加熱することができる。
 一実施形態においては、複数の遠赤外線ヒータは、複数の領域のそれぞれに少なくとも1つずつ配置されていると共に、領域毎に温度が調整可能であってもよい。これにより、赤外線加熱炉内において、領域毎に温度を調整することができる。したがって、赤外線加熱炉内における温度の調整をより精度良く行うことができる。その結果、温度ムラの発生を抑制でき、温度ムラに起因するプラスチック基板の変形を抑制できる。
 一実施形態においては、複数の領域のそれぞれにおいて、プラスチック基板の搬送方向に直交する幅方向の長さは、0.3m以下であってもよい。これにより、赤外線加熱炉内において、領域毎に温度をより精度良く調整することができる。
 一実施形態においては、加熱工程では、プラスチック基板の一方の主面及び他方の主面の少なくとも一方に、不活性ガスを吹き付けてもよい。赤外線加熱炉内のプラスチック基板は、赤外線で加熱されると、その表面から加熱された空気により上昇気流(対流)が発生し得る。上昇気流が発生すると、温度ムラが発生し得る。そのため、一実施形態では、プラスチック基板の一方の主面及び他方の主面の少なくとも一方に不活性ガスを吹き付ける。これにより、上昇気流の発生を抑制でき、温度ムラの発生を抑制できる。その結果、温度ムラに起因するプラスチック基板の変形を抑制できる。
 一実施形態においては、プラスチック基板の一方の主面上に下地層を形成する形成工程を含み、塗布膜形成工程では、下地層上に塗布膜を形成してもよい。これにより、プラスチック基板と機能層との間に、下地層(例えば、電極等)を形成できる。
 本発明の一側面に係る有機電子素子の製造装置は、有機電子素子の製造装置であって、プラスチック基板の一方の主面側において、所定の機能を有する機能層用の塗布液が塗布されて形成されている塗布膜に赤外線を照射して、塗布膜を加熱硬化させる赤外線加熱炉を備え、赤外線加熱炉は、塗布膜が形成されているプラスチック基板の一方の主面側から近赤外線を照射する複数の近赤外線ランプと、一方の主面とは反対側の他方の主面側から遠赤外線を照射する複数の遠赤外線ヒータと、を有する。
 本発明の一側面に係る有機電子素子の製造装置では、赤外線加熱炉は、複数の近赤外線ランプと、複数の遠赤外線ヒータと、を有する。これにより、プラスチック基板は、一方の主面側が近赤外線ランプの近赤外線により加熱されると共に、他方の主面側が遠赤外線ヒータの遠赤外線により加熱される。この構成では、近赤外線ランプにより生じる温度ムラを、遠赤外線ヒータにより解消することができる。そのため、プラスチック基板に温度ムラが生じることを抑制できる。したがって、温度ムラに起因するプラスチック基板の変形を抑制できる。その結果、歩留まりの向上を図ることができる。
 本発明の一側面によれば、歩留まりの向上を図ることができる。
図1は、一実施形態に係る有機電子素子の製造方法により製造された有機EL素子の構成を示す図である。 図2は、図1に示す有機EL素子の製造方法を示すフローチャートである。 図3は、赤外線加熱炉を模式的に示す図である。 図4は、赤外線加熱炉における遠赤外線ヒータをY方向から見た図である。 図5は、プラスチック基板に対する遠赤外線ヒータの投影面を示す図である。
 以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、図面の説明において同一又は相当要素には同一符号を付し、重複する説明は省略する。
 本実施形態では、有機電子素子が有機EL素子である形態について説明する。図1に模式的に示した、一実施形態に係る有機EL素子(有機電子素子)の製造方法で製造される有機EL素子10は、例えば曲面状又は平面状の照明装置、例えばスキャナの光源として用いられる面状光源、及び表示装置に用いられ得る。
 有機EL素子10は、プラスチック基板12と、陽極14と、有機EL部16と、陰極18と、を備える。有機EL素子10は、陽極14側から光を出射する形態、或いは、陰極18側から光を出射する形態を取り得る。以下では、断らない限り、陽極14側から光を出射する形態について説明する。
[プラスチック基板]
 プラスチック基板12は、可視光(波長400nm~800nmの光)に対して透光性を有する。プラスチック基板12は、例えばフィルム状を呈し、可撓性を有する。プラスチック基板12の厚さは、例えば30μm以上700μm以下である。プラスチック基板12は、一方の主面12aと、一方の主面12aの反対側の他方の主面12bと、を有する。
 プラスチック基板12の材料(プラスチック材料)としては、例えば、ポリエーテルスルホン(PES);ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン等のポリオレフィン樹脂;ポリアミド樹脂;ポリカーボネート樹脂;ポリスチレン樹脂;ポリビニルアルコール樹脂;エチレン-酢酸ビニル共重合体のケン化物;ポリアクリロニトリル樹脂;アセタール樹脂;ポリイミド樹脂;エポキシ樹脂が挙げられる。
 プラスチック基板12には、有機EL素子10を駆動するための駆動回路(例えば、薄膜トランジスタなどを含む回路)が形成されていてもよい。このような駆動回路は、通常、透明材料から構成される。
 プラスチック基板12上には、バリア膜が形成されていてもよい。バリア膜は、水分をバリアする機能を有する。バリア膜は、ガス(例えば酸素)をバリアする機能を有してもよい。バリア膜は、例えば、ケイ素、酸素及び炭素からなる膜、又は、ケイ素、酸素、炭素及び窒素からなる膜であり得る。具体的には、バリア膜の材料の例は、酸化ケイ素、窒化ケイ素、酸窒化ケイ素等である。バリア膜の厚さの例は、100nm以上10μm以下である。
[陽極]
 陽極14は、プラスチック基板12の一方の主面12a上に設けられている。プラスチック基板12上にバリア膜が形成されている形態では、陽極14はバリア膜上に設けられる。陽極14には、光透過性を示す電極が用いられる。光透過性を示す電極としては、電気伝導度の高い金属酸化物、金属硫化物及び金属等の薄膜を用いることができ、光透過率の高い薄膜が好適に用いられる。陽極14は、導電体(例えば金属)からなるネットワーク構造を有してもよい。
 陽極14の材料としては、例えば酸化インジウム、酸化亜鉛、酸化スズ、インジウム錫酸化物(Indium Tin Oxide:略称ITO)、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、銅等が挙げられ、これらの中でもITO、IZO、又は酸化スズが好ましい。陽極14の材料には、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機物を用いてもよい。この場合、陽極14は、透明導電膜として形成され得る。
 陽極14の厚さは、光の透過性、電気伝導度等を考慮して決定することができる。陽極14の厚さは、通常、10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。
[有機EL部]
 有機EL部16は、陽極14上に設けられている。有機EL部16は、陽極14及び陰極18に印加された電圧に応じて、電荷の移動、電荷の再結合等の有機EL素子10の発光に寄与する機能部である。
 有機EL部16は、正孔注入層FL1、正孔輸送層FL2、発光層FL3、電子輸送層FL4及び電子注入層FL5を含み、それらが、陽極14側から順に積層された積層体である。正孔注入層FL1、正孔輸送層FL2、発光層FL3、電子輸送層FL4及び電子注入層FL5は、それぞれ所定の機能を有する機能層である。有機EL部16は、発光層FL3を含んでいれば、例示したものに限定されない。
 正孔注入層FL1は、陽極14上に設けられており、陽極14から発光層FL3への正孔注入効率を改善する機能を有する層である。正孔注入層FL1の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように、適宜設定される。正孔注入層FL1の厚さは、例えば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 正孔注入層FL1の材料には、公知の正孔注入材料が用いられ得る。正孔注入材料としては、例えば酸化バナジウム、酸化モリブデン、酸化ルテニウム及び酸化アルミニウム等の酸化物、ポリエチレンジオキシチオフェン(PEDOT)等のポリチオフェン誘導体、フェニルアミン化合物、スターバースト型アミン化合物、フタロシアニン化合物、アモルファスカーボン及びポリアニリンを挙げることができる。
 正孔輸送層FL2は、正孔注入層FL1上に設けられており、陽極14、正孔注入層FL1又は陽極14により近い正孔輸送層FL2から発光層FL3への正孔注入を改善する機能を有する層である。正孔輸送層FL2の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように、適宜設定される。正孔輸送層FL2の厚さは、例えば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 正孔輸送層FL2の材料には、公知の正孔輸送材料が用いられ得る。正孔輸送層FL2の材料としては、例えばポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン若しくはその誘導体、ピラゾリン若しくはその誘導体、アリールアミン若しくはその誘導体、スチルベン若しくはその誘導体、トリフェニルジアミン若しくはその誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、又はポリ(2,5-チエニレンビニレン)若しくはその誘導体等が挙げられる。正孔輸送層FL2の材料としては、例えば特開2012-144722号公報に開示されている正孔輸層材料も挙げられる。
 発光層FL3は、正孔輸送層FL2上に設けられており、発光層FL3は、所定の波長の光を発光する機能を有する層である。発光層FL3の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように適宜設定される。
 発光層FL3は、通常、主として蛍光及び/又はりん光を発光する有機物、或いは、該有機物とこれを補助するドーパントとから形成される。ドーパントは、例えば発光効率の向上、発光波長を変化させる等のために加えられる。発光層FL3に含まれる有機物は、低分子化合物でも高分子化合物でもよい。発光層FL3を構成する発光材料としては、下記の色素系材料、金属錯体系材料、高分子系材料等の主として蛍光及び/又はりん光を発光する有機物、ドーパント材料等が挙げられる。
 色素系の発光材料としては、例えばシクロペンダミン若しくはその誘導体、テトラフェニルブタジエン若しくはその誘導体、トリフェニルアミン若しくはその誘導体、オキサジアゾール若しくはその誘導体、ピラゾロキノリン若しくはその誘導体、ジスチリルベンゼン若しくはその誘導体、ジスチリルアリーレン若しくはその誘導体、ピロール若しくはその誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン若しくはその誘導体、ペリレン若しくはその誘導体、オリゴチオフェン若しくはその誘導体、オキサジアゾールダイマー若しくはその誘導体、ピラゾリンダイマー若しくはその誘導体、キナクリドン若しくはその誘導体、クマリン若しくはその誘導体等が挙げられる。
 金属錯体系の発光材料としては、例えばTb、Eu、Dyなどの希土類金属、又はAl、Zn、Be、Pt、Ir等を中心金属に有し、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造等を配位子に有する金属錯体が挙げられる。金属錯体としては、例えばイリジウム錯体、白金錯体等の三重項励起状態からの発光を有する金属錯体、アルミニウムキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、フェナントロリンユーロピウム錯体等が挙げられる。
 高分子系の発光材料としては、例えばポリパラフェニレンビニレン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリパラフェニレン若しくはその誘導体、ポリシラン若しくはその誘導体、ポリアセチレン若しくはその誘導体、ポリフルオレン若しくはその誘導体、ポリビニルカルバゾール若しくはその誘導体、上記色素材料及び金属錯体材料の少なくとも一方を高分子化した材料等が挙げられる。
 ドーパント材料としては、例えばペリレン若しくはその誘導体、クマリン若しくはその誘導体、ルブレン若しくはその誘導体、キナクリドン若しくはその誘導体、スクアリウム若しくはその誘導体、ポルフィリン若しくはその誘導体、スチリル色素、テトラセン若しくはその誘導体、ピラゾロン若しくはその誘導体、デカシクレン若しくはその誘導体、フェノキサゾン若しくはその誘導体等が挙げられる。
 電子輸送層FL4は、発光層FL3上設けられており、陰極18、電子注入層FL5、又は、陰極18により近い電子輸送層FL4からの発光層FL3への電子注入を改善する機能を有する層である。電子輸送層FL4の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように適宜設定される。電子輸送層FL4の厚さは、例えば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 電子輸送層FL4の材料には、公知の電子輸送材料が用いられ得る。電子輸送層FL4を構成する電子輸送材料としては、例えばオキサジアゾール誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアントラキノジメタン若しくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン誘導体、又は8-ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体などを挙げられる。
 電子注入層FL5は、電子輸送層FL4上に設けられており、陰極18から発光層FL3への電子注入効率を改善する機能を有する層である。電子注入層FL5の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように適宜設定される。電子注入層FL5の厚さは、例えば1nm~1μmである。
 電子注入層FL5の材料には、公知の電子注入材料が用いられ得る。電子注入層FL5の材料としては、例えばアルカリ金属、アルカリ土類金属、アルカリ金属及びアルカリ土類金属のうちの1種類以上を含む合金、アルカリ金属若しくはアルカリ土類金属の酸化物、ハロゲン化物、炭酸塩、又はこれらの物質の混合物等が挙げられる。
 アルカリ金属、アルカリ金属の酸化物、ハロゲン化物及び炭酸塩としては、例えばリチウム、ナトリウム、カリウム、ルビジウム、セシウム、酸化リチウム、フッ化リチウム、酸化ナトリウム、フッ化ナトリウム、酸化カリウム、フッ化カリウム、酸化ルビジウム、フッ化ルビジウム、酸化セシウム、フッ化セシウム、炭酸リチウム等が挙げられる。
 アルカリ土類金属、アルカリ土類金属の酸化物、ハロゲン化物及び炭酸塩としては、例えばマグネシウム、カルシウム、バリウム、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、酸化カルシウム、フッ化カルシウム、酸化バリウム、フッ化バリウム、酸化ストロンチウム、フッ化ストロンチウム、炭酸マグネシウム等が挙げられる。
 この他に従来知られた電子輸送性の有機材料と、アルカリ金属を有する有機金属錯体を混合した層を電子注入層FL5として利用することができる。この他に、国際公開第12/133229号に記されたアルカリ金属塩を側鎖に含むイオン性高分子化合物なども電子注入層FL5として用いることができる。
[陰極]
 陰極18は、有機EL部16上に設けられている。陰極18の厚さは、用いる材料によって最適値が異なり、電気伝導度、耐久性等を考慮して設定される。陰極18の厚さは、通常、10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。
 陰極18の材料としては、例えばアルカリ金属、アルカリ土類金属、遷移金属及び周期表の第13族の金属等が挙げられる。陰極18としては、導電性金属酸化物及び導電性有機物等からなる透明導電性電極を用いてもよい。
<有機EL素子の製造方法>
 続いて、有機EL素子10の製造方法の一例について、可撓性を有する帯状(又は長尺)のプラスチック基板12を利用して有機EL素子10を製造する場合を説明する。帯状のプラスチック基板12は、例えば長手方向の長さが、幅方向(短手方向)の10倍以上であるプラスチック基板である。プラスチック基板12の幅は、例えば、0.2m~1.0mである。有機EL素子10の製造方法は、図2に示されるように、陽極形成工程(形成工程)S10と、有機EL部形成工程S12と、陰極形成工程S14と、を含む。
[陽極形成工程]
 陽極形成工程S10では、プラスチック基板12上に陽極(下地層)14を形成する。帯状のプラスチック基板12を利用している場合、プラスチック基板12のうち長手方向に複数の有機EL素子形成領域を設定し、各有機EL素子形成領域にそれぞれ陽極14を形成する。陽極14は、有機EL素子の製造において公知の方法で形成され得る。陽極14の形成方法としては、例えば真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法、塗布法等が挙げられる。
 塗布法としては、例えば、インクジェット印刷法が挙げられるが、陽極14を形成可能な塗布法であれば、他の公知の塗布法でもよい。インクジェット印刷法以外の公知の塗布法としては、例えばマイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法及びノズルプリント法等が挙げられる。
 陽極14の材料を含む塗布液の溶媒は、陽極14の材料を溶解できる溶媒であればよい。溶媒としては、例えばクロロホルム、塩化メチレン、ジクロロエタン等の塩化物溶媒、テトラヒドロフラン等のエーテル溶媒、トルエン、キシレン等の芳香族炭化水素溶媒、アセトン、メチルエチルケトン等のケトン溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル溶媒等が挙げられる。
[有機EL部形成工程]
 有機EL部形成工程S12では、陽極14上に、有機EL部16を形成する。具体的には、陽極14上に、正孔注入層FL1、正孔輸送層FL2、発光層FL3、電子輸送層FL4及び電子注入層FL5を順に積層することによって、有機EL部16を形成する。
 正孔注入層FL1、正孔輸送層FL2、発光層FL3、電子輸送層FL4及び電子注入層FL5を機能層FLと称し、機能層FLの形成方法(機能層の製造方法)を説明する。
 図3では、形成すべき機能層FLの形成前に既に形成されている層を下地層ULとして図示している。形成すべき機能層FLが正孔注入層FL1である場合、下地層ULは陽極14であり、形成すべき機能層FLが正孔輸送層FL2である場合、下地層ULは陽極14と正孔注入層FL1とであり、形成すべき機能層FLが発光層FL3である場合、下地層ULは陽極14と正孔注入層FL1と正孔輸送層FL2である。形成すべき機能層FLが電子輸送層FL4又は電子注入層FL5である場合の下地層ULも同様に定義される。
 機能層FLの形成方法は、塗布膜形成工程と、加熱工程とを有する。本実施形態において、塗布膜形成工程と、加熱工程とは、帯状のプラスチック基板12を、その長手方向(図3の矢印の方向)にローラで搬送しながら順に実施する。
<塗布膜形成工程>
 塗布膜形成工程では、機能層FLとなる材料を含む塗布液(機能層FL用の塗布液)を、塗布装置(図示しない)からプラスチック基板12の一方の主面12a側(具体的には下地層UL上)に塗布し、塗布膜Cを形成する。
 本実施形態のように、帯状のプラスチック基板12を搬送しながら実施する塗布法の例としては、スリットコート法(ダイコート法)、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ノズルプリント法等が挙げられる。塗布法がインクジェット印刷法である場合は、塗布装置20は、インクジェットノズルを含むインクジェット装置であればよい。
 機能層FLの材料を含む塗布液の溶媒は、機能層FLの材料を溶解できる溶媒であればよい。溶媒は、陽極形成工程S10の説明で挙げた溶媒と同様とし得る。
 塗布液は、架橋性基を有する材料を含み得る。架橋性基を有する材料としては、架橋性基を有する有機化合物や、架橋剤等が挙げられる。ここで、架橋性基とは、所定の条件下で化合物の架橋反応を起こし得る置換基である。
 架橋性基の例としては、ビニル基、エチニル基、ブテニル基、アクリロイル基、アクリロイルオキシアルキル基、アクリロイルアミド基、メタクリロイル基、メタクリロイルオキシアルキル基、メタクリロイルアミド基、ビニルエーテル基、ビニルアミノ基、シラノール基、小員環を有する化合物(例えばシクロプロパン、シクロブタン、エポキシド、オキセタン、ジケテン、エピスルフィド、3員環又は4員環のラクトン、及び、3員環又は4員環のラクタム等)から少なくとも1つの水素原子を除いた基が挙げられる。
 架橋剤の例としては、ビニル基、エチニル基、ブテニル基、アクリロイル基、アクリロイルオキシアルキル基、アクリロイルアミド基、メタクリロイル基、メタクリロイルオキシアルキル基、メタクリロイルアミド基、ビニルエーテル基、ビニルアミノ基、シラノール基を有する化合物、及び、小員環を有する化合物(例えばシクロプロパン、シクロブタン、エポキシド、オキセタン、ジケテン、エピスルフィド、3員環又は4員環のラクトン、及び、3員環又は4員環のラクタム等)を挙げることができる。架橋剤としては、例えば多官能アクリレートが好ましく、ジペンタエリスリトールヘキサアクリレート(DPHA)、トリスペンタエリスリトールオクタアクリレート(TPEA)などが挙げられる。
 塗布膜形成工程で、プラスチック基板12上に形成された塗布膜Cは、プラスチック基板12の搬送に伴って搬送経路上に設けられた赤外線加熱炉24内に搬入される。
[加熱工程]
 加熱工程では、赤外線加熱炉24内で塗布膜Cを加熱硬化させて機能層FLを形成する。図3に示されるように、赤外線加熱炉24は、筐体26と、近赤外線ランプ28と、第1ノズル30と、遠赤外線ヒータ32と、第2ノズル34と、を有する。赤外線加熱炉24の各装置は、図示しない制御装置により動作が制御される。赤外線加熱炉24は、有機EL素子10の製造装置を構成している。以下の説明では、図3及び図4に示すX方向、Y方向及びZ方向を適宜使用する。
 筐体26は、近赤外線ランプ28、第1ノズル30、遠赤外線ヒータ32、及び、第2ノズル34を収容している。筐体26は、塗布膜Cを加熱処理するための加熱空間Sを形成している。本実施形態では、筐体26の長手方向がX方向、筐体26の高さ方向(上下方向)がY方向、筐体26の幅方向がZ方向である。筐体26のX方向は、プラスチック基板12の搬送方向に対応し、筐体26のZ方向は、プラスチック基板12の幅方向に対応する。筐体26は、箱状を呈している。筐体26は、例えば、ステンレス鋼(SUS)で形成されている。筐体26は、プラスチック基板12が筐体26内に搬入される搬入口26a、及び、筐体26内からプラスチック基板12が搬出される搬出口26bを有する。筐体26のX方向の長さは、例えば、3.9mである。本実施形態では、筐体26内に存在するプラスチック基板12の一方の主面12a又は他方の主面12bの表面積は、2.3mである。
 近赤外線ランプ28は、近赤外線を照射する。近赤外線ランプ28は、図3に示されるように、筐体26内において、プラスチック基板12の上方(一方の主面12a側)となる位置に配置されている。近赤外線ランプ28は、複数設けられている。近赤外線ランプ28は、筐体26のZ方向、すなわちプラスチック基板12の延在方向に直交する方向(プラスチック基板12の幅方向)に沿って延在する。また、複数の近赤外線ランプ28は、筐体26のX方向に沿って所定の間隔をあけて配置されている。本実施形態では、隣り合う近赤外線ランプ28の間隔(近赤外線ランプ28の中心間の距離)は、50mm~100mmに設定される。近赤外線ランプ28は、通常、波長範囲1.2μm~10.0μmを含む赤外線を出射する。
 第1ノズル30は、不活性ガスを噴射する。第1ノズル30は、図3に示されるように、筐体26内において、プラスチック基板12の上方(一方の主面12a側)となる位置に配置されている。これにより、第1ノズル30は、プラスチック基板12の上方からプラスチック基板12に向かって不活性ガスを噴射し、プラスチック基板12の一方の主面12aに不活性ガスを吹き付ける。本実施形態では、第1ノズル30は、複数設けられている。第1ノズル30は、例えば、筐体26のX方向で対向する一対の近赤外線ランプ28の間に配置されている。不活性ガスの例は、アルゴンガスである。第1ノズル30から噴射される不活性ガスの圧力は、適宜設定する。
 遠赤外線ヒータ32は、遠赤外線を照射する。遠赤外線ヒータ32は、図3に示されるように、筐体26内において、プラスチック基板12の下方(他方の主面12b側)となる位置に配置されている。遠赤外線ヒータ32は、複数設けられている。図3に示されるように、遠赤外線ヒータ32は、プラスチック基板12の下方となる位置で、且つ筐体26のX方向で対向する一対の近赤外線ランプ28の間に対応する位置に配置されている。本実施形態では、遠赤外線ヒータ32は、筐体26の高さ方向において、第1ノズル30と対向する位置に配置されている。
 図4は、遠赤外線ヒータ32をY方向から見た図である。図4に示されるように、遠赤外線ヒータ32は、筐体26のZ方向(図4の上下方向)において所定の間隔をあけて複数(図4では3個)配置されている。また、遠赤外線ヒータ32は、筐体26のX方向(図4の左右方向)において所定の間隔をあけて複数(図4では10個)配置されている。
 図5に示されるように、投影面PSは、プラスチック基板12の一方の主面12aと他方の主面12bとの対向方向(Y方向)における、他方の主面12bに対する遠赤外線ヒータ32の投影面である。投影面PSは、プラスチック基板12に直交するY方向から見て、遠赤外線ヒータ32がプラスチック基板12と重なる面である。本実施形態では、投影面PSは、長方形状(矩形状)を呈している。複数の投影面PSの面積(水平投影面積)の合計は、赤外線加熱炉24内に存在するプラスチック基板12の他方の主面12bの表面積に対して30%以上である。
 図4に示されるように、遠赤外線ヒータ32は、複数の領域に配置されている。本実施形態では、6個の領域A1~A6に区画されている。遠赤外線ヒータ32は、各領域A1~A6に少なくとも1個配置されている。本実施形態では、遠赤外線ヒータ32は、各領域A1~A6のそれぞれに複数(図4では5個)配置されている。各領域A1~A6の幅方向の長さL(Z方向での寸法)は、0.2m以上0.3m以下に設定されている。各領域A1~A6の幅方向の長さLは、遠赤外線ヒータ32の幅方向の長さと同じであってもよいし、遠赤外線ヒータ32の幅方向の長さよりも大きくてもよい。本実施形態では、領域A1~A6のそれぞれに配置されている遠赤外線ヒータ32の投影面PSの合計の面積は、1.2mに設定されている。遠赤外線ヒータ32は、領域A1~A6毎に(各領域A1~A6単位で)温度が調整(制御)可能とされている。これにより、赤外線加熱炉24の筐体26内において、例えば、領域A1の遠赤外線ヒータ32の温度と、領域A5の遠赤外線ヒータ32の温度とを変えることができる。
 遠赤外線ヒータ32は、例えば、セラミックヒータである。遠赤外線ヒータ32の温度は、例えば、100℃~300℃である。遠赤外線ヒータ32は、通常、ピーク波長範囲4μm~8μmを含む赤外線を出射する。遠赤外線ヒータ32の表面は、波長範囲5μm~10μmにおける平均輻射率が0.3以上であることが好ましく、0.8以上であることが更に好ましい。
 第2ノズル34は、不活性ガスを噴射する。第2ノズル34は、図3に示されるように、筐体26内において、プラスチック基板12の下方(他方の主面12b側)となる位置に配置されている。これにより、第2ノズル34は、プラスチック基板12の下方からプラスチック基板12に向かって不活性ガスを噴射し、プラスチック基板12の他方の主面12bに不活性ガスを吹き付ける。本実施形態では、第2ノズル34は、複数設けられている。第2ノズル34は、例えば、筐体26のX方向で対向する一対の遠赤外線ヒータ32の間に配置されている。不活性ガスの例は、アルゴンガスである。第2ノズル34から噴射される不活性ガスの圧力は、適宜設定されればよく、例えば、第1ノズル30から噴射される不活性ガスの圧力と同等である。
 上記赤外線加熱炉24を利用した塗布膜Cの加熱工程について、より詳細に説明する。
 プラスチック基板12上に形成された塗布膜Cが搬送されて赤外線加熱炉24内に搬入口26aを通って搬入されると、近赤外線ランプ28が近赤外線を塗布膜Cに照射すると共に、遠赤外線ヒータ32がプラスチック基板12に遠赤外線を照射する。これにより、塗布膜Cが加熱硬化されて機能層FLが形成される。塗布液が架橋性基を有する場合、赤外線による塗布膜Cの加熱により架橋反応(重合反応を含む)が生じる。これによって、架橋性基が架橋され、塗布膜Cが硬化して機能層FLが形成される。
 このようにしてプラスチック基板12上に形成された機能層FLは、搬出口26bから搬出される。プラスチック基板12の搬送速度は、近赤外線ランプ28から照射される赤外線によって、赤外線加熱炉24を通過中に、塗布膜Cが加熱硬化され機能層FLが形成されるように、調整されていればよい。
 加熱工程で、塗布膜Cを加熱硬化する際には、第1ノズル30及び第2ノズル34から不活性ガスGを筐体26内に供給し、筐体26内を不活性ガス雰囲気下にしておく。
 正孔注入層FL1、正孔輸送層FL2、発光層FL3、電子輸送層FL4及び電子注入層FL5は、それぞれの層を形成する場合に、上記機能層FLの形成方法を順に実施することで、陽極14上に形成される。これらは、プラスチック基板12をその長手方向に搬送しながら連続的に実施され得る。
[陰極形成工程]
 陰極形成工程S14では、有機EL部16上に陰極18を形成する。陰極18の形成方法は、陽極14の形成方法と同様とし得るので、説明を省略する。
 本実施形態では、帯状のプラスチック基板12に設定される複数の有機EL素子形成領域のそれぞれに陽極14、有機EL部16及び陰極18を設けているため、上記陰極形成工程S16の後に、切断工程を実施して、有機EL素子10を切り出す。切断工程の前又は後に、封止部材で有機EL素子10を封止する封止工程を実施してもよい。
 陽極形成工程S10、有機EL部形成工程S12及び陰極形成工程S14は、帯状のプラスチック基板12が巻き取られた第1ロール(巻出しロール)からプラスチック基板12を繰り出して、第2ロール(巻取りロール)に巻き取る間に順次実施する、ロールツーロール方式で実施されてもよい。図3に示した機能層FLの形成方法は、ロールツーロール方式で有機EL部16を形成する際の一部拡大図に対応する。陽極形成工程S10、有機EL部形成工程S14及び陰極形成工程S16の何れかの工程をロールツーロール方式で実施してもよい。
 以上説明したように、本実施形態に係る有機EL素子10の製造方法では、加熱工程において、プラスチック基板12の一方の主面12a側から複数の近赤外線ランプ28により近赤外線を照射すると共に、プラスチック基板12の他方の主面12b側から複数の遠赤外線ヒータ32により遠赤外線を照射する。これにより、プラスチック基板12は、一方の主面12a側が近赤外線ランプ28の近赤外線により加熱されると共に、他方の主面12b側が遠赤外線ヒータ32の遠赤外線により加熱される。この構成では、近赤外線ランプ28により生じる温度ムラを、遠赤外線ヒータ32により解消することができる。そのため、プラスチック基板12に温度ムラが生じることを抑制できる。したがって、温度ムラに起因するプラスチック基板12の変形を抑制できる。その結果、歩留まりの向上を図ることができる。
 本実施形態に係る有機EL素子10の製造方法では、加熱工程において、赤外線加熱炉24内でプラスチック基板12を搬送しながら赤外線を塗布膜Cに照射する。近赤外線ランプ28は、プラスチック基板12の搬送方向において、50mm以上100mm以下の間隔をあけて配置されている。これにより、近赤外線ランプ28の温度と、隣り合う近赤外線ランプ28の間の温度との差を小さくすることができる。したがって、温度ムラの発生を抑制できる。
 本実施形態に係る有機EL素子10の製造方法では、加熱工程に用いる赤外線加熱炉24において、プラスチック基板12の一方の主面12aと他方の主面12bとの対向方向における、他方の主面12bに対する複数の遠赤外線ヒータ32の投影面PSの面積の合計は、赤外線加熱炉24内に存在するプラスチック基板12の他方の主面12bの表面積に対して30%以上である。これにより、プラスチック基板12を効果的に加熱することができる。
 本実施形態に係る有機EL素子10の製造方法では、加熱工程に用いる複数の遠赤外線ヒータ32は、複数の領域A1~A6のそれぞれに配置されていると共に、領域A1~A6毎に温度が調整可能である。これにより、赤外線加熱炉24内において、領域A1~A6毎に温度を調整することができる。したがって、赤外線加熱炉24内における温度の調整をより精度良く行うことができる。その結果、温度ムラの発生を抑制でき、温度ムラに起因するプラスチック基板12の変形を抑制できる。
 本実施形態に係る有機EL素子10の製造方法では、加熱工程に用いる赤外線加熱炉24において、複数の領域A1~A6のそれぞれにおける、プラスチック基板12の搬送方向に直交する幅方向の長さLは、0.3m以下である。これにより、赤外線加熱炉24内において、領域A1~A6毎に温度をより精度良く調整することができる。なお、複数の領域A1~A6の幅方向の長さLによる効果は、赤外線加熱炉24のサイズ及びプラスチック基板12の搬送速度等の変化による影響を受け難い。そのため、複数の領域A1~A6の幅方向の長さLを0.3m以下に設定することにより、使用環境の変化に依存することなく、温度制御を精度良く行うことができる。
 本実施形態に係る有機EL素子10の製造方法では、加熱工程において、プラスチック基板12の一方の主面12a及び他方の主面12bに、不活性ガスを吹き付ける。赤外線加熱炉24内のプラスチック基板12は、赤外線で加熱されると、その表面から加熱された空気により上昇気流(対流)が発生し得る。上昇気流が発生すると、温度ムラが発生し得る。そのため、本実施形態では、プラスチック基板12の一方の主面12a及び他方の主面12bに不活性ガスを吹き付ける。これにより、上昇気流の発生を抑制でき、温度ムラの発生を抑制できる。その結果、温度ムラに起因するプラスチック基板12の変形を抑制できる。
 本実施形態に係る有機EL素子10の製造方法では、加熱工程に用いる近赤外線ランプ28は、筐体26の上方に配置されており、遠赤外線ヒータ32は、筐体26の下方に配置されている。遠赤外線ヒータ32は、筐体26のX方向において対向する一対の近赤外線ランプ28の間に対応する位置に配置されている。これにより、近赤外線ランプ28の間の温度が低くなることを、遠赤外線ヒータ32により抑制できる。したがって、温度ムラの発生をより一層抑制できる。
 本実施形態に係る有機EL素子10の製造方法では、プラスチック基板12の一方の主面12a上に下地層ULを形成する工程を含む。塗布膜形成工程では、下地層UL上に塗布膜Cを形成する。これにより、プラスチック基板12と有機EL部16との間に、陽極14を含む下地層ULを形成できる。
 以上、本発明の実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
 上記実施形態では、遠赤外線ヒータ32が複数の領域A1~A6に配置されており、領域A1~A6毎に遠赤外線ヒータ32の温度が調整される形態を一例に説明した。しかし、遠赤外線ヒータ32は、領域毎に配置されなくてもよい。また、上記実施形態では、6つの領域A1~A6に区画されている形態を一例に説明したが、領域の数はこれに限定されない。
 上記実施形態では、プラスチック基板12の一方の主面12a及び他方の主面12bに、不活性ガスを吹き付ける形態を一例に説明した。しかし、プラスチック基板12の一方の主面12a及び他方の主面12bのうちのどちらか一方のみに、不活性ガスを吹き付けていてもよい。
 上記実施形態では、赤外線加熱炉24が第1ノズル30及び第2ノズル34を有する形態を一例に説明した。しかし、赤外線加熱炉24は、第1ノズル30及び第2ノズル34の少なくとも一方を備えていればよい。
 有機EL部は、前述したように発光層以外の他の機能層を含む積層体でもよい。各種の機能層を含む有機EL素子の層構成の例を以下に示す。
(a)陽極/発光層/陰極
(b)陽極/正孔注入層/発光層/陰極
(c)陽極/正孔注入層/発光層/電子注入層/陰極
(d)陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
(e)陽極/正孔注入層/正孔輸送層/発光層/陰極
(f)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
(g)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(h)陽極/発光層/電子注入層/陰極
(i)陽極/発光層/電子輸送層/電子注入層/陰極
 記号「/」は、記号「/」の両側の層同士が接合していることを意味している。上記(f)の構成が図1に示した構成に対応する。
 正孔注入層及び正孔輸送層の少なくとも一方が電子の輸送を堰き止める機能を有する場合には、これらの層が電子ブロック層と称される場合もある。電子注入層及び電子輸送層の少なくとも一方が正孔の輸送を堰き止める機能を有する場合には、これらの層が正孔ブロック層と称される場合もある。
 有機EL素子は単層の発光層を有していても2層以上の発光層を有していてもよい。上記(a)~(i)の層構成のうちのいずれか1つにおいて、陽極と陰極との間に配置された積層構造を「構造単位I」とすると、2層の発光層を有する有機EL素子の構成として、例えば、下記j)に示す層構成を挙げることができる。2個ある(構造単位I)の層構成は互いに同じであっても、異なっていてもよい。
(j)陽極/(構造単位I)/電荷発生層/(構造単位I)/陰極
 ここで電荷発生層とは、電界を印加することにより、正孔と電子とを発生する層である。電荷発生層としては、例えば酸化バナジウム、ITO、酸化モリブデンなどからなる薄膜を挙げることができる。
 「(構造単位I)/電荷発生層」を「構造単位II」とすると、3層以上の発光層を有する有機EL素子の構成として、例えば、以下の(k)に示す層構成を挙げることができる。
(k)陽極/(構造単位II)x/(構造単位I)/陰極
 記号「x」は、2以上の整数を表し、「(構造単位II)x」は、(構造単位II)がx段積層された積層体を表す。また複数ある(構造単位II)の層構成は同じでも、異なっていてもよい。電荷発生層を設けずに、複数の発光層を直接的に積層させて有機EL素子を構成してもよい。
 プラスチック基板12に形成される電極を陽極として説明したが、プラスチック基板が側に陰極が設けられてもよい。
 有機機能層を有する有機電子素子の製造方法は、例示した有機EL素子の他、有機トランジスタ(有機電子素子)、有機光電変換素子(有機電子素子)及び有機太陽電池((有機電子素子)といった、所定の機能層を有する有機電子素子の製造方法に適用し得る。
 以下、実施例を用いて、本発明の内容を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 プラスチック基板として、幅0.6m、厚さ0.1mmの基板を用いた。プラスチック基板の材料は、PENである。赤外線加熱炉は、箱状の筐体と、近赤外線ランプと、遠赤外線ヒータと、を備えている。近赤外線ランプは、筐体の上方に配置し、遠赤外線ヒータは、筐体の下方に配置した。遠赤外線ヒータの表面は、波長範囲5μm~10μmの平均輻射率0.8以上の赤外線輻射材料で形成した。赤外線輻射材料は、プラスチック基板の下面に対して露出している。遠赤外線ヒータの表面における平均輻射率は、例えば、アルミ箔等で表面を覆うことにより変更することが可能である。
(実施例)
 近赤外線ランプの合計出力を15kWとし、遠赤外線ヒータの合計出力を3.6kWとした。筐体内が恒温となった後にプラスチック基板を搬送しながらプラスチック基板の温度分布を測定したところ、プラスチック基板の温度は150℃であり、温度分布は±4.5℃であった。実施例においては、プラスチック基板の変形は確認されなかった。
 10…有機EL素子(有機電子素子)、12…プラスチック基板、12a…一方の主面、12b…他方の主面、14…陽極(下地層)、28…近赤外線ランプ、32…遠赤外線ヒータ、A1~A6…領域、C…塗布膜、FL1…正孔注入層(機能層)、FL2…正孔輸送層(機能層)、FL3…発光層(機能層)、FL4…電子輸送層(機能層)、FL5…電子注入層(機能層)、PS…投影面、UL…下地層。

Claims (9)

  1.  有機電子素子の製造方法であって、
     所定の機能を有する機能層用の塗布液をプラスチック基板の一方の主面側に塗布して塗布膜を形成する塗布膜形成工程と、
     赤外線加熱炉内で前記塗布膜に赤外線を照射して前記塗布膜を加熱硬化させることによって、前記機能層を形成する加熱工程と、を含み、
     前記加熱工程では、前記塗布膜が形成された前記プラスチック基板の前記一方の主面側から複数の近赤外線ランプにより近赤外線を照射すると共に、前記一方の主面とは反対側の他方の主面側から複数の遠赤外線ヒータにより遠赤外線を照射する、有機電子素子の製造方法。
  2.  前記塗布液は、架橋性基を有する材料を含んでおり、
     前記加熱工程では、前記赤外線により前記架橋性基を架橋させることによって、前記塗布膜を加熱硬化させる、請求項1に記載の有機電子素子の製造方法。
  3.  前記加熱工程では、前記赤外線加熱炉内において、前記プラスチック基板を搬送しながら前記赤外線を前記塗布膜に照射し、
     複数の前記近赤外線ランプは、前記プラスチック基板の搬送方向において、50mm以上100mm以下の間隔をあけて配置されている、請求項1又は2に記載の有機電子素子の製造方法。
  4.  前記一方の主面と前記他方の主面との対向方向における、前記他方の主面に対する複数の前記遠赤外線ヒータの投影面の面積の合計は、前記赤外線加熱炉内に存在する前記プラスチック基板の前記他方の主面の表面積に対して30%以上である、請求項1~3のいずれか一項に記載の有機電子素子の製造方法。
  5.  複数の前記遠赤外線ヒータは、複数の領域のそれぞれに少なくとも1つずつ配置されていると共に、前記領域毎に温度が調整可能である、請求項1~4のいずれか一項に記載の有機電子素子の製造方法。
  6.  複数の前記領域のそれぞれにおいて、前記プラスチック基板の搬送方向に直交する幅方向の長さは、0.3m以下である、請求項5に記載の有機電子素子の製造方法。
  7.  前記加熱工程では、前記プラスチック基板の前記一方の主面及び前記他方の主面の少なくとも一方に、不活性ガスを吹き付ける、請求項1~6のいずれか一項に記載の有機電子素子の製造方法。
  8.  前記プラスチック基板の前記一方の主面上に下地層を形成する形成工程を含み、
     前記塗布膜形成工程では、前記下地層上に前記塗布膜を形成する、請求項1~7のいずれか一項に記載の有機電子素子の製造方法。
  9.  有機電子素子の製造装置であって、
     プラスチック基板の一方の主面側において、所定の機能を有する機能層用の塗布液が塗布されて形成されている塗布膜に赤外線を照射して、前記塗布膜を加熱硬化させる赤外線加熱炉を備え、
     前記赤外線加熱炉は、前記塗布膜が形成されている前記プラスチック基板の前記一方の主面側から近赤外線を照射する複数の近赤外線ランプと、前記一方の主面とは反対側の他方の主面側から遠赤外線を照射する複数の遠赤外線ヒータと、を有する、有機電子素子の製造装置。
PCT/JP2019/029880 2018-08-03 2019-07-30 近赤外線と遠赤外線を併用する有機電子素子の製造方法及び有機電子素子の製造装置 WO2020027149A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-146971 2018-08-03
JP2018146971A JP2020021707A (ja) 2018-08-03 2018-08-03 近赤外線と遠赤外線を併用する有機電子素子の製造方法及び有機電子素子の製造装置

Publications (1)

Publication Number Publication Date
WO2020027149A1 true WO2020027149A1 (ja) 2020-02-06

Family

ID=69232210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029880 WO2020027149A1 (ja) 2018-08-03 2019-07-30 近赤外線と遠赤外線を併用する有機電子素子の製造方法及び有機電子素子の製造装置

Country Status (3)

Country Link
JP (1) JP2020021707A (ja)
TW (1) TW202016229A (ja)
WO (1) WO2020027149A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102528071B1 (ko) * 2022-11-14 2023-05-04 주은유브이텍 주식회사 열경화 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225599A (ja) * 2009-03-19 2010-10-07 Toppan Printing Co Ltd 有機el用乾燥装置
JP2014029883A (ja) * 2009-02-03 2014-02-13 Konica Minolta Inc ロールツーロール方式の有機エレクトロニクス素子の製造装置
WO2016208597A1 (ja) * 2015-06-22 2016-12-29 住友化学株式会社 有機電子素子の製造方法及び有機薄膜の形成方法
JP2017224573A (ja) * 2016-06-17 2017-12-21 住友化学株式会社 有機電子素子の製造方法及び機能層の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029883A (ja) * 2009-02-03 2014-02-13 Konica Minolta Inc ロールツーロール方式の有機エレクトロニクス素子の製造装置
JP2010225599A (ja) * 2009-03-19 2010-10-07 Toppan Printing Co Ltd 有機el用乾燥装置
WO2016208597A1 (ja) * 2015-06-22 2016-12-29 住友化学株式会社 有機電子素子の製造方法及び有機薄膜の形成方法
JP2017224573A (ja) * 2016-06-17 2017-12-21 住友化学株式会社 有機電子素子の製造方法及び機能層の製造方法

Also Published As

Publication number Publication date
JP2020021707A (ja) 2020-02-06
TW202016229A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
US8624486B2 (en) Light-emitting device having organic elements connected in series
CN109315044B (zh) 有机电子元件的制造方法及功能层的制造方法
WO2020027149A1 (ja) 近赤外線と遠赤外線を併用する有機電子素子の製造方法及び有機電子素子の製造装置
CN105917736B (zh) 发光装置及发光装置的制造方法
WO2020262110A1 (ja) 有機電子デバイスの製造方法
JP7250633B2 (ja) 有機elデバイスの製造方法
WO2020003678A1 (ja) 機能性膜の製造方法、乾燥装置、及び機能性膜の製造装置
US20200388793A1 (en) Organic electronic device manufacturing method
JP6582896B2 (ja) 発光パネルモジュール、発光装置、及びその製造方法
WO2018131320A1 (ja) 有機デバイスの製造方法
JP6781568B2 (ja) 有機電子デバイスの製造方法
WO2021005976A1 (ja) 有機電子デバイスの製造方法
JP6875842B2 (ja) 有機電子デバイスの製造方法、電極付き基板及び有機電子デバイス
JP2017212143A (ja) 有機電子デバイスの製造方法
WO2020255752A1 (ja) 電子デバイスの製造方法
JP2017195115A (ja) 有機el素子の製造方法
US20210265567A1 (en) Method for manufacturing organic electronic device
WO2018230602A1 (ja) 有機電子デバイスの製造方法
JP6755202B2 (ja) 有機電子デバイスの製造方法
WO2020090831A1 (ja) 電子デバイスの製造方法
JP2019003943A (ja) 有機電子デバイスの製造方法
JP2020116526A (ja) 薄膜の製造方法及び電子デバイスの製造方法
JP2016162537A (ja) 発光装置、及び発光装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19845153

Country of ref document: EP

Kind code of ref document: A1