WO2020136904A1 - Adhesive film, integrated dicing/die bonding film, and method for producing semiconductor package - Google Patents

Adhesive film, integrated dicing/die bonding film, and method for producing semiconductor package Download PDF

Info

Publication number
WO2020136904A1
WO2020136904A1 PCT/JP2018/048593 JP2018048593W WO2020136904A1 WO 2020136904 A1 WO2020136904 A1 WO 2020136904A1 JP 2018048593 W JP2018048593 W JP 2018048593W WO 2020136904 A1 WO2020136904 A1 WO 2020136904A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
adhesive layer
film
semiconductor element
film according
Prior art date
Application number
PCT/JP2018/048593
Other languages
French (fr)
Japanese (ja)
Inventor
達也 矢羽田
慎太郎 橋本
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2018/048593 priority Critical patent/WO2020136904A1/en
Priority to JP2020562298A priority patent/JP7322897B2/en
Publication of WO2020136904A1 publication Critical patent/WO2020136904A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present disclosure relates to an adhesive film, a dicing/die bonding integrated film, and a method for manufacturing a semiconductor package.
  • silver paste has been mainly used for joining the semiconductor element and the supporting member in the manufacturing process of the semiconductor device.
  • problems tend to occur in wire bonding due to the protrusion of the silver paste or the inclination of the semiconductor elements.
  • an adhesive composition is used instead of the silver paste, it is difficult to make the thickness of the adhesive layer sufficiently uniform, and there are problems such as the occurrence of voids (voids) in the adhesive layer.
  • Patent Document 1 discloses a sheet for both dicing and die bonding, which includes a base material, a wire embedding layer, and an insulating layer. By performing dicing with the insulating layer of this sheet and the wafer bonded together, the semiconductor wafer and the wire embedding layer are separated. The semiconductor element and the supporting member are joined by thermocompression bonding the semiconductor element to the supporting member via the wire embedding layer.
  • a stacked MCP Multi Chip Package
  • the stacked MCP include a wire-embedded semiconductor package and a chip-embedded semiconductor package (see Patent Document 2).
  • the adhesive film used to manufacture the wire-embedded semiconductor package is called FOW (Film Over Wire). It is called FOD (Film Over Die) as an adhesive film used to manufacture chip-embedded semiconductor packages.
  • the pressing force per unit area tends to become excessively large in the thermocompression bonding process in the manufacturing process of semiconductor packages. This may cause a phenomenon (hereinafter, referred to as “bleed”) in which the adhesive composition forming the adhesive film protrudes from the semiconductor element, or the adhesive film is excessively crushed to cause electrical failure.
  • bleed a phenomenon in which the adhesive composition forming the adhesive film protrudes from the semiconductor element, or the adhesive film is excessively crushed to cause electrical failure.
  • the FOD composition is changed to improve the fluidity in the thermocompression bonding process in order to improve the embedding property of the adhesive film (FOD) used for manufacturing the chip-embedding type semiconductor package
  • bleeding becomes remarkable. ..
  • the protruding adhesive composition may rise up to the upper surface of the semiconductor element, which may cause electrical failure or wire bonding failure. That is, the conventional adhesive film cannot always sufficiently achieve both excellent embeddability for a semiconductor element and suppression of bleed in the process of manufacturing a chip embedded type package, and there is room for improvement in this
  • the present disclosure provides an adhesive film including an adhesive layer made of a thermosetting resin composition, which has excellent embeddability in a semiconductor element and can sufficiently suppress bleeding in a thermocompression bonding process. To do.
  • the present disclosure provides a dicing/die bonding integrated film including the adhesive layer of the adhesive film, and a method for manufacturing a semiconductor package using the film.
  • the adhesive film according to the present disclosure includes an adhesive layer made of a thermosetting resin composition, the shear viscosity of the adhesive layer at 40° C. is ⁇ 40, and the shear viscosity of the adhesive layer at 80° C. is ⁇ .
  • 80 is eta 80 is 2500 ⁇ 4500Pa ⁇ s
  • the ratio of eta 40 for ⁇ 80 ( ⁇ 40 / ⁇ 80 ) is 25-200.
  • the shear viscosity ⁇ 40 at 40° C. of the adhesive layer is, for example, 100,000 Pa ⁇ s or more.
  • the present inventors have examined the mechanism of bleeding in the thermocompression bonding process in the process of manufacturing a chip-embedded semiconductor package. As a result, the following findings were obtained. That is, conventionally, it has been considered that bleeding mainly occurs as the adhesive layer is gradually crushed by the pressing force applied to the adhesive layer. However, rather than this, it was found that the impact of the tool for applying a pressing force when the tool descends and comes into contact with the object is the main cause of bleeding.
  • the adhesive film according to the present disclosure is designed based on this finding, and the shear viscosity ⁇ 40 of the adhesive layer at 40° C. is set to 25 to 200 times the shear viscosity ⁇ 80 at 80° C.
  • the shear viscosity ⁇ 40 at 40° C. By increasing the shear viscosity ⁇ 40 at 40° C., the impact at the initial stage of the thermocompression bonding process, that is, the stage where the tool descends and contacts the object, and the stage where the adhesive layer is not sufficiently heated It is possible to sufficiently suppress the bleeding caused by.
  • the shear viscosity ⁇ 80 of the adhesive layer at 80° C. is 2500 to 4500 Pa ⁇ s, excellent embeddability can be achieved.
  • the adhesive film according to the present disclosure is useful for manufacturing a chip-embedded semiconductor package. That is, in the manufacturing process of the chip-embedded semiconductor package, the adhesive layer can be used to embed the first semiconductor element on the substrate and to bond the second semiconductor element to the substrate.
  • thermosetting resin composition contains a phenol resin having a softening point of more than 40°C and less than 70°C.
  • the content of the epoxy resin which is liquid at 25° C. is less than 40 mass %.
  • the thermosetting resin composition contains an epoxy resin having an alicyclic structure, a curing agent (for example, phenol resin), and an elastomer (for example, acrylic resin).
  • the thermosetting resin composition contains an inorganic filler.
  • thermosetting resin composition contains a curing accelerator.
  • the adhesive film of the present disclosure may be the adhesive layer itself or may be provided with a base film provided on one surface of the adhesive layer from the viewpoint of ease of use. Further, the dicing/die-bonding integrated film may be formed by combining the adhesive layer and the pressure-sensitive adhesive layer. That is, the dicing/die-bonding integrated film according to the present disclosure includes an adhesive layer of the adhesive film according to the present disclosure and a pressure-sensitive adhesive layer provided on one surface of the adhesive layer, and if necessary. A protective film may be further provided so as to cover the adhesive layer.
  • the present disclosure provides a method for manufacturing a semiconductor package using the above dicing/die bonding integrated film.
  • a chip-embedded semiconductor package is manufactured through the following steps.
  • the first semiconductor element can be appropriately embedded in the adhesive piece and bleeding can be sufficiently suppressed in the thermocompression bonding process.
  • an adhesive film including an adhesive layer made of a thermosetting resin composition, which has excellent embeddability in a semiconductor element and can sufficiently suppress bleeding in a thermocompression bonding process.
  • a dicing/die-bonding integrated film including the adhesive layer of the adhesive film, and a method for manufacturing a semiconductor package using the film.
  • FIG. 1 is a sectional view schematically showing an example of a semiconductor package.
  • FIG. 2 is a cross-sectional view schematically showing an example of a laminated body including an adhesive piece and a second semiconductor element.
  • FIG. 3 is a cross-sectional view schematically showing a process of manufacturing the semiconductor package shown in FIG.
  • FIG. 4 is a cross-sectional view schematically showing a process of manufacturing the semiconductor package shown in FIG.
  • FIG. 5 is a cross-sectional view schematically showing a process of manufacturing the semiconductor package shown in FIG.
  • FIG. 6 is a cross-sectional view schematically showing a process of manufacturing the semiconductor package shown in FIG. 7(a) to 7(e) are cross-sectional views schematically showing a process of manufacturing a laminated body including the adhesive piece and the second semiconductor element.
  • FIG. 1 is a sectional view schematically showing a chip-embedded semiconductor package according to this embodiment.
  • a semiconductor package 100 shown in this figure includes a substrate 10, a first semiconductor element Wa mounted on the surface of the substrate 10, and a first sealing layer 20 that seals the first semiconductor element Wa. , A second semiconductor element Wb arranged above the first semiconductor element Wa, and a second sealing layer 40 sealing the second semiconductor element Wb.
  • the substrate 10 has circuit patterns 10a and 10b on its surface. From the viewpoint of suppressing the warpage of the semiconductor package 100, the thickness of the substrate 10 is, for example, 90 to 180 ⁇ m, and may be 90 to 140 ⁇ m.
  • the substrate 10 may be an organic substrate or a metal substrate such as a lead frame.
  • the first semiconductor element Wa is a controller chip for driving the semiconductor package 100.
  • the first semiconductor element Wa is adhered onto the circuit pattern 10a via an adhesive 15, and is also connected to the circuit pattern 10b via a first wire 11.
  • the shape of the first semiconductor element Wa in a plan view is, for example, a rectangle (square or rectangle).
  • the length of one side of the first semiconductor element Wa is, for example, 6 mm or less, and may be 2 to 5 mm or 1 to 4 mm.
  • the thickness of the first semiconductor element Wa is, for example, 10 to 150 ⁇ m, and may be 20 to 100 ⁇ m.
  • the second semiconductor element Wb has a larger area than the first semiconductor element Wa.
  • the second semiconductor element Wb is mounted on the substrate 10 via the first sealing layer 20 so that the entire first semiconductor element Wa and a part of the circuit pattern 10b are covered.
  • the shape of the second semiconductor element Wb in a plan view is, for example, a rectangle (square or rectangle).
  • the length of one side of the second semiconductor element Wb is, for example, 20 mm or less, and may be 4 to 20 mm or 4 to 12 mm.
  • the thickness of the second semiconductor element Wb is, for example, 10 to 170 ⁇ m, and may be 20 to 120 ⁇ m.
  • the second semiconductor element Wb is connected to the circuit pattern 10b via the second wire 12 and is sealed by the second sealing layer 40.
  • the first sealing layer 20 is made of a cured product of the adhesive piece 20P (see FIG. 2). Note that, as shown in FIG. 2, the adhesive piece 20P and the second semiconductor element Wb have substantially the same size.
  • the laminated body 30 illustrated in FIG. 2 includes the adhesive piece 20P and the second semiconductor element Wb, and is also referred to as a semiconductor element with an adhesive. The laminated body 30 is manufactured through a dicing process and a pickup process as described later (see FIG. 7).
  • ⁇ Semiconductor package manufacturing method> A method of manufacturing the semiconductor package 100 will be described. First, as shown in FIG. 3, a structure 50 including the substrate 10 and the first semiconductor element Wa mounted on the substrate 10 is manufactured. That is, the first semiconductor element Wa is arranged on the surface of the substrate 10 via the adhesive 15. After that, the first semiconductor element Wa and the circuit pattern 10b are electrically connected by the first wire 11.
  • the adhesive piece 20P of the separately prepared laminate 30 is pressed against the substrate 10.
  • the thickness of the adhesive piece 20P may be appropriately set according to the thickness of the first semiconductor element Wa and the like, and may be, for example, 20 to 200 ⁇ m, 30 to 200 ⁇ m or 40 to 150 ⁇ m. ..
  • the distance G in FIG. 5 is preferably, for example, 50 ⁇ m or more, and may be 50 to 75 ⁇ m or 50 to 80 ⁇ m.
  • the pressure bonding of the adhesive piece 20P to the substrate 10 is preferably carried out, for example, under conditions of 80 to 180° C. and 0.01 to 0.50 MPa for 0.5 to 3.0 seconds.
  • the adhesive piece 20P is cured by heating. This curing treatment is preferably carried out, for example, under conditions of 60 to 175° C. and 0.01 to 1.0 MPa for 5 minutes or more.
  • the first semiconductor element Wa is sealed with the cured product (first sealing layer 20) of the adhesive piece 20P (see FIG. 6).
  • the curing process of the adhesive piece 20P may be performed in a pressurized atmosphere from the viewpoint of reducing voids.
  • the second semiconductor element Wb is sealed by the second sealing layer 40, whereby the semiconductor package 100 is completed. (See FIG. 1).
  • the dicing/die-bonding integrated film 8 (hereinafter, referred to as “film 8” in some cases) is placed in a predetermined device (not shown).
  • the film 8 includes the base material layer 1, the pressure-sensitive adhesive layer 2, and the adhesive layer 20A (adhesive film) in this order.
  • the base material layer 1 is, for example, a polyethylene terephthalate film (PET film).
  • PET film polyethylene terephthalate film
  • the semiconductor wafer W is, for example, a thin semiconductor wafer having a thickness of 10 to 100 ⁇ m.
  • the semiconductor wafer W may be single crystal silicon, polycrystal silicon, various ceramics, or a compound semiconductor such as gallium arsenide.
  • the film 8 is attached so that the adhesive layer 20A is in contact with one surface of the semiconductor wafer W.
  • This step is preferably carried out under temperature conditions of 50 to 120°C, more preferably 60 to 100°C.
  • the temperature is 50° C. or higher, good adhesion of the semiconductor wafer W to the adhesive layer 20A can be obtained, and when the temperature is 120° C. or lower, the adhesive layer 20A may excessively flow in this step. Suppressed.
  • the semiconductor wafer W, the adhesive layer 2 and the adhesive layer 20A are diced.
  • the semiconductor wafer W is diced into individual semiconductor elements Wb.
  • the adhesive layer 20A is also diced into individual adhesive pieces 20P. Examples of the dicing method include a method using a rotary blade or a laser.
  • the semiconductor wafer W may be thinned by grinding the semiconductor wafer W prior to dicing the semiconductor wafer W.
  • the pressure-sensitive adhesive layer 2 is, for example, a UV-curable type
  • the pressure-sensitive adhesive layer 2 is cured by irradiating the pressure-sensitive adhesive layer 2 with ultraviolet rays as shown in FIG.
  • the adhesive force between 2 and the adhesive piece 20P is reduced.
  • the semiconductor element Wa is separated from each other by expanding the base material layer 1 at room temperature or under cooling conditions, and the semiconductor element Wa is separated from each other, and is pushed up by the needle 42 so that the adhesive layer 2 is removed.
  • the adhesive piece 20P of the laminated body 30 is peeled off, and the laminated body 30 is suctioned and picked up by the suction collet 44.
  • the laminated body 30 thus obtained is used for manufacturing the semiconductor package 100, as shown in FIG.
  • the film 8 includes the base material layer 1 (for example, PET film), the pressure-sensitive adhesive layer 2, and the adhesive layer 20A (adhesive film) in this order.
  • the method for producing the film 8 includes a step of applying a varnish of a thermosetting resin composition containing an epoxy resin or the like on a film (not shown), and an adhesive by heating and drying the applied varnish at 50 to 150° C. It includes a step of forming the layer 20A and a step of attaching the adhesive layer 20A and the pressure-sensitive adhesive layer 2 to each other.
  • the shear viscosity ⁇ 80 of the adhesive layer 20A at 80° C. is 2500 to 4500 Pa ⁇ s.
  • the shear viscosity ⁇ 80 is 2500 Pa ⁇ s or more, excellent embeddability can be achieved, while when it is 4500 Pa ⁇ s or less, bleeding can be suppressed.
  • the lower limit of the shear viscosity ⁇ 80 may be 2800 Pa ⁇ s or 3000 Pa ⁇ s, and the upper limit thereof may be 4300 Pa ⁇ s or 4000 Pa ⁇ s.
  • the shear viscosity ⁇ 40 of the adhesive layer 20A at 40° C. is preferably 100,000 Pa ⁇ s or more.
  • the shear viscosity ⁇ 40 is 100,000 Pa ⁇ s or more, bleeding due to the impact of the crimping tool in the initial stage of the thermocompression bonding process can be suppressed.
  • the lower limit of the shear viscosity ⁇ 80 may be 120,000 Pa ⁇ s or 150,000 Pa ⁇ s, and the upper limit thereof is, for example, 800,000 Pa ⁇ s, 600,000 Pa ⁇ s or 400,000 Pa ⁇ s. May be.
  • the ratio ( ⁇ 40 / ⁇ 80 ) of ⁇ 40 to ⁇ 80 of the adhesive layer 20A is 25 to 200.
  • ⁇ 40 / ⁇ 80 is 25 to 200, both excellent embedding property and suppression of bleed can be achieved at a sufficiently high level.
  • the lower limit value of ⁇ 40 / ⁇ 80 may be 28 or 30, and the upper limit value may be 190 or 170.
  • the adhesive layer 20A is formed through, for example, a step of applying a varnish containing an epoxy resin, a curing agent, and an elastomer on a film, and a step of drying a coating film formed on the film.
  • the varnish may further contain an inorganic filler, a curing accelerator and the like, if necessary.
  • the varnish can be prepared by mixing or kneading materials such as epoxy resin in a solvent. Mixing or kneading can be performed by using an ordinary stirrer, a raker, a disperser such as a three-roll mill, a ball mill and the like, and appropriately combining these. The details of the varnish will be described later.
  • the film to which the varnish is applied is not particularly limited, and examples thereof include polyester film, polypropylene film (OPP film and the like), polyethylene terephthalate film, polyimide film, polyetherimide film, polyether naphthalate film, methylpentene film.
  • a known method can be used, and examples thereof include a knife coating method, a roll coating method, a spray coating method, a gravure coating method, a bar coating method and a curtain coating method.
  • the heating and drying conditions may be such that the solvent used is sufficiently volatilized, and for example, heating at 50 to 150° C. for 1 to 30 minutes can be performed.
  • the heat drying may be carried out by gradually raising the temperature within the range of 50 to 150°C.
  • the film 8 can be obtained by bonding the laminated film obtained as described above and the dicing film (a laminated body of the base material layer 1 and the pressure-sensitive adhesive layer 2).
  • the base layer 1 include plastic films such as polytetrafluoroethylene film, polyethylene terephthalate film, polyethylene film, polypropylene film, polymethylpentene film, and polyimide film.
  • the base material layer 1 may be subjected to surface treatment such as primer coating, UV treatment, corona discharge treatment, polishing treatment, and etching treatment, if necessary.
  • the pressure-sensitive adhesive layer 2 may be a UV curable type or a pressure sensitive type.
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 2 a pressure-sensitive adhesive that has been conventionally used for a dicing film may be used.
  • the thickness of the pressure-sensitive adhesive layer 2 is, for example, from 60 to 200 ⁇ m, and may be from 70 to 170 ⁇ m, from the viewpoint of economy and handleability of the film.
  • the varnish for forming the adhesive layer 20A will be described in detail.
  • the adhesive piece 20P is an individual piece of the adhesive layer 20A, and both are made of the same thermosetting resin composition.
  • the adhesive layer 20A and the adhesive piece 20P are in a semi-cured (B stage) state because they have undergone heat treatment for volatilizing the solvent, and are in a completely cured product (C stage) state by the subsequent curing treatment.
  • the varnish for forming the adhesive layer contains the epoxy resin, the curing agent, and the elastomer, and further contains the inorganic filler, the curing accelerator, and the like, if necessary.
  • the solvent for preparing the varnish is not limited as long as it can uniformly dissolve, knead or disperse the above components, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, a ketone solvent such as cyclohexanone, dimethylformamide, dimethyl.
  • Acetamide, N-methylpyrrolidone, toluene, xylene can be used. It is preferable to use methyl ethyl ketone or cyclohexanone since the drying speed is fast and the price is low.
  • the structure of the epoxy resin is not particularly limited, but those having an alicyclic structure are preferable from the viewpoint of compatibility.
  • the content of the epoxy resin having an alicyclic structure is, for example, 40 to 20% by mass, 20 to 10% by mass or 10 to 5% by mass based on the total mass of the epoxy resin contained in the adhesive layer 20A. May be.
  • the content of the epoxy resin which is liquid at 25° C. is 40% by mass based on the total mass of the epoxy resin contained in the adhesive layer 20A. It is preferably less than 30% by mass, more preferably less than 30% by mass, and may be less than 14% by mass or less than 9% by mass.
  • epoxy resins include, for example, dicyclopentadiene type epoxy resins HP-7200L (manufactured by DIC Corporation), HP-7200 (manufactured by DIC Corporation), XD-1000 (manufactured by Nippon Kayaku Co., Ltd.), Celoxide 2021P (manufactured by Daicel Corporation), Celoxide 20281 (manufactured by Daicel Corporation), Syna-Epoxy 28 (manufactured by SYANASIA), bis A type epoxy resin YD-128 (manufactured by Mitsubishi Chemical Corporation), bis F type epoxy.
  • Resin EXA-830-CRP manufactured by DIC Corporation may be mentioned. These may be used alone or in combination of two or more.
  • Aromatic epoxy resins may be used as thermosetting resins.
  • the aromatic epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol F novolac type epoxy resin.
  • the curing agent examples include phenolic resins, ester compounds, aromatic amines, aliphatic amines, and acid anhydrides. Of these, a phenol resin is preferable and there is no particular limitation from the viewpoint of reactivity and stability over time. From the viewpoint of setting the shear viscosity ⁇ 40 at 40° C. of the adhesive layer high and the shear viscosity ⁇ 80 at 80° C. low, it is preferable to use a phenol resin having a softening point of more than 40° C. and less than 60° C. The softening point here means a value measured by the ring and ball method.
  • phenolic resins include, for example, Phenolite KA and TD series manufactured by DIC Corporation, Milex XLC-series and XL series manufactured by Mitsui Chemicals, Inc. (for example, Milex XLC-LL), and Air Water (stock).
  • HE series for example, HE100C-30
  • MEHC-7800 series for example, MEHC-7800-4S manufactured by Meiwa Kasei Co., Ltd.
  • MEHC-7800 series for example, MEHC-7800-4S
  • thermogravimetric analyzer TGA It is preferable that the (temperature rising rate: 5° C./min, atmosphere: nitrogen) is less than 5 mass %.
  • the epoxy resin and the phenol resin are blended so that the equivalent ratio of the epoxy equivalent and the hydroxyl equivalent is preferably 0.30/0.70 to 0.70/0.30, and more preferably 0. 35/0.65 to 0.65/0.35, more preferably 0.40/0.60 to 0.60/0.40, and particularly preferably 0.45/0.55 to 0.55/0. 45.
  • the compounding ratio is within the above range, it is easy to achieve both a curability and a fluidity at sufficiently high levels.
  • elastomer examples include acrylic resin, polyester resin, polyamide resin, polyimide resin, silicone resin, polybutadiene, acrylonitrile, epoxy-modified polybutadiene, maleic anhydride-modified polybutadiene, phenol-modified polybutadiene and carboxy-modified acrylonitrile.
  • an acrylic resin is preferable as the elastomer, and further obtained by polymerizing a functional monomer having an epoxy group or a glycidyl group such as glycidyl acrylate or glycidyl methacrylate as a crosslinkable functional group.
  • An acrylic resin such as an epoxy group-containing (meth)acrylic copolymer is more preferable.
  • the acrylic resins the epoxy group-containing (meth)acrylic acid ester copolymer and the epoxy group-containing acrylic rubber are preferable, and the epoxy group-containing acrylic rubber is more preferable.
  • the epoxy group-containing acrylic rubber is a rubber having an epoxy group, which is mainly composed of an acrylic ester and is mainly composed of a copolymer such as butyl acrylate and acrylonitrile or a copolymer such as ethyl acrylate and acrylonitrile.
  • the acrylic resin may have not only an epoxy group but also a crosslinkable functional group such as an alcoholic or phenolic hydroxyl group and a carboxyl group.
  • acrylic resin Commercially available products of acrylic resin are SG-70L, SG-708-6, WS-023 EK30, SG-280 EK23, SG-P3 manufactured by Nagase Chemtech Co., Ltd. (product name, acrylic rubber, weight) Average molecular weight: 800,000, Tg: 12° C., solvent is cyclohexanone, etc.
  • the glass transition temperature (Tg) of the acrylic resin is preferably -50 to 50°C, more preferably -30 to 30°C.
  • the weight average molecular weight (Mw) of the acrylic resin is preferably 100,000 to 3,000,000, more preferably 500,000 to 2,000,000.
  • Mw means a value measured by gel permeation chromatography (GPC) and converted using a calibration curve based on standard polystyrene.
  • the amount of the acrylic resin contained in the adhesive layer 20A is preferably 20 to 200 parts by mass, more preferably 30 to 100 parts by mass, based on 100 parts by mass of the total amount of the epoxy resin and the epoxy resin curing agent. .. Within this range, control of fluidity during molding, handling at high temperature, and embedding property can be further improved.
  • inorganic filler examples include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whiskers, boron nitride and crystallinity.
  • examples thereof include silica and amorphous silica. These may be used alone or in combination of two or more. From the viewpoint of improving the thermal conductivity of the adhesive layer 20A, it is preferable to contain aluminum oxide, aluminum nitride, boron nitride, crystalline silica or amorphous silica as the inorganic filler.
  • the average particle size of the inorganic filler is preferably 0.005 ⁇ m to 0.5 ⁇ m, more preferably 0.05 to 0.3 ⁇ m, from the viewpoint of improving adhesiveness.
  • the surface of the inorganic filler is preferably chemically modified from the viewpoint of compatibility with a solvent and a resin component and adhesive strength. Suitable materials for chemically modifying the surface include silane coupling agents. Examples of the functional group of the silane coupling agent include vinyl group, acryloyl group, epoxy group, mercapto group, amino group, diamino group, alkoxy group and ethoxy group.
  • the content of the inorganic filler is 10 to 90 relative to 100 parts by mass of the resin component of the adhesive layer 20A.
  • the amount is preferably parts by mass, more preferably 10 to 50 parts by mass.
  • the content of the inorganic filler is 10 parts by mass or more, the dicing property of the adhesive layer 20A is likely to be improved, and sufficient adhesive force is easily exhibited after curing.
  • the content of the inorganic filler is 90 parts by mass or less, it is easy to secure sufficient fluidity of the adhesive layer 20A, and it is possible to prevent the elastic modulus after curing from becoming excessively high.
  • curing accelerator examples include imidazoles and their derivatives, organic phosphorus compounds, secondary amines, tertiary amines, and quaternary ammonium salts. From the viewpoint of appropriate reactivity, imidazole compounds are preferable. Examples of the imidazoles include 2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole and the like. These may be used alone or in combination of two or more.
  • the content of the curing accelerator in the adhesive layer 20A is preferably 0.04 to 3 parts by mass, more preferably 0.04 to 0.2 part by mass, based on 100 parts by mass of the total of the epoxy resin and the epoxy resin curing agent. .. When the addition amount of the curing accelerator is within this range, both curability and reliability can be achieved.
  • Examples 1-5 and Comparative Examples 1-2 The following materials were mixed in the mixing ratios (parts by mass) shown in Tables 1 and 2 to prepare varnishes. Cyclohexanone was used as the solvent, and the solid content ratio of the varnish was 40% by mass. The varnish was filtered with a 100-mesh filter and vacuum degassed. As a film to which the varnish was applied, a polyethylene terephthalate (PET) film (thickness 38 ⁇ m) subjected to a mold release treatment was prepared. The varnish after vacuum defoaming was applied on the surface of the PET film that had been subjected to the release treatment. The applied varnish was heat-dried in two steps of 90° C. for 5 minutes and then 140° C. for 5 minutes.
  • PET polyethylene terephthalate
  • a laminated film including a PET film and a B-stage state (semi-cured state) adhesive layer (thickness 110 ⁇ m) formed on the surface thereof was produced. ..
  • MEHC-7841-4S (trade name, manufactured by Meiwa Kasei Co., Ltd., phenol aralkyl resin, softening point: 65° C.) ⁇ (B2)... HE-100C-30: (trade name, manufactured by Air Water Co., Ltd., phenyl aralkyl type phenol resin, softening point: 75° C.) ⁇ Elastomer> -(C1)... SG-P3 solvent modified product (trade name, manufactured by Nagase ChemteX Corporation, acrylic rubber, weight average molecular weight: 800,000, Tg: 12°C, solvent is cyclohexanone) -(C2)...
  • SG-708-6 (Sample name, manufactured by Nagase Chemtex Co., Ltd., acrylic rubber, weight average molecular weight 700,000)
  • SC2050-HLG (trade name, manufactured by Admatechs Co., Ltd., silica filler dispersion, average particle size 0.50 ⁇ m)
  • ⁇ Curing accelerator> ⁇ Curazole 2PZ-CN: (trade name, 1-cyanoethyl-2-phenylimidazole manufactured by Shikoku Chemicals Co., Ltd.)
  • ⁇ Measurement of shear viscosity> The adhesive layer (thickness 110 ⁇ m) was cut into a predetermined size to prepare four adhesive pieces. A sample having a thickness of 440 ⁇ m was prepared by laminating the four pieces of adhesive on a hot plate at 60° C. using a rubber roll. This sample was punched with a punch having a diameter of 9 mm, and the shear viscosity was measured under the following conditions using a shear viscometer (manufactured by TA: trade name ARES-G2). The results are shown in Tables 1 and 2. ⁇ Measurement frequency: 10Hz ⁇ Raising rate: 10°C/min ⁇ Measuring temperature: 35-130°C ⁇ Axial force: 100gf
  • a structure used for evaluation of embedding property including a substrate and a first semiconductor element mounted on the surface thereof, was prepared as follows. That is, a film adhesive HR9004-10 (trade name, manufactured by Hitachi Chemical Co., Ltd., thickness 10 ⁇ m) was attached to a semiconductor wafer (diameter: 8 inches, thickness: 50 ⁇ m) at 70° C. A semiconductor element with adhesive (first semiconductor element) was obtained by dicing the semiconductor wafer and the film adhesive into a 4.8 ⁇ 5.7 mm square. The semiconductor element with the adhesive was pressure-bonded to the evaluation substrate under the conditions of 120° C., 0.20 MPa, and 2 seconds. A substrate (total thickness: 260 ⁇ m) having a surface coated with a solder resist AUS308 (trade name, manufactured by Taiyo Nippon Sanso Co., Ltd.) was used as an evaluation substrate.
  • a film adhesive HR9004-10 trade name, manufactured by Hitachi Chemical Co., Ltd., thickness 10 ⁇ m
  • a semiconductor element with adhesive was obtained
  • the adhesive layers (thickness 110 ⁇ m) according to the examples and the comparative examples were attached to semiconductor wafers (diameter: 8 inches, thickness 100 ⁇ m) at 70° C.
  • semiconductor wafers diameter: 8 inches, thickness 100 ⁇ m
  • a semiconductor element with an adhesive piece was pressure-bonded to the position where the first semiconductor element was mounted in the structure.
  • the pressure bonding conditions were 120° C., 0.20 MPa, and 1.5 seconds.
  • the alignment was performed so that the first semiconductor element was embedded in the central position of the adhesive piece.
  • the evaluation sample thus prepared was observed for the presence or absence of voids with an ultrasonic digital image diagnostic apparatus (Insight Co., Ltd., probe: 75 MHz). If voids were observed, the voids per unit area were observed. Area was calculated, and the results of these analyzes were evaluated as embeddability.
  • the evaluation criteria are as follows. The results are shown in Tables 1 and 2. A: No void was observed. B: Voids were observed, but the ratio was less than 5 area %. C: Voids were observed, and the ratio was 5 area% or more.
  • a structure used for evaluation of bleeding including a substrate and a first semiconductor element mounted on the surface thereof, was prepared as follows. That is, a film adhesive HR9004-10 (trade name, manufactured by Hitachi Chemical Co., Ltd., thickness 10 ⁇ m) was attached to a semiconductor wafer (diameter: 8 inches, thickness: 50 ⁇ m) at 70° C. A semiconductor element with adhesive (first semiconductor element) was obtained by dicing the semiconductor wafer and the film-like adhesive into a 2.1 ⁇ 4.8 mm square. The semiconductor element with the adhesive was pressure-bonded to the evaluation substrate under the conditions of 120° C., 0.20 MPa and 2 seconds. A substrate (total thickness: 260 ⁇ m) having a surface coated with a solder resist AUS308 (trade name, manufactured by Taiyo Nippon Sanso Co., Ltd.) was used as an evaluation substrate.
  • a film adhesive HR9004-10 trade name, manufactured by Hitachi Chemical Co., Ltd., thickness 10 ⁇ m
  • a semiconductor element with adhesive was obtained by
  • the adhesive layers (thickness 110 ⁇ m) according to the examples and the comparative examples were attached to semiconductor wafers (diameter: 8 inches, thickness 100 ⁇ m) at 70° C.
  • semiconductor wafers diameter: 8 inches, thickness 100 ⁇ m
  • Example 2 of Patent Document 2 (temperature at which shear viscosity becomes 5000 Pa ⁇ s: 63° C.) was performed. That is, the same material as that used in Example 2 of Patent Document 2 was used, and a film adhesive according to Reference Example was produced in the same manner as Example 2 of Patent Document 2.
  • an adhesive film including an adhesive layer made of a thermosetting resin composition, which has excellent embeddability to a semiconductor element and can sufficiently suppress bleeding in a thermocompression bonding process.
  • a film is provided.
  • a dicing/die-bonding integrated film including the adhesive layer of the adhesive film, and a method for manufacturing a semiconductor package using the film.
  • Adhesive layer 8... Dicing/die bonding integrated film, 10... Substrate, 20... First sealing layer (cured product of adhesive piece), 20A... Adhesive layer (adhesive film), 20P... Adhesion Agent piece, 30... Laminated body, 50... Structure, 100... Semiconductor package, W... Wafer, Wa... First semiconductor element, Wb... Second semiconductor element

Abstract

This adhesive film contains an adhesive agent layer comprising a thermosetting resin composition. When the shear viscosity of the adhesive agent layer at 40°C is denoted by η40 and the shear viscosity of the adhesive agent layer at 80°C is denoted by η80, the value of η80 is 2500-4500 Pa·s and the ratio (η4080) of η40 relative to η80 is 25-200. This integrated dicing/die bonding film comprises the adhesive agent layer of the adhesive film and a pressure-sensitive adhesive agent layer provided on one surface of the adhesive agent layer.

Description

接着フィルム、ダイシング・ダイボンディング一体型フィルム及び半導体パッケージの製造方法Adhesive film, dicing/die bonding integrated film, and method for manufacturing semiconductor package
 本開示は、接着フィルム、ダイシング・ダイボンディング一体型フィルム及び半導体パッケージの製造方法に関する。 The present disclosure relates to an adhesive film, a dicing/die bonding integrated film, and a method for manufacturing a semiconductor package.
 従来、半導体装置の製造プロセスにおいて、半導体素子と支持部材との接合に、銀ペーストが主に使用されていた。しかし、近年の半導体素子の小型化及び集積化に伴い、銀ペーストのはみ出し又は半導体素子の傾きに起因してワイヤボンディングに不具合が発生しやすい傾向にある。銀ペーストの代わりに接着剤組成物を使用した場合、接着剤層の厚さを十分に均一にすることが困難であったり、接着剤層にボイド(空隙)が発生するなどの課題がある。 Conventionally, silver paste has been mainly used for joining the semiconductor element and the supporting member in the manufacturing process of the semiconductor device. However, with the recent miniaturization and integration of semiconductor elements, problems tend to occur in wire bonding due to the protrusion of the silver paste or the inclination of the semiconductor elements. When an adhesive composition is used instead of the silver paste, it is difficult to make the thickness of the adhesive layer sufficiently uniform, and there are problems such as the occurrence of voids (voids) in the adhesive layer.
 近年、半導体素子と支持部材との接合にフィルム状の接着材が使用されるようになってきた。例えば、特許文献1は、基材と、ワイヤ埋込層と、絶縁層とからなるダイシング・ダイボンディング兼用シートを開示する。このシートの絶縁層とウェハを貼り合わせた状態でダイシングを実施することで、半導体ウェハ及びワイヤ埋込層が個片化される。ワイヤ埋込層を介して半導体素子を支持部材に熱圧着することにより、半導体素子と支持部材が接合される。 In recent years, film-like adhesives have come to be used for joining semiconductor elements and supporting members. For example, Patent Document 1 discloses a sheet for both dicing and die bonding, which includes a base material, a wire embedding layer, and an insulating layer. By performing dicing with the insulating layer of this sheet and the wafer bonded together, the semiconductor wafer and the wire embedding layer are separated. The semiconductor element and the supporting member are joined by thermocompression bonding the semiconductor element to the supporting member via the wire embedding layer.
 ところで、半導体装置の形態として、半導体素子が多段に積層された構成のスタックドMCP(Multi Chip Package)が普及している。スタックドMCPの例として、ワイヤ埋込型の半導体パッケージ及びチップ埋込型の半導体パッケージが挙げられる(特許文献2参照)。ワイヤ埋込型の半導体パッケージの製造に使用される接着フィルムはFOW(Film Over Wire)と称される。チップ埋込型の半導体パッケージの製造に使用される接着フィルムとしてFOD(Film Over Die)と称される。これらの接着フィルムは、ワイヤ又は半導体素子に対する優れた埋込性を有することが求められる。 By the way, as a form of a semiconductor device, a stacked MCP (Multi Chip Package) having a configuration in which semiconductor elements are stacked in multiple stages is prevalent. Examples of the stacked MCP include a wire-embedded semiconductor package and a chip-embedded semiconductor package (see Patent Document 2). The adhesive film used to manufacture the wire-embedded semiconductor package is called FOW (Film Over Wire). It is called FOD (Film Over Die) as an adhesive film used to manufacture chip-embedded semiconductor packages. These adhesive films are required to have excellent embedding properties for wires or semiconductor elements.
特開2007-53240号公報Japanese Patent Laid-Open No. 2007-53240 特開2014-175459号公報JP, 2014-175459, A
 半導体素子(チップ)の小サイズ化が進展するに伴い、半導体パッケージの製造過程の熱圧着工程において、単位面積当たりの押圧力が過度に大きくなる傾向にある。これにより、接着フィルムを構成する接着剤組成物が半導体素子からはみ出す現象(以下、「ブリード」という。)が生じたり、接着フィルムが過度に潰れて電気不良を招来したりする恐れがある。特に、チップ埋込型の半導体パッケージの製造使用される接着フィルム(FOD)の埋込性の向上のため、FOD組成を変更して熱圧着工程での流動性を高めると、ブリードが顕著となる。例えば、はみ出した接着剤組成物が半導体素子の上面にまではい上がることもあり、それが電気不良又はワイヤボンディング不良の原因になり得る。つまり、従来の接着フィルムは、チップ埋込型のパッケージの製造過程において、半導体素子に対する優れた埋込性とブリードの抑制とを必ずしも十分に両立することができず、この点において改善の余地があった。 With the progress of miniaturization of semiconductor elements (chips), the pressing force per unit area tends to become excessively large in the thermocompression bonding process in the manufacturing process of semiconductor packages. This may cause a phenomenon (hereinafter, referred to as “bleed”) in which the adhesive composition forming the adhesive film protrudes from the semiconductor element, or the adhesive film is excessively crushed to cause electrical failure. In particular, if the FOD composition is changed to improve the fluidity in the thermocompression bonding process in order to improve the embedding property of the adhesive film (FOD) used for manufacturing the chip-embedding type semiconductor package, bleeding becomes remarkable. .. For example, the protruding adhesive composition may rise up to the upper surface of the semiconductor element, which may cause electrical failure or wire bonding failure. That is, the conventional adhesive film cannot always sufficiently achieve both excellent embeddability for a semiconductor element and suppression of bleed in the process of manufacturing a chip embedded type package, and there is room for improvement in this respect. there were.
 本開示は、熱硬化性樹脂組成物からなる接着剤層を含む接着フィルムであって、熱圧着工程において、半導体素子に対する優れた埋込性を有し且つブリードを十分に抑制できる接着フィルムを提供する。本開示は、上記接着フィルムの接着剤層を備えるダイシング・ダイボンディング一体型フィルム及びこれを用いた半導体パッケージの製造方法を提供する。 The present disclosure provides an adhesive film including an adhesive layer made of a thermosetting resin composition, which has excellent embeddability in a semiconductor element and can sufficiently suppress bleeding in a thermocompression bonding process. To do. The present disclosure provides a dicing/die bonding integrated film including the adhesive layer of the adhesive film, and a method for manufacturing a semiconductor package using the film.
 本開示に係る接着フィルムは、熱硬化性樹脂組成物からなる接着剤層を含むものであり、接着剤層の40℃におけるずり粘度をη40とし、接着剤層の80℃におけるずり粘度をη80とすると、η80が2500~4500Pa・sであり、η80に対するη40の比率(η40/η80)が25~200である。接着剤層の40℃におけるずり粘度η40は、例えば、10万Pa・s以上である。 The adhesive film according to the present disclosure includes an adhesive layer made of a thermosetting resin composition, the shear viscosity of the adhesive layer at 40° C. is η 40, and the shear viscosity of the adhesive layer at 80° C. is η. When 80 is eta 80 is 2500 ~ 4500Pa · s, the ratio of eta 40 for η 80 (η 40 / η 80 ) is 25-200. The shear viscosity η 40 at 40° C. of the adhesive layer is, for example, 100,000 Pa·s or more.
 本発明者らは、チップ埋込型半導体パッケージを製造する過程の熱圧着工程においてブリードが発生するメカニズムについて検討した。その結果、以下の知見が得られた。すなわち、従来、接着剤層に対する押圧力によって接着剤層が徐々に潰されることに伴ってブリードが主に生じると考えられてきた。しかし、これよりも、押圧力を加えるためのツールが降下して対象物に接したときの衝撃がブリード発生の主因であるとの知見が得られた。本開示に係る接着フィルムは、この知見に基づいて設計されたものであり、接着剤層の40℃におけるずり粘度η40が80℃におけるずり粘度η80の25~200倍に設定されている。40℃におけるずり粘度η40を高くすることで、熱圧着工程の初期の段階、すなわち、ツールが降下して対象物に接する段階であって接着剤層が十分に加熱されていない段階における上記衝撃に起因するブリードを十分に抑制できる。他方、接着剤層の80℃におけるずり粘度η80が2500~4500Pa・sであることで、優れた埋込性を達成できる。 The present inventors have examined the mechanism of bleeding in the thermocompression bonding process in the process of manufacturing a chip-embedded semiconductor package. As a result, the following findings were obtained. That is, conventionally, it has been considered that bleeding mainly occurs as the adhesive layer is gradually crushed by the pressing force applied to the adhesive layer. However, rather than this, it was found that the impact of the tool for applying a pressing force when the tool descends and comes into contact with the object is the main cause of bleeding. The adhesive film according to the present disclosure is designed based on this finding, and the shear viscosity η 40 of the adhesive layer at 40° C. is set to 25 to 200 times the shear viscosity η 80 at 80° C. By increasing the shear viscosity η 40 at 40° C., the impact at the initial stage of the thermocompression bonding process, that is, the stage where the tool descends and contacts the object, and the stage where the adhesive layer is not sufficiently heated It is possible to sufficiently suppress the bleeding caused by. On the other hand, when the shear viscosity η 80 of the adhesive layer at 80° C. is 2500 to 4500 Pa·s, excellent embeddability can be achieved.
 本開示に係る接着フィルムは、チップ埋込型半導体パッケージの製造に有用である。すなわち、チップ埋込型半導体パッケージの製造プロセスにおいて、基板上の第1の半導体素子を埋め込むとともに、基板に対して第2の半導体素子を接着するために上記接着剤層を用いることができる。 The adhesive film according to the present disclosure is useful for manufacturing a chip-embedded semiconductor package. That is, in the manufacturing process of the chip-embedded semiconductor package, the adhesive layer can be used to embed the first semiconductor element on the substrate and to bond the second semiconductor element to the substrate.
 η40及びη80についての上記条件を接着剤層が満たすものとするには、例えば、接着剤層を構成する熱硬化性樹脂組成物の組成に関する以下の複数の事項のうち、一つ又は複数の事項を採用すればよい。
・熱硬化性樹脂組成物が40℃超70℃未満の軟化点を有するフェノール樹脂を含有する。
・25℃において液状であるエポキシ樹脂の含有率(熱硬化性樹脂組成物に含まれるエポキシ樹脂の全質量基準)を40質量%未満とする。
・熱硬化性樹脂組成物が脂環式構造を有するエポキシ樹脂と、硬化剤(例えば、フェノール樹脂)と、エラストマ(例えば、アクリル樹脂)とを含む。
・熱硬化性樹脂組成物が無機フィラーを含む。
・熱硬化性樹脂組成物が硬化促進剤を含む。
In order for the adhesive layer to satisfy the above conditions for η 40 and η 80 , for example, one or more of the following items relating to the composition of the thermosetting resin composition forming the adhesive layer may be used. You can adopt the item.
-The thermosetting resin composition contains a phenol resin having a softening point of more than 40°C and less than 70°C.
The content of the epoxy resin which is liquid at 25° C. (based on the total mass of the epoxy resin contained in the thermosetting resin composition) is less than 40 mass %.
The thermosetting resin composition contains an epoxy resin having an alicyclic structure, a curing agent (for example, phenol resin), and an elastomer (for example, acrylic resin).
-The thermosetting resin composition contains an inorganic filler.
-The thermosetting resin composition contains a curing accelerator.
 本開示の接着フィルムは、接着剤層そのものであってもよいし、使いやすさの観点から、接着剤層の一方の表面上に設けられた基材フィルムを備えたものであってもよい。また、当該接着剤層と、粘着剤層とを組み合わせることによってダイシング・ダイボンディング一体型フィルムを構成してもよい。すなわち、本開示に係るダイシング・ダイボンディング一体型フィルムは、本開示に係る接着フィルムの接着剤層と、接着剤層の一方の表面上に設けられた粘着剤層とを備え、必要に応じて、接着剤層を覆うように設けられた保護フィルムを更に備えてもよい。 The adhesive film of the present disclosure may be the adhesive layer itself or may be provided with a base film provided on one surface of the adhesive layer from the viewpoint of ease of use. Further, the dicing/die-bonding integrated film may be formed by combining the adhesive layer and the pressure-sensitive adhesive layer. That is, the dicing/die-bonding integrated film according to the present disclosure includes an adhesive layer of the adhesive film according to the present disclosure and a pressure-sensitive adhesive layer provided on one surface of the adhesive layer, and if necessary. A protective film may be further provided so as to cover the adhesive layer.
 本開示は、上記ダイシング・ダイボンディング一体型フィルムを用いた、半導体パッケージの製造方法を提供する。例えば、チップ埋込型半導体パッケージは、以下の工程を経て製造される。
・基板と、基板の表面上にマウントされた第1の半導体素子とを備える構造体を準備する工程。
・本開示に係るダイシング・ダイボンディング一体型フィルムの接着剤層とウェハとを貼り合わせる工程。
・接着剤層に貼り合わされた状態のウェハを複数の第2の半導体素子に個片化する工程。
・接着剤層が個片化されることによって形成された接着剤片と第2の半導体素子と含む積層体を粘着剤層からピックアップする工程。
・第1の半導体素子が接着剤片に埋め込まれるように、基板に対して上記積層体を熱圧着する工程。
・加熱処理によって接着剤片を硬化させる工程。
The present disclosure provides a method for manufacturing a semiconductor package using the above dicing/die bonding integrated film. For example, a chip-embedded semiconductor package is manufactured through the following steps.
A step of preparing a structure including a substrate and a first semiconductor element mounted on the surface of the substrate.
A step of bonding the adhesive layer of the dicing/die bonding integrated film according to the present disclosure to the wafer.
A step of dividing the wafer bonded to the adhesive layer into a plurality of second semiconductor elements.
A step of picking up from the pressure-sensitive adhesive layer a laminate including the adhesive piece formed by dividing the adhesive layer into individual pieces and the second semiconductor element.
A step of thermocompression-bonding the above laminated body to the substrate so that the first semiconductor element is embedded in the adhesive piece.
-A step of curing the adhesive piece by heat treatment.
 上記チップ埋込型半導体パッケージの製造方法によれば、熱圧着の工程において、接着剤片に第1の半導体素子を好適に埋め込むことができるとともに、ブリードを十分に抑制できる。 According to the method for manufacturing a chip-embedded semiconductor package, the first semiconductor element can be appropriately embedded in the adhesive piece and bleeding can be sufficiently suppressed in the thermocompression bonding process.
 本開示によれば、熱硬化性樹脂組成物からなる接着剤層を含む接着フィルムであって、熱圧着工程において、半導体素子に対する優れた埋込性を有し且つブリードを十分に抑制できる接着フィルムが提供される。本開示によれば、上記接着フィルムの接着剤層を備えるダイシング・ダイボンディング一体型フィルム及びこれを用いた半導体パッケージの製造方法が提供される。 According to the present disclosure, an adhesive film including an adhesive layer made of a thermosetting resin composition, which has excellent embeddability in a semiconductor element and can sufficiently suppress bleeding in a thermocompression bonding process. Will be provided. According to the present disclosure, there is provided a dicing/die-bonding integrated film including the adhesive layer of the adhesive film, and a method for manufacturing a semiconductor package using the film.
図1は半導体パッケージの一例を模式的に示す断面図である。FIG. 1 is a sectional view schematically showing an example of a semiconductor package. 図2は接着剤片と第2の半導体素子とからなる積層体の一例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an example of a laminated body including an adhesive piece and a second semiconductor element. 図3は図1に示す半導体パッケージを製造する過程を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a process of manufacturing the semiconductor package shown in FIG. 図4は図1に示す半導体パッケージを製造する過程を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a process of manufacturing the semiconductor package shown in FIG. 図5は図1に示す半導体パッケージを製造する過程を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a process of manufacturing the semiconductor package shown in FIG. 図6は図1に示す半導体パッケージを製造する過程を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a process of manufacturing the semiconductor package shown in FIG. 図7(a)~図7(e)は、接着剤片と第2の半導体素子とからなる積層体を製造する過程を模式的に示す断面図である。7(a) to 7(e) are cross-sectional views schematically showing a process of manufacturing a laminated body including the adhesive piece and the second semiconductor element.
 以下、図面を参照しながら本開示の実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。なお、本明細書における「(メタ)アクリル」の記載は、「アクリル」及びそれに対応する「メタクリル」を意味する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the following description, the same or corresponding parts will be denoted by the same reference symbols, without redundant description. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios. In addition, the description of "(meth)acryl" in this specification means "acryl" and its corresponding "methacryl."
<半導体パッケージ>
 図1は本実施形態に係るチップ埋込型半導体パッケージを模式的に示す断面図である。この図に示す半導体パッケージ100は、基板10と、基板10の表面上にマウントされた第1の半導体素子Waと、第1の半導体素子Waを封止している第1の封止層20と、第1の半導体素子Waの上方に配置された第2の半導体素子Wbと、第2の半導体素子Wbを封止している第2の封止層40とを備える。
<Semiconductor package>
FIG. 1 is a sectional view schematically showing a chip-embedded semiconductor package according to this embodiment. A semiconductor package 100 shown in this figure includes a substrate 10, a first semiconductor element Wa mounted on the surface of the substrate 10, and a first sealing layer 20 that seals the first semiconductor element Wa. , A second semiconductor element Wb arranged above the first semiconductor element Wa, and a second sealing layer 40 sealing the second semiconductor element Wb.
 基板10は、表面に回路パターン10a,10bを有する。半導体パッケージ100の反りを抑制する観点から、基板10の厚さは、例えば、90~180μmであり、90~140μmであってもよい。なお、基板10は有機基板であっても、リードフレーム等の金属基板であってもよい。 The substrate 10 has circuit patterns 10a and 10b on its surface. From the viewpoint of suppressing the warpage of the semiconductor package 100, the thickness of the substrate 10 is, for example, 90 to 180 μm, and may be 90 to 140 μm. The substrate 10 may be an organic substrate or a metal substrate such as a lead frame.
 本実施形態において、第1の半導体素子Waは半導体パッケージ100を駆動するためのコントローラチップである。第1の半導体素子Waは、回路パターン10a上に接着剤15を介して接着されており、また、第1のワイヤ11を介して回路パターン10bに接続されている。平面視における第1の半導体素子Waの形状は、例えば矩形(正方形又は長方形)である。第1の半導体素子Waの一辺の長さは、例えば、6mm以下であり、2~5mm又は1~4mmであってもよい。第1の半導体素子Waの厚さは、例えば、10~150μmであり、20~100μmであってもよい。 In the present embodiment, the first semiconductor element Wa is a controller chip for driving the semiconductor package 100. The first semiconductor element Wa is adhered onto the circuit pattern 10a via an adhesive 15, and is also connected to the circuit pattern 10b via a first wire 11. The shape of the first semiconductor element Wa in a plan view is, for example, a rectangle (square or rectangle). The length of one side of the first semiconductor element Wa is, for example, 6 mm or less, and may be 2 to 5 mm or 1 to 4 mm. The thickness of the first semiconductor element Wa is, for example, 10 to 150 μm, and may be 20 to 100 μm.
 第2の半導体素子Wbは、第1の半導体素子Waよりも大きい面積を有する。第2の半導体素子Wbは、第1の半導体素子Waの全体と回路パターン10bの一部とが覆われるように第1の封止層20を介して基板10上に搭載されている。平面視における第2の半導体素子Wbの形状は、例えば矩形(正方形又は長方形)である。第2の半導体素子Wbの一辺の長さは、例えば、20mm以下であり、4~20mm又は4~12mmであってもよい。第2の半導体素子Wbの厚さは、例えば、10~170μmであり、20~120μmであってもよい。第2の半導体素子Wbは、第2のワイヤ12を介して回路パターン10bに接続されるとともに第2の封止層40により封止されている。 The second semiconductor element Wb has a larger area than the first semiconductor element Wa. The second semiconductor element Wb is mounted on the substrate 10 via the first sealing layer 20 so that the entire first semiconductor element Wa and a part of the circuit pattern 10b are covered. The shape of the second semiconductor element Wb in a plan view is, for example, a rectangle (square or rectangle). The length of one side of the second semiconductor element Wb is, for example, 20 mm or less, and may be 4 to 20 mm or 4 to 12 mm. The thickness of the second semiconductor element Wb is, for example, 10 to 170 μm, and may be 20 to 120 μm. The second semiconductor element Wb is connected to the circuit pattern 10b via the second wire 12 and is sealed by the second sealing layer 40.
 第1の封止層20は接着剤片20P(図2参照)の硬化物からなる。なお、図2に示すとおり、接着剤片20Pと第2の半導体素子Wbは実質的に同じサイズである。図2に示す積層体30は、接着剤片20Pと第2の半導体素子Wbとからなり、接着剤付き半導体素子とも称される。積層体30は、後述のとおり、ダイシング工程及びピックアップ工程を経て作製される(図7参照)。 The first sealing layer 20 is made of a cured product of the adhesive piece 20P (see FIG. 2). Note that, as shown in FIG. 2, the adhesive piece 20P and the second semiconductor element Wb have substantially the same size. The laminated body 30 illustrated in FIG. 2 includes the adhesive piece 20P and the second semiconductor element Wb, and is also referred to as a semiconductor element with an adhesive. The laminated body 30 is manufactured through a dicing process and a pickup process as described later (see FIG. 7).
<半導体パッケージの製造方法>
 半導体パッケージ100の製造方法について説明する。まず、図3に示すように、基板10と、これにマウントされた第1の半導体素子Waとを備える構造体50を作製する。すなわち、基板10の表面上に接着剤15を介して第1の半導体素子Waを配置する。その後、第1の半導体素子Waと回路パターン10bとを第1のワイヤ11で電気的に接続する。
<Semiconductor package manufacturing method>
A method of manufacturing the semiconductor package 100 will be described. First, as shown in FIG. 3, a structure 50 including the substrate 10 and the first semiconductor element Wa mounted on the substrate 10 is manufactured. That is, the first semiconductor element Wa is arranged on the surface of the substrate 10 via the adhesive 15. After that, the first semiconductor element Wa and the circuit pattern 10b are electrically connected by the first wire 11.
 次に、図4に示すように、別途準備した積層体30の接着剤片20Pを基板10に対して押圧する。これによって、第1の半導体素子Wa及び第1のワイヤ11を接着剤片20Pに埋め込む。接着剤片20Pの厚さは、第1の半導体素子Waの厚さ等に応じて適宜設定すればよく、例えば、20~200μmであればよく、30~200μm又は40~150μmであってもよい。接着剤片20Pの厚さを上記範囲とすることで、第1の半導体素子Waと第2の半導体素子Wbの間隔(図5における距離G)を十分に確保することができる。距離Gは、例えば50μm以上であることが好ましく、50~75μm又は50~80μmであってもよい。 Next, as shown in FIG. 4, the adhesive piece 20P of the separately prepared laminate 30 is pressed against the substrate 10. As a result, the first semiconductor element Wa and the first wire 11 are embedded in the adhesive piece 20P. The thickness of the adhesive piece 20P may be appropriately set according to the thickness of the first semiconductor element Wa and the like, and may be, for example, 20 to 200 μm, 30 to 200 μm or 40 to 150 μm. .. By setting the thickness of the adhesive piece 20P in the above range, it is possible to sufficiently secure the distance (distance G in FIG. 5) between the first semiconductor element Wa and the second semiconductor element Wb. The distance G is preferably, for example, 50 μm or more, and may be 50 to 75 μm or 50 to 80 μm.
 接着剤片20Pの基板10に対する圧着は、例えば、80~180℃、0.01~0.50MPaの条件で、0.5~3.0秒間にわたって実施することが好ましい。次に、加熱によって接着剤片20Pを硬化させる。この硬化処理は、例えば、60~175℃、0.01~1.0MPaの条件で、5分間以上にわたって実施することが好ましい。これにより、接着剤片20Pの硬化物(第1の封止層20)で第1の半導体素子Waが封止される(図6参照)。接着剤片20Pの硬化処理は、ボイドの低減の観点から、加圧雰囲気下で実施してもよい。第2の半導体素子Wbと回路パターン10bとを第2のワイヤ12で電気的に接続した後、第2の封止層40によって第2の半導体素子Wbを封止することによって半導体パッケージ100が完成する(図1参照)。 The pressure bonding of the adhesive piece 20P to the substrate 10 is preferably carried out, for example, under conditions of 80 to 180° C. and 0.01 to 0.50 MPa for 0.5 to 3.0 seconds. Next, the adhesive piece 20P is cured by heating. This curing treatment is preferably carried out, for example, under conditions of 60 to 175° C. and 0.01 to 1.0 MPa for 5 minutes or more. As a result, the first semiconductor element Wa is sealed with the cured product (first sealing layer 20) of the adhesive piece 20P (see FIG. 6). The curing process of the adhesive piece 20P may be performed in a pressurized atmosphere from the viewpoint of reducing voids. After electrically connecting the second semiconductor element Wb and the circuit pattern 10b with the second wire 12, the second semiconductor element Wb is sealed by the second sealing layer 40, whereby the semiconductor package 100 is completed. (See FIG. 1).
<接着剤付き半導体素子の作製方法>
 図7(a)~図7(e)を参照しながら、図2に示す積層体30(接着剤付き半導体素子)の作製方法の一例について説明する。まず、ダイシング・ダイボンディング一体型フィルム8(以下、場合により「フィルム8」という。)を所定の装置(不図示)に配置する。フィルム8は、基材層1と粘着剤層2と接着剤層20A(接着フィルム)とをこの順序で備える。基材層1は、例えば、ポリエチレンテレフタレートフィルム(PETフィルム)である。半導体ウェハWは、例えば、厚さ10~100μmの薄型半導体ウェハである。半導体ウェハWは、単結晶シリコンであってもよいし、多結晶シリコン、各種セラミック、ガリウム砒素等の化合物半導体であってもよい。
<Method of manufacturing semiconductor device with adhesive>
An example of a method of manufacturing the laminated body 30 (semiconductor element with adhesive) shown in FIG. 2 will be described with reference to FIGS. 7A to 7E. First, the dicing/die-bonding integrated film 8 (hereinafter, referred to as “film 8” in some cases) is placed in a predetermined device (not shown). The film 8 includes the base material layer 1, the pressure-sensitive adhesive layer 2, and the adhesive layer 20A (adhesive film) in this order. The base material layer 1 is, for example, a polyethylene terephthalate film (PET film). The semiconductor wafer W is, for example, a thin semiconductor wafer having a thickness of 10 to 100 μm. The semiconductor wafer W may be single crystal silicon, polycrystal silicon, various ceramics, or a compound semiconductor such as gallium arsenide.
 図7(a)及び図7(b)に示すように、半導体ウェハWの一方の面に接着剤層20Aが接するようにフィルム8を貼り付ける。この工程は、好ましくは50~120℃、より好ましくは60~100℃の温度条件下で実施する。温度が50℃以上であると、半導体ウェハWを接着剤層20Aとの良好な密着性を得ることができ、120℃以下であると、この工程において接着剤層20Aが過度に流動することが抑制される。 As shown in FIGS. 7A and 7B, the film 8 is attached so that the adhesive layer 20A is in contact with one surface of the semiconductor wafer W. This step is preferably carried out under temperature conditions of 50 to 120°C, more preferably 60 to 100°C. When the temperature is 50° C. or higher, good adhesion of the semiconductor wafer W to the adhesive layer 20A can be obtained, and when the temperature is 120° C. or lower, the adhesive layer 20A may excessively flow in this step. Suppressed.
 図7(c)に示すように、半導体ウェハW、粘着剤層2及び接着剤層20Aをダイシングする。これにより、半導体ウェハWが個片化されて半導体素子Wbとなる。接着剤層20Aも個片化されて接着剤片20Pとなる。ダイシング方法としては、回転刃又はレーザを用いる方法が挙げられる。なお、半導体ウェハWのダイシングに先立って半導体ウェハWを研削することによって薄膜化してもよい。 As shown in FIG. 7C, the semiconductor wafer W, the adhesive layer 2 and the adhesive layer 20A are diced. As a result, the semiconductor wafer W is diced into individual semiconductor elements Wb. The adhesive layer 20A is also diced into individual adhesive pieces 20P. Examples of the dicing method include a method using a rotary blade or a laser. The semiconductor wafer W may be thinned by grinding the semiconductor wafer W prior to dicing the semiconductor wafer W.
 次に、粘着剤層2が例えばUV硬化型である場合、図7(d)に示すように、粘着剤層2に対して紫外線を照射することにより粘着剤層2を硬化させ、粘着剤層2と接着剤片20Pとの間の粘着力を低下させる。紫外線照射後、図7(e)に示されるように、常温又は冷却条件下において基材層1をエキスパンドすることによって半導体素子Waを互いに離間させつつ、ニードル42で突き上げることによって粘着剤層2から積層体30の接着剤片20Pを剥離させるとともに、積層体30を吸引コレット44で吸引してピックアップする。このようにして得られた積層体30は、図4に示すように、半導体パッケージ100の製造に供される。 Next, when the pressure-sensitive adhesive layer 2 is, for example, a UV-curable type, the pressure-sensitive adhesive layer 2 is cured by irradiating the pressure-sensitive adhesive layer 2 with ultraviolet rays as shown in FIG. The adhesive force between 2 and the adhesive piece 20P is reduced. After the ultraviolet irradiation, as shown in FIG. 7E, the semiconductor element Wa is separated from each other by expanding the base material layer 1 at room temperature or under cooling conditions, and the semiconductor element Wa is separated from each other, and is pushed up by the needle 42 so that the adhesive layer 2 is removed. The adhesive piece 20P of the laminated body 30 is peeled off, and the laminated body 30 is suctioned and picked up by the suction collet 44. The laminated body 30 thus obtained is used for manufacturing the semiconductor package 100, as shown in FIG.
<ダイシング・ダイボンディング一体型フィルム及びその製造方法>
 図7(a)に示すダイシング・ダイボンディング一体型フィルム8及びその製造方法について説明する。上述のとおり、フィルム8は、基材層1(例えばPETフィルム)と粘着剤層2と接着剤層20A(接着フィルム)とをこの順序で備える。フィルム8の製造方法は、エポキシ樹脂等を含む熱硬化性樹脂組成物のワニスをフィルム(不図示)上に塗布する工程と、塗布されたワニスを50~150℃で加熱乾燥することによって接着剤層20Aを形成する工程と、接着剤層20Aと粘着剤層2とを貼り合わせる工程とを含む。
<Film with integrated dicing and die bonding and its manufacturing method>
The dicing/die-bonding integrated film 8 shown in FIG. 7A and its manufacturing method will be described. As described above, the film 8 includes the base material layer 1 (for example, PET film), the pressure-sensitive adhesive layer 2, and the adhesive layer 20A (adhesive film) in this order. The method for producing the film 8 includes a step of applying a varnish of a thermosetting resin composition containing an epoxy resin or the like on a film (not shown), and an adhesive by heating and drying the applied varnish at 50 to 150° C. It includes a step of forming the layer 20A and a step of attaching the adhesive layer 20A and the pressure-sensitive adhesive layer 2 to each other.
 接着剤層20Aの80℃におけるずり粘度η80は2500~4500Pa・sである。ずり粘度η80が2500Pa・s以上であることで、優れた埋込性を達成でき、他方、4500Pa・s以下であることでブリードを抑制できる。ずり粘度η80の下限値は2800Pa・s又は3000Pa・sであってもよく、上限値は4300Pa・s又は4000Pa・sであってもよい。 The shear viscosity η 80 of the adhesive layer 20A at 80° C. is 2500 to 4500 Pa·s. When the shear viscosity η 80 is 2500 Pa·s or more, excellent embeddability can be achieved, while when it is 4500 Pa·s or less, bleeding can be suppressed. The lower limit of the shear viscosity η 80 may be 2800 Pa·s or 3000 Pa·s, and the upper limit thereof may be 4300 Pa·s or 4000 Pa·s.
 接着剤層20Aの40℃におけるずり粘度η40は10万Pa・s以上であることが好ましい。ずり粘度η40が10万Pa・s以上であることで、熱圧着工程の初期段階における圧着ツールの衝撃に起因するブリードを抑制できる。ずり粘度η80の下限値は12万Pa・s又は15万Pa・sであってもよく、上限値は例えば80万Pa・sであり、60万Pa・s又は40万Pa・sであってもよい。 The shear viscosity η 40 of the adhesive layer 20A at 40° C. is preferably 100,000 Pa·s or more. When the shear viscosity η 40 is 100,000 Pa·s or more, bleeding due to the impact of the crimping tool in the initial stage of the thermocompression bonding process can be suppressed. The lower limit of the shear viscosity η 80 may be 120,000 Pa·s or 150,000 Pa·s, and the upper limit thereof is, for example, 800,000 Pa·s, 600,000 Pa·s or 400,000 Pa·s. May be.
 接着剤層20Aのη80に対するη40の比率(η40/η80)は25~200である。η40/η80が25~200であることで、優れた埋込性とブリードの抑制の両方を十分に高水準に達成することができる。η40/η80の下限値は28又は30であってもよく、上限値は190又は170であってもよい。 The ratio (η 4080 ) of η 40 to η 80 of the adhesive layer 20A is 25 to 200. When η 4080 is 25 to 200, both excellent embedding property and suppression of bleed can be achieved at a sufficiently high level. The lower limit value of η 4080 may be 28 or 30, and the upper limit value may be 190 or 170.
 接着剤層20Aは、例えば、エポキシ樹脂と、硬化剤と、エラストマとを含むワニスをフィルム上に塗工する工程と、フィルム上に形成された塗膜を乾燥させる工程を経て形成される。ワニスは、必要に応じて、無機フィラー及び硬化促進剤等を更に含んでもよい。ワニスは、エポキシ樹脂等の材料を、溶剤中で混合又は混練することによって調製することができる。混合又は混練は、通常の撹拌機、らいかい機、三本ロール、ボールミル等の分散機を用い、これらを適宜組み合わせて行うことができる。なお、ワニスの詳細については後述する。 The adhesive layer 20A is formed through, for example, a step of applying a varnish containing an epoxy resin, a curing agent, and an elastomer on a film, and a step of drying a coating film formed on the film. The varnish may further contain an inorganic filler, a curing accelerator and the like, if necessary. The varnish can be prepared by mixing or kneading materials such as epoxy resin in a solvent. Mixing or kneading can be performed by using an ordinary stirrer, a raker, a disperser such as a three-roll mill, a ball mill and the like, and appropriately combining these. The details of the varnish will be described later.
 ワニスが塗布されるフィルムとしては、特に制限はなく、例えば、ポリエステルフィルム、ポリプロピレンフィルム(OPPフィルム等)、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリエーテルイミドフィルム、ポリエーテルナフタレートフィルム、メチルペンテンフィルムが挙げられる。 The film to which the varnish is applied is not particularly limited, and examples thereof include polyester film, polypropylene film (OPP film and the like), polyethylene terephthalate film, polyimide film, polyetherimide film, polyether naphthalate film, methylpentene film. To be
 フィルムにワニスを塗布する方法としては、公知の方法を用いることができ、例えば、ナイフコート法、ロールコート法、スプレーコート法、グラビアコート法、バーコート法、カーテンコート法が挙げられる。加熱乾燥の条件は、使用した溶剤が充分に揮散する条件であればよく、例えば、50~150℃で、1~30分間加熱して行うことができる。加熱乾燥は、50~150℃の範囲内の温度で段階的に昇温させて行ってもよい。ワニスに含まれる溶剤を加熱乾燥によって揮発させることによって、フィルムと接着剤層20Aとの積層フィルムを得ることができる。 As a method for applying the varnish to the film, a known method can be used, and examples thereof include a knife coating method, a roll coating method, a spray coating method, a gravure coating method, a bar coating method and a curtain coating method. The heating and drying conditions may be such that the solvent used is sufficiently volatilized, and for example, heating at 50 to 150° C. for 1 to 30 minutes can be performed. The heat drying may be carried out by gradually raising the temperature within the range of 50 to 150°C. By evaporating the solvent contained in the varnish by heating and drying, a laminated film of the film and the adhesive layer 20A can be obtained.
 上記のようにして得た積層フィルムと、ダイシングフィルム(基材層1と粘着剤層2の積層体)とを貼り合わせることによってフィルム8を得ることができる。基材層1としては、例えば、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリイミドフィルム等のプラスチックフィルムが挙げられる。また、基材層1は、必要に応じて、プライマー塗布、UV処理、コロナ放電処理、研磨処理、エッチング処理等の表面処理が行われていてもよい。粘着剤層2は、UV硬化型であってもよいし、感圧型であってもよい。粘着剤層2を構成する粘着剤として、従来、ダイシングフィルムに使用されている粘着剤を使用すればよい。粘着剤層2の厚さは、経済性及びフィルムの取扱い性の観点から、例えば、60~200μmであり、70~170μmであってもよい。 The film 8 can be obtained by bonding the laminated film obtained as described above and the dicing film (a laminated body of the base material layer 1 and the pressure-sensitive adhesive layer 2). Examples of the base layer 1 include plastic films such as polytetrafluoroethylene film, polyethylene terephthalate film, polyethylene film, polypropylene film, polymethylpentene film, and polyimide film. Further, the base material layer 1 may be subjected to surface treatment such as primer coating, UV treatment, corona discharge treatment, polishing treatment, and etching treatment, if necessary. The pressure-sensitive adhesive layer 2 may be a UV curable type or a pressure sensitive type. As the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 2, a pressure-sensitive adhesive that has been conventionally used for a dicing film may be used. The thickness of the pressure-sensitive adhesive layer 2 is, for example, from 60 to 200 μm, and may be from 70 to 170 μm, from the viewpoint of economy and handleability of the film.
<接着剤層形成用のワニス>
 接着剤層20Aを形成するためのワニスについて詳細に説明する。なお、接着剤片20Pは接着剤層20Aを個片化したものであり、両者は同じ熱硬化性樹脂組成物からなる。接着剤層20A及び接着剤片20Pは、溶剤を揮散させるための加熱処理を経ているため半硬化(Bステージ)の状態であり、その後の硬化処理によって完全硬化物(Cステージ)状態となる。
<Varnish for forming adhesive layer>
The varnish for forming the adhesive layer 20A will be described in detail. The adhesive piece 20P is an individual piece of the adhesive layer 20A, and both are made of the same thermosetting resin composition. The adhesive layer 20A and the adhesive piece 20P are in a semi-cured (B stage) state because they have undergone heat treatment for volatilizing the solvent, and are in a completely cured product (C stage) state by the subsequent curing treatment.
 接着剤層形成用のワニスは、上述のとおり、エポキシ樹脂と、硬化剤と、エラストマとを含み、必要に応じて、無機フィラー及び硬化促進剤等を更に含む。ワニスを調製するための溶剤は、上記各成分を均一に溶解、混練又は分散できるものであれば制限はなく、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、Nメチルピロリドン、トルエン、キシレンを使用できる。乾燥速度が速く、価格が安い点でメチルエチルケトン又はシクロヘキサノンを使用することが好ましい。 As described above, the varnish for forming the adhesive layer contains the epoxy resin, the curing agent, and the elastomer, and further contains the inorganic filler, the curing accelerator, and the like, if necessary. The solvent for preparing the varnish is not limited as long as it can uniformly dissolve, knead or disperse the above components, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, a ketone solvent such as cyclohexanone, dimethylformamide, dimethyl. Acetamide, N-methylpyrrolidone, toluene, xylene can be used. It is preferable to use methyl ethyl ketone or cyclohexanone since the drying speed is fast and the price is low.
(エポキシ樹脂)
 エポキシ樹脂としては、構造に特に制限はないが、相溶性の観点から、脂環式構造を有するものが好ましい。脂環式構造を有するエポキシ樹脂の含有率は接着剤層20Aに含まれるエポキシ樹脂の全質量基準で、例えば、40~20質量%であり、20~10質量%又は10~5質量%であってもよい。接着剤層20Aの40℃におけるずり粘度η40を所定値以上とする観点から、25℃において液状であるエポキシ樹脂の含有率は接着剤層20Aに含まれるエポキシ樹脂の全質量基準で40質量%未満であることが好ましく、30質量%未満であることがより好ましく、14質量%未満又は9質量%未満であってもよい。
(Epoxy resin)
The structure of the epoxy resin is not particularly limited, but those having an alicyclic structure are preferable from the viewpoint of compatibility. The content of the epoxy resin having an alicyclic structure is, for example, 40 to 20% by mass, 20 to 10% by mass or 10 to 5% by mass based on the total mass of the epoxy resin contained in the adhesive layer 20A. May be. From the viewpoint of setting the shear viscosity η 40 of the adhesive layer 20A at 40° C. to a predetermined value or more, the content of the epoxy resin which is liquid at 25° C. is 40% by mass based on the total mass of the epoxy resin contained in the adhesive layer 20A. It is preferably less than 30% by mass, more preferably less than 30% by mass, and may be less than 14% by mass or less than 9% by mass.
 エポキシ樹脂の市販品として、例えば、ジシクロペンタジエン型エポキシ樹脂HP-7200L(DIC(株)製)、HP-7200(DIC(株)製)、XD-1000(日本化薬(株)製)、セロキサイド2021P(ダイセル(株)製)、セロキサイド20281(ダイセル(株)製)、Syna-Epoxy28(SYANASIA社製)、ビスA型エポキシ樹脂YD-128(三菱ケミカル(株)製)、ビスF型エポキシ樹脂EXA-830-CRP(DIC(株)社製)が挙げられる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。 Commercially available epoxy resins include, for example, dicyclopentadiene type epoxy resins HP-7200L (manufactured by DIC Corporation), HP-7200 (manufactured by DIC Corporation), XD-1000 (manufactured by Nippon Kayaku Co., Ltd.), Celoxide 2021P (manufactured by Daicel Corporation), Celoxide 20281 (manufactured by Daicel Corporation), Syna-Epoxy 28 (manufactured by SYANASIA), bis A type epoxy resin YD-128 (manufactured by Mitsubishi Chemical Corporation), bis F type epoxy. Resin EXA-830-CRP (manufactured by DIC Corporation) may be mentioned. These may be used alone or in combination of two or more.
 芳香族エポキシ樹脂を熱硬化性樹脂として使用してもよい。芳香族エポキシ樹脂として、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、スチルベン型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、フルオレン骨格含有エポキシ樹脂、トリフェノールフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、多官能フェノール類及びアントラセン等の多環芳香族類のジグリシジルエーテル化合物が挙げられる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。 Aromatic epoxy resins may be used as thermosetting resins. Examples of the aromatic epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol F novolac type epoxy resin. Resin, stilbene type epoxy resin, epoxy resin containing triazine skeleton, epoxy resin containing fluorene skeleton, triphenolphenolmethane type epoxy resin, biphenyl type epoxy resin, xylylene type epoxy resin, biphenylaralkyl type epoxy resin, naphthalene type epoxy resin, polyfunctional Examples thereof include diglycidyl ether compounds of polycyclic aromatic compounds such as phenols and anthracenes. These may be used alone or in combination of two or more.
(硬化剤)
 硬化剤として、例えば、フェノール樹脂、エステル化合物、芳香族アミン、脂肪族アミン及び酸無水物が挙げられる。これらのうち、反応性及び経時安定性の観点から、フェノール樹脂が好ましく特に制限はない。接着剤層の40℃におけるずり粘度η40を高く設定し且つ80℃におけるずり粘度η80を低く設定する観点から、40℃超60℃未満の軟化点を有するフェノール樹脂を使用することが好ましい。なお、ここでいう軟化点は環球法で測定した値を意味する。
(Curing agent)
Examples of the curing agent include phenolic resins, ester compounds, aromatic amines, aliphatic amines, and acid anhydrides. Of these, a phenol resin is preferable and there is no particular limitation from the viewpoint of reactivity and stability over time. From the viewpoint of setting the shear viscosity η 40 at 40° C. of the adhesive layer high and the shear viscosity η 80 at 80° C. low, it is preferable to use a phenol resin having a softening point of more than 40° C. and less than 60° C. The softening point here means a value measured by the ring and ball method.
 フェノール樹脂の市販品として、例えば、DIC(株)製のフェノライトKA及びTDシリーズ、三井化学(株)製のミレックスXLC-シリーズとXLシリーズ(例えば、ミレックスXLC-LL)、エア・ウォーター(株)製のHEシリーズ(例えば、HE100C-30)、明和化成(株)製のMEHC-7800シリーズ(例えばMEHC-7800-4S)が挙げられる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。耐熱性の観点から、85℃、85%RHの恒温恒湿槽に48時間投入後の吸水率が2質量%以下で、熱重量分析計(TGA)で測定した350℃での加熱質量減少率(昇温速度:5℃/分、雰囲気:窒素)が5質量%未満のものが好ましい。 Commercially available phenolic resins include, for example, Phenolite KA and TD series manufactured by DIC Corporation, Milex XLC-series and XL series manufactured by Mitsui Chemicals, Inc. (for example, Milex XLC-LL), and Air Water (stock). HE series (for example, HE100C-30) manufactured by Meiwa Kasei Co., Ltd., and MEHC-7800 series (for example, MEHC-7800-4S) manufactured by Meiwa Kasei Co., Ltd. These may be used alone or in combination of two or more. From the viewpoint of heat resistance, the water absorption rate after being put in a constant temperature and humidity tank of 85° C. and 85% RH for 48 hours is 2% by mass or less, and the heating mass reduction rate at 350° C. measured by a thermogravimetric analyzer (TGA). It is preferable that the (temperature rising rate: 5° C./min, atmosphere: nitrogen) is less than 5 mass %.
 エポキシ樹脂とフェノール樹脂の配合量は、硬化性の観点から、それぞれエポキシ当量と水酸基当量の当量比が、好ましくは0.30/0.70~0.70/0.30、より好ましくは0.35/0.65~0.65/0.35、更に好ましくは0.40/0.60~0.60/0.40、特に好ましくは0.45/0.55~0.55/0.45である。配合比が上記範囲内であることで、硬化性及び流動性の両方を十分に高水準に達成しやすい。 From the viewpoint of curability, the epoxy resin and the phenol resin are blended so that the equivalent ratio of the epoxy equivalent and the hydroxyl equivalent is preferably 0.30/0.70 to 0.70/0.30, and more preferably 0. 35/0.65 to 0.65/0.35, more preferably 0.40/0.60 to 0.60/0.40, and particularly preferably 0.45/0.55 to 0.55/0. 45. When the compounding ratio is within the above range, it is easy to achieve both a curability and a fluidity at sufficiently high levels.
(エラストマ)
 エラストマとして、例えば、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、シリコーン樹脂、ポリブタジエン、アクリロニトリル、エポキシ変性ポリブタジエン、無水マレイン酸変性ポリブタジエン、フェノール変性ポリブタジエン及びカルボキシ変性アクリロニトリルが挙げられる。
(Elastomer)
Examples of the elastomer include acrylic resin, polyester resin, polyamide resin, polyimide resin, silicone resin, polybutadiene, acrylonitrile, epoxy-modified polybutadiene, maleic anhydride-modified polybutadiene, phenol-modified polybutadiene and carboxy-modified acrylonitrile.
 溶剤への溶解性及び流動性の観点から、エラストマとしてアクリル系樹脂が好ましく、更に、グリシジルアクリレート又はグリシジルメタクリレート等のエポキシ基又はグリシジル基を架橋性官能基として有する官能性モノマーを重合して得たエポキシ基含有(メタ)アクリル共重合体等のアクリル系樹脂がより好ましい。アクリル系樹脂のなかでもエポキシ基含有(メタ)アクリル酸エステル共重合体及びエポキシ基含有アクリルゴムが好ましく、エポキシ基含有アクリルゴムがより好ましい。エポキシ基含有アクリルゴムは、アクリル酸エステルを主成分とし、主として、ブチルアクリレートとアクリロニトリル等の共重合体、エチルアクリレートとアクリロニトリル等の共重合体などからなる、エポキシ基を有するゴムである。なお、アクリル系樹脂は、エポキシ基だけでなく、アルコール性又はフェノール性水酸基、カルボキシル基等の架橋性官能基を有していてもよい。 From the viewpoint of solubility and fluidity in a solvent, an acrylic resin is preferable as the elastomer, and further obtained by polymerizing a functional monomer having an epoxy group or a glycidyl group such as glycidyl acrylate or glycidyl methacrylate as a crosslinkable functional group. An acrylic resin such as an epoxy group-containing (meth)acrylic copolymer is more preferable. Among the acrylic resins, the epoxy group-containing (meth)acrylic acid ester copolymer and the epoxy group-containing acrylic rubber are preferable, and the epoxy group-containing acrylic rubber is more preferable. The epoxy group-containing acrylic rubber is a rubber having an epoxy group, which is mainly composed of an acrylic ester and is mainly composed of a copolymer such as butyl acrylate and acrylonitrile or a copolymer such as ethyl acrylate and acrylonitrile. The acrylic resin may have not only an epoxy group but also a crosslinkable functional group such as an alcoholic or phenolic hydroxyl group and a carboxyl group.
 アクリル樹脂の市販品としては、ナガセケムテック(株)製のSG-70L、SG-708-6、WS-023 EK30、SG-280 EK23、SG-P3溶剤変更品(商品名、アクリルゴム、重量平均分子量:80万、Tg:12℃、溶剤はシクロヘキサノン)等が挙げられる。 Commercially available products of acrylic resin are SG-70L, SG-708-6, WS-023 EK30, SG-280 EK23, SG-P3 manufactured by Nagase Chemtech Co., Ltd. (product name, acrylic rubber, weight) Average molecular weight: 800,000, Tg: 12° C., solvent is cyclohexanone, etc.
 アクリル樹脂のガラス転移温度(Tg)は-50~50℃であることが好ましく、-30~30℃であることがより好ましい。アクリル樹脂の重量平均分子量(Mw)は、10万~300万であることが好ましく、50万~200万であることがより好ましい。Mwがこの範囲のアクリル樹脂を熱硬化性樹脂組成物に配合することで、熱硬化性樹脂組成物をフィルム状に形成しやすく、フィルム状での強度、可撓性、タック性を適切に制御しやすい。これに加え、リフロー性及び埋込性の両方が向上する傾向にある。ここで、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレンによる検量線を用いて換算した値を意味する。なお、分子量分布の狭いアクリル樹脂を用いることにより、埋込性に優れ且つ高弾性の接着剤層を形成できる傾向にある。 The glass transition temperature (Tg) of the acrylic resin is preferably -50 to 50°C, more preferably -30 to 30°C. The weight average molecular weight (Mw) of the acrylic resin is preferably 100,000 to 3,000,000, more preferably 500,000 to 2,000,000. By blending an acrylic resin having an Mw in this range with a thermosetting resin composition, the thermosetting resin composition can be easily formed into a film, and the strength, flexibility, and tackiness of the film can be appropriately controlled. It's easy to do. In addition to this, both reflowability and embedding property tend to be improved. Here, Mw means a value measured by gel permeation chromatography (GPC) and converted using a calibration curve based on standard polystyrene. By using an acrylic resin having a narrow molecular weight distribution, an adhesive layer having excellent embedding properties and high elasticity tends to be formed.
 接着剤層20Aに含まれるアクリル樹脂の量は、エポキシ樹脂及びエポキシ樹脂硬化剤の合計100質量部に対して20~200質量部であることが好ましく、30~100質量部であることがより好ましい。この範囲にあると、成形時の流動性の制御、高温での取り扱い性及び埋込性をより一層良好にすることができる。 The amount of the acrylic resin contained in the adhesive layer 20A is preferably 20 to 200 parts by mass, more preferably 30 to 100 parts by mass, based on 100 parts by mass of the total amount of the epoxy resin and the epoxy resin curing agent. .. Within this range, control of fluidity during molding, handling at high temperature, and embedding property can be further improved.
(無機フィラー)
 無機フィラーとして、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ホウ酸アルミウィスカ、窒化ホウ素及び結晶性シリカ、非晶性シリカが挙げられる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。接着剤層20Aの熱伝導性を向上する観点から、無機フィラーとして、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、結晶性シリカ又は非晶性シリカを含有することが好ましい。接着剤層20Aの溶融粘度の調整及び接着剤組成物にチキソトロピック性を付与する観点からは、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、結晶性シリカ又は非晶性シリカを使用することが好ましい。
(Inorganic filler)
Examples of the inorganic filler include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whiskers, boron nitride and crystallinity. Examples thereof include silica and amorphous silica. These may be used alone or in combination of two or more. From the viewpoint of improving the thermal conductivity of the adhesive layer 20A, it is preferable to contain aluminum oxide, aluminum nitride, boron nitride, crystalline silica or amorphous silica as the inorganic filler. From the viewpoint of adjusting the melt viscosity of the adhesive layer 20A and imparting thixotropic properties to the adhesive composition, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, Preference is given to using magnesium oxide, aluminum oxide, crystalline silica or amorphous silica.
 無機フィラーの平均粒径は、接着性を向上する観点から、0.005μm~0.5μmが好ましく、0.05~0.3μmがより好ましい。無機フィラーの表面は、溶剤及び樹脂成分との相溶性、並びに接着強度の観点から化学修飾されていることが好ましい。表面を化学修飾する材料として適したものにシランカップリング剤が挙げられる。シランカップリング剤の官能基の種類として、例えば、ビニル基、アクリロイル基、エポキシ基、メルカプト基、アミノ基、ジアミノ基、アルコキシ基、エトキシ基が挙げられる。 The average particle size of the inorganic filler is preferably 0.005 μm to 0.5 μm, more preferably 0.05 to 0.3 μm, from the viewpoint of improving adhesiveness. The surface of the inorganic filler is preferably chemically modified from the viewpoint of compatibility with a solvent and a resin component and adhesive strength. Suitable materials for chemically modifying the surface include silane coupling agents. Examples of the functional group of the silane coupling agent include vinyl group, acryloyl group, epoxy group, mercapto group, amino group, diamino group, alkoxy group and ethoxy group.
 接着剤層20Aの流動性及び破断性、並びに硬化後の引張弾性率及び接着力を制御する観点から、接着剤層20Aの樹脂成分100質量部に対して、無機フィラーの含有量は10~90質量部であることが好ましく、10~50質量部であることがより好ましい。無機フィラーの含有量が10質量部以上であることで、接着剤層20Aのダイシング性が向上しやすく、硬化後において十分な接着力を発揮しやすい。他方、無機フィラーの含有量が90質量部以下であることで、接着剤層20Aの流動性を十分に確保しやすく、硬化後において弾性率が過度に高くなることを抑制できる。 From the viewpoint of controlling the fluidity and breakability of the adhesive layer 20A, and the tensile modulus and adhesive strength after curing, the content of the inorganic filler is 10 to 90 relative to 100 parts by mass of the resin component of the adhesive layer 20A. The amount is preferably parts by mass, more preferably 10 to 50 parts by mass. When the content of the inorganic filler is 10 parts by mass or more, the dicing property of the adhesive layer 20A is likely to be improved, and sufficient adhesive force is easily exhibited after curing. On the other hand, when the content of the inorganic filler is 90 parts by mass or less, it is easy to secure sufficient fluidity of the adhesive layer 20A, and it is possible to prevent the elastic modulus after curing from becoming excessively high.
(硬化促進剤)
 硬化促進剤として、例えば、イミダゾール類及びその誘導体、有機リン系化合物、第二級アミン類、第三級アミン類、及び第四級アンモニウム塩が挙げられる。適度な反応性の観点からイミダゾール系の化合物が好ましい。イミダゾール類としては、2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチルー2-メチルイミダゾール等が挙げられる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。
(Curing accelerator)
Examples of the curing accelerator include imidazoles and their derivatives, organic phosphorus compounds, secondary amines, tertiary amines, and quaternary ammonium salts. From the viewpoint of appropriate reactivity, imidazole compounds are preferable. Examples of the imidazoles include 2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole and the like. These may be used alone or in combination of two or more.
 接着剤層20Aにおける硬化促進剤の含有量は、エポキシ樹脂及びエポキシ樹脂硬化剤の合計100質量部に対して0.04~3質量部が好ましく、0.04~0.2質量部がより好ましい。硬化促進剤の添加量がこの範囲にあると、硬化性と信頼性を両立することができる。 The content of the curing accelerator in the adhesive layer 20A is preferably 0.04 to 3 parts by mass, more preferably 0.04 to 0.2 part by mass, based on 100 parts by mass of the total of the epoxy resin and the epoxy resin curing agent. .. When the addition amount of the curing accelerator is within this range, both curability and reliability can be achieved.
 以下、実施例により本開示について更に詳しく説明するが、これらの実施例は本発明を制限するものではない。 Hereinafter, the present disclosure will be described in more detail with reference to examples, but these examples do not limit the present invention.
(実施例1~5及び比較例1~2)
 以下の材料を表1及び表2に示した配合割合(質量部)で混合してワニスを調製した。溶媒としてシクロヘキサノンを使用し、ワニスの固形分割合は40質量%とした。100メッシュのフィルターでワニスをろ過するとともに真空脱泡した。ワニスを塗布するフィルムとして、離型処理が施されたポリエチレンテレフタレート(PET)フィルム(厚さ38μm)を準備した。真空脱泡後のワニスを、PETフィルムの離型処理が施された面上に塗布した。塗布したワニスを、90℃で5分間、続いて140℃で5分間の二段階で加熱乾燥した。こうして、実施例及び比較例に係る接着フィルムとして、PETフィルムと、その表面上に形成されたBステージ状態(半硬化状態)の接着剤層(厚さ110μm)とを備える積層フィルムをそれぞれ作製した。
(Examples 1-5 and Comparative Examples 1-2)
The following materials were mixed in the mixing ratios (parts by mass) shown in Tables 1 and 2 to prepare varnishes. Cyclohexanone was used as the solvent, and the solid content ratio of the varnish was 40% by mass. The varnish was filtered with a 100-mesh filter and vacuum degassed. As a film to which the varnish was applied, a polyethylene terephthalate (PET) film (thickness 38 μm) subjected to a mold release treatment was prepared. The varnish after vacuum defoaming was applied on the surface of the PET film that had been subjected to the release treatment. The applied varnish was heat-dried in two steps of 90° C. for 5 minutes and then 140° C. for 5 minutes. Thus, as the adhesive films according to the examples and the comparative examples, a laminated film including a PET film and a B-stage state (semi-cured state) adhesive layer (thickness 110 μm) formed on the surface thereof was produced. ..
[材料]
<エポキシ樹脂>
・(A1)…XD-1000-2L:(商品名、日本化薬(株)製、シクロペンタジエン型エポキシ樹脂、脂環式構造、25℃において固体)
・(A2)…HP-7200L:(商品名、DIC(株)製、シクロペンタジエン型エポキシ樹脂、脂環式構造、25℃において固体)
・(A3)…YDCN-700-10:(商品名、新日鉄住金化学(株)製、クレゾールノボラック型エポキシ樹脂、25℃において固体)
・(A4)…EXA-830CRP:(商品名、DIC(株)製、液状ビスフェノールF型エポキシ樹脂、25℃において液状)
<硬化剤>
・(B1)…MEHC-7841-4S:(商品名、明和化成(株)製、フェノールアラルキル樹脂、軟化点:65℃)
・(B2)…HE-100C-30:(商品名、エア・ウォーター(株)製、フェニルアラキル型フェノール樹脂、軟化点:75℃)
<エラストマ>
・(C1)…SG-P3溶剤変更品(商品名、ナガセケムテックス(株)製、アクリルゴム、重量平均分子量:80万、Tg:12℃、溶剤はシクロヘキサノン)
・(C2)…SG-708-6:(サンプル名、ナガセケムテックス(株)製、アクリルゴム、重量平均分子量70万)
<無機フィラー>
・SC2050-HLG:(商品名、(株)アドマテックス製、シリカフィラー分散液、平均粒径0.50μm)
<硬化促進剤>
・キュアゾール2PZ-CN:(商品名、四国化成工業(株)製、1-シアノエチル-2-フェニルイミダゾール)
[material]
<Epoxy resin>
・(A1)... XD-1000-2L: (trade name, manufactured by Nippon Kayaku Co., Ltd., cyclopentadiene type epoxy resin, alicyclic structure, solid at 25° C.)
・(A2)...HP-7200L: (trade name, manufactured by DIC Corporation, cyclopentadiene type epoxy resin, alicyclic structure, solid at 25° C.)
・(A3)...YDCN-700-10: (trade name, Nippon Steel & Sumikin Chemical Co., Ltd., cresol novolac type epoxy resin, solid at 25° C.)
・(A4)...EXA-830CRP: (trade name, liquid bisphenol F type epoxy resin manufactured by DIC Corporation, liquid at 25° C.)
<Curing agent>
・(B1)... MEHC-7841-4S: (trade name, manufactured by Meiwa Kasei Co., Ltd., phenol aralkyl resin, softening point: 65° C.)
・(B2)... HE-100C-30: (trade name, manufactured by Air Water Co., Ltd., phenyl aralkyl type phenol resin, softening point: 75° C.)
<Elastomer>
-(C1)... SG-P3 solvent modified product (trade name, manufactured by Nagase ChemteX Corporation, acrylic rubber, weight average molecular weight: 800,000, Tg: 12°C, solvent is cyclohexanone)
-(C2)... SG-708-6: (Sample name, manufactured by Nagase Chemtex Co., Ltd., acrylic rubber, weight average molecular weight 700,000)
<Inorganic filler>
SC2050-HLG: (trade name, manufactured by Admatechs Co., Ltd., silica filler dispersion, average particle size 0.50 μm)
<Curing accelerator>
・Curazole 2PZ-CN: (trade name, 1-cyanoethyl-2-phenylimidazole manufactured by Shikoku Chemicals Co., Ltd.)
[接着剤層の評価]
 実施例及び比較例に係る接着剤層について、ずり粘度、埋込性及びブリードの評価を行った。
[Evaluation of adhesive layer]
Shear viscosity, embeddability and bleed were evaluated for the adhesive layers according to the examples and comparative examples.
<ずり粘度の測定>
 接着剤層(厚さ110μm)を所定のサイズに切断し、四枚の接着剤片を準備した。四枚の接着剤片を60℃のホットプレート上でゴムロールを使用してラミネートすることにより、厚さ440μmの試料を作製した。この試料をφ9mmのポンチで打ち抜き、ずり粘度計(TA社製:商品名 ARES-G2)を使用して以下の条件でずり粘度を測定した。表1及び表2に結果を示す。
・測定周波数:10Hz
・昇温速度:10℃/分
・測定温度:35~130℃
・アキシャルフォース:100gf
<Measurement of shear viscosity>
The adhesive layer (thickness 110 μm) was cut into a predetermined size to prepare four adhesive pieces. A sample having a thickness of 440 μm was prepared by laminating the four pieces of adhesive on a hot plate at 60° C. using a rubber roll. This sample was punched with a punch having a diameter of 9 mm, and the shear viscosity was measured under the following conditions using a shear viscometer (manufactured by TA: trade name ARES-G2). The results are shown in Tables 1 and 2.
・Measurement frequency: 10Hz
・Raising rate: 10°C/min ・Measuring temperature: 35-130°C
・Axial force: 100gf
<埋込性の評価>
 まず、埋込性の評価に使用する構造体であって、基板と、その表面にマウントされた第1の半導体素子とを備える構造体を以下のようにして準備した。すなわち、フィルム状接着剤HR9004-10(商品名、日立化成(株)製、厚さ10μm)を半導体ウェハ(直径:8インチ、厚さ:50μm)に70℃で貼り付けた。半導体ウェハ及びフィルム状接着剤を4.8×5.7mm角にダイシングすることによって、接着剤付き半導体素子(第1の半導体素子)を得た。この接着剤付き半導体素子を評価用基板に120℃、0.20MPa、2秒間の条件で圧着した。なお、評価用基板として、表面にソルダーレジストAUS308(商品名、大陽日酸(株)製)が塗布された基板(総厚:260μm)を使用した。
<Embedding evaluation>
First, a structure used for evaluation of embedding property, including a substrate and a first semiconductor element mounted on the surface thereof, was prepared as follows. That is, a film adhesive HR9004-10 (trade name, manufactured by Hitachi Chemical Co., Ltd., thickness 10 μm) was attached to a semiconductor wafer (diameter: 8 inches, thickness: 50 μm) at 70° C. A semiconductor element with adhesive (first semiconductor element) was obtained by dicing the semiconductor wafer and the film adhesive into a 4.8×5.7 mm square. The semiconductor element with the adhesive was pressure-bonded to the evaluation substrate under the conditions of 120° C., 0.20 MPa, and 2 seconds. A substrate (total thickness: 260 μm) having a surface coated with a solder resist AUS308 (trade name, manufactured by Taiyo Nippon Sanso Co., Ltd.) was used as an evaluation substrate.
 他方、実施例及び比較例に係る接着剤層(厚さ110μ)を半導体ウェハ(直径:8インチ、厚さ100μm)に70℃でそれぞれ貼り付けた。半導体ウェハ及び接着剤層を8.5×12mm角にダイシングすることによって、接着剤片付き半導体素子(第2の半導体素子)を得た。 On the other hand, the adhesive layers (thickness 110 μm) according to the examples and the comparative examples were attached to semiconductor wafers (diameter: 8 inches, thickness 100 μm) at 70° C. By dicing the semiconductor wafer and the adhesive layer into 8.5×12 mm square, a semiconductor element with an adhesive piece (second semiconductor element) was obtained.
 上記構造体における第1の半導体素子がマウントされている位置に、接着片付き半導体素子(第2の半導体素子)を圧着した。圧着条件は120℃、0.20MPa、1.5秒間とした。なお、接着剤片の中央の位置に第1の半導体素子が埋め込まれるように位置合わせをした。このようにして作製した評価用試料を超音波デジタル画像診断装置(インサイト(株)製、プローブ:75MHz)にてボイドの有無を観測し、ボイドが観測された場合は、単位面積あたりのボイドの面積を算出し、これらの分析結果を埋込性として評価した。評価基準は、以下のとおりとした。表1及び表2に結果を示す。
 A:ボイドが観測されなかった。
 B:ボイドが観測されたが、その割合が5面積%未満であった。
 C:ボイドが観測され、その割合が5面積%以上であった。
A semiconductor element with an adhesive piece (second semiconductor element) was pressure-bonded to the position where the first semiconductor element was mounted in the structure. The pressure bonding conditions were 120° C., 0.20 MPa, and 1.5 seconds. The alignment was performed so that the first semiconductor element was embedded in the central position of the adhesive piece. The evaluation sample thus prepared was observed for the presence or absence of voids with an ultrasonic digital image diagnostic apparatus (Insight Co., Ltd., probe: 75 MHz). If voids were observed, the voids per unit area were observed. Area was calculated, and the results of these analyzes were evaluated as embeddability. The evaluation criteria are as follows. The results are shown in Tables 1 and 2.
A: No void was observed.
B: Voids were observed, but the ratio was less than 5 area %.
C: Voids were observed, and the ratio was 5 area% or more.
<ブリードの評価>
 まず、ブリードの評価に使用する構造体であって、基板と、その表面にマウントされた第1の半導体素子とを備える構造体を以下のようにして準備した。すなわち、フィルム状接着剤HR9004-10(商品名、日立化成(株)製、厚さ10μm)を半導体ウェハ(直径:8インチ、厚さ:50μm)に70℃で貼り付けた。半導体ウェハ及びフィルム状接着剤を2.1×4.8mm角にダイシングすることによって、接着剤付き半導体素子(第1の半導体素子)を得た。この接着剤付き半導体素子を評価用基板に120℃、0.20MPa、2秒間の条件で圧着した。なお、評価用基板として、表面にソルダーレジストAUS308(商品名、大陽日酸(株)製)が塗布された基板(総厚:260μm)を使用した。
<Bleed evaluation>
First, a structure used for evaluation of bleeding, including a substrate and a first semiconductor element mounted on the surface thereof, was prepared as follows. That is, a film adhesive HR9004-10 (trade name, manufactured by Hitachi Chemical Co., Ltd., thickness 10 μm) was attached to a semiconductor wafer (diameter: 8 inches, thickness: 50 μm) at 70° C. A semiconductor element with adhesive (first semiconductor element) was obtained by dicing the semiconductor wafer and the film-like adhesive into a 2.1×4.8 mm square. The semiconductor element with the adhesive was pressure-bonded to the evaluation substrate under the conditions of 120° C., 0.20 MPa and 2 seconds. A substrate (total thickness: 260 μm) having a surface coated with a solder resist AUS308 (trade name, manufactured by Taiyo Nippon Sanso Co., Ltd.) was used as an evaluation substrate.
 他方、実施例及び比較例に係る接着剤層(厚さ110μ)を半導体ウェハ(直径:8インチ、厚さ100μm)に70℃でそれぞれ貼り付けた。半導体ウェハ及び接着剤層を6×12.7mm角にダイシングすることによって、接着剤片付き半導体素子(第2の半導体素子)を得た。 On the other hand, the adhesive layers (thickness 110 μm) according to the examples and the comparative examples were attached to semiconductor wafers (diameter: 8 inches, thickness 100 μm) at 70° C. By dicing the semiconductor wafer and the adhesive layer into a 6×12.7 mm square, a semiconductor element with an adhesive piece (second semiconductor element) was obtained.
 上記構造体における第1の半導体素子がマウントされている位置に、接着剤片付き半導体素子(第2の半導体素子)を圧着した。圧着条件は120℃、0.20MPa、1.5秒間とした。なお、接着剤層の中央の位置に第1の半導体素子が埋め込まれるように位置合わせをした。このようにして作製した評価用試料を顕微鏡で観察し、第2の半導体素子の端部からはみ出している樹脂組成物の最大距離(ブリード量)を測定した。表1及び表2に結果を示す。 ▽A semiconductor element with an adhesive piece (second semiconductor element) was pressure-bonded to the position where the first semiconductor element was mounted in the above structure. The pressure bonding conditions were 120° C., 0.20 MPa and 1.5 seconds. The alignment was performed so that the first semiconductor element was embedded in the central position of the adhesive layer. The evaluation sample thus produced was observed with a microscope to measure the maximum distance (bleed amount) of the resin composition protruding from the end of the second semiconductor element. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(参考例)
 特許文献2の実施例2(ずり粘度が5000Pa・sとなる温度:63℃)の再現試験を実施した。すなわち、特許文献2の実施例2で使用している材料と同じ材料を使用し、特許文献2の実施例2と同様にして参考例に係るフィルム状接着剤を作製した。
(Reference example)
A reproduction test of Example 2 of Patent Document 2 (temperature at which shear viscosity becomes 5000 Pa·s: 63° C.) was performed. That is, the same material as that used in Example 2 of Patent Document 2 was used, and a film adhesive according to Reference Example was produced in the same manner as Example 2 of Patent Document 2.
 参考例に係るフィルム状接着剤のずり粘度が5000Pa・sとなる温度は62℃であった。また、参考例に係るフィルム状接着剤の40℃におけるずり粘度η40は70921Pa・sであり、80℃におけるずり粘度η80は1568Pa・sであり、η40/η80の値は45であった。 The temperature at which the film-like adhesive according to the reference example had a shear viscosity of 5000 Pa·s was 62°C. Further, the shear viscosity η 40 at 40° C. of the film adhesive according to the reference example is 70921 Pa·s, the shear viscosity η 80 at 80° C. is 1568 Pa·s, and the value of η 4080 is 45. It was
 本開示によれば、熱硬化性樹脂組成物からなる接着剤層を含む接着フィルムであって、熱圧着工程において、半導体素子に対する優れたな埋込性を有し且つブリードを十分に抑制できる接着フィルムが提供される。本開示によれば、上記接着フィルムの接着剤層を備えるダイシング・ダイボンディング一体型フィルム及びこれを用いた半導体パッケージの製造方法が提供される。 According to the present disclosure, an adhesive film including an adhesive layer made of a thermosetting resin composition, which has excellent embeddability to a semiconductor element and can sufficiently suppress bleeding in a thermocompression bonding process. A film is provided. According to the present disclosure, there is provided a dicing/die-bonding integrated film including the adhesive layer of the adhesive film, and a method for manufacturing a semiconductor package using the film.
2…粘着剤層、8…ダイシング・ダイボンディング一体型フィルム、10…基板、20…第1の封止層(接着剤片の硬化物)、20A…接着剤層(接着フィルム)、20P…接着剤片、30…積層体、50…構造体、100…半導体パッケージ、W…ウェハ、Wa…第1の半導体素子、Wb…第2の半導体素子 2... Adhesive layer, 8... Dicing/die bonding integrated film, 10... Substrate, 20... First sealing layer (cured product of adhesive piece), 20A... Adhesive layer (adhesive film), 20P... Adhesion Agent piece, 30... Laminated body, 50... Structure, 100... Semiconductor package, W... Wafer, Wa... First semiconductor element, Wb... Second semiconductor element

Claims (15)

  1.  熱硬化性樹脂組成物からなる接着剤層を含む接着フィルムであって、
     前記接着剤層の40℃におけるずり粘度をη40とし、前記接着剤層の80℃におけるずり粘度をη80とすると、
     η80が2500~4500Pa・sであり、
     η80に対するη40の比率(η40/η80)が25~200である、接着フィルム。
    An adhesive film comprising an adhesive layer made of a thermosetting resin composition,
    When the shear viscosity of the adhesive layer at 40° C. is η 40, and the shear viscosity of the adhesive layer at 80° C. is η 80 ,
    η 80 is 2500 to 4500 Pa·s,
    ratio of eta 40 for η 80 (η 40 / η 80 ) is 25 to 200, the adhesive film.
  2.  チップ埋込型半導体パッケージの製造プロセスにおいて、基板上の第1の半導体素子を埋め込むとともに、前記基板に対して第2の半導体素子をマウントするために前記接着剤層が用いられる、請求項1に記載の接着フィルム。 The adhesive layer is used to embed a first semiconductor element on a substrate and mount a second semiconductor element on the substrate in a manufacturing process of a chip-embedded semiconductor package. The adhesive film described.
  3.  η40が10万Pa・s以上である、請求項1又は2に記載の接着フィルム。 The adhesive film according to claim 1 or 2, wherein η 40 is 100,000 Pa·s or more.
  4.  前記熱硬化性樹脂組成物が40℃超70℃未満の軟化点を有するフェノール樹脂を含有する、請求項1~3のいずれか一項に記載の接着フィルム。 The adhesive film according to any one of claims 1 to 3, wherein the thermosetting resin composition contains a phenol resin having a softening point of more than 40°C and less than 70°C.
  5.  25℃において液状であるエポキシ樹脂の含有率が前記熱硬化性樹脂組成物に含まれるエポキシ樹脂の全質量基準で40質量%未満である、請求項1~4のいずれか一項に記載の接着フィルム。 Adhesion according to any one of claims 1 to 4, wherein the content of the epoxy resin which is liquid at 25°C is less than 40% by mass based on the total mass of the epoxy resin contained in the thermosetting resin composition. the film.
  6.  前記熱硬化性樹脂組成物が脂環式構造を有するエポキシ樹脂と、硬化剤と、エラストマとを含む、請求項1~5のいずれか一項に記載の接着フィルム。 The adhesive film according to any one of claims 1 to 5, wherein the thermosetting resin composition contains an epoxy resin having an alicyclic structure, a curing agent, and an elastomer.
  7.  前記硬化剤がフェノール樹脂である、請求項6に記載の接着フィルム。 The adhesive film according to claim 6, wherein the curing agent is a phenol resin.
  8.  前記エラストマがアクリル樹脂である、請求項6又は7に記載の接着フィルム。 The adhesive film according to claim 6 or 7, wherein the elastomer is an acrylic resin.
  9.  前記熱硬化性樹脂組成物が無機フィラーを含む、請求項1~8のいずれか一項に記載の接着フィルム。 The adhesive film according to any one of claims 1 to 8, wherein the thermosetting resin composition contains an inorganic filler.
  10.  前記熱硬化性樹脂組成物が硬化促進剤を含む、請求項1~9のいずれか一項に記載の接着フィルム。 The adhesive film according to any one of claims 1 to 9, wherein the thermosetting resin composition contains a curing accelerator.
  11.  前記接着剤層の一方の表面上に設けられた基材フィルムを備える、請求項1~10のいずれか一項に記載の接着フィルム。 The adhesive film according to any one of claims 1 to 10, comprising a base film provided on one surface of the adhesive layer.
  12.  請求項1~11のいずれか一項に記載の接着フィルムの前記接着剤層と、
     前記接着剤層の一方の表面上に設けられた粘着剤層と、
    を備える、ダイシング・ダイボンディング一体型フィルム。
    The adhesive layer of the adhesive film according to any one of claims 1 to 11,
    A pressure-sensitive adhesive layer provided on one surface of the adhesive layer,
    A film with integrated dicing and die bonding.
  13.  前記接着剤層を覆うように設けられた保護フィルムを備える、請求項12に記載のダイシング・ダイボンディング一体型フィルム。 The integrated dicing/die bonding film according to claim 12, further comprising a protective film provided so as to cover the adhesive layer.
  14.  請求項12又は13に記載のダイシング・ダイボンディング一体型フィルムを用いた、半導体パッケージの製造方法。 A method for manufacturing a semiconductor package using the dicing/die-bonding integrated film according to claim 12 or 13.
  15.  基板と、前記基板の表面上にマウントされた第1の半導体素子とを備える構造体を準備する工程と、
     請求項12又は13に記載のダイシング・ダイボンディング一体型フィルムの前記接着剤層とウェハとを貼り合わせる工程と、
     前記接着剤層に貼り合わされた状態の前記ウェハを複数の第2の半導体素子に個片化する工程と、
     前記接着剤層が個片化されることによって形成された接着剤片と前記第2の半導体素子と含む積層体を前記粘着剤層からピックアップする工程と、
     前記第1の半導体素子が前記接着剤片に埋め込まれるように、前記基板に対して前記積層体を熱圧着する工程と、
     加熱処理によって前記接着剤片を硬化させる工程と、
    を含む、チップ埋込型半導体パッケージの製造方法。
    Preparing a structure comprising a substrate and a first semiconductor element mounted on the surface of the substrate;
    Bonding the adhesive layer of the dicing/die-bonding integrated film according to claim 12 or 13 to a wafer;
    Separating the wafer bonded to the adhesive layer into a plurality of second semiconductor elements,
    A step of picking up from the pressure-sensitive adhesive layer a laminate including the adhesive piece formed by dividing the adhesive layer into individual pieces and the second semiconductor element;
    Thermocompression-bonding the laminated body to the substrate so that the first semiconductor element is embedded in the adhesive piece;
    Curing the adhesive piece by heat treatment,
    A method of manufacturing a chip-embedded semiconductor package, comprising:
PCT/JP2018/048593 2018-12-28 2018-12-28 Adhesive film, integrated dicing/die bonding film, and method for producing semiconductor package WO2020136904A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/048593 WO2020136904A1 (en) 2018-12-28 2018-12-28 Adhesive film, integrated dicing/die bonding film, and method for producing semiconductor package
JP2020562298A JP7322897B2 (en) 2018-12-28 2018-12-28 Adhesive film, dicing/die bonding integrated film, and method for manufacturing semiconductor package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/048593 WO2020136904A1 (en) 2018-12-28 2018-12-28 Adhesive film, integrated dicing/die bonding film, and method for producing semiconductor package

Publications (1)

Publication Number Publication Date
WO2020136904A1 true WO2020136904A1 (en) 2020-07-02

Family

ID=71127889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048593 WO2020136904A1 (en) 2018-12-28 2018-12-28 Adhesive film, integrated dicing/die bonding film, and method for producing semiconductor package

Country Status (2)

Country Link
JP (1) JP7322897B2 (en)
WO (1) WO2020136904A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181397A1 (en) * 2022-03-25 2023-09-28 株式会社レゾナック Adhesive film for semiconductor, dicing die-bonding film, and method for manufacturing semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103180A1 (en) * 2004-04-20 2005-11-03 Hitachi Chemical Co., Ltd. Adhesive sheet, semiconductor device and process for producing semiconductor device
JP2012214526A (en) * 2011-03-28 2012-11-08 Hitachi Chemical Co Ltd Film adhesive, adhesive sheet and semiconductor apparatus
JP2013060524A (en) * 2011-09-13 2013-04-04 Hitachi Chemical Co Ltd Film-like adhesive, adhesive sheet, semiconductor device and production method thereof
JP2013181049A (en) * 2012-02-29 2013-09-12 Hitachi Chemical Co Ltd Film-shaped adhesive, adhesive sheet and semiconductor device
JP2014175459A (en) * 2013-03-08 2014-09-22 Hitachi Chemical Co Ltd Semiconductor device and semiconductor device manufacturing method
JP2017122159A (en) * 2016-01-06 2017-07-13 日立化成株式会社 Adhesive film and method for producing the same, and adhesive composition used in the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103180A1 (en) * 2004-04-20 2005-11-03 Hitachi Chemical Co., Ltd. Adhesive sheet, semiconductor device and process for producing semiconductor device
JP2012214526A (en) * 2011-03-28 2012-11-08 Hitachi Chemical Co Ltd Film adhesive, adhesive sheet and semiconductor apparatus
JP2013060524A (en) * 2011-09-13 2013-04-04 Hitachi Chemical Co Ltd Film-like adhesive, adhesive sheet, semiconductor device and production method thereof
JP2013181049A (en) * 2012-02-29 2013-09-12 Hitachi Chemical Co Ltd Film-shaped adhesive, adhesive sheet and semiconductor device
JP2014175459A (en) * 2013-03-08 2014-09-22 Hitachi Chemical Co Ltd Semiconductor device and semiconductor device manufacturing method
JP2017122159A (en) * 2016-01-06 2017-07-13 日立化成株式会社 Adhesive film and method for producing the same, and adhesive composition used in the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181397A1 (en) * 2022-03-25 2023-09-28 株式会社レゾナック Adhesive film for semiconductor, dicing die-bonding film, and method for manufacturing semiconductor device
WO2023182410A1 (en) * 2022-03-25 2023-09-28 株式会社レゾナック Adhesive film for semiconductors, dicing die bonding film, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP7322897B2 (en) 2023-08-08
JPWO2020136904A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
WO2020013250A1 (en) Method for manufacturing semiconductor device, heat-curable resin composition, and dicing-die attach film
CN113348221A (en) Adhesive composition, film-like adhesive, adhesive sheet, and method for manufacturing semiconductor device
WO2019151260A1 (en) Manufacturing method for semiconductor device, and adhesive film
JP5754072B2 (en) Adhesive composition, adhesive member sheet for connecting circuit members, and method for manufacturing semiconductor device
JP7136200B2 (en) Semiconductor device, thermosetting resin composition and dicing die bonding integrated tape used for its manufacture
WO2020136904A1 (en) Adhesive film, integrated dicing/die bonding film, and method for producing semiconductor package
WO2019150446A1 (en) Adhesive composition, filmy adhesive, adhesive sheet, and production method for semiconductor device
JP6662074B2 (en) Adhesive film
JP7380565B2 (en) Adhesive composition, film adhesive, adhesive sheet, and method for manufacturing semiconductor device
WO2020129996A1 (en) Film-form adhesive, adhesive sheet, and semiconductor device and manufacturing method thereof
WO2020194613A1 (en) Production method for semiconductor device, die-bonding film, and dicing/die-bonding integrated adhesive sheet
WO2020136903A1 (en) Method of manufacturing semiconductor device, film-like adhesive, and dicing/die-bonding integrated film
WO2019150445A1 (en) Film-form adhesive, method for producing same, and semiconductor device and method for producing same
WO2023152837A1 (en) Film-form adhesive, dicing and die-bonding two-in-one film, semiconductor device, and method for manufacturing same
WO2022149582A1 (en) Film-like adhesive, integrated dicing/die bonding film, semiconductor device and method for producing same
WO2022149581A1 (en) Adhesive agent composition, film-form adhesive agent, dicing/die-bonding integrated film, semiconductor device, and method for manufacturing same
WO2023047594A1 (en) Film adhesive, two-in-one dicing and die-bonding film, semiconductor device, and manufacturing method for same
WO2022163465A1 (en) Semiconductor device, method for producing same, thermosetting resin composition, bonding film and integrated dicing/die bonding film
JP7283399B2 (en) Thermosetting resin composition, film adhesive, adhesive sheet, and method for manufacturing semiconductor device
WO2023157846A1 (en) Film-like adhesive and method for producing same, integrated dicing/die bonding film, and semiconductor device and method for producing same
JP2010109362A (en) Die bonding film and semiconductor device using the same
TW202414550A (en) Semiconductor device manufacturing method, adhesive layer and die-cut die-bonding integrated film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562298

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.09.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18944815

Country of ref document: EP

Kind code of ref document: A1