WO2020027009A1 - セルロース誘導体、及びこれを含む重金属除去材、並びにこれを用いた重金属除去方法 - Google Patents

セルロース誘導体、及びこれを含む重金属除去材、並びにこれを用いた重金属除去方法 Download PDF

Info

Publication number
WO2020027009A1
WO2020027009A1 PCT/JP2019/029562 JP2019029562W WO2020027009A1 WO 2020027009 A1 WO2020027009 A1 WO 2020027009A1 JP 2019029562 W JP2019029562 W JP 2019029562W WO 2020027009 A1 WO2020027009 A1 WO 2020027009A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cellulose derivative
formula
heavy metal
cellulose
Prior art date
Application number
PCT/JP2019/029562
Other languages
English (en)
French (fr)
Inventor
中谷晃司
井上慶三
鈴木雅彦
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2020027009A1 publication Critical patent/WO2020027009A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/14Preparation of cellulose esters of organic acids in which the organic acid residue contains substituents, e.g. NH2, Cl

Definitions

  • the present invention relates to a novel cellulose derivative, a method for producing the same, a heavy metal removing material containing the cellulose derivative, and a heavy metal removing method using the cellulose derivative.
  • Heavy metals such as arsenic, cadmium and lead are used in various fields, for example, arsenic is used as pharmaceuticals, insecticides, rodenticides, preservatives, high-tech industrial materials and the like. Therefore, the heavy metal may dissolve into the stratum, the ocean, a river, a well water, or the like, but is harmful to a human body even in a trace amount. Therefore, a method for efficiently collecting and removing heavy metals from soil, seawater, industrial wastewater, mine drainage, and the like contaminated with heavy metals has been desired.
  • Patent Document 1 discloses a cellulose-based adsorbent obtained by introducing a graft chain on the surface of a cellulose-based substrate and further bonding a chelate-forming group exhibiting a metal-adsorbing force to the introduced graft chain. It is described that it is easy to be used, and it is excellent in the adsorbing power of semimetals or metals such as boron, germanium, and arsenic, and that if the binding amount of the chelate forming group is insufficient, the adsorbing performance of the semimetal or metal becomes insufficient. ing.
  • the present inventors have found that, among the above-mentioned chelate-forming groups, particularly, a cellulose-based substrate to which a large number of dithiocarbamate groups are bound, the amount of adsorption of heavy metals dissolved in water is rather reduced.
  • an object of the present invention is to provide a novel cellulose derivative which can be produced at low cost, and can selectively adsorb and recover heavy metals, and a method for producing the same.
  • Another object of the present invention is to provide a heavy metal removing material that can be manufactured at low cost and that can selectively adsorb and recover heavy metals.
  • Another object of the present invention is to provide a method for selectively adsorbing and recovering heavy metals at low cost.
  • the present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, as the amount of dithiocarbamate group introduced into the cellulose derivative increases, the hydrophobicity increases, and the affinity with heavy metals existing in a state of being dissolved in water decreases. For this reason, they have found that the ability to adsorb heavy metals is reduced, and that the ability to adsorb heavy metals can be dramatically improved by adjusting the amount of dithiocarbamate groups introduced to a specific range. The present invention has been completed based on these findings.
  • the present invention relates to the following formula (I)
  • the hydrogen atom of the hydroxyl group in the repeating unit is represented by the following formula (a): (Wherein, R 1 represents a single bond or an alkylene group having 1 to 10 carbon atoms, R 2 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 3 is the same or different and has 1 carbon atom. Represents up to 10 alkyl groups) And a cellulose derivative having an average degree of substitution of the hydrogen atom of the hydroxyl group by the group represented by the formula (a) of 0.10 to 2.34.
  • the present invention also provides the cellulose derivative, wherein the group represented by the formula (a) is a group represented by the following formula (a-1).
  • the group represented by the formula (a) is a group represented by the following formula (a-1).
  • R 3 is the same or different and represents an alkyl group having 1 to 10 carbon atoms
  • R 5 is the same or different and represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • N is 1 (Shows an integer from 3 to 3)
  • the present invention also provides a method for producing a cellulose derivative to obtain the cellulose derivative through the following steps.
  • a hydroxyl group of cellulose is reacted with an amino group-protected amino acid, and then the amino-protecting group is removed.
  • a sulfur compound In the presence of a sulfur compound, a quaternary ammonium salt (N + (R 3) 4 X - ; R 3 are the same or different and each represents an alkyl group having 1 to 10 carbon atoms, X - is reacted with represents a counter anion)
  • the present invention also provides a heavy metal adsorbent containing the cellulose derivative.
  • the present invention also provides a method for removing heavy metals using the above-mentioned cellulose derivative.
  • the cellulose derivative of the present invention can be produced at low cost, and can selectively adsorb and recover heavy metals (eg, arsenic, cadmium, lead, etc.). Further, the cellulose derivative of the present invention is excellent in chemical resistance, heat resistance, and water resistance. Therefore, the cellulose derivative of the present invention is extremely useful as a heavy metal removing material, and is suitably used for purifying soil and seawater contaminated with heavy metals, industrial wastewater containing the heavy metals, mine wastewater, hot spring water, and the like. can do.
  • heavy metals eg, arsenic, cadmium, lead, etc.
  • the cellulose derivative of the present invention is excellent in chemical resistance, heat resistance, and water resistance. Therefore, the cellulose derivative of the present invention is extremely useful as a heavy metal removing material, and is suitably used for purifying soil and seawater contaminated with heavy metals, industrial wastewater containing the heavy metals, mine wastewater, hot spring water, and the like. can do.
  • the cellulose derivative of the present invention has the following formula (I)
  • the hydrogen atom of the hydroxyl group in the repeating unit is represented by the following formula (a):
  • R 1 represents a single bond or an alkylene group having 1 to 10 carbon atoms
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 3 is the same or different and has 1 carbon atom.
  • R 1 represents a single bond or an alkylene group having 1 to 10 carbon atoms
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 3 is the same or different and has 1 carbon atom.
  • the average substitution degree of the hydrogen atom of the hydroxyl group by the group represented by the formula (a) is 0.10 to 2.34.
  • the bond with the wavy line in the above formula (a) bonds to the oxygen atom of the hydroxyl group in the formula (I).
  • Examples of the alkylene group having 1 to 10 carbon atoms for R 1 include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a 2-methylethylene group, a 1,2-dimethylethylene group, a propylene group, a trimethylene group, Examples thereof include a linear or branched alkylene group such as a 2-methyl-trimethylene group.
  • the R 1 inter alia, better carbon chains between cellulose backbone skeleton and a dithiocarbamate group is long, from the miscellaneous ionic species in the water, tends to improve the performance of adsorbing selectively heavy metals.
  • Examples of the alkyl group having 1 to 10 carbon atoms for R 2 and R 3 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, a t-butyl group, a pentyl group and the like. And a straight-chain or branched-chain alkyl group.
  • R 2 is preferably a hydrogen atom.
  • R 3 is preferably an alkyl group having 1 to 3 carbon atoms.
  • a group represented by the following formula (a-1) (wherein n represents an integer of 1 to 3, and R 5 is the same or different and is Represents an atom or an alkyl group having 1 to 3 carbon atoms, wherein R 3 is the same as defined above), and particularly preferably a group represented by the following formula (a-1) wherein n is 2 in the formula: is there.
  • the group represented by the formula (a) is more preferably a group represented by the following formula (a-1 ′) (wherein n represents an integer of 1 to 3, R 5 is the same or different, A hydrogen atom or an alkyl group having 1 to 3 carbon atoms), and particularly preferably a group represented by the following formula (a-1 ') wherein n is 2 in the formula.
  • the group represented by the formula (a) is particularly preferably a group represented by the following formula (a-1-1) or (a-1-2), and particularly preferably a group represented by the following formula (a-1- It is a group represented by 2). Note that R 3 in the following formula is the same as described above.
  • the group represented by the formula (a) is most preferably a group represented by the following formula (a-1′-1) or (a-1′-2), and particularly preferably a group represented by the following formula (a- It is a group represented by 1'-2).
  • a group represented by the formula (a) of a hydrogen atom in the hydroxyl group (specifically, a hydroxyl group existing at the 2-, 3-, and 6-positions of a glucose unit constituting cellulose) (preferably a compound represented by the formula (a-1) ), More preferably a group represented by the formula (a-1 '), still more preferably a group represented by the formula (a-1-1) and a group represented by the formula (a-1-2) Average substitution degree by a group represented by the formula (a-1′-1) and a group represented by the formula (a-1′-2)) is 0.10 to 2.34, It is preferably from 0.15 to 2.30, particularly preferably from 0.20 to 2.10, most preferably from 0.50 to 1.80, particularly preferably from 0.80 to 1.50.
  • the group represented by the formula (a) replaces the hydrogen atom of the hydroxyl group in the above range, and therefore can exhibit excellent heavy metal adsorption power.
  • the average degree of substitution of a hydrogen atom in the hydroxyl group (specifically, the hydroxyl group located at the 2-, 3-, and 6-positions of the glucose unit constituting cellulose) with a group other than the group represented by the formula (a) is as follows. For example, it is 0.50 or less, preferably 0.30 or less, particularly preferably 0.20 or less, and most preferably 0.10 or less.
  • the average degree of unsubstitution of a hydrogen atom in the hydroxyl group is, for example, 0.45 to 2.90, preferably 0.1 to 2.90. It is 50 to 2.85, particularly preferably 0.60 to 2.80.
  • the cellulose derivative of the present invention has excellent heavy metal adsorption power (particularly, excellent adsorption power for As (III), Cd (II), Pb (II), etc.)
  • the amount of heavy metal adsorbed is, for example, 0.1 ⁇ mol / g or more, preferably 0.3 ⁇ mol / g or more, and particularly preferably 0.5 ⁇ mol / g or more.
  • the adsorption amount of As (III) is, for example, 0.1 ⁇ mol / g or more, preferably 0.3 ⁇ mol / g or more, particularly preferably 0.5 ⁇ mol / g or more, and most preferably 1.0 ⁇ mol / g or more.
  • the upper limit of the adsorption amount of As (III) is, for example, about 1.0 mmol / g.
  • the shape of the cellulose derivative of the present invention is not particularly limited as long as the effects of the present invention are not impaired, and examples thereof include a sheet shape, a spherical shape (a true spherical shape, a substantially true spherical shape, an oval spherical shape, etc.), a polyhedral shape, a rod shape ( Columnar, prismatic, etc.), scaly, irregular, and the like.
  • the cellulose derivative of the present invention has excellent heavy metal adsorption power as described above, it can be suitably used, for example, as a heavy metal adsorbent.
  • the heavy metal adsorbent containing the cellulose derivative of the present invention (or the heavy metal adsorbent composed of the cellulose derivative of the present invention) is contaminated with, for example, heavy metals (particularly, As (III), Cd (II), Pb (II), etc.). It can be suitably used for purifying used soil, seawater, industrial wastewater containing the heavy metals, mine wastewater, hot spring water and the like.
  • the method for removing heavy metals of the present invention that is, soil or seawater contaminated with heavy metals (particularly, As (III), Cd (II), Pb (II), etc.) using the cellulose derivative of the present invention as a heavy metal adsorbent, etc.
  • the method for adsorbing and removing heavy metals from industrial wastewater containing the heavy metals, mine wastewater, hot spring water and the like is not particularly limited.
  • a cellulose derivative of the present invention is filled in a column or the like, and the Examples thereof include a method of flowing wastewater and the like, and a method of adding the cellulose derivative of the present invention to industrial wastewater and stirring the mixture.
  • the cellulose derivative of the present invention when it exhibits solubility in an organic solvent, it may be used as a homogeneous heavy metal adsorbent (that is, a substance exhibiting an action of adsorbing and removing heavy metals in a state of being dissolved in industrial wastewater or the like). it can.
  • a homogeneous heavy metal adsorbent that is, a substance exhibiting an action of adsorbing and removing heavy metals in a state of being dissolved in industrial wastewater or the like. it can.
  • adjusting the pH of the cellulose derivative to, for example, 1 to 9 (especially 1 to 7) can further improve the heavy metal adsorption power and efficiently remove the heavy metal. It is preferable in that it can be performed.
  • the pH of the cellulose derivative can be adjusted using a commonly used pH adjuster (acid such as nitric acid or alkali such as sodium hydroxide).
  • heavy metals can be easily recovered by calcining the cellulose derivative on which the heavy metals are adsorbed, and the recovered heavy metals can be reused as useful resources.
  • the cellulose derivative of the present invention can be produced, for example, through the following steps. [1] A hydroxyl group of cellulose is reacted with an amino group-protected amino acid, and then the amino-protecting group is removed. [2] In the presence of a sulfur compound, a quaternary ammonium salt (N + (R 3) 4 X - ; R 3 are the same or different and each represents an alkyl group having 1 to 10 carbon atoms, X - is reacted with represents a counter anion)
  • cellulose used in the step [1] for example, wood pulp (softwood pulp, hardwood pulp), cellulose derived from cotton linter pulp, and the like can be suitably used. These can be used alone or in combination of two or more.
  • the pulp may contain a different component such as hemicellulose.
  • the cellulose is preferably used in a finely pulverized state, for example, by subjecting it to a crushing treatment.
  • the amino acid whose amino group is protected is represented, for example, by the following formula (3).
  • R 1 in the formula (3) corresponds to R 1 in the formula (a).
  • Y is a protecting group for protecting the amino group, and examples thereof include a t-butoxycarbonyl group (Boc) and a 9-fluorenylmethyloxycarbonyl group (Fmoc).
  • the amino acid before the amino group is protected is represented by the following formula (3 ′).
  • R 1 in the formula (3 ') in correspond to R 1 in the formula (a).
  • Examples of the amino acid before the amino group is protected include, for example, L-alanine, ⁇ -alanine, 4-aminobutyric acid, 5-aminopentanoic acid, 7-aminoheptane Acids and the like can be mentioned.
  • the reaction between the cellulose and the amino acid whose amino group is protected is preferably performed in the presence of a catalyst.
  • the catalyst include triethylamine, pyridine, N, N-dimethyl-4-aminopyridine (DMAP) and the like. These can be used alone or in combination of two or more.
  • the amount of the catalyst used is, for example, about 0.01 to 1.0 mol per 1 mol of the amino acid in which the amino group is protected.
  • the reaction is performed in the presence of a condensing agent.
  • the condensing agent include 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDC-HCl), N, N′-dicyclohexylcarbodiimide, N, N′-diisopropylcarbodiimide and the like. it can. These can be used alone or in combination of two or more.
  • the amount of the condensing agent to be used is, for example, about 0.01 to 1.0 mol per 1 mol of the amino acid in which the amino group is protected.
  • the above reaction is preferably performed in the presence of a solvent.
  • the solvent include aliphatic hydrocarbons such as hexane, heptane and octane; alicyclic hydrocarbons such as cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; chloroform, dichloromethane, 1,2- Halogenated hydrocarbons such as dichloroethane; ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran and dioxane; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; esters such as methyl acetate, ethyl acetate, isopropyl acetate and butyl acetate; Amides such as -dimethylformamide and N, N-dimethylacetamide; nitriles such as
  • amides such as N, N-dimethylacetamide are preferable, and the use of a mixture of the solvent and lithium chloride is particularly preferable in terms of excellent cellulose solubility.
  • concentration of the lithium salt in the solvent can be appropriately adjusted within a range that does not impair the effect of dissolving cellulose, and is, for example, about 1 to 30% by weight.
  • the amount of the solvent used is, for example, about 0.5 to 30 times the total amount of the reaction substrates. When the amount of the solvent used exceeds the above range, the concentration of the reaction component tends to decrease, and the reaction rate tends to decrease.
  • the protecting group (Y) for the amino group in the compound (1-2) obtained through the reaction is removed, and at least a part of the hydroxyl group (OH group) in the cellulose.
  • This is a reaction for obtaining a compound (1-3) in which a hydrogen atom is substituted by an —OC—R 1 —NH 2 group.
  • the reaction for removing the protecting group is preferably appropriately selected according to the type of the protecting group. For example, when Y is Fmoc, the protecting group can be quickly removed by reacting a secondary amine such as pyridine. When Y is Boc, the protecting group can be promptly removed by reacting with a strong acid such as trifluoroacetic acid.
  • the deprotected amino group that is, the —OOC—R 1 —NH 2 group in the compound (1-3) obtained through the step [1] is added to the fourth group in the presence of a sulfur compound.
  • grade ammonium N + (R 3) 4 X -; R 3 are the same or different and each represents an alkyl group having 1 to 10 carbon atoms, X - represents a counter anion
  • N + (R 3) 4 X - are the same or different and each represents an alkyl group having 1 to 10 carbon atoms, X - represents a counter anion
  • Examples of the counter anion (X ⁇ ) in the quaternary ammonium salt include OH ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , F ⁇ , SO 4 2 ⁇ , BH 4 ⁇ , BF 4 ⁇ , PF 6 ⁇ and the like. Is mentioned.
  • quaternary ammonium salt examples include tetramethylammonium hydroxide and tetraethylammonium hydroxide.
  • the use amount of the quaternary ammonium salt is, for example, about 20 to 500 parts by weight based on 100 parts by weight of the compound (1-3).
  • the sulfur compound examples include carbon disulfide.
  • the amount of the sulfur compound to be used is, for example, 100 parts by weight or more based on 100 parts by weight of the compound (1-3).
  • the reaction in step [2] is preferably performed in the presence of a solvent.
  • the solvent include aromatic hydrocarbons such as toluene, xylene and ethylbenzene; alcohols such as methanol, ethanol, 2-propanol, isopropyl alcohol and butanol; N-methylpyrrolidone, dimethyl sulfoxide, N, N-dimethylformamide and the like. Is mentioned. These can be used alone or in combination of two or more.
  • the amount of the solvent used is, for example, about 0.5 to 30 times the total amount of the reaction substrates.
  • the reaction temperature in step [2] is, for example, about 10 to 100 ° C.
  • the reaction time is, for example, about 1 to 24 hours.
  • the obtained reaction product can be separated and purified by a separation means such as filtration, concentration, distillation, extraction, crystallization, adsorption, recrystallization, column chromatography or a combination thereof.
  • Example 1 (Preparation of cellulose derivative (1)) Under a nitrogen atmosphere, cellulose (I) (13.0 mmol) was put into a two-necked eggplant flask, and dried at 80 ° C. for 2 hours under vacuum. After Boc- ⁇ -alanine (12.5 mmol), DMA / LiCl (65 mL), and DMAP (12.5 mmol) were added to this reaction vessel and suspended, the reaction system was cooled to 0 ° C. After further addition of EDC-HCl (12.5 mmol), the reaction system was returned to room temperature and stirred overnight. The solid precipitated by reprecipitation in a mixed solvent of MeOH / H 2 O (80/20, v / v) was collected by centrifugation.
  • MeOH / H 2 O 80/20, v / v
  • Example 2 A cellulose derivative (2) (DTC group average degree of substitution: 2.00) was obtained in the same manner as in Example 1 except that the amount of Boc- ⁇ -alanine used was changed.
  • Comparative Example 1 A cellulose derivative (3) (DTC group average degree of substitution: 2.40) was obtained in the same manner as in Example 1 except that the amount of Boc- ⁇ -alanine used was changed.
  • the arsenic adsorption power of the cellulose derivatives obtained in Examples and Comparative Examples was evaluated by the following method.
  • Arsenic trioxide (As 2 O 3 , As (III)) (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in a 0.01 M NaOH solution to prepare a sample solution.
  • About 1 g of each cellulose derivative obtained in Examples and Comparative Examples was transferred to a mortar and ground with a pestle until the particle size became about 2 mm or less. Hard and pestle-free parts were cut with scissors.
  • 0.050 g of the pulverized cellulose derivative was weighed out, filled in a Teflon (registered trademark) tube (inner diameter 2 mm, length 3 cm), and filled with Teflon (registered trademark) wool at both ends to prepare a solid phase column. 5 mL of the sample solution was passed through the obtained solid phase column (flow rate: 5 mL / min), and the arsenic adsorption amount by the solid phase was determined.
  • [6] The heavy metal adsorbent according to [4] or [5], which adsorbs 0.1 ⁇ mol / g or more of heavy metals.
  • [7] A method for removing heavy metals using the cellulose derivative according to [1] or [2].
  • [8] The heavy metal removal method according to [7], wherein the heavy metal is at least one kind of heavy metal selected from As (III), Cd (II), and Pb (II).
  • a method for producing a heavy metal adsorbent comprising producing the heavy metal adsorbent using the cellulose derivative according to [1] or [2].

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

効率よく、且つ安価に製造することができ、重金属を選択的に吸着し、回収することができるセルロース誘導体、及びその製造方法を提供する。 本発明のセルロース誘導体は、下記式(I)で表される繰り返し単位を有するセルロースの、前記繰り返し単位中の水酸基の水素原子が下記式(a)で表される基で置換され、前記水酸基の水素原子の前記式(a)で表される基による平均置換度が0.10~2.34であることを特徴とする。

Description

セルロース誘導体、及びこれを含む重金属除去材、並びにこれを用いた重金属除去方法
 本発明は、新規のセルロース誘導体、その製造方法、前記セルロース誘導体を含む重金属除去材、並びに前記セルロース誘導体を用いた重金属除去方法に関する。本願は、2018年7月30日に日本に出願した、特願2018-142800号の優先権を主張し、その内容をここに援用する。
 ヒ素、カドミウム、鉛等の重金属は、種々の分野において用いられており、例えば、ヒ素は、医薬品、殺虫剤、殺鼠剤、防腐剤、ハイテク産業材料等として用いられている。そのため、前記重金属は地層中や、海洋、河川、井戸水等へ溶け出す可能性があるが、微量でも人体に対して有害である。そこで、重金属で汚染された土壌や海水、工業廃液、鉱山排水等から重金属を効率的に回収し、除去する方法が望まれている。
 特許文献1には、セルロース系基材表面にグラフト鎖を導入し、導入されたグラフト鎖に、更に金属の吸着力を発揮するキレート形成基を結合させてなるセルロース系吸着材は、水になじみ易く、ホウ素、ゲルマニウム、ヒ素等の半金属又は金属の吸着力に優れること、前記キレート形成基の結合量が不十分であると、半金属又は金属の吸着性能が不十分となることが記載されている。
特開2009-13204号公報
 しかし、本発明者等は、前記キレート形成基のなかでも特にジチオカルバメート基を多く結合するセルロース系基材は、水に溶解した状態で存在する重金属の吸着量がかえって低下することを見いだした。
 従って、本発明の目的は、安価に製造することができ、重金属を選択的に吸着し、回収することができる新規のセルロース誘導体、及びその製造方法を提供することにある。
 本発明の他の目的は、安価に製造することができ、重金属を選択的に吸着し、回収することができる重金属除去材を提供することにある。
 本発明の他の目的は、安価に、且つ重金属を選択的に吸着し、回収する方法を提供することにある。
 本発明者等は上記課題を解決するため鋭意検討した結果、セルロース誘導体におけるジチオカルバメート基の導入量が増えると疎水性が上昇し、水に溶解した状態で存在する重金属との親和性が低下するため、重金属を吸着する能力が低下すること、ジチオカルバメート基の導入量を特定の範囲に調整すれば、重金属の吸着性能を飛躍的に向上することができることを見いだした。本発明はこれらの知見に基づいて完成させたものである。
 すなわち、本発明は、下記式(I)
Figure JPOXMLDOC01-appb-C000004
で表される繰り返し単位を有するセルロースの、前記繰り返し単位中の水酸基の水素原子が下記式(a)
Figure JPOXMLDOC01-appb-C000005
(式中、R1は単結合又は炭素数1~10のアルキレン基を示し、R2は水素原子又は炭素数1~10のアルキル基を示す。R3は、同一又は異なって、炭素数1~10のアルキル基を示す)
で表される基で置換され、前記水酸基の水素原子の前記式(a)で表される基による平均置換度が0.10~2.34であるセルロース誘導体を提供する。
 本発明は、また、式(a)で表される基が、下記式(a-1)で表される基である前記セルロース誘導体を提供する。
Figure JPOXMLDOC01-appb-C000006
(式中、R3は、同一又は異なって、炭素数1~10のアルキル基を示し、R5は、同一又は異なって、水素原子又は炭素数1~3のアルキル基を示す。nは1~3の整数を示す)
 本発明は、また、下記工程を経て、前記セルロース誘導体を得るセルロース誘導体の製造方法を提供する。
[1] セルロースの水酸基に、アミノ基が保護されたアミノ酸を反応させ、その後、アミノ基の保護基を外す
[2] 硫黄化合物の存在下、脱保護したアミノ基に第4級アンモニウム塩(N+(R34-;R3は、同一又は異なって炭素数1~10のアルキル基を示し、X-はカウンターアニオンを示す)を反応させる
 本発明は、また、前記セルロース誘導体を含む重金属吸着材を提供する。
 本発明は、また、前記セルロース誘導体を用いた重金属除去方法を提供する。
 本発明のセルロース誘導体は、安価に製造することができ、重金属(例えば、ヒ素、カドミウム、鉛等)を選択的に吸着し、回収することができる。また、本発明のセルロース誘導体は、耐薬品性、耐熱性、及び耐水性に優れる。そのため、本発明のセルロース誘導体は、重金属除去材として極めて有用であり、重金属で汚染された土壌や海水、その他、前記重金属を含む工業廃水、鉱山廃水、温泉水等を浄化する用途に好適に使用することができる。
 [セルロース誘導体]
 本発明のセルロース誘導体は、下記式(I)
Figure JPOXMLDOC01-appb-C000007
で表される繰り返し単位を有するセルロースの、前記繰り返し単位中の水酸基の水素原子が下記式(a)
Figure JPOXMLDOC01-appb-C000008
(式中、R1は単結合又は炭素数1~10のアルキレン基を示し、R2は水素原子又は炭素数1~10のアルキル基を示す。R3は、同一又は異なって、炭素数1~10のアルキル基を示す)
で表される基(=DTC基)で置換され、前記水酸基の水素原子の前記式(a)で表される基による平均置換度が0.10~2.34であることを特徴とする。尚、上記式(a)中の波線が付された結合手が、式(I)中の水酸基の酸素原子と結合する。
 R1における炭素数1~10のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、2-メチルエチレン基、1,2-ジメチルエチレン基、プロピレン基、トリメチレン基、2-メチル-トリメチレン基等の直鎖状又は分岐鎖状アルキレン基を挙げることができる。
 R1としては、なかでも、セルロース主鎖骨格とジチオカルバメート基間の炭素鎖が長いほうが、水中の雑多なイオン種の中から、選択的に重金属を吸着する性能が向上する傾向がある。
 R2、R3における炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基等の直鎖状又は分岐鎖状アルキル基を挙げることができる。
 R2としては、なかでも水素原子が好ましい。また、R3としては、なかでも炭素数1~3のアルキル基が好ましい。
 式(a)で表される基としては、なかでも下記式(a-1)で表される基(式中、nは1~3の整数を示し、R5は、同一又は異なって、水素原子又は炭素数1~3のアルキル基を示す。R3は前記に同じ)が好ましく、とりわけ好ましくは下記式(a-1)で表される基のうち、式中のnが2の基である。
Figure JPOXMLDOC01-appb-C000009
 式(a)で表される基として、より好ましくは下記式(a-1')で表される基(式中、nは1~3の整数を示し、R5は、同一又は異なって、水素原子又は炭素数1~3のアルキル基を示す)であり、とりわけ好ましくは下記式(a-1')で表される基のうち、式中のnが2の基である。
Figure JPOXMLDOC01-appb-C000010
 式(a)で表される基として、特に好ましくは下記式(a-1-1)、又は(a-1-2)で表される基であり、とりわけ好ましくは下記式(a-1-2)で表される基である。尚、下記式中のR3は前記に同じ。
Figure JPOXMLDOC01-appb-C000011
 式(a)で表される基として、最も好ましくは下記式(a-1'-1)、又は(a-1'-2)で表される基であり、とりわけ好ましくは下記式(a-1'-2)で表される基である。
Figure JPOXMLDOC01-appb-C000012
 前記水酸基(詳細には、セルロースを構成するグルコース単位の2位、3位、および6位に存する水酸基)における水素原子の、前記式(a)で表される基(好ましくは式(a-1)で表される基、より好ましくは式(a-1')で表される基、更に好ましくは式(a-1-1)で表される基及び(a-1-2)で表される基、最も好ましくは式(a-1'-1)で表される基及び(a-1'-2)で表される基)による平均置換度は0.10~2.34であり、好ましくは0.15~2.30、特に好ましくは0.20~2.10、最も好ましくは0.50~1.80、とりわけ好ましくは0.80~1.50である。本発明のセルロース誘導体は、式(a)で表される基が上記範囲で水酸基の水素原子を置換するため、優れた重金属吸着力を発揮することができる。
 前記水酸基(詳細には、セルロースを構成するグルコース単位の2位、3位、および6位に存する水酸基)における水素原子の、前記式(a)で表される基以外の基による平均置換度は、例えば0.50以下、好ましくは0.30以下、特に好ましくは0.20以下、最も好ましくは0.10以下である。
 前記水酸基(詳細には、セルロースを構成するグルコース単位の2位、3位、および6位に存する水酸基)における水素原子の平均未置換度は、例えば0.45~2.90、好ましくは0.50~2.85、特に好ましくは0.60~2.80である。
 本発明のセルロース誘導体は、優れた重金属吸着力(特に、As(III)、Cd(II)、Pb(II)等に対して優れた吸着力)を有する。重金属の吸着量は、例えば0.1μmol/g以上、好ましくは0.3μmol/g以上、特に好ましくは0.5μmol/g以上である。また、As(III)の吸着量は、例えば0.1μmol/g以上、好ましくは0.3μmol/g以上、特に好ましくは0.5μmol/g以上、最も好ましくは1.0μmol/g以上である。尚、As(III)の吸着量の上限は、例えば1.0mmоl/g程度である。
 本発明のセルロース誘導体の形状としては、本発明の効果を損なわない限り特に制限されるものではなく、例えば、シート状、球状(真球状、略真球状、楕円球状など)、多面体状、棒状(円柱状、角柱状など)、りん片状、不定形状等が挙げられる。
 本発明のセルロース誘導体は、上記の通り優れた重金属吸着力を有する為、例えば、重金属吸着材として好適に使用することができる。
 本発明のセルロース誘導体を含む重金属吸着材(若しくは、本発明のセルロース誘導体からなる重金属吸着材)は、例えば、重金属(特に、As(III)、Cd(II)、Pb(II)等)で汚染された土壌や海水、その他、前記重金属を含む工業廃水、鉱山廃水、温泉水等を浄化する用途に好適に使用することができる。
 本発明の重金属除去方法、すなわち本発明のセルロース誘導体を重金属吸着材として用いて、重金属(特に、As(III)、Cd(II)、Pb(II)等)で汚染された土壌や海水、その他、前記重金属を含む工業廃水、鉱山廃水、温泉水等から重金属を吸着し、除去する方法としては特に制限されることがなく、例えば、本発明のセルロース誘導体をカラム等に充填し、そこに工業廃水等を流す方法や、工業廃水等の中に本発明のセルロース誘導体を加え、撹拌する方法等が挙げられる。特に本発明のセルロース誘導体が有機溶媒溶解性を示す場合は、均一系の重金属吸着材(すなわち、工業廃水等に溶解した状態で重金属を吸着し、除去する作用を発現するもの)として用いることもできる。
 本発明の重金属除去方法においては、セルロース誘導体のpHを例えば1~9(なかでも1~7)に調整することが、重金属の吸着力をより一層向上することができ、効率よく重金属を除去することができる点で好ましい。尚、セルロース誘導体のpH調整は、周知慣用のpH調整剤(硝酸等の酸や、水酸化ナトリウム等のアルカリ)を用いて行うことができる。
 また、重金属を吸着したセルロース誘導体を焼成することにより容易に重金属を回収することができ、回収された重金属は再び有益資源として利用することができる。
 [セルロース誘導体の製造方法]
 本発明のセルロース誘導体は、例えば、下記工程を経て製造することができる。
[1] セルロースの水酸基に、アミノ基が保護されたアミノ酸を反応させ、その後、アミノ基の保護基を外す
[2] 硫黄化合物の存在下、脱保護したアミノ基に第4級アンモニウム塩(N+(R34-;R3は、同一又は異なって炭素数1~10のアルキル基を示し、X-はカウンターアニオンを示す)を反応させる
 工程[1]で使用されるセルロースとしては、例えば、木材パルプ(針葉樹パルプ、広葉樹パルプ)やコットンリンターパルプ由来のセルロース等を好適に用いることができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。尚、前記パルプには、ヘミセルロースなどの異成分が含まれていてもよい。セルロースは、例えば解砕処理を施す等により、細かく粉砕した状態のものを使用することが好ましい。
 前記アミノ基が保護されたアミノ酸は、例えば、下記式(3)で表される。
   HOOC-R1-NHY   (3)
 上記式(3)中のR1は、上記式(a)中のR1に対応する。Yはアミノ基を保護する保護基であり、例えば、t-ブトキシカルボニル基(Boc)、9-フルオレニルメチルオキシカルボニル基(Fmoc)等を挙げることができる。
 アミノ基が保護される前のアミノ酸は、下記式(3’)で表される。
   HOOC-R1-NH2   (3’)
 上記式(3’)中のR1は、上記式(a)中のR1に対応する。アミノ基が保護される前のアミノ酸(=式(3’)で表される化合物)としては、例えば、L-アラニン、β-アラニン、4-アミノ酪酸、5-アミノペンタン酸、7-アミノヘプタン酸等を挙げることができる。
 前記セルロースとアミノ基が保護されたアミノ酸との反応は、触媒の存在下で行うことが好ましい。前記触媒としては、例えば、トリエチルアミン、ピリジン、N,N-ジメチル-4-アミノピリジン(DMAP)等を挙げることができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
 前記触媒の使用量としては、アミノ基が保護されたアミノ酸1モルに対して、例えば0.01~1.0モル程度である。
 また、前記反応は、縮合剤の存在下で行うことが好ましい。前記縮合剤としては、例えば、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC-HCl)、N,N’-ジシクロヘキシルカルボジイミド、N,N’-ジイソプロピルカルボジイミド等を挙げることができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
 前記縮合剤の使用量としては、アミノ基が保護されたアミノ酸1モルに対して、例えば0.01~1.0モル程度である。
 前記反応は溶媒の存在下で行うことが好ましい。前記溶媒としては、例えば、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素;シクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;クロロホルム、ジクロロメタン、1,2-ジクロロエタン等のハロゲン化炭化水素;ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン;酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル;メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール;ジメチルスルホキシド等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
 前記溶媒としては、なかでも、N,N-ジメチルアセトアミド等のアミドが好ましく、前記溶媒に塩化リチウムを混合したものを使用するのが、セルロースの溶解性に優れる点で特に好ましい。溶媒中のリチウム塩濃度は、セルロースを溶解させる効果を損なわない範囲において適宜調整することができ、例えば1~30重量%程度である。尚、工程[1]の反応においては、セルロースを溶媒に完全に溶解させることは必須ではない。セルロースが溶媒に縣濁したスラリーの状態で反応を進行させることができる。従って、セルロースを完全に溶解させる場合に比べて、リチウム塩の使用量を抑制することができる。
 前記溶媒の使用量としては、反応基質の総量の、例えば0.5~30重量倍程度である。溶媒の使用量が上記範囲を上回ると反応成分の濃度が低くなり、反応速度が低下する傾向がある。
 前記反応を経て、セルロース(1-1)から、セルロース(1-1)における水酸基(OH基)の少なくとも1部において、水酸基の水素原子が-OC-R1-NHY基(Yはアミノ基の保護基であり、式(3)中のYに同じ)で置換された化合物(1-2)が得られる。
 アミノ基の保護基を外す反応は、前記反応を経て得られた化合物(1-2)におけるアミノ基の保護基(Y)を外し、セルロースにおける水酸基(OH基)の少なくとも1部において、水酸基の水素原子が-OC-R1-NH2基で置換された化合物(1-3)を得る反応である。保護基を外す反応は、保護基の種類に応じて適宜選択することが好ましい。例えばYがFmocである場合は、ピリジン等の第2級アミンを反応させることにより保護基を速やかに外すことができる。また、YがBocである場合は、トリフルオロ酢酸等の強酸を反応させることにより保護基を速やかに外すことができる。
 工程[2]は、脱保護したアミノ基、すなわち、工程[1]を経て得られた、化合物(1-3)における-OOC-R1-NH2基に、硫黄化合物の存在下、第4級アンモニウム塩(N+(R34-;R3は、同一又は異なって炭素数1~10のアルキル基を示し、X-はカウンターアニオンを示す)を反応させて、本発明のセルロース誘導体を得る工程である。
 前記第4級アンモニウム塩におけるカウンターアニオン(X-)としては、例えば、OH-、Cl-、Br-、I-、F-、SO4 2-、BH4 -、BF4 -、PF6 -等が挙げられる。
 前記第4級アンモニウム塩としては、例えば、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等が挙げられる。
 前記第4級アンモニウム塩の使用量は、前記化合物(1-3)100重量部に対して、例えば20~500重量部程度である。
 前記硫黄化合物としては、例えば、二硫化炭素を挙げることができる。硫黄化合物の使用量は、前記化合物(1-3)100重量部に対して、例えば100重量部以上である。
 工程[2]の反応は、溶媒の存在下で行うことが好ましい。前記溶媒としては、例えば、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;メタノール、エタノール、2-プロパノール、イソプロピルアルコール、ブタノール等のアルコール;N-メチルピロリドン、ジメチルスルホキシド、N,N-ジメチルホルムアミド等が挙げられる。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。溶媒の使用量は、反応基質の総量の、例えば0.5~30重量倍程度である。
 工程[2]の反応温度は、例えば10~100℃程度である。反応時間は、例えば1~24時間程度である。反応終了後、得られた反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、吸着、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
 実施例1(セルロース誘導体(1)の調製)
 窒素雰囲気下、二口ナスフラスコにセルロース(I)(13.0mmol)を入れ、80℃で2時間真空乾燥した。この反応容器に、Boc-β-alanine(12.5mmol)、DMA/LiCl(65mL)、DMAP(12.5mmol)を加えて懸濁させた後、反応系を0℃に冷却した。さらにEDC-HCl(12.5mmol)を添加した後、反応系を室温に戻し、一晩撹拌した。MeOH/H2O(80/20,v/v)混合溶媒中に再沈殿することにより析出した固体を遠心分離により回収した。60℃で真空乾燥し、下記式(II)で表される化合物を白色固体として得た。1H-NMR測定の結果から、Boc-β-alanineの総平均置換度は、0.19と算出された。
Figure JPOXMLDOC01-appb-C000013
 窒素雰囲気下、二口ナスフラスコに上記式(II)で表される化合物(4.0mmol)、ジクロロメタン(50ml)、トリフルオロ酢酸(30.0mmol)を入れ、室温で一晩撹拌した。反応液を飽和炭酸水素ナトリウム水溶液に再沈殿した。析出した固体を遠心分離により回収し、真空乾燥することにより、下記式(III)で表される化合物を白色固体として得た。
Figure JPOXMLDOC01-appb-C000014
 DMSO(70.0mL)、CS2(7.0mL)、10%水酸化テトラメチルアンモニウム(0.80mL)の混合溶液に、乳鉢で細かく砕いた上記式(III)で表される化合物(1.0mmol)を入れ、遮光下、室温で2時間撹拌した。反応系中の固体をメタノールを加えて洗浄し、遠心分離により回収した。真空乾燥し、下記式(Cel-1)で表されるセルロース誘導体(1)(DTC基平均置換度:1.35)を白色固体として得た。
Figure JPOXMLDOC01-appb-C000015
 実施例2
 Boc-β-alanineの使用量を変更した以外は実施例1と同様にして、セルロース誘導体(2)(DTC基平均置換度:2.00)を得た。
 比較例1
 Boc-β-alanineの使用量を変更した以外は実施例1と同様にして、セルロース誘導体(3)(DTC基平均置換度:2.40)を得た。
 評価
 実施例及び比較例で得られたセルロース誘導体について、ヒ素吸着力を下記方法で評価した。
 三酸化二ヒ素(As23、As(III))(特級、和光純薬工業(株)製)を0.01MのNaOH溶液に溶解して試料溶液を調製した。
 実施例及び比較例で得られた各セルロース誘導体約1gを乳鉢に移し、粒径が約2mm以下となるまで乳棒ですりつぶした。硬く、乳棒ですりつぶせないところはハサミで切断した。
 粉砕されたセルロース誘導体を0.050gはかり取り、テフロン(登録商標)チューブ(内径2mm、長さ3cm)に充填し、両端にテフロン(登録商標)ウールを詰めて、固相カラムを作製した。
 得られた固相カラムに、前記試料溶液5mLを通液して(通液速度:5mL/分)、固相によるヒ素吸着量を求めた。
 結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000016
 以上のまとめとして、本発明の構成及びそのバリエーションを以下に付記する。
[1] 式(I)で表される繰り返し単位を有するセルロースの、前記繰り返し単位中の水酸基の水素原子が式(a)で表される基で置換され、前記水酸基の水素原子の前記式(a)で表される基による平均置換度が0.10~2.34であるセルロース誘導体。
[2] 式(a)で表される基が、式(a-1)で表される基である[1]に記載のセルロース誘導体。
[3] 下記工程を経て、[1]又は[2]に記載のセルロース誘導体を得るセルロース誘導体の製造方法。
1. セルロースの水酸基に、アミノ基が保護されたアミノ酸を反応させ、その後、アミノ基の保護基を外す
2. 硫黄化合物の存在下、脱保護したアミノ基に第4級アンモニウム塩(N+(R34-;R3は、同一又は異なって炭素数1~10のアルキル基を示し、X-はカウンターアニオンを示す)を反応させる
[4] [1]又は[2]に記載のセルロース誘導体を含む重金属吸着材。
[5] 重金属が、As(III)、Cd(II)、及びPb(II)から選択される少なくとも1種の重金属である、[4]に記載の重金属吸着材。
[6] 0.1μmol/g以上の重金属を吸着する、[4]又は[5]に記載の重金属吸着材。
[7] [1]又は[2]に記載のセルロース誘導体を用いた重金属除去方法。
[8] 重金属が、As(III)、Cd(II)、及びPb(II)から選択される少なくとも1種の重金属である、[7]に記載の重金属除去方法。
[9] 0.1μmol/g以上の重金属を吸着する、[7]又は[8]に記載の重金属除去方法。
[10] [1]又は[2]に記載のセルロース誘導体を用いて、重金属吸着材を製造する、重金属吸着材の製造方法。
[11] 重金属が、As(III)、Cd(II)、及びPb(II)から選択される少なくとも1種の重金属である、[10]に記載の重金属吸着材の製造方法。
[12] 0.1μmol/g以上の重金属を吸着する重金属吸着材を製造する、[10]又は[11]に記載の重金属吸着材の製造方法。

Claims (5)

  1.  下記式(I)
    Figure JPOXMLDOC01-appb-C000001
    で表される繰り返し単位を有するセルロースの、前記繰り返し単位中の水酸基の水素原子が下記式(a)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1は単結合又は炭素数1~10のアルキレン基を示し、R2は水素原子又は炭素数1~10のアルキル基を示す。R3は、同一又は異なって、炭素数1~10のアルキル基を示す)
    で表される基で置換され、前記水酸基の水素原子の前記式(a)で表される基による平均置換度が0.10~2.34であるセルロース誘導体。
  2.  式(a)で表される基が、下記式(a-1)で表される基である請求項1に記載のセルロース誘導体。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R3は、同一又は異なって、炭素数1~10のアルキル基を示し、R5は、同一又は異なって、水素原子又は炭素数1~3のアルキル基を示す。nは1~3の整数を示す)
  3.  下記工程を経て、請求項1又は2に記載のセルロース誘導体を得るセルロース誘導体の製造方法。
    [1] セルロースの水酸基に、アミノ基が保護されたアミノ酸を反応させ、その後、アミノ基の保護基を外す
    [2] 硫黄化合物の存在下、脱保護したアミノ基に第4級アンモニウム塩(N+(R34-;R3は、同一又は異なって炭素数1~10のアルキル基を示し、X-はカウンターアニオンを示す)を反応させる
  4.  請求項1又は2に記載のセルロース誘導体を含む重金属吸着材。
  5.  請求項1又は2に記載のセルロース誘導体を用いた重金属除去方法。
PCT/JP2019/029562 2018-07-30 2019-07-29 セルロース誘導体、及びこれを含む重金属除去材、並びにこれを用いた重金属除去方法 WO2020027009A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-142800 2018-07-30
JP2018142800A JP2020019844A (ja) 2018-07-30 2018-07-30 セルロース誘導体、及びこれを含む重金属除去材、並びにこれを用いた重金属除去方法

Publications (1)

Publication Number Publication Date
WO2020027009A1 true WO2020027009A1 (ja) 2020-02-06

Family

ID=69232587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029562 WO2020027009A1 (ja) 2018-07-30 2019-07-29 セルロース誘導体、及びこれを含む重金属除去材、並びにこれを用いた重金属除去方法

Country Status (2)

Country Link
JP (1) JP2020019844A (ja)
WO (1) WO2020027009A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021245832A1 (ja) * 2020-06-03 2021-12-09 国立大学法人金沢大学 セルロース誘導体、及び前記セルロース誘導体を含む金属吸着材
EP4197975A4 (en) * 2020-08-11 2024-05-01 Univ Nat Corp Kanazawa SELENIC ACID ADSORBING MATERIAL

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117801126B (zh) * 2024-03-01 2024-05-03 山东百川集大环境工程有限公司 一种纤维素基多结合位点重金属污水处理剂及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018083882A (ja) * 2016-11-22 2018-05-31 株式会社ダイセル セルロース誘導体、及びこれを含む金属除去材、並びにこれを用いた金属除去方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018083882A (ja) * 2016-11-22 2018-05-31 株式会社ダイセル セルロース誘導体、及びこれを含む金属除去材、並びにこれを用いた金属除去方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ITO, MIKIYA ET AL.: "1Pf098: Synthesis of Cellulose Derivatives Bearing Dithiccarhamate Salt Pendants and Their Application to As (III) ion Adsorbents", POLYMER PREPRINTS, JAPAN; 66TH SPSJ SYMPOSIUM ON MACROMOLECULES : MATSUYAMA, JAPAN, SEPTEMBER 20-22, 2017, vol. 66, no. 2, 2017, Japan, pages 1Pf098, XP009521495 *
ITO, MIKIYA ET AL.: "C09: Synthesis of Cellulose Derivatives Bearing Dithiocarbamate Pendants aiming of the application to As(III) Adsorbents", LECTURE NOTES OF THE 66TH HOKURIKU BRANCH RESEARCH PRESENTATION OF THE SOCIETY OF POLYMER SCIENCE, JAPAN, vol. 66, 18 November 2017 (2017-11-18), Japan, pages 69 (C09), XP009521496 *
NAKAKUBO, KEISUKE ET AL.: "Adsorption behavior of As(III) on dithiocarbamate-type cellulose derivatives", LECTURE ABSTRACT OF DISCUSSION OF THE JAPAN SOCIETY FOR ANALYTICAL CHEMISTRY, vol. 78, 2018, Japan, pages 182 (Y1113), XP009521494 *
NAKAKUBO, KEISUKE ET AL.: "Dithiocarbamate-modified cellulose resins: A novel adsorbent for selective removal of arsenite from aqueous media", JOURNAL OF HAZARDOUS MATERIALS, vol. 380, no. 120816, 6 July 2019 (2019-07-06), pages 1 - 9, XP085843944, DOI: 10.1016/j.jhazmat.2019.120816 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021245832A1 (ja) * 2020-06-03 2021-12-09 国立大学法人金沢大学 セルロース誘導体、及び前記セルロース誘導体を含む金属吸着材
CN115836091A (zh) * 2020-06-03 2023-03-21 国立大学法人金沢大学 纤维素衍生物和包含所述纤维素衍生物的金属吸附材料
CN115836091B (zh) * 2020-06-03 2024-05-07 国立大学法人金沢大学 纤维素衍生物和包含所述纤维素衍生物的金属吸附材料
EP4197975A4 (en) * 2020-08-11 2024-05-01 Univ Nat Corp Kanazawa SELENIC ACID ADSORBING MATERIAL

Also Published As

Publication number Publication date
JP2020019844A (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
JP6737453B2 (ja) セルロース誘導体、及びこれを含む金属除去材、並びにこれを用いた金属除去方法
WO2020027009A1 (ja) セルロース誘導体、及びこれを含む重金属除去材、並びにこれを用いた重金属除去方法
Sahin et al. Synthesis of crosslinked chitosan with epichlorohydrin possessing two novel polymeric ligands and its use in metal removal
CN101701042B (zh) 羧甲基壳聚糖硫脲树脂,其制备方法和应用
Morita et al. Binding of heavy metal ions by chemically modified woods
Petrova et al. Simple synthesis and chelation capacity of N-(2-sulfoethyl) chitosan, a taurine derivative
JP2020019845A (ja) セルロース誘導体、及びこれを含む重金属除去材、並びにこれを用いた重金属除去方法
JP2020019846A (ja) セルロース誘導体、及びこれを含む重金属除去材、並びにこれを用いた重金属除去方法
JP5796867B2 (ja) キレート樹脂
WO2020027091A1 (ja) セルロース誘導体、及びこれを含む重金属除去材、並びにこれを用いた重金属除去方法
JP2018034111A (ja) 金属吸着剤
BRPI0717426A2 (pt) Resina trocadora de íon e processo para o uso da mesma
JP2014004518A (ja) 金属イオンの吸着材
CN115836091B (zh) 纤维素衍生物和包含所述纤维素衍生物的金属吸附材料
CN110420616B (zh) 一种四氧化三铁/四硫化钼复合体及其制备方法和应用
CN107697997B (zh) 一种疏水性金属捕集剂及其制备方法
JP2016040032A (ja) セルロース誘導体および/または架橋キトサン誘導体を含む吸着材ならびに金属イオンの吸着方法および回収方法
Kondo et al. Enhanced adsorption of copper (II) ion on novel amidoxime chitosan resin
JP5046052B2 (ja) 金属イオンの吸着剤、並びにそれを用いた吸着方法
WO2020027090A1 (ja) 多糖誘導体、及びこれを含む重金属除去材、並びにこれを用いた重金属除去方法
CN115197382A (zh) 一种阳离子共价有机框架的制备方法及其吸附金应用
JP5017801B2 (ja) キレート樹脂
JPS6248725A (ja) 金属キレート形成能を有する架橋ポリエチレンイミン系高分子化合物の製法
WO2022034635A1 (ja) 亜セレン酸吸着材
Baba et al. Adsorptive removal of copper (II) on N-methylene phosphonic chitosan derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844224

Country of ref document: EP

Kind code of ref document: A1