WO2020026757A1 - Adhesive composition, film-like adhesive, adhesive sheet, and method for producing semiconductor device - Google Patents

Adhesive composition, film-like adhesive, adhesive sheet, and method for producing semiconductor device Download PDF

Info

Publication number
WO2020026757A1
WO2020026757A1 PCT/JP2019/027610 JP2019027610W WO2020026757A1 WO 2020026757 A1 WO2020026757 A1 WO 2020026757A1 JP 2019027610 W JP2019027610 W JP 2019027610W WO 2020026757 A1 WO2020026757 A1 WO 2020026757A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
film
epoxy resin
component
semiconductor element
Prior art date
Application number
PCT/JP2019/027610
Other languages
French (fr)
Japanese (ja)
Inventor
祐也 平本
昌典 夏川
紘平 谷口
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020217004419A priority Critical patent/KR102661683B1/en
Priority to CN201980051092.7A priority patent/CN112513217B/en
Priority to SG11202100988PA priority patent/SG11202100988PA/en
Priority to JP2020533385A priority patent/JP7380565B2/en
Publication of WO2020026757A1 publication Critical patent/WO2020026757A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09J161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to an adhesive composition, a film adhesive, an adhesive sheet, and a method for manufacturing a semiconductor device.
  • silver paste has been mainly used for joining a semiconductor element and a supporting member for mounting the semiconductor element.
  • silver paste can sufficiently cope with such demands due to problems during wire bonding caused by wet spreadability, protrusion, inclination of the semiconductor element, etc., difficulty in controlling the thickness, generation of voids, and the like. It's gone. Therefore, in recent years, an adhesive sheet provided with a film adhesive has been used instead of the silver paste (for example, see Patent Documents 1 and 2).
  • Such an adhesive sheet is used in a method for manufacturing a semiconductor device such as an individual sticking method or a wafer backside sticking method.
  • a reel-shaped adhesive sheet is cut into pieces by cutting or punching, and then a film-like adhesive is attached to a semiconductor element mounting support member. Thereafter, the semiconductor elements singulated by the dicing step are joined to a semiconductor element mounting support member with a film adhesive. Thereafter, a semiconductor device is manufactured through an assembly process such as wire bonding and sealing (for example, see Patent Document 3).
  • a special assembling apparatus for cutting out the adhesive sheet and bonding the cut sheet to the supporting member for mounting the semiconductor element is required, and the manufacturing cost is higher than the method using the silver paste. There is.
  • a film adhesive is bonded to the back surface of the semiconductor wafer, and a dicing sheet is bonded to the other surface of the film adhesive. Thereafter, by dicing, the semiconductor wafer is diced in a state where the film-like adhesive is adhered, thereby producing a semiconductor element. Next, the semiconductor element with the film adhesive is picked up and bonded to the semiconductor element mounting support member. Thereafter, a semiconductor device is manufactured through an assembly process such as wire bonding and sealing (for example, see Patent Document 4).
  • this wafer backside bonding method does not require a special assembly device, and the existing silver paste assembly device is used as it is, or a device such as a hot plate is improved. Can be used. Therefore, the wafer backside bonding method tends to be able to relatively reduce the manufacturing cost in the method of manufacturing a semiconductor device using an adhesive sheet.
  • an adhesive sheet in which a dicing sheet is bonded (laminated) to one surface of a film adhesive, that is, a function as a dicing sheet and a function as a die bond film (Hereinafter, may be referred to as an “integrated dicing and die bonding adhesive sheet”) in some cases.
  • a dicing / die bonding integrated adhesive sheet When such a dicing / die bonding integrated adhesive sheet is used, the bonding of the dicing sheets can be simplified, and the risk of wafer cracking can be reduced.
  • the softening temperature of the dicing sheet is usually 100 ° C. or lower.
  • the dicing / die bonding integrated adhesive sheet needs to be able to be attached to the semiconductor wafer at a temperature lower than 100 ° C. in consideration of the softening temperature of the dicing sheet or the warpage of the semiconductor wafer. From the viewpoint of suppressing the warpage of the semiconductor wafer, it is required that the semiconductor wafer can be stuck at 40 to 80 ° C.
  • the film adhesive after the dicing / die-bonding integrated adhesive sheet has been cured must have a sufficiently high high-temperature storage elasticity as a wire bonding property (for example, a storage elasticity at 175 ° C. of 100 MPa or more). ) And that the glass transition temperature is sufficiently high (for example, the glass transition temperature is 190 ° C. or higher).
  • the high-temperature storage elastic modulus of the film adhesive required at the time of wire bonding is higher, and further improvement of the properties of the film adhesive is required.
  • the present invention provides an adhesive which is excellent in low-temperature sticking property when a film adhesive is formed, has a sufficient high-temperature storage elastic modulus, and is capable of forming a cured product having a sufficient glass transition temperature.
  • the main purpose is to provide an agent composition.
  • One aspect of the present invention includes an epoxy resin, a phenol resin, an elastomer, and a filler, and the content of the filler is 40 to 68 mass% based on the total amount of the epoxy resin, the phenol resin, the elastomer, and the filler. %,
  • the epoxy resin comprises an epoxy resin having a naphthalene skeleton. According to such an adhesive composition, while having excellent low-temperature sticking properties when a film-like adhesive is formed, a cured product having a sufficient high-temperature storage elastic modulus and a sufficient glass transition temperature is formed. It may be possible.
  • the epoxy resin having a naphthalene skeleton may be an epoxy resin having four or more functional epoxy groups.
  • the content of the epoxy resin having a naphthalene skeleton may be 14 to 30% by mass based on the total amount of the epoxy resin and the phenol resin.
  • the epoxy resin having a naphthalene skeleton may include an epoxy resin represented by the following formula (X).
  • the adhesive composition according to one aspect of the present invention is configured such that a first semiconductor element is wire-bonded to a substrate via a first wire, and a second semiconductor element is formed on the first semiconductor element.
  • the semiconductor device formed by pressure bonding the semiconductor device may be used for pressing the second semiconductor element and burying at least a part of the first wire.
  • the present invention further includes an epoxy resin, a phenol resin, an elastomer, and a filler, wherein the content of the filler is 40 to 68% by mass based on the total amount of the epoxy resin, the phenol resin, the elastomer, and the filler.
  • the epoxy resin contains an epoxy resin having a naphthalene skeleton.
  • the first semiconductor element is wire-bonded to the substrate via the first wire via the first wire, and on the first semiconductor element, In a semiconductor device in which a second semiconductor element is crimped, application (use) of an adhesive or use of an adhesive used for crimping the second semiconductor element and embedding at least a part of the first wire.
  • the application (use) for manufacturing may be good.
  • ⁇ ⁇ Another aspect of the present invention provides a film-like adhesive obtained by forming the above-mentioned adhesive composition into a film.
  • an adhesive sheet comprising: a base material; and the above-mentioned film adhesive provided on the base material.
  • the substrate may be a dicing tape.
  • An adhesive sheet whose base material is a dicing tape may be referred to as an “adhesive sheet integrated with dicing and die bonding”.
  • Laminating step, and bonding the second semiconductor element to which the film-like adhesive has been applied by pressure bonding via the film-like adhesive to embed at least a part of the first wire into the film-like adhesive And a method for manufacturing a semiconductor device.
  • the first semiconductor element is connected by wire bonding to the semiconductor substrate via the first wire
  • the second semiconductor element is connected to the first semiconductor element via the film adhesive.
  • the semiconductor device may be a wire-embedded semiconductor device in which at least a portion of the first wire is embedded in a film adhesive by being pressure-bonded.
  • a semiconductor device (semiconductor chip) embedded type semiconductor device embedded in an adhesive in a shape may be used.
  • the present invention is to form a cured product having excellent low-temperature sticking properties when forming a film adhesive, having a sufficient high-temperature storage elastic modulus, and a sufficient glass transition temperature.
  • the film-like adhesive formed by forming the adhesive composition into a film is a film-like adhesive FOD (Film @ Over @ Die) which is a film-type adhesive embedded in a semiconductor element (semiconductor chip) or a film-like adhesive FOW which is a wire-embedded film. (Film @ Over @ Wire).
  • a method for manufacturing an adhesive sheet and a semiconductor device using such a film-like adhesive is provided.
  • FIG. 4 is a schematic cross-sectional view showing a series of steps of a method for manufacturing a semiconductor device according to one embodiment.
  • FIG. 4 is a schematic cross-sectional view showing a series of steps of a method for manufacturing a semiconductor device according to one embodiment.
  • FIG. 4 is a schematic cross-sectional view showing a series of steps of a method for manufacturing a semiconductor device according to one embodiment.
  • FIG. 4 is a schematic cross-sectional view showing a series of steps of a method for manufacturing a semiconductor device according to one embodiment.
  • FIG. 4 is a schematic cross-sectional view showing a series of steps of a method for manufacturing a semiconductor device according to one embodiment.
  • FIG. 4 is a schematic cross-sectional view showing a series of steps of a method for manufacturing a semiconductor device according to one embodiment.
  • FIG. 4 is a schematic cross-sectional view showing a series of steps of a method for manufacturing a semiconductor device according to one embodiment.
  • (meth) acrylic acid means acrylic acid or methacrylic acid corresponding thereto.
  • the adhesive composition contains (A) an epoxy resin, (B) a phenol resin, (C) an elastomer, and (D) a filler.
  • the adhesive composition is thermosetting and can go through a semi-cured (B-stage) state to a completely cured product (C-stage) state after the curing treatment.
  • the component (A) contains (A-1) an epoxy resin having a naphthalene skeleton.
  • the component (A-1) can be used without any particular limitation as long as it has a naphthalene skeleton.
  • the component (A-1) one type may be used alone, or two or more types may be used in combination.
  • the cured product of the adhesive composition can have a sufficient high-temperature storage elastic modulus and a sufficient glass transition temperature.
  • the component (A-1) may be an epoxy resin having four or more functional epoxy groups.
  • Examples of commercially available products of the component (A-1) include “HP-4700”, “HP-4710”, “HP-4770” (trade names, all manufactured by DIC Corporation), and “NC-7000-L” And “NC-7300-L” (trade names, all manufactured by Nippon Kayaku Co., Ltd.).
  • the component (A-1) may contain, for example, an epoxy resin represented by the following formula (X).
  • the softening point of the component (A-1) is at least 30 ° C. since a cured product of the adhesive composition having a more sufficient high-temperature storage elastic modulus and a more sufficient glass transition temperature tends to be obtained. It may be.
  • the softening point of the component (A-1) may be 40 ° C. or higher, 80 ° C. or higher, or 90 ° C. or higher, and may be 120 ° C. or lower, 110 ° C. or lower, or 100 ° C. or lower.
  • the epoxy equivalent of the component (A-1) is not particularly limited, but may be 10 to 600 g / eq, 100 to 500 g / eq, or 120 to 450 g / eq. When the epoxy equivalent of the component (A-1) is in such a range, better reactivity and fluidity tend to be obtained.
  • the content of the component (A-1) may be 20 to 80% by mass, 30 to 70% by mass, or 30 to 60% by mass based on the total amount of the component (A).
  • the content of the component (A-1) is excellent in low-temperature sticking property when a film-like adhesive is formed, and a cured product of the adhesive composition tends to have a more sufficient high-temperature storage modulus. Therefore, it may be 14 to 30% by mass based on the total amount of the components (A) and (B).
  • the content of the component (A-1) may be 15% by mass or more or 18% by mass or more, and 25% by mass or less or 22% by mass or less based on the total amount of the components (A) and (B). It may be.
  • the component (A) may contain (A-2) an epoxy resin having no naphthalene skeleton in addition to the component (A-1).
  • the component (A-2) include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, phenol novolak epoxy resin, cresol novolak epoxy resin, bisphenol A novolak epoxy resin, and bisphenol F Novolak epoxy resin, stilbene epoxy resin, epoxy resin containing triazine skeleton, epoxy resin containing fluorene skeleton, triphenolmethane epoxy resin, biphenyl epoxy resin, xylylene epoxy resin, phenylaralkyl epoxy resin, biphenylaralkyl epoxy resin Diglycidyl ether compounds of polycyclic aromatics such as polyfunctional phenols and anthracene (however, excluding naphthalene). These may be used alone or in combination of two or more.
  • the component (A-2) may be a bisphenol-type epoxy resin.
  • the epoxy equivalent of the component (A-2) is not particularly limited, but may be 90 to 600 g / eq, 100 to 500 g / eq, or 120 to 450 g / eq. When the epoxy equivalent of the component (A-2) is in such a range, better reactivity and fluidity tend to be obtained.
  • the content of the component (A-2) may be 80 to 20% by mass, 70 to 30% by mass, or 70 to 40% by mass based on the total amount of the component (A).
  • the content of the component (A) may be 10 to 50% by mass based on the total amount of the components (A), (B), (C), and (D).
  • the content of the component (A) is 12% by mass or more, 15% by mass or more, or 18% by mass or more based on the total amount of the components (A), (B), (C), and (D). May be 40% by mass or less, 30% by mass or less, or 25% by mass or less.
  • phenolic resin phenolic resin
  • the component (B) can be used without any particular limitation as long as it has a phenolic hydroxyl group in the molecule.
  • the component (B) for example, phenols such as phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol and / or naphthols such as ⁇ -naphthol, ⁇ -naphthol, dihydroxynaphthalene and the like
  • Novolak-type phenolic resin obtained by condensation or co-condensation with a compound having an aldehyde group such as formaldehyde under an acidic catalyst phenols such as allylated bisphenol A, allylated bisphenol F, allylated naphthalene diol, phenol novolak, and phenol Phenol aralkyl resins, naphthol aralkyl resins, biphenyl aralkyl resins synth
  • Examples of commercially available products of the component (B) include a resin top series (manufactured by Gunei Chemical Industry Co., Ltd.), a phenolite KA series, a TD series (manufactured by DIC Corporation), a millex XLC series, and an XL series (Mitsui Chemicals, Inc.) Company) and HE series (manufactured by Air Water Co., Ltd.).
  • the hydroxyl equivalent of the component (B) is not particularly limited, but may be 80 to 400 g / eq, 90 to 350 g / eq, or 100 to 300 g / eq. When the hydroxyl equivalent of the component (B) is in such a range, better reactivity and fluidity tend to be obtained.
  • the ratio of the epoxy equivalent of the component (A) to the hydroxyl equivalent of the component (B) is 0.30 / 0.70 from the viewpoint of curability.
  • the equivalent ratio is 0.30 / 0.70 or more, more sufficient curability tends to be obtained.
  • the equivalent ratio is 0.70 / 0.30 or less, it is possible to prevent the viscosity from becoming too high, and to obtain more sufficient fluidity.
  • the content of the component (B) may be 5 to 30% by mass based on the total amount of the components (A), (B), (C), and (D).
  • the content of the component (B) is 8% by mass or more, 10% by mass or more, or 12% by mass or more based on the total amount of the components (A), (B), (C), and (D). May be 25% by mass or less, 20% by mass or less, or 18% by mass or less.
  • the component (C) examples include a polyimide resin, an acrylic resin, a urethane resin, a polyphenylene ether resin, a polyetherimide resin, a phenoxy resin, and a modified polyphenylene ether resin having a crosslinkable functional group.
  • the component (C) may be an acrylic resin.
  • the acrylic resin means a polymer containing a structural unit derived from a (meth) acrylic acid ester.
  • the acrylic resin may be a polymer containing, as a structural unit, a structural unit derived from a (meth) acrylic ester having a crosslinkable functional group such as an epoxy group, an alcoholic or phenolic hydroxyl group, and a carboxy group. Further, the acrylic resin may be an acrylic rubber such as a copolymer of (meth) acrylic acid ester and acrylonitrile. The acrylic resin may be used alone or in combination of two or more.
  • acrylic resins include, for example, “SG-70L”, “SG-708-6”, “WS-023 @ EK30”, “SG-280 @ EK23”, “HTR-860P-3”, “HTR-860P” -3CSP "and” HTR-860P-3CSP-3DB "(trade names, both manufactured by Nagase ChemteX Corporation).
  • the component (C) may have a glass transition temperature (Tg) of ⁇ 50 to 50 ° C. or ⁇ 30 to 20 ° C.
  • Tg glass transition temperature
  • the glass transition temperature (Tg) of the component (C) means a value measured using a DSC (thermal differential scanning calorimeter) (for example, “Thermo Plus 2” manufactured by Rigaku Corporation).
  • the weight average molecular weight (Mw) of the component (C) may be 50,000 to 1.2 million, 100,000 to 1.2 million, or 300,000 to 900,000.
  • Mw molecular weight
  • Mw is a value measured by gel permeation chromatography (GPC) and converted using a calibration curve with standard polystyrene.
  • the measuring device, measuring conditions and the like of Mw of the component (C) are as follows.
  • Pump L-6000 (manufactured by Hitachi, Ltd.)
  • Columns Gelpack GL-R440 (manufactured by Hitachi Chemical), Gelpack GL-R450 (manufactured by Hitachi Chemical), and Gelpack GL-R400M (manufactured by Hitachi Chemical) (each 10.7 mm ( Eluent: tetrahydrofuran (THF)
  • Sample A solution in which 120 mg of a sample is dissolved in 5 mL of THF Flow rate: 1.75 mL / min
  • the content of the component (C) may be 5 to 20% by mass based on the total amount of the components (A), (B), (C), and (D).
  • the content of the component (C) is 8% by mass or more, 10% by mass or more, or 12% by mass or more based on the total amount of the components (A), (B), (C), and (D). May be 19% by mass or less, 18% by mass or less, or 17% by mass or less.
  • the content of the component (C) is 5% by mass or more, the film adhesive tends to be more excellent in low-temperature sticking property when formed.
  • a cured product of the adhesive composition tends to have a more sufficient high-temperature storage modulus.
  • the component (D) may be an inorganic filler.
  • the component (D) include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whisker, and boron nitride. , Crystalline silica, amorphous silica and the like. These may be used alone or in combination of two or more. Among these, the component (D) may contain silica.
  • the average particle diameter of the component (D) may be 0.005 to 2.0 ⁇ m, 0.005 to 1.5 ⁇ m, or 0.005 to 1.0 ⁇ m from the viewpoint of further improving the adhesiveness.
  • the average particle size means a value obtained by converting from the BET specific surface area.
  • the component (D) may be surface-treated with a surface treating agent from the viewpoint of compatibility between the surface and a solvent, other components, and the like, and adhesive strength.
  • a surface treatment agent include a silane coupling agent.
  • the functional group of the silane coupling agent include a vinyl group, a (meth) acryloyl group, an epoxy group, a mercapto group, an amino group, a diamino group, an alkoxy group, and an ethoxy group.
  • the content of the component (D) is 40 to 68% by mass based on the total amount of the components (A), (B), (C), and (D).
  • the content of the component (D) is 45% by mass or more, 48% by mass or more, or 50% by mass or more based on the total amount of the components (A), (B), (C), and (D). May be 65% by mass or less, 60% by mass or less, or 55% by mass or less.
  • the content of the component (D) is 40% by mass or more, the cured product of the adhesive composition tends to have a more sufficient high-temperature storage elastic modulus.
  • the content of the component (D) is 68% by mass or less, the low-temperature sticking property when a film adhesive is formed tends to be excellent.
  • the adhesive composition may further contain the component (E).
  • the adhesive composition contains the component (E)
  • the adhesiveness and the connection reliability tend to be more compatible.
  • the component (E) include imidazoles and derivatives thereof, organic phosphorus compounds, secondary amines, tertiary amines, and quaternary ammonium salts. These may be used alone or in combination of two or more. Among them, the component (E) may be imidazoles and derivatives thereof from the viewpoint of reactivity.
  • imidazoles examples include 2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole and the like. These may be used alone or in combination of two or more.
  • the content of the component (E) may be 0.01 to 0.15% by mass based on the total amount of the components (A), (B), (C), and (D). When the content of the component (E) is in such a range, the adhesiveness and the connection reliability tend to be more compatible.
  • the adhesive composition may further contain the component (F).
  • the component (F) include a silane coupling agent, a titanate coupling agent, and an aluminum coupling agent. These may be used alone or in combination of two or more. Among these, the component (F) may be a silane coupling agent.
  • silane coupling agent examples include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, and ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxy Silane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, vinyltriacetoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldimethoxysilane ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, ⁇ -anilinopropyltrimethoxysilane, ⁇ -anilinopropyltriethoxys
  • the content of the component (F) may be 0.1 to 5.0% by mass based on the total amount of the components (A), (B), (C), and (D).
  • the content of the component (F) is in such a range, there is a tendency that interfacial bonding between different components can be further enhanced.
  • the adhesive composition may further contain, as other components, an antioxidant, a rheology control agent, a leveling agent, and the like.
  • the content of these components may be 0.01 to 3% by mass based on the total amount of the components (A), (B), (C) and (D).
  • the adhesive composition may be used as a varnish of the adhesive composition diluted with a solvent.
  • the solvent is not particularly limited as long as it can dissolve components other than the component (D).
  • the solvent include aromatic hydrocarbons such as toluene, xylene, mesitylene, cumene and p-cymene; aliphatic hydrocarbons such as hexane and heptane; cyclic alkanes such as methylcyclohexane; tetrahydrofuran and 1,4-dioxane.
  • Cyclic ethers such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and 4-hydroxy-4-methyl-2-pentanone; esters such as methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, and ⁇ -butyrolactone; Carbonic esters such as ethylene carbonate and propylene carbonate; amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like. These may be used alone or in combination of two or more. Among them, the solvent may be toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, or cyclohexanone from the viewpoint of solubility and boiling point.
  • the solid component concentration in the varnish of the adhesive composition may be 10 to 80% by mass based on the total amount of the varnish of the adhesive composition.
  • the varnish of the adhesive composition can be prepared by mixing and kneading components (A) to (F), a solvent, and other components.
  • the order of mixing and kneading of the components is not particularly limited, and can be set as appropriate.
  • Mixing and kneading can be performed by appropriately combining ordinary dispersers such as a stirrer, a mill, a three-roll mill, a ball mill, and a bead mill.
  • air bubbles in the varnish may be removed by vacuum degassing or the like.
  • FIG. 1 is a schematic sectional view showing a film adhesive according to one embodiment.
  • the film adhesive 10 is obtained by forming the above adhesive composition into a film.
  • the film adhesive 10 may be in a semi-cured (B stage) state.
  • Such a film adhesive 10 can be formed by applying an adhesive composition to a support film.
  • the film adhesive 10 can be formed by applying a varnish of the adhesive composition to a support film and removing the solvent by heating and drying.
  • the support film examples include films of polytetrafluoroethylene, polyethylene, polypropylene, polymethylpentene, polyethylene terephthalate, polyimide and the like.
  • the thickness of the support film may be, for example, between 10 and 200 ⁇ m or between 20 and 170 ⁇ m.
  • a known method can be used as a method for applying the varnish of the adhesive composition to the support film.
  • a known method can be used.
  • the heating and drying conditions are not particularly limited as long as the solvent used is sufficiently volatilized.
  • the heating and drying may be performed at 50 to 200 ° C. for 0.1 to 90 minutes.
  • the thickness of the film adhesive can be appropriately adjusted according to the application.
  • the thickness of the film-like adhesive may be 5 to 200 ⁇ m, 10 to 110 ⁇ m, or 15 to 80 ⁇ m from the viewpoint of sufficiently embedding irregularities of a semiconductor element (semiconductor chip), a wire, a wiring circuit of a substrate, and the like.
  • the storage elasticity at 175 ° C. of the cured product of the film adhesive obtained by heating the film adhesive at 110 ° C. for 1 hour, then at 170 ° C. for 1 hour may be 100 MPa or more, and 200 MPa or more, It may be 500 MPa or more, or 1000 MPa or more.
  • the storage elastic modulus at 175 ° C. of the cured product of the film adhesive is 100 MPa or more, displacement or peeling between the semiconductor element and the semiconductor element mounting support member can be suppressed.
  • the storage elastic modulus at 175 ° C. of the cured product of the film adhesive may be, for example, 2000 MPa or less.
  • the storage elastic modulus at 175 ° C. of the cured product of the film adhesive means a value measured by the method described in Examples.
  • the glass transition temperature (Tg) of the cured product of the film adhesive obtained by heating the film adhesive at 110 ° C. for 1 hour and then at 170 ° C. for 1 hour may be 190 ° C. or more, and may be 195 ° C. As described above, the temperature may be 200 ° C. or higher, or 205 ° C. or higher.
  • the glass transition temperature (Tg) of the cured product of the film adhesive may be, for example, 250 ° C. or less.
  • the glass transition temperature (Tg) of the cured product of the film adhesive means a value measured by the method described in Examples.
  • FIG. 2 is a schematic sectional view showing an adhesive sheet according to one embodiment.
  • the adhesive sheet 100 includes a base material 20 and the above-described film adhesive 10 provided on the base material.
  • the substrate 20 is not particularly limited, but may be a substrate film.
  • Examples of the base film include those exemplified above for the support film.
  • the base material 20 may be a dicing tape.
  • Such an adhesive sheet can be used as a dicing / die bonding integrated adhesive sheet. In this case, since the laminating process for the semiconductor wafer is performed once, the work efficiency can be improved.
  • the dicing tape examples include plastic films such as polytetrafluoroethylene film, polyethylene terephthalate film, polyethylene film, polypropylene film, polymethylpentene film, and polyimide film.
  • the dicing tape may have been subjected to a surface treatment such as a primer application, a UV treatment, a corona discharge treatment, a polishing treatment, an etching treatment and the like, as necessary.
  • the dicing tape may have adhesiveness.
  • Such a dicing tape may be one in which the above-mentioned plastic film is provided with adhesiveness, or one in which an adhesive layer is provided on one surface of the above-mentioned plastic film.
  • the adhesive sheet 100 can be formed by applying an adhesive composition to a base film in the same manner as in the method of forming a film adhesive described above.
  • the method for applying the adhesive composition to the substrate 20 may be the same as the method for applying the adhesive composition to the support film.
  • the adhesive sheet 100 may be formed by using a film adhesive prepared in advance.
  • the adhesive sheet 100 can be formed by laminating under a predetermined condition (for example, room temperature (20 ° C.) or a heated state) using a roll laminator, a vacuum laminator, or the like.
  • the adhesive sheet 100 is preferably formed by using a roll laminator in a heated state, since it can be manufactured continuously and is efficient.
  • FIG. 3 is a schematic sectional view showing an adhesive sheet according to another embodiment.
  • the adhesive sheet 110 further includes a protective film 30 laminated on the surface of the film adhesive 10 opposite to the substrate 20.
  • Examples of the protective film 30 include those exemplified above for the support film.
  • the thickness of the protective film may be, for example, between 10 and 200 ⁇ m or between 20 and 170 ⁇ m.
  • FIG. 4 is a schematic sectional view showing a semiconductor device according to one embodiment.
  • the first-stage first semiconductor element Wa is wire-bonded to the semiconductor-element mounting support member 14 via the first wire 88, and the first semiconductor element Wa is placed on the first semiconductor element Wa.
  • the semiconductor device is a semiconductor device in which at least a part of the first wire 88 is embedded in the film adhesive 10 by pressing the two semiconductor elements Waa through the film adhesive 10.
  • the semiconductor device is a wire-embedded semiconductor device in which at least a part of the first wire 88 is embedded, or a semiconductor device in which the first wire 88 and the first semiconductor element Wa are embedded. You may.
  • the semiconductor element mounting support member 14 and the second semiconductor element Waa are further electrically connected to each other via the second wire 98, and the second semiconductor element Waa is connected to the sealing material. 42.
  • the thickness of the first semiconductor element Wa may be 10 to 170 ⁇ m, and the thickness of the second semiconductor element Waa may be 20 to 400 ⁇ m.
  • the first semiconductor element Wa embedded in the film adhesive 10 may be a controller chip for driving the semiconductor device 200.
  • the supporting member 14 for mounting a semiconductor element is composed of an organic substrate 90 on the surface of which two circuit patterns 84 and 94 are respectively formed.
  • the first semiconductor element Wa is pressed on the circuit pattern 94 via the adhesive 41.
  • the second semiconductor element Waa is interposed via the film adhesive 10 so as to cover a part of the circuit pattern 94 to which the first semiconductor element Wa is not pressed, the first semiconductor element Wa, and the circuit pattern 84. It is crimped on the semiconductor element mounting support member 14.
  • the film adhesive 10 is embedded in the unevenness caused by the circuit patterns 84 and 94 on the semiconductor element mounting support member 14. Then, the second semiconductor element Waa, the circuit pattern 84, and the second wire 98 are sealed by the sealing material 42 made of resin.
  • the method for manufacturing a semiconductor device includes a first wire bonding step of electrically connecting a first semiconductor element on a substrate via a first wire; A laminating step of applying the film adhesive, and pressing the second semiconductor element to which the film adhesive has been applied via the film adhesive to form at least a part of the first wire into a film. A die bonding step of embedding the adhesive in the shape of an adhesive.
  • FIGS. 5, 6, 7, 8, and 9 are schematic cross-sectional views showing a series of steps of a method for manufacturing a semiconductor device according to one embodiment.
  • the semiconductor device 200 according to the present embodiment is a semiconductor device in which the first wire 88 and the first semiconductor element Wa are embedded, and is manufactured by the following procedure.
  • a first semiconductor element Wa having an adhesive 41 is pressure-bonded onto a circuit pattern 94 on a semiconductor element mounting support member 14, and the semiconductor element mounting element 14 is connected via a first wire 88.
  • the circuit pattern 84 on the support member 14 and the first semiconductor element Wa are electrically bonded to each other (first wire bonding step).
  • the adhesive sheet 100 is laminated on one surface of a semiconductor wafer (for example, 100 ⁇ m in thickness and 8 inches in size), and the base material 20 is peeled off. (110 ⁇ m). Then, after bonding the dicing tape to the film adhesive 10 and dicing to a predetermined size (for example, 7.5 mm square), as shown in FIG. Is obtained (lamination step).
  • a semiconductor wafer for example, 100 ⁇ m in thickness and 8 inches in size
  • a predetermined size for example, 7.5 mm square
  • the temperature condition of the laminating step may be 50 to 100 ° C or 60 to 80 ° C.
  • the temperature in the laminating step is 50 ° C. or higher, good adhesion to the semiconductor wafer can be obtained.
  • the temperature of the laminating step is 100 ° C. or lower, the film adhesive 10 is prevented from flowing excessively during the laminating step, so that a change in thickness or the like can be prevented.
  • dicing method for example, blade dicing using a rotary blade, a method of cutting a film adhesive or both a wafer and a film adhesive by a laser, and the like can be mentioned.
  • the second semiconductor element Waa to which the film adhesive 10 has been attached is press-bonded to the semiconductor element mounting support member 14 to which the first semiconductor element Wa is connected via bonding via the first wire 88.
  • the second semiconductor element Waa to which the film adhesive 10 is attached is covered with the film adhesive 10 so that the first wire 88 and the first semiconductor element Wa are covered.
  • the second semiconductor element Waa is fixed to the semiconductor element mounting support member 14 by pressing the second semiconductor element Waa against the semiconductor element mounting support member 14 (see FIG. 8).
  • Die bonding process In the die bonding step, the film adhesive 10 may be pressure-bonded at 80 to 180 ° C. and 0.01 to 0.50 MPa for 0.5 to 3.0 seconds. After the die bonding step, the film adhesive 10 may be pressure-bonded at 60 to 175 ° C. and 0.3 to 0.7 MPa for 5 minutes or more.
  • the circuit pattern 84 is formed.
  • the second wire 98 and the second semiconductor element Waa are sealed with the sealing material 42. Through these steps, the semiconductor device 200 can be manufactured.
  • the semiconductor device may be a wire-embedded semiconductor device in which at least a part of the first wire 88 is embedded.
  • a varnish of the adhesive composition was prepared by the following procedure using the components and their contents shown in Table 1. First, (A) an epoxy resin, (B) a phenol resin, and (D) a filler are blended, and cyclohexanone is added thereto and stirred. Subsequently, (C) an elastomer, (E) a curing accelerator, and (F) A) A varnish of an adhesive composition having a solid content of 40% by mass was obtained by adding a coupling agent and stirring until each component became uniform.
  • each component in Table 1 is as follows.
  • EXA-1514 bisphenol S type epoxy resin, manufactured by DIC Corporation, trade name "EXA-1514", epoxy equivalent: 300 g / eq
  • PSM-4326 phenol novolak type phenolic resin, manufactured by Gunei Chemical Industry Co., Ltd., trade name "Letoptop PSM-4326", softening point: 126 ° C, hydroxyl equivalent: 105 g / eq
  • Component (E) curing accelerator 2PZ-CN (1-cyanoethyl-2-phenylimidazole, manufactured by Shikoku Chemicals Co., Ltd., trade name “Curesol 2PZ-CN”)
  • the varnish of the obtained adhesive composition was applied on a 38 ⁇ m-thick polyethylene terephthalate (PET) film which had been subjected to a release treatment as a base film, and was heated and dried at 140 ° C. for 5 minutes.
  • PET polyethylene terephthalate
  • high temperature storage elastic modulus is determined by measuring the viscoelasticity of a cured product of the film adhesive in a temperature-dependent measurement mode in which the temperature is measured from 25 to 300 ° C. at 3 ° C./min. Was.
  • the larger the high temperature storage modulus (for example, 100 MPa or more), the more excellent the wire bonding property is.
  • the temperature at the peak top of the loss tangent (tan ⁇ ) represented by the ratio of the loss elastic modulus to the high-temperature storage elastic modulus was determined as the glass transition temperature.
  • the larger the glass transition temperature for example, 190 ° C. or higher), the more excellent the wire bonding property. Table 1 shows the results.
  • the content of the filler is 40 to 68% by mass based on the total amount of the epoxy resin, the phenol resin, the elastomer, and the filler, and the epoxy resin has a naphthalene skeleton.
  • Examples 1 to 5 containing an epoxy resin were all excellent in low-temperature sticking property, high-temperature storage elastic modulus, and glass transition temperature.
  • Comparative Example 1 in which the content of the filler was less than 40% by mass was not sufficient in terms of the high-temperature storage modulus.
  • Comparative Example 2 in which the content of the filler exceeded 68% by mass was not sufficient in terms of low-temperature sticking properties.
  • Comparative Example 3 in which the epoxy resin did not contain an epoxy resin having a naphthalene skeleton, was not sufficient in terms of high-temperature storage modulus and glass transition temperature. From these results, the adhesive composition according to the present invention has excellent low-temperature sticking properties when forming a film-like adhesive, has a sufficient high-temperature storage elastic modulus, and has a sufficient glass transition temperature. It was confirmed that a product could be formed.
  • SYMBOLS 10 Film adhesive, 14 ... Supporting member for mounting a semiconductor element, 20 ... Base material, 30 ... Protective film, 41 ... Adhesive, 42 ... Sealant, 84, 94 ... Circuit pattern, 88 ... First wire 90, an organic substrate, 98, a second wire, 100, 110, an adhesive sheet, 200, a semiconductor device, Wa, a first semiconductor element, Waa, a second semiconductor element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Die Bonding (AREA)

Abstract

Disclosed is an adhesive composition that contains an epoxy resin, a phenol resin, an elastomer, and a filler, in which the content of filler is 40-68 mass% in terms of the total amount of epoxy resin, phenol resin, elastomer, and filler, and the epoxy resin includes an epoxy resin having a naphthalene skeleton.

Description

接着剤組成物、フィルム状接着剤、接着シート、及び半導体装置の製造方法Adhesive composition, film adhesive, adhesive sheet, and method for manufacturing semiconductor device
 本発明は、接着剤組成物、フィルム状接着剤、接着シート、及び半導体装置の製造方法に関する。 << The present invention relates to an adhesive composition, a film adhesive, an adhesive sheet, and a method for manufacturing a semiconductor device.
 従来、半導体素子と半導体素子搭載用支持部材との接合には、銀ペーストが主に使用されている。しかしながら、近年の半導体素子の大型化、半導体パッケージの小型化及び高性能化に伴い、使用される半導体素子搭載用支持部材にも小型化及び細密化が要求されている。このような要求に対して、濡れ広がり性、はみ出し、半導体素子の傾き等に起因して発生するワイヤボンディング時における不具合、厚さ制御の困難性、ボイド発生などによって、銀ペーストでは充分に対処できなくなってきている。そのため、近年、銀ペーストに代わって、フィルム状接着剤を備える接着シートが使用されるようになっている(例えば、特許文献1、2参照)。このような接着シートは、個片貼付け方式、ウェハ裏面貼付け方式等の半導体装置の製造方法において使用されている。 銀 Conventionally, silver paste has been mainly used for joining a semiconductor element and a supporting member for mounting the semiconductor element. However, with the recent increase in size of semiconductor elements and miniaturization and high performance of semiconductor packages, there is a demand for smaller and finer semiconductor element mounting support members to be used. Silver paste can sufficiently cope with such demands due to problems during wire bonding caused by wet spreadability, protrusion, inclination of the semiconductor element, etc., difficulty in controlling the thickness, generation of voids, and the like. It's gone. Therefore, in recent years, an adhesive sheet provided with a film adhesive has been used instead of the silver paste (for example, see Patent Documents 1 and 2). Such an adhesive sheet is used in a method for manufacturing a semiconductor device such as an individual sticking method or a wafer backside sticking method.
 個片貼付け方式によって半導体装置を製造する場合、まず、リール状の接着シートをカッティング又はパンチングによって個片に切り出した後、フィルム状接着剤を半導体素子搭載用支持部材に貼り合わせる。その後、ダイシング工程によって個片化された半導体素子を、フィルム状接着剤付きの半導体素子搭載用支持部材に接合する。その後、ワイヤボンド、封止等の組立工程を経て、半導体装置が製造される(例えば、特許文献3参照)。しかし、個片貼付け方式の場合、接着シートを切り出して半導体素子搭載用支持部材に接着するための専用の組立装置が必要であり、銀ペーストを使用する方法に比べて製造コストが高くなるという問題がある。 In the case of manufacturing a semiconductor device by a piece sticking method, first, a reel-shaped adhesive sheet is cut into pieces by cutting or punching, and then a film-like adhesive is attached to a semiconductor element mounting support member. Thereafter, the semiconductor elements singulated by the dicing step are joined to a semiconductor element mounting support member with a film adhesive. Thereafter, a semiconductor device is manufactured through an assembly process such as wire bonding and sealing (for example, see Patent Document 3). However, in the case of the individual sticking method, a special assembling apparatus for cutting out the adhesive sheet and bonding the cut sheet to the supporting member for mounting the semiconductor element is required, and the manufacturing cost is higher than the method using the silver paste. There is.
 一方、ウェハ裏面貼付け方式によって半導体装置を製造する場合、まず、半導体ウェハの裏面にフィルム状接着剤を貼付け、さらにフィルム状接着剤の他方の面にダイシングシートを貼り合わせる。その後、ダイシングによって、フィルム状接着剤が貼り合わされた状態で半導体ウェハを個片化して半導体素子を作製する。次いで、フィルム状接着剤付きの半導体素子をピックアップして、半導体素子搭載用支持部材に接合する。その後、ワイヤボンド、封止等の組立工程を経て、半導体装置が製造される(例えば、特許文献4参照)。このウェハ裏面貼付け方式は、個片貼付け方式とは異なり、専用の組立装置を必要とすることなく、従来の銀ペースト用の組立装置をそのまま、又は熱盤を付加する等の装置を一部改良して用いることができる。そのため、ウェハ裏面貼付け方式は、接着シートを用いた半導体装置の製造方法の中で製造コストを比較的抑えることができる傾向にある。 On the other hand, when manufacturing a semiconductor device by the wafer backside bonding method, first, a film adhesive is bonded to the back surface of the semiconductor wafer, and a dicing sheet is bonded to the other surface of the film adhesive. Thereafter, by dicing, the semiconductor wafer is diced in a state where the film-like adhesive is adhered, thereby producing a semiconductor element. Next, the semiconductor element with the film adhesive is picked up and bonded to the semiconductor element mounting support member. Thereafter, a semiconductor device is manufactured through an assembly process such as wire bonding and sealing (for example, see Patent Document 4). Unlike the individual piece bonding method, this wafer backside bonding method does not require a special assembly device, and the existing silver paste assembly device is used as it is, or a device such as a hot plate is improved. Can be used. Therefore, the wafer backside bonding method tends to be able to relatively reduce the manufacturing cost in the method of manufacturing a semiconductor device using an adhesive sheet.
 ウェハ裏面貼付け方式では、組立工程の簡略化の観点から、フィルム状接着剤の一方の面にダイシングシートを貼り合せた(積層した)接着シート、すなわち、ダイシングシートとしての機能とダイボンドフィルムとしての機能を併せ持つ接着シート(以下、「ダイシング・ダイボンディング一体型接着シート」という場合がある。)が用いられることがある。このようなダイシング・ダイボンディング一体型接着シートを用いると、ダイシングシートの貼り合わせを簡略化することができ、ウェハ割れのリスクを低減することができる。ダイシングシートの軟化温度は、通常100℃以下である。そのため、ダイシング・ダイボンディング一体型接着シートには、ダイシングシートの軟化温度又は半導体ウェハの反りを考慮して、100℃よりも低温で半導体ウェハに貼り付けが可能であることが必要であり、とりわけ、半導体ウェハの反りを抑制する観点から、40~80℃で半導体ウェハに貼り付けが可能であることが求められる。 In the wafer backside bonding method, from the viewpoint of simplification of the assembling process, an adhesive sheet in which a dicing sheet is bonded (laminated) to one surface of a film adhesive, that is, a function as a dicing sheet and a function as a die bond film (Hereinafter, may be referred to as an “integrated dicing and die bonding adhesive sheet”) in some cases. When such a dicing / die bonding integrated adhesive sheet is used, the bonding of the dicing sheets can be simplified, and the risk of wafer cracking can be reduced. The softening temperature of the dicing sheet is usually 100 ° C. or lower. Therefore, the dicing / die bonding integrated adhesive sheet needs to be able to be attached to the semiconductor wafer at a temperature lower than 100 ° C. in consideration of the softening temperature of the dicing sheet or the warpage of the semiconductor wafer. From the viewpoint of suppressing the warpage of the semiconductor wafer, it is required that the semiconductor wafer can be stuck at 40 to 80 ° C.
 ところで、半導体素子がワイヤボンディング接続されるに際して、半導体素子と半導体素子搭載用支持部材との間にズレ又は剥離が生じることがある。これは通常のボンディング温度である175℃付近において、半導体素子と半導体素子搭載用支持部材とを接着しているフィルム状接着剤が柔らかくなって、変形することによって生じるものであると推測される。この現象は、半導体素子の小面積化に伴って、より大きな問題となり得る。そのため、ダイシング・ダイボンディング一体型接着シートの硬化後のフィルム状接着剤には、ワイヤボンディング特性として、高温貯蔵弾性率が充分に高いこと(例えば、175℃における貯蔵弾性率が100MPa以上であること)、及びガラス転移温度が充分に高いこと(例えば、ガラス転移温度が190℃以上であること)が求められる。 By the way, when the semiconductor element is connected by wire bonding, a gap or a separation may occur between the semiconductor element and the supporting member for mounting the semiconductor element. This is presumed to be caused by the fact that the film adhesive bonding the semiconductor element and the supporting member for mounting the semiconductor element becomes soft and deforms around 175 ° C., which is a normal bonding temperature. This phenomenon can become a bigger problem as the area of the semiconductor element is reduced. Therefore, the film adhesive after the dicing / die-bonding integrated adhesive sheet has been cured must have a sufficiently high high-temperature storage elasticity as a wire bonding property (for example, a storage elasticity at 175 ° C. of 100 MPa or more). ) And that the glass transition temperature is sufficiently high (for example, the glass transition temperature is 190 ° C. or higher).
 これまで、低温での半導体ウェハに対する貼り付け特性(低温貼付性)とワイヤボンディング特性とを満足させるべく、ガラス転移温度(Tg)が比較的低い熱可塑性樹脂と熱硬化性樹脂とを組み合わせた接着剤組成物が提案されている(例えば、特許文献5参照)。 Heretofore, in order to satisfy the bonding property (low-temperature bonding property) to a semiconductor wafer at a low temperature and the wire bonding property, bonding using a combination of a thermoplastic resin and a thermosetting resin having a relatively low glass transition temperature (Tg). An agent composition has been proposed (for example, see Patent Document 5).
特開平3-192178号公報JP-A-3-192178 特開平4-234472号公報JP-A-4-234472 特開平9-017810号公報JP-A-9-017810 特開平4-196246号公報JP-A-4-196246 特開2005-247953号公報JP 2005-247953 A
 しかし、半導体素子の小面積化に伴い、ワイヤボンディング時に要求されるフィルム状接着剤の高温貯蔵弾性率はより高くなっており、フィルム状接着剤にはさらなる特性の改善が求められている。 However, as the area of the semiconductor element is reduced, the high-temperature storage elastic modulus of the film adhesive required at the time of wire bonding is higher, and further improvement of the properties of the film adhesive is required.
 そこで、本発明は、フィルム状接着剤を形成したときの低温貼付性に優れるとともに、充分な高温貯蔵弾性率を有し、かつ充分なガラス転移温度を有する硬化物を形成することが可能な接着剤組成物を提供することを主な目的とする。 Therefore, the present invention provides an adhesive which is excellent in low-temperature sticking property when a film adhesive is formed, has a sufficient high-temperature storage elastic modulus, and is capable of forming a cured product having a sufficient glass transition temperature. The main purpose is to provide an agent composition.
 本発明の一側面は、エポキシ樹脂と、フェノール樹脂と、エラストマーと、フィラーとを含有し、フィラーの含有量が、エポキシ樹脂、フェノール樹脂、エラストマー、及びフィラーの総量を基準として、40~68質量%であり、エポキシ樹脂が、ナフタレン骨格を有するエポキシ樹脂を含む、接着剤組成物を提供する。このような接着剤組成物によれば、フィルム状接着剤を形成したときの低温貼付性に優れるとともに、充分な高温貯蔵弾性率を有し、かつ充分なガラス転移温度を有する硬化物を形成することが可能となり得る。 One aspect of the present invention includes an epoxy resin, a phenol resin, an elastomer, and a filler, and the content of the filler is 40 to 68 mass% based on the total amount of the epoxy resin, the phenol resin, the elastomer, and the filler. %, Wherein the epoxy resin comprises an epoxy resin having a naphthalene skeleton. According to such an adhesive composition, while having excellent low-temperature sticking properties when a film-like adhesive is formed, a cured product having a sufficient high-temperature storage elastic modulus and a sufficient glass transition temperature is formed. It may be possible.
 ナフタレン骨格を有するエポキシ樹脂は、4官能以上のエポキシ基を有するエポキシ樹脂であってよい。ナフタレン骨格を有するエポキシ樹脂の含有量は、エポキシ樹脂及びフェノール樹脂の総量を基準として、14~30質量%であってよい。ナフタレン骨格を有するエポキシ樹脂は、下記式(X)で表されるエポキシ樹脂を含んでいてもよい。 The epoxy resin having a naphthalene skeleton may be an epoxy resin having four or more functional epoxy groups. The content of the epoxy resin having a naphthalene skeleton may be 14 to 30% by mass based on the total amount of the epoxy resin and the phenol resin. The epoxy resin having a naphthalene skeleton may include an epoxy resin represented by the following formula (X).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 本発明の一側面に係る接着剤組成物は、基板上に第1のワイヤを介して第1の半導体素子がワイヤボンディング接続されると共に、第1の半導体素子上に、第2の半導体素子が圧着されてなる半導体装置において、第2の半導体素子を圧着すると共に第1のワイヤの少なくとも一部を埋め込むために用いられるものであってよい。 The adhesive composition according to one aspect of the present invention is configured such that a first semiconductor element is wire-bonded to a substrate via a first wire, and a second semiconductor element is formed on the first semiconductor element. In the semiconductor device formed by pressure bonding, the semiconductor device may be used for pressing the second semiconductor element and burying at least a part of the first wire.
 本発明はさらに、エポキシ樹脂と、フェノール樹脂と、エラストマーと、フィラーとを含有し、フィラーの含有量が、エポキシ樹脂、フェノール樹脂、エラストマー、及びフィラーの総量を基準として、40~68質量%であり、エポキシ樹脂が、ナフタレン骨格を有するエポキシ樹脂を含む、組成物の、基板上に第1のワイヤを介して第1の半導体素子がワイヤボンディング接続されると共に、第1の半導体素子上に、第2の半導体素子が圧着されてなる半導体装置において、第2の半導体素子を圧着すると共に第1のワイヤの少なくとも一部を埋め込むために用いられる、接着剤としての応用(使用)又は接着剤の製造のための応用(使用)に関してもよい。 The present invention further includes an epoxy resin, a phenol resin, an elastomer, and a filler, wherein the content of the filler is 40 to 68% by mass based on the total amount of the epoxy resin, the phenol resin, the elastomer, and the filler. There is provided a composition in which the epoxy resin contains an epoxy resin having a naphthalene skeleton. The first semiconductor element is wire-bonded to the substrate via the first wire via the first wire, and on the first semiconductor element, In a semiconductor device in which a second semiconductor element is crimped, application (use) of an adhesive or use of an adhesive used for crimping the second semiconductor element and embedding at least a part of the first wire. The application (use) for manufacturing may be good.
 本発明の他の一側面は、上記の接着剤組成物をフィルム状に形成してなる、フィルム状接着剤を提供する。 の 他 Another aspect of the present invention provides a film-like adhesive obtained by forming the above-mentioned adhesive composition into a film.
 本発明の他の一側面は、基材と、基材上に設けられた上記のフィルム状接着剤とを備える、接着シートを提供する。 の 他 Another aspect of the present invention provides an adhesive sheet, comprising: a base material; and the above-mentioned film adhesive provided on the base material.
 基材は、ダイシングテープであってよい。基材がダイシングテープである接着シートを「ダイシング・ダイボンディング一体型接着シート」という場合がある。 The substrate may be a dicing tape. An adhesive sheet whose base material is a dicing tape may be referred to as an “adhesive sheet integrated with dicing and die bonding”.
 本発明の他の一側面は、基板上に第1のワイヤを介して第1の半導体素子を電気的に接続するワイヤボンディング工程と、第2の半導体素子の片面に、上記のフィルム状接着剤を貼付するラミネート工程と、フィルム状接着剤が貼付された第2の半導体素子を、フィルム状接着剤を介して圧着することで、第1のワイヤの少なくとも一部をフィルム状接着剤に埋め込むダイボンド工程とを備える、半導体装置の製造方法を提供する。 According to another aspect of the present invention, there is provided a wire bonding step of electrically connecting a first semiconductor element to a substrate via a first wire, and the above-mentioned film adhesive is provided on one surface of a second semiconductor element. Laminating step, and bonding the second semiconductor element to which the film-like adhesive has been applied by pressure bonding via the film-like adhesive to embed at least a part of the first wire into the film-like adhesive. And a method for manufacturing a semiconductor device.
 なお、半導体装置は、半導体基板上に第1のワイヤを介して第1の半導体素子がワイヤボンディング接続されると共に、第1の半導体素子上に、第2の半導体素子がフィルム状接着剤を介して圧着されることで、第1のワイヤの少なくとも一部がフィルム状接着剤に埋め込まれてなるワイヤ埋込型の半導体装置であってもよく、第1のワイヤ及び第1の半導体素子がフィルム状接着剤に埋め込まれてなる半導体素子(半導体チップ)埋込型の半導体装置であってもよい。 In the semiconductor device, the first semiconductor element is connected by wire bonding to the semiconductor substrate via the first wire, and the second semiconductor element is connected to the first semiconductor element via the film adhesive. The semiconductor device may be a wire-embedded semiconductor device in which at least a portion of the first wire is embedded in a film adhesive by being pressure-bonded. A semiconductor device (semiconductor chip) embedded type semiconductor device embedded in an adhesive in a shape may be used.
 本発明によれば、本発明は、フィルム状接着剤を形成したときの低温貼付性に優れるとともに、充分な高温貯蔵弾性率を有し、かつ充分なガラス転移温度を有する硬化物を形成することが可能な接着剤組成物が提供される。当該接着剤組成物をフィルム状に形成してなるフィルム状接着剤は、半導体素子(半導体チップ)埋め込み型フィルム状接着剤であるFOD(Film Over Die)又はワイヤ埋め込み型フィルム状接着剤であるFOW(Film Over Wire)として有用となり得る。また、本発明によれば、このようなフィルム状接着剤を用いた接着シート及び半導体装置の製造方法が提供される。 According to the present invention, the present invention is to form a cured product having excellent low-temperature sticking properties when forming a film adhesive, having a sufficient high-temperature storage elastic modulus, and a sufficient glass transition temperature. Is provided. The film-like adhesive formed by forming the adhesive composition into a film is a film-like adhesive FOD (Film @ Over @ Die) which is a film-type adhesive embedded in a semiconductor element (semiconductor chip) or a film-like adhesive FOW which is a wire-embedded film. (Film @ Over @ Wire). Further, according to the present invention, a method for manufacturing an adhesive sheet and a semiconductor device using such a film-like adhesive is provided.
一実施形態に係るフィルム状接着剤を示す模式断面図である。It is a schematic cross section which shows the film adhesive which concerns on one Embodiment. 一実施形態に係る接着シートを示す模式断面図である。It is a schematic cross section showing an adhesive sheet concerning one embodiment. 他の実施形態に係る接着シートを示す模式断面図である。It is a schematic cross section showing an adhesive sheet concerning other embodiments. 一実施形態に係る半導体装置を示す模式断面図である。1 is a schematic cross-sectional view illustrating a semiconductor device according to one embodiment. 一実施形態に係る半導体装置の製造方法の一連の工程を示す模式断面図である。FIG. 4 is a schematic cross-sectional view showing a series of steps of a method for manufacturing a semiconductor device according to one embodiment. 一実施形態に係る半導体装置の製造方法の一連の工程を示す模式断面図である。FIG. 4 is a schematic cross-sectional view showing a series of steps of a method for manufacturing a semiconductor device according to one embodiment. 一実施形態に係る半導体装置の製造方法の一連の工程を示す模式断面図である。FIG. 4 is a schematic cross-sectional view showing a series of steps of a method for manufacturing a semiconductor device according to one embodiment. 一実施形態に係る半導体装置の製造方法の一連の工程を示す模式断面図である。FIG. 4 is a schematic cross-sectional view showing a series of steps of a method for manufacturing a semiconductor device according to one embodiment. 一実施形態に係る半導体装置の製造方法の一連の工程を示す模式断面図である。FIG. 4 is a schematic cross-sectional view showing a series of steps of a method for manufacturing a semiconductor device according to one embodiment.
 以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. However, the present invention is not limited to the following embodiments.
 本明細書において、(メタ)アクリル酸はアクリル酸又はそれに対応するメタクリル酸を意味する。(メタ)アクリロイル基等の他の類似表現についても同様である。 に お い て In this specification, (meth) acrylic acid means acrylic acid or methacrylic acid corresponding thereto. The same applies to other similar expressions such as a (meth) acryloyl group.
[接着剤組成物]
 一実施形態に係る接着剤組成物は、(A)エポキシ樹脂と、(B)フェノール樹脂と、(C)エラストマーと、(D)フィラーとを含有する。接着剤組成物は、熱硬化性であり、半硬化(Bステージ)状態を経て、硬化処理後に完全硬化物(Cステージ)状態となり得る。
[Adhesive composition]
The adhesive composition according to one embodiment contains (A) an epoxy resin, (B) a phenol resin, (C) an elastomer, and (D) a filler. The adhesive composition is thermosetting and can go through a semi-cured (B-stage) state to a completely cured product (C-stage) state after the curing treatment.
<(A)成分:エポキシ樹脂>
 (A)成分は、(A-1)ナフタレン骨格を有するエポキシ樹脂を含む。
<(A) component: epoxy resin>
The component (A) contains (A-1) an epoxy resin having a naphthalene skeleton.
 (A-1)成分は、ナフタレン骨格を有するものであれば特に制限なく用いることができる。(A-1)成分は、1種を単独で又は2種以上を組み合わせて用いてもよい。(A)成分が、(A-1)成分を含むことによって、接着剤組成物の硬化物は、充分な高温貯蔵弾性率を有し、かつ充分なガラス転移温度を有するものとなり得る。(A-1)成分は、4官能以上のエポキシ基を有するエポキシ樹脂であってよい。 The component (A-1) can be used without any particular limitation as long as it has a naphthalene skeleton. As the component (A-1), one type may be used alone, or two or more types may be used in combination. When the component (A) contains the component (A-1), the cured product of the adhesive composition can have a sufficient high-temperature storage elastic modulus and a sufficient glass transition temperature. The component (A-1) may be an epoxy resin having four or more functional epoxy groups.
 (A-1)成分の市販品としては、例えば、「HP-4700」、「HP-4710」、「HP-4770」(商品名、いずれもDIC株式会社製)、「NC-7000-L」、「NC-7300-L」(商品名、いずれも日本化薬株式会社製)等が挙げられる。 Examples of commercially available products of the component (A-1) include “HP-4700”, “HP-4710”, “HP-4770” (trade names, all manufactured by DIC Corporation), and “NC-7000-L” And "NC-7300-L" (trade names, all manufactured by Nippon Kayaku Co., Ltd.).
 (A-1)成分は、例えば、下記式(X)で表されるエポキシ樹脂を含んでいてもよい。 The component (A-1) may contain, for example, an epoxy resin represented by the following formula (X).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (A-1)成分の軟化点は、より充分な高温貯蔵弾性率を有し、かつより充分なガラス転移温度を有する接着剤組成物の硬化物が得られる傾向にあることから、30℃以上であってよい。(A-1)成分の軟化点は、40℃以上、80℃以上、又は90℃以上であってもよく、120℃以下、110℃以下、又は100℃以下であってもよい。 The softening point of the component (A-1) is at least 30 ° C. since a cured product of the adhesive composition having a more sufficient high-temperature storage elastic modulus and a more sufficient glass transition temperature tends to be obtained. It may be. The softening point of the component (A-1) may be 40 ° C. or higher, 80 ° C. or higher, or 90 ° C. or higher, and may be 120 ° C. or lower, 110 ° C. or lower, or 100 ° C. or lower.
 (A-1)成分のエポキシ当量は、特に制限されないが、10~600g/eq、100~500g/eq、又は120~450g/eqであってよい。(A-1)成分のエポキシ当量がこのような範囲にあると、より良好な反応性及び流動性が得られる傾向にある。 エ ポ キ シ The epoxy equivalent of the component (A-1) is not particularly limited, but may be 10 to 600 g / eq, 100 to 500 g / eq, or 120 to 450 g / eq. When the epoxy equivalent of the component (A-1) is in such a range, better reactivity and fluidity tend to be obtained.
 (A-1)成分の含有量は、(A)成分の総量を基準として、20~80質量%、30~70質量%、又は30~60質量%であってよい。 含有 The content of the component (A-1) may be 20 to 80% by mass, 30 to 70% by mass, or 30 to 60% by mass based on the total amount of the component (A).
 (A-1)成分の含有量は、フィルム状接着剤を形成したときの低温張付性により優れ、接着剤組成物の硬化物において、より充分な高温貯蔵弾性率が得られる傾向にあることから、(A)成分及び(B)成分の総量を基準として、14~30質量%であってよい。(A-1)成分の含有量は、(A)成分及び(B)成分の総量を基準として、15質量%以上又は18質量%以上であってもよく、25質量%以下又は22質量%以下であってもよい。 The content of the component (A-1) is excellent in low-temperature sticking property when a film-like adhesive is formed, and a cured product of the adhesive composition tends to have a more sufficient high-temperature storage modulus. Therefore, it may be 14 to 30% by mass based on the total amount of the components (A) and (B). The content of the component (A-1) may be 15% by mass or more or 18% by mass or more, and 25% by mass or less or 22% by mass or less based on the total amount of the components (A) and (B). It may be.
 (A)成分は、(A-1)成分に加えて、(A-2)ナフタレン骨格を有しないエポキシ樹脂を含んでいてもよい。(A-2)成分としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、スチルベン型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、フルオレン骨格含有エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、フェニルアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、多官能フェノール類、アントラセン等の多環芳香族類(ただし、ナフタレンを除く。)のジグリシジルエーテル化合物などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。(A-2)成分は、ビスフェノール型エポキシ樹脂であってよい。 成分 The component (A) may contain (A-2) an epoxy resin having no naphthalene skeleton in addition to the component (A-1). Examples of the component (A-2) include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, phenol novolak epoxy resin, cresol novolak epoxy resin, bisphenol A novolak epoxy resin, and bisphenol F Novolak epoxy resin, stilbene epoxy resin, epoxy resin containing triazine skeleton, epoxy resin containing fluorene skeleton, triphenolmethane epoxy resin, biphenyl epoxy resin, xylylene epoxy resin, phenylaralkyl epoxy resin, biphenylaralkyl epoxy resin Diglycidyl ether compounds of polycyclic aromatics such as polyfunctional phenols and anthracene (however, excluding naphthalene). These may be used alone or in combination of two or more. The component (A-2) may be a bisphenol-type epoxy resin.
 (A-2)成分のエポキシ当量は、特に制限されないが、90~600g/eq、100~500g/eq、又は120~450g/eqであってよい。(A-2)成分のエポキシ当量がこのような範囲にあると、より良好な反応性及び流動性が得られる傾向にある。 エ ポ キ シ The epoxy equivalent of the component (A-2) is not particularly limited, but may be 90 to 600 g / eq, 100 to 500 g / eq, or 120 to 450 g / eq. When the epoxy equivalent of the component (A-2) is in such a range, better reactivity and fluidity tend to be obtained.
 (A-2)成分の含有量は、(A)成分の総量を基準として、80~20質量%、70~30質量%、又は70~40質量%であってよい。 含有 The content of the component (A-2) may be 80 to 20% by mass, 70 to 30% by mass, or 70 to 40% by mass based on the total amount of the component (A).
 (A)成分の含有量は、(A)成分、(B)成分、(C)成分、及び(D)成分の総量を基準として、10~50質量%であってよい。(A)成分の含有量は、(A)成分、(B)成分、(C)成分、及び(D)成分の総量を基準として、12質量%以上、15質量%以上、又は18質量%以上であってもよく、40質量%以下、30質量%以下、又は25質量%以下であってもよい。 含有 The content of the component (A) may be 10 to 50% by mass based on the total amount of the components (A), (B), (C), and (D). The content of the component (A) is 12% by mass or more, 15% by mass or more, or 18% by mass or more based on the total amount of the components (A), (B), (C), and (D). May be 40% by mass or less, 30% by mass or less, or 25% by mass or less.
<(B)成分:フェノール樹脂>
 (B)成分は、分子内にフェノール性水酸基を有するものであれば特に制限なく用いることができる。(B)成分としては、例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化ナフタレンジオール、フェノールノボラック、フェノール等のフェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニルアラルキル型フェノール樹脂、フェニルアラルキル型フェノール樹脂などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。(B)成分は、ノボラック型フェノール樹脂であってよい。
<(B) component: phenolic resin>
The component (B) can be used without any particular limitation as long as it has a phenolic hydroxyl group in the molecule. As the component (B), for example, phenols such as phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol and / or naphthols such as α-naphthol, β-naphthol, dihydroxynaphthalene and the like Novolak-type phenolic resin obtained by condensation or co-condensation with a compound having an aldehyde group such as formaldehyde under an acidic catalyst, phenols such as allylated bisphenol A, allylated bisphenol F, allylated naphthalene diol, phenol novolak, and phenol Phenol aralkyl resins, naphthol aralkyl resins, biphenyl aralkyl resins synthesized from naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl And phenylaralkyl-type phenol resins. These may be used alone or in combination of two or more. The component (B) may be a novolak type phenol resin.
 (B)成分の市販品としては、例えば、レヂトップシリーズ(群栄化学工業株式会社製)、フェノライトKAシリーズ、TDシリーズ(DIC株式会社製)、ミレックスXLCシリーズ、XLシリーズ(三井化学株式会社製)、HEシリーズ(エア・ウォーター株式会社製)等が挙げられる。 Examples of commercially available products of the component (B) include a resin top series (manufactured by Gunei Chemical Industry Co., Ltd.), a phenolite KA series, a TD series (manufactured by DIC Corporation), a millex XLC series, and an XL series (Mitsui Chemicals, Inc.) Company) and HE series (manufactured by Air Water Co., Ltd.).
 (B)成分の水酸基当量は、特に制限されないが、80~400g/eq、90~350g/eq、又は100~300g/eqであってよい。(B)成分の水酸基当量がこのような範囲にあると、より良好な反応性及び流動性が得られる傾向にある。 The hydroxyl equivalent of the component (B) is not particularly limited, but may be 80 to 400 g / eq, 90 to 350 g / eq, or 100 to 300 g / eq. When the hydroxyl equivalent of the component (B) is in such a range, better reactivity and fluidity tend to be obtained.
 (A)成分のエポキシ当量と(B)成分の水酸基当量との比((A)成分のエポキシ当量/(B)成分の水酸基当量)は、硬化性の観点から、0.30/0.70~0.70/0.30、0.35/0.65~0.65/0.35、0.40/0.60~0.60/0.40、又は0.45/0.55~0.55/0.45であってよい。当該当量比が0.30/0.70以上であると、より充分な硬化性が得られる傾向にある。当該当量比が0.70/0.30以下であると、粘度が高くなり過ぎることを防ぐことができ、より充分な流動性を得ることができる。 The ratio of the epoxy equivalent of the component (A) to the hydroxyl equivalent of the component (B) (the epoxy equivalent of the component (A) / the hydroxyl equivalent of the component (B)) is 0.30 / 0.70 from the viewpoint of curability. 0.70 / 0.30, 0.35 / 0.65 to 0.65 / 0.35, 0.40 / 0.60 to 0.60 / 0.40, or 0.45 / 0.55 to It may be 0.55 / 0.45. When the equivalent ratio is 0.30 / 0.70 or more, more sufficient curability tends to be obtained. When the equivalent ratio is 0.70 / 0.30 or less, it is possible to prevent the viscosity from becoming too high, and to obtain more sufficient fluidity.
 (B)成分の含有量は、(A)成分、(B)成分、(C)成分、及び(D)成分の総量を基準として、5~30質量%であってよい。(B)成分の含有量は、(A)成分、(B)成分、(C)成分、及び(D)成分の総量を基準として、8質量%以上、10質量%以上、又は12質量%以上であってもよく、25質量%以下、20質量%以下、又は18質量%以下であってもよい。 含有 The content of the component (B) may be 5 to 30% by mass based on the total amount of the components (A), (B), (C), and (D). The content of the component (B) is 8% by mass or more, 10% by mass or more, or 12% by mass or more based on the total amount of the components (A), (B), (C), and (D). May be 25% by mass or less, 20% by mass or less, or 18% by mass or less.
<(C)成分:エラストマー>
 (C)成分としては、例えば、ポリイミド樹脂、アクリル樹脂、ウレタン樹脂、ポリフェニレンエーテル樹脂、ポリエーテルイミド樹脂、フェノキシ樹脂、変性ポリフェニレンエーテル樹脂等であって、架橋性官能基を有するものが挙げられる。これらの中でも、(C)成分は、アクリル樹脂であってよい。ここで、アクリル樹脂とは、(メタ)アクリル酸エステルに由来する構成単位を含むポリマーを意味する。アクリル樹脂は、構成単位として、エポキシ基、アルコール性又はフェノール性水酸基、カルボキシ基等の架橋性官能基を有する(メタ)アクリル酸エステルに由来する構成単位を含むポリマーであってもよい。また、アクリル樹脂は、(メタ)アクリル酸エステルとアクリルニトリルとの共重合体等のアクリルゴムであってもよい。アクリル樹脂は、1種を単独で又は2種以上を組み合わせて用いてもよい。
<(C) component: elastomer>
Examples of the component (C) include a polyimide resin, an acrylic resin, a urethane resin, a polyphenylene ether resin, a polyetherimide resin, a phenoxy resin, and a modified polyphenylene ether resin having a crosslinkable functional group. Among them, the component (C) may be an acrylic resin. Here, the acrylic resin means a polymer containing a structural unit derived from a (meth) acrylic acid ester. The acrylic resin may be a polymer containing, as a structural unit, a structural unit derived from a (meth) acrylic ester having a crosslinkable functional group such as an epoxy group, an alcoholic or phenolic hydroxyl group, and a carboxy group. Further, the acrylic resin may be an acrylic rubber such as a copolymer of (meth) acrylic acid ester and acrylonitrile. The acrylic resin may be used alone or in combination of two or more.
 アクリル樹脂の市販品としては、例えば、「SG-70L」、「SG-708-6」、「WS-023 EK30」、「SG-280 EK23」、「HTR-860P-3」、「HTR-860P-3CSP」、「HTR-860P-3CSP-3DB」(商品名、いずれもナガセケムテックス株式会社製)が挙げられる。 Commercially available acrylic resins include, for example, “SG-70L”, “SG-708-6”, “WS-023 @ EK30”, “SG-280 @ EK23”, “HTR-860P-3”, “HTR-860P” -3CSP "and" HTR-860P-3CSP-3DB "(trade names, both manufactured by Nagase ChemteX Corporation).
 (C)成分のガラス転移温度(Tg)は、-50~50℃又は-30~20℃であってよい。(C)成分のTgが-50℃以上であると、フィルム状接着剤を形成した後のタック性が低くなり、取り扱い性がより向上する傾向にある。(C)成分のTgが50℃以下であると、接着剤組成物の流動性をより充分に確保できる傾向にある。ここで、(C)成分のガラス転移温度(Tg)は、DSC(熱示差走査熱量計)(例えば、株式会社リガク製「Thermo Plus 2」)を用いて測定された値を意味する。 The component (C) may have a glass transition temperature (Tg) of −50 to 50 ° C. or −30 to 20 ° C. When the Tg of the component (C) is -50 ° C. or higher, tackiness after the formation of the film-like adhesive is reduced, and the handleability tends to be further improved. When the component (C) has a Tg of 50 ° C. or less, the fluidity of the adhesive composition tends to be more sufficiently secured. Here, the glass transition temperature (Tg) of the component (C) means a value measured using a DSC (thermal differential scanning calorimeter) (for example, “Thermo Plus 2” manufactured by Rigaku Corporation).
 (C)成分の重量平均分子量(Mw)は、5万~120万、10万~120万、又は30万~90万であってよい。(C)成分のMwが5万以上であると、成膜性により優れる傾向にある。(C)成分のMwが120万以下であると、流動性により優れる傾向にある。なお、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレンによる検量線を用いて換算した値である。 The weight average molecular weight (Mw) of the component (C) may be 50,000 to 1.2 million, 100,000 to 1.2 million, or 300,000 to 900,000. When the Mw of the component (C) is 50,000 or more, the film-forming properties tend to be more excellent. When the Mw of the component (C) is 1.2 million or less, the fluidity tends to be more excellent. Mw is a value measured by gel permeation chromatography (GPC) and converted using a calibration curve with standard polystyrene.
 (C)成分のMwの測定装置、測定条件等は、以下のとおりである。
 ポンプ:L-6000(株式会社日立製作所製)
 カラム:ゲルパック(Gelpack)GL-R440(日立化成株式会社製)、ゲルパック(Gelpack)GL-R450(日立化成株式会社製)、及びゲルパックGL-R400M(日立化成株式会社製)(各10.7mm(直径)×300mm)をこの順に連結したカラム
 溶離液:テトラヒドロフラン(THF)
 サンプル:試料120mgをTHF5mLに溶解させた溶液
 流速:1.75mL/分
The measuring device, measuring conditions and the like of Mw of the component (C) are as follows.
Pump: L-6000 (manufactured by Hitachi, Ltd.)
Columns: Gelpack GL-R440 (manufactured by Hitachi Chemical), Gelpack GL-R450 (manufactured by Hitachi Chemical), and Gelpack GL-R400M (manufactured by Hitachi Chemical) (each 10.7 mm ( Eluent: tetrahydrofuran (THF)
Sample: A solution in which 120 mg of a sample is dissolved in 5 mL of THF Flow rate: 1.75 mL / min
 (C)成分の含有量は、(A)成分、(B)成分、(C)成分、及び(D)成分の総量を基準として、5~20質量%であってよい。(C)成分の含有量は、(A)成分、(B)成分、(C)成分、及び(D)成分の総量を基準として、8質量%以上、10質量%以上、又は12質量%以上であってもよく、19質量%以下、18質量%以下、又は17質量%以下であってもよい。(C)成分の含有量が5質量%以上であると、フィルム状接着剤を形成したときの低温貼付性により優れる傾向にある。(C)成分の含有量が20質量%以下であると、接着剤組成物の硬化物において、より充分な高温貯蔵弾性率が得られる傾向にある。 含有 The content of the component (C) may be 5 to 20% by mass based on the total amount of the components (A), (B), (C), and (D). The content of the component (C) is 8% by mass or more, 10% by mass or more, or 12% by mass or more based on the total amount of the components (A), (B), (C), and (D). May be 19% by mass or less, 18% by mass or less, or 17% by mass or less. When the content of the component (C) is 5% by mass or more, the film adhesive tends to be more excellent in low-temperature sticking property when formed. When the content of the component (C) is 20% by mass or less, a cured product of the adhesive composition tends to have a more sufficient high-temperature storage modulus.
<(D)成分:フィラー>
 (D)成分は、無機フィラーであってよい。(D)成分としては、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ホウ酸アルミウィスカ、窒化ホウ素、結晶性シリカ、非晶性シリカ等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、(D)成分は、シリカを含んでいてもよい。
<(D) component: filler>
The component (D) may be an inorganic filler. Examples of the component (D) include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whisker, and boron nitride. , Crystalline silica, amorphous silica and the like. These may be used alone or in combination of two or more. Among these, the component (D) may contain silica.
 (D)成分の平均粒径は、接着性がより向上する観点から、0.005~2.0μm、0.005~1.5μm、0.005~1.0μmであってよい。ここで、平均粒径は、BET比表面積から換算することによって求められる値を意味する。 The average particle diameter of the component (D) may be 0.005 to 2.0 μm, 0.005 to 1.5 μm, or 0.005 to 1.0 μm from the viewpoint of further improving the adhesiveness. Here, the average particle size means a value obtained by converting from the BET specific surface area.
 (D)成分は、その表面と溶剤、他の成分等との相溶性、接着強度の観点から表面処理剤によって表面処理されていてもよい。表面処理剤としては、例えば、シラン系カップリング剤等が挙げられる。シラン系カップリング剤の官能基としては、例えば、ビニル基、(メタ)アクリロイル基、エポキシ基、メルカプト基、アミノ基、ジアミノ基、アルコキシ基、エトキシ基等が挙げられる。 The component (D) may be surface-treated with a surface treating agent from the viewpoint of compatibility between the surface and a solvent, other components, and the like, and adhesive strength. Examples of the surface treatment agent include a silane coupling agent. Examples of the functional group of the silane coupling agent include a vinyl group, a (meth) acryloyl group, an epoxy group, a mercapto group, an amino group, a diamino group, an alkoxy group, and an ethoxy group.
 (D)成分の含有量は、(A)成分、(B)成分、(C)成分、及び(D)成分の総量を基準として、40~68質量%である。(D)成分の含有量は、(A)成分、(B)成分、(C)成分、及び(D)成分の総量を基準として、45質量%以上、48質量%以上、又は50質量%以上であってもよく、65質量%以下、60質量%以下、又は55質量%以下であってもよい。(D)成分の含有量が40質量%以上であると、接着剤組成物の硬化物において、より充分な高温貯蔵弾性率が得られる傾向にある。(D)成分の含有量が68質量%以下であると、フィルム状接着剤を形成したときの低温貼付性に優れる傾向にある。 含有 The content of the component (D) is 40 to 68% by mass based on the total amount of the components (A), (B), (C), and (D). The content of the component (D) is 45% by mass or more, 48% by mass or more, or 50% by mass or more based on the total amount of the components (A), (B), (C), and (D). May be 65% by mass or less, 60% by mass or less, or 55% by mass or less. When the content of the component (D) is 40% by mass or more, the cured product of the adhesive composition tends to have a more sufficient high-temperature storage elastic modulus. When the content of the component (D) is 68% by mass or less, the low-temperature sticking property when a film adhesive is formed tends to be excellent.
<(E)成分:硬化促進剤>
 接着剤組成物は、(E)成分をさらに含有していてもよい。接着剤組成物が(E)成分を含有することによって、接着性と接続信頼性とをより両立することができる傾向にある。(E)成分としては、例えば、イミダゾール類及びその誘導体、有機リン系化合物、第二級アミン類、第三級アミン類、第四級アンモニウム塩等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、反応性の観点から(E)成分はイミダゾール類及びその誘導体であってよい。
<(E) component: curing accelerator>
The adhesive composition may further contain the component (E). When the adhesive composition contains the component (E), the adhesiveness and the connection reliability tend to be more compatible. Examples of the component (E) include imidazoles and derivatives thereof, organic phosphorus compounds, secondary amines, tertiary amines, and quaternary ammonium salts. These may be used alone or in combination of two or more. Among them, the component (E) may be imidazoles and derivatives thereof from the viewpoint of reactivity.
 イミダゾール類としては、例えば、2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。 Examples of the imidazoles include 2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole and the like. These may be used alone or in combination of two or more.
 (E)成分の含有量は、(A)成分、(B)成分、(C)成分、及び(D)成分の総量を基準として、0.01~0.15質量%であってよい。(E)成分の含有量がこのような範囲にあると、接着性と接続信頼性とをより両立することができる傾向にある。 含有 The content of the component (E) may be 0.01 to 0.15% by mass based on the total amount of the components (A), (B), (C), and (D). When the content of the component (E) is in such a range, the adhesiveness and the connection reliability tend to be more compatible.
<(F)成分:カップリング剤>
 接着剤組成物は、(F)成分をさらに含有していてもよい。接着剤組成物が(F)成分を含有することによって、異種成分間の界面結合をより高めることができる傾向にある。(F)成分としては、例えば、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、(F)成分は、シラン系カップリング剤であってよい。
<(F) component: coupling agent>
The adhesive composition may further contain the component (F). When the adhesive composition contains the component (F), there is a tendency that interfacial bonding between different components can be further enhanced. Examples of the component (F) include a silane coupling agent, a titanate coupling agent, and an aluminum coupling agent. These may be used alone or in combination of two or more. Among these, the component (F) may be a silane coupling agent.
 シラン系カップリング剤としては、例えば、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルトリエトキシシラン、γ-(N,N-ジメチル)アミノプロピルトリメトキシシラン、γ-(N,N-ジエチル)アミノプロピルトリメトキシシラン、γ-(N,N-ジブチル)アミノプロピルトリメトキシシラン、γ-(N-メチル)アニリノプロピルトリメトキシシラン、γ-(N-エチル)アニリノプロピルトリメトキシシラン、γ-(N,N-ジメチル)アミノプロピルトリエトキシシラン、γ-(N,N-ジエチル)アミノプロピルトリエトキシシラン、γ-(N,N-ジブチル)アミノプロピルトリエトキシシラン、γ-(N-メチル)アニリノプロピルトリエトキシシラン、γ-(N-エチル)アニリノプロピルトリエトキシシラン、γ-(N,N-ジメチル)アミノプロピルメチルジメトキシシラン、γ-(N,N-ジエチル)アミノプロピルメチルジメトキシシラン、γ-(N,N-ジブチル)アミノプロピルメチルジメトキシシラン、γ-(N-メチル)アニリノプロピルメチルジメトキシシラン、γ-(N-エチル)アニリノプロピルメチルジメトキシシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、N-(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-ウレイドプロピルトリエトキシシラン等が挙げられる。 Examples of the silane coupling agent include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxy Silane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldimethoxysilane Γ-aminopropyltriethoxysilane, γ-aminopropylmethyldiethoxysilane, γ-anilinopropyltrimethoxysilane, γ-anilinopropyltriethoxysilane, γ- (N, N-dimethyl) a Nopropyltrimethoxysilane, γ- (N, N-diethyl) aminopropyltrimethoxysilane, γ- (N, N-dibutyl) aminopropyltrimethoxysilane, γ- (N-methyl) anilinopropyltrimethoxysilane, γ- (N-ethyl) anilinopropyltrimethoxysilane, γ- (N, N-dimethyl) aminopropyltriethoxysilane, γ- (N, N-diethyl) aminopropyltriethoxysilane, γ- (N, N -Dibutyl) aminopropyltriethoxysilane, γ- (N-methyl) anilinopropyltriethoxysilane, γ- (N-ethyl) anilinopropyltriethoxysilane, γ- (N, N-dimethyl) aminopropylmethyldimethoxy Silane, γ- (N, N-diethyl) aminopropylmethyldimethoxysilane, γ- (N, N- Dibutyl) aminopropylmethyldimethoxysilane, γ- (N-methyl) anilinopropylmethyldimethoxysilane, γ- (N-ethyl) anilinopropylmethyldimethoxysilane, N- (trimethoxysilylpropyl) ethylenediamine, N- (dimethoxy Methylsilylisopropyl) ethylenediamine, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, γ-chloropropyltrimethoxysilane, hexamethyldisilane, vinyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-ureidopropyltri Ethoxysilane and the like can be mentioned.
 (F)成分の含有量は、(A)成分、(B)成分、(C)成分、及び(D)成分の総量を基準として、0.1~5.0質量%であってよい。(F)成分の含有量がこのような範囲にあると、異種成分間の界面結合をより高めることができる傾向にある。 含有 The content of the component (F) may be 0.1 to 5.0% by mass based on the total amount of the components (A), (B), (C), and (D). When the content of the component (F) is in such a range, there is a tendency that interfacial bonding between different components can be further enhanced.
<その他の成分>
 接着剤組成物は、その他の成分として、抗酸化剤、レオロジーコントロール剤、レベリング剤等をさらに含有していてもよい。これらの成分の含有量は、(A)成分、(B)成分、(C)成分、及び(D)成分の総量を基準として、0.01~3質量%であってよい。
<Other ingredients>
The adhesive composition may further contain, as other components, an antioxidant, a rheology control agent, a leveling agent, and the like. The content of these components may be 0.01 to 3% by mass based on the total amount of the components (A), (B), (C) and (D).
 接着剤組成物は、溶剤で希釈された接着剤組成物のワニスとして用いてもよい。溶剤は、(D)成分以外の成分を溶解できるものであれば特に制限されない。溶剤としては、例えば、トルエン、キシレン、メシチレン、クメン、p-シメン等の芳香族炭化水素;ヘキサン、ヘプタン等の脂肪族炭化水素;メチルシクロヘキサンなどの環状アルカン;テトラヒドロフラン、1,4-ジオキサン等の環状エーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等の炭酸エステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミドなどが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、溶剤は、溶解性及び沸点の観点から、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、又はシクロヘキサノンであってもよい。 The adhesive composition may be used as a varnish of the adhesive composition diluted with a solvent. The solvent is not particularly limited as long as it can dissolve components other than the component (D). Examples of the solvent include aromatic hydrocarbons such as toluene, xylene, mesitylene, cumene and p-cymene; aliphatic hydrocarbons such as hexane and heptane; cyclic alkanes such as methylcyclohexane; tetrahydrofuran and 1,4-dioxane. Cyclic ethers; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and 4-hydroxy-4-methyl-2-pentanone; esters such as methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, and γ-butyrolactone; Carbonic esters such as ethylene carbonate and propylene carbonate; amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like. These may be used alone or in combination of two or more. Among them, the solvent may be toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, or cyclohexanone from the viewpoint of solubility and boiling point.
 接着剤組成物のワニス中の固形成分濃度は、接着剤組成物のワニスの総量を基準として、10~80質量%であってよい。 固 形 The solid component concentration in the varnish of the adhesive composition may be 10 to 80% by mass based on the total amount of the varnish of the adhesive composition.
 接着剤組成物のワニスは、(A)成分~(F)成分、溶剤、及びその他の成分を混合、混練することによって調製することができる。なお、各成分の混合、混練の順序は特に制限されず、適宜設定することができる。混合及び混練は、通常の撹拌機、らいかい機、三本ロール、ボールミル、ビーズミル等の分散機を適宜、組み合わせて行うことができる。
接着剤組成物のワニスを調製した後、真空脱気等によってワニス中の気泡を除去してよい。
The varnish of the adhesive composition can be prepared by mixing and kneading components (A) to (F), a solvent, and other components. The order of mixing and kneading of the components is not particularly limited, and can be set as appropriate. Mixing and kneading can be performed by appropriately combining ordinary dispersers such as a stirrer, a mill, a three-roll mill, a ball mill, and a bead mill.
After preparing the varnish of the adhesive composition, air bubbles in the varnish may be removed by vacuum degassing or the like.
[フィルム状接着剤]
 図1は、一実施形態に係るフィルム状接着剤を示す模式断面図である。フィルム状接着剤10は、上記の接着剤組成物をフィルム状に形成してなるものである。フィルム状接着剤10は、半硬化(Bステージ)状態であってよい。このようなフィルム状接着剤10は、接着剤組成物を支持フィルムに塗布することによって形成することができる。接着剤組成物のワニスを用いる場合は、接着剤組成物のワニスを支持フィルムに塗布し、溶剤を加熱乾燥して除去することによってフィルム状接着剤10を形成することができる。
[Film adhesive]
FIG. 1 is a schematic sectional view showing a film adhesive according to one embodiment. The film adhesive 10 is obtained by forming the above adhesive composition into a film. The film adhesive 10 may be in a semi-cured (B stage) state. Such a film adhesive 10 can be formed by applying an adhesive composition to a support film. When a varnish of the adhesive composition is used, the film adhesive 10 can be formed by applying a varnish of the adhesive composition to a support film and removing the solvent by heating and drying.
 支持フィルムとしては、例えば、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリエチレンテレフタレート、ポリイミド等のフィルムが挙げられる。支持フィルムの厚さは、例えば、10~200μm又は20~170μmであってよい。 Examples of the support film include films of polytetrafluoroethylene, polyethylene, polypropylene, polymethylpentene, polyethylene terephthalate, polyimide and the like. The thickness of the support film may be, for example, between 10 and 200 μm or between 20 and 170 μm.
 接着剤組成物のワニスを支持フィルムに塗布する方法としては、公知の方法を用いることができ、例えば、ナイフコート法、ロールコート法、スプレーコート法、グラビアコート法、バーコート法、カーテンコート法等が挙げられる。加熱乾燥の条件は、使用した溶剤が充分に揮発する条件であれば特に制限はないが、例えば、50~200℃で0.1~90分間であってもよい。 As a method for applying the varnish of the adhesive composition to the support film, a known method can be used. For example, a knife coating method, a roll coating method, a spray coating method, a gravure coating method, a bar coating method, a curtain coating method And the like. The heating and drying conditions are not particularly limited as long as the solvent used is sufficiently volatilized. For example, the heating and drying may be performed at 50 to 200 ° C. for 0.1 to 90 minutes.
 フィルム状接着剤の厚さは、用途に合わせて、適宜調整することができる。フィルム状接着剤の厚さは、半導体素子(半導体チップ)、ワイヤ、基板の配線回路等の凹凸などを充分に埋め込む観点から、5~200μm、10~110μm、又は15~80μmであってよい。 厚 The thickness of the film adhesive can be appropriately adjusted according to the application. The thickness of the film-like adhesive may be 5 to 200 μm, 10 to 110 μm, or 15 to 80 μm from the viewpoint of sufficiently embedding irregularities of a semiconductor element (semiconductor chip), a wire, a wiring circuit of a substrate, and the like.
 フィルム状接着剤を110℃で1時間、続いて170℃、1時間加熱することによって得られるフィルム状接着剤の硬化物の175℃における貯蔵弾性率は、100MPa以上であってよく、200MPa以上、500MPa以上、又は1000MPa以上であってもよい。フィルム状接着剤の硬化物の175℃における貯蔵弾性率が100MPa以上であると、半導体素子と半導体素子搭載用支持部材との間にズレ又は剥離を抑えることができる。フィルム状接着剤の硬化物の175℃における貯蔵弾性率は、例えば、2000MPa以下であってよい。フィルム状接着剤の硬化物の175℃における貯蔵弾性率は、実施例に記載の方法によって測定された値を意味する。 The storage elasticity at 175 ° C. of the cured product of the film adhesive obtained by heating the film adhesive at 110 ° C. for 1 hour, then at 170 ° C. for 1 hour may be 100 MPa or more, and 200 MPa or more, It may be 500 MPa or more, or 1000 MPa or more. When the storage elastic modulus at 175 ° C. of the cured product of the film adhesive is 100 MPa or more, displacement or peeling between the semiconductor element and the semiconductor element mounting support member can be suppressed. The storage elastic modulus at 175 ° C. of the cured product of the film adhesive may be, for example, 2000 MPa or less. The storage elastic modulus at 175 ° C. of the cured product of the film adhesive means a value measured by the method described in Examples.
 フィルム状接着剤を110℃で1時間、続いて170℃で1時間加熱することによって得られるフィルム状接着剤の硬化物のガラス転移温度(Tg)は、190℃以上であってよく、195℃以上、200℃以上、又は205℃以上であってもよい。フィルム状接着剤の硬化物のガラス転移温度(Tg)が190℃以上であると、半導体素子と半導体素子搭載用支持部材との間にズレ又は剥離を抑えることができる。フィルム状接着剤の硬化物のガラス転移温度(Tg)は、例えば、250℃以下であってよい。フィルム状接着剤の硬化物のガラス転移温度(Tg)は、実施例に記載の方法によって測定された値を意味する。 The glass transition temperature (Tg) of the cured product of the film adhesive obtained by heating the film adhesive at 110 ° C. for 1 hour and then at 170 ° C. for 1 hour may be 190 ° C. or more, and may be 195 ° C. As described above, the temperature may be 200 ° C. or higher, or 205 ° C. or higher. When the glass transition temperature (Tg) of the cured product of the film adhesive is 190 ° C. or more, the gap or separation between the semiconductor element and the semiconductor element mounting support member can be suppressed. The glass transition temperature (Tg) of the cured product of the film adhesive may be, for example, 250 ° C. or less. The glass transition temperature (Tg) of the cured product of the film adhesive means a value measured by the method described in Examples.
[接着シート]
 図2は、一実施形態に係る接着シートを示す模式断面図である。接着シート100は、基材20と基材上に設けられた上記のフィルム状接着剤10とを備える。
[Adhesive sheet]
FIG. 2 is a schematic sectional view showing an adhesive sheet according to one embodiment. The adhesive sheet 100 includes a base material 20 and the above-described film adhesive 10 provided on the base material.
 基材20は、特に制限されないが、基材フィルムであってよい。基材フィルムは、上記の支持フィルムで例示したものが挙げられる。 The substrate 20 is not particularly limited, but may be a substrate film. Examples of the base film include those exemplified above for the support film.
 基材20は、ダイシングテープであってもよい。このような接着シートは、ダイシング・ダイボンディング一体型接着シートとして使用することができる。この場合、半導体ウェハへのラミネート工程が1回となることから、作業の効率化が可能である。 The base material 20 may be a dicing tape. Such an adhesive sheet can be used as a dicing / die bonding integrated adhesive sheet. In this case, since the laminating process for the semiconductor wafer is performed once, the work efficiency can be improved.
 ダイシングテープとしては、例えば、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリイミドフィルム等のプラスチックフィルムなどが挙げられる。また、ダイシングテープは、必要に応じて、プライマー塗布、UV処理、コロナ放電処理、研磨処理、エッチング処理等の表面処理が行われていてもよい。ダイシングテープは、粘着性を有するものであってもよい。このようなダイシングテープは、上記のプラスチックフィルムに粘着性を付与したものであってもよく、上記のプラスチックフィルムの片面に粘着剤層を設けたものであってもよい。 Examples of the dicing tape include plastic films such as polytetrafluoroethylene film, polyethylene terephthalate film, polyethylene film, polypropylene film, polymethylpentene film, and polyimide film. The dicing tape may have been subjected to a surface treatment such as a primer application, a UV treatment, a corona discharge treatment, a polishing treatment, an etching treatment and the like, as necessary. The dicing tape may have adhesiveness. Such a dicing tape may be one in which the above-mentioned plastic film is provided with adhesiveness, or one in which an adhesive layer is provided on one surface of the above-mentioned plastic film.
 接着シート100は、上記のフィルム状接着剤を形成する方法と同様に、接着剤組成物を基材フィルムに塗布することによって形成することができる。接着剤組成物を基材20に塗布する方法は、上記の接着剤組成物を支持フィルムに塗布する方法と同様であってよい。 The adhesive sheet 100 can be formed by applying an adhesive composition to a base film in the same manner as in the method of forming a film adhesive described above. The method for applying the adhesive composition to the substrate 20 may be the same as the method for applying the adhesive composition to the support film.
 接着シート100は、予め作製したフィルム状接着剤を用いて形成してもよい。この場合、接着シート100は、ロールラミネーター、真空ラミネーター等を用いて所定条件(例えば、室温(20℃)又は加熱状態)でラミネートすることによって形成することができる。接着シート100は、連続的に製造ができ、効率が良いことから、加熱状態でロールラミネーターを用いて形成することが好ましい。 The adhesive sheet 100 may be formed by using a film adhesive prepared in advance. In this case, the adhesive sheet 100 can be formed by laminating under a predetermined condition (for example, room temperature (20 ° C.) or a heated state) using a roll laminator, a vacuum laminator, or the like. The adhesive sheet 100 is preferably formed by using a roll laminator in a heated state, since it can be manufactured continuously and is efficient.
 図3は、他の実施形態に係る接着シートを示す模式断面図である。接着シート110は、フィルム状接着剤10の基材20とは反対側の面に積層された保護フィルム30をさらに備える。保護フィルム30は、上記の支持フィルムで例示したものが挙げられる。保護フィルムの厚さは、例えば、10~200μm又は20~170μmであってよい。 FIG. 3 is a schematic sectional view showing an adhesive sheet according to another embodiment. The adhesive sheet 110 further includes a protective film 30 laminated on the surface of the film adhesive 10 opposite to the substrate 20. Examples of the protective film 30 include those exemplified above for the support film. The thickness of the protective film may be, for example, between 10 and 200 μm or between 20 and 170 μm.
[半導体装置]
 図4は、一実施形態に係る半導体装置を示す模式断面図である。半導体装置200は、半導体素子搭載用支持部材14に、第1のワイヤ88を介して1段目の第1の半導体素子Waがワイヤボンディング接続されると共に、第1の半導体素子Wa上に、第2の半導体素子Waaがフィルム状接着剤10を介して圧着されることで、第1のワイヤ88の少なくとも一部がフィルム状接着剤10に埋め込まれてなる半導体装置である。半導体装置は、第1のワイヤ88の少なくとも一部が埋め込まれてなるワイヤ埋め込み型の半導体装置であっても、第1のワイヤ88及び第1の半導体素子Waが埋め込まれてなる半導体装置であってもよい。また、半導体装置200では、半導体素子搭載用支持部材14と第2の半導体素子Waaとがさらに第2のワイヤ98を介して電気的に接続されると共に、第2の半導体素子Waaが封止材42により封止されている。
[Semiconductor device]
FIG. 4 is a schematic sectional view showing a semiconductor device according to one embodiment. In the semiconductor device 200, the first-stage first semiconductor element Wa is wire-bonded to the semiconductor-element mounting support member 14 via the first wire 88, and the first semiconductor element Wa is placed on the first semiconductor element Wa. The semiconductor device is a semiconductor device in which at least a part of the first wire 88 is embedded in the film adhesive 10 by pressing the two semiconductor elements Waa through the film adhesive 10. The semiconductor device is a wire-embedded semiconductor device in which at least a part of the first wire 88 is embedded, or a semiconductor device in which the first wire 88 and the first semiconductor element Wa are embedded. You may. Further, in the semiconductor device 200, the semiconductor element mounting support member 14 and the second semiconductor element Waa are further electrically connected to each other via the second wire 98, and the second semiconductor element Waa is connected to the sealing material. 42.
 第1の半導体素子Waの厚さは、10~170μmであってもよく、第2の半導体素子Waaの厚さは、20~400μmであってもよい。フィルム状接着剤10の内部に埋め込まれている第1の半導体素子Waは、半導体装置200を駆動するためのコントローラチップであってよい。 1The thickness of the first semiconductor element Wa may be 10 to 170 μm, and the thickness of the second semiconductor element Waa may be 20 to 400 μm. The first semiconductor element Wa embedded in the film adhesive 10 may be a controller chip for driving the semiconductor device 200.
 半導体素子搭載用支持部材14は、表面に回路パターン84、94がそれぞれ二箇所ずつ形成された有機基板90からなる。第1の半導体素子Waは、回路パターン94上に接着剤41を介して圧着されている。第2の半導体素子Waaは、第1の半導体素子Waが圧着されていない回路パターン94、第1の半導体素子Wa、及び回路パターン84の一部が覆われるようにフィルム状接着剤10を介して半導体素子搭載用支持部材14に圧着されている。半導体素子搭載用支持部材14上の回路パターン84、94に起因する凹凸の段差には、フィルム状接着剤10が埋め込まれている。そして、樹脂製の封止材42により、第2の半導体素子Waa、回路パターン84、及び第2のワイヤ98が封止されている。 The supporting member 14 for mounting a semiconductor element is composed of an organic substrate 90 on the surface of which two circuit patterns 84 and 94 are respectively formed. The first semiconductor element Wa is pressed on the circuit pattern 94 via the adhesive 41. The second semiconductor element Waa is interposed via the film adhesive 10 so as to cover a part of the circuit pattern 94 to which the first semiconductor element Wa is not pressed, the first semiconductor element Wa, and the circuit pattern 84. It is crimped on the semiconductor element mounting support member 14. The film adhesive 10 is embedded in the unevenness caused by the circuit patterns 84 and 94 on the semiconductor element mounting support member 14. Then, the second semiconductor element Waa, the circuit pattern 84, and the second wire 98 are sealed by the sealing material 42 made of resin.
[半導体装置の製造方法]
 本実施形態に係る半導体装置の製造方法は、基板上に第1のワイヤを介して第1の半導体素子を電気的に接続する第1のワイヤボンディング工程と、第2の半導体素子の片面に、上記のフィルム状接着剤を貼付するラミネート工程と、フィルム状接着剤が貼付された第2の半導体素子を、フィルム状接着剤を介して圧着することで、第1のワイヤの少なくとも一部をフィルム状接着剤に埋め込むダイボンド工程とを備える。
[Method of Manufacturing Semiconductor Device]
The method for manufacturing a semiconductor device according to the present embodiment includes a first wire bonding step of electrically connecting a first semiconductor element on a substrate via a first wire; A laminating step of applying the film adhesive, and pressing the second semiconductor element to which the film adhesive has been applied via the film adhesive to form at least a part of the first wire into a film. A die bonding step of embedding the adhesive in the shape of an adhesive.
 図5、図6、図7、図8、及び図9は、一実施形態に係る半導体装置の製造方法の一連の工程を示す模式断面図である。本実施形態に係る半導体装置200は、第1のワイヤ88及び第1の半導体素子Waが埋め込まれてなる半導体装置であり、以下の手順により製造される。まず、図5に示すとおり、半導体素子搭載用支持部材14上の回路パターン94上に、接着剤41を有する第1の半導体素子Waを圧着し、第1のワイヤ88を介して半導体素子搭載用支持部材14上の回路パターン84と第1の半導体素子Waとを電気的にボンディング接続する(第1のワイヤボンディング工程)。 FIGS. 5, 6, 7, 8, and 9 are schematic cross-sectional views showing a series of steps of a method for manufacturing a semiconductor device according to one embodiment. The semiconductor device 200 according to the present embodiment is a semiconductor device in which the first wire 88 and the first semiconductor element Wa are embedded, and is manufactured by the following procedure. First, as shown in FIG. 5, a first semiconductor element Wa having an adhesive 41 is pressure-bonded onto a circuit pattern 94 on a semiconductor element mounting support member 14, and the semiconductor element mounting element 14 is connected via a first wire 88. The circuit pattern 84 on the support member 14 and the first semiconductor element Wa are electrically bonded to each other (first wire bonding step).
 次に、半導体ウェハ(例えば、厚さ100μm、サイズ8インチ)の片面に、接着シート100をラミネートし、基材20を剥がすことによって、半導体ウェハの片面にフィルム状接着剤10(例えば、厚さ110μm)を貼り付ける。そして、フィルム状接着剤10にダイシングテープを貼り合わせた後、所定の大きさ(例えば、7.5mm角)にダイシングすることにより、図6に示すとおり、フィルム状接着剤10が貼付した第2の半導体素子Waaを得る(ラミネート工程)。 Next, the adhesive sheet 100 is laminated on one surface of a semiconductor wafer (for example, 100 μm in thickness and 8 inches in size), and the base material 20 is peeled off. (110 μm). Then, after bonding the dicing tape to the film adhesive 10 and dicing to a predetermined size (for example, 7.5 mm square), as shown in FIG. Is obtained (lamination step).
 ラミネート工程の温度条件は、50~100℃又は60~80℃であってよい。ラミネート工程の温度が50℃以上であると、半導体ウェハと良好な密着性を得ることができる。ラミネート工程の温度が100℃以下であると、ラミネート工程中にフィルム状接着剤10が過度に流動することが抑えられるため、厚さの変化等を引き起こすことを防止できる。 温度 The temperature condition of the laminating step may be 50 to 100 ° C or 60 to 80 ° C. When the temperature in the laminating step is 50 ° C. or higher, good adhesion to the semiconductor wafer can be obtained. When the temperature of the laminating step is 100 ° C. or lower, the film adhesive 10 is prevented from flowing excessively during the laminating step, so that a change in thickness or the like can be prevented.
 ダイシング方法としては、例えば、回転刃を用いるブレードダイシング、レーザーによってフィルム状接着剤又はウェハとフィルム状接着剤の両方を切断する方法等が挙げられる。 As the dicing method, for example, blade dicing using a rotary blade, a method of cutting a film adhesive or both a wafer and a film adhesive by a laser, and the like can be mentioned.
 そして、フィルム状接着剤10が貼付した第2の半導体素子Waaを、第1の半導体素子Waが第1のワイヤ88を介してボンディング接続された半導体素子搭載用支持部材14に圧着する。具体的には、図7に示すとおり、フィルム状接着剤10が貼付された第2の半導体素子Waaを、フィルム状接着剤10によって第1のワイヤ88及び第1の半導体素子Waが覆われるように載置し、次いで、図8に示すとおり、第2の半導体素子Waaを半導体素子搭載用支持部材14に圧着させることで半導体素子搭載用支持部材14に第2の半導体素子Waaを固定する(ダイボンド工程)。ダイボンド工程は、フィルム状接着剤10を80~180℃、0.01~0.50MPaの条件で0.5~3.0秒間圧着するものであってよい。ダイボンド工程の後、フィルム状接着剤10を60~175℃、0.3~0.7MPaの条件で、5分間以上圧着してもよい。 {Circle around (2)} The second semiconductor element Waa to which the film adhesive 10 has been attached is press-bonded to the semiconductor element mounting support member 14 to which the first semiconductor element Wa is connected via bonding via the first wire 88. Specifically, as shown in FIG. 7, the second semiconductor element Waa to which the film adhesive 10 is attached is covered with the film adhesive 10 so that the first wire 88 and the first semiconductor element Wa are covered. Then, as shown in FIG. 8, the second semiconductor element Waa is fixed to the semiconductor element mounting support member 14 by pressing the second semiconductor element Waa against the semiconductor element mounting support member 14 (see FIG. 8). Die bonding process). In the die bonding step, the film adhesive 10 may be pressure-bonded at 80 to 180 ° C. and 0.01 to 0.50 MPa for 0.5 to 3.0 seconds. After the die bonding step, the film adhesive 10 may be pressure-bonded at 60 to 175 ° C. and 0.3 to 0.7 MPa for 5 minutes or more.
 次いで、図9に示すとおり、半導体素子搭載用支持部材14と第2の半導体素子Waaとを第2のワイヤ98を介して電気的に接続した後(第2のワイヤボンディング工程)、回路パターン84、第2のワイヤ98及び第2の半導体素子Waaを封止材42で封止する。このような工程を経ることで半導体装置200を製造することができる。 Next, as shown in FIG. 9, after the semiconductor element mounting support member 14 and the second semiconductor element Waa are electrically connected via the second wire 98 (second wire bonding step), the circuit pattern 84 is formed. , The second wire 98 and the second semiconductor element Waa are sealed with the sealing material 42. Through these steps, the semiconductor device 200 can be manufactured.
 他の実施形態として、半導体装置は、第1のワイヤ88の少なくとも一部が埋め込まれてなるワイヤ埋め込み型の半導体装置であってもよい。 As another embodiment, the semiconductor device may be a wire-embedded semiconductor device in which at least a part of the first wire 88 is embedded.
 以下、本発明について実施例を挙げてより具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
(実施例1~5及び比較例1~3)
<接着シートの作製>
 表1に示す各成分及びその含有量で、以下の手順によって接着剤組成物のワニスを調製した。まず、(A)エポキシ樹脂、(B)フェノール樹脂、及び(D)フィラーを配合し、これにシクロヘキサノンを加えて撹拌し、続いて、(C)エラストマー、(E)硬化促進剤、及び(F)カップリング剤を加えて、各成分が均一になるまで撹拌することによって、固形分40質量%の接着剤組成物のワニスを得た。
(Examples 1 to 5 and Comparative Examples 1 to 3)
<Preparation of adhesive sheet>
A varnish of the adhesive composition was prepared by the following procedure using the components and their contents shown in Table 1. First, (A) an epoxy resin, (B) a phenol resin, and (D) a filler are blended, and cyclohexanone is added thereto and stirred. Subsequently, (C) an elastomer, (E) a curing accelerator, and (F) A) A varnish of an adhesive composition having a solid content of 40% by mass was obtained by adding a coupling agent and stirring until each component became uniform.
 なお、表1中の各成分は以下のとおりである。 In addition, each component in Table 1 is as follows.
(A)成分:エポキシ樹脂
(A-1)成分:ナフタレン骨格を有するエポキシ樹脂
 HP-4710(上記の式(X)で表されるエポキシ樹脂、DIC株式会社製、商品名「HP-4710」、軟化点:95℃、エポキシ当量:170g/eq)
(A-2)成分:ナフタレン骨格を有しないエポキシ樹脂
 YDF-8170C(ビスフェノールA型エポキシ樹脂、新日鉄住金化学株式会社製、商品名「YDF-8170C」、エポキシ当量:160g/eq)
 EXA-1514(ビスフェノールS型エポキシ樹脂、DIC株式会社製、商品名「EXA-1514」、エポキシ当量:300g/eq)
Component (A): Epoxy resin Component (A-1): Epoxy resin having a naphthalene skeleton HP-4710 (epoxy resin represented by the above formula (X), trade name “HP-4710” manufactured by DIC Corporation) (Softening point: 95 ° C, epoxy equivalent: 170 g / eq)
Component (A-2): an epoxy resin having no naphthalene skeleton YDF-8170C (bisphenol A type epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name "YDF-8170C", epoxy equivalent: 160 g / eq)
EXA-1514 (bisphenol S type epoxy resin, manufactured by DIC Corporation, trade name "EXA-1514", epoxy equivalent: 300 g / eq)
(B)成分:フェノール樹脂
 PSM-4326(フェノールノボラック型フェノール樹脂、群栄化学工業株式会社製、商品名「レヂトップPSM-4326」、軟化点:126℃、水酸基当量:105g/eq)
Component (B): phenolic resin PSM-4326 (phenol novolak type phenolic resin, manufactured by Gunei Chemical Industry Co., Ltd., trade name "Letoptop PSM-4326", softening point: 126 ° C, hydroxyl equivalent: 105 g / eq)
(C)成分:エラストマー
 HTR-860P-3(アクリルゴム、ナガセケムテックス株式会社製、商品名「HTR-860P-3」、重量平均分子量80万、ガラス転移温度:-13℃)
Component (C): elastomer HTR-860P-3 (acrylic rubber, manufactured by Nagase ChemteX Corporation, trade name "HTR-860P-3", weight average molecular weight 800,000, glass transition temperature: -13 ° C)
(D)成分:フィラー
 SC2050-HLG(シリカフィラー、アドマテックス株式会社製、商品名「SC2050-HLG」、平均粒径0.500μm)
Component (D): Filler SC2050-HLG (silica filler, manufactured by Admatechs Co., Ltd., trade name “SC2050-HLG”, average particle size 0.500 μm)
(E)成分:硬化促進剤
 2PZ-CN(1-シアノエチル-2-フェニルイミダゾール、四国化成工業株式会社製、商品名「キュアゾール2PZ-CN」)
Component (E): curing accelerator 2PZ-CN (1-cyanoethyl-2-phenylimidazole, manufactured by Shikoku Chemicals Co., Ltd., trade name “Curesol 2PZ-CN”)
(F)成分:カップリング剤
 A-189(γ-メルカプトプロピルトリメトキシシラン、日本ユニカー株式会社製、商品名「NUC A-189」)
 A-1160(γ-ウレイドプロピルトリエトキシシラン、日本ユニカー株式会社製、商品名「NUC A-1160」)
Component (F): Coupling agent A-189 (γ-mercaptopropyltrimethoxysilane, manufactured by Nippon Unicar Co., Ltd., trade name “NUC A-189”)
A-1160 (γ-ureidopropyltriethoxysilane, manufactured by Nippon Unicar Co., Ltd., trade name “NUC A-1160”)
 次に、得られた接着剤組成物のワニスを、基材フィルムである厚さ38μmの離型処理を施したポリエチレンテレフタレート(PET)フィルム上に塗布し、140℃で5分間加熱乾燥した。このようにして、基材フィルム上に、半硬化(Bステージ)状態にある厚さ20μmのフィルム状接着剤が設けられた実施例1~5及び比較例1~3の接着シートを得た。 Next, the varnish of the obtained adhesive composition was applied on a 38 μm-thick polyethylene terephthalate (PET) film which had been subjected to a release treatment as a base film, and was heated and dried at 140 ° C. for 5 minutes. Thus, the adhesive sheets of Examples 1 to 5 and Comparative Examples 1 to 3 in which the film-like adhesive in a semi-cured (B stage) state and having a thickness of 20 μm were provided on the base film were obtained.
<低温貼付性の評価>
 実施例1~5及び比較例1~3の各接着シートを、長さ100mm、幅50mmに切り出し、これを試験片とした。この試験片を、支持台上に載せたシリコンウェハ(8インチ径、厚さ400μm)の支持台と反対側の面に、フィルム状接着剤とシリコンウェハとが接するように積層した。フィルム状接着剤の積層は、ロール(温度70℃、線圧39.2N/cm(4kgf/cm)、送り速度0.5m/分)で加圧しながら行った。このときに、フィルム状接着剤とシリコンウェハとの間に空隙(ボイド)の発生が観測されなかった場合を低温貼付性に優れるとして「A」と評価し、空隙(ボイド)の発生が観測された場合を「B」と評価した。結果を表1に示す。
<Evaluation of low-temperature sticking property>
Each of the adhesive sheets of Examples 1 to 5 and Comparative Examples 1 to 3 was cut into a length of 100 mm and a width of 50 mm, and used as test pieces. The test piece was laminated on a surface of the silicon wafer (8 inches in diameter, 400 μm in thickness) opposite to the support on the silicon wafer placed on the support so that the film adhesive and the silicon wafer were in contact with each other. Lamination of the film adhesive was performed while applying pressure with a roll (temperature: 70 ° C., linear pressure: 39.2 N / cm (4 kgf / cm), feed rate: 0.5 m / min). At this time, the case where no generation of voids (voids) was observed between the film adhesive and the silicon wafer was evaluated as “A” as being excellent in low-temperature adhesion, and the generation of voids (voids) was observed. Was evaluated as “B”. Table 1 shows the results.
<硬化後のフィルム状接着剤の高温貯蔵弾性率及びガラス転移温度の測定>
 実施例1~5及び比較例1~3の各接着シートを110℃で1時間加熱し、その後、170℃で1時間加熱することによって、フィルム状接着剤の硬化物を得た。フィルム状接着剤の硬化物を、動的粘弾性測定装置(レオロジー社製、商品名DVE-V4)を用いて、フィルム状接着剤の硬化物に引張り荷重をかけて、周波数10Hz、昇温速度3℃/分の条件で25~300℃まで測定する温度依存性測定モードでフィルム状接着剤の硬化物の粘弾性を測定することによって、175℃における貯蔵弾性率(高温貯蔵弾性率)を求めた。高温貯蔵弾性率は、数値が大きい(例えば、100MPa以上)ほど、ワイヤボンディング特性に優れていることを意味する。また、高温貯蔵弾性率に対する損失弾性率の割合で表される損失正接(tanδ)のピークトップの温度をガラス転移温度として求めた。ガラス転移温度は、数値が大きい(例えば、190℃以上)ほど、ワイヤボンディング特性に優れていることを意味する。結果を表1に示す。
<Measurement of high temperature storage modulus and glass transition temperature of cured film adhesive>
Each of the adhesive sheets of Examples 1 to 5 and Comparative Examples 1 to 3 was heated at 110 ° C. for 1 hour, and then heated at 170 ° C. for 1 hour to obtain a cured film adhesive. The cured product of the film adhesive was subjected to a tensile load using a dynamic viscoelasticity measuring device (trade name: DVE-V4, manufactured by Rheology) at a frequency of 10 Hz and a temperature rising rate. The storage elastic modulus at 175 ° C. (high temperature storage elastic modulus) is determined by measuring the viscoelasticity of a cured product of the film adhesive in a temperature-dependent measurement mode in which the temperature is measured from 25 to 300 ° C. at 3 ° C./min. Was. The larger the high temperature storage modulus (for example, 100 MPa or more), the more excellent the wire bonding property is. Further, the temperature at the peak top of the loss tangent (tan δ) represented by the ratio of the loss elastic modulus to the high-temperature storage elastic modulus was determined as the glass transition temperature. The larger the glass transition temperature (for example, 190 ° C. or higher), the more excellent the wire bonding property. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1に示すとおり、接着剤組成物において、フィラーの含有量が、エポキシ樹脂、フェノール樹脂、エラストマー、及びフィラーの総量を基準として、40~68質量%であり、エポキシ樹脂が、ナフタレン骨格を有するエポキシ樹脂を含む実施例1~5は、低温貼付性、高温貯蔵弾性率、及びガラス転移温度の点でいずれも優れていた。一方、フィラーの含有量が、40質量%未満である比較例1は、高温貯蔵弾性率の点で充分ではなかった。また、フィラーの含有量が、68質量%を超える比較例2は、低温貼付性の点で充分ではなかった。さらに、エポキシ樹脂が、ナフタレン骨格を有するエポキシ樹脂を含まない比較例3は、高温貯蔵弾性率及びガラス転移温度の点で充分ではなかった。これらの結果から、本発明に係る接着剤組成物が、フィルム状接着剤を形成したときの低温貼付性に優れるとともに、充分な高温貯蔵弾性率を有し、かつ充分なガラス転移温度を有する硬化物を形成することが可能であることが確認された。 As shown in Table 1, in the adhesive composition, the content of the filler is 40 to 68% by mass based on the total amount of the epoxy resin, the phenol resin, the elastomer, and the filler, and the epoxy resin has a naphthalene skeleton. Examples 1 to 5 containing an epoxy resin were all excellent in low-temperature sticking property, high-temperature storage elastic modulus, and glass transition temperature. On the other hand, Comparative Example 1, in which the content of the filler was less than 40% by mass, was not sufficient in terms of the high-temperature storage modulus. Further, Comparative Example 2 in which the content of the filler exceeded 68% by mass was not sufficient in terms of low-temperature sticking properties. Furthermore, Comparative Example 3, in which the epoxy resin did not contain an epoxy resin having a naphthalene skeleton, was not sufficient in terms of high-temperature storage modulus and glass transition temperature. From these results, the adhesive composition according to the present invention has excellent low-temperature sticking properties when forming a film-like adhesive, has a sufficient high-temperature storage elastic modulus, and has a sufficient glass transition temperature. It was confirmed that a product could be formed.
 10…フィルム状接着剤、14…半導体素子搭載用支持部材、20…基材、30…保護フィルム、41…接着剤、42…封止材、84、94…回路パターン、88…第1のワイヤ、90…有機基板、98…第2のワイヤ、100、110…接着シート、200…半導体装置、Wa…第1の半導体素子、Waa…第2の半導体素子。 DESCRIPTION OF SYMBOLS 10 ... Film adhesive, 14 ... Supporting member for mounting a semiconductor element, 20 ... Base material, 30 ... Protective film, 41 ... Adhesive, 42 ... Sealant, 84, 94 ... Circuit pattern, 88 ... First wire 90, an organic substrate, 98, a second wire, 100, 110, an adhesive sheet, 200, a semiconductor device, Wa, a first semiconductor element, Waa, a second semiconductor element.

Claims (8)

  1.  エポキシ樹脂と、
     フェノール樹脂と、
     エラストマーと、
     フィラーと、
    を含有し、
     前記フィラーの含有量が、前記エポキシ樹脂、前記フェノール樹脂、前記エラストマー、及び前記フィラーの総量を基準として、40~68質量%であり、
     前記エポキシ樹脂が、ナフタレン骨格を有するエポキシ樹脂を含む、接着剤組成物。
    Epoxy resin,
    A phenolic resin,
    An elastomer,
    Filler and
    Containing
    The content of the filler is 40 to 68% by mass based on the total amount of the epoxy resin, the phenol resin, the elastomer, and the filler;
    An adhesive composition, wherein the epoxy resin contains an epoxy resin having a naphthalene skeleton.
  2.  前記ナフタレン骨格を有するエポキシ樹脂が、4官能以上のエポキシ基を有するエポキシ樹脂である、請求項1に記載の接着剤組成物。 The adhesive composition according to claim 1, wherein the epoxy resin having a naphthalene skeleton is an epoxy resin having an epoxy group having four or more functional groups.
  3.  前記ナフタレン骨格を有するエポキシ樹脂の含有量が、前記エポキシ樹脂及び前記フェノール樹脂の総量を基準として、14~30質量%である、請求項1又は2に記載の接着剤組成物。 The adhesive composition according to claim 1, wherein the content of the epoxy resin having a naphthalene skeleton is 14 to 30% by mass based on the total amount of the epoxy resin and the phenol resin.
  4.  前記ナフタレン骨格を有するエポキシ樹脂が、下記式(X)で表されるエポキシ樹脂を含む、請求項1~3のいずれか一項に記載の接着剤組成物。
    Figure JPOXMLDOC01-appb-C000001
    4. The adhesive composition according to claim 1, wherein the epoxy resin having a naphthalene skeleton includes an epoxy resin represented by the following formula (X).
    Figure JPOXMLDOC01-appb-C000001
  5.  請求項1~4のいずれか一項に記載の接着剤組成物をフィルム状に形成してなる、フィルム状接着剤。 (4) A film adhesive obtained by forming the adhesive composition according to any one of (1) to (4) into a film.
  6.  基材と、
     前記基材上に設けられた、請求項5に記載のフィルム状接着剤と、
    を備える、接着シート。
    A substrate,
    The film-like adhesive according to claim 5, which is provided on the base material,
    An adhesive sheet comprising:
  7.  前記基材がダイシングテープである、請求項6に記載の接着シート。 7. The adhesive sheet according to claim 6, wherein the base material is a dicing tape.
  8.  基板上に第1のワイヤを介して第1の半導体素子を電気的に接続するワイヤボンディング工程と、
     第2の半導体素子の片面に、請求項5に記載のフィルム状接着剤を貼付するラミネート工程と、
     前記フィルム状接着剤が貼付された第2の半導体素子を、前記フィルム状接着剤を介して圧着することで、前記第1のワイヤの少なくとも一部を前記フィルム状接着剤に埋め込むダイボンド工程と、
    を備える、半導体装置の製造方法。
    A wire bonding step of electrically connecting the first semiconductor element on the substrate via the first wire;
    A laminating step of attaching the film adhesive according to claim 5 to one surface of the second semiconductor element;
    A die bonding step of embedding at least a part of the first wire in the film adhesive, by pressing the second semiconductor element to which the film adhesive is adhered, via the film adhesive.
    A method for manufacturing a semiconductor device, comprising:
PCT/JP2019/027610 2018-08-03 2019-07-11 Adhesive composition, film-like adhesive, adhesive sheet, and method for producing semiconductor device WO2020026757A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217004419A KR102661683B1 (en) 2018-08-03 2019-07-11 Adhesive composition, film adhesive, adhesive sheet, and method for producing semiconductor devices
CN201980051092.7A CN112513217B (en) 2018-08-03 2019-07-11 Adhesive composition, film-like adhesive, adhesive sheet, and method for manufacturing semiconductor device
SG11202100988PA SG11202100988PA (en) 2018-08-03 2019-07-11 Adhesive composition, film-like adhesive, adhesive sheet, and method for producing semiconductor device
JP2020533385A JP7380565B2 (en) 2018-08-03 2019-07-11 Adhesive composition, film adhesive, adhesive sheet, and method for manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-146944 2018-08-03
JP2018146944 2018-08-03

Publications (1)

Publication Number Publication Date
WO2020026757A1 true WO2020026757A1 (en) 2020-02-06

Family

ID=69231598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027610 WO2020026757A1 (en) 2018-08-03 2019-07-11 Adhesive composition, film-like adhesive, adhesive sheet, and method for producing semiconductor device

Country Status (6)

Country Link
JP (1) JP7380565B2 (en)
KR (1) KR102661683B1 (en)
CN (1) CN112513217B (en)
SG (1) SG11202100988PA (en)
TW (1) TWI829727B (en)
WO (1) WO2020026757A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152837A1 (en) * 2022-02-09 2023-08-17 株式会社レゾナック Film-form adhesive, dicing and die-bonding two-in-one film, semiconductor device, and method for manufacturing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028734A (en) * 2003-07-11 2005-02-03 Nitto Denko Corp Laminated sheet
JP2011228642A (en) * 2010-03-31 2011-11-10 Furukawa Electric Co Ltd:The Wafer processing tape
JP2013030765A (en) * 2011-06-22 2013-02-07 Nitto Denko Corp Method of manufacturing semiconductor device
WO2013061478A1 (en) * 2011-10-26 2013-05-02 味の素株式会社 Resin composition
JP2013112730A (en) * 2011-11-28 2013-06-10 Nitto Denko Corp Sheet-shaped sealing composition and method for producing semiconductor device
JP2014175459A (en) * 2013-03-08 2014-09-22 Hitachi Chemical Co Ltd Semiconductor device and semiconductor device manufacturing method
JP2016037529A (en) * 2014-08-06 2016-03-22 信越化学工業株式会社 Liquid epoxy resin composition and heat sink, and adhesive for stiffener
WO2018043035A1 (en) * 2016-08-30 2018-03-08 リンテック株式会社 Resin composition, resinous sheet, and semiconductor device
JP2018148124A (en) * 2017-03-08 2018-09-20 リンテック株式会社 Sealing sheet and method for manufacturing semiconductor device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192178A (en) 1989-12-21 1991-08-22 Nitto Denko Corp Adhesive sheet for die bonding
JPH04196246A (en) 1990-11-27 1992-07-16 Nitto Denko Corp Dicing die-bond film
JPH04234472A (en) 1990-12-07 1992-08-24 Natl Starch & Chem Investment Holding Corp Thermoplastic dye-bonded adhesive film
JP3215014B2 (en) 1994-10-31 2001-10-02 日立化成工業株式会社 Laminating method of film-shaped organic die bonding material, die bonding method, laminating device, die bonding device, semiconductor device, and method of manufacturing semiconductor device
JP2005247953A (en) 2004-03-03 2005-09-15 Toray Ind Inc Adhesive composition for semiconductor and adhesive sheet for semiconductor using the same
KR101082448B1 (en) * 2007-04-30 2011-11-11 주식회사 엘지화학 Adheisive resin composition and dicing die bonding film using the same
KR100934558B1 (en) * 2007-10-08 2009-12-29 제일모직주식회사 Adhesive film composition for semiconductor assembly comprising phenol type curable resin reacted with silane coupling agent and adhesive film
KR101284978B1 (en) * 2008-04-21 2013-07-10 주식회사 엘지화학 Adhesive compositons, adhesive films, dicing die bonding films, semiconductor wafers and semiconductor devices comprising the same
US20120205822A1 (en) * 2009-10-26 2012-08-16 Yusuke Tanaka Resin composition for encapsulating semiconductor and semiconductor device using the resin composition
KR101023241B1 (en) * 2009-12-28 2011-03-21 제일모직주식회사 Adhensive composition for semiconductor device and adhensive film using the same
CN102220091A (en) * 2010-03-31 2011-10-19 古河电气工业株式会社 Adhesive tape for wafer processing
TWI445728B (en) * 2011-10-26 2014-07-21 Ajinomoto Kk Resin composition
TW201329145A (en) * 2011-11-28 2013-07-16 Nitto Denko Corp Under-fill material and method for producing semiconductor device
CN103351578B (en) * 2013-07-19 2015-08-19 广东生益科技股份有限公司 Resin combination of a kind of medium layer of the medium substrate for the formation of antenna and uses thereof
CN103740055B (en) * 2013-12-19 2016-03-30 华为技术有限公司 A kind of compositions of thermosetting resin and application thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028734A (en) * 2003-07-11 2005-02-03 Nitto Denko Corp Laminated sheet
JP2011228642A (en) * 2010-03-31 2011-11-10 Furukawa Electric Co Ltd:The Wafer processing tape
JP2013030765A (en) * 2011-06-22 2013-02-07 Nitto Denko Corp Method of manufacturing semiconductor device
WO2013061478A1 (en) * 2011-10-26 2013-05-02 味の素株式会社 Resin composition
JP2013112730A (en) * 2011-11-28 2013-06-10 Nitto Denko Corp Sheet-shaped sealing composition and method for producing semiconductor device
JP2014175459A (en) * 2013-03-08 2014-09-22 Hitachi Chemical Co Ltd Semiconductor device and semiconductor device manufacturing method
JP2016037529A (en) * 2014-08-06 2016-03-22 信越化学工業株式会社 Liquid epoxy resin composition and heat sink, and adhesive for stiffener
WO2018043035A1 (en) * 2016-08-30 2018-03-08 リンテック株式会社 Resin composition, resinous sheet, and semiconductor device
JP2018148124A (en) * 2017-03-08 2018-09-20 リンテック株式会社 Sealing sheet and method for manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152837A1 (en) * 2022-02-09 2023-08-17 株式会社レゾナック Film-form adhesive, dicing and die-bonding two-in-one film, semiconductor device, and method for manufacturing same

Also Published As

Publication number Publication date
SG11202100988PA (en) 2021-03-30
JPWO2020026757A1 (en) 2021-08-26
TW202012580A (en) 2020-04-01
KR20210041569A (en) 2021-04-15
CN112513217B (en) 2023-07-14
CN112513217A (en) 2021-03-16
TWI829727B (en) 2024-01-21
JP7380565B2 (en) 2023-11-15
KR102661683B1 (en) 2024-04-29

Similar Documents

Publication Publication Date Title
WO2021002248A1 (en) Adhesive composition, film-like adhesive, adhesive sheet, dicing/die-bonding integrated adhesive sheet, semiconductor apparatus, and method for manufacturing same
JP7327416B2 (en) Adhesive composition, film adhesive, adhesive sheet, and method for manufacturing semiconductor device
JP7472954B2 (en) Adhesive composition, film-like adhesive, adhesive sheet, and method for manufacturing semiconductor device
WO2020184490A1 (en) Adhesive agent composition, film-like adhesive agent, adhesive sheet, and semiconductor device manufacturing method
TWI791751B (en) Semiconductor device manufacturing method and adhesive film
JP5340580B2 (en) Semiconductor adhesive sheet and dicing integrated semiconductor adhesive sheet
JP7136200B2 (en) Semiconductor device, thermosetting resin composition and dicing die bonding integrated tape used for its manufacture
WO2020026757A1 (en) Adhesive composition, film-like adhesive, adhesive sheet, and method for producing semiconductor device
JP7028264B2 (en) Film-shaped adhesive and its manufacturing method, and semiconductor device and its manufacturing method
WO2020136902A1 (en) Die bonding film, adhesive sheet, and semiconductor package and method for manufacturing same
WO2020136904A1 (en) Adhesive film, integrated dicing/die bonding film, and method for producing semiconductor package
WO2022163465A1 (en) Semiconductor device, method for producing same, thermosetting resin composition, bonding film and integrated dicing/die bonding film
WO2019150995A1 (en) Thermosetting resin composition, film-form adhesive, adhesive sheet, and method for producing semiconductor device
CN111630641B (en) Method for manufacturing semiconductor device and film-like adhesive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020533385

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843326

Country of ref document: EP

Kind code of ref document: A1