WO2020026927A1 - プレフィルドシリンジおよびプレフィルドシリンジの製造方法 - Google Patents

プレフィルドシリンジおよびプレフィルドシリンジの製造方法 Download PDF

Info

Publication number
WO2020026927A1
WO2020026927A1 PCT/JP2019/029094 JP2019029094W WO2020026927A1 WO 2020026927 A1 WO2020026927 A1 WO 2020026927A1 JP 2019029094 W JP2019029094 W JP 2019029094W WO 2020026927 A1 WO2020026927 A1 WO 2020026927A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein solution
outer cylinder
prefilled syringe
solution preparation
gasket
Prior art date
Application number
PCT/JP2019/029094
Other languages
English (en)
French (fr)
Inventor
澤口 太一
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201980048656.1A priority Critical patent/CN112469457B/zh
Priority to US17/261,870 priority patent/US20210292402A1/en
Priority to EP19843345.0A priority patent/EP3831428A4/en
Priority to JP2020533463A priority patent/JP7396279B2/ja
Publication of WO2020026927A1 publication Critical patent/WO2020026927A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/3129Syringe barrels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/28Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/241Tumor Necrosis Factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M2005/3103Leak prevention means for distal end of syringes, i.e. syringe end for mounting a needle
    • A61M2005/3104Caps for syringes without needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2207/00Methods of manufacture, assembly or production
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered

Definitions

  • the present invention relates to a prefilled syringe and a method for producing the prefilled syringe.
  • the injection solution to be filled in the prefilled syringe for example, a preparation containing a protein in an aqueous solution (protein solution preparation) is used.
  • protein solution preparation a preparation containing a protein in an aqueous solution
  • the protein aggregates when stored for a long time.
  • a nonionic surfactant and an isotonic agent are contained in a protein solution formulation containing erythropoietin as a protein while keeping the protein concentration within a predetermined range.
  • the material of the portion that is in direct contact with the preparation is 1) a cycloolefin copolymer which is a copolymer of a cyclic olefin and an olefin, 2) a cycloolefin ring-opening polymer, 3)
  • a container which is a hydrophobic resin selected from hydrogenated cycloolefin ring-opened polymers for example, polysorbate 80 and polysorbate 20 are used as nonionic surfactants. This nonionic surfactant can function as a stabilizer for the protein erythropoietin.
  • nonionic surfactants such as polysorbate 80 and polysorbate 20 may be degraded in a protein solution formulation when a prefilled syringe is stored for a long period of time, and degradation products may be generated.
  • degradation products have the disadvantages that, when administered to the human body, they may cause problems such as hypersensitivity and chromosomal abnormalities, and are carcinogenic. That is, the conventional pre-filled syringe described above has a further improvement in that, when stored for a long period of time, it suppresses the aggregation of the protein in the protein solution preparation, while suppressing the generation of degradation products of the nonionic surfactant. There was room.
  • an object of the present invention is to provide a prefilled syringe that can reduce the amount of degradation products of a nonionic surfactant while suppressing protein aggregation in a protein solution preparation after long-term storage. Further, the present invention provides a method for producing a prefilled syringe capable of suppressing the aggregation of proteins in a protein solution preparation after long-term storage and reducing the amount of degradation products of a nonionic surfactant. Aim.
  • the present inventors have conducted intensive studies with the aim of solving the above problems. Then, the present inventor prepares a prefilled syringe by filling a protein solution preparation in which the concentration of the nonionic surfactant is within a predetermined range into a syringe having an outer cylinder formed using a predetermined resin. Have found that even when the prefilled syringe is stored for a long period of time, protein aggregation in the protein solution preparation can be suppressed, and furthermore, the amount of degradation products of nonionic surfactants can be reduced. The present invention has been completed.
  • an object of the present invention is to advantageously solve the above-described problems, and a prefilled syringe of the present invention includes an outer cylinder having a nozzle portion at a distal end portion, and a sealing member for sealing the nozzle portion.
  • a gasket slidably housed in the outer cylinder, a pusher coupled to the gasket and operating to move the gasket in a longitudinal direction of the outer cylinder, and a part of an inner wall surface of the outer cylinder.
  • a prefilled syringe comprising a region, said cap, and a protein solution formulation filled in a space defined by said gasket, wherein said outer cylinder is a cyclic olefin ring-opening polymer hydrogenated product, a cyclic olefin and a chain A resin containing at least one of an olefin copolymer, and the concentration of the nonionic surfactant in the protein solution preparation is more than 0 mg / mL and 0.05 mg Less than mL, characterized in that.
  • a protein solution preparation having a nonionic surfactant concentration of more than 0 mg / mL and less than 0.05 mg / mL can be used to prepare a cyclic olefin ring-opening polymer hydrogenated product and / or a copolymer of cyclic olefin and chain olefin.
  • the partial area of the inner wall surface has a water contact angle of 90 ° or more.
  • a prefilled syringe provided with an outer cylinder having a water contact angle of 90 ° or more in a part of the inner wall surface in contact with the protein solution preparation (hereinafter, may be referred to as “preparation contact area”) can be stored for a long time.
  • preparation contact area a prefilled syringe provided with an outer cylinder having a water contact angle of 90 ° or more in a part of the inner wall surface in contact with the protein solution preparation
  • the “water contact angle” of the preparation contact region can be measured by using the method described in the examples of the present specification.
  • the protein solution preparation can contain at least one of an antibody and an antigen-binding fragment thereof.
  • the antibody may be at least one selected from the group consisting of chimeric antibodies, human antibodies, humanized antibodies, and domain antibodies thereof.
  • the protein solution formulation is ofatumumab, cetuximab, tocilizumab, bevacizumab, canakinumab, golimumab, ustekinumab, eculizumab, omalizumab, trastuzumab, pertuzumab, adalimumab, denosumumab, denosumumab, denosumumab, denosumumab, denosumumab It can include at least one selected from the group consisting of vercept, abatacept, etanercept, gemtuzumab ozogamicin, panitumumab, basiliximab, certolizumab pegol, and palivizumab.
  • an object of the present invention is to advantageously solve the above-described problem, and a method of manufacturing a prefilled syringe of the present invention seals an outer cylinder having a nozzle portion at a distal end portion and the nozzle portion.
  • a protein solution is provided inside a syringe including a sealing member, a gasket slidably housed in the outer cylinder, and a pusher connected to the gasket to move the gasket in a longitudinal direction of the outer cylinder.
  • a method for producing a prefilled syringe filled with a preparation comprising: a hydrogenated cyclic olefin ring-opening polymer; and an outer cylinder made of a resin containing at least one of a copolymer of a cyclic olefin and a chain olefin.
  • a protein solution preparation having a concentration of a surfactant of more than 0 mg / mL and less than 0.05 mg / mL is injected, and a partial region of the inner wall surface of the outer cylinder and the cap, Comprising a flop, the step of obtaining a pre-filled syringe to the protein solution formulation filled in a space defined by the gasket, characterized in that.
  • a protein solution preparation having a nonionic surfactant concentration of more than 0 mg / mL and less than 0.05 mg / mL can be used to prepare a cyclic olefin ring-opening polymer hydrogenated product and / or a copolymer of cyclic olefin and chain olefin.
  • Filling a syringe with an outer cylinder formed of a resin containing coalescing can suppress aggregation of proteins in a protein solution formulation when the obtained prefilled syringe is stored for a long period of time, and has a nonionic surfactant. The amount of degradation products of the agent can be reduced.
  • the partial area of the inner wall surface has a water contact angle of 90 ° or more. If an outer cylinder having a water contact angle of 90 ° or more in the preparation contact region is used, aggregation of the protein in the protein solution preparation can be further suppressed when the obtained prefilled syringe is stored for a long time.
  • the method for producing a prefilled syringe of the present invention prior to the step of obtaining the prefilled syringe, further comprises a step of pre-drying the resin and a step of molding the resin after the pre-drying to obtain the outer cylinder It is preferable to provide If an outer cylinder obtained by molding a pre-dried resin is used, aggregation of the protein in the protein solution preparation can be further suppressed when the obtained prefilled syringe is stored for a long time.
  • the oxygen concentration in the resin after the preliminary drying is 10 ppm by mass or less.
  • the oxygen concentration in the pre-dried resin is 10 mass ppm or less, the aggregation of the protein in the protein solution preparation can be further suppressed when the obtained prefilled syringe is stored for a long period of time.
  • the “oxygen concentration” in the resin can be measured by using the method described in the examples of the present specification.
  • the preliminary drying is performed in an inert gas atmosphere. If the predrying of the resin is performed in an inert gas atmosphere, aggregation of the protein in the protein solution preparation can be further suppressed when the obtained prefilled syringe is stored for a long time.
  • the drying temperature of the preliminary drying is 80 ° C. or more and 120 ° C. or less. If the pre-drying of the resin is performed at a temperature within the above range, the aggregation of the protein in the protein solution preparation can be further suppressed when the obtained prefilled syringe is stored for a long period of time.
  • the protein solution preparation may contain at least one of an antibody and an antigen-binding fragment thereof.
  • the antibody may be at least one selected from the group consisting of a chimeric antibody, a human antibody, a humanized antibody, and a domain antibody thereof.
  • the protein solution formulation is ofatumumab, cetuximab, tocilizumab, bevacizumab, canakinumab, golimumab, ustekinumab, eculizumab, omalizumab, trastuzumab, pertuzumab, adalimumabumamu, adalimumabumamu, gum It may include at least one selected from the group consisting of infliximab, aflibercept, abatacept, etanercept, gemtuzumab ozogamicin, panitumumab, basiliximab, certolizumab pegol, and palivizumab.
  • a prefilled syringe that can reduce the amount of degradation products of a nonionic surfactant while suppressing protein aggregation in a protein solution preparation after long-term storage. Further, according to the present invention, there is provided a method for producing a prefilled syringe capable of suppressing the aggregation of a protein in a protein solution preparation after long-term storage and reducing the amount of degradation products of a nonionic surfactant. be able to.
  • the prefilled syringe of the present invention is obtained by filling a syringe with a protein solution preparation.
  • the prefilled syringe of the present invention can be manufactured, for example, by using the method for manufacturing a prefilled syringe of the present invention.
  • the prefilled syringe of the present invention is an outer cylinder having a nozzle at the tip, a sealing member for sealing the nozzle, a gasket slidably housed in the outer cylinder, and a gasket connected to the gasket.
  • a pusher that moves in the longitudinal direction of the outer cylinder is provided, and the protein solution formulation is filled in the space defined by the formulation contact area, which is a part of the inner wall surface of the outer cylinder, the sealing member, and the gasket. I have.
  • the prefilled syringe 1 shown in FIG. 1 includes an outer cylinder 10, a sealing member (cap in FIG. 1) 20, a gasket 30, a pusher 40, and a protein solution preparation 50.
  • the outer cylinder 10 has a nozzle portion 12 at a distal end portion 11, and a sealing member 20 is fitted to the nozzle portion 12.
  • the gasket 30 can slide inside the outer cylinder 10 in the longitudinal direction of the outer cylinder 10, and the sliding of the gasket 30 can be performed by a pusher 40 connected to the gasket 30.
  • the protein solution preparation 50 is filled in a space defined by the preparation contact area 14 which is a part of the inner wall surface 13 of the outer cylinder 10, the sealing member 20, and the gasket 30.
  • the concentration of the nonionic surfactant in the filled protein solution preparation is more than 0 mg / mL and less than 0.05 mg / mL. It is characterized by being formed by molding a resin containing at least one of a hydrogenated cyclic polymer and / or a copolymer of a cyclic olefin and a chain olefin.
  • the pre-filled syringe of the present invention suppresses the aggregation of proteins in a protein solution preparation even after long-term storage, and also reduces the amount of degradation products of nonionic surfactants after long-term storage. Can be. The reason why such an effect is obtained is presumed to be as follows.
  • the prefilled syringe of the present invention is filled with a protein solution preparation in which the concentration of the nonionic surfactant is more than 0 mg / mL and less than 0.05 mg / mL.
  • the nonionic surfactant contained as an essential component in this protein solution preparation functions as a protein stabilizer.
  • this protein solution preparation since the concentration of the nonionic surfactant is as small as less than 0.05 mg / mL, even when the nonionic surfactant is decomposed, generation of the decomposition product The amount can be kept low.
  • the protein solution preparation described above is formed by molding a resin containing at least one of a hydrogenated cyclic olefin ring-opening polymer and / or a copolymer of a cyclic olefin and a chain olefin. It is filled in the outer cylinder.
  • the outer cylinder which is a molded body of the above-described predetermined resin, has a reduced affinity between the formulation contact region and the protein due to the hydrophobic nature of the resin, and suppresses protein adsorption to the formulation contact region. It is presumed that protein aggregation in the formulation contact region (that is, on the inner wall surface of the outer cylinder) can be suppressed.
  • the protein solution formulation contains at least a protein, a nonionic surfactant, and water, and the concentration of the nonionic surfactant is more than 0 mg / mL and less than 0.05 mg / mL or less.
  • the protein contained in the protein solution preparation is not particularly limited, and includes, for example, antibodies (chimeric antibodies, human antibodies, humanized antibodies, and their domain antibodies), and antigen-binding fragments thereof.
  • the protein solution preparation may contain one kind of protein, or may contain two or more kinds of proteins. That is, the protein solution preparation may contain, for example, both an antibody and an antigen-binding fragment, may contain two or more kinds of antibodies, or may contain two or more kinds of antigen-binding fragments. .
  • the concentration of the protein in the protein solution preparation is preferably at least 0.005 mg / mL, more preferably at least 0.01 mg / mL, even more preferably at least 0.05 mg / mL. , 500 mg / mL or less, more preferably 300 mg / mL or less, even more preferably 200 mg / mL or less.
  • concentration of the protein in the protein solution preparation is 0.005 mg / mL or more, the desired effect of the protein can be sufficiently obtained when the protein solution preparation is administered to a human body or the like. If it is, when the prefilled syringe is stored for a long time, aggregation of the protein in the protein solution preparation can be further suppressed.
  • Nonionic surfactant is a component that stabilizes the above-described protein and can function as a stabilizer.
  • a nonionic surfactant is not particularly limited, and examples thereof include sorbitan fatty acid ester, glycerin fatty acid ester, polyglycerin fatty acid ester, polyoxyethylene sorbitan fatty acid ester (polyoxyethylene sorbitan oleate (polysorbate 80) and monolaurin).
  • Acid polyoxyethylene sorbitan (polysorbate 20), polyoxyethylene sorbite fatty acid ester, polyoxyethylene glycerin fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene Alkyl phenyl ether, polyoxyethylene hydrogenated castor oil, polyoxyethylene beeswax derivative, polyoxyethylene Lanolin derivatives, polyoxyethylene fatty acid amides.
  • a nonionic surfactant may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the concentration of the nonionic surfactant in the protein solution preparation needs to be more than 0 mg / mL and less than 0.05 mg / mL, preferably 0.005 mg / mL or more. It is more preferably at least 01 mg / mL, preferably at most 0.045 mg / mL, more preferably at most 0.04 mg / mL.
  • the concentration of the nonionic surfactant in the protein solution preparation is 0 mg / mL (that is, the protein solution preparation does not contain the nonionic surfactant)
  • the protein solution preparation is stored when the prefilled syringe is stored for a long time. Protein aggregation cannot be suppressed.
  • the concentration of the nonionic surfactant in the protein solution preparation is 0.05 mg / mL or more, the amount of degradation products of the nonionic surfactant is suppressed when the prefilled syringe is stored for a long period of time. Can not do.
  • decomposition products include, for example, nonionic surfactants having a polyoxyethylene chain (polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbite fatty acid ester, polyoxyethylene glycerin).
  • Fatty acid ester polyoxyethylene fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene hydrogenated castor oil, polyoxyethylene beeswax derivative, polyoxyethylene lanolin derivative,
  • polyoxyethylene fatty acid amide and the like degradation products generated by cleavage of polyoxyethylene chain terminals by auto-oxidation during long-term storage can be mentioned.
  • the protein solution preparation may contain components (other components) other than the protein, water, and the nonionic surfactant.
  • Other components optionally included in the protein solution formulation include known components used in preparing protein solution formulations. Such known components include, for example, stabilizers (excluding the nonionic surfactants described above), diluents, dissolution aids, isotonic agents, excipients, pH adjusters, soothing agents , Buffers, sulfur-containing reducing agents, antioxidants and the like.
  • other components include inorganic salts such as sodium chloride, potassium chloride, calcium chloride, sodium phosphate, potassium phosphate, and sodium hydrogen carbonate; and organic salts such as sodium citrate, potassium citrate, and sodium acetate.
  • concentration of the inorganic salt in the protein solution preparation is preferably 300 mM or less.
  • the concentration of the organic salt in the protein solution preparation is preferably 300 mM or less.
  • the method for preparing the protein solution preparation is not particularly limited as long as at least the protein is dissolved and the concentration of the nonionic surfactant can be obtained in a predetermined range.
  • it can be obtained by dissolving a protein and a surfactant used as needed in an aqueous buffer such as an acetate buffer, a phosphate buffer, and a citrate buffer.
  • the pH of the obtained protein solution preparation is not particularly limited, but may be 3.0 or more and 8.0 or less.
  • the outer cylinder provided in the prefilled syringe of the present invention is a member having a nozzle at the tip and capable of storing a protein solution preparation and a gasket inside.
  • the outer cylinder 10 includes an outer cylinder main body 15, a nozzle 12 provided on a distal end side (a distal end 11) of the outer cylinder main body 15, and an outer cylinder main body 15. And a flange 16 provided on the rear end side.
  • the outer cylinder main body 15 is a cylindrical portion that houses the gasket 30 in a liquid-tight and slidable manner.
  • the nozzle portion 12 is a cylindrical portion having a smaller diameter than the outer cylinder main body 15.
  • the nozzle unit 12 has an opening at the tip for discharging the protein solution preparation 50 in the outer cylinder 10.
  • the outer cylinder 10 is in contact with the protein solution preparation 50 at the preparation contact area 14 which is a part of the inner wall surface 13 in the outer cylinder main body 15 and the nozzle section 12.
  • the outer cylinder is a molded article of a resin containing a hydrogenated cyclic olefin ring-opening polymer and at least one of a copolymer of a cyclic olefin and a chain olefin.
  • the resin used to form the outer cylinder may contain components (other components) other than the hydrogenated cyclic olefin ring-opening polymer and the copolymer of cyclic olefin and chain olefin.
  • the hydrogenated cyclic olefin ring-opening polymer is a polymer obtained by subjecting a cyclic olefin ring-opened polymer obtained by ring-opening polymerization of a cyclic olefin as a monomer to a hydrogenation reaction.
  • the cyclic olefin which is a monomer used in the preparation of the cyclic olefin ring-opened polymer has a cyclic structure formed of carbon atoms and has a polymerizable carbon-carbon double in the cyclic structure.
  • a compound having a bond can be used.
  • examples of the cyclic olefin as a monomer include a norbornene-based monomer (a monomer containing a norbornene ring) and a monocyclic cyclic olefin monomer.
  • the “norbornene ring” contained in the norbornene-based monomer may have one or more carbon atoms interposed between carbon-carbon single bonds constituting the ring structure. As a result of the carbon atoms further forming a single bond, a new ring structure may be formed in the norbornene ring.
  • norbornene-based monomer for example, Bicyclo [2.2.1] hept-2-ene (common name: norbornene) and its derivatives (substituents on the ring; the same applies hereinafter), 5-ethylidene-bicyclo [2.2.1] hept-2 Bicyclic monomers such as -ene (common name: ethylidene norbornene) and its derivatives; Tricyclic monomers such as tricyclo [4.3.0.1 2,5 ] deca-3,7-diene (common name: dicyclopentadiene) and derivatives thereof; 7,8-tricyclo [4.3.0.1 2, 5] dec-3-ene (common name: methanolate tetrahydrofluorene and derivatives thereof, tetracyclo [7.4.0.0 2,7 .1 10 , 13 ] trideca-2,4,6,11-tetraene) and its derivatives, tetracyclo [4.4.0.1 2,5
  • dodec-3-ene (common name: tetracyclododecene) and its derivatives (eg, 8-methyl-tetracyclo [4.4.0.1 2,5 .1 7,10 ] dodeca-3) - ene, 8-ethyl - tetracyclo [4.4.0.1 2,5 .1 7,10] dodeca-3-ene), 8-ethylidene tetracyclo [4.4.0.1 2, 5.
  • 4-cyclic monomers such as 1 7,10 ] -3-dodecene and derivatives thereof; Is mentioned.
  • examples of the substituent of the above-mentioned derivative include an alkyl group such as a methyl group and an ethyl group; an alkenyl group such as a vinyl group; an alkylidene group such as an ethylidene group and a propane-2-ylidene group; Aryl group; hydroxy group; acid anhydride group; carboxyl group; alkoxycarbonyl group such as methoxycarbonyl group;
  • Examples of the monocyclic olefin monomer include cyclic monoolefins such as cyclobutene, cyclopentene, methylcyclopentene, cyclohexene, methylcyclohexene, cycloheptene, and cyclooctene; cyclohexadiene, methylcyclohexadiene, cyclooctadiene, and methylcyclooctadiene.
  • cyclic diolefins such as phenylcyclooctadiene; and the like.
  • cyclic olefins can be used alone or in combination of two or more.
  • the cyclic olefin ring-opening polymer may be a block copolymer or a random copolymer.
  • the cyclic olefin a norbornene-based monomer is preferable, and tricyclo [4.3.0.1 2,5 ] deca-3,7-diene and its derivative, tetracyclo [4.4.0] are preferable. .1 2,5 .
  • the amount of the norbornene-based monomer used for preparing the cyclic olefin ring-opened polymer is not particularly limited, but is based on 100% by mass of the total amount of the cyclic olefin used for preparing the cyclic olefin ring-opened polymer.
  • the content is preferably 80% by mass or more, more preferably 90% by mass or more, and 100% by mass (that is, the cyclic olefin ring-opened polymer is one or two or more types of norbornene-based monomers as a monomer. Is a polymer obtained using only a monomer).
  • the method for preparing the cyclic olefin ring-opened polymer is not particularly limited, and for example, a known method of ring-opening polymerizing the above-mentioned cyclic olefin as a monomer using a metathesis polymerization catalyst can be employed. As such a method, for example, a method described in JP-A-2016-155327 can be mentioned.
  • the weight-average molecular weight (Mw) of the cyclic olefin ring-opened polymer obtained as described above is not particularly limited, but is preferably 10,000 or more, more preferably 15,000 or more, It is preferably 100,000 or less, more preferably 50,000 or less. If the weight average molecular weight of the cyclic olefin ring-opened polymer is 10,000 or more, it is possible to sufficiently secure the strength of the outer cylinder obtained by molding a resin containing a hydrogenated product of the cyclic olefin ring-opened polymer. it can.
  • the weight average molecular weight of the cyclic olefin ring-opened polymer is 100,000 or less, the moldability of the resin containing a hydrogenated product of the cyclic olefin ring-opened polymer can be sufficiently ensured.
  • the molecular weight distribution (Mw / Mn) of the cyclic olefin ring-opened polymer is not particularly limited, but is preferably 1 or more and 5 or less, more preferably 1 or more and 4 or less. When the molecular weight distribution of the cyclic olefin ring-opened polymer is within the above range, an outer cylinder having sufficient mechanical strength can be obtained.
  • the weight-average molecular weight (Mw) and number-average molecular weight (Mn) of polymers such as cyclic olefin ring-opened polymers are determined by gel permeation chromatography (GPC) using cyclohexane as an eluent. It is isoprene conversion value.
  • a hydrogenated cyclic olefin ring-opening polymer By subjecting the cyclic olefin ring-opening polymer to a hydrogenation reaction, a hydrogenated cyclic olefin ring-opening polymer can be obtained.
  • the method of hydrogenating the cyclic olefin ring-opened polymer is not particularly limited, and for example, a known method of supplying hydrogen into the reaction system in the presence of a hydrogenation catalyst can be employed. As such a method, for example, a method described in JP-A-2016-155327 can be mentioned.
  • the rate of hydrogenation (the ratio of hydrogenated main chain carbon-carbon double bonds) in the hydrogenation reaction is not particularly limited, but an outer cylinder is formed by molding a hydrogenated cyclic olefin ring-opening polymer. From the viewpoint of preventing the occurrence of burns and oxidative deterioration at the time, the content is preferably 70% or more, more preferably 80% or more, further preferably 90% or more, and particularly preferably 99% or more.
  • the “hydrogenation rate” in the hydrogenation reaction can be measured using a nuclear magnetic resonance (NMR) method.
  • NMR nuclear magnetic resonance
  • the weight average molecular weight (Mw) of the hydrogenated cyclic olefin ring-opening polymer obtained after the above-mentioned hydrogenation reaction is not particularly limited, but is preferably 10,000 or more, more preferably 15,000 or more. Preferably, it is 100,000 or less, more preferably 50,000 or less.
  • Mw weight average molecular weight of the hydrogenated cyclic olefin polymer
  • the strength of the outer cylinder obtained by molding the resin containing the hydrogenated cyclic olefin polymer is sufficiently ensured. Can be.
  • the weight average molecular weight of the hydrogenated cyclic olefin ring-opening polymer is 100,000 or less, the moldability of the resin containing the hydrogenated cyclic olefin ring-opening polymer can be sufficiently ensured.
  • the molecular weight distribution (Mw / Mn) of the hydrogenated cyclic olefin ring-opening polymer is not particularly limited, but is preferably 1 or more and 5 or less, more preferably 1 or more and 4 or less. When the molecular weight distribution of the hydrogenated cyclic olefin ring-opening polymer is in the above range, an outer cylinder having sufficient mechanical strength can be obtained.
  • Cyclic olefin and chain olefin copolymer A copolymer of a cyclic olefin and a chain olefin (hereinafter sometimes simply referred to as “copolymer”) is obtained by copolymerizing a cyclic olefin as a monomer with a linear olefin as a monomer. It is a polymer obtained by the above.
  • Cyclic olefin As the cyclic olefin which is a monomer used in the preparation of the copolymer, the same ones as described above in the section “Hydrogenated cyclic olefin-opening polymer” can be used.
  • the cyclic olefins can be used alone or in combination of two or more. Among them, bicyclo [2.2.1] hept-2-ene (common name: norbornene) and its derivative, tetracyclo [4.4.0.1 2,5 . [ 17,10 ] dodec-3-ene (common name: tetracyclododecene) and its derivatives are preferred, and bicyclo [2.2.1] hept-2-ene is more preferred.
  • the chain olefin which is a monomer used for preparing the copolymer has a chain structure formed by carbon atoms and has a polymerizable carbon-carbon double bond in the chain structure.
  • Compounds can be used.
  • compounds corresponding to cyclic olefins are not included in chain olefins.
  • examples of the chain olefin include ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene and 1-hexene; aromatic vinyl compounds such as styrene and ⁇ -methylstyrene; 1,4-hexadiene And non-conjugated dienes such as 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, and 1,7-octadiene.
  • the chain olefin can be used alone or in combination of two or more.
  • the chain olefin is preferably an ⁇ -olefin, more preferably an ⁇ -olefin having 1 to 20 carbon atoms, and still more preferably ethylene.
  • the method for preparing the copolymer is not particularly limited, and for example, a known method of addition-polymerizing the above-described cyclic olefin and chain olefin using a polymerization catalyst can be employed. As such a method, for example, a method described in JP-A-2016-155327 can be mentioned.
  • the ratio of the amount of the cyclic olefin to the amount of the chain olefin used for the preparation of the copolymer is not particularly limited, but the total amount of the amount of the cyclic olefin and the amount of the chain olefin used for the preparation of the copolymer is 100% by mass.
  • the amount of the cyclic olefin is preferably 30% by mass or more, more preferably 50% by mass or more, still more preferably 70% by mass or more, and preferably 99% by mass or less. It is more preferably at most 97% by mass, further preferably at most 95% by mass.
  • the copolymer of a cyclic olefin and a chain olefin may be a block copolymer or a random copolymer.
  • the weight average molecular weight (Mw) of the copolymer of cyclic olefin and chain olefin is not particularly limited, but is preferably 20,000 or more, more preferably 25,000 or more, and more preferably 100,000. Or less, more preferably 50,000 or less.
  • Mw weight average molecular weight
  • the weight average molecular weight of the copolymer is 20,000 or more, the strength of the outer cylinder obtained by molding the resin containing the copolymer can be sufficiently ensured.
  • the weight average molecular weight of the copolymer is 100,000 or less, the moldability of the resin containing the copolymer can be sufficiently ensured.
  • the molecular weight distribution (Mw / Mn) of the copolymer is not particularly limited, but is preferably 1 or more and 5 or less, more preferably 1 or more and 4 or less. When the molecular weight distribution of the copolymer is in the above range, an outer cylinder having sufficient mechanical strength can be obtained.
  • the resin used for forming the outer cylinder may include at least one of a hydrogenated cyclic olefin ring-opening polymer and a copolymer of a cyclic olefin and a chain olefin. It is preferable to include a hydrogenated cyclic polymer. If an outer cylinder obtained by molding a resin containing at least a cyclic olefin ring-opening polymer hydrogenated product is employed, when the prefilled syringe is stored for a long period of time, protein aggregation in the protein solution preparation can be further suppressed. .
  • Other components that can be included in the resin used to form the outer cylinder include polymer components other than the above-described polymers (such as thermoplastic elastomers) and known additives.
  • the known additives include, for example, antioxidants, ultraviolet absorbers, light stabilizers, near infrared absorbers, plasticizers, antistatic agents, and acid scavengers described in JP-A-2016-155327. And the like. The content of these other components in the resin can be appropriately determined according to the purpose of adding the components.
  • the amount used is 100 parts by mass of the total amount of the hydrogenated cyclic olefin ring-opening polymer and the copolymer of the cyclic olefin and the chain olefin (when each is used alone). Is preferably from 0.05 to 0.5 part by mass, with any amount being 100 parts by mass.
  • the mixing method at the time of obtaining the resin containing the above-mentioned polymer and optionally other components is not particularly limited, and examples thereof include a single-screw extruder, a twin-screw extruder, a Banbury mixer, a kneader, and a feeder ruder. Can be performed using a known melt kneader. After mixing, the mixture can be extruded into a rod shape and cut into an appropriate length with a strand cutter to form a pellet according to a conventional method.
  • the method of molding the resin containing the above-described components to obtain the outer cylinder is not particularly limited, and for example, using the method described in the section of “Method for Manufacturing Prefilled Syringe”, including a nozzle portion at the distal end portion
  • the outer cylinder can be formed.
  • the outer cylinder obtained as described above preferably has a formulation contact area having a water contact angle of 90 ° or more on the inner wall surface.
  • the water contact angle of the preparation contact region is 90 ° or more, the aggregation of proteins in the protein solution preparation can be further suppressed when the prefilled syringe provided with the outer cylinder is stored for a long time.
  • the water contact angle of the preparation contact region is more preferably 91 ° or more, further preferably 92 ° or more, and 93 ° or more. It is particularly preferable that the above is satisfied.
  • the upper limit of the water contact angle in the preparation contact region is not particularly limited, but is usually 110 ° or less.
  • the water contact angle in the formulation contact region can be adjusted by changing the type of polymer and additives contained in the resin used to form the outer cylinder and the method of manufacturing the outer cylinder. For example, by using a hydrophobic polymer (having no hydrophilic group or the like) as a polymer or an additive, the value of the water contact angle in the preparation contact region can be improved. Further, for example, prior to the molding of the resin, the value of the water contact angle in the preparation contact area can be improved by performing the predrying described in the section of “Method of Manufacturing Prefilled Syringe” described below.
  • the sealing member provided in the prefilled syringe of the present invention is not particularly limited as long as it can prevent leakage of the protein solution preparation from the distal end portion of the outer cylinder, and a known one such as a cap or an injection needle can be used.
  • the prefilled syringe 1 of FIG. 1 includes a cap that fits with the nozzle 12 of the outer cylinder 10 as the sealing member 20.
  • the material for forming the sealing member is not particularly limited.
  • a known resin described in Utility Model Registration No. 3150720 can be used.
  • the gasket provided in the prefilled syringe of the present invention is not particularly limited as long as it can seal the protein solution preparation in the outer cylinder.
  • the gasket preferably has at least an outer peripheral portion made of an elastic material.
  • the gasket has, for example, a core (not shown) made of a rigid material. A configuration in which a rigid material is arranged so as to cover the surface.
  • the material for forming the gasket is not particularly limited. For example, elastic rubber and synthetic resin described in Japanese Patent No. 5444835 can be used.
  • the pusher included in the prefilled syringe of the present invention is a member that is connected to the above-described gasket and can move the gasket in the above-described outer cylinder in the longitudinal direction.
  • the presser 40 includes a finger contact portion 41 at an end opposite to the gasket 30, and the presser 40 is pressed by pressing the finger contact portion 41 with a finger or the like. Move operation. Since the gasket 30 also moves in conjunction with the movement of the pusher 40, the protein solution preparation 50 can be discharged from the nozzle 12 of the outer cylinder 10 to the outside.
  • the material for forming the pusher is not particularly limited, and for example, a resin described in Japanese Patent No. 5444835 can be used.
  • the above-mentioned prefilled syringe of the present invention can be suitably manufactured by the manufacturing method of the prefilled syringe of the present invention, for example.
  • the method for manufacturing a prefilled syringe of the present invention includes an outer cylinder having a nozzle portion at a distal end portion, a sealing member for sealing the nozzle portion, a gasket slidably housed in the outer cylinder, and a gasket. And a pusher for moving the gasket in the longitudinal direction of the outer cylinder to produce a prefilled syringe in which a protein solution preparation is filled inside a syringe.
  • the method for producing a prefilled syringe of the present invention includes at least a step of filling a protein solution preparation into an outer cylinder to obtain a prefilled syringe filled with the protein solution preparation (filling step).
  • the outer cylinder is a molded article of a resin containing a hydrogenated cyclic olefin ring-opening polymer and / or a copolymer of a cyclic olefin and a chain olefin, and a part of the inner wall surface of the outer cylinder (formulation)
  • a space defined by the contact area), the sealing member, and the gasket is filled with a protein solution preparation having a nonionic surfactant concentration of more than 0 mg / mL and less than 0.05 mg / mL.
  • the prefilled syringe obtained by filling the outer cylinder made of resin by the above-described filling step is the same as the reason described above in the section of ⁇ Prefilled syringe '', even when stored for a long time, the protein solution formulation Can suppress the aggregation of proteins, and can reduce the amount of generation of degradation products of nonionic surfactants.
  • nozzle part In the following description, “nozzle part”, “outer cylinder”, “hydrogenated cyclic olefin ring-opening polymer”, “copolymer of cyclic olefin and chain olefin”, “resin”, “sealing member” , “Gasket”, “presser”, “protein solution preparation” and the like are the same as those described above in the section of “Prefilled syringe”.
  • Specific examples and preferred examples of the “sealing member”, “gasket”, “presser”, and “protein solution preparation” are the “nozzle part”, “outer cylinder”, “annular” in the above-described prefilled syringe of the present invention.
  • a protein solution formulation is injected into an outer cylinder, and a protein having a nonionic surfactant concentration within a predetermined range is in a space defined by a formulation contact region on the inner wall surface of the outer cylinder, a sealing member, and a gasket.
  • the method for filling the solution preparation is not particularly limited, and includes a known method, for example, a method described in JP-A-2012-29918.
  • the filling step is preferably performed under sterilization.
  • the method for producing a prefilled syringe of the present invention can optionally include a step other than the above-described filling step (another step).
  • a step other than the above-described filling step another step.
  • the manufacturing method of the prefilled syringe of the present invention prior to the filling step described above, a step of pre-drying the resin as a molding material (pre-drying step), and forming the resin after pre-drying, It is preferable to include a step of forming the outer cylinder (forming step).
  • Preliminary drying step By drying the resin used to form the outer cylinder prior to molding, the water contact angle on the outer cylinder surface (particularly, the formulation contact area on the inner wall surface) is improved, and the aggregation of proteins in the protein solution formulation is reduced. It can be further suppressed.
  • the reason why the water contact angle on the outer cylinder surface obtained after molding can be improved by drying the resin before molding is not clear, but the oxygen concentration in the resin can be reduced by drying. Therefore, it is speculated that the surface of the outer cylinder is prevented from being oxidized by the heat at the time of molding and becoming hydrophilic.
  • the shape of the resin at the time of preliminary drying is not particularly limited, and may be any shape such as a sheet shape and a pellet shape. However, from the viewpoint of drying efficiency and ease of molding, the shape of the resin is preferably a pellet shape. Is preferred.
  • the oxygen concentration in the resin after preliminary drying is preferably 10 ppm by mass or less, more preferably 5 ppm by mass or less, and even more preferably 4 ppm by mass or less. If the oxygen concentration in the resin after the preliminary drying is 10 mass ppm or less, the value of the water contact angle of the formulation contact region of the outer cylinder formed from the resin can be improved, and the prefilled syringe provided with the outer cylinder In the above, aggregation of the protein in the protein solution preparation can be further suppressed.
  • the preliminary drying be performed in an inert gas atmosphere.
  • an inert gas atmosphere By performing the pre-drying under an inert gas atmosphere, it is possible to prevent the oxidation of the resin by external oxygen while efficiently removing oxygen from the resin, and as a result, in a prefilled syringe having an outer cylinder obtained.
  • aggregation of proteins in a protein solution preparation can be further suppressed.
  • the inert gas helium, argon, nitrogen, neon, krypton, and a mixture thereof can be used.
  • the drying temperature is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, even more preferably 100 ° C. or higher, and preferably 120 ° C. or lower. , 110 ° C. or lower.
  • the drying temperature of the predrying is 80 ° C. or higher, oxygen in the resin can be efficiently removed, and as a result, in the prefilled syringe having the obtained outer cylinder, aggregation of the protein in the protein solution preparation is further reduced. Can be suppressed.
  • the drying temperature of the preliminary drying is 120 ° C. or lower, it is possible to prevent the resin from being cured prior to molding.
  • the drying time is preferably 1 hour or more, more preferably 2 hours or more, still more preferably 4 hours or more, and preferably 24 hours or less, and 12 hours. It is more preferred that: If the drying time of the predrying is 1 hour or more, oxygen in the resin can be efficiently removed, and as a result, in the prefilled syringe having the obtained outer cylinder, aggregation of the protein in the protein solution preparation is further reduced. Can be suppressed. On the other hand, if the drying time of the preliminary drying is 24 hours or less, it is possible to prevent the resin from being oxidized and deteriorated prior to molding.
  • the method of molding the above-mentioned resin after pre-drying into an outer cylinder having a desired shape is not particularly limited, and known molding methods such as an injection molding method, an injection blow molding method (a cold parison method), and a thermoforming method are exemplified. Can be Among these, the injection molding method is preferable because the target outer cylinder can be efficiently manufactured.
  • a resin is put into a hopper of an injection molding machine, plasticized by heating in a cylinder, and then molten resin (plasticized resin). Is injected into the mold from the injection port. Then, the outer cylinder is formed by cooling and solidifying the molten resin in the mold.
  • the cylinder temperature at the time of plasticizing the resin is preferably 200 ° C. or more and 400 ° C. or less, more preferably 200 ° C. or more and 350 ° C. or less, and further preferably 250 ° C. or more and 310 ° C. or less. preferable.
  • the cylinder temperature is 200 ° C. or higher, the fluidity of the molten resin is ensured, and there is no sink or distortion in the outer cylinder.
  • the cylinder temperature is 400 ° C. or less, occurrence of silver streaks due to thermal decomposition of the molding material and yellowing of the outer cylinder can be suppressed.
  • injection speed at the time of injecting the molten resin from the cylinder into the mold is preferably 1 cm 3 / sec or more 1,000 cm 3 / sec or less. When the injection speed is in this range, it becomes easy to obtain an outer cylinder having an excellent appearance.
  • the injection pressure when injecting the molten resin from the cylinder to the mold is not particularly limited, and may be appropriately set in consideration of the type of the mold, the fluidity of the molten resin, and the like, but is usually 30 MPa or more. It is 250 MPa or less.
  • the mold temperature is usually lower than the glass transition temperature (Tg) of the polymer (hydrogenated cyclic olefin ring-opening polymer and / or copolymer of cyclic olefin and chain olefin) in the resin.
  • Tg glass transition temperature
  • the temperature is preferably 5 ° C. to 50 ° C. lower than Tg, more preferably 5 ° C. to 30 ° C. lower than Tg. When the mold temperature is within this range, an outer cylinder with less distortion can be easily obtained.
  • the method for producing a prefilled syringe of the present invention includes, in addition to the above-described preliminary drying step and molding step, other steps, for example, a step of sterilizing an outer cylinder, a gasket, and a sealing member before a filling step. You can also.
  • ⁇ Water contact angle> The outer cylinder is cut with a nipper to cut out the preparation contact area, and a curve fitting method is used for any 10 points in the preparation contact area using a cooperating contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., product name “Drop Master 300”). The static contact angles were measured, and the average value was defined as the water contact angle in the formulation contact area.
  • ⁇ Concentration of nonionic surfactant after storage> The prefilled syringe was allowed to stand at 4 ° C. for one week in the dark. After one week of standing, the protein solution preparation in the prefilled syringe was recovered by applying pressure to a pusher connected to a gasket and extruding it from a nozzle.
  • concentration (concentration after storage) of the nonionic surfactant in the protein solution preparation after long-term storage was calculated by the following formula.
  • Concentration after storage (mg / mL) concentration of nonionic surfactant before long-term storage (mg / mL, initial concentration) x (A1 / A0)
  • A0 and A1 are nonionic surfactants obtained by analyzing the protein solution preparations before and after long-term storage by high performance liquid chromatography (HPLC), respectively, and obtaining the data. Is the area intensity of the peak attributed to The conditions for performing this HPLC are as follows.
  • the protein solution preparation in the prefilled syringe was recovered by applying pressure to a pusher connected to a gasket and extruding it from a nozzle. Then, the protein solution preparation after long-term storage is analyzed by HPLC under the same conditions as the “concentration of nonionic surfactant after storage” to confirm the presence or absence of a peak attributed to a decomposition product. When it was confirmed, the generation of decomposition products after storage was determined to be “present”, and when this peak was not confirmed, the generation of decomposition products after storage was determined to be “absent” (the amount of generation was below the detection limit). ⁇ Inhibition of protein aggregation> The prefilled syringe was allowed to stand at 4 ° C.
  • the protein solution preparation in the prefilled syringe was recovered by applying pressure to a pusher connected to a gasket and extruding it from a nozzle.
  • the number of aggregates having a particle diameter of 1 ⁇ m or more contained in the recovered protein solution preparation was visually counted using FlowCam8100 (Fluid Imaging Technologies, Scarborough, ME).
  • the sample volume was 0.15 mL, and analysis was performed at a flow rate of 0.05 mL / min.
  • Visual Spreadsheet software (Fluid Imaging Technologies) was used. The same operation was performed four times in total.
  • the number of aggregates per unit volume (units / mL) was calculated for each run, and the average value thereof was taken as the aggregate concentration (units / mL) after storage. It can be said that the smaller the value of the aggregate concentration after storage is, the more the aggregation of the protein in the protein solution preparation is suppressed when the prefilled syringe is stored for a long time.
  • Example 1 Preparation of protein solution preparation>
  • the purified Humira (adalimumab) was adjusted to a concentration of 0.1 mg / mL using phosphate buffered saline (pH: 7.0, NaCl: 200 mM, phosphoric acid: 100 mM), and non-ionic.
  • Polysorbate 80 as a surfactant was added to a concentration of 0.01 mg / mL to obtain a protein solution preparation.
  • the hydride was extruded in a molten state from an extruder into a strand, cooled, and pelletized to obtain pellets.
  • Mw of the pelletized cyclic olefin ring-opening polymer hydrogenated product (hydride A) is 33,000, molecular weight distribution (Mw / Mn) is 2.4, hydrogenation rate is 99.8%, and Tg is 136. ° C.
  • Example 2 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 1, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 0.04 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 1 shows the results.
  • Example 3 Except for using a copolymer of cyclic olefin and chain olefin (copolymer B) prepared as described below in place of hydrogenated cyclic olefin ring-opening polymer (hydride A) when producing the outer cylinder.
  • copolymer B a copolymer of cyclic olefin and chain olefin
  • hydrolymer A hydrogenated cyclic olefin ring-opening polymer
  • the polymer liquid phase purified and separated was brought into contact with a three-fold amount of acetone under vigorous stirring to precipitate a copolymer, and then a solid part (copolymer) was collected by filtration and sufficiently washed with acetone. . Further, in order to extract unreacted monomer, this solid portion was charged into acetone so as to be 40 kg / m 3, and then an extraction operation was performed at 60 ° C. for 2 hours. After the extraction treatment, the solid portion was collected by filtration, and dried at 130 ° C. and 350 mmHg for 12 hours under a nitrogen stream to obtain an ethylene / norbornene copolymer (copolymer B).
  • the ethylene / norbornene copolymer (copolymer B) was pelletized in the same manner as in the hydride A of Production Example 1.
  • the pelletized ethylene / norbornene copolymer (copolymer B) had a weight average molecular weight (Mw) of 96,000, a molecular weight distribution (Mw / Mn) of 2.4, and a Tg of 138 ° C.
  • Example 4 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 3, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 0.04 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 1 shows the results.
  • Example 5 A protein solution preparation was prepared in the same manner as in Example 1 except that predrying was not performed when preparing the outer cylinder, and an outer cylinder and a prefilled syringe were prepared and various evaluations were performed. Table 1 shows the results.
  • Example 6 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 5, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 0.04 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 1 shows the results.
  • Example 7 A protein solution preparation was prepared in the same manner as in Example 3, except that the pre-drying was not performed, and an outer cylinder and a prefilled syringe were prepared, and various evaluations were made. Table 1 shows the results.
  • Example 8 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 7, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 0.04 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 1 shows the results.
  • Example 9 An outer cylinder and a prefilled syringe were prepared and various evaluations were performed in the same manner as in Example 1 except that the protein solution preparation prepared as described below was used. Table 1 shows the results.
  • ⁇ Preparation of protein solution preparation> The purified remicade (infliximab) was adjusted to a concentration of 0.1 mg / mL using phosphate-buffered saline (pH: 7.0, NaCl: 200 mM, phosphoric acid: 100 mM), and non-ionic. Polysorbate 80 as a surfactant was added to a concentration of 0.01 mg / mL to obtain a protein solution preparation.
  • Example 10 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 9, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 0.04 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 1 shows the results.
  • Example 11 In preparing the outer cylinder, a cyclic olefin / chain olefin copolymer (copolymer B) prepared in the same manner as in Example 3 was used instead of the cyclic olefin ring-opening polymer hydrogenated product (hydride A). A protein solution preparation was prepared, an outer cylinder and a prefilled syringe were prepared, and various evaluations were performed in the same manner as in Example 9 except for using the same. Table 2 shows the results.
  • Example 12 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 11, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 0.04 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 2 shows the results.
  • Example 13 A protein solution preparation was prepared in the same manner as in Example 11, except that predrying was not performed when preparing the outer cylinder, and an outer cylinder and a prefilled syringe were prepared and various evaluations were performed. Table 2 shows the results.
  • Example 14 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 13, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 0.04 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 2 shows the results.
  • Example 15 A protein solution preparation was prepared in the same manner as in Example 11, except that predrying was not performed when preparing the outer cylinder, and an outer cylinder and a prefilled syringe were prepared and various evaluations were performed. Table 2 shows the results.
  • Example 16 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 15, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 0.04 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 2 shows the results.
  • Example 17 An outer cylinder and a prefilled syringe were prepared and various evaluations were performed in the same manner as in Example 1 except that the protein solution preparation prepared as described below was used. Table 2 shows the results.
  • Example 18 An outer cylinder and a prefilled syringe were prepared and various evaluations were performed in the same manner as in Example 1 except that the protein solution preparation prepared as described below was used. Table 2 shows the results.
  • ⁇ Preparation of protein solution preparation> The purified Humira (adalimumab) was adjusted to a concentration of 0.1 mg / mL using phosphate buffered saline (pH: 7.0, NaCl: 20 mM, phosphoric acid: 100 mM), and the concentration of nonionic was adjusted. Polysorbate 80 as a surfactant was added to a concentration of 0.01 mg / mL to obtain a protein solution preparation.
  • Example 19 An outer cylinder and a prefilled syringe were prepared and various evaluations were performed in the same manner as in Example 1 except that the protein solution preparation prepared as described below was used. Table 2 shows the results.
  • ⁇ Preparation of protein solution preparation> Purified Humira (adalimumab) was added to an acetate buffer (pH: 4.0, acetic acid: 100 mM) by adding NaCl to a concentration of 0.1 mg / mL using a solution adjusted to 200 mM (NaCl concentration). , And polysorbate 80 as a nonionic surfactant was added to a concentration of 0.01 mg / mL to obtain a protein solution preparation.
  • Example 20 An outer cylinder and a prefilled syringe were prepared and various evaluations were performed in the same manner as in Example 1 except that the protein solution preparation prepared as described below was used. Table 2 shows the results.
  • a purified Humira (adalimumab) was prepared by adding NaCl to an acetate buffer (pH: 5.0, acetic acid: 100 mM) and adjusting the concentration to 200 mM (NaCl concentration) at a concentration of 0.1 mg / mL.
  • polysorbate 80 as a nonionic surfactant was added to a concentration of 0.01 mg / mL to obtain a protein solution preparation.
  • Example 21 An outer cylinder and a prefilled syringe were prepared and various evaluations were performed in the same manner as in Example 1 except that the protein solution preparation prepared as described below was used. Table 2 shows the results.
  • Example 22 When producing the outer cylinder, a cyclic olefin ring-opening polymer hydrogenated product (hydride C) prepared as described below was used instead of the cyclic olefin ring-opening polymer hydrogenated product (hydride A). In the same manner as in Example 1, a protein solution preparation was prepared, an outer cylinder and a prefilled syringe were prepared, and various evaluations were made. Table 2 shows the results.
  • Diatomaceous earth was spread over the wire mesh of a filter equipped with a stainless steel wire mesh as a filter aid, and the hydrogenation reaction solution was filtered to remove the catalyst.
  • the filtered reaction solution was poured into 3000 parts of isopropyl alcohol with stirring to precipitate a hydrogenated product, which was collected by filtration. Further, the obtained hydrogenated product was washed with 500 parts of acetone, and then dried for 48 hours in a reduced pressure drier set at 100 ° C. or lower at 1 torr or less, and a cyclic olefin ring-opened polymer hydrogenated product (hydride C) 190 Got a part.
  • the hydrogenated cyclic olefin ring-opening polymer (hydride C) was pelletized in the same manner as the hydride A of Production Example 1.
  • Example 23 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 22 except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 0.04 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 2 shows the results.
  • Example 24 In obtaining resin pellets, 0.1 part of an aromatic vinyl / conjugated diene block copolymer (Tufftec (registered trademark) H1043, manufactured by Asahi Kasei Chemicals Corporation) and an aromatic vinyl / conjugated diene block are used as stabilizers (thermoplastic elastomer).
  • a protein solution preparation was prepared in the same manner as in Example 1, except that 0.1 part of a polymer (Tuftec (registered trademark) H1051 manufactured by Asahi Kasei Chemicals Corporation) was additionally added, and an outer cylinder and a prefilled syringe were prepared. And various evaluations. The results are shown in Table 2.
  • Example 1 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 1, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 0.50 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 3 shows the results.
  • Example 2 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 1, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 1.00 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 3 shows the results.
  • Example 3 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 3, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 0.50 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 3 shows the results.
  • Example 4 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 3, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 1.00 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 3 shows the results.
  • Example 5 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 5, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 0.50 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 3 shows the results.
  • Example 6 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 5, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 1.00 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 3 shows the results.
  • Example 7 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 7, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 0.50 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 3 shows the results.
  • Example 8 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 7, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 1.00 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 3 shows the results.
  • Example 9 A protein solution preparation was prepared, a prefilled syringe was prepared, and various evaluations were performed in the same manner as in Example 1 except that a glass outer cylinder was used as the outer cylinder. Table 3 shows the results.
  • Example 10 A protein solution preparation was prepared in the same manner as in Example 2 except that a glass outer cylinder was used as the outer cylinder, a prefilled syringe was prepared, and various evaluations were performed. Table 3 shows the results.
  • Comparative Example 11 A protein solution preparation was prepared, a prefilled syringe was prepared, and various evaluations were performed in the same manner as in Comparative Example 1 except that a glass outer cylinder was used as the outer cylinder. Table 3 shows the results.
  • Comparative Example 12 A protein solution preparation was prepared in the same manner as in Comparative Example 2 except that a glass outer cylinder was used as the outer cylinder, a prefilled syringe was prepared, and various evaluations were performed. Table 3 shows the results.
  • Example 13 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 9, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 0.50 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 4 shows the results.
  • Example 14 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 9, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 1.00 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 4 shows the results.
  • Example 15 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 11, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 0.50 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 4 shows the results.
  • Example 16 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 11, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 1.00 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 4 shows the results.
  • Example 17 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 13, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 0.50 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 4 shows the results.
  • Example 18 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 13, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 1.00 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 4 shows the results.
  • Example 19 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 15, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 0.50 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 4 shows the results.
  • Example 20 In preparing the protein solution preparation, a protein solution preparation was prepared in the same manner as in Example 15, except that polysorbate 80 as a nonionic surfactant was added so as to have a concentration of 1.00 mg / mL. In addition, an outer cylinder and a prefilled syringe were prepared and various evaluations were made. Table 4 shows the results.
  • Example 21 A protein solution preparation was prepared in the same manner as in Example 9 except that a glass outer cylinder was used as the outer cylinder, a prefilled syringe was prepared, and various evaluations were performed. Table 4 shows the results.
  • Example 22 A protein solution preparation was prepared, a prefilled syringe was prepared, and various evaluations were performed in the same manner as in Example 10, except that a glass outer cylinder was used as the outer cylinder. Table 4 shows the results.
  • Comparative Example 23 A protein solution preparation was prepared in the same manner as in Comparative Example 13 except that a glass outer cylinder was used as the outer cylinder, a prefilled syringe was prepared, and various evaluations were performed. Table 4 shows the results.
  • Comparative Example 24 A protein solution preparation was prepared in the same manner as in Comparative Example 14 except that a glass outer cylinder was used as the outer cylinder, a prefilled syringe was prepared, and various evaluations were performed. Table 4 shows the results.
  • the protein solution preparation having a nonionic surfactant concentration of more than 0 mg / mL and less than 0.05 mg / mL was prepared by adding a hydrogenated cyclic olefin ring-opening polymer and / or a cyclic olefin to a linear olefin.
  • the prefilled syringes of Examples 1 to 24 obtained by filling an outer cylinder formed of a resin containing the copolymer of Example 1 can suppress aggregation of proteins in a protein solution preparation when stored for a long period of time. Further, it can be seen that the amount of decomposition products of the nonionic surfactant can be suppressed to a low level.
  • a prefilled syringe that can reduce the amount of degradation products of a nonionic surfactant while suppressing protein aggregation in a protein solution preparation after long-term storage. Further, according to the present invention, there is provided a method for producing a prefilled syringe capable of suppressing the aggregation of a protein in a protein solution preparation after long-term storage and reducing the amount of degradation products of a nonionic surfactant. be able to.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Vascular Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Medicinal Preparation (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本発明は、長期保存後のタンパク質溶液製剤中におけるタンパク質の凝集を抑制しつつ、非イオン性界面活性剤の分解産物の生成量を低減しうるプレフィルドシリンジの提供を目的とする。本発明のプレフィルドシリンジは、環状オレフィン開環重合体水素添加物および/または環状オレフィンと鎖状オレフィンの共重合体を含む樹脂からなる外筒と、外筒のノズル部を封止する封止部材と、外筒内に収納されたガスケットと、ガスケットを移動操作する押し子とを備え、外筒の内壁面の一部の領域と、封止部材と、ガスケットで画定される空間にタンパク質溶液製剤を含み、上述したタンパク質溶液製剤中における非イオン性界面活性剤の濃度が0mg/mL超0.05mg/mL未満である。

Description

プレフィルドシリンジおよびプレフィルドシリンジの製造方法
 本発明は、プレフィルドシリンジおよびプレフィルドシリンジの製造方法に関するものである。
 近年、使用時の簡便性に優れかつ注射液の取り違えなどの医療事故を防止できるという点から、予め注射液をシリンジに充填したプレフィルドシリンジの使用が拡大している。
 ここで、プレフィルドシリンジに充填される注射液としては、例えば、水溶液中にタンパク質を含有してなる製剤(タンパク質溶液製剤)が用いられている。そして、このようなタンパク質溶液製剤が充填されたプレフィルドシリンジにおいては、長期保存した際にタンパク質が凝集してしまうという問題があった。
 このような問題に対し、例えば、特許文献1では、タンパク質としてエリスロポエチンを含むタンパク質溶液製剤中のタンパク質濃度を所定範囲内にしつつ、当該製剤中に非イオン性界面活性剤および等張剤を含有させ、且つ、当該製剤を充填する容器として、当該製剤と直接接触する部分の材質が、1)環状オレフィンとオレフィンの共重合体であるシクロオレフィンコポリマー、2)シクロオレフィン類開環重合体、3)シクロオレフィン類開環重合体に水素添加したもの、から選択される疎水性樹脂である容器を用いる手法が提案されている。そして、特許文献1では、非イオン性界面活性剤として、例えばポリソルベート80とポリソルベート20が用いられている。この非イオン性界面活性剤は、タンパク質であるエリスロポエチンの安定化剤として機能しうる。
特許第6076226号
 しかしながら、ポリソルベート80やポリソルベート20などの非イオン性界面活性剤は、プレフィルドシリンジを長期保存すると、タンパク質溶液製剤中で分解し、分解産物が生成することがあった。このような分解産物は、人体に投与した場合に、過敏症や染色体異常などの問題を引き起こす虞、発がん性があるといったデメリットがある。
 即ち、上記従来のプレフィルドシリンジには、長期保存した際に、タンパク質溶液製剤中のタンパク質の凝集を抑制する一方で、非イオン性界面活性剤の分解産物生成を抑えるという点において、更なる改善の余地があった。
 従って、本発明は、長期保存後のタンパク質溶液製剤中におけるタンパク質の凝集を抑制しつつ、非イオン性界面活性剤の分解産物の生成量を低減しうるプレフィルドシリンジを提供することを目的とする。
 また、本発明は、長期保存後のタンパク質溶液製剤中におけるタンパク質の凝集を抑制しつつ、非イオン性界面活性剤の分解産物の生成量を低減しうるプレフィルドシリンジを製造する方法を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、非イオン界面活性剤の濃度が所定の範囲内であるタンパク質溶液製剤を、所定の樹脂を用いて形成される外筒を備えるシリンジに充填してプレフィルドシリンジを作製すれば、当該プレフィルドシリンジを長期保存した場合であっても、タンパク質溶液製剤中のタンパク質の凝集を抑制することができ、更には非イオン性界面活性剤の分解産物の生成量を低減しうることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のプレフィルドシリンジは、先端部にノズル部を備える外筒と、前記ノズル部を封止する封止部材と、前記外筒内に摺動可能に収納されたガスケットと、前記ガスケットに連結され、前記ガスケットを前記外筒の長手方向に移動操作する押し子と、前記外筒の内壁面の一部の領域と、前記キャップと、前記ガスケットで画定される空間に充填されたタンパク質溶液製剤を備えるプレフィルドシリンジであって、前記外筒は、環状オレフィン開環重合体水素添加物と、環状オレフィンと鎖状オレフィンの共重合体の少なくとも一方を含む樹脂からなり、そして、前記タンパク質溶液製剤中における非イオン性界面活性剤の濃度が0mg/mL超0.05mg/mL未満である、ことを特徴とする。このように、非イオン界面活性剤の濃度が0mg/mL超0.05mg/mL未満であるタンパク質溶液製剤を、環状オレフィン開環重合体水素添加物および/または環状オレフィンと鎖状オレフィンの共重合体を含む樹脂から形成される外筒を備えるシリンジに充填してなるプレフィルドシリンジは、長期保存した場合であっても、タンパク質溶液製剤中のタンパク質の凝集を抑制され、また非イオン性界面活性剤の分解産物の生成量が低い。
 ここで、本発明のプレフィルドシリンジは、前記内壁面の前記一部の領域の水接触角が90°以上であることが好ましい。タンパク質溶液製剤と接する内壁面の一部の領域(以下、「製剤接触領域」と称する場合がある。)の水接触角が90°以上である外筒を備えるプレフィルドシリンジは、長期保存した場合に、タンパク質溶液製剤中のタンパク質の凝集を更に抑制することができる。
 なお、本発明において、製剤接触領域の「水接触角」は、本明細書の実施例に記載の方法を用いて測定することができる。
 そして、本発明のプレフィルドシリンジでは、前記タンパク質溶液製剤が、抗体とその抗原結合断片の少なくとも一方を含むことができる。
 更に、本発明のプレフィルドシリンジでは、前記抗体を、キメラ抗体、ヒト抗体、ヒト化抗体、およびこれらのドメイン抗体からなる群から選択される少なくとも1つとすることができる。
 また、本発明のプレフィルドシリンジでは、前記タンパク質溶液製剤が、オファツムマブ、セツキシマブ、トシリズマブ、ベバシズマブ、カナキヌマブ、ゴリムマブ、ウステキヌマブ、エクリズマブ、オマリズマブ、トラスツズマブ、ペルツズマブ、アダリムマブ、デノスマブ、モガムリズマブ、リツキシマブ、ラニビズマブ、インフリキシマブ、アフリベルセプト、アバタセプト、エタネルセプト、ゲムツズマブオゾガマイシン、パニツムマブ、バシリキシマブ、セルトリズマブ ペゴル、およびパリビズマブからなる群から選択される少なくとも1つを含むことができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のプレフィルドシリンジの製造方法は、先端部にノズル部を備える外筒と、前記ノズル部を封止する封止部材と、前記外筒内に摺動可能に収納されたガスケットと、前記ガスケットに連結され、前記ガスケットを前記外筒の長手方向に移動操作する押し子とを備えるシリンジ内部に、タンパク質溶液製剤が充填されたプレフィルドシリンジを製造する方法であって、環状オレフィン開環重合体水素添加物と、環状オレフィンと鎖状オレフィンの共重合体の少なくとも一方を含む樹脂からなる外筒に、非イオン性界面活性剤の濃度が0mg/mL超0.05mg/mL未満であるタンパク質溶液製剤を注入して、前記外筒の内壁面の一部の領域と、前記キャップと、前記ガスケットで画定される空間に前記タンパク質溶液製剤が充填されたプレフィルドシリンジを得る工程、を備える、ことを特徴とする。このように、非イオン界面活性剤の濃度が0mg/mL超0.05mg/mL未満であるタンパク質溶液製剤を、環状オレフィン開環重合体水素添加物および/または環状オレフィンと鎖状オレフィンの共重合体を含む樹脂から形成される外筒を備えるシリンジに充填すれば、得られるプレフィルドシリンジを長期保存した場合に、タンパク質溶液製剤中のタンパク質の凝集を抑制することができ、また非イオン性界面活性剤の分解産物の生成量を低減することができる。
 ここで、本発明のプレフィルドシリンジの製造方法は、前記内壁面の前記一部の領域の水接触角が90°以上であることが好ましい。製剤接触領域の水接触角が90°以上である外筒を用いれば、得られるプレフィルドシリンジを長期保存した場合に、タンパク質溶液製剤中のタンパク質の凝集を更に抑制することができる。
 そして、本発明のプレフィルドシリンジの製造方法は、前記プレフィルドシリンジを得る工程に先んじて、更に、前記樹脂を予備乾燥する工程と、前記予備乾燥後の樹脂を成形して、前記外筒を得る工程を備えることが好ましい。予備乾燥した樹脂を成形して得られる外筒を用いれば、得られるプレフィルドシリンジを長期保存した場合に、タンパク質溶液製剤中のタンパク質の凝集を更に抑制することができる。
 更に、本発明のプレフィルドシリンジの製造方法は、前記予備乾燥後の前記樹脂中の酸素濃度が、10質量ppm以下であることが好ましい。予備乾燥した樹脂中の酸素濃度が10質量ppm以下であれば、得られるプレフィルドシリンジを長期保存した場合に、タンパク質溶液製剤中のタンパク質の凝集をより一層抑制することができる。
 なお、本発明において、樹脂中の「酸素濃度」は、本明細書の実施例に記載の方法を用いて測定することができる。
 また、本発明のプレフィルドシリンジの製造方法は、前記予備乾燥を、不活性ガス雰囲気下で行うことが好ましい。樹脂の予備乾燥を不活性ガス雰囲気下で行えば、得られるプレフィルドシリンジを長期保存した場合に、タンパク質溶液製剤中のタンパク質の凝集をより一層抑制することができる。
 ここで、本発明のプレフィルドシリンジの製造方法は、前記予備乾燥の乾燥温度が、80℃以上120℃以下であることが好ましい。樹脂の予備乾燥を上述した範囲内の温度で行えば、得られるプレフィルドシリンジを長期保存した場合に、タンパク質溶液製剤中のタンパク質の凝集をより一層抑制することができる。
 そして、本発明のプレフィルドシリンジの製造方法では、前記タンパク質溶液製剤が、抗体とその抗原結合断片の少なくとも一方を含むことができる。
 更に、本発明のプレフィルドシリンジの製造方法では、前記抗体を、キメラ抗体、ヒト抗体、ヒト化抗体、およびこれらのドメイン抗体からなる群から選択される少なくとも1つとすることができる。
 また、本発明のプレフィルドシリンジの製造方法では、前記タンパク質溶液製剤が、オファツムマブ、セツキシマブ、トシリズマブ、ベバシズマブ、カナキヌマブ、ゴリムマブ、ウステキヌマブ、エクリズマブ、オマリズマブ、トラスツズマブ、ペルツズマブ、アダリムマブ、デノスマブ、モガムリズマブ、リツキシマブ、ラニビズマブ、インフリキシマブ、アフリベルセプト、アバタセプト、エタネルセプト、ゲムツズマブオゾガマイシン、パニツムマブ、バシリキシマブ、セルトリズマブ ペゴル、およびパリビズマブからなる群から選択される少なくとも1つを含むことができる。
 本発明によれば、長期保存後のタンパク質溶液製剤中におけるタンパク質の凝集を抑制しつつ、非イオン性界面活性剤の分解産物の生成量を低減しうるプレフィルドシリンジを提供することができる。
 また、本発明によれば、長期保存後のタンパク質溶液製剤中におけるタンパク質の凝集を抑制しつつ、非イオン性界面活性剤の分解産物の生成量を低減しうるプレフィルドシリンジを製造する方法を提供することができる。
本発明に従うプレフィルドシリンジの一例の概略構成を示す図である。
 以下、本発明の実施の形態を詳細に説明する。
 ここで、本発明のプレフィルドシリンジは、シリンジ内部にタンパク質溶液製剤が充填されてなる。そして、本発明のプレフィルドシリンジは、例えば、本発明のプレフィルドシリンジの製造方法を用いて製造することができる。
(プレフィルドシリンジ)
 本発明のプレフィルドシリンジは、先端部にノズル部を備える外筒と、ノズル部を封止する封止部材と、外筒内に摺動可能に収納されたガスケットと、ガスケットに連結され、ガスケットを外筒の長手方向に移動操作する押し子とを備え、タンパク質溶液製剤が、外筒の内壁面の一部である製剤接触領域と、封止部材と、ガスケットで画定される空間に充填されている。
 ここで、上述した本発明のプレフィルドシリンジの構造の一例を、図を用いて説明する。図1に示されるプレフィルドシリンジ1は、外筒10と、封止部材(図1ではキャップ)20と、ガスケット30と、押し子40と、タンパク質溶液製剤50とを備える。外筒10は、先端部11にノズル部12を有しており、ノズル部12に封止部材20が嵌合している。ガスケット30は、外筒10の長手方向に、当該外筒10内を摺動可能であり、ガスケット30の摺動は、ガスケット30に連結された押し子40により行うことが可能である。また、タンパク質溶液製剤50は、外筒10の内壁面13の一部の領域である製剤接触領域14と、封止部材20と、ガスケット30と、で画定される空間に充填されている。
 そして、本発明のプレフィルドシリンジにおいては、充填されたタンパク質溶液製剤中における非イオン性界面活性剤の濃度が0mg/mL超0.05mg/mL未満であり、更には、外筒が、環状オレフィン開環重合体水素添加物および/または環状オレフィンと鎖状オレフィンの共重合体の少なくとも一方を含む樹脂を成形してなることを特徴とする。
 本発明のプレフィルドシリンジは、長期保存した場合であっても、タンパク質溶液製剤中のタンパク質の凝集が抑制され、また長期保存後における、非イオン性界面活性剤の分解産物の生成量を低く抑えることができる。このような効果が得られる理由は、以下の通りであると推察される。
 すなわち、本発明のプレフィルドシリンジには、非イオン性界面活性剤の濃度が0mg/mL超0.05mg/mL未満であるタンパク質溶液製剤が充填されている。このタンパク質溶液製剤に必須成分として含まれる非イオン性界面活性剤が、タンパク質の安定化剤として機能する。一方で、このタンパク質溶液製剤は、非イオン性界面活性剤の濃度が0.05mg/mL未満と少量であるため、非イオン性界面活性剤が分解した場合であっても、その分解産物の生成量を低く抑えることができる。
 更には、本発明のプレフィルドシリンジでは、上述したタンパク質溶液製剤が、環状オレフィン開環重合体水素添加物および/または環状オレフィンと鎖状オレフィンの共重合体の少なくとも一方を含む樹脂から成形してなる外筒に充填されている。上述した所定の樹脂の成形体である外筒は、当該樹脂の有する疎水的な性質により、製剤接触領域とタンパク質との親和性が低下して、製剤接触領域へのタンパク質の吸着が抑えられ、製剤接触領域における(即ち、外筒の内壁面上における)タンパク質の凝集を抑制することができると推察される。このような樹脂の寄与と、上述した非イオン性界面活性剤の安定化剤としての寄与が相まって、プレフィルドシリンジを長期間保存した場合であっても、タンパク質溶液製剤中のタンパク質の凝集を抑制できると考えられる。
 以下、本発明のプレフィルドシリンジに充填されるタンパク質溶液製剤、並びに本発明のプレフィルドシリンジを構成するシリンジ(外筒、封止部材、ガスケット、および押し子)について、必要に応じて図1を参照しつつ説明する。
<タンパク質溶液製剤>
 タンパク質溶液製剤は、少なくとも、タンパク質と、非イオン界面活性剤と、水とを含み、非イオン性界面活性剤の濃度が0mg/mL超0.05mg/mL以未満である。
<<タンパク質>>
 タンパク質溶液製剤に含まれるタンパク質としては、特に限定されないが、例えば、抗体(キメラ抗体、ヒト抗体、ヒト化抗体、およびこれらのドメイン抗体)、並びにその抗原結合断片が挙げられる。
 そして、より具体的なタンパク質としては、例えば、オファツムマブ(商品名「アーゼラ(登録商標)」)、セツキシマブ(商品名「アービタックス(登録商標)」)、トシリズマブ(商品名「アクテムラ(登録商標)」)、ベバシズマブ(商品名「アバスチン(登録商標)」)、カナキヌマブ(商品名「イラリス(登録商標)」)、ゴリムマブ(商品名「シンポニー(登録商標)」)、ウステキヌマブ(商品名「ステラーラ(登録商標)」)、エクリズマブ(商品名「ソリリス(登録商標)」)、オマリズマブ(商品名「ゾレア(登録商標)」)、トラスツズマブ(商品名「ハーセプチン(登録商標)」)、ペルツズマブ(商品名「パージェタ(登録商標)」)、アダリムマブ(商品名「ヒュミラ(登録商標)」)、デノスマブ(商品名「プラリア(登録商標)」、商品名「ランマーク(登録商標))、モガムリズマブ(商品名「ポテリジオ(登録商標)」)、リツキシマブ(商品名「リツキサン(登録商標)」)、ラニビズマブ(商品名「ルセンティス(登録商標)」)、インフリキシマブ(商品名「レミケード(登録商標)」)、アフリベルセプト(商品名「アイリーア(登録商標)」)、アバタセプト(商品名「オレンシア(登録商標)」)、エタネルセプト(商品名「エンブレル(登録商標)」)、ゲムツズマブオゾガマイシン(商品名「マイロターグ(登録商標)」)、パニツムマブ(商品名「ベクティビックス(登録商標)」)、バシリキシマブ(商品名「シムレクト(登録商標)」)、セルトリズマブ ペゴル(商品名「シムジア(登録商標)」)、およびパリビズマブ(商品名「シナジス(登録商標)」)が挙げられる。
 なお、タンパク質溶液製剤は、1種のタンパク質を含んでいてもよいし、2種以上のタンパク質を含んでいてもよい。すなわち、タンパク質溶液製剤は、例えば、抗体と抗原結合断片の双方を含んでいてもよいし、2種以上の抗体を含んでいてもよいし、2種以上の抗原結合断片を含んでいてもよい。
 ここで、タンパク質溶液製剤中におけるタンパク質の濃度は、0.005mg/mL以上であることが好ましく、0.01mg/mL以上であることがより好ましく、0.05mg/mL以上であることが更に好ましく、500mg/mL以下であることが好ましく、300mg/mL以下であることがより好ましく、200mg/mL以下であることが更に好ましい。タンパク質溶液製剤中におけるタンパク質の濃度が0.005mg/mL以上であれば、タンパク質溶液製剤を人体などに投与した際に当該タンパク質の所期の効果を十分に得ることができ、500mg/mL以下であれば、プレフィルドシリンジを長期保存した際に、タンパク質溶液製剤中におけるタンパク質の凝集を更に抑制することができる。
<<非イオン性界面活性剤>>
 非イオン性界面活性剤は、上述したタンパク質を安定化させる、安定化剤として機能しうる成分である。このような非イオン性界面活性剤は、特に限定されないが、例えば、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル(オレイン酸ポリオキシエチレンソルビタン(ポリソルベート80)およびモノラウリン酸ポリオキシエチレンソルビタン(ポリソルベート20)など)、ポリオキシエチレンソルビット脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレンミツロウ誘導体、ポリオキシエチレンラノリン誘導体、ポリオキシエチレン脂肪酸アミドが挙げられる。
 なお、非イオン性界面活性剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 ここで、タンパク質溶液製剤中の非イオン性界面活性剤の濃度は、0mg/mL超0.05mg/mL未満であることが必要であり、0.005mg/mL以上であることが好ましく、0.01mg/mL以上であることがより好ましく、0.045mg/mL以下であることが好ましく、0.04mg/mL以下であることがより好ましい。タンパク質溶液製剤中の非イオン性界面活性剤の濃度が0mg/mLである(即ち、タンパク質溶液製剤が非イオン性界面活性剤を含まない)と、プレフィルドシリンジを長期保存した際に、タンパク質溶液製剤中におけるタンパク質の凝集を抑制することができない。一方、タンパク質溶液製剤中の非イオン性界面活性剤の濃度が0.05mg/mL以上であると、プレフィルドシリンジを長期保存した際に、非イオン性界面活性剤の分解産物の生成量を低く抑えることができない。
 なお、このような分解産物としては、例えば、非イオン性界面活性剤がポリオキシエチレン鎖を有する非イオン性界面活性剤(ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレンミツロウ誘導体、ポリオキシエチレンラノリン誘導体、ポリオキシエチレン脂肪酸アミドなど)である場合は、長期保存の際に、ポリオキシエチレン鎖末端が自己酸化により切断されて生成する分解産物が挙げられる。
<<その他の成分>>
 ここで、タンパク質溶液製剤は、タンパク質と、水と、非イオン性界面活性剤以外の成分(その他の成分)を含んでいてもよい。タンパク質溶液製剤に任意に含まれるその他の成分としては、タンパク質溶液製剤の調製に用いられる既知の成分が挙げられる。このような既知の成分としては、例えば、安定化剤(上述した非イオン性界面活性剤を除く)、希釈剤、溶解補助剤、等張化剤、賦形剤、pH調整剤、無痛化剤、緩衝剤、含硫還元剤、酸化防止剤などが挙げられる。さらに、その他の成分としては、塩化ナトリウム、塩化カリウム、塩化カルシウム、リン酸ナトリウム、リン酸カリウム、炭酸水素ナトリウムなどの無機塩;クエン酸ナトリウム、クエン酸カリウム、酢酸ナトリウムなどの有機塩なども挙げられる。なお、タンパク質溶液製剤中の無機塩の濃度は、300mM以下が好ましい。また、タンパク質溶液製剤中の有機塩の濃度は、300mM以下が好ましい。
<<調製方法>>
 タンパク質溶液製剤の調製方法は、少なくともタンパク質が溶解し、非イオン性界面活性剤の濃度が所定の範囲内のタンパク質溶液製剤を得ることができれば特に限定されない。例えば、タンパク質および必要に応じて用いられる界面活性剤を、酢酸緩衝液、リン酸緩衝液、およびクエン酸緩衝液などの水性緩衝液に溶解させることで得ることができる。
 そして、得られるタンパク質溶液製剤のpHは、特に限定されないが、3.0以上8.0以下とすることができる。
<外筒>
 本発明のプレフィルドシリンジが備える外筒は、先端部にノズル部を備えると共に、内部にタンパク質溶液製剤およびガスケットを収納可能な部材である。例えば、図1のプレフィルドシリンジ1において、外筒10は、外筒本体部15と、外筒本体部15の先端側(先端部11)に設けられたノズル部12と、外筒本体部15の後端側に設けられたフランジ16とを備える。
 外筒本体部15は、ガスケット30を液密かつ摺動可能に収納する筒状の部分である。
 ノズル部12は、外筒本体部15より小径の筒状部となっている。また、ノズル部12は、先端に外筒10内のタンパク質溶液製剤50を排出するための開口を備える。
 そして、外筒10は、外筒本体部15とノズル部12において、内壁面13の一部である製剤接触領域14でタンパク質溶液製剤50と接している。
 ここで、外筒は、環状オレフィン開環重合体水素添加物と、環状オレフィンと鎖状オレフィンの共重合体の少なくとも一方を含む樹脂の成形体である。なお、外筒の形成に用いる樹脂は、上述した環状オレフィン開環重合体水素添加物と、環状オレフィンと鎖状オレフィンの共重合体以外の成分(その他の成分)を含んでいてもよい。
<<環状オレフィン開環重合体水素添加物>>
 環状オレフィン開環重合体水素添加物は、単量体としての環状オレフィンを開環重合して得られる環状オレフィン開環重合体を更に水素添加反応に供することで得られる重合体である。
[環状オレフィン開環重合体]
 ここで、環状オレフィン開環重合体の調製に用いる、単量体である環状オレフィンとしては、炭素原子で形成される環状構造を有し、かつ該環状構造中に重合性の炭素-炭素二重結合を有する化合物を用いることができる。具体的に、単量体である環状オレフィンとしては、ノルボルネン系単量体(ノルボルネン環を含む単量体)や、単環の環状オレフィン単量体が挙げられる。なお、ノルボルネン系単量体に含まれる「ノルボルネン環」は、その環構造を構成する炭素-炭素単結合の間に一又は複数の炭素原子が介在していてもよく、また、これらの介在した炭素原子同士が更に単結合を形成した結果、ノルボルネン環内に新たな環構造を形成していてもよい。
 ノルボルネン系単量体としては、例えば、
 ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)およびその誘導体(環に置換基を有するもの。以下同じ)、5-エチリデン-ビシクロ[2.2.1]ヘプト-2-エン(慣用名:エチリデンノルボルネン)およびその誘導体等の2環式単量体;
 トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)およびその誘導体等の3環式単量体;
 7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレンおよびその誘導体、テトラシクロ[7.4.0.02,7.110,13]トリデカ-2,4,6,11-テトラエンともいう)およびその誘導体、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)およびその誘導体(例えば、8-メチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン)、8-エチリデンテトラシクロ[4.4.0.12,5.17,10]-3-ドデセンおよびその誘導体等の4環式単量体;
 が挙げられる。
 ここで、上述した誘導体が有する置換基としては、例えば、メチル基、エチル基等のアルキル基;ビニル基等のアルケニル基;エチリデン基、プロパン-2-イリデン基等のアルキリデン基;フェニル基等のアリール基;ヒドロキシ基;酸無水物基;カルボキシル基;メトキシカルボニル基等のアルコキシカルボニル基;が挙げられる。
 また、単環の環状オレフィン単量体としては、シクロブテン、シクロペンテン、メチルシクロペンテン、シクロヘキセン、メチルシクロヘキセン、シクロヘプテン、シクロオクテン等の環状モノオレフィン;シクロヘキサジエン、メチルシクロヘキサジエン、シクロオクタジエン、メチルシクロオクタジエン、フェニルシクロオクタジエン等の環状ジオレフィン;等が挙げられる。
 上述した環状オレフィンは、1種単独で、あるいは2種以上を組み合わせて用いることができる。なお、環状オレフィンを2種以上用いる場合、環状オレフィン開環重合体は、ブロック共重合体であってもよいし、ランダム共重合体であってもよい。
 そして、これらの中でも、環状オレフィンとしては、ノルボルネン系単量体が好ましく、トリシクロ[4.3.0.12,5]デカ-3,7-ジエンおよびその誘導体、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンおよびその誘導体、7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エンおよびその誘導体がより好ましく、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エンが更に好ましい。
 ここで、環状オレフィン開環重合体の調製に用いられるノルボルネン系単量体の量は、特に限定されないが、環状オレフィン開環重合体の調製に用いる環状オレフィン全体の量100質量%に対して、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%(すなわち、環状オレフィン開環重合体は、単量体として、1種類または2種類以上のノルボルネン系単量体のみを用いて得られる重合体である)ことが更に好ましい。
 環状オレフィン開環重合体の調製方法は、特に限定されず、例えば、上述した単量体としての環状オレフィンを、メタセシス重合触媒を用いて開環重合する既知の方法を採用することができる。このような方法としては、例えば、特開2016-155327号公報に記載の方法が挙げられる。
 なお、上述のようにして得られる環状オレフィン開環重合体の重量平均分子量(Mw)は、特に限定されないが、10,000以上であることが好ましく、15,000以上であることがより好ましく、100,000以下であることが好ましく、50,000以下であることがより好ましい。環状オレフィン開環重合体の重量平均分子量が10,000以上であれば、当該環状オレフィン開環重合体の水素添加物を含む樹脂を成形して得られる外筒の強度を十分に確保することができる。一方、環状オレフィン開環重合体の重量平均分子量が100,000以下であれば、当該環状オレフィン開環重合体の水素添加物を含む樹脂の成形性を十分に確保することができる。
 また、環状オレフィン開環重合体の分子量分布(Mw/Mn)は、特に限定されないが、好ましくは1以上5以下、より好ましくは1以上4以下である。環状オレフィン開環重合体の分子量分布が上記範囲内にあることで、十分な機械的強度を有する外筒を得ることができる。
 なお、本発明において、環状オレフィン開環重合体などの重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、シクロヘキサンを溶離液とするゲル・パーミエーション・クロマトグラフィ(GPC)による標準ポリイソプレン換算値である。
[水素添加反応]
 上記環状オレフィン開環重合体を水素添加反応に供することで、環状オレフィン開環重合体水素添加物を得ることができる。環状オレフィン開環重合体に水素添加する方法は、特に限定されず、例えば、水素化触媒の存在下で、反応系内に水素を供給する既知の方法を採用することができる。このような方法としては、例えば、特開2016-155327号公報に記載の方法が挙げられる。
 なお、水素添加反応における水素添加率(水素化された主鎖炭素-炭素二重結合の割合)は、特に限定されないが、環状オレフィン開環重合体水素添加物を成形して外筒を作製する際のヤケ発生や酸化劣化を抑える観点から、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは99%以上である。
 なお、本発明において、水素添加反応における「水素添加率」は、核磁気共鳴(NMR)法を用いて測定することができる。
 上述した水素添加反応後に得られる環状オレフィン開環重合体水素添加物の重量平均分子量(Mw)は、特に限定されないが、10,000以上であることが好ましく、15,000以上であることがより好ましく、100,000以下であることが好ましく、50,000以下であることがより好ましい。環状オレフィン開環重合体水素添加物の重量平均分子量が10,000以上であれば、環状オレフィン開環重合体水素添加物を含む樹脂を成形して得られる外筒の強度を十分に確保することができる。一方、環状オレフィン開環重合体水素添加物の重量平均分子量が100,000以下であれば、環状オレフィン開環重合体水素添加物を含む樹脂の成形性を十分に確保することができる。
 また、環状オレフィン開環重合体水素添加物の分子量分布(Mw/Mn)は、特に限定されないが、好ましくは1以上5以下、より好ましくは1以上4以下である。環状オレフィン開環重合体水素添加物の分子量分布が上記範囲内にあることで、十分な機械的強度を有する外筒を得ることができる。
<<環状オレフィンと鎖状オレフィンの共重合体>>
 環状オレフィンと鎖状オレフィンの共重合体(以下、単に「共重合体」と略記する場合がある。)は、単量体である環状オレフィンと、単量体である鎖状オレフィンとを共重合して得られる重合体である。
[環状オレフィン]
 共重合体の調製に用いる、単量体である環状オレフィンとしては、「環状オレフィン開環重合体水素添加物」の項で上述したものと同様のものを用いることができる。環状オレフィンは、1種単独で、あるいは2種以上を組み合わせて用いることができる。そして、これらの中でも、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)およびその誘導体、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)およびその誘導体が好ましく、ビシクロ[2.2.1]ヘプト-2-エンがより好ましい。
[鎖状オレフィン]
 共重合体の調製に用いる、単量体である鎖状オレフィンとしては、炭素原子で形成される鎖状構造を有し、かつ該鎖状構造中に重合性の炭素-炭素二重結合を有する化合物を用いることができる。なお、本発明において、環状オレフィンに該当する化合物は、鎖状オレフィンには含まれないものとする。
 ここで、鎖状オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン等のα-オレフィン;スチレン、α-メチルスチレン等の芳香環ビニル化合物;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、1,7-オクタジエン等の非共役ジエン;が挙げられる。
 鎖状オレフィンは、1種単独で、あるいは2種以上を組み合わせて用いることができる。そして、これらの中でも、鎖状オレフィンとしては、α-オレフィンが好ましく、炭素数1以上20以下のα-オレフィンがより好ましく、エチレンが更に好ましい。
[共重合]
 共重合体の調製方法は、特に限定されず、例えば、上述した環状オレフィンおよび鎖状オレフィンを、重合触媒を用いて付加重合する既知の方法を採用することができる。このような方法としては、例えば、特開2016-155327号公報に記載の方法が挙げられる。
 ここで、共重合体の調製に用いられる環状オレフィンと鎖状オレフィンの量の比は、特に限定されないが、共重合体の調製に用いられる環状オレフィンと鎖状オレフィンの量の合計量100質量%に対して、環状オレフィンの量が、30質量%以上であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることが更に好ましく、99質量%以下であることが好ましく、97質量%以下であることがより好ましく、95質量%以下であることが更に好ましい。
 なお、環状オレフィンと鎖状オレフィンの共重合体は、ブロック共重合体であってもよいし、ランダム共重合体であってもよい。
 そして、環状オレフィンと鎖状オレフィンの共重合体の重量平均分子量(Mw)は、特に限定されないが、20,000以上であることが好ましく、25,000以上であることがより好ましく、100,000以下であることが好ましく、50,000以下であることがより好ましい。共重合体の重量平均分子量が20,000以上であれば、共重合体を含む樹脂を成形して得られる外筒の強度を十分に確保することができる。一方、共重合体の重量平均分子量が100,000以下であれば、共重合体を含む樹脂の成形性を十分に確保することができる。
 また、共重合体の分子量分布(Mw/Mn)は、特に限定されないが、好ましくは1以上5以下、より好ましくは1以上4以下である。共重合体の分子量分布が上記範囲内にあることで、十分な機械的強度を有する外筒を得ることができる。
<<好適な重合体>>
 上述した通り、外筒の形成に用いる樹脂は、環状オレフィン開環重合体水素添加物と、環状オレフィンと鎖状オレフィンの共重合体の少なくとも一方を含めばよいが、樹脂は、少なくとも環状オレフィン開環重合体水素添加物を含むことが好ましい。少なくとも環状オレフィン開環重合体水素添加物を含む樹脂を成形して得られる外筒を採用すれば、プレフィルドシリンジを長期保存した際に、タンパク質溶液製剤中におけるタンパク質の凝集を更に抑制することができる。
<<その他の成分>>
 外筒の形成に用いる樹脂が含みうるその他の成分としては、上述した重合体以外の重合体成分(熱可塑性エラストマー等)や、既知の添加剤が挙げられる。ここで、既知の添加剤としては、例えば特開2016-155327号公報に記載された、酸化防止剤、紫外線吸収剤、光安定剤、近赤外線吸収剤、可塑剤、帯電防止剤、酸補足剤等が挙げられる。
 これらその他の成分の樹脂中の含有量は、当該成分の添加目的に合わせて適宜決定することができる。例えば、熱可塑性エラストマーを用いる場合には、その使用量は、環状オレフィン開環重合体水素添加物および環状オレフィンと鎖状オレフィンの共重合体の合計量を100質量部(それぞれ単独で使用する場合は、何れかの量を100質量部)として、0.05質量部以上0.5質量部以下であることが好ましい。
 そして、上述した重合体と、任意にその他の成分とを含む樹脂を得る際の混合方法は、特に限定されず、例えば、単軸押出機、二軸押出機、バンバリーミキサー、ニーダー、フィーダールーダー等の既知の溶融混練機を用いて行うことができる。
 混合後は、常法に従って、棒状に押出し、ストランドカッターで適当な長さに切ることで、ペレット化することができる。
<<外筒の作製方法>>
 上述の成分を含む樹脂を成形して外筒を得る方法は、特に限定されず、例えば、後述する「プレフィルドシリンジの製造方法」の項に記載の方法を用いて、先端部にノズル部を備える外筒を成形することができる。
<<水接触角>>
 そして、上述のようにして得られる外筒は、その内壁面に水接触角が90°以上である製剤接触領域を有することが好ましい。製剤接触領域の水接触角が90°以上であれば、当該外筒を備えるプレフィルドシリンジを長期保存した際に、タンパク質溶液製剤中のタンパク質の凝集を更に抑制することができる。そして、タンパク質溶液製剤中のタンパク質の凝集をより一層抑制する観点からは、製剤接触領域の水接触角は、91°以上であることがより好ましく、92°以上であることが更に好ましく、93°以上であることが特に好ましい。また、製剤接触領域の水接触角の上限は、特に限定されないが、通常110°以下である。
 なお、製剤接触領域の水接触角は、外筒の形成に用いる樹脂に含まれる重合体および添加剤の種類や、外筒の作製方法を変更することにより調整することができる。例えば、重合体や添加剤として疎水性のもの(親水性基を有さないもの等)を用いることで、製剤接触領域の水接触角の値を向上させることができる。また、例えば、樹脂の成形に先んじて、後述する「プレフィルドシリンジの製造方法」の項に記載の予備乾燥を行うことで、製剤接触領域の水接触角の値を向上させることができる。
<<封止部材>>
 本発明のプレフィルドシリンジが備える封止部材は、外筒の先端部からタンパク質溶液製剤の漏れを防ぐことができるものであれば特に限定されず、キャップや注射針など既知のものを用いることができる。例えば、図1のプレフィルドシリンジ1では、封止部材20として、外筒10のノズル部12と嵌合するキャップを備えている。
 また、封止部材の形成材料は特に限定されない。例えば、封止部材がキャップである場合は、実用新案登録第3150720号に記載の既知の樹脂を用いることができる。
<<ガスケット>>
 本発明のプレフィルドシリンジが備えるガスケットは、外筒中のタンパク質溶液製剤を密封できるものであれば特に限定されない。ガスケットは、その少なくとも外周部が弾性材料で構成されていることが好ましく、ガスケットの構成としては、例えば、剛直な材料で構成された芯部(図示せず)を有し、この芯部の外周を覆うように剛直な材料が配置された構成が挙げられる。
 また、ガスケットの形成材料は特に限定されず、例えば、特許第5444835号に記載の弾性を有するゴムおよび合成樹脂を使用することができる。
<<押し子>>
 本発明のプレフィルドシリンジが備える押し子は、上述したガスケットに連結し、ガスケットを上述した外筒内で長手方向に移動させうる部材である。例えば、図1のプレフィルドシリンジ1では、押し子40は、ガスケット30とは反対側の端部に指当て部41を備えており、この指当て部41を指等で押圧することにより押し子40を移動操作する。この押し子40の移動操作に連動してガスケット30も移動するため、タンパク質溶液製剤50を外筒10のノズル部12から外部に排出することができる。
 また、押し子の形成材料は特に限定されず、例えば、特許第5444835号に記載の樹脂を使用することができる。
(プレフィルドシリンジの製造方法)
 そして、上述した本発明のプレフィルドシリンジは、例えば、本発明のプレフィルドシリンジの製造方法により好適に製造することができる。
 本発明のプレフィルドシリンジの製造方法は、先端部にノズル部を備える外筒と、ノズル部を封止する封止部材と、外筒内に摺動可能に収納されたガスケットと、ガスケットに連結され、ガスケットを外筒の長手方向に移動操作する押し子とを備えるシリンジ内部に、タンパク質溶液製剤が充填されたプレフィルドシリンジを製造する方法である。ここで、本発明のプレフィルドシリンジの製造方法は、外筒にタンパク質溶液製剤を注入して、当該タンパク質溶液製剤が充填されたプレフィルドシリンジを得る工程(充填工程)を、少なくとも含む。そして、外筒が、環状オレフィン開環重合体水素添加物および/または環状オレフィンと鎖状オレフィンの共重合体を含む樹脂の成形体であり、当該外筒の内壁面の一部の領域(製剤接触領域)と、封止部材と、ガスケットで画定される空間に、非イオン性界面活性剤の濃度が0mg/mL超0.05mg/mL未満であるタンパク質溶液製剤を充填することを特徴とする。
 非イオン性界面活性剤の濃度が0mg/mL超0.05mg/mL未満であるタンパク質溶液製剤を、環状オレフィン開環重合体水素添加物および/または環状オレフィンと鎖状オレフィンの共重合体を含む樹脂からなる外筒に、上述した充填工程により充填して得られるプレフィルドシリンジは、「プレフィルドシリンジ」の項で上述した理由と同様の理由で、長期保存した場合であっても、タンパク質溶液製剤中のタンパク質の凝集を抑制することができ、また非イオン性界面活性剤の分解産物の生成量を低く抑えることができる。
 なお、以下の説明における「ノズル部」、「外筒」、「環状オレフィン開環重合体水素添加物」、「環状オレフィンと鎖状オレフィンの共重合体」、「樹脂」、「封止部材」、「ガスケット」、「押し子」、および「タンパク質溶液製剤」等は、「プレフィルドシリンジ」の項で上述したものと同じである。すなわち、本発明のプレフィルドシリンジの製造方法における「ノズル部」、「外筒」、「環状オレフィン開環重合体水素添加物」、「環状オレフィンと鎖状オレフィンの共重合体」、「樹脂」、「封止部材」、「ガスケット」、「押し子」、および「タンパク質溶液製剤」の具体例および好適例などは、上述した本発明のプレフィルドシリンジにおける「ノズル部」、「外筒」、「環状オレフィン開環重合体水素添加物」、「環状オレフィンと鎖状オレフィンの共重合体」、「樹脂」、「封止部材」、「ガスケット」、「押し子」、および「タンパク質溶液製剤」の具体例および好適例などと同一であるため、本項での説明は省略する。
<充填工程>
 外筒にタンパク質溶液製剤を注入して、外筒内壁面の製剤接触領域と、封止部材と、ガスケットで画定される空間に、非イオン性界面活性剤の濃度が所定の範囲内であるタンパク質溶液製剤を充填する方法は、特に限定されず、既知の方法、例えば、特開2012-29918号公報に記載の方法が挙げられる。また、充填工程は、滅菌下で行うことが好ましい。
<その他の工程>
 本発明のプレフィルドシリンジの製造方法は、任意に、上述した充填工程以外の工程(その他の工程)を含むことができる。
 ここで、本発明のプレフィルドシリンジの製造方法では、上述した充填工程の前に、好適な内壁面性状を有する外筒を容易に作製し得る一連の操作を実施することが好ましい。具体的には、本発明のプレフィルドシリンジの製造方法は、上述した充填工程に先んじて、成形材料である樹脂を予備乾燥する工程(予備乾燥工程)と、予備乾燥後の樹脂を成形して、外筒を成形する工程(成形工程)を備えることが好ましい。
<<予備乾燥工程>>
 外筒の形成に用いる樹脂を、成形に先んじて乾燥することで、外筒表面(特には、内壁面の製剤接触領域)の水接触角を向上させて、タンパク質溶液製剤中のタンパク質の凝集を更に抑制することができる。なお、成形前の樹脂を乾燥させることで、成形後に得られる外筒表面の水接触角を向上させることができる理由は、定かではないが、乾燥により樹脂中の酸素濃度を低下させることができるため、成形の際の熱により外筒表面が酸化して親水性を帯びるのを抑制できるからと推察される。
 なお、予備乾燥する際の樹脂の形状は、特に限定されないが、シート状、ペレット状など任意の形状とすることができるが、乾燥効率や、成形の容易さの観点から、ペレット状であることが好ましい。
 ここで、予備乾燥後の樹脂中の酸素濃度は、10質量ppm以下であることが好ましく、5質量ppm以下であることがより好ましく、4質量ppm以下であることが更に好ましい。予備乾燥後の樹脂中の酸素濃度が10質量ppm以下であれば、当該樹脂から形成される外筒の製剤接触領域の水接触角の値を向上させることができ、当該外筒を備えるプレフィルドシリンジにおいて、タンパク質溶液製剤中のタンパク質の凝集を更に抑制することができる。
 また、予備乾燥は、不活性ガス雰囲気下で行うことが好ましい。予備乾燥を不活性ガス雰囲気下で行うことで、当該樹脂中から酸素を効率的に除去しつつ外部の酸素による樹脂の酸化を防ぐことができ、結果として、得られる外筒を備えるプレフィルドシリンジにおいて、タンパク質溶液製剤中のタンパク質の凝集を更に抑制することができる。なお、不活性ガスとしては、ヘリウム、アルゴン、窒素、ネオンおよびクリプトンや、これらの混合物を用いることができる。
 そして、予備乾燥において、乾燥温度(雰囲気温度)は80℃以上であることが好ましく、90℃以上であることがより好ましく、100℃以上であることが更に好ましく、120℃以下であることが好ましく、110℃以下であることがより好ましい。予備乾燥の乾燥温度が80℃以上であれば、樹脂中の酸素を効率的に除去することができ、結果として、得られる外筒を備えるプレフィルドシリンジにおいて、タンパク質溶液製剤中のタンパク質の凝集を更に抑制することができる。一方、予備乾燥の乾燥温度が120℃以下であれば、成形に先んじて樹脂が硬化してしまうのを防ぐことができる。
 また、予備乾燥において、乾燥時間は、1時間以上であることが好ましく、2時間以上であることがより好ましく、4時間以上であることが更に好ましく、24時間以下であることが好ましく、12時間以下であることがより好ましい。予備乾燥の乾燥時間が1時間以上であれば、樹脂中の酸素を効率的に除去することができ、結果として、得られる外筒を備えるプレフィルドシリンジにおいて、タンパク質溶液製剤中のタンパク質の凝集を更に抑制することができる。一方、予備乾燥の乾燥時間が24時間以下であれば、成形に先んじて樹脂が酸化劣化してしまうのを防ぐことができる。
<<成形工程>>
 上述した予備乾燥後の樹脂を、所望形状の外筒に成形する方法は、特に限定されず、射出成形法、射出ブロー成形法(コールドパリソン法)、熱成形法等の既知の成形方法が挙げられる。これらの中でも、目的の外筒を効率よく製造することができることから、射出成形法が好ましい。
 射出成形法を用いて外筒を製造する際は、通常、樹脂を射出成形機のホッパに投入し、シリンダー内で加熱することによりこれを可塑化し、次いで、溶融樹脂(可塑化された樹脂)を、射出口から金型内に射出する。そして、溶融樹脂が金型内で冷却固化することにより、外筒が形成される。
 ここで、樹脂を可塑化する際のシリンダー温度は、200℃以上400℃以下であることが好ましく、200℃以上350℃以下であることがより好ましく、250℃以上310℃以下であることが更に好ましい。シリンダー温度が200℃以上であれば、溶融樹脂の流動性が確保され、外筒にヒケやひずみを生じることもない。一方、シリンダー温度が400℃以下であれば、成形材料の熱分解によるシルバーストリークの発生や、外筒の黄変を抑制することができる。
 また、シリンダーから金型へ溶融樹脂を射出するときの射出速度は、1cm/秒以上1,000cm/秒以下であることが好ましい。射出速度がこの範囲であることで、外観形状に優れる外筒が得られ易くなる。なお、シリンダーから金型へ溶融樹脂を射出するときの射出圧は、特に限定されず、金型の種類や、溶融樹脂の流動性等を考慮して適宜設定すればよいが、通常、30MPa以上250MPa以下である。
 そして、金型温度は、通常、樹脂中の重合体(環状オレフィン開環重合体水素添加物および/または環状オレフィンと鎖状オレフィンの共重合体)のガラス転移温度(Tg)よりも低い温度であり、好ましくはTgよりも5℃~50℃低い温度、より好ましくはTgよりも5℃~30℃低い温度である。金型温度がこの範囲内であることで、歪の少ない外筒が得られ易くなる。
 なお、本発明のプレフィルドシリンジの製造方法は、上述した予備乾燥工程および成形工程以外に、その他の工程として、例えば、充填工程の前に、外筒、ガスケット、封止部材を滅菌する工程を備えることもできる。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 実施例および比較例において、重合体の分子量等(重量平均分子量、数平均分子量、および分子量分布)、重合体に水素化添加した際の水素添加率、重合体のガラス転移温度、樹脂中の酸素濃度、外筒の内壁面における製剤接触領域の水接触角、プレフィルドシリンジの長期保存後におけるタンパク質溶液製剤中の非イオン性界面活性剤の濃度(保存後濃度)、プレフィルドシリンジの長期保存後におけるタンパク質溶液製剤中の非イオン性界面活性剤の分解産物生成の有無、並びに、プレフィルドシリンジの長期保存後におけるタンパク質溶液製剤中のタンパク質の凝集抑制、については、以下の方法を使用して測定および評価した。
<分子量等>
 重合体の重量平均分子量(Mw)および数平均分子量(Mn)は、シクロヘキサンを溶媒とするゲルパーミエーションクロマトグラフィー(GPC)による、標準ポリイソプレン換算値として測定した。また、得られたMwとMnから、分子量分布(Mw/Mn)を算出した。なお、測定装置としては、「HLC8320GPC」(東ソー社製)を用いた。また、標準ポリイソプレンとしては、東ソー社製の標準ポリイソプレン(単分散)、Mw=602、1390、3920、8050、13800、22700、58800、71300、109000、280000の計10点を用いた。そして、測定は、カラムとして、「TSKgel G5000HXL」、「TSKgel G4000HXL」および「TSKgel G2000HXL」(何れも東ソー社製)を3本直列に繋いで用い、流速1.0ml/分、サンプル注入量100μml、カラム温度40℃の条件で行った。
<水素添加率>
 溶媒として重クロロホルムを用いて、H-NMR測定を行い、水素化反応における水素添加率を算出した。
<ガラス転移温度(Tg)>
 示差走査熱量分析計(ナノテクロノジー社製、製品名「DSC6220S11」)を用いて、JIS K 6911に基づいて測定した。
<樹脂中の酸素濃度>
 樹脂ペレットを、昇温脱離分析装置(電子科学社製、製品名「WA1000S/W型」)を用いて、130℃で60分間加熱し、その際に脱離する酸素の量を測定することで、樹脂中の酸素濃度を算出した。
<水接触角>
 外筒をニッパーでカットして製剤接触領域を切り出し、製剤接触領域の任意の10箇所について、協接触角計(協和界面科学社製、製品名「Drop Master 300」)を用い、カーブフィッティング法により静的接触角を測定し、これらの平均値を当該製剤接触領域の水接触角とした。
<非イオン性界面活性剤の保存後濃度>
 プレフィルドシリンジを、暗所にて4℃の条件下で1週間静置した。1週間静置後のプレフィルドシリンジ中のタンパク質溶液製剤を、ガスケットに連結する押し子に圧力を加えてノズル部から押し出して、回収した。
 そして、長期保存後のタンパク質溶液製剤中における非イオン性界面活性剤の濃度(保存後濃度)を、下記の式により算出した。
 保存後濃度(mg/mL)=長期保存前の非イオン性界面活性剤の濃度(mg/mL、初期濃度)×(A1/A0)
 なお、上記式中、A0とA1は、それぞれ、長期保存前と長期保存後のタンパク質溶液製剤について高速液体クロマトグラフィー(HPLC)による分析を行い、得られたデータから得られる非イオン性界面活性剤に帰属されるピークの面積強度である。このHPLCの実施条件は、下記の通りである。
 装置:製品名「HP-1100」(アジレント・テクノロジー社製)
 カラム:製品名「ZORBAX(登録商標) Eclipse Plus C18HT」(2.1mm i.d.×150mm、1.8μm、アジレント・テクノロジー社製)
 溶媒:アセトニトリル/水=70/30
 注入量:16μL
 流速:0.4mL/分
 検出法:UV198nm
<非イオン性界面活性剤の分解産物生成の有無>
 プレフィルドシリンジを、暗所にて4℃の条件下で1週間静置した。1週間静置後のプレフィルドシリンジ中のタンパク質溶液製剤を、ガスケットに連結する押し子に圧力を加えてノズル部から押し出して、回収した。
 そして、長期保存後のタンパク質溶液製剤について、「非イオン性界面活性剤の保存後濃度」と同様の条件でHPLCによる分析を行い、分解産物に帰属されるピークの有無を確認し、このピークが確認された場合には保存後の分解産物生成が「有り」と判断し、このピークが確認されない場合には保存後の分解産物生成が「無し」(生成量が検出限界以下)と判断した。
<タンパク質の凝集抑制>
 プレフィルドシリンジを、暗所にて4℃の条件下で1週間静置した。1週間静置後のプレフィルドシリンジ中のタンパク質溶液製剤を、ガスケットに連結する押し子に圧力を加えてノズル部から押し出して、回収した。回収したタンパク質溶液製剤に含まれる粒子径1μm以上の凝集物の数を、FlowCam8100(Fluid Imaging Technologies、Scarborough、ME)を使用して視覚的に計数した。なお、サンプル容量は0.15mLであり、0.05mL/分の流速で分析した。また、データ解析にはVisual Spreadsheetソフトウェア(Fluid Imaging Technologies)を使用した。同様の操作を合計4回行った。そして、各回について単位体積当たりの凝集物の個数(個/mL)を算出し、それらの平均値を保存後凝集物濃度(個/mL)とした。保存後凝集物濃度の値が小さいほど、プレフィルドシリンジを長期保存した際に、タンパク質溶液製剤中におけるタンパク質の凝集が抑制されていると言える。
(実施例1)
<タンパク質溶液製剤の準備>
 精製されたヒュミラ(アダリムマブ)を、リン酸緩衝生理食塩水(pH:7.0、NaCl:200mM、リン酸:100mM)を用いて、0.1mg/mLの濃度に調整すると共に、非イオン性界面活性剤としてのポリソルベート80を0.01mg/mLとなるように添加して、タンパク質溶液製剤を得た。
<外筒の作製>
<<環状オレフィン開環重合体水素添加物(水素化物A)の調製>>
 窒素雰囲気下、脱水したシクロヘキサン500部に、1-ヘキセン0.82部、ジブチルエーテル0.15部、及びトリイソブチルアルミニウム0.30部を室温で反応器に入れ混合した後、45℃に保ちながら、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン、以下、「DCP」と略記する。)76部と、8-メチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン70部と、テトラシクロ[7.4.0.02,7.110,13]トリデカ-2,4,6,11-テトラエン(以下「MTF」と略す。)54部と、六塩化タングステン(0.7%トルエン溶液)80部とを、並行して2時間かけて連続的に添加し重合した。次いで、重合溶液にブチルグリシジルエーテル1.06部とイソプロピルアルコール0.52部を加えて重合触媒を不活性化し重合反応を停止させた。得られた開環重合体を含有する反応溶液をガスクロマトグラフィー分析したところ、各モノマーの重合転化率は、99.5%であった。
 次いで、得られた開環重合体を含有する反応溶液100部に対して、シクロヘキサン270部を加え、さらに水素添加触媒としてケイソウ土担持ニッケル触媒(ニッケル担持率:58重量%、細孔容積:0.25ml/g、比表面積:180m/g)5部を加え、水素により5MPaに加圧して撹拌しながら温度200℃まで加温した後、8時間反応させ、DCP/8-メチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン/MTF開環共重合体水素添加物を含有する反応溶液を得た。濾過により水素化触媒を除去し、次いで、円筒型濃縮乾燥器(日立製作所社製)を用いて、温度270℃、圧力1kPa以下で、溶液から、溶媒であるシクロヘキサン及びその他の揮発成分を除去し、次いで水素化物を溶融状態で押出機からストランド状に押出し、冷却後ペレット化してペレットを得た。このペレット化された環状オレフィン開環重合体水素添加物(水素化物A)のMwは33,000、分子量分布(Mw/Mn)は2.4、水素添加率は99.8%、Tgは136℃であった。
<<水素化物Aを含む樹脂ペレットの作製>>
 上記のようにして得られた水素化物A100部と、酸化防止剤としてペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]0.017部とを、ブレンダーで混合し、ポッパーを窒素置換した2軸混練機を用い、275℃のシリンダー温度で混練して押し出し、樹脂ペレットを得た。
<<予備乾燥および成形>>
 上記のようにして得られた樹脂ペレットを、熱風式乾燥機を用いて、窒素雰囲気下、雰囲気温度:100℃、乾燥時間:6時間の条件で乾燥した(予備乾燥)。この予備乾燥後の樹脂の酸素濃度を測定した。結果を表1に示す。
 そして、予備乾燥後の樹脂について、シリンジ成形品(シリンジサイズ:ISO規格11040-6の1mL-Longに準拠)の金型を搭載した射出成形機(ファナック社製、製品名「ROBOSHOT αS―50iA」)を用いて、以下の条件で射出成形を行い、シリンジの外筒を製造した。
 シリンダー温度:305℃
 金型温度:120℃
 射出速度:180mm/秒
 冷却時間:30秒
 射出圧力(保圧):100MPa
 保圧時間:5秒
 得られた外筒の製剤接触領域の水接触角を測定した。結果を表1に示す。
<プレフィルドシリンジの作製>
 上述した外筒とタンパク質溶液製剤を用いて、図1に示す構成を有するプレフィルドシリンジを以下の手順で作製した。なお、プレフィルドシリンジの作製は、滅菌環境下で行った。
 得られた外筒の先端部にイソプレンゴム製のキャップを取り付け、当該外筒にタンパク質溶液製剤1.0mLを充填した。次いで、外筒の後端側から、ブチルゴム製のガスケットを取り付けた押し子を挿入して密封して、タンパク質溶液製剤が充填されたプレフィルドシリンジを得た。得られたプレフィルドシリンジを用いて、非イオン性界面活性剤の保存後濃度、非イオン性界面活性剤の分解産物生成の有無、および、タンパク質の凝集抑制を評価した。結果を表1に示す。
(実施例2)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が0.04mg/mLとなるように添加したこと以外は、実施例1と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表1に示す。
(実施例3)
 外筒の作製に際し、環状オレフィン開環重合体水素添加物(水素化物A)に替えて、下記のように調製した環状オレフィンと鎖状オレフィンの共重合体(共重合体B)を使用した以外は、実施例1と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表1に示す。
<<環状オレフィンと鎖状オレフィンの共重合体(共重合体B)の調製>>
 シクロヘキサン258リットルを装入した反応容器に、常温、窒素気流下でノルボルネン(120kg)を加え、5分間撹拌を行った。さらにトリイソブチルアルミニウムを系内の濃度が1.0ml/リットルとなるように添加した。続いて、撹拌しながら常圧でエチレンを流通させ系内をエチレン雰囲気とした。オートクレーブの内温を70℃に保ち、エチレンにて内圧がゲージ圧で6kg/cmとなるように加圧した。10分間撹拌した後、予め用意したイソプロピリデン(シクロペンタジエニル)(インデニル)ジルコニウムジクロリド及びメチルアルモキサンを含むトルエン溶液0.4リットルを系内に添加することによって、エチレンとノルボルネンとの共重合反応を開始させた。このときの触媒濃度は、全系に対してイソプロピリデン(シクロペンタジエニル)(インデニル)ジルコニウムジクロリドが0.018mmol/リットルであり、メチルアルモキサンが8.0mmol/リットルである。この共重合反応中、系内にエチレンを連続的に供給することにより、温度を70℃、内圧をゲージ圧で6kg/cmに保持した。60分後、イソプロピルアルコールを添加することにより、共重合反応を停止した。脱圧後、ポリマー溶液を取り出し、その後、水1mに対し濃塩酸5リットルを添加した水溶液と1:1の割合で強撹拌下に接触させ、触媒残渣を水相へ移行させた。この接触混合液を静置したのち、水相を分離除去し、さらに水洗を2回行い、重合液相を精製分離した。
 次いで精製分離された重合液相を、3倍量のアセトンと強撹拌下で接触させ、共重合体を析出させた後、固体部(共重合体)を濾過により採取し、アセトンで十分洗浄した。さらに、未反応のモノマーを抽出するため、この固体部を40kg/mとなるようにアセトン中に投入した後、60℃で2時間の条件で抽出操作を行った。抽出処理後、固体部を濾過により採取し、窒素流通下、130℃、350mmHgで12時間乾燥し、エチレン・ノルボルネン共重合体(共重合体B)を得た。
 製造例1の水素化物Aと同様にして、エチレン・ノルボルネン共重合体(共重合体B)をペレット化した。このペレット化されたエチレン・ノルボルネン共重合体(共重合体B)の重量平均分子量(Mw)は96,000、分子量分布(Mw/Mn)は2.4、Tgは138℃であった。
(実施例4)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が0.04mg/mLとなるように添加したこと以外は、実施例3と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表1に示す。
(実施例5)
 外筒の作製に際し、予備乾燥を行わなかった以外は、実施例1と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表1に示す。
(実施例6)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が0.04mg/mLとなるように添加したこと以外は、実施例5と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表1に示す。
(実施例7)
 外筒の作製に際し、予備乾燥を行わなかった以外は、実施例3と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表1に示す。
(実施例8)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が0.04mg/mLとなるように添加したこと以外は、実施例7と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表1に示す。
(実施例9)
 以下のようにして準備したタンパク質溶液製剤を使用した以外は、実施例1と同様にして、外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表1に示す。
<タンパク質溶液製剤の準備>
 精製されたレミケード(インフリキシマブ)を、リン酸緩衝生理食塩水(pH:7.0、NaCl:200mM、リン酸:100mM)を用いて、0.1mg/mLの濃度に調整すると共に、非イオン性界面活性剤としてのポリソルベート80を0.01mg/mLとなるように添加して、タンパク質溶液製剤を得た。
(実施例10)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が0.04mg/mLとなるように添加したこと以外は、実施例9と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表1に示す。
(実施例11)
 外筒の作製に際し、環状オレフィン開環重合体水素添加物(水素化物A)に替えて、実施例3と同様にして調製した環状オレフィンと鎖状オレフィンの共重合体(共重合体B)を使用した以外は、実施例9と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表2に示す。
(実施例12)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が0.04mg/mLとなるように添加したこと以外は、実施例11と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表2に示す。
(実施例13)
 外筒の作製に際し、予備乾燥を行わなかった以外は、実施例11と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表2に示す。
(実施例14)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が0.04mg/mLとなるように添加したこと以外は、実施例13と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表2に示す。
(実施例15)
 外筒の作製に際し、予備乾燥を行わなかった以外は、実施例11と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表2に示す。
(実施例16)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が0.04mg/mLとなるように添加したこと以外は、実施例15と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表2に示す。
(実施例17)
 以下のようにして準備したタンパク質溶液製剤を使用した以外は、実施例1と同様にして、外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表2に示す。
<タンパク質溶液製剤の準備>
 精製されたヒュミラ(アダリムマブ)を、リン酸緩衝液(pH:7.0、NaCl:0mM、リン酸:100mM)を用いて、0.1mg/mLの濃度に調整すると共に、非イオン性界面活性剤としてのポリソルベート80を0.01mg/mLとなるように添加して、タンパク質溶液製剤を得た。
(実施例18)
 以下のようにして準備したタンパク質溶液製剤を使用した以外は、実施例1と同様にして、外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表2に示す。
<タンパク質溶液製剤の準備>
 精製されたヒュミラ(アダリムマブ)を、リン酸緩衝生理食塩水(pH:7.0、NaCl:20mM、リン酸:100mM)を用いて、0.1mg/mLの濃度に調整すると共に、非イオン性界面活性剤としてのポリソルベート80を0.01mg/mLとなるように添加して、タンパク質溶液製剤を得た。
(実施例19)
 以下のようにして準備したタンパク質溶液製剤を使用した以外は、実施例1と同様にして、外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表2に示す。
<タンパク質溶液製剤の準備>
 精製されたヒュミラ(アダリムマブ)を、酢酸緩衝液(pH:4.0、酢酸:100mM)にNaClを加え200mM(NaCl濃度)となるように調整した溶液を用いて、0.1mg/mLの濃度に調整すると共に、非イオン性界面活性剤としてのポリソルベート80を0.01mg/mLとなるように添加して、タンパク質溶液製剤を得た。
(実施例20)
 以下のようにして準備したタンパク質溶液製剤を使用した以外は、実施例1と同様にして、外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表2に示す。
<タンパク質溶液製剤の準備>
 精製されたヒュミラ(アダリムマブ)を、酢酸緩衝液(pH:5.0、酢酸:100mM)にNaClを加え200mM(NaCl濃度)となるように調整した溶液を用いて、0.1mg/mLの濃度に調整すると共に、非イオン性界面活性剤としてのポリソルベート80を0.01mg/mLとなるように添加して、タンパク質溶液製剤を得た。
(実施例21)
 以下のようにして準備したタンパク質溶液製剤を使用した以外は、実施例1と同様にして、外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表2に示す。
<タンパク質溶液製剤の準備>
 精製されたヒュミラ(アダリムマブ)を、リン酸緩衝生理食塩水(pH:6.0、NaCl:200mM、リン酸:100mM)を用いて、0.1mg/mLの濃度に調整すると共に、非イオン性界面活性剤としてのポリソルベート80を0.01mg/mLとなるように添加して、タンパク質溶液製剤を得た。
(実施例22)
 外筒の作製に際し、環状オレフィン開環重合体水素添加物(水素化物A)に替えて、下記のように調製した環状オレフィン開環重合体水素添加物(水素化物C)を使用した以外は、実施例1と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表2に示す。
<<環状オレフィン開環重合体水素添加物(水素化物C)の調製>>
 窒素雰囲気下、脱水したシクロヘキサン500部に、1-ヘキセン0.55部、ジブチルエ-テル0.11部、トリイソブチルアルミニウム0.22部を室温で反応器に入れて混合した後、45℃に保ちながら、トリシクロ[4.3.0.12,5]デカ-3-エン(以下DCPDと略す)170部、8-エチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(以下ETCDと略す)30部、六塩化タングステン0.7%トルエン溶液30部を2時間かけて連続的に添加し、重合した。得られた重合反応液を耐圧性の水素化反応器に移送し、ケイソウ土担持ニッケル触媒(日産ガードラー社製;G-96D、ニッケル担持率58重量%)10部及びシクロヘキサン200部を加え、150℃、水素圧45kgf/cmで8時間反応させた。ステンレス製金網を備えたろ過器の、該金網上に、珪藻土をろ過助剤として敷詰め、水素化反応液をろ過して、触媒を除去した。ろ過した反応溶液を3000部のイソプロピルアルコ-ル中に攪拌下に注いで水素添加物を沈殿させ、ろ別して回収した。さらに、得られた水素添加物をアセトン500部で洗浄した後、1torr以下、100℃に設定した減圧乾燥器中で48時間乾燥し、環状オレフィン開環重合体水素添加物(水素化物C)190部を得た。
 製造例1の水素化物Aと同様にして、環状オレフィン開環重合体水素添加物(水素化物C)をペレット化した。このペレット化された環状オレフィン開環重合体水素添加物(水素化物C)のMwは40,000、分子量分布は(Mw/Mn)は3.3、水素添加率は99.8%、Tgは102℃、共重合組成(重量比)はDCPD/ETCD=85/15であった。
(実施例23)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が0.04mg/mLとなるように添加したこと以外は、実施例22と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表2に示す。
(実施例24)
 樹脂ペレットを得るに際し、安定剤(熱可塑性エラストマー)として芳香族ビニル・共役ジエンブロック共重合体(旭化成ケミカルズ社製、タフテック(登録商標)H1043)0.1部および芳香族ビニル・共役ジエンブロック共重合体(旭化成ケミカルズ社製、タフテック(登録商標)H1051)0.1部を追添加した以外は、実施例1と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表2に示す
(比較例1)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が0.50mg/mLとなるように添加したこと以外は、実施例1と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表3に示す。
(比較例2)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が1.00mg/mLとなるように添加したこと以外は、実施例1と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表3に示す。
(比較例3)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が0.50mg/mLとなるように添加したこと以外は、実施例3と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表3に示す。
(比較例4)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が1.00mg/mLとなるように添加したこと以外は、実施例3と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表3に示す。
(比較例5)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が0.50mg/mLとなるように添加したこと以外は、実施例5と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表3に示す。
(比較例6)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が1.00mg/mLとなるように添加したこと以外は、実施例5と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表3に示す。
(比較例7)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が0.50mg/mLとなるように添加したこと以外は、実施例7と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表3に示す。
(比較例8)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が1.00mg/mLとなるように添加したこと以外は、実施例7と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表3に示す。
(比較例9)
 外筒として、ガラス製の外筒を使用した以外は、実施例1と同様にして、タンパク質溶液製剤を準備し、またプレフィルドシリンジを作製し、各種評価を行った。結果を表3に示す。
(比較例10)
 外筒として、ガラス製の外筒を使用した以外は、実施例2と同様にして、タンパク質溶液製剤を準備し、またプレフィルドシリンジを作製し、各種評価を行った。結果を表3に示す。
(比較例11)
 外筒として、ガラス製の外筒を使用した以外は、比較例1と同様にして、タンパク質溶液製剤を準備し、またプレフィルドシリンジを作製し、各種評価を行った。結果を表3に示す。
(比較例12)
 外筒として、ガラス製の外筒を使用した以外は、比較例2と同様にして、タンパク質溶液製剤を準備し、またプレフィルドシリンジを作製し、各種評価を行った。結果を表3に示す。
(比較例13)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が0.50mg/mLとなるように添加したこと以外は、実施例9と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表4に示す。
(比較例14)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が1.00mg/mLとなるように添加したこと以外は、実施例9と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表4に示す。
(比較例15)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が0.50mg/mLとなるように添加したこと以外は、実施例11と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表4に示す。
(比較例16)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が1.00mg/mLとなるように添加したこと以外は、実施例11と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表4に示す。
(比較例17)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が0.50mg/mLとなるように添加したこと以外は、実施例13と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表4に示す。
(比較例18)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が1.00mg/mLとなるように添加したこと以外は、実施例13と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表4に示す。
(比較例19)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が0.50mg/mLとなるように添加したこと以外は、実施例15と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表4に示す。
(比較例20)
 タンパク質溶液製剤の準備に際し、非イオン性界面活性剤としてのポリソルベート80を濃度が1.00mg/mLとなるように添加したこと以外は、実施例15と同様にして、タンパク質溶液製剤を準備し、また外筒およびプレフィルドシリンジを作製し、各種評価を行った。結果を表4に示す。
(比較例21)
 外筒として、ガラス製の外筒を使用した以外は、実施例9と同様にして、タンパク質溶液製剤を準備し、またプレフィルドシリンジを作製し、各種評価を行った。結果を表4に示す。
(比較例22)
 外筒として、ガラス製の外筒を使用した以外は、実施例10と同様にして、タンパク質溶液製剤を準備し、またプレフィルドシリンジを作製し、各種評価を行った。結果を表4に示す。
(比較例23)
 外筒として、ガラス製の外筒を使用した以外は、比較例13と同様にして、タンパク質溶液製剤を準備し、またプレフィルドシリンジを作製し、各種評価を行った。結果を表4に示す。
(比較例24)
 外筒として、ガラス製の外筒を使用した以外は、比較例14と同様にして、タンパク質溶液製剤を準備し、またプレフィルドシリンジを作製し、各種評価を行った。結果を表4に示す。
 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

 表1~2より、非イオン性界面活性剤の濃度が0mg/mL超0.05mg/mL未満であるタンパク質溶液製剤を、環状オレフィン開環重合体水素添加物および/または環状オレフィンと鎖状オレフィンの共重合体を含む樹脂で形成された外筒に充填することで得られる実施例1~24のプレフィルドシリンジは、長期保存した場合に、タンパク質溶液製剤中のタンパク質の凝集を抑制することができ、また非イオン性界面活性剤の分解産物の生成量を低く抑えることができることがわかる。
 一方、表3~4より、非イオン性界面活性剤の濃度が0.05mg/mL以上のタンパク質溶液製剤を用いた比較例1~8、13~20のプレフィルドシリンジでは、長期間保管後における非イオン性界面活性剤の分解産物の生成量を低く抑えることができないことがわかる。
 更に、表3~4により、ガラスで形成された外筒を用いた比較例9~12、21~24のプレフィルドシリンジでは、長期間保管後におけるタンパク質の凝集を抑制できないことがわかる。
 本発明によれば、長期保存後のタンパク質溶液製剤中におけるタンパク質の凝集を抑制しつつ、非イオン性界面活性剤の分解産物の生成量を低減しうるプレフィルドシリンジを提供することができる。
 また、本発明によれば、長期保存後のタンパク質溶液製剤中におけるタンパク質の凝集を抑制しつつ、非イオン性界面活性剤の分解産物の生成量を低減しうるプレフィルドシリンジを製造する方法を提供することができる。
1 プレフィルドシリンジ
10 外筒
11 先端部
12 ノズル部
13 内壁面
14 製剤接触領域
15 外筒本体部
16 フランジ
20 封止部材(キャップ)
30 ガスケット
40 押し子
41 指当て部
50 タンパク質溶液製剤

Claims (14)

  1.  先端部にノズル部を備える外筒と、
     前記ノズル部を封止する封止部材と、
     前記外筒内に摺動可能に収納されたガスケットと、
     前記ガスケットに連結され、前記ガスケットを前記外筒の長手方向に移動操作する押し子と、
     前記外筒の内壁面の一部の領域と、前記キャップと、前記ガスケットで画定される空間に充填されたタンパク質溶液製剤を備えるプレフィルドシリンジであって、
     前記外筒は、環状オレフィン開環重合体水素添加物と、環状オレフィンと鎖状オレフィンの共重合体の少なくとも一方を含む樹脂からなり、
     そして、前記タンパク質溶液製剤中における非イオン性界面活性剤の濃度が0mg/mL超0.05mg/mL未満である、
     プレフィルドシリンジ。
  2.  前記内壁面の前記一部の領域の水接触角が90°以上である、請求項1に記載のプレフィルドシリンジ。
  3.  前記タンパク質溶液製剤が、抗体とその抗原結合断片の少なくとも一方を含む、請求項1または2に記載のプレフィルドシリンジ。
  4.  前記抗体が、キメラ抗体、ヒト抗体、ヒト化抗体、およびこれらのドメイン抗体からなる群から選択される少なくとも1つである、請求項3に記載のプレフィルドシリンジ。
  5.  前記タンパク質溶液製剤が、オファツムマブ、セツキシマブ、トシリズマブ、ベバシズマブ、カナキヌマブ、ゴリムマブ、ウステキヌマブ、エクリズマブ、オマリズマブ、トラスツズマブ、ペルツズマブ、アダリムマブ、デノスマブ、モガムリズマブ、リツキシマブ、ラニビズマブ、インフリキシマブ、アフリベルセプト、アバタセプト、エタネルセプト、ゲムツズマブオゾガマイシン、パニツムマブ、バシリキシマブ、セルトリズマブ ペゴル、およびパリビズマブからなる群から選択される少なくとも1つを含む、請求項1または2に記載のプレフィルドシリンジ。
  6.  先端部にノズル部を備える外筒と、前記ノズル部を封止する封止部材と、前記外筒内に摺動可能に収納されたガスケットと、前記ガスケットに連結され、前記ガスケットを前記外筒の長手方向に移動操作する押し子とを備えるシリンジ内部に、タンパク質溶液製剤が充填されたプレフィルドシリンジを製造する方法であって、
     環状オレフィン開環重合体水素添加物と、環状オレフィンと鎖状オレフィンの共重合体の少なくとも一方を含む樹脂からなる外筒に、非イオン性界面活性剤の濃度が0mg/mL超0.05mg/mL未満であるタンパク質溶液製剤を注入して、前記外筒の内壁面の一部の領域と、前記キャップと、前記ガスケットで画定される空間に前記タンパク質溶液製剤が充填されたプレフィルドシリンジを得る工程、
     を備える、プレフィルドシリンジの製造方法。
  7.  前記内壁面の前記一部の領域の水接触角が90°以上である、請求項6に記載のプレフィルドシリンジの製造方法。
  8.  前記プレフィルドシリンジを得る工程に先んじて、更に、
     前記樹脂を予備乾燥する工程と、
     前記予備乾燥後の樹脂を成形して、前記外筒を得る工程、
     を備える、請求項6または7に記載のプレフィルドシリンジの製造方法。
  9.  前記予備乾燥後の前記樹脂中の酸素濃度が、10質量ppm以下である、請求項8に記載のプレフィルドシリンジの製造方法。
  10.  前記予備乾燥を、不活性ガス雰囲気下で行う、請求項8または9に記載のプレフィルドシリンジの製造方法。
  11.  前記予備乾燥の乾燥温度が、80℃以上120℃以下である、請求項8~10の何れかに記載のプレフィルドシリンジの製造方法。
  12.  前記タンパク質溶液製剤が、抗体とその抗原結合断片の少なくとも一方を含む、請求項6~11の何れかに記載のプレフィルドシリンジの製造方法。
  13.  前記抗体が、キメラ抗体、ヒト抗体、ヒト化抗体、およびこれらのドメイン抗体からなる群から選択される少なくとも1つである、請求項12に記載のプレフィルドシリンジの製造方法。
  14.  前記タンパク質溶液製剤が、オファツムマブ、セツキシマブ、トシリズマブ、ベバシズマブ、カナキヌマブ、ゴリムマブ、ウステキヌマブ、エクリズマブ、オマリズマブ、トラスツズマブ、ペルツズマブ、アダリムマブ、デノスマブ、モガムリズマブ、リツキシマブ、ラニビズマブ、インフリキシマブ、アフリベルセプト、アバタセプト、エタネルセプト、ゲムツズマブオゾガマイシン、パニツムマブ、バシリキシマブ、セルトリズマブ ペゴル、およびパリビズマブからなる群から選択される少なくとも1つを含む、請求項6~11の何れかに記載のプレフィルドシリンジの製造方法。
     
PCT/JP2019/029094 2018-07-31 2019-07-24 プレフィルドシリンジおよびプレフィルドシリンジの製造方法 WO2020026927A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980048656.1A CN112469457B (zh) 2018-07-31 2019-07-24 预充式注射器和预充式注射器的制造方法
US17/261,870 US20210292402A1 (en) 2018-07-31 2019-07-24 Pre-filled syringe and method of producing pre-filled syringe
EP19843345.0A EP3831428A4 (en) 2018-07-31 2019-07-24 PRE-FILLED SYRINGE AND PRE-FILLED SYRINGE PRODUCTION PROCESS
JP2020533463A JP7396279B2 (ja) 2018-07-31 2019-07-24 プレフィルドシリンジおよびプレフィルドシリンジの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018143856 2018-07-31
JP2018-143856 2018-07-31
JP2018-189474 2018-10-04
JP2018189474 2018-10-04

Publications (1)

Publication Number Publication Date
WO2020026927A1 true WO2020026927A1 (ja) 2020-02-06

Family

ID=69231682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029094 WO2020026927A1 (ja) 2018-07-31 2019-07-24 プレフィルドシリンジおよびプレフィルドシリンジの製造方法

Country Status (5)

Country Link
US (1) US20210292402A1 (ja)
EP (1) EP3831428A4 (ja)
JP (1) JP7396279B2 (ja)
CN (1) CN112469457B (ja)
WO (1) WO2020026927A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114980851A (zh) * 2020-01-28 2022-08-30 日本瑞翁株式会社 预填充药剂包装和预填充药剂包装的制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093830A (ja) * 2006-10-05 2008-04-24 Jsr Corp 光学フィルムの製造方法
JP2012029918A (ja) 2010-07-30 2012-02-16 Terumo Corp ガスケット、プレフィルドシリンジ、及び打栓方法
JP5444835B2 (ja) 2009-05-20 2014-03-19 大日本印刷株式会社 プレフィルドシリンジ用注射器およびプレフィルドシリンジ
WO2016051962A1 (ja) * 2014-10-02 2016-04-07 テルモ株式会社 タンパク質溶液製剤を収容するための医療用容器
JP2016059635A (ja) * 2014-09-18 2016-04-25 キョーラク株式会社 プレフィルドシリンジ
JP2016155327A (ja) 2015-02-25 2016-09-01 日本ゼオン株式会社 樹脂製容器の製造方法および樹脂製容器
JP6076226B2 (ja) 1999-09-08 2017-02-08 中外製薬株式会社 タンパク質溶液製剤およびその安定化方法
WO2017087798A1 (en) * 2015-11-18 2017-05-26 Formycon Ag Pre-filled pharmaceutical package comprising a liquid formulation of a vegf-antagonist
JP2018070784A (ja) * 2016-10-31 2018-05-10 日本ゼオン株式会社 樹脂組成物及び樹脂成形体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5271481B2 (ja) * 1999-09-08 2013-08-21 中外製薬株式会社 タンパク質溶液製剤およびその安定化方法
AU2016356717B2 (en) * 2015-11-18 2022-09-29 Sio2 Medical Products, Inc. Pharmaceutical package for ophthalmic formulations
CN108472453A (zh) * 2016-01-20 2018-08-31 泰尔茂株式会社 注射器用合成树脂制外筒、注射器、预灌封注射器及已填充液体并已灭菌的合成树脂制容器
SG11202008540WA (en) 2018-03-06 2020-10-29 Gore & Ass Medical delivery devices having low lubricant hydrophobic syringe barrels
CN114980851A (zh) 2020-01-28 2022-08-30 日本瑞翁株式会社 预填充药剂包装和预填充药剂包装的制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6076226B2 (ja) 1999-09-08 2017-02-08 中外製薬株式会社 タンパク質溶液製剤およびその安定化方法
JP2008093830A (ja) * 2006-10-05 2008-04-24 Jsr Corp 光学フィルムの製造方法
JP5444835B2 (ja) 2009-05-20 2014-03-19 大日本印刷株式会社 プレフィルドシリンジ用注射器およびプレフィルドシリンジ
JP2012029918A (ja) 2010-07-30 2012-02-16 Terumo Corp ガスケット、プレフィルドシリンジ、及び打栓方法
JP2016059635A (ja) * 2014-09-18 2016-04-25 キョーラク株式会社 プレフィルドシリンジ
WO2016051962A1 (ja) * 2014-10-02 2016-04-07 テルモ株式会社 タンパク質溶液製剤を収容するための医療用容器
JP2016155327A (ja) 2015-02-25 2016-09-01 日本ゼオン株式会社 樹脂製容器の製造方法および樹脂製容器
WO2017087798A1 (en) * 2015-11-18 2017-05-26 Formycon Ag Pre-filled pharmaceutical package comprising a liquid formulation of a vegf-antagonist
JP2018070784A (ja) * 2016-10-31 2018-05-10 日本ゼオン株式会社 樹脂組成物及び樹脂成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3831428A4

Also Published As

Publication number Publication date
CN112469457B (zh) 2023-02-28
EP3831428A4 (en) 2021-12-22
EP3831428A1 (en) 2021-06-09
US20210292402A1 (en) 2021-09-23
JP7396279B2 (ja) 2023-12-12
CN112469457A (zh) 2021-03-09
JPWO2020026927A1 (ja) 2021-08-26

Similar Documents

Publication Publication Date Title
US6007520A (en) Medical instrument
JP6347213B2 (ja) 樹脂組成物及びそれを用いた医療用薬剤容器
JPH05293159A (ja) 衛生品用容器
JP2011026614A (ja) 重合体組成物およびその利用
JP2009144167A (ja) ポリブタジエンから作製される医療チュービング
JP3666884B2 (ja) 医療用器材
WO2020026927A1 (ja) プレフィルドシリンジおよびプレフィルドシリンジの製造方法
US20200164147A1 (en) Syringe barrel and syringe
JP2016155327A (ja) 樹脂製容器の製造方法および樹脂製容器
JPH08155007A (ja) 薬剤充填容器製剤及びこれに用いる容器
WO2020026926A1 (ja) プレフィルドシリンジおよびプレフィルドシリンジの製造方法
US20170218191A1 (en) Resin molded article
WO2021153511A1 (ja) プレフィルド薬剤パッケージ及びプレフィルド薬剤パッケージの製造方法
JP6350530B2 (ja) 滅菌済み医療用成形体の製造方法
JP3940088B2 (ja) 医療用器材
CN107250262A (zh) 树脂组合物及树脂成型体
JP6364814B2 (ja) 医療用成形体の製造方法
JP2002249554A (ja) ブロー成形品
US20240158565A1 (en) Vessel
JP3951660B2 (ja) ブロー成形容器
JPH05337164A (ja) 医薬品用栓体
TW574249B (en) Process for manufacturing molded articles
JP2004018772A (ja) 環状オレフィン系樹脂成形品のフレーム処理方法及び環状オレフィン系樹脂成形品
JP2005247372A (ja) 耐皮脂白化性加熱用ブロー成形容器とその製造方法
JP2005186311A (ja) 耐皮脂白化性加熱容器およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020533463

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019843345

Country of ref document: EP

Effective date: 20210301