WO2020026921A1 - 伝熱部材、伝熱管、熱交換器、伝熱管の製造方法および熱交換器の製造方法 - Google Patents
伝熱部材、伝熱管、熱交換器、伝熱管の製造方法および熱交換器の製造方法 Download PDFInfo
- Publication number
- WO2020026921A1 WO2020026921A1 PCT/JP2019/029058 JP2019029058W WO2020026921A1 WO 2020026921 A1 WO2020026921 A1 WO 2020026921A1 JP 2019029058 W JP2019029058 W JP 2019029058W WO 2020026921 A1 WO2020026921 A1 WO 2020026921A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat transfer
- tube
- downstream side
- upstream side
- side portion
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/10—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/42—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
- F28F13/08—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
- F28F13/12—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/04—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
Definitions
- the disclosure in this specification relates to a heat transfer member, a heat transfer tube, a heat exchanger, a method of manufacturing a heat transfer tube, and a method of manufacturing a heat exchanger.
- Patent Document 1 describes a heat transfer tube in which a concave portion and a protrusion are formed on the inner surface of a tube through which a fluid flows.
- An object of the disclosure in this specification is to provide a heat transfer member, a heat transfer tube, a heat exchanger, a method of manufacturing a heat transfer tube, and a method of manufacturing a heat exchanger, which can improve heat transfer performance.
- One of the disclosed heat transfer members is a contact surface with which the flowing fluid contacts, and a side portion protruding so as to extend linearly on the contact surface, and forms an acute angle with respect to the main flow direction of the fluid and upstream.
- a set of adjacent upstream sides that extend closer to each other and sides that protrude so as to extend linearly downstream of the contact surface from the upstream side, and each have an acute angle with respect to the main flow direction.
- a pair of adjacent downstream sides extending so as to approach the downstream side, and a set of upstream sides and a pair of downstream sides provided on the contact surface inside the upstream side.
- a concave portion that is more concave than the side portion and the downstream side portion.
- a group of heat transfer promoting portions including a set of upstream side portions, a set of downstream side portions and a concave portion are provided continuously in a plurality of groups toward the downstream side on the contact surface, and are adjacent at the upstream side and the downstream side.
- the heat transfer promoting portion is provided such that a downstream side portion of the heat transfer promoting portion on the upstream side and an upstream side portion of the heat transfer promoting portion on the downstream side are integrated.
- a pair of adjacent downstream side portions extending so as to approach each other at an acute angle with respect to the main flow direction of the fluid and proceeding downstream are formed.
- the fluid flowing along the concave portion can flow over the downstream sides while being widely dispersed in the downstream sides.
- heat transfer in the downstream side portion can be promoted, and the flow of the fluid gathering at the downstream end portion of the concave portion is suppressed. Resistance can be suppressed.
- the concave portion is located on the inner side
- a pair of adjacent upstream sides that extend so as to approach each other at an acute angle with respect to the main flow direction of the fluid and to move further upstream. Due to the shape of the set of upstream sides, the fluid flowing over the set of upstream sides and flowing into the recess can form a flow that collides near the surface of the recess. Contributes to increasing heat transfer.
- the above-mentioned group of heat transfer promoting portions is provided continuously in a plurality of groups on the contact surface toward the downstream, and the downstream side portion of the upstream heat transfer promoting portion and the upstream side portion of the downstream heat transfer promoting portion are provided. And are one.
- the fluid flows from the vicinity of the surface of the concave portion to the recess side across the vicinity of the surface of the downstream side portion and the upstream side portion, and further flows across the vicinity of the surface of the downstream side portion and the upstream side portion.
- a flow of flowing into the recess can be continuously formed. Therefore, with the flow of the fluid, the above-described effects can be continuously obtained, and a heat transfer member capable of improving heat transfer performance can be provided.
- One of the disclosed heat transfer tubes is a tube inner surface with which a fluid flowing down the inside of the tube comes into contact, and a side portion protruding so as to extend along the tube inner surface.
- a set of adjacent upstream sides extending closer to each other and a side protruding so as to extend along the pipe inner surface downstream of the upstream side, and each with respect to the pipe axis direction.
- a pair of downstream sides extending adjacent to each other at an acute angle and approaching the downstream side, and a pair of upstream sides and a pair of downstream sides provided inside the pipe on the inner surface of the pipe.
- a side portion and a concave portion that is recessed from the downstream side portion.
- a group of heat transfer enhancing portions including a set of upstream side portions, a set of downstream side portions and a concave portion are provided continuously in a plurality of groups toward the downstream on the inner surface of the pipe, and are adjacent on the upstream side and the downstream side.
- the heat transfer promoting portion is provided such that a downstream side portion of the heat transfer promoting portion on the upstream side and an upstream side portion of the heat transfer promoting portion on the downstream side are integrated.
- this heat transfer tube among the side portions where the concave portion is located on the inner side, a pair of adjacent downstream side portions that extend so as to approach each other at an acute angle with respect to the tube axis direction and proceed downstream are provided. I have. Due to the shape of the pair of downstream sides, the fluid flowing along the inner surface of the pipe can be made to flow over the downstream side while being widely dispersed from near the surface of the concave portion to the downstream side. In this way, according to the fluid flow that is dispersed near the inner surface of the pipe and passes over the downstream side portion, heat transfer in the downstream side portion can be promoted, and the flow of the fluid gathering at the downstream end near the surface of the concave portion can be suppressed.
- the heat transfer tube has a pair of adjacent upstream sides that extend closer to each other and form an acute angle with respect to the tube axis direction toward the upstream side among the sides where the concave portion is located inside. Due to the shape of the set of upstream sides, the fluid flowing over the set of upstream sides near the inner surface of the pipe and flowing into the recess can form a flow of collision near the surface of the recess. The flow contributes to increasing the heat transfer in the recess.
- a plurality of the above-described group of heat transfer promoting portions are provided continuously in the downstream direction on the inner surface of the pipe, and a downstream side portion of the heat transfer promoting portion on the upstream side and an upstream side portion of the heat transfer promoting portion on the downstream side. And are one.
- the fluid flows from the vicinity of the surface of the concave portion on the inner surface of the pipe to the concave portion across the vicinity of the surface of the downstream side portion and the upstream side portion, and further flows into the vicinity of the surface of the downstream side portion and the upstream side portion.
- a flow of traversing into the recess can be continuously formed. Therefore, with the flow of the fluid in the pipe, the above-described operation and effect can be continuously obtained, and a heat transfer pipe with improved heat transfer performance can be provided.
- One of the disclosed heat exchangers has an inner pipe in which a first fluid flows down, and an inner flow path that accommodates the inner pipe, and a second fluid flows down in an outer flow path provided between the inner pipe and an outer surface of the inner pipe.
- an outer tube, and the inner tube has the configuration of the heat transfer tube described above. According to this, since the same operation and effect as the above-described heat transfer tube can be obtained in the inner tube, it is possible to provide a heat exchanger capable of improving heat transfer performance.
- One of the disclosed methods for manufacturing a heat transfer tube includes a step of preparing a tube, a first spiral groove that proceeds clockwise and a second spiral that progresses left in the axial direction of the tube on the outer surface of the tube. Forming a first spiral protrusion that proceeds clockwise and a second spiral protrusion that proceeds leftward in the tube axis direction on the inner surface of the tube by forming the groove. . According to this manufacturing method, it is possible to manufacture a heat transfer tube having the above-described effects, and thus it is possible to provide a heat transfer tube capable of improving heat transfer performance.
- One of the disclosed methods of manufacturing a heat exchanger includes a step of preparing an outer pipe, a step of preparing an inner pipe having an outer diameter smaller than the inner diameter of the outer pipe, and a pipe axial direction on an outer surface of the inner pipe. Forming a first spiral groove proceeding clockwise and a second spiral groove proceeding left clockwise, the first spiral groove proceeding clockwise in the axial direction on the inner surface of the inner tube. A step of forming a protrusion and a second helical protrusion that advances leftward, and a step of connecting the outer tube and the inner tube so as to form a passage between the inner surface of the outer tube and the outer surface of the inner tube. And According to this manufacturing method, it is possible to manufacture a heat exchanger having the above-described operation and effect, and thus it is possible to provide a heat exchanger capable of improving heat transfer performance.
- FIG. 3 is a partial view showing a heat transfer member of the first embodiment.
- FIG. 2 is a partial cross-sectional view taken along a line II-II in FIG. 1. It is the fragmentary sectional view which showed the upstream side part, the downstream side part, and the recessed part which are facing each other in the heat transfer member. It is the fragmentary sectional view which showed the double tube type heat exchanger provided with the heat exchanger tube of a 2nd embodiment as an inner tube.
- FIG. 5 is a partial cross-sectional view taken along a line VV in FIG. 4.
- FIG. 5 is a partial cross-sectional view taken along a line VI-VI in FIG. 4. It is the graph which showed the performance evaluation result of the double tube type heat exchanger concerning a 2nd embodiment.
- FIG. 10 is a partial cross-sectional view taken along a line XX in FIG. 9.
- FIG. 10 is a partial cross-sectional view taken along a line XI-XI in FIG. 9.
- FIG. 13 is a partial cross-sectional view taken along a line XIII-XIII in FIG. 12.
- FIG. 13 is a partial cross-sectional view taken along a line XIV-XIV in FIG. 12. It is the fragmentary sectional view showing the double tube type heat exchanger provided with the heat exchanger tube of a 5th embodiment as an inner tube.
- FIG. 16 is a partial cross-sectional view taken along a line XVI-XVI in FIG. 15.
- FIG. 16 is a partial cross-sectional view taken along a line XVII-XVII in FIG. 15.
- the heat transfer member 1 is a member in which heat exchange is performed with a fluid flowing down along the surface, and heat transfer is performed between the fluid and the heat transfer member 1.
- the heat transfer member 1 is applicable to a member that absorbs heat from a fluid or a member that radiates heat to a fluid.
- the fluid that flows down around the heat transfer member 1 and comes into contact with the heat transfer member 1 is a heat medium of gas, liquid, or gas-liquid mixture, or may be a fluid that does not undergo a state change or a phase change during use. It may be.
- the heat transfer member 1 is a member having a plate shape, a block shape, or another shape, and is formed of a material having thermal conductivity, for example, a metal.
- the heat transfer member 1 has a contact surface 11 with which the flowing fluid contacts.
- the contact surface 11 includes a flat surface, a curved surface, or a combination thereof.
- the contact surface 11 is provided with a plurality of groups of heat transfer promoting portions 2 that enhance heat transfer with the fluid.
- the group of heat transfer promoting portions 2 is formed to include a set of an upstream side 20, a set of a downstream side 21, and a recess 22 provided on the contact surface 11.
- the plurality of groups of heat transfer promoting portions 2a can be formed by, for example, pressing, and when the heat transfer member 1 is made of resin, it can be formed by molding using a mold.
- a set of upstream side portions 20 are adjacent side portions that protrude so as to extend linearly on the contact surface 11 and are adjacent to each other.
- the pair of upstream sides 20 extend at an acute angle with respect to the main flow direction of the fluid so as to approach the upstream side.
- the main flow direction of the fluid is not a partial flow direction of the fluid but a general flow direction of the fluid flowing through the contact surface 11.
- Adjacent upstream side portions 20 cross each other on the upstream side and are separated farther to the downstream.
- Adjacent upstream sides 20 intersect at an intersection 23 at the upstream end.
- the upstream side portion 20 has a protrusion dimension d with respect to the surface of the concave portion 22. It is preferable that the surface of the upstream side portion 20 and the surface of the concave portion 22 are connected by a smooth curve.
- a set of downstream side portions 21 are side portions protruding so as to extend linearly downstream of the contact surface 11 from the upstream side portion 20.
- the pair of downstream side portions 21 form acute angles with respect to the main flow direction of the fluid, and extend so as to approach the downstream side.
- the adjacent downstream side portions 21 intersect on the downstream side and are separated farther to the downstream side.
- the downstream side portion 21 has a protrusion dimension d with respect to the surface of the concave portion 22. It is preferable that the surface of the downstream side portion 21 and the surface of the concave portion 22 are connected by a smooth curve.
- Adjacent downstream sides 21 intersect at an intersection 23 at the downstream end.
- the upstream side portion 20 and the downstream side portion 21 intersect at an intersection 23 which is a downstream end of the upstream side portion 20.
- intersection 23 has a distal end surface that forms a curved surface.
- the intersection 23 has a protruding dimension d with respect to the surface of the recess 22. It is preferable that the surface of the intersection 23 and the surface of the recess 22 are connected by a smooth curve.
- the upstream side portion 20 and the downstream side portion 21 have a distal end surface that forms a curved surface. This suppresses a vortex generated near the upstream side portion 20 when the fluid flowing down along the contact surface 11 flows over the upstream side portion 20 and flows into the concave portion 22. A vortex generated near the downstream side portion 21 when the vehicle gets over the portion 20 can be suppressed.
- the recess 22 is a portion that is recessed from the upstream side 20 and the downstream side 21 inside the set of the upstream side 20 and the set of the downstream side 21.
- the concave portion 22 is a portion surrounded by a pair of upstream side portions 20 and a pair of downstream side portions 21 and is surrounded by four sides. As shown in FIGS. 2 and 3, the surface of the concave portion 22 has a flat surface. It is preferable that the entire surface of the concave portion 22 is a flat surface.
- the width dimension UR of the surface and the width dimension DR of the cross section of the downstream side portion 21 are sufficiently larger.
- the shortest distance L2 is set to be larger than the total dimension obtained by adding the width dimension UR of the cross section of the upstream side section 20 and the width dimension DR of the cross section of the downstream side section 21. Is preferred.
- the length of the group of heat transfer promoting portions 2 along the contact surface 11 in the main flow direction of the fluid is larger than the length along the contact surface 11 in a direction perpendicular to the main flow direction. That is, it is preferable that the group of heat transfer promoting portions 2 have a front view shape that is longer in the mainstream direction than in the orthogonal direction. In this case, the length L1 of the recess 22 along the contact surface 11 in the mainstream direction is larger than the length along the contact surface 11 in the orthogonal direction orthogonal to the mainstream direction.
- the group of heat transfer promoting portions 2 have a rhombic shape when viewed from the front.
- one set of the upstream side part 20 and one set of the downstream side part 21 are side parts that form a rhombus whose four sides are equal in length.
- the distance L1 between the inner wall surface 23w of the intersection 23 located at the upstream end and the inner wall surface 23w of the intersection located at the downstream end in the mainstream direction in the group of heat transfer promoting units 2 is the width dimension of the cross section of the intersection. It is much larger than R1.
- the plurality of groups of heat transfer promoting sections 2 are continuously provided downstream on the contact surface 11 as shown in FIG. 1, for example. At least two heat transfer promoting portions 2 are adjacent to each other in an intersecting direction intersecting the main flow direction.
- the main flow direction with respect to the heat transfer promoting unit 2 is illustrated by a white arrow, and the flow crossing the surface of the upstream side 20 and the surface of the downstream side 21 is illustrated by an arrow line.
- FIG. 1 shows heat transfer promoting sections 2a, 2b, 2c, and 2d as an example of a plurality of groups of heat transfer promoting sections 2 provided on the contact surface 11.
- the heat transfer promoting section 2a is provided adjacent to and upstream of the heat transfer promoting section 2b.
- the heat transfer promoting section 2a is provided adjacent to and upstream of the heat transfer promoting section 2c.
- the heat transfer promoting portion 2b and the heat transfer promoting portion 2c are adjacent to each other in a direction perpendicular to the main flow direction downstream of the heat transfer promoting portion 2a.
- the heat transfer promoting portion 2b and the heat transfer promoting portion 2c are adjacent to each other in an orthogonal direction via an intersection 23 between the side portions.
- the at least two heat transfer promoting sections 2 are adjacent to each other so as to be continuous in the mainstream direction via an intersection 23 between the sides.
- the upstream heat transfer promoting section 2a and the downstream heat transfer promoting section 2d are adjacent to each other via the intersection 23 in the main flow direction.
- the heat transfer promoting portion 2b is provided adjacent to and upstream of the heat transfer promoting portion 2d.
- the heat transfer promoting section 2c is provided adjacent to and upstream of the heat transfer promoting section 2d.
- the upstream heat transfer promoting portion 2a and the downstream heat transfer promoting portion 2b are provided adjacent to each other in the cross direction.
- the downstream side portion 21 in the upstream heat transfer promoting portion 2a and the upstream side portion 20 in the downstream heat transfer promoting portion 2b are integrally formed to form one common side portion.
- the concave portion 22 of the heat transfer promoting portion 2a and the concave portion 22 of the heat transfer promoting portion 2b are adjacent to each other via an integral downstream side portion 21 and an upstream side portion 20.
- the upstream heat transfer promoting section 2a and the downstream heat transfer promoting section 2c are provided adjacent to the heat transfer promoting section 2b in the cross direction on the side opposite to the heat transfer promoting section 2b.
- the downstream side portion 21 in the upstream heat transfer promoting portion 2a and the upstream side portion 20 in the downstream heat transfer promoting portion 2c are integrally formed to form one common side portion.
- the concave portion 22 of the heat transfer promoting portion 2a and the concave portion 22 of the heat transfer promoting portion 2c are adjacent to each other via an integral downstream side portion 21 and an upstream side portion 20.
- the fluid flowing down along the contact surface 11 has a set of the upstream side portions 20 from the heat transfer promoting portion 2 located upstream. They come across each other and come into collision.
- the fluid that has flowed into the vicinity of the surface of the concave portion 22 is divided into two in the cross direction so as to cross each of the pair of downstream side portions 21, one of which flows into the concave portion 22 of the heat transfer promoting portion 2 b and the other flows into the concave portion 22.
- the fluid flows into the concave portion 22 of the transmission promoting portion 2c.
- the upstream heat transfer promoting section 2b and the downstream heat transfer promoting section 2d are provided adjacent to each other in the cross direction.
- the downstream side portion 21 of the upstream heat transfer promoting portion 2b and the upstream side portion 20 of the downstream heat transfer promoting portion 2d are integrally formed to form one common side portion.
- the concave portion 22 of the heat transfer promoting portion 2b and the concave portion 22 of the heat transfer promoting portion 2d are adjacent to each other via a downstream side portion 21 and an upstream side portion 20 which are integrated.
- the upstream heat transfer promoting section 2c and the downstream heat transfer promoting section 2d are provided adjacent to the heat transfer promoting section 2b in the cross direction on the side opposite to the heat transfer promoting section 2b.
- the downstream side portion 21 of the upstream heat transfer promoting portion 2c and the upstream side portion 20 of the downstream heat transfer promoting portion 2d are integrally formed to form one common side portion.
- the concave portion 22 of the heat transfer promoting portion 2c and the concave portion 22 of the heat transfer promoting portion 2d are adjacent to each other via an integral downstream side portion 21 and an upstream side portion 20.
- a fluid is formed in a pair with the heat transfer promoting portion 2 adjacent to the heat transfer promoting portion 2a in a direction orthogonal to the heat transfer promoting portion 2a.
- the water flows across each of the upstream side portions 20 and comes into collision with each other.
- the fluid that has flowed into the vicinity of the surface of the concave portion 22 is divided into two in the cross direction so as to cross each of the pair of downstream side portions 21, and one of the two flows into the concave portion 22 of the heat transfer promoting portion 2 adjacent in the cross direction.
- the other flows into the concave portion 22 of the heat transfer promoting portion 2d.
- a fluid is provided in a set of upstream side portions from the heat transfer promoting portion 2 adjacent to the heat transfer promoting portion 2a in a direction orthogonal to the heat transfer promoting portion 2a. 20 will flow across each other and come into collision.
- the fluid that has flowed into the vicinity of the surface of the concave portion 22 is divided into two in the cross direction so as to cross each of the pair of downstream side portions 21, one of which flows into the concave portion 22 of the heat transfer promoting portion 2 d and the other crosses. It flows into the concave portion 22 of the heat transfer promoting portion 2 adjacent in the direction.
- the fluid that has flowed into the concave portion 22 of the heat transfer promoting portion 2d from the heat transfer promoting portion 2b and the heat transfer promoting portion 2c across each of the pair of upstream side portions 20 collides near the surface of the concave portion 22. It will fit.
- the fluid that has flowed into the vicinity of the surface of the concave portion 22 is divided into two in the cross direction so as to cross each of the pair of downstream side portions 21, and two heat transfer enhancements adjacent to each other in the orthogonal direction via the cross portion 23. It flows into the section 2.
- the heat transfer member 1 is a group of heat transfer including a contact surface 11 with which the flowing fluid contacts, a set of an upstream side 20, a set of a downstream side 21, and a recess 22 provided on the contact surface 11. And a promoting unit 2.
- a pair of adjacent upstream side portions 20 are side portions protruding so as to extend linearly on the contact surface 11, and extend so as to form an acute angle with respect to the main flow direction of the fluid and to approach the upstream side. I have.
- a pair of adjacent downstream sides 21 are sides that protrude so as to extend linearly downstream of the contact surface from the upstream side, and form an acute angle with respect to the main flow direction, and become closer to the downstream.
- the concave portion 22 is a portion that is recessed from the upstream side portion 20 and the downstream side portion 21 inside the pair of upstream side portions 20 and the pair of downstream side portions 21.
- a plurality of groups of heat transfer promoting portions 2 are provided continuously on the contact surface 11 toward the downstream side.
- the downstream side portion 21 of the heat transfer promoting portion 2 on the upstream side and the upstream side portion 20 of the heat transfer promoting portion 2 on the downstream side are integrated. It is provided.
- the shape of the pair of downstream sides 21 in the mainstream direction allows the fluid flowing along the contact surface 11 to be widely dispersed from near the surface of the concave portion 22 to the downstream sides 21. It can flow out over each downstream side portion 21. Further, the fluid flowing out of the concave portion 22 across the surface of each downstream side portion 21 also flows over the surface of the upstream side portion 20 that is united with the downstream side portion 21 and flows into the internal concave portion 22. Can be repeated near the contact surface 11. As described above, according to the fluid flow passing over the downstream side portion 21 while being dispersed in the vicinity of the contact surface 11, heat transfer of the downstream side portion 21 over a wide range can be promoted.
- the heat transfer member 1 is configured such that the fluid flowing along the contact surface 11 passes over each of the pair of upstream side portions 20 and then the concave portion 22 has A flow can be formed that collide near the surface.
- the flow that intersects so as to intersect near the surface of the concave portion 22 contributes to increasing the heat transfer between the fluid flowing down the contact surface 11 and the concave portion 22.
- the heat transfer member 1 includes a plurality of groups of heat transfer promoting sections 2 provided in a continuous manner.
- the downstream side section 21 of the upstream heat transfer promoting section 2 and the upstream side section 20 of the downstream heat transfer promoting section 2 are connected to each other.
- the heat transfer member 1 Since the heat transfer member 1 contributes to suppressing the flow resistance in the fluid flow along the contact surface 11 and improving the heat transfer, the heat transfer member 1 is more remarkable in a device in which a gas or a gas-liquid two-layer fluid having a lower viscosity than a liquid flows down. It is effective.
- a plurality of groups of heat transfer promoting portions 2 are provided adjacent to each other in both the cross direction and the main flow direction crossing the main flow direction of the fluid on the contact surface 11. According to this configuration, a fluid flow moving in the order of the concave portion 22, the side portion, the concave portion 22, and the side portion in the cross direction and a fluid flow moving in a zigzag manner in the main flow direction can be formed. Therefore, the heat transfer member 1 can continuously obtain the above-described effects over a wide range of the contact surface 11.
- the group of heat transfer promoting portions 2 has a length dimension along the contact surface 11 in the main flow direction of the fluid larger than a length dimension along the contact surface 11 in a direction perpendicular to the main flow direction.
- the concave portion 22 can have a shape that is longer along the contact surface 11 in the mainstream direction than in the orthogonal direction along the contact surface 11.
- the recess 22 is a portion surrounded by a set of the upstream side 20 and a set of the downstream side 21.
- the heat transfer member 1 includes a plurality of groups of the heat transfer promoting portions 2 each including the concave portions 22 surrounded by the sides protruding in a lattice shape on the contact surface 11. Therefore, by forming the side portions protruding in a lattice shape on the contact surface 11, the heat transfer member 1 having the above-described operational effects can be obtained.
- a set of the upstream sides 20 and a set of the downstream sides 21 are sides forming a diamond shape. According to this configuration, by forming the side portions protruding in a lattice shape on the contact surface 11 such that the side length of the upstream side portion 20 and the side length of the downstream side portion 21 are equal or almost equal, It is possible to obtain the heat transfer member 1 having the above-described effects. In addition, since the heat transfer promoting portion 2 has such a shape, the heat transfer member 1 with a good balance between the suppression of the flow resistance described above and the improvement of the heat transfer described above can be provided.
- the surface of the recess 22 has a flat surface. According to this configuration, the range in which the fluid that has passed over each of the pair of upstream side portions 20 is mixed near the surface of the concave portion 22 to form a turbulent flow is formed so as not to largely vary with respect to the contact surface 11. can do. Thereby, the effect of improving the heat transfer in the concave portion 22 can be made closer to a uniform state.
- the shortest distance L2 between the inside wall surface 20w of the upstream side portion 20 and the inside wall surface 21w of the downstream side portion 21 of the upstream side portion 20 and the downstream side portion 21 in the opposing relationship is the cross section of the upstream side portion 20. Is larger than the sum of the width dimension UR and the width dimension DR of the cross section of the downstream side 21. Since the concave portion 22 is set to such a size, a turbulent flow can be formed near the surface of the concave portion 22 such that the fluid flowing over the pair of upstream side portions 20 and flowing into the concave portion 22 collides with each other. The heat transfer in the recess 22 can be promoted.
- the upstream side portion 20 and the downstream side portion 21 of the heat transfer member 1 are provided with a tip surface that forms a curved surface. According to this configuration, when the fluid flowing down along the contact surface 11 flows down from near the surface of the concave portion 22 over the downstream side portion 21 integrated with the upstream side portion 20, the downstream side portion 21 The vortex generated in the vicinity can be suppressed, which contributes to the formation of a smooth fluid flow.
- the second embodiment discloses a heat transfer tube provided with a plurality of groups of heat transfer promoting units 2 of the first embodiment. Further, the second embodiment discloses a mode in which this heat transfer tube is used as an inner tube 4 provided in a double-tube heat exchanger.
- components having the same configuration as the first embodiment are denoted by the same reference numerals, and have similar functions and effects. Configurations, operations, and effects that are not particularly described in the second embodiment are the same as those in the first embodiment, and differences from the first embodiment will be described below.
- the tube axis direction which is the direction along the tube axis 40 which is the center axis of the tube corresponds to the main flow direction of the fluid in the first embodiment.
- the inner tube 4 as an example of the heat transfer tube has a plurality of groups of heat transfer promoting portions 2 provided on the inner surface of the tube with which the fluid contacts.
- the set of upstream side parts 20 and the set of downstream side parts 21 are side parts protruding so as to extend along the inner surface of the pipe.
- the concave portion 22 is provided inside the pair of upstream side portions 20 and the pair of downstream side portions 21 on the pipe inner surface, and is located between the upstream side portion 20 and the downstream side portion 21 with respect to the pipe inner surface. It is concave. Therefore, the heat transfer tube is a tube in which the contact surface 11 is rounded into a cylindrical shape so that the contact surface 11 of the first embodiment forms an inner surface of the tube.
- the double-pipe heat exchanger shown in FIG. 4 includes an inner pipe 4 in which the first fluid flows down and an outer flow path provided between the inner pipe 4 and the outer surface 41 of the inner pipe 4.
- An outer pipe 3 through which the second fluid flows down, and an inflow pipe 31 through which the second fluid flows into the outer flow path are provided.
- the first fluid and the second fluid exchange heat via the inner pipe 4.
- a low-pressure refrigerant is used as the first fluid
- a high-pressure refrigerant is used as the second fluid.
- the heat exchanger preferably includes a group of heat transfer promoting portions 2 provided over the entire portion of the inner tube 4 where the first fluid and the second fluid exchange heat.
- this heat exchanger is a double-pipe internal heat exchanger that uses the high-temperature high-pressure refrigerant flowing out of the condenser as the second fluid and the low-temperature low-pressure refrigerant flowing out of the evaporator as the first fluid. Can be applied.
- the double-pipe internal heat exchanger can exchange heat with high efficiency by providing the inner pipe 4 having the plurality of groups of heat transfer promoting sections 2, so that the internal heat exchanger having no heat transfer promoting section can be used.
- the cooling performance can be improved and the coefficient of performance of the refrigeration cycle can be improved.
- the inner tube 4 has an outer groove 42 and an outer groove 43 formed on the outer surface.
- the outer surface side groove portion 42 is a groove portion formed on the outer surface 41 in a spiral shape clockwise with respect to the tube shaft 40.
- the outer surface side groove portion 43 is a groove portion formed on the outer surface 41 in a helical shape wound leftward with respect to the tube shaft 40.
- the outer surface side groove portion 42 and the outer surface side groove portion 43 are formed so as to intersect on the outer surface 41.
- An upstream side portion 20 and a downstream side portion 21 are formed on the back side of the outer surface side groove portion 42 and the outer surface side groove portion 43.
- the intersection 23 is formed on the back side of the intersection of the outer surface groove 42 and the outer surface groove 43.
- a concave portion 22 is formed on the back side of a portion of the outer surface 41 surrounded by the outer surface side groove portion 42 and the outer surface side groove portion 43.
- FIG. 7 is a graph showing performance evaluation results of the double-pipe internal heat exchanger of the second embodiment.
- the horizontal axis represents the pressure loss ratio of the inner pipe with the smooth pipe inner surface to the pipe passage.
- the evaluation results shown on the vertical axis are the heat exchange ratios when the heat exchange amount in the internal heat exchanger having the inner tube whose inner surface is smooth is set to 1.
- the dimension d is a protrusion dimension of the upstream side portion 20 with respect to the surface of the flat concave portion 22, and is a protrusion size of the downstream side portion 21 with respect to the surface of the flat concave portion 22.
- the dimension D is an outer diameter dimension of the inner tube 4.
- the method for manufacturing the inner tube 4 which is a heat transfer tube includes a step of preparing the inner tube 4, a right-handed first helical protrusion and a left-handed second helical protrusion on the inner surface of the inner tube 4. And a forming step of forming In the forming step, a first helical groove progressing clockwise in the pipe axis direction and a second helical groove progressing clockwise in the pipe axis direction are formed on the outer surface of the inner pipe 4, so that the clockwise winding is performed in the pipe axis direction. And a second spiral projection that progresses counterclockwise.
- the first helical groove corresponds to the outer groove 42
- the second helical groove corresponds to the outer groove 43.
- the first helical protrusion and the second helical protrusion correspond to one set of the upstream side part 20 and one set of the downstream side part 21.
- FIG. 8 shows an apparatus for manufacturing the inner tube 4 which is a heat transfer tube.
- the processing device 5 advances the inner pipe 4 clockwise in a state where the groove processing portion 51 provided at the tip of the press tool 50 is pressed against the outer surface of the pipe and the inner pipe 4 is plastically deformed.
- the first spiral groove can be formed.
- the processing device 5 forms the first spiral groove on the outer surface of the tube and simultaneously forms the first spiral protrusion on the inner surface of the tube.
- the processing device 5 can form the second spiral groove by moving the inner pipe 4 left-handed in a state where the groove processing part 51 is pressed against the outer surface of the pipe and the inner pipe 4 is plastically deformed.
- the processing device 5 forms the second spiral groove on the outer surface of the tube and simultaneously forms the second spiral protrusion on the inner surface of the tube. Then, the heat exchanger shown in FIG. 4 performs a joining step of joining the outer tube 3 and the inner tube 4 so as to form a passage between the inner tube 4 thus formed and the inner surface of the outer tube 3.
- the heat transfer tube having the inner tube 4 as an example includes a tube inner surface with which a fluid flowing down the inside of the tube comes into contact, a set of upstream side portions 20, a set of downstream side portions 21, and a concave portion provided on the tube inner surface. And a group of heat transfer promoting portions 2 including the first heat transfer portion 22.
- a pair of adjacent upstream side portions 20 are side portions protruding so as to extend along the inner surface of the pipe, and form acute angles with respect to the pipe axis direction and extend closer to the upstream side.
- a pair of adjacent downstream side portions 21 are side portions protruding so as to extend along the pipe inner surface downstream of the upstream side portion 20. It extends to approach.
- the concave portion 22 is provided inside the pair of upstream side portions 20 and the pair of downstream side portions 21 on the inner surface of the pipe, and is recessed from the upstream side portion 20 and the downstream side portion 21.
- the group of heat transfer promoting sections 2 is provided continuously in plural groups toward the downstream side on the inner surface of the tube.
- the downstream side portion 21 of the heat transfer promoting portion 2 on the upstream side and the upstream side portion 20 of the heat transfer promoting portion 2 on the downstream side are integrated. It is provided as follows.
- the fluid flowing along the inner surface of the pipe is widely dispersed from the vicinity of the surface of the concave portion 22 to the downstream side portion 21 by the shape of the pair of downstream side portions 21 in the tube axis direction. It can flow out over the downstream side portion 21. Further, the fluid that has flowed out of the concave portion 22 across the surface of each downstream side portion 21 also gets over the surface of the upstream side portion 20 that is united with the downstream side portion 21 and flows into the internal concave portion 22. This flow can be continuously repeated near the inner surface of the pipe.
- the heat transfer tube contributes to the suppression of flow resistance and the improvement of heat transfer in the fluid flow along the inner surface of the tube, so it exerts a more remarkable effect in devices in which gas or gas-liquid two-layer fluid with lower viscosity than liquid flows down I do.
- the heat transfer tube has a shape in the tube axis direction provided by the set of upstream sides 20, so that the fluid flowing along the inner surface passes over each of the set of upstream sides 20, and then near the surface of the recess 22.
- a collision flow can be formed.
- the flow mixed so as to intersect near the surface of the concave portion 22 contributes to enhancing the heat transfer between the fluid flowing down the inner surface of the pipe and the concave portion 22.
- the heat transfer tube includes one downstream side 21 of the heat transfer promotion unit 2 on the upstream side and one upstream side 20 of the heat transfer promotion unit 2 on the downstream side.
- a plurality of groups of heat transfer promoting portions 2 provided in the heat transfer tubes are provided adjacent to each other in both the cross direction and the tube axis direction that intersect the tube axis direction on the inner surface of the tube. According to this configuration, along the inner surface of the pipe, a fluid flow that moves in the order of the concave portion 22, the side portion, the concave portion 22, and the side portion in the cross direction and a fluid flow that moves in a zigzag manner in the main flow direction are formed. be able to. Therefore, the heat transfer tube can continuously obtain the above-described effects over a wide range of the inner surface of the tube.
- a group of heat transfer promoting portions 2 provided in the heat transfer tube have a length in the tube axis direction larger than a length in the circumferential direction. According to this configuration, it is possible to form the concave portion 22 having a shape in which the length along the pipe inner surface in the pipe axis direction is longer than the length along the pipe inner surface in the circumferential direction. Thereby, after the fluid flowing along the inner surface of the pipe passes over each of the pair of upstream side portions 20, the area where the fluid collides near the surface of the concave portion 22 can be lengthened in the pipe axis direction. The heat transfer between the fluid flowing down the inner surface of the pipe and the recess 22 can be improved.
- the recess 22 provided in the heat transfer tube is a portion surrounded by one set of the upstream side part 20 and one set of the downstream side part 21.
- the heat transfer tube includes a plurality of groups of the heat transfer promoting portions 2 each including the concave portion 22 surrounded by the side protruding in a lattice shape on the inner surface of the tube. Therefore, by forming the side portions protruding in a lattice shape on the inner surface of the tube, it is possible to obtain a heat transfer tube having the above-described effects.
- the pair of upstream side portions 20 and the pair of downstream side portions 21 provided in the heat transfer tube are preferably sides that exhibit a rhombic shape when the inner surface of the tube is flattened. According to this configuration, by forming the side portions projecting in a lattice shape on the inner surface of the tube such that the side length of the upstream side portion 20 and the side length of the downstream side portion 21 are equal or almost equal, the above-described configuration is achieved. Thus, it is possible to obtain a heat transfer tube having the function and effect described above. In addition, since the heat transfer promoting section 2 has such a shape, a heat transfer tube with a good balance between the suppression of the flow resistance described above and the improvement of the heat transfer described above can be provided.
- the creepage distance along the inner surface of the inner wall surface 20w of the upstream side portion 20 and the inner wall surface 21w of the downstream side portion 21 is upstream with respect to the upstream side portion 20 and the downstream side portion 21 facing each other. It is larger than the sum of the width dimension UR of the cross section of the side section 20 and the width dimension DR of the cross section of the downstream side section 21. Since the concave portion 22 is set to such a size on the inner surface of the pipe, a turbulent flow in which the fluid flowing over the pair of upstream side portions 20 and flowing into the concave portion 22 collides near the surface of the concave portion 22 is formed. Since it can be formed, heat transfer in the concave portion 22 can be promoted.
- the upstream side portion 20 and the downstream side portion 21 of the heat transfer tube are provided with a curved end surface. According to this configuration, when the fluid flowing down along the inner surface of the pipe flows down from near the surface of the concave portion 22 over the downstream side portion 21 integrated with the upstream side portion 20, the vicinity of the downstream side portion 21. The vortex generated in the fluid can be suppressed, which contributes to the formation of a smooth fluid flow.
- the heat transfer tube includes an outer groove 42 and an outer groove 43 formed on the outer surface of the tube.
- the upstream side portion 20 and the downstream side portion 21 are provided on the back side of the outer surface side groove portion 42 and the outer surface side groove portion 43.
- a plurality of groups of the heat transfer promoting portions 2 including the upstream side portion 20 and the downstream side portion 21 provided on the back side of the outer surface side groove portion 42 and the outer surface side groove portion 43 are provided. Therefore, by forming the outer surface side groove portion 42 and the outer surface side groove portion 43 that form the upstream side portion 20 and the downstream side portion 21 on the tube inner surface side on the outer surface of the tube, a heat transfer tube having the above-described operational effects is obtained. be able to.
- each protrusion dimension d of the upstream side portion 20 and the downstream side portion 21 with respect to the flat surface is set to be 0.1 times or less the outer diameter dimension D of the pipe.
- the second fluid is supplied to the outer flow path provided between the inner pipe 4 in which the first fluid flows down and the outer surface 41 of the inner pipe 4 that houses the inner pipe 4. And an outer pipe 3 flowing down.
- the inner tube 4 has the configuration of the heat transfer tube described above. According to this configuration, the same effect as the above-described heat transfer tube can be obtained in the inner tube 4, so that a heat exchanger with improved heat transfer performance can be provided.
- a plurality of groups of heat transfer promoting portions 2 provided in the heat exchanger are provided over the entire portion of the inner pipe 4 where the first fluid and the second fluid exchange heat. According to this configuration, it is possible to provide a double-pipe heat exchanger capable of improving the heat transfer performance over the entire portion where the first fluid and the second fluid exchange heat.
- the method of manufacturing a heat transfer tube includes the steps of preparing a tube and forming, on the outer surface of the tube, a first spiral groove progressing clockwise and a second spiral groove progressing left in the axial direction of the tube. Forming a first helical projection that progresses clockwise and a second helical projection that progresses leftward in the pipe axis direction on the inner surface of the pipe.
- this manufacturing method by forming right-handed and left-handed spiral grooves on the outer surface of the tube, a plurality of groups of heat transfer promoting portions 2 including the side portions projecting like a lattice and the concave portions 22 on the inner surface of the tube. Can be formed. Therefore, according to this manufacturing method, it is possible to manufacture a heat transfer tube having the above-described operation and effect, and it is possible to provide a heat transfer tube capable of improving heat transfer performance.
- the method of manufacturing the heat exchanger includes a step of preparing the outer pipe 3 and a step of preparing the inner pipe 4 having an outer diameter smaller than the inner diameter of the outer pipe 3. Further, this manufacturing method includes a forming step of forming a spiral groove on the inner surface of the inner tube 4 and a joining step.
- a first helical groove progressing clockwise in the pipe axis direction and a second helical groove progressing clockwise in the pipe axis direction are formed on the outer surface of the inner pipe 4 so that the pipe shaft is formed on the inner surface of the inner pipe 4.
- a first helical protrusion that progresses clockwise in the direction and a second helical protrusion that progresses counterclockwise in the direction are formed.
- the outer tube 3 and the inner tube 4 are joined so as to form a passage between the inner surface of the outer tube 3 and the outer surface of the inner tube 4.
- the inner tube 4 by forming the right-handed and left-handed spiral grooves on the outer surface of the inner tube 4, a plurality of groups of heat including the side portions and the recesses 22 projecting in a grid on the inner surface of the inner tube 4 are formed.
- the transmission promotion part 2 can be formed. Therefore, according to this manufacturing method, since the inner tube 4 can be manufactured as a heat transfer tube having the above-described effects, a double-pipe heat exchanger that can improve heat transfer performance can be provided.
- a third embodiment will be described with reference to FIGS.
- the third embodiment discloses a heat transfer tube provided with a plurality of groups of heat transfer promoting sections 2 as in the second embodiment, and is different from the double tube heat exchanger of the second embodiment.
- the shape of the outer surface side groove 143 formed on the outer surface 41 of the inner tube 104 is different.
- components having the same configuration as those of the first embodiment and the second embodiment are denoted by the same reference numerals, and have similar functions and effects. Configurations, operations, and effects that are not particularly described in the third embodiment are the same as those in the above-described embodiment, and different points will be described below.
- the inner tube 104 includes an outer groove 42 and an outer groove 143 formed on the outer surface 41.
- the outer surface side groove portion 143 is a groove portion formed in a left-handed spiral shape in which a groove portion is not formed partially with respect to the outer surface side groove portion 43.
- the outer surface side groove portion 42 and the outer surface side groove portion 143 have an angle so as to intersect with each other on the outer surface 41.
- An upstream side portion 20 and a downstream side portion 21 are formed on the back side of the outer surface side groove portion 42.
- An upstream side portion 120 and a downstream side portion 121 are formed on the back side of the outer surface side groove portion 42.
- the upstream side portion 120 and the downstream side portion 121 have the same functions and effects as the upstream side portion 20 and the downstream side portion 21.
- An intersection 23 is formed on the back side of the intersection of the outer surface groove 42 and the outer surface groove 143.
- a concave portion 22 is formed on the back side of an inner portion between the outer surface side groove portion 42 and the outer surface side groove portion 143.
- the first spiral groove corresponds to the outer groove 42
- the second spiral groove corresponds to the outer groove 143.
- the heat transfer tube includes the outer groove 42 and the outer groove 143 formed on the outer surface of the tube.
- the upstream side portions 20 and 120 and the downstream side portions 21 and 121 are provided on the back side of the outer surface side groove portion 42 and the outer surface side groove portion 143.
- the fourth embodiment discloses a heat transfer tube provided with a plurality of groups of heat transfer promoting portions 2 as in the second embodiment, and is different from the double tube heat exchanger of the second embodiment.
- the pitch of the outer surface side groove 43 formed on the outer surface 41 is set small.
- components having the same configuration as the first embodiment and the second embodiment are denoted by the same reference numerals and have the same functions and effects. Configurations, operations, and effects that are not particularly described in the fourth embodiment are the same as those in the above-described embodiment.
- a pair of upstream side portions 20 and a pair of downstream side portions 21 provided on the inner surface of the inner tube 204 are formed when the inner surface of the tube is developed in a plane. It is a side that exhibits a parallelogram.
- the fifth embodiment discloses a heat transfer tube provided with a plurality of groups of heat transfer promoting sections 2 as in the second embodiment, and is different from the double-tube heat exchanger of the second embodiment. , In that no groove is formed on the outer surface 41 of the inner tube 304.
- components having the same configuration as that of the above-described embodiment are denoted by the same reference numerals, and have similar functions and effects. Configurations, operations, and effects that are not particularly described in the fifth embodiment are the same as those in the above-described embodiment, and different points will be described below.
- the inner tube 304 has a set of upstream sides forming a group of heat transfer promoting portions 2 on the inner surface of the tube, even though the outer surface side groove portion is not formed on the outer surface 41.
- a portion 20 and a pair of downstream side portions 21 are provided.
- the disclosure of this specification is not limited to the illustrated embodiments.
- the disclosure includes the illustrated embodiments and variations based thereon based on those skilled in the art.
- the disclosure is not limited to the combination of the components and elements shown in the embodiment, and can be implemented with various modifications.
- the disclosure can be implemented in various combinations.
- the disclosure may have additional parts that can be added to the embodiments.
- the disclosure includes those in which the components and elements of the embodiments are omitted.
- the disclosure encompasses the replacement or combination of parts, elements, between one embodiment and another.
- the disclosed technical scope is not limited to the description of the embodiments.
- the disclosed technical range is shown by the description of the claims, and should be construed to include all modifications within the meaning and scope equivalent to the description of the claims.
- the group of heat transfer promoting portions that can achieve the object disclosed in the specification is not limited to the front view shape disclosed in the above embodiment.
- a group of heat transfer promoting parts are rhombic, square in shape, in which the lengths of the four sides are substantially equal, the lengths of the adjacent upstream sides are substantially equal, and the lengths of the adjacent downstream sides are substantially equal.
- a front-view shape such as a kite-shaped square having two sets of sides having the same length may be configured.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
伝熱部材は、流体の接触面(11)に設けられた一組の上流側辺部(20)、一組の下流側辺部(21)および凹部(22)を含む一群の熱伝達促進部(2)とを備える。隣り合う一組の上流側辺部は、接触面において突出し流体の主流方向に対してそれぞれ鋭角をなし上流に進むほど接近するように延びる。隣り合う一組の下流側辺部は、上流側辺部よりも下流において突出し主流方向に対してそれぞれ鋭角をなし下流に進むほど接近するように延びる。凹部は、一組の上流側辺部と一組の下流側辺部との内側において上流側辺部および下流側辺部よりも凹んでいる。一群の熱伝達促進部は下流に向けて複数群連続して設けられている。上流側の熱伝達促進部の下流側辺部と下流側の熱伝達促進部の上流側辺部とが一体をなしている。
Description
本出願は、2018年8月1日に出願された日本特許出願2018-145130号に基づくもので、ここにその記載内容を援用する。
この明細書における開示は、伝熱部材、伝熱管、熱交換器、伝熱管の製造方法および熱交換器の製造方法に関する。
特許文献1には、流体が流下する管内面に凹部と突部とが形成された伝熱管が記載されている。
特許文献1に記載の伝熱管によれば、凹部の正面視形状が円形状であるため、管内面に沿って流れる流体が凹部の表面近傍から凹部の外に流出するときに凹部の下流端部に集中する流れが形成されやすい。このように流体が凹部の表面近傍から下流端部に集まる流れは、凹部から流出するときの流動抵抗が増えるとともに、凹部の周縁部における熱伝達効果が狭い範囲に集中する可能性がある。流体が接触する部材と流体との熱伝達については改良が求められている。
この明細書における開示の目的は、熱伝達性能の向上が図れる伝熱部材、伝熱管および熱交換器、伝熱管の製造方法および熱交換器の製造方法を提供することである。
開示された伝熱部材の一つは、流下する流体が接触する接触面と、接触面において直線状に延びるように突出する辺部であり、流体の主流方向に対してそれぞれ鋭角をなし上流に進むほど接近するように延びて隣り合う一組の上流側辺部と、上流側辺部よりも接触面の下流において直線状に延びるように突出する辺部であり、主流方向に対してそれぞれ鋭角をなし下流に進むほど接近するように延びて隣り合う一組の下流側辺部と、一組の上流側辺部と一組の下流側辺部との内側において接触面に設けられて上流側辺部および下流側辺部よりも凹んでいる凹部と、を備える。一組の上流側辺部、一組の下流側辺部および凹部を含む一群の熱伝達促進部は、接触面において下流に向けて複数群連続して設けられ、上流側と下流側とで隣接する熱伝達促進部は、上流側の熱伝達促進部における下流側辺部と下流側の熱伝達促進部における上流側辺部とが一体をなすように設けられている。
この伝熱部材によれば、凹部が内側に位置する辺部のうち、流体の主流方向に対してそれぞれ鋭角をなし下流に進むほど接近するように延びて隣り合う一組の下流側辺部を備えている。この一組の下流側辺部の形状により、凹部に沿って流れる流体を下流側辺部に広く分散させながら下流側辺部を乗り越えて流出させることができる。このように分散して下流側辺部を乗り越える流体流れによれば、下流側辺部における熱伝達を促進でき、さらに流体が凹部の下流端部に集まる流れが抑えられるので、流体の集中による流動抵抗を抑制できる。さらに凹部が内側に位置する辺部のうち、流体の主流方向に対してそれぞれ鋭角をなし上流に進むほど接近するように延びて隣り合う一組の上流側辺部を備えている。この一組の上流側辺部の形状により、一組の上流側辺部のそれぞれを乗り越えて凹部に流入する流体が凹部の表面近傍においてぶつかり合う流れを形成できるので、この混ざり合う流れが凹部における熱伝達を高めることに寄与する。
さらに前述した一群の熱伝達促進部が接触面において下流に向かって複数群連続して設けられ、上流側の熱伝達促進部における下流側辺部と下流側の熱伝達促進部における上流側辺部とが一体をなしている。この構成により、流体は、凹部の表面近傍から下流側辺部および上流側辺部の表面近傍を横断して凹部に流入し、さらに下流側辺部および上流側辺部の表面近傍を横断して凹部に流入するという流れを連続的に形成できる。したがって、流体の流下に伴い、前述した作用効果を連続的に得ることができ、熱伝達性能の向上が図れる伝熱部材を提供できる。
開示された伝熱管の一つは、管の内部を流下する流体が接触する管内面と、管内面に沿って延びるように突出する辺部であり、管軸方向に対してそれぞれ鋭角をなし上流に進むほど接近するように延びて隣り合う一組の上流側辺部と、上流側辺部よりも下流において管内面に沿って延びるように突出する辺部であり、管軸方向に対してそれぞれ鋭角をなし下流に進むほど接近するように延びて隣り合う一組の下流側辺部と、管内面において一組の上流側辺部と一組の下流側辺部との内側に設けられて上流側辺部および下流側辺部よりも凹んでいる凹部と、を備える。一組の上流側辺部、一組の下流側辺部および凹部を含む一群の熱伝達促進部は、管内面において下流に向けて複数群連続して設けられ、上流側と下流側とで隣接する熱伝達促進部は、上流側の熱伝達促進部における下流側辺部と下流側の熱伝達促進部における上流側辺部とが一体をなすように設けられている。
この伝熱管によれば、凹部が内側に位置する辺部のうち、管軸方向に対してそれぞれ鋭角をなし下流に進むほど接近するように延びて隣り合う一組の下流側辺部を備えている。この一組の下流側辺部の形状により、管内面に沿って流れる流体を凹部の表面近傍から下流側辺部に広く分散させながら下流側辺部を乗り越えて流出させることができる。このように管内面近傍において分散しながら下流側辺部を乗り越える流体流れによれば、下流側辺部における熱伝達を促進でき、さらに流体が凹部の表面近傍において下流端部に集まる流れが抑えられるので、流体の集中による管内面近傍の流動抵抗を抑制できる。さらに伝熱管は、凹部が内側に位置する辺部のうち、管軸方向に対してそれぞれ鋭角をなし上流に進むほど接近するように延びて隣り合う一組の上流側辺部を備えている。この一組の上流側辺部の形状により、管内面近傍において一組の上流側辺部のそれぞれを乗り越えて凹部に流入する流体が凹部の表面近傍においてぶつかり合う流れを形成できるので、この混ざり合う流れが凹部における熱伝達を高めることに寄与する。
さらに前述した一群の熱伝達促進部が管内面において下流に向かって複数群連続して設けられ、上流側の熱伝達促進部における下流側辺部と下流側の熱伝達促進部における上流側辺部とが一体をなしている。この構成により、流体は、管内面において凹部の表面近傍から下流側辺部および上流側辺部の表面近傍を横断して凹部に流入し、さらに下流側辺部および上流側辺部の表面近傍を横断して凹部に流入するという流れを連続的に形成できる。したがって、流体の管内流下に伴い、前述した作用効果を連続的に得ることができ、熱伝達性能の向上が図れる伝熱管を提供できる。
開示された熱交換器の一つは、第1流体が内部を流下する内管と、内管を収容し、内管の外面との間に設けられた外側流路に第2流体が流下する外管と、を備え、内管は前述した伝熱管の構成を備えている。これによれば、内管において前述した伝熱管と同様の作用効果を奏することができるので、熱伝達性能の向上が図れる熱交換器を提供できる。
開示された伝熱管の製造方法の一つは、管を準備する工程と、管の外面に管軸方向に、右巻きに進行する第1の螺旋状溝部と左巻きに進行する第2の螺旋状溝部とを形成することにより、管の内面に管軸方向に、右巻きに進行する第1の螺旋状突部と左巻きに進行する第2の螺旋状突部とを形成する工程と、を含む。この製造方法によれば、前述した作用効果を奏する伝熱管を製造できるので、熱伝達性能の向上が図れる伝熱管を提供できる。
開示された熱交換器の製造方法の一つは、外管を準備する工程と、外管の内径よりも小さい外径を有する内管を準備する工程と、内管の外面に管軸方向に、右巻きに進行する第1の螺旋状溝部と左巻きに進行する第2の螺旋状溝部とを形成することにより、内管の内面に管軸方向に、右巻きに進行する第1の螺旋状突部と左巻きに進行する第2の螺旋状突部とを形成する工程と、外管の内面と内管の外面との間に通路を形成するように外管と内管を結合する結合工程と、を含む。この製造方法によれば、前述した作用効果を奏する熱交換器を製造できるので、熱伝達性能の向上が図れる熱交換器を提供できる。
以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても実施形態同士を部分的に組み合せることも可能である。
(第1実施形態)
図1~図3を参照しながら第1実施形態の伝熱部材1について説明する。伝熱部材1は、表面を沿うように流下する流体との間で熱交換が行われ、流体と伝熱部材1とにおいて熱伝達が行われる部材である。伝熱部材1は、流体から吸熱する部材や、流体に放熱する部材に適用可能である。伝熱部材1の周囲を流下して伝熱部材1に接触する流体は、気体、液体または気液混合の熱媒体であり、あるいは使用時に状態変化を伴わない流体でもよいし相変化を伴う流体であってもよい。伝熱部材1は板状、ブロック状、その他の形状をなす部材であり、熱伝導性を有する材質、例えば金属によって形成されている。
図1~図3を参照しながら第1実施形態の伝熱部材1について説明する。伝熱部材1は、表面を沿うように流下する流体との間で熱交換が行われ、流体と伝熱部材1とにおいて熱伝達が行われる部材である。伝熱部材1は、流体から吸熱する部材や、流体に放熱する部材に適用可能である。伝熱部材1の周囲を流下して伝熱部材1に接触する流体は、気体、液体または気液混合の熱媒体であり、あるいは使用時に状態変化を伴わない流体でもよいし相変化を伴う流体であってもよい。伝熱部材1は板状、ブロック状、その他の形状をなす部材であり、熱伝導性を有する材質、例えば金属によって形成されている。
図1に示すように、伝熱部材1は、流下する流体が接触する接触面11を備えている。接触面11は、平坦状面、湾曲面またはこれらを組み合わせた面を含んでいる。接触面11には、流体との熱伝達を高める複数群の熱伝達促進部2が設けられている。一群の熱伝達促進部2は、接触面11に設けられた、一組の上流側辺部20と一組の下流側辺部21と凹部22とを含んで形成されている。複数群の熱伝達促進部2aは、伝熱部材1が金属製である場合は例えばプレス加工によって形成可能であり、樹脂製である場合は金型を用いた成形によって形成可能である。
一組の上流側辺部20は、接触面11において直線状に延びるようにそれぞれ突出し隣り合う辺部である。一組の上流側辺部20は、流体の主流方向に対してそれぞれ鋭角をなし上流に進むほど接近するように延びている。流体の主流方向は、流体の部分的な流下方向ではなく、接触面11を流れる流体の全体的な流下方向のことである。隣り合う上流側辺部20は、上流側において交差し下流に進むほど大きく離間している。隣り合う上流側辺部20は、上流端の交差部23において交差している。上流側辺部20は、凹部22の表面に対する突出寸法dを有している。上流側辺部20の表面と凹部22の表面とは滑らかな曲線で接続されていることが好ましい。
一組の下流側辺部21は、上流側辺部20よりも接触面11の下流において直線状に延びるように突出する辺部である。一組の下流側辺部21は、流体の主流方向に対してそれぞれ鋭角をなし下流に進むほど接近するように延びている。隣り合う下流側辺部21は、下流側において交差し下流に進むほど大きく離間している。下流側辺部21は、凹部22の表面に対する突出寸法dを有している。下流側辺部21の表面と凹部22の表面とは滑らかな曲線で接続されていることが好ましい。隣り合う下流側辺部21は、下流端の交差部23において交差している。上流側辺部20と下流側辺部21は、上流側辺部20の下流端である交差部23において交差している。交差部23は、湾曲面をなす先端面を備えていることが好ましい。交差部23は、凹部22の表面に対する突出寸法dを有している。交差部23の表面と凹部22の表面とは滑らかな曲線で接続されていることが好ましい。
図3に示すように、上流側辺部20、下流側辺部21は、湾曲面をなす先端面を備えていることが好ましい。これにより、接触面11に沿って流下する流体が、上流側辺部20を乗り越えて凹部22に流入するときに上流側辺部20の近傍に発生する渦を抑制し、凹部22から上流側辺部20を乗り越えるときに下流側辺部21の近傍に発生する渦を抑制することができる。
凹部22は、一組の上流側辺部20と一組の下流側辺部21との内側において上流側辺部20および下流側辺部21よりも凹んでいる部分である。凹部22は、一組の上流側辺部20と一組の下流側辺部21とで囲まれた部分であり、四辺によって囲まれている。図2、図3に示すように、凹部22の表面は平坦状面を有している。凹部22の表面は全体が平坦状面であることが好ましい。
対向関係にある上流側辺部20と下流側辺部21に関して、上流側辺部20の内側壁面20wと下流側辺部21の内側壁面21wとの最短距離L2は、上流側辺部20の横断面の幅寸法URや下流側辺部21の横断面の幅寸法DRよりも十分に大きい。図3に示すように、最短距離L2は、上流側辺部20の横断面の幅寸法URと下流側辺部21の横断面の幅寸法DRとを合計した合計寸法よりも大きく設定されていることが好ましい。
一群の熱伝達促進部2は、流体の主流方向に接触面11に沿った長さ寸法が主流方向に対して直交する直交方向に接触面11に沿った長さ寸法よりも大きいことが好ましい。つまり、一群の熱伝達促進部2は、直交方向よりも主流方向に細長い正面視形状であることが好ましい。この場合、凹部22は、主流方向に接触面11に沿った長さ寸法L1が主流方向に対して直交する直交方向に接触面11に沿った長さ寸法よりも大きい。
また、一群の熱伝達促進部2は、正面視で菱形状であることが好ましい。この場合、一組の上流側辺部20と一組の下流側辺部21とは、四辺の長さが同等である菱形状を形成する辺部である。一群の熱伝達促進部2において主流方向について、上流端に位置する交差部23の内側壁面23wと下流端に位置する交差部の内側壁面23wとの距離L1は、交差部の横断面の幅寸法R1よりも十分に大きい。
複数群の熱伝達促進部2は、例えば図1に示すように、接触面11において下流に向けて連続して設けられている。少なくとも2個の熱伝達促進部2は、主流方向に対して交差する交差方向に隣接している。図1には、熱伝達促進部2に対する主流方向を白抜き矢印によって例示し、上流側辺部20の表面や下流側辺部21の表面を横断する流れを矢印線によって例示している。
図1には、接触面11に設けられた複数群の熱伝達促進部2の一例として、熱伝達促進部2a,2b,2c,2dを示している。熱伝達促進部2aは、熱伝達促進部2bよりも上流側に隣接して設けられている。熱伝達促進部2aは、熱伝達促進部2cよりも上流側に隣接して設けられている。熱伝達促進部2bと熱伝達促進部2cは、熱伝達促進部2aよりも下流において、主流方向に対して直交する直交方向に隣接している。熱伝達促進部2bと熱伝達促進部2cは、辺部と辺部との交差部23を介して直交方向に隣接している。少なくとも2個の熱伝達促進部2は、辺部と辺部との交差部23を介して主流方向に連なるように隣接している。上流側の熱伝達促進部2aと下流側の熱伝達促進部2dは、主流方向について交差部23を介して隣接している。熱伝達促進部2bは、熱伝達促進部2dよりも上流側に隣接して設けられている。熱伝達促進部2cは、熱伝達促進部2dよりも上流側に隣接して設けられている。
上流側の熱伝達促進部2aと下流側の熱伝達促進部2bは、交差方向に隣接して設けられている。上流側の熱伝達促進部2aにおける下流側辺部21と下流側の熱伝達促進部2bにおける上流側辺部20は一体をなして共通の一つの辺部を形成している。熱伝達促進部2aの凹部22と熱伝達促進部2bの凹部22は、一体である下流側辺部21と上流側辺部20を介して隣接している。上流側の熱伝達促進部2aと下流側の熱伝達促進部2cは、熱伝達促進部2bとは反対側において交差方向に隣接して設けられている。上流側の熱伝達促進部2aにおける下流側辺部21と下流側の熱伝達促進部2cにおける上流側辺部20は一体をなして共通の一つの辺部を形成している。熱伝達促進部2aの凹部22と熱伝達促進部2cの凹部22は、一体である下流側辺部21と上流側辺部20を介して隣接している。
このような構成により、熱伝達促進部2aにおける凹部22の表面近傍には、接触面11に沿って流下する流体が、上流に位置する熱伝達促進部2から一組の上流側辺部20のそれぞれを横断して流入してぶつかり合うようになる。凹部22の表面近傍に流入した流体は一組の下流側辺部21のそれぞれを横断するように交差方向に2つに分かれて、一方が熱伝達促進部2bの凹部22に流入し他方が熱伝達促進部2cの凹部22に流入するようになる。
上流側の熱伝達促進部2bと下流側の熱伝達促進部2dは、交差方向に隣接して設けられている。上流側の熱伝達促進部2bにおける下流側辺部21と下流側の熱伝達促進部2dにおける上流側辺部20は一体をなして共通の一つの辺部を形成している。熱伝達促進部2bの凹部22と熱伝達促進部2dの凹部22は、一体である下流側辺部21と上流側辺部20を介して隣接している。上流側の熱伝達促進部2cと下流側の熱伝達促進部2dは、熱伝達促進部2bとは反対側において交差方向に隣接して設けられている。上流側の熱伝達促進部2cにおける下流側辺部21と下流側の熱伝達促進部2dにおける上流側辺部20は一体をなして共通の一つの辺部を形成している。熱伝達促進部2cの凹部22と熱伝達促進部2dの凹部22は、一体である下流側辺部21と上流側辺部20を介して隣接している。
このような構成により、熱伝達促進部2bの凹部22の表面近傍には、流体が、熱伝達促進部2aと直交方向に熱伝達促進部2aに隣接する熱伝達促進部2とから一組の上流側辺部20のそれぞれを横断して流入してぶつかり合うようになる。凹部22の表面近傍に流入した流体は一組の下流側辺部21のそれぞれを横断するように交差方向に2つに分かれて、一方が交差方向に隣接する熱伝達促進部2の凹部22に流入し他方が熱伝達促進部2dの凹部22に流入するようになる。
また、熱伝達促進部2cの凹部22の表面近傍には、流体が、熱伝達促進部2aと直交方向に熱伝達促進部2aに隣接する熱伝達促進部2とから一組の上流側辺部20のそれぞれを横断して流入してぶつかり合うようになる。凹部22の表面近傍に流入した流体は一組の下流側辺部21のそれぞれを横断するように交差方向に2つに分かれて、一方が熱伝達促進部2dの凹部22に流入し他方が交差方向に隣接する熱伝達促進部2の凹部22に流入するようになる。また、熱伝達促進部2bと熱伝達促進部2cとから一組の上流側辺部20のそれぞれを横断して熱伝達促進部2dの凹部22に流入した流体は、凹部22の表面近傍でぶつかり合うようになる。凹部22の表面近傍に流入した流体は一組の下流側辺部21のそれぞれを横断するように交差方向に2つに分かれて、交差部23を介して直交方向に隣接する2つの熱伝達促進部2に流入するようになる。
第1実施形態の伝熱部材1がもたらす作用効果について説明する。伝熱部材1は、流下する流体が接触する接触面11と、接触面11に設けられた一組の上流側辺部20、一組の下流側辺部21および凹部22を含む一群の熱伝達促進部2とを備える。隣り合う一組の上流側辺部20は、接触面11において直線状に延びるように突出する辺部であり、流体の主流方向に対してそれぞれ鋭角をなし上流に進むほど接近するように延びている。隣り合う一組の下流側辺部21は、上流側辺部よりも接触面の下流において直線状に延びるように突出する辺部であり、主流方向に対してそれぞれ鋭角をなし下流に進むほど接近するように延びている。凹部22は、一組の上流側辺部20と一組の下流側辺部21との内側において上流側辺部20および下流側辺部21よりも凹んでいる部分である。一群の熱伝達促進部2は接触面11において下流に向けて複数群連続して設けられている。上流側と下流側とで隣接する熱伝達促進部2は、上流側の熱伝達促進部2における下流側辺部21と下流側の熱伝達促進部2における上流側辺部20とが一体をなして設けられている。
この伝熱部材1によれば、一組の下流側辺部21が備える主流方向に対する形状により、接触面11に沿って流れる流体を凹部22の表面近傍から下流側辺部21に広く分散させながらそれぞれの下流側辺部21を乗り越えて流出させることができる。さらにそれぞれの下流側辺部21の表面を横断して凹部22から流出した流体が下流側辺部21と一つになっている上流側辺部20の表面も乗り越えて内側の凹部22に流入するという連続的な流れを接触面11の近傍において繰り返すことができる。このように接触面11の近傍において分散しながら下流側辺部21を乗り越える流体流れによれば、下流側辺部21の広範囲にわたる熱伝達を促進できる。さらに流体が凹部22の表面近傍において下流端部に集まる流れを抑えることができるため、流体の集中による接触面11の近傍における流動抵抗を抑制でき、熱伝達向上にも貢献できる。
さらに伝熱部材1は、一組の上流側辺部20が備える主流方向に対する形状により、接触面11に沿って流れる流体が一組の上流側辺部20のそれぞれを乗り越えた後、凹部22の表面近傍においてぶつかり合う流れを形成できる。凹部22の表面近傍において交差するように混ざり合う流れによれば、接触面11を流下する流体と凹部22とにおける熱伝達を高めることに寄与する。伝熱部材1は複数群連続して設けられた熱伝達促進部2において上流側の熱伝達促進部2の下流側辺部21と下流側の熱伝達促進部2の上流側辺部20とが一つになった構成により、接触面11を凹部22、辺部、凹部22、辺部の順に移動する流体流れを形成できる。したがって、伝熱部材1は、流体の流下に伴い、前述する作用効果を連続的に得ることができるので、熱伝達性能の向上を図ることができる。
伝熱部材1は接触面11に沿う流体流れにおける流動抵抗の抑制と熱伝達の向上とに寄与するので、液体よりも粘性が小さい気体や気液二層流体が流下する装置において、より顕著な効果を発揮する。
一群の熱伝達促進部2は、接触面11において流体の主流方向に対して交差する交差方向と主流方向との両方について複数群隣接して設けられている。この構成によれば、交差方向に凹部22、辺部、凹部22、辺部の順に移動する流体流れと、主流方向に対してジグザク状に移動する流体流れとを形成することができる。したがって、伝熱部材1は、接触面11の広範囲にわたって、前述する作用効果を連続的に得ることができる。
一群の熱伝達促進部2は、流体の主流方向に接触面11に沿った長さ寸法が主流方向に対して直交する直交方向に接触面11に沿った長さ寸法よりも大きい。この構成によれば、凹部22を、直交方向に接触面11に沿った長さよりも主流方向に接触面11に沿った長さの方が長い形状にできる。これにより接触面11に沿って流れる流体が一組の上流側辺部20のそれぞれを乗り越えた後、凹部22の表面近傍においてぶつかり合う範囲を主流方向に長くできるので、主流方向の広範囲にわたって接触面11を流下する流体と凹部22との熱伝達を向上できる。
凹部22は、一組の上流側辺部20と一組の下流側辺部21とで囲まれた部分である。この構成によれば、伝熱部材1は、接触面11において格子状に突出する辺部によって囲まれた凹部22をそれぞれ含む複数群の熱伝達促進部2を備える。したがって、接触面11に格子状に突出する辺部を形成することによって、前述の作用効果を奏する伝熱部材1を得ることができる。
一組の上流側辺部20と一組の下流側辺部21とは、菱形状を形成する辺部である。この構成によれば、上流側辺部20の辺長と下流側辺部21の辺長とが同等またはほぼ同等になるように接触面11に格子状に突出する辺部を形成することによって、前述の作用効果を奏する伝熱部材1を得ることができる。また、熱伝達促進部2がこのような形状であることにより、前述した流動抵抗の抑制と前述した熱伝達向上とに関してバランスの良い伝熱部材1を提供することができる。
凹部22の表面は平坦状面を有している。この構成によれば、一組の上流側辺部20のそれぞれを乗り越えた流体が凹部22の表面近傍で混ざり合って乱流を形成する範囲を接触面11に対して大きくばらつかないように形成することができる。これにより凹部22における熱伝達の向上効果を均等な状態に近づけることができる。
対向関係にある上流側辺部20と下流側辺部21について上流側辺部20の内側壁面20wと下流側辺部21の内側壁面21wとの最短距離L2は、上流側辺部20の横断面の幅寸法URと下流側辺部21の横断面の幅寸法DRとを合計した合計寸法よりも大きい。凹部22がこのようなサイズに設定されているため、一組の上流側辺部20のそれぞれを乗り越えて凹部22に流入する流体がぶつかり合うような乱流を凹部22の表面近傍に形成できるので、凹部22における熱伝達を促進できる。
伝熱部材1における上流側辺部20と下流側辺部21は湾曲面をなす先端面を備えている。この構成によれば、接触面11にそって流下する流体が凹部22の表面近傍から、上流側辺部20と一体をなす下流側辺部21を乗り越えて流下する際に下流側辺部21の近傍で発生する渦を抑えることができ、スムーズな流体流れの形成に寄与する。
(第2実施形態)
第2実施形態について図4~図8を参照して説明する。第2実施形態は、第1実施形態の複数群の熱伝達促進部2が設けられた伝熱管を開示する。さらに第2実施形態は、この伝熱管を二重管式の熱交換器が備える内管4として用いる形態を開示する。各図において、第1実施形態と同様の構成であるものは同一の符号を付し、同様の作用、効果を奏するものである。第2実施形態で特に説明しない構成、作用、効果については、第1実施形態と同様であり、以下に第1実施形態と異なる点について説明する。複数群の熱伝達促進部2が設けられた伝熱管に関しては、管の中心軸である管軸40に沿う方向である管軸方向が第1実施形態における流体の主流方向に相当する。
第2実施形態について図4~図8を参照して説明する。第2実施形態は、第1実施形態の複数群の熱伝達促進部2が設けられた伝熱管を開示する。さらに第2実施形態は、この伝熱管を二重管式の熱交換器が備える内管4として用いる形態を開示する。各図において、第1実施形態と同様の構成であるものは同一の符号を付し、同様の作用、効果を奏するものである。第2実施形態で特に説明しない構成、作用、効果については、第1実施形態と同様であり、以下に第1実施形態と異なる点について説明する。複数群の熱伝達促進部2が設けられた伝熱管に関しては、管の中心軸である管軸40に沿う方向である管軸方向が第1実施形態における流体の主流方向に相当する。
図4~図6に示すように、伝熱管の一例である内管4は、流体が接触する管内面に設けられた複数群の熱伝達促進部2を有している。一組の上流側辺部20や一組の下流側辺部21は、管内面に沿って延びるように突出する辺部である。凹部22は、管内面において一組の上流側辺部20と一組の下流側辺部21との内側に設けられて、管内面を基準として上流側辺部20および下流側辺部21よりも凹んでいる。したがって、伝熱管は、第1実施形態の接触面11によって管内面を形成するように接触面11を筒状に丸めた管である。
図4に示す二重管式の熱交換器は、第1流体が内部を流下する内管4と、内管4を収容し内管4の外面41との間に設けられた外側流路に第2流体が流下する外管3と、外側流路に第2流体を流入させるための流入管31と、を備えている。第1流体と第2流体は、内管4を介して熱交換する。第2実施形態においては第1流体として低圧の冷媒を採用し第2流体として高圧の冷媒を採用している。さらに熱交換器は、内管4において第1流体と第2流体とが熱交換する部分の全体にわたって設けられた一群の熱伝達促進部2を備えていることが好ましい。
この熱交換器は、冷凍サイクルにおいて、凝縮器から流出した高温の高圧冷媒を第2流体とし、蒸発器から流出した低温の低圧冷媒を第1流体とする二重管式の内部熱交換器に適用することができる。二重管式の内部熱交換器は、複数群の熱伝達促進部2を有する内管4を備えることにより高効率に熱交換できるので、伝熱促進部を有していない内部熱交換器に対して、冷房性能を向上し冷凍サイクルの成績係数を向上することができる。
内管4は、外面に形成された外面側溝部42と外面側溝部43を備えている。外面側溝部42は、管軸40に対して右巻きの螺旋状に外面41に形成された溝部である。外面側溝部43は、管軸40に対して左巻きの螺旋状に外面41に形成された溝部である。外面側溝部42と外面側溝部43は、外面41において交差するように形成されている。外面側溝部42や外面側溝部43の裏側には、上流側辺部20と下流側辺部21が形成されている。外面側溝部42と外面側溝部43とが交差する部分の裏側には、交差部23が形成されている。外面41において外面側溝部42と外面側溝部43とで囲まれた部分の裏側には、凹部22が形成されている。
図7は、第2実施形態の二重管式の内部熱交換器について性能評価結果を示したグラフである。横軸は、管内面が平滑な内管の管内通路に対する圧力損失比である。縦軸に示した評価結果は、管内面が平滑な内管を有する内部熱交換器における熱交換量を1とした場合の熱交換量比である。寸法dは、平坦状である凹部22の表面に対する上流側辺部20の突出寸法であり、平坦状である凹部22の表面に対する下流側辺部21の突出寸法である。寸法Dは、内管4の外径寸法である。d/D=0.07~0.1に設定された内管4を備える内部熱交換器は、管内面に一つの螺旋状溝のみを有する内管を備えた内部熱交換器よりも高い熱交換量比が得られることを確認している。d/D=0.05に設定された内管4を備える内部熱交換器は、d/D=0.07~0.1に設定された内管4を備える内部熱交換器よりも高い熱交換量比が得られることを確認している。
伝熱管である内管4を製造する方法は、内管4を準備する工程と、内管4の管内面に右巻きの第1の螺旋状突部と左巻きの第2の螺旋状突部とを形成する形成工程と、を含んでいる。形成工程では、内管4の外面に管軸方向に右巻きに進行する第1の螺旋状溝部と左巻きに進行する第2の螺旋状溝部とを形成することにより、管軸方向に、右巻きに進行する第1の螺旋状突部と左巻きに進行する第2の螺旋状突部とを形成する。第1の螺旋状溝部は外面側溝部42に相当し、第2の螺旋状溝部は外面側溝部43に相当する。第1の螺旋状突部と第2の螺旋状突部は、一組の上流側辺部20と一組の下流側辺部21に相当する。
図8は、伝熱管である内管4を製造する装置を示している。図8に示すように、加工装置5は、プレス工具50の先端部に設けられた溝加工部51が管外面に押し付けられて内管4が塑性変形した状態で内管4を右巻きに進行させることによって第1の螺旋状溝部を形成することができる。加工装置5は、管外面に第1の螺旋状溝部を形成すると同時に管内面に第1の螺旋状突部を形成する。さらに加工装置5は、溝加工部51が管外面に押し付けられて内管4が塑性変形した状態で内管4を左巻きに進行させることによって第2の螺旋状溝部を形成することができる。加工装置5は、管外面に第2の螺旋状溝部を形成すると同時に管内面に第2の螺旋状突部を形成する。そして、図4に示す熱交換器は、このように形成した内管4と外管3の内面との間に通路を形成するように外管3と内管4を結合する結合工程を行うことによって製造することができる。
第2実施形態の伝熱管がもたらす作用効果について説明する。内管4を一例とする伝熱管は、管の内部を流下する流体が接触する管内面と、管内面に設けられた一組の上流側辺部20、一組の下流側辺部21および凹部22を含む一群の熱伝達促進部2とを備える。隣り合う一組の上流側辺部20は、管内面に沿って延びるように突出する辺部であり、管軸方向に対してそれぞれ鋭角をなし上流に進むほど接近するように延びている。隣り合う一組の下流側辺部21は、上流側辺部20よりも下流において管内面に沿って延びるように突出する辺部であり、管軸方向に対してそれぞれ鋭角をなし下流に進むほど接近するように延びている。凹部22は、管内面において一組の上流側辺部20と一組の下流側辺部21との内側に設けられて上流側辺部20および下流側辺部21よりも凹んでいる。一群の熱伝達促進部2は、管内面において下流に向けて複数群連続して設けられている。上流側と下流側とで隣接する熱伝達促進部2は、上流側の熱伝達促進部2における下流側辺部21と下流側の熱伝達促進部2における上流側辺部20とが一体をなすように設けられている。
この伝熱管によれば、一組の下流側辺部21が備える管軸方向に対する形状により、管内面に沿って流れる流体を凹部22の表面近傍から下流側辺部21に広く分散させながらそれぞれの下流側辺部21を乗り越えて流出させることができる。さらにそれぞれの下流側辺部21の表面を横断して凹部22を流出した流体が、下流側辺部21と一つになっている上流側辺部20の表面も乗り越えて内側の凹部22に流入する流れを管内面の近傍において連続的に繰り返すことができる。
このように管内面近傍において分散しながら下流側辺部21を乗り越える流体流れによれば、下流側辺部21の広範囲にわたる熱伝達を促進できる。さらに流体が凹部22の表面近傍において下流端部に集まる流れを抑えることができるため、流体の集中による管内面近傍の流動抵抗を抑制でき、熱伝達向上にも貢献できる。
伝熱管は管内面に沿う流体流れにおける流動抵抗の抑制と熱伝達の向上とに寄与するので、液体よりも粘性が小さい気体や気液二層流体が流下する装置において、より顕著な効果を発揮する。
さらに伝熱管は、一組の上流側辺部20が備える管軸方向に対する形状により、内面に沿って流れる流体が一組の上流側辺部20のそれぞれを乗り越えた後、凹部22の表面近傍においてぶつかり合う流れを形成できる。凹部22の表面近傍において交差するように混ざり合う流れによれば、管内面を流下する流体と凹部22とにおける熱伝達を高めることに寄与する。
伝熱管は複数群連続して設けられた熱伝達促進部2において上流側の熱伝達促進部2の下流側辺部21と下流側の熱伝達促進部2の上流側辺部20とが一つになった構成により、管内面に沿って凹部22、辺部、凹部22、辺部の順に移動する流体流れを形成できる。したがって、伝熱管は、流体の管内流下に伴い、前述する作用効果を連続的に得ることができるので、熱伝達性能の向上を図ることができる。
伝熱管が備える熱伝達促進部2は、管内面において管軸方向に対して交差する交差方向と管軸方向との両方について複数群隣接して設けられている。この構成によれば、管内面に沿って、交差方向に凹部22、辺部、凹部22、辺部の順に移動する流体流れと、主流方向に対してジグザク状に移動する流体流れとを形成することができる。したがって、伝熱管は、管内面の広範囲にわたって、前述する作用効果を連続的に得ることができる。
伝熱管が備える一群の熱伝達促進部2は、管軸方向の長さ寸法が周方向の長さ寸法よりも大きいことが好ましい。この構成によれば、周方向に管内面に沿った長さよりも管軸方向に管内面に沿った長さの方が長い形状である凹部22を形成できる。これにより、管内面に沿って流れる流体が一組の上流側辺部20のそれぞれを乗り越えた後、凹部22の表面近傍においてぶつかり合う範囲を管軸方向に長くできるので、管軸方向の広範囲にわたって、管内面を流下する流体と凹部22との熱伝達を向上できる。
伝熱管が備える凹部22は、一組の上流側辺部20と一組の下流側辺部21とで囲まれた部分である。この構成によれば、伝熱管は、管内面において格子状に突出する辺部によって囲まれた凹部22をそれぞれ含む複数群の熱伝達促進部2を備える。したがって、管内面に格子状に突出する辺部を形成することによって、前述の作用効果を奏する伝熱管を得ることができる。
伝熱管が備える一組の上流側辺部20と一組の下流側辺部21とは、管内面を平面状に展開した場合に菱形状を呈する辺部であることが好ましい。この構成によれば、上流側辺部20の辺長と下流側辺部21の辺長とが同等またはほぼ同等になるように管内面に格子状に突出する辺部を形成することによって、前述の作用効果を奏する伝熱管を得ることができる。また、熱伝達促進部2がこのような形状であることにより、前述した流動抵抗の抑制と前述した熱伝達向上とに関してバランスの良い伝熱管を提供することができる。
伝熱管の管内面は、対向する上流側辺部20と下流側辺部21について上流側辺部20の内側壁面20wと下流側辺部21の内側壁面21wとの管内面に沿う沿面距離は上流側辺部20の横断面の幅寸法URと下流側辺部21の横断面の幅寸法DRとを合計した合計寸法よりも大きい。管内面において凹部22がこのようなサイズに設定されているため、一組の上流側辺部20のそれぞれを乗り越えて凹部22に流入する流体が凹部22の表面近傍においてぶつかり合うような乱流を形成できるので凹部22における熱伝達を促進できる。
伝熱管における上流側辺部20と下流側辺部21は湾曲面をなす先端面を備えている。この構成によれば、管内面にそって流下する流体が凹部22の表面近傍から、上流側辺部20と一体をなす下流側辺部21を乗り越えて流下する際に下流側辺部21の近傍で発生する渦を抑えることができ、スムーズな流体流れの形成に寄与する。
伝熱管は、管の外面に形成された外面側溝部42と外面側溝部43とを備えている。上流側辺部20と下流側辺部21は、外面側溝部42と外面側溝部43の裏側に設けられている。この構成によれば、外面側溝部42と外面側溝部43の裏側に設けられた上流側辺部20と下流側辺部21をそれぞれ含む複数群の熱伝達促進部2を備える。したがって、管内面側に上流側辺部20と下流側辺部21とを形成する外面側溝部42と外面側溝部43を管の外面に形成することによって、前述の作用効果を奏する伝熱管を得ることができる。
伝熱管が備える凹部22の縦断面形状は、平坦状の表面を形成する。平坦状の表面に対する上流側辺部20と下流側辺部21のそれぞれの突出寸法dは、管の外径寸法Dの0.1倍以下に設定されていることが好ましい。この構成によれば、図7を参照して前述したように、管内面に辺部および凹部が形成されていない従来の伝熱管や管内面に螺旋状溝が形成されているだけの従来の伝熱管に比べて、熱伝達性能を大きく高められる伝熱管を提供できる。
二重管式の熱交換器は、第1流体が内部を流下する内管4と、内管4を収容し内管4の外面41との間に設けられた外側流路に第2流体が流下する外管3とを備える。内管4は前述した伝熱管の構成を備えている。この構成によれば、内管4において前述した伝熱管と同様の作用効果を奏することができるので、熱伝達性能の向上が図れる熱交換器を提供できる。
さらにこの熱交換器が備える複数群の熱伝達促進部2は、内管4において第1流体と第2流体とが熱交換する部分の全体にわたって設けられている。この構成によれば、第1流体と第2流体とが熱交換する部分の全体にわたって熱伝達性能の向上が図れる二重管式の熱交換器を提供できる。
伝熱管の製造方法は、管を準備する工程と、管の外面に管軸方向に、右巻きに進行する第1の螺旋状溝部と左巻きに進行する第2の螺旋状溝部とを形成することにより、管の内面に管軸方向に、右巻きに進行する第1の螺旋状突部と左巻きに進行する第2の螺旋状突部とを形成する工程と、を含んでいる。この製造方法によれば、管の外面に右巻きと左巻きの螺旋状溝部を形成することにより、管の内面において格子状に突出する辺部と凹部22とを含む複数群の熱伝達促進部2を形成することができる。したがって、この製造方法によれば、前述した作用効果を奏する伝熱管を製造できるので、熱伝達性能の向上が図れる伝熱管を提供できる。
熱交換器の製造方法は、外管3を準備する工程と、外管3の内径よりも小さい外径を有する内管4を準備する工程とを含む。さらにこの製造方法は、内管4の内面に螺旋状溝部を形成する形成工程と、結合工程とを含む。形成工程では内管4の外面に管軸方向に右巻きに進行する第1の螺旋状溝部と左巻きに進行する第2の螺旋状溝部とを形成することにより、内管4の内面に管軸方向に右巻きに進行する第1の螺旋状突部と左巻きに進行する第2の螺旋状突部とを形成する。結合工程では、外管3の内面と内管4の外面との間に通路を形成するように外管3と内管4を結合する。
この製造方法によれば、内管4の外面に右巻きと左巻きの螺旋状溝部を形成することにより、内管4の内面において格子状に突出する辺部と凹部22とを含む複数群の熱伝達促進部2を形成することができる。したがって、この製造方法によれば、前述した作用効果を奏する伝熱管として内管4を製造できるので、熱伝達性能の向上が図れる二重管式の熱交換器を提供できる。
(第3実施形態)
第3実施形態について図9~図11を参照して説明する。第3実施形態は、第2実施形態と同様に複数群の熱伝達促進部2が設けられた伝熱管を開示するものであり、第2実施形態の二重管式の熱交換器に対して、内管104の外面41に形成された外面側溝部143の形状が相違している。各図において、第1実施形態および第2実施形態と同様の構成であるものは同一の符号を付し、同様の作用、効果を奏するものである。第3実施形態で特に説明しない構成、作用、効果については、前述の実施形態と同様であり、以下に異なる点について説明する。
第3実施形態について図9~図11を参照して説明する。第3実施形態は、第2実施形態と同様に複数群の熱伝達促進部2が設けられた伝熱管を開示するものであり、第2実施形態の二重管式の熱交換器に対して、内管104の外面41に形成された外面側溝部143の形状が相違している。各図において、第1実施形態および第2実施形態と同様の構成であるものは同一の符号を付し、同様の作用、効果を奏するものである。第3実施形態で特に説明しない構成、作用、効果については、前述の実施形態と同様であり、以下に異なる点について説明する。
図9~図11に示すように、内管104は、外面41に形成された外面側溝部42と外面側溝部143を備えている。外面側溝部143は、外面側溝部43に対して部分的に溝部が形成されていない左巻きの螺旋状に形成された溝部である。外面側溝部42と外面側溝部143は、外面41において互いに交差するような角度をなしている。外面側溝部42の裏側には、上流側辺部20と下流側辺部21が形成されている。外面側溝部42の裏側には、上流側辺部120と下流側辺部121が形成されている。上流側辺部120と下流側辺部121は上流側辺部20と下流側辺部21と同様の作用効果を奏する。外面側溝部42と外面側溝部143とが交差する部分の裏側には、交差部23が形成されている。外面41において外面側溝部42と外面側溝部143との内側部分の裏側には、凹部22が形成されている。第1の螺旋状溝部は外面側溝部42に相当し、第2の螺旋状溝部は外面側溝部143に相当する。
第3実施形態によれば、伝熱管は管の外面に形成された外面側溝部42と外面側溝部143とを備えている。上流側辺部20,120と下流側辺部21,121は、外面側溝部42と外面側溝部143の裏側に設けられている。この構成によれば、外面側溝部42と外面側溝部143の裏側に設けられた上流側辺部20,120と下流側辺部21,121をそれぞれ含む複数群の熱伝達促進部2を備える。したがって、管内面側に上流側辺部20,120と下流側辺部21,121とを形成する外面側溝部42と外面側溝部143を管の外面に形成することによって、前述の作用効果を奏する伝熱管を得ることができる。
(第4実施形態)
第4実施形態について図12~図14を参照して説明する。第4実施形態は、第2実施形態と同様に複数群の熱伝達促進部2が設けられた伝熱管を開示するものであり、第2実施形態の二重管式の熱交換器に対して、外面41に形成された外面側溝部43のピッチが小さく設定されている。各図において第1実施形態および第2実施形態と同様の構成であるものは、同一の符号を付し同様の作用、効果を奏するものである。第4実施形態で特に説明しない構成、作用、効果については、前述の実施形態と同様である。
第4実施形態について図12~図14を参照して説明する。第4実施形態は、第2実施形態と同様に複数群の熱伝達促進部2が設けられた伝熱管を開示するものであり、第2実施形態の二重管式の熱交換器に対して、外面41に形成された外面側溝部43のピッチが小さく設定されている。各図において第1実施形態および第2実施形態と同様の構成であるものは、同一の符号を付し同様の作用、効果を奏するものである。第4実施形態で特に説明しない構成、作用、効果については、前述の実施形態と同様である。
図12~図14に示すように、内管204の管内面に設けられた一組の上流側辺部20と一組の下流側辺部21とは、管内面を平面状に展開した場合に平行四辺形を呈する辺部である。
(第5実施形態)
第5実施形態について図15~図17を参照して説明する。第5実施形態は、第2実施形態と同様に複数群の熱伝達促進部2が設けられた伝熱管を開示するものであり、第2実施形態の二重管式の熱交換器に対して、内管304の外面41に溝部が形成されていない点で相違する。各図において、前述の実施形態と同様の構成であるものは同一の符号を付し、同様の作用、効果を奏するものである。第5実施形態で特に説明しない構成、作用、効果については、前述の実施形態と同様であり、以下に異なる点について説明する。
第5実施形態について図15~図17を参照して説明する。第5実施形態は、第2実施形態と同様に複数群の熱伝達促進部2が設けられた伝熱管を開示するものであり、第2実施形態の二重管式の熱交換器に対して、内管304の外面41に溝部が形成されていない点で相違する。各図において、前述の実施形態と同様の構成であるものは同一の符号を付し、同様の作用、効果を奏するものである。第5実施形態で特に説明しない構成、作用、効果については、前述の実施形態と同様であり、以下に異なる点について説明する。
図15~図17に示すように、内管304は、外面41に外面側溝部が形成されていないにもかかわらず、管内面に一群の熱伝達促進部2を形成する一組の上流側辺部20と一組の下流側辺部21を備えている。
(他の実施形態)
この明細書の開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品、要素の組み合わせに限定されず、種々変形して実施することが可能である。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品、要素が省略されたものを包含する。開示は、一つの実施形態と他の実施形態との間における部品、要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示される技術的範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内での全ての変更を含むものと解されるべきである。
この明細書の開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品、要素の組み合わせに限定されず、種々変形して実施することが可能である。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品、要素が省略されたものを包含する。開示は、一つの実施形態と他の実施形態との間における部品、要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示される技術的範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内での全ての変更を含むものと解されるべきである。
明細書に開示の目的を達成可能な一群の熱伝達促進部は、前述の実施形態において開示した正面視形状に限定されない。一群の熱伝達促進部は、四辺の長さがほぼ同等である菱形状、正方形状、隣り合う上流側辺部の長さがほぼ同等であって隣り合う下流側辺部の長さがほぼ同等である長さの等しい二組の辺部を有する凧形状の四角形などの正面視形状を構成してもよい。
Claims (21)
- 流下する流体が接触する接触面(11)と、
前記接触面において直線状に延びるように突出する辺部であり、前記流体の主流方向に対してそれぞれ鋭角をなし上流に進むほど接近するように延びて隣り合う一組の上流側辺部(20)と、
前記上流側辺部よりも前記接触面の下流において直線状に延びるように突出する辺部であり、前記主流方向に対してそれぞれ鋭角をなし下流に進むほど接近するように延びて隣り合う一組の下流側辺部(21)と、
一組の前記上流側辺部と一組の前記下流側辺部との内側において前記接触面に設けられて前記上流側辺部および前記下流側辺部よりも凹んでいる凹部(22)と、
を備え、
一組の前記上流側辺部、一組の前記下流側辺部および前記凹部を含む一群の熱伝達促進部(2)は、前記接触面において下流に向けて複数群連続して設けられ、
上流側と下流側とで隣接する前記熱伝達促進部は、上流側の前記熱伝達促進部における前記下流側辺部と下流側の前記熱伝達促進部における前記上流側辺部とが一体をなすように設けられている伝熱部材。 - 前記一群の熱伝達促進部は、前記接触面において前記主流方向に対して交差する交差方向と前記主流方向との両方について複数群隣接して設けられている請求項1に記載の伝熱部材。
- 前記一群の熱伝達促進部は、前記主流方向に前記接触面に沿った長さ寸法が前記主流方向に対して直交する直交方向に前記接触面に沿った長さ寸法よりも大きい請求項1または請求項2に記載の伝熱部材。
- 前記凹部は、一組の前記上流側辺部と一組の前記下流側辺部とで囲まれた部分である請求項1から請求項3のいずれか一項に記載の伝熱部材。
- 一組の前記上流側辺部と一組の前記下流側辺部とは、菱形状を形成する辺部である請求項4に記載の伝熱部材。
- 前記凹部の表面は平坦状面を有している請求項1から請求項5のいずれか一項に記載の伝熱部材。
- 対向関係にある前記上流側辺部と前記下流側辺部について、前記上流側辺部の内側壁面(20w)と前記下流側辺部の内側壁面(21w)との最短距離は、前記上流側辺部の横断面の幅寸法と前記下流側辺部の横断面の幅寸法とを合計した合計寸法よりも大きく設定されている請求項1から請求項6のいずれか一項に記載の伝熱部材。
- 前記上流側辺部と前記下流側辺部は、湾曲面をなす先端面を備えている請求項1から請求項7のいずれか一項に記載の伝熱部材。
- 管(4;104;204;304)の内部を流下する流体が接触する管内面と、
前記管内面に沿って延びるように突出する辺部であり、管軸方向に対してそれぞれ鋭角をなし上流に進むほど接近するように延びて隣り合う一組の上流側辺部(20)と、
前記上流側辺部よりも下流において前記管内面に沿って延びるように突出する辺部であり、前記管軸方向に対してそれぞれ鋭角をなし下流に進むほど接近するように延びて隣り合う一組の下流側辺部(21)と、
前記管内面において一組の前記上流側辺部と一組の前記下流側辺部との内側に設けられて前記上流側辺部および前記下流側辺部よりも凹んでいる凹部(22)と、
を備え、
一組の前記上流側辺部、一組の前記下流側辺部および前記凹部を含む一群の熱伝達促進部(2)は、前記管内面において下流に向けて複数群連続して設けられ、
上流側と下流側とで隣接する前記熱伝達促進部は、上流側の前記熱伝達促進部における前記下流側辺部と下流側の前記熱伝達促進部における前記上流側辺部とが一体をなすように設けられている伝熱管。 - 前記熱伝達促進部は、前記管内面において前記管軸方向に対して交差する交差方向と前記管軸方向との両方について複数群隣接して設けられている請求項9に記載の伝熱管。
- 一群の前記熱伝達促進部は、前記管軸方向の長さ寸法が周方向の長さ寸法よりも大きい請求項9または請求項10に記載の伝熱管。
- 前記凹部は、一組の前記上流側辺部と一組の前記下流側辺部とで囲まれた部分である請求項9から請求項11のいずれか一項に記載の伝熱管。
- 一組の前記上流側辺部と一組の前記下流側辺部とは、前記管内面を平面状に展開した場合に菱形状を呈する辺部である請求項12に記載の伝熱管。
- 対向関係にある前記上流側辺部と前記下流側辺部について、前記上流側辺部の内側壁面(20w)と前記下流側辺部の内側壁面(21w)との前記管内面に沿う沿面距離は、前記上流側辺部の横断面の幅寸法と前記下流側辺部の横断面の幅寸法とを合計した合計寸法よりも大きく設定されている請求項9から請求項13のいずれか一項に記載の伝熱管。
- 前記上流側辺部と前記下流側辺部は、湾曲面をなす先端面を備えている請求項9から請求項14のいずれか一項に記載の伝熱管。
- 前記管の外面に形成された外面側溝部(42,43;143)を備え、
前記上流側辺部と前記下流側辺部は、前記外面側溝部の裏側に設けられている請求項9から請求項15のいずれか一項に記載の伝熱管。 - 前記凹部の縦断面形状は、平坦状の表面を形成し、
前記平坦状の表面に対する前記上流側辺部と前記下流側辺部のそれぞれの突出寸法(d)は、管の外径寸法(D)の0.1倍以下に設定されている請求項9から請求項16のいずれか一項に記載の伝熱管。 - 第1流体が内部を流下する内管(4)と、
前記内管を収容し、前記内管の外面(41)との間に設けられた外側流路に第2流体が流下する外管(3)と、
を備え、
前記内管は請求項9から請求項17のいずれか一項に記載の伝熱管である、熱交換器。 - 複数群の前記熱伝達促進部は、前記内管において前記第1流体と前記第2流体とが熱交換する部分の全体にわたって設けられている請求項18に記載の熱交換器。
- 管(4;204)を準備する工程と、
前記管の外面に管軸方向に右巻きに進行する第1の螺旋状溝部(42)と左巻きに進行する第2の螺旋状溝部(43)とを形成することにより、前記管の内面に管軸方向に、右巻きに進行する第1の螺旋状突部と左巻きに進行する第2の螺旋状突部とを形成する工程と、
を含む伝熱管の製造方法。 - 外管(3)を準備する工程と、
前記外管の内径よりも小さい外径を有する内管(4;204)を準備する工程と、
前記内管の外面に管軸方向に右巻きに進行する第1の螺旋状溝部(42)と左巻きに進行する第2の螺旋状溝部(43)とを形成することにより、前記内管の内面に管軸方向に右巻きに進行する第1の螺旋状突部と左巻きに進行する第2の螺旋状突部とを形成する工程と、
前記外管の内面と前記内管の外面との間に通路を形成するように前記外管と前記内管を結合する結合工程と、
を含む熱交換器の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-145130 | 2018-08-01 | ||
JP2018145130A JP7151253B2 (ja) | 2018-08-01 | 2018-08-01 | 伝熱管および熱交換器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020026921A1 true WO2020026921A1 (ja) | 2020-02-06 |
Family
ID=69230771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/029058 WO2020026921A1 (ja) | 2018-08-01 | 2019-07-24 | 伝熱部材、伝熱管、熱交換器、伝熱管の製造方法および熱交換器の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7151253B2 (ja) |
WO (1) | WO2020026921A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0666487A (ja) * | 1992-08-13 | 1994-03-08 | Showa Alum Corp | 積層型熱交換器 |
JPH1038491A (ja) * | 1996-07-23 | 1998-02-13 | Toyo Radiator Co Ltd | 二重管型熱交換器 |
JP2003262486A (ja) * | 2002-03-07 | 2003-09-19 | Wieland Werke Ag | 内表面にリブを備えた熱交換管 |
JP2003269882A (ja) * | 2002-03-15 | 2003-09-25 | Yoshiro Uko | 積層型蒸発器 |
US20050150648A1 (en) * | 2003-06-04 | 2005-07-14 | Roland Dilley | Multi-spiral upset heat exchanger tube |
DE102011008119A1 (de) * | 2011-01-07 | 2012-07-12 | Arup Alu-Rohr Und -Profil Gmbh | Doppelrohr, sowie Doppelrohr-Wärmetauscher |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5883189A (ja) * | 1981-11-12 | 1983-05-18 | Furukawa Electric Co Ltd:The | 伝熱管 |
JP5976168B1 (ja) | 2015-06-05 | 2016-08-23 | 井上機工株式会社 | 管材の内面凹凸加工装置及び管材の内面凹凸加工方法 |
-
2018
- 2018-08-01 JP JP2018145130A patent/JP7151253B2/ja active Active
-
2019
- 2019-07-24 WO PCT/JP2019/029058 patent/WO2020026921A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0666487A (ja) * | 1992-08-13 | 1994-03-08 | Showa Alum Corp | 積層型熱交換器 |
JPH1038491A (ja) * | 1996-07-23 | 1998-02-13 | Toyo Radiator Co Ltd | 二重管型熱交換器 |
JP2003262486A (ja) * | 2002-03-07 | 2003-09-19 | Wieland Werke Ag | 内表面にリブを備えた熱交換管 |
JP2003269882A (ja) * | 2002-03-15 | 2003-09-25 | Yoshiro Uko | 積層型蒸発器 |
US20050150648A1 (en) * | 2003-06-04 | 2005-07-14 | Roland Dilley | Multi-spiral upset heat exchanger tube |
DE102011008119A1 (de) * | 2011-01-07 | 2012-07-12 | Arup Alu-Rohr Und -Profil Gmbh | Doppelrohr, sowie Doppelrohr-Wärmetauscher |
Also Published As
Publication number | Publication date |
---|---|
JP2020020528A (ja) | 2020-02-06 |
JP7151253B2 (ja) | 2022-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6567097B2 (ja) | プレート式熱交換器、およびそれを備えたヒートポンプ式暖房給湯システム | |
CN100588895C (zh) | 带倾斜切缝的热交换器翅片 | |
US9766015B2 (en) | Heat exchanger | |
EP3228971A1 (en) | Spiral tube heat exchanger | |
US10816277B2 (en) | Heat exchanger tubes with fluid communication channels | |
EP2787315B1 (en) | Inner fin | |
US20100258286A1 (en) | Fin, heat exchanger and heat exchanger assembly | |
US20100115771A1 (en) | Heat exchanger, heat exchanger tubes and method | |
JP4827905B2 (ja) | プレート式熱交換器、及びこれを搭載した空気調和機 | |
CN103998891B (zh) | 翅片管式热交换器 | |
JP2005516176A (ja) | 達磨型流路を有する熱交換器用チューブ及びこれを用いた熱交換器 | |
WO2011062118A1 (ja) | プレート式熱交換器及びヒートポンプ装置 | |
JP6436529B2 (ja) | 熱交換器 | |
KR20170087920A (ko) | 멀티 포트 압출 튜브 구성 | |
US20140262185A1 (en) | Heat Exchanger Containing Multiple Tubes, and Method of Making and Using Same | |
WO2020026921A1 (ja) | 伝熱部材、伝熱管、熱交換器、伝熱管の製造方法および熱交換器の製造方法 | |
JP2006084078A (ja) | 細径多管式熱交換器の細径伝熱管ユニット | |
JP2006337005A (ja) | 熱交換器用チューブ | |
WO2019229180A1 (en) | A core of a heat exchanger comprising corrugated fins | |
WO2018013415A1 (en) | Corrugated tube-in-tube heat exchangers | |
JP2015535591A (ja) | 熱交換手段のチューブ要素 | |
JP3954891B2 (ja) | 熱交換器 | |
JP2006112732A (ja) | 細径多管式熱交換器の細径伝熱管ユニット | |
JP6315945B2 (ja) | 熱交換器 | |
WO2021054173A1 (ja) | 伝熱フィン及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19843895 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19843895 Country of ref document: EP Kind code of ref document: A1 |