WO2022163465A1 - Semiconductor device, method for producing same, thermosetting resin composition, bonding film and integrated dicing/die bonding film - Google Patents

Semiconductor device, method for producing same, thermosetting resin composition, bonding film and integrated dicing/die bonding film Download PDF

Info

Publication number
WO2022163465A1
WO2022163465A1 PCT/JP2022/001802 JP2022001802W WO2022163465A1 WO 2022163465 A1 WO2022163465 A1 WO 2022163465A1 JP 2022001802 W JP2022001802 W JP 2022001802W WO 2022163465 A1 WO2022163465 A1 WO 2022163465A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
resin composition
semiconductor element
adhesive
mass
Prior art date
Application number
PCT/JP2022/001802
Other languages
French (fr)
Japanese (ja)
Inventor
裕貴 橋本
和弘 山本
由衣 國土
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to CN202280011093.0A priority Critical patent/CN116762169A/en
Publication of WO2022163465A1 publication Critical patent/WO2022163465A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present disclosure relates to a semiconductor device and its manufacturing method, as well as a thermosetting resin composition, an adhesive film, and a dicing/die bonding integrated film.
  • a wire-embedded package is an example of a multi-layered package using a film-like adhesive. This package is manufactured through a process of embedding the semiconductor element and wires in the film-like adhesive by pressing the film-like adhesive against the wire-bonded semiconductor element on the substrate.
  • Connection reliability is one of the important characteristics required for semiconductor devices such as the stacked MCP.
  • film adhesives are being developed in consideration of properties such as heat resistance, moisture resistance and reflow resistance.
  • Patent Document 1 discloses an adhesive sheet with a thickness of 10-250 ⁇ m containing a thermosetting component and a filler.
  • Patent Document 2 discloses an adhesive composition comprising a mixture comprising an epoxy resin and a phenolic resin and an acrylic copolymer.
  • connection reliability of a semiconductor device is greatly affected by whether or not the semiconductor element can be mounted without creating voids on the bonding surface. For this reason, a film-like adhesive with high fluidity is used so that the semiconductor element can be pressure-bonded without generating voids, or a film adhesive with a low melt viscosity is used so that the generated voids can be eliminated in the sealing process of the semiconductor element. Ingenuity such as using a film-like adhesive has been made. For example, Patent Document 3 discloses an adhesive sheet with low viscosity and low tack strength.
  • the adhesive sheets of Patent Documents 1 and 3 contain a relatively large amount of epoxy resin for the purpose of high fluidity in order to embed wires during crimping. For this reason, thermal curing is likely to proceed due to heat generated during the manufacturing process of the semiconductor device. As a result, the adhesive film becomes highly elastic, in other words, the adhesive sheet is less likely to deform even under high temperature and high pressure conditions during sealing, and the voids formed during pressure bonding may not eventually disappear. On the other hand, since the adhesive composition of Patent Document 2 has a low elastic modulus, it is possible to eliminate voids in the sealing process, but due to its high viscosity, it is difficult to embed the wire during crimping. likely to be sufficient.
  • a controller chip for controlling the operation of a semiconductor device has been arranged on the uppermost layer of stacked semiconductor elements.
  • a semiconductor device package technology has been developed in which a controller chip is arranged at the bottom.
  • a relatively thick adhesive film film-like adhesive
  • a package in which a controller chip is embedded in a package is attracting attention (for example, see Patent Document 1 above).
  • the adhesive film used for such applications is called FOD (Film Over Die), and is a high adhesive film capable of embedding the wires connecting the controller chip and the circuit pattern, as well as the unevenness caused by the unevenness of the substrate surface. Liquidity is required. This problem can be solved by using a high-fluidity adhesive sheet such as the adhesive sheets of US Pat.
  • the adhesive composition that squeezes out may climb up to the top surface of the semiconductor device, which can cause electrical failures or wire bonding failures.
  • conventional adhesive films cannot always achieve both excellent embeddability in a semiconductor element and suppression of bleeding in the process of manufacturing a chip-embedded package, and there is room for improvement in this respect. there were.
  • the present disclosure is a thermosetting resin composition useful for manufacturing chip-embedded semiconductor devices, which is excellent in embedding properties of semiconductor elements and capable of sufficiently suppressing the occurrence of bleeding. I will provide a.
  • the present disclosure provides a semiconductor device having excellent connection reliability, a method for manufacturing the same, and an adhesive film and a dicing/die bonding integrated film using the thermosetting resin composition.
  • the present inventors have extensively studied the selection of the resin of the thermosetting resin composition used in the manufacture of semiconductor devices and the adjustment of physical properties.
  • the present inventors have found that by using a curing agent having a hydroxyl equivalent of 150 g/eq or less, a resin having a high crosslink density can be obtained, while excellent embeddability can be obtained by adjusting the melt viscosity of the thermosetting resin composition. It has been found that it has and can sufficiently suppress bleeding.
  • a method for manufacturing a semiconductor device comprises: (A) a step of preparing a member including a substrate and a first semiconductor element placed on the substrate; (C) adhering the first semiconductor element to the substrate such that the first semiconductor element is embedded in the adhesive piece; and (D) curing the adhesive piece by heating, wherein the thermosetting resin composition contains a curing agent having a hydroxyl equivalent of 150 g/eq or less, It has a melt viscosity of 1000 to 11500 Pa ⁇ s.
  • the resin By including a curing agent with a hydroxyl equivalent of 150 g/eq or less in the adhesive piece made of the thermosetting resin composition, as described above, the resin can have a high crosslink density and bleeding can be suppressed.
  • the melt viscosity at 120° C. is 1000 to 11500 Pa ⁇ s, excellent embeddability can be ensured.
  • the melt viscosity of the thermosetting resin composition can be made within the above range by adjusting the blending ratio of the components constituting the thermosetting resin composition. According to the studies of the present inventors, the melt viscosity of the thermosetting resin composition is a factor that affects both the embedding property and the suppression of bleeding. It is a factor that affects inhibition.
  • a semiconductor device includes a substrate, a first semiconductor element provided on the substrate, and a region of the substrate where the first semiconductor element is arranged. and the surface of the cured adhesive piece opposite to the substrate side, and is larger than the first semiconductor element in plan view and a second semiconductor element having an area, wherein the adhesive piece is made of a thermosetting resin composition containing a curing agent having a hydroxyl equivalent of 150 g/eq or less and having a melt viscosity of 1000 to 11500 Pa s at 120 ° C. Become.
  • the above semiconductor device has a mode in which the first semiconductor element (for example, a controller chip) is embedded in the cured product of the thermosetting resin composition, and can operate at high speed.
  • the first semiconductor element for example, a controller chip
  • an adhesive piece having a melt viscosity of 1000 to 11500 Pa ⁇ s at 120° C. for embedding the first semiconductor element, there are sufficiently few gaps at the interface with the substrate or the first semiconductor element. , the occurrence of the problems of contamination and bleeding of the substrate is sufficiently suppressed, so that excellent connection reliability between the substrate and the first semiconductor element can be achieved.
  • the thermosetting resin composition in the present disclosure may contain a high molecular weight component (for example, acrylic rubber) with a molecular weight of 100,000 to 1,000,000 from the viewpoint of adjusting the melt viscosity at 120°C.
  • the content of the high molecular weight component is, for example, 25 to 45 parts by mass with respect to 100 parts by mass of the resin component contained in the thermosetting resin composition.
  • the molecular weight of a high molecular weight component means a weight average molecular weight.
  • the weight average molecular weight means a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve.
  • the thermosetting resin composition may contain an inorganic filler.
  • the content of the inorganic filler is 5 to 50% by mass based on the total mass of the thermosetting resin composition.
  • the content of the inorganic filler is 5% by mass or more, it is easy to suppress bleeding to a higher degree, and when it is 50% by mass or less, it is easy to achieve more excellent embeddability.
  • the adhesive film according to the present disclosure is used for manufacturing chip-embedded semiconductor devices, and is made of the above thermosetting resin composition.
  • a dicing/die bonding integrated film according to the present disclosure includes an adhesive layer and the adhesive film.
  • thermosetting resin composition useful for manufacturing a chip-embedded semiconductor device is a thermosetting resin that is excellent in the embedding property of a semiconductor element and can sufficiently suppress the occurrence of bleeding.
  • a composition is provided. That is, this thermosetting resin composition has excellent embedding properties for semiconductor elements (eg, controller chips), and sufficiently suppresses problems caused by contamination of peripheral circuits and excessive flow of resin during embedding. can.
  • semiconductor elements eg, controller chips
  • FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor device.
  • FIG. 2 is a cross-sectional view schematically showing an example of a semiconductor element with an adhesive piece comprising an adhesive film and a second semiconductor element.
  • 3A to 3C are cross-sectional views schematically showing the process of manufacturing the semiconductor device shown in FIG. 4A to 4D are cross-sectional views schematically showing the process of manufacturing the semiconductor device shown in FIG. 5A to 5D are cross-sectional views schematically showing the process of manufacturing the semiconductor device shown in FIG. 6A to 6C are cross-sectional views schematically showing the process of manufacturing the semiconductor device shown in FIG. 7(a) to 7(e) are cross-sectional views schematically showing the process of manufacturing a laminate composed of an adhesive piece and a second semiconductor element.
  • (meth)acrylic acid means acrylic acid or methacrylic acid
  • (meth)acrylate means acrylate or its corresponding methacrylate
  • a or B may include either A or B, or may include both.
  • the term “layer” includes not only a shape structure formed over the entire surface but also a shape structure formed partially when observed as a plan view.
  • the term “step” as used herein refers not only to an independent step, but also to the term if the desired action of the step is achieved even if it cannot be clearly distinguished from other steps. included. Further, a numerical range indicated using “-” indicates a range including the numerical values described before and after "-" as the minimum and maximum values, respectively.
  • each component in the composition refers to the total amount of the multiple substances present in the composition when there are multiple substances corresponding to each component in the composition, unless otherwise specified. means.
  • the exemplified materials may be used alone, or two or more of them may be used in combination.
  • the upper limit or lower limit of the numerical range at one stage may be replaced with the upper limit or lower limit of the numerical range at another stage.
  • the upper and lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • FIG. 1 is a cross-sectional view schematically showing a semiconductor device according to this embodiment.
  • the semiconductor device 100 shown in this figure includes a substrate 10, a first semiconductor element Wa arranged on the surface of the substrate 10, and a cured adhesive piece 20 sealing the first semiconductor element Wa. , a second semiconductor element Wb disposed above the first semiconductor element Wa, and a sealing layer 40 sealing the second semiconductor element Wb.
  • the substrate 10 has circuit patterns 10a and 10b on its surface. From the viewpoint of suppressing warping of the semiconductor device 100, the thickness of the substrate 10 is, for example, 90 to 180 ⁇ m, and may be 90 to 140 ⁇ m.
  • the substrate 10 may be an organic substrate or a metal substrate such as a lead frame.
  • the first semiconductor element Wa is a controller chip for driving the semiconductor device 100 .
  • the first semiconductor element Wa is adhered onto the circuit pattern 10a via an adhesive 15, and is connected via the first wire 11 to the circuit pattern 10b.
  • the shape of the first semiconductor element Wa in plan view is, for example, a rectangle (square or rectangle).
  • the length of one side of the first semiconductor element Wa is, for example, 5 mm or less, and may be 2 to 4 mm or 1 to 4 mm.
  • the thickness of the first semiconductor element Wa is, for example, 10 to 150 ⁇ m, and may be 20 to 100 ⁇ m.
  • the second semiconductor element Wb has a larger area than the first semiconductor element Wa.
  • the second semiconductor element Wb is mounted on the substrate 10 via a cured adhesive piece 20 so that the entire first semiconductor element Wa and part of the circuit pattern 10b are covered.
  • the shape of the second semiconductor element Wb in plan view is, for example, a rectangle (square or rectangle).
  • the length of one side of the second semiconductor element Wb is, for example, 20 mm or less, and may be 4 to 20 mm or 4 to 12 mm.
  • the thickness of the second semiconductor element Wb is, for example, 10-170 ⁇ m, and may be 20-120 ⁇ m.
  • the second semiconductor element Wb is connected to the circuit pattern 10b via the second wire 12 and sealed with the sealing layer 40 .
  • the cured adhesive piece 20 is the cured adhesive piece 20P (see FIG. 2). Note that, as shown in FIG. 2, the adhesive piece 20P and the second semiconductor element Wb are substantially the same size.
  • a semiconductor element 30 with an adhesive piece shown in FIG. 2 is composed of an adhesive piece 20P and a second semiconductor element Wb. The semiconductor element 30 with an adhesive piece is produced through a dicing process and a pick-up process, as described later (see FIG. 7).
  • a method for manufacturing the semiconductor device 100 will be described. First, the structure 50 (member) shown in FIG. 3 is manufactured. That is, the first semiconductor element Wa is placed on the surface of the substrate 10 with the adhesive 15 interposed therebetween. After that, the first semiconductor element Wa and the circuit pattern 10b are electrically connected with the first wire 11. Next, as shown in FIG.
  • the adhesive piece 20P of the separately prepared semiconductor element 30 with an adhesive piece is pressed against the substrate 10. Then, as shown in FIG. As a result, the first semiconductor element Wa and the first wires 11 are embedded in the adhesive piece 20P.
  • the thickness of the adhesive piece 20P may be appropriately set according to the thickness of the first semiconductor element Wa and the like. good too. By setting the thickness of the adhesive piece 20P within the above range, a sufficient distance (distance G in FIG. 5) between the first semiconductor element Wa and the second semiconductor element Wb can be ensured.
  • the distance G is, for example, preferably 50 ⁇ m or more, and may be 50-75 ⁇ m or 50-80 ⁇ m.
  • the pressure bonding of the adhesive piece 20P to the substrate 10 is preferably performed, for example, under conditions of 80 to 180° C. and 0.01 to 0.50 MPa for 0.5 to 3.0 seconds.
  • the adhesive piece 20P is cured by heating.
  • This curing treatment is preferably carried out, for example, under conditions of 60 to 175° C. and 0.01 to 1.0 MPa for 5 minutes or longer.
  • the first semiconductor element Wa is sealed with the cured product 20 of the adhesive piece 20P (see FIG. 6).
  • the curing treatment of the adhesive piece 20P may be performed under a pressurized atmosphere from the viewpoint of reducing voids.
  • the second semiconductor element Wb is sealed with the sealing layer 40 to complete the semiconductor device 100 (FIG. 1).
  • a dicing/die-bonding integrated film 8 (hereinafter sometimes referred to as "film 8") is arranged in a predetermined device (not shown).
  • the film 8 comprises a substrate layer 1, an adhesive layer 2 and an adhesive layer 20A in this order.
  • the base material layer 1 is, for example, a polyethylene terephthalate film (PET film).
  • PET film polyethylene terephthalate film
  • the semiconductor wafer W is, for example, a thin semiconductor wafer with a thickness of 10-100 ⁇ m.
  • the semiconductor wafer W may be monocrystalline silicon, polycrystalline silicon, various ceramics, or compound semiconductors such as gallium arsenide.
  • the film 8 is attached to one surface of the semiconductor wafer W so that the adhesive layer 20A is in contact therewith.
  • This step is preferably carried out at a temperature of 50-100°C, more preferably 60-80°C. When the temperature is 50° C. or higher, good adhesion between the semiconductor wafer W and the adhesive layer 20A can be obtained. be.
  • the semiconductor wafer W, the adhesive layer 2 and the adhesive layer 20A are diced. As a result, the semiconductor wafer W is separated into individual semiconductor elements Wb.
  • the adhesive layer 20A is also singulated to form adhesive pieces 20P.
  • a dicing method includes a method using a rotary blade or a laser.
  • the semiconductor wafer W may be thinned by grinding the semiconductor wafer W prior to the dicing of the semiconductor wafer W.
  • the adhesive layer 2 is, for example, a UV curable type
  • the adhesive layer 2 is cured by irradiating the adhesive layer 2 with ultraviolet rays, as shown in FIG. It reduces the adhesive force between pieces 20P.
  • the base material layer 1 is expanded under room temperature or cooling conditions to separate the semiconductor elements Wb from each other, and the needles 42 are pushed up to adhere from the adhesive layer 2.
  • the adhesive piece 20P of the semiconductor element 30 with the adhesive piece is peeled off, and the semiconductor element 30 with the adhesive piece is sucked by the suction collet 44 and picked up.
  • thermosetting resin composition The thermosetting resin composition that constitutes the adhesive piece 20P will be described.
  • the adhesive piece 20P is obtained by dividing the adhesive layer 20A (adhesive film) into individual pieces, and both are made of the same thermosetting resin composition.
  • This thermosetting resin composition can, for example, go through a semi-cured (B stage) state and then become a fully cured (C stage) state by a subsequent curing treatment.
  • thermosetting resin composition preferably contains the following components.
  • (c) Inorganic filler (hereinafter sometimes simply referred to as "(c) component”) when (a) the thermosetting resin contains an epoxy resin, the epoxy resin (hereinafter sometimes simply referred to as "(a1) component”) corresponds to the "low molecular weight component".
  • (a) the thermosetting resin contains a phenolic resin (hereinafter sometimes simply referred to as "(a2) component”) that can be a curing agent for epoxy resins.
  • thermosetting resin composition may further contain the following components.
  • (d) Coupling agent hereinafter sometimes simply referred to as "(d) component”
  • (e) curing accelerator hereinafter sometimes simply referred to as "(e) component
  • the thermosetting resin composition preferably contains both a low molecular weight component (component (a1)) with a molecular weight of 10 to 1,000 and a high molecular weight component (component (b)) with a molecular weight of 100,000 to 1,000,000.
  • component (a1) a low molecular weight component
  • component (b) a high molecular weight component
  • the low-molecular-weight component contributes to excellent embeddability, while the high-molecular-weight component contributes to suppression of problems caused by excessive flow, such as bleeding.
  • the molecular weight of the low molecular weight component means the molecular weight obtained from the molecular formula.
  • the content M1 of the low molecular weight component is preferably 20 to 45 parts by mass, more preferably 21 to 40 parts by mass, with respect to 100 parts by mass of the resin component contained in the thermosetting resin composition. .
  • the softening point of the low molecular weight component is preferably 50°C or less, and may be, for example, 10 to 30°C.
  • the term "softening point" means a value measured by the ring and ball method in accordance with JIS K7234-1986.
  • the content M2 of the high molecular weight component is preferably 25 to 45 parts by mass, more preferably 30 to 43 parts by mass, with respect to 100 parts by mass of the resin component contained in the thermosetting resin composition. .
  • the content M2 of the high molecular weight component is 25 parts by mass or more, problems caused by excessive flow (bleeding, substrate contamination, sink marks, warping, etc.) can be easily suppressed, and on the other hand, it is 45 parts by mass or less. , the effect of easily achieving excellent embeddability is exhibited.
  • the upper limit of the content M2 of the high molecular weight component may be 42 parts by mass, 40 parts by mass, or 39 parts by mass.
  • the softening point of the high molecular weight component is preferably above 50°C and 100°C or less.
  • the total amount of the low molecular weight component and the high molecular weight component (M1+M2) is preferably 50 to 80 parts by weight, preferably 51 to 76 parts by weight, with respect to 100 parts by weight of the resin component contained in the thermosetting resin composition. It is more preferable to have When the total amount is 50 parts by mass or more, the effect of the combined use of these components tends to be sufficiently exhibited, while when the total amount is 80 parts by mass or less, excellent pickup properties are achieved. It has the effect of making it easier.
  • the resin components contained in the thermosetting resin composition other than the low molecular weight component and the high molecular weight component mainly include thermosetting resins having a molecular weight of 1,001 to 99,000.
  • the melt viscosity of the thermosetting resin composition at 120°C is 1000 to 11500 Pa ⁇ s from the viewpoint of connection reliability.
  • the melt viscosity is 1000 Pa ⁇ s or more, the problem of contamination and bleeding of the substrate 10 during pressure bonding tends to be sufficiently suppressed.
  • the melt viscosity of the thermosetting resin composition at 120° C. is 11500 Pa s or less, excellent embedding properties can be achieved. can be sufficiently reduced.
  • the melt viscosity is preferably 2,000 to 11,000 Pa ⁇ s, more preferably 3,000 to 10,000 Pa ⁇ s, still more preferably 4,000 to 9,000 Pa ⁇ s.
  • the melt viscosity was measured using ARES (manufactured by TA Instruments) while applying a strain of 5% to the thermosetting resin composition molded into a film while increasing the temperature at a rate of 5°C/min. Means the measured value of the case.
  • the melt viscosity of the thermosetting resin composition at 80°C is preferably 3500 to 12500 Pa ⁇ s from the viewpoint of connection reliability.
  • the melt viscosity is 3500 Pa ⁇ s or more, it is possible to sufficiently suppress the occurrence of problems such as contamination and bleeding of the substrate 10 during compression bonding.
  • the melt viscosity is 12500 Pa ⁇ s or less, excellent embeddability can be achieved, and specifically, voids at the interface with the substrate 10 or the first semiconductor element Wa can be sufficiently reduced.
  • the melt viscosity is preferably 5500 to 10500 Pa ⁇ s.
  • the melt viscosity of the thermosetting resin composition at 120° C. and 80° C. tends to decrease as the content of the high molecular weight component decreases, and tends to decrease as the content of the inorganic filler decreases.
  • Component (a1) can be used without any particular limitation as long as it has an epoxy group in its molecule.
  • the component (a1) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolak type epoxy resin.
  • Epoxy resins dicyclopentadiene skeleton-containing epoxy resins, stilbene-type epoxy resins, triazine skeleton-containing epoxy resins, fluorene skeleton-containing epoxy resins, triphenolmethane-type epoxy resins, biphenyl-type epoxy resins, xylylene-type epoxy resins, biphenylaralkyl-type epoxy resins , naphthalene-type epoxy resins, polyfunctional phenols, and diglycidyl ether compounds of polycyclic aromatics such as anthracene. You may use these individually by 1 type or in combination of 2 or more types.
  • the component (a1) may be a cresol novolac type epoxy resin, a bisphenol F type epoxy resin, or a bisphenol A type epoxy resin from the viewpoint of heat resistance.
  • the epoxy equivalent of component (a1) may be 90-300 g/eq, 110-290 g/eq, or 130-280 g/eq. When the epoxy equivalent of component (a1) is within this range, there is a tendency that fluidity can be ensured while maintaining the bulk strength of the adhesive film.
  • epoxy equivalent as used herein means a value measured by potentiometric titration in accordance with JIS K7236-2009.
  • the content of component (a1) is 5 to 50 parts by mass, 10 to 40 parts by mass, or 20 to 30 parts by mass with respect to 100 parts by mass of the total mass of components (a), (b), and (c). It may be parts by mass.
  • the content of the component (a1) is 5 parts by mass or more, the embedding property of the adhesive film tends to be better.
  • the content of component (a1) is 50 parts by mass or less, the occurrence of bleeding tends to be more suppressed.
  • the (a2) component is a curing agent having a phenolic hydroxyl group in its molecule.
  • the hydroxyl equivalent of component (a2) is 150 g/eq or less, and may be, for example, 50 to 150 g/eq, 60 to 140 g/eq, or 70 to 130 g/eq.
  • the hydroxyl equivalent of the component (a2) is 150 g/eq or less, the crosslink density of the thermosetting resin composition can be sufficiently increased, thereby sufficiently preventing bleeding even when the melt viscosity is relatively high. can be suppressed to
  • the hydroxyl equivalent of the component (a2) is 50 g/eq or more, the adhesive strength of the thermosetting resin composition tends to be maintained at a higher level.
  • the softening point of component (a2) may be 50-140°C, 55-130°C, or 60-125°C.
  • the "hydroxyl equivalent" referred to here means that which can be measured by the neutralization titration method described in JIS K0070.
  • Component (a2) includes, for example, phenols such as phenol, cresol, resorcinol, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol, and/or naphthols such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
  • phenols such as phenol, cresol, resorcinol, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol
  • naphthols such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
  • Phenols such as novolac-type phenolic resins, allylated bisphenol A, allylated bisphenol F, allylated naphthalenediol, phenol novolak, and phenol obtained by condensing or co-condensing a compound having an aldehyde group such as formaldehyde in the presence of an acidic catalyst and/or phenol aralkyl resins and naphthol aralkyl resins synthesized from naphthols and dimethoxyparaxylene or bis(methoxymethyl)biphenyl. You may use these individually by 1 type or in combination of 2 or more types.
  • the component (a2) may be a phenol aralkyl resin, a naphthol aralkyl resin, or a novolak-type phenol resin from the viewpoint of hygroscopicity and heat resistance.
  • the content of component (a2) is 5 to 50 parts by mass, 10 to 40 parts by mass, or 20 to 30 parts by mass with respect to 100 parts by mass of the total mass of components (a), (b), and (c). can be a department.
  • the content of component (a2) is 5 parts by mass or more, better curability tends to be obtained.
  • the content of the component (a2) is 50 parts by mass or less, the embedding property tends to be better.
  • the ratio of the epoxy equivalent of component (a1) to the hydroxyl equivalent of component (a2) is 0.30/0.70 from the viewpoint of curability. ⁇ 0.70/0.30, 0.35/0.65 ⁇ 0.65/0.35, 0.40/0.60 ⁇ 0.60/0.40, or 0.45/0.55 ⁇ It may be 0.55/0.45.
  • the corresponding amount ratio is 0.30/0.70 or more, more sufficient curability tends to be obtained.
  • the corresponding amount ratio is 0.70/0.30 or less, it is possible to prevent the viscosity from becoming too high and obtain more sufficient fluidity.
  • Component (b) preferably has a glass transition temperature (Tg) of 50° C. or lower.
  • Component (b) includes, for example, acrylic resins, polyester resins, polyamide resins, polyimide resins, silicone resins, butadiene resins, acrylonitrile resins and modified products thereof.
  • the (b) component may contain an acrylic resin from the viewpoint of fluidity.
  • acrylic resin means a polymer containing structural units derived from (meth)acrylic acid ester.
  • the acrylic resin is preferably a polymer containing, as a structural unit, a structural unit derived from a (meth)acrylic acid ester having a crosslinkable functional group such as an epoxy group, an alcoholic or phenolic hydroxyl group, or a carboxyl group.
  • the acrylic resin may also be acrylic rubber such as a copolymer of (meth)acrylic acid ester and acrylonitrile.
  • the glass transition temperature (Tg) of the acrylic resin may be -50 to 50°C or -30 to 30°C.
  • Tg of the acrylic resin is ⁇ 50° C. or higher, it tends to be possible to prevent the flexibility of the adhesive composition from becoming too high. This makes it easier to cut the adhesive film during wafer dicing, making it possible to prevent the occurrence of burrs.
  • Tg of the acrylic resin is 50°C or less, it tends to be possible to suppress a decrease in the flexibility of the adhesive composition.
  • the glass transition temperature (Tg) means a value measured using a DSC (differential scanning calorimeter) (for example, "Thermo Plus 2" manufactured by Rigaku Corporation).
  • the weight average molecular weight (Mw) of the acrylic resin may be 100,000 to 3,000,000 or 500,000 to 2,000,000.
  • Mw means a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve.
  • acrylic resins include, for example, SG-70L, SG-708-6, WS-023 EK30, SG-280 EK23, and SG-P3 (all manufactured by Nagase ChemteX Corporation).
  • the content of component (b) is 5 to 70 parts by mass, 10 to 50 parts by mass, or 15 to 30 parts by mass with respect to 100 parts by mass of the total mass of components (a), (b), and (c). It may be parts by mass.
  • the content of the component (b) is 5 parts by mass or more, the fluidity control during molding and the handleability at high temperatures can be further improved. If the content of the component (b) is 70 parts by mass or less, the embeddability can be further improved.
  • Component (c) includes, for example, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whiskers, and boron nitride. , silica and the like. You may use these individually by 1 type or in combination of 2 or more types. Among these, the component (c) may be silica from the viewpoint of compatibility with the resin.
  • the average particle diameter of component (c) may be 0.005 to 1 ⁇ m or 0.05 to 0.5 ⁇ m from the viewpoint of improving adhesiveness.
  • the average particle diameter means a value obtained by converting from the BET specific surface area.
  • the content of component (c) is 5 to 50 parts by mass, 15 to 45 parts by mass, or 25 to 39 parts by mass with respect to 100 parts by mass of the total mass of components (a), (b), and (c). It may be parts by mass.
  • the content of component (c) is 5 parts by mass or more, the fluidity of the adhesive film tends to be further improved.
  • the content of component (c) is 50 parts by mass or less, the dicing property of the adhesive film tends to be better.
  • (d) Component may be a silane coupling agent.
  • Silane coupling agents include, for example, ⁇ -ureidopropyltriethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3-(2-aminoethyl)aminopropyltrimethoxysilane, and the like. be done. You may use these individually by 1 type or in combination of 2 or more types.
  • the content of component (d) may be 0.01 to 5 parts by mass with respect to 100 parts by mass of the total mass of components (a), (b) and (c).
  • Component (e) is not particularly limited, and commonly used components can be used.
  • Component (e) includes, for example, imidazoles and their derivatives, organophosphorus compounds, secondary amines, tertiary amines, quaternary ammonium salts and the like. You may use these individually by 1 type or in combination of 2 or more types. Among these, imidazoles and derivatives thereof may be used as component (e) from the viewpoint of reactivity.
  • imidazoles examples include 2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole and the like. You may use these individually by 1 type or in combination of 2 or more types.
  • the content of component (e) may be 0.01 to 1 part by mass with respect to 100 parts by mass of the total mass of components (a), (b) and (c).
  • the dicing/die-bonding integrated film 8 shown in FIG. 7A and its manufacturing method will be described.
  • the method for producing the film 8 includes the steps of applying a varnish of an adhesive composition containing a solvent onto a base film (not shown), and drying the applied varnish by heating at 50 to 150° C. to form an adhesive layer 20A. and forming.
  • the varnish of the adhesive composition can be prepared, for example, by mixing or kneading components (a) to (c) and, if necessary, components (d) and (e) in a solvent.
  • Mixing or kneading can be carried out by using an ordinary dispersing machine such as a stirrer, a kneading machine, a triple roll, a ball mill, or the like, and by appropriately combining these.
  • the solvent for preparing the varnish is not limited as long as it can uniformly dissolve, knead, or disperse the above components, and conventionally known solvents can be used.
  • solvents include ketone-based solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene and xylene. It is preferable to use methyl ethyl ketone, cyclohexanone, etc., because of their high drying speed and low price.
  • the base film is not particularly limited, and examples include polyester film, polypropylene film (OPP film, etc.), polyethylene terephthalate film, polyimide film, polyetherimide film, polyethylene naphthalate film, polymethylpentene film, and the like.
  • a known method can be used, and examples thereof include a knife coating method, a roll coating method, a spray coating method, a gravure coating method, a bar coating method, a curtain coating method, and the like.
  • the conditions for drying by heating are not particularly limited as long as the solvent used is sufficiently volatilized. Heat drying may be carried out by stepwise raising the temperature within the range of 50 to 150°C. By volatilizing the solvent contained in the varnish by heating and drying, a laminated film of the substrate film and the adhesive layer 20A can be obtained.
  • the film 8 can be obtained by laminating the laminated film obtained as described above and the dicing tape (laminated body of the base layer 1 and the adhesive layer 2).
  • the substrate layer 1 include plastic films such as polytetrafluoroethylene film, polyethylene terephthalate film, polyethylene film, polypropylene film, polymethylpentene film, and polyimide film. Further, the substrate layer 1 may be subjected to surface treatment such as primer coating, UV treatment, corona discharge treatment, polishing treatment, etching treatment, etc., as necessary.
  • the adhesive layer 2 may be UV curable or pressure sensitive.
  • the film 8 may further include a protective film (not shown) covering the adhesive layer 2 .
  • the present invention is not limited to the above embodiments.
  • the package in which the two semiconductor elements Wa and Wb are stacked is illustrated, but a third semiconductor element may be stacked above the second semiconductor element Wb, One or more semiconductor elements may be stacked thereon.
  • Varnishes (8 types in total) containing the components shown in Tables 1 and 2 were prepared as follows. That is, cyclohexanone was added to a composition containing an epoxy resin, a phenol resin, and an inorganic filler, and the mixture was stirred. After the acrylic rubber was added and stirred, a coupling agent and a curing accelerator were further added, and the mixture was stirred until each component was sufficiently uniform to obtain a varnish.
  • the varnish containing the above ingredients was filtered through a 100-mesh filter and vacuum defoamed.
  • the varnish after vacuum defoaming was applied onto a release-treated polyethylene terephthalate (PET) film (thickness: 38 ⁇ m).
  • PET polyethylene terephthalate
  • the applied varnish was dried by heating in two steps, 90° C. for 5 minutes and then 140° C. for 5 minutes. In this way, an adhesive sheet comprising a PET film as a base film and an adhesive film (thickness of 60 ⁇ m) in a B-stage state was obtained.
  • melt viscosity of adhesive film was measured by the following method. That is, five adhesive films each having a thickness of 60 ⁇ m were laminated to obtain a thickness of 300 ⁇ m, which was then punched into a size of 10 mm ⁇ 10 mm to obtain a sample for measurement. A circular aluminum plate jig with a diameter of 8 mm was set in a dynamic viscoelasticity device ARES (manufactured by TA Instruments), and the sample was further set thereon.
  • ARES dynamic viscoelasticity device
  • a dicing/die-bonding integrated film comprising each adhesive film (thickness: 120 ⁇ m) according to Examples and Comparative Examples and an adhesive film for dicing was produced. This was attached to a semiconductor wafer (diameter: 8 inches, thickness: 50 ⁇ m). By dicing this, a semiconductor element with a second adhesive piece, which consists of a second semiconductor element (size: 7.5 mm ⁇ 7.5 mm) and a second adhesive piece, was obtained.
  • a substrate surface unevenness: maximum 6 ⁇ m
  • the first adhesive was applied by heating at 120° C. for 2 hours. The pieces were semi-cured.
  • the second semiconductor element was crimped under the conditions of 130° C., 0.20 MPa, and 2 seconds via the second adhesive piece to be evaluated so as to cover the first semiconductor element. At this time, alignment was performed so that the center positions of the first semiconductor element and the second semiconductor element, which had been pressure-bonded earlier, were aligned in a plan view.
  • the structure obtained as described above was placed in a pressure oven, heated from 35° C. to 170° C. at a rate of 3° C./min, and heated at 170° C. for 30 minutes.
  • the implantability was confirmed by analyzing the heat-treated structure with an ultrasonic imaging device SAT (manufactured by Hitachi Power Solutions Co., Ltd., product number FS200II, probe: 25 MHz). Evaluation was performed according to the following criteria. Tables 3 and 4 show the results. A: The area ratio of voids in a given cross section is less than 5%. B: The area ratio of voids in a predetermined cross section is 5% or more.
  • each adhesive film (120 ⁇ m thick) according to Examples and Comparative Examples was attached to a semiconductor wafer (400 ⁇ m thick) at 70°C. By dicing this, a semiconductor element with an adhesive piece, which consists of a semiconductor element (size: 5 mm ⁇ 5 mm) and an adhesive piece, was obtained. On the other hand, a substrate having a surface coated with a solder resist ink (AUS308) was prepared. A semiconductor element was press-bonded to this surface via an adhesive piece under conditions of 120° C., 0.1 MPa, and 5 seconds. After that, it was heat-treated at 110° C.
  • the adhesive films of Examples 1 to 5 have excellent embeddability after treatment in a pressure oven, compared to the adhesive films of Comparative Examples 1 to 3. It was also confirmed that package contamination and bleeding can be suppressed.

Abstract

A thermosetting resin composition which is used for the production of a chip embedded semiconductor device, and which contains a curing agent that has a hydroxyl equivalent of 150 g/eq or less, while having a melt viscosity of 1,000 to 11,500 Pa·s at 120°C.

Description

半導体装置及びその製造方法、並びに、熱硬化性樹脂組成物、接着フィルム及びダイシング・ダイボンディング一体型フィルムSemiconductor device and manufacturing method thereof, thermosetting resin composition, adhesive film and integrated dicing/die bonding film
 本開示は、半導体装置及びその製造方法、並びに、熱硬化性樹脂組成物、接着フィルム及びダイシング・ダイボンディング一体型フィルムに関する。 The present disclosure relates to a semiconductor device and its manufacturing method, as well as a thermosetting resin composition, an adhesive film, and a dicing/die bonding integrated film.
 携帯電話等のデバイスの多機能化に伴い、半導体素子を多段に積層することによって高容量化したスタックドMCP(Multi Chip Package)が普及している。半導体素子の実装には、フィルム状接着剤が広く用いられている。フィルム状接着剤を使用した多段積層パッケージの一例としてワイヤ埋込型のパッケージが挙げられる。このパッケージは、基板上にワイヤボンド済みの半導体素子に対してフィルム状接着剤を圧着することによって当該半導体素子及びワイヤをフィルム状接着剤に埋め込む工程を経て製造される。 With the multi-functionalization of devices such as mobile phones, stacked MCPs (Multi Chip Packages), which have increased capacity by stacking semiconductor elements in multiple stages, are becoming popular. Film adhesives are widely used for mounting semiconductor elements. A wire-embedded package is an example of a multi-layered package using a film-like adhesive. This package is manufactured through a process of embedding the semiconductor element and wires in the film-like adhesive by pressing the film-like adhesive against the wire-bonded semiconductor element on the substrate.
 上記スタックドMCP等の半導体装置に求められる重要な特性の一つとして接続信頼性が挙げられる。接続信頼性を向上させるために、耐熱性、耐湿性及び耐リフロー性等の特性を考慮したフィルム状接着剤の開発が行われている。例えば、特許文献1は熱硬化性成分とフィラーとを含有する厚さ10~250μmの接着シートを開示する。特許文献2はエポキシ樹脂とフェノール樹脂とを含む混合物及びアクリル共重合体を含む接着剤組成物を開示する。 Connection reliability is one of the important characteristics required for semiconductor devices such as the stacked MCP. In order to improve connection reliability, film adhesives are being developed in consideration of properties such as heat resistance, moisture resistance and reflow resistance. For example, Patent Document 1 discloses an adhesive sheet with a thickness of 10-250 μm containing a thermosetting component and a filler. Patent Document 2 discloses an adhesive composition comprising a mixture comprising an epoxy resin and a phenolic resin and an acrylic copolymer.
 半導体装置の接続信頼性は、接着面に空隙(ボイド)を発生させることなく半導体素子を実装できているか否かによっても大きく左右される。このため、空隙を発生させずに半導体素子を圧着できるように高流動なフィルム状接着剤を使用する、又は発生した空隙を半導体素子の封止工程で消失させることができるように溶融粘度の低いフィルム状接着剤を使用するなどの工夫がなされている。例えば、特許文献3には、低粘度且つ低タック強度の接着シートが開示されている。  The connection reliability of a semiconductor device is greatly affected by whether or not the semiconductor element can be mounted without creating voids on the bonding surface. For this reason, a film-like adhesive with high fluidity is used so that the semiconductor element can be pressure-bonded without generating voids, or a film adhesive with a low melt viscosity is used so that the generated voids can be eliminated in the sealing process of the semiconductor element. Ingenuity such as using a film-like adhesive has been made. For example, Patent Document 3 discloses an adhesive sheet with low viscosity and low tack strength.
国際公開第2005/103180号WO2005/103180 特開2002-220576号公報JP-A-2002-220576 特開2009-120830号公報JP 2009-120830 A
 上記特許文献1及び3の接着シートは、圧着時にワイヤを埋め込むため、高流動化を目的として比較的多量のエポキシ樹脂を含んでいる。このため、半導体装置の製造工程中に発生する熱により熱硬化が進行しやすい。これにより、接着フィルムが高弾性化して、換言すれば、封止時の高温高圧条件でも接着シートが変形しにくくなり、圧着時に形成された空隙が最終的に消失しないことがある。一方、上記特許文献2の接着剤組成物は、弾性率が低いため、封止工程で空隙を消失させることができるものの、粘度が高いことに起因して圧着時におけるワイヤの埋込性が不十分となりやすい。 The adhesive sheets of Patent Documents 1 and 3 contain a relatively large amount of epoxy resin for the purpose of high fluidity in order to embed wires during crimping. For this reason, thermal curing is likely to proceed due to heat generated during the manufacturing process of the semiconductor device. As a result, the adhesive film becomes highly elastic, in other words, the adhesive sheet is less likely to deform even under high temperature and high pressure conditions during sealing, and the voids formed during pressure bonding may not eventually disappear. On the other hand, since the adhesive composition of Patent Document 2 has a low elastic modulus, it is possible to eliminate voids in the sealing process, but due to its high viscosity, it is difficult to embed the wire during crimping. likely to be sufficient.
 近年、ワイヤ埋込型の半導体装置の動作の高速化が重要視されている。従来は積層された半導体素子の最上段に、半導体装置の動作を制御するコントローラチップが配置されていた。動作の高速化を実現するため、最下段にコントローラチップを配置した半導体装置のパッケージ技術が開発されている。このようなパッケージの一つの形態として、多段に積層した半導体素子のうち、二段目の半導体素子を圧着する際に比較的分厚い接着フィルム(フィルム状接着剤)を使用し、当該接着フィルムの内部にコントローラチップを埋め込むパッケージが注目を集めている(例えば、上記特許文献1参照)。このような用途に使用される接着フィルムは、FOD(Film Over Die)と称され、コントローラチップ及びこれと回路パターンとを接続するワイヤ、並びに、基板表面の凹凸起因の段差を埋め込むことのできる高い流動性が求められる。特許文献1及び3の接着シートのような高流動の接着シートを使用することで、この課題を解決できる。 In recent years, increasing the operation speed of wire-embedded semiconductor devices has been emphasized. Conventionally, a controller chip for controlling the operation of a semiconductor device has been arranged on the uppermost layer of stacked semiconductor elements. In order to realize high-speed operation, a semiconductor device package technology has been developed in which a controller chip is arranged at the bottom. As one form of such a package, a relatively thick adhesive film (film-like adhesive) is used when pressure-bonding the semiconductor element in the second layer among the semiconductor elements stacked in multiple layers, and the inside of the adhesive film is A package in which a controller chip is embedded in a package is attracting attention (for example, see Patent Document 1 above). The adhesive film used for such applications is called FOD (Film Over Die), and is a high adhesive film capable of embedding the wires connecting the controller chip and the circuit pattern, as well as the unevenness caused by the unevenness of the substrate surface. Liquidity is required. This problem can be solved by using a high-fluidity adhesive sheet such as the adhesive sheets of US Pat.
 しかし、特許文献1及び3に記載の接着シートは硬化前に高い流動性を発現させる一方で、半導体素子(チップ)の小サイズ化が進展するに伴い、半導体パッケージの製造過程の熱圧着工程において、単位面積当たりの押圧力が過度に大きくなる傾向にある。これにより、接着フィルムを構成する接着剤組成物が半導体素子からはみ出す現象(以下、「ブリード」という。)が生じたり、接着フィルムが過度に潰れて電気不良を招来したりする恐れがある。特に、チップ埋込型の半導体パッケージの製造使用される接着フィルムの埋込性の向上のため、熱圧着工程での流動性を高めると、ブリードが顕著となる。例えば、はみ出した接着剤組成物が半導体素子の上面にまではい上がることもあり、それが電気不良又はワイヤボンディング不良の原因になり得る。つまり、従来の接着フィルムは、チップ埋込型のパッケージの製造過程において、半導体素子に対する優れた埋込性とブリードの抑制とを必ずしも十分に両立することができず、この点において改善の余地があった。 However, while the adhesive sheets described in Patent Documents 1 and 3 exhibit high fluidity before curing, as the size of semiconductor elements (chips) continues to become smaller, in the thermocompression bonding process in the manufacturing process of semiconductor packages, , the pressing force per unit area tends to be excessively large. As a result, there is a risk that the adhesive composition constituting the adhesive film will protrude from the semiconductor element (hereinafter referred to as "bleeding"), or that the adhesive film will be excessively crushed to cause electrical failure. In particular, if the fluidity in the thermocompression bonding process is increased in order to improve the embedding properties of the adhesive film used in the manufacture of chip-embedded semiconductor packages, bleeding becomes noticeable. For example, the adhesive composition that squeezes out may climb up to the top surface of the semiconductor device, which can cause electrical failures or wire bonding failures. In other words, conventional adhesive films cannot always achieve both excellent embeddability in a semiconductor element and suppression of bleeding in the process of manufacturing a chip-embedded package, and there is room for improvement in this respect. there were.
 本開示は、チップ埋込型の半導体装置の製造に有用な熱硬化性樹脂組成物であって、半導体素子の埋込性に優れるとともに、ブリードの発生を十分に抑制できる熱硬化性樹脂組成物を提供する。本開示は、優れた接続信頼性を有する半導体装置及びその製造方法、並びに、上記熱硬化性樹脂組成物を用いた接着フィルム及びダイシング・ダイボンディング一体型フィルムを提供する。 The present disclosure is a thermosetting resin composition useful for manufacturing chip-embedded semiconductor devices, which is excellent in embedding properties of semiconductor elements and capable of sufficiently suppressing the occurrence of bleeding. I will provide a. The present disclosure provides a semiconductor device having excellent connection reliability, a method for manufacturing the same, and an adhesive film and a dicing/die bonding integrated film using the thermosetting resin composition.
 本発明者らは、上記課題の解決のため、半導体装置の製造に使用する熱硬化性樹脂組成物の樹脂の選定と物性の調整について鋭意研究を重ねた。そして、本発明者らは、水酸基当量150g/eq以下の硬化剤を使用することによって高架橋密度の樹脂とする一方、熱硬化性樹脂組成物の溶融粘度を調整することで優れた埋込性を有し且つブリードを十分に抑制できることを見出した。 In order to solve the above problems, the present inventors have extensively studied the selection of the resin of the thermosetting resin composition used in the manufacture of semiconductor devices and the adjustment of physical properties. The present inventors have found that by using a curing agent having a hydroxyl equivalent of 150 g/eq or less, a resin having a high crosslink density can be obtained, while excellent embeddability can be obtained by adjusting the melt viscosity of the thermosetting resin composition. It has been found that it has and can sufficiently suppress bleeding.
 本開示に係る半導体装置の製造方法は、(A)基板と、基板上に設置された第1の半導体素子とを備える部材を準備する工程と、(B)熱硬化性樹脂組成物からなる接着剤片と、第2の半導体素子とを含む積層体である接着剤片付き半導体素子を準備する工程と、(C)第1の半導体素子が接着剤片に埋め込まれるように、基板に対して接着剤片付き半導体素子を圧着する工程と、(D)加熱によって接着剤片を硬化させる工程とを含み、上記熱硬化性樹脂組成物は、水酸基当量150g/eq以下の硬化剤を含み且つ120℃における溶融粘度が1000~11500Pa・sである。 A method for manufacturing a semiconductor device according to the present disclosure comprises: (A) a step of preparing a member including a substrate and a first semiconductor element placed on the substrate; (C) adhering the first semiconductor element to the substrate such that the first semiconductor element is embedded in the adhesive piece; and (D) curing the adhesive piece by heating, wherein the thermosetting resin composition contains a curing agent having a hydroxyl equivalent of 150 g/eq or less, It has a melt viscosity of 1000 to 11500 Pa·s.
 熱硬化性樹脂組成物からなる接着剤片が水酸基当量150g/eq以下の硬化剤を含んでいることで、上述のとおり、高架橋密度の樹脂とすることができ、ブリードを抑制することができる。他方、120℃における溶融粘度が1000~11500Pa・sであることで、優れた埋込性を確保することができる。熱硬化性樹脂組成物の溶融粘度は、熱硬化性樹脂組成物を構成する成分の配合比率を調整することによって上記範囲内にすることができる。なお、本発明者らの検討によると、熱硬化性樹脂組成物の溶融粘度は、埋込性及びブリード抑制の両方に影響を与える因子であるのに対し、硬化剤の水酸基当量は主にブリード抑制に影響を与える因子である。 By including a curing agent with a hydroxyl equivalent of 150 g/eq or less in the adhesive piece made of the thermosetting resin composition, as described above, the resin can have a high crosslink density and bleeding can be suppressed. On the other hand, when the melt viscosity at 120° C. is 1000 to 11500 Pa·s, excellent embeddability can be ensured. The melt viscosity of the thermosetting resin composition can be made within the above range by adjusting the blending ratio of the components constituting the thermosetting resin composition. According to the studies of the present inventors, the melt viscosity of the thermosetting resin composition is a factor that affects both the embedding property and the suppression of bleeding. It is a factor that affects inhibition.
 本開示に係る半導体装置は、基板と、基板上に設置された第1の半導体素子と、基板における第1の半導体素子が配置された領域を覆うように配置されており、第1の半導体素子を封止している接着剤片の硬化物と、接着剤片の硬化物における基板の側とは反対側の表面を覆うように配置されており、平面視において第1の半導体素子よりも大きい面積を有する第2の半導体素子とを備え、上記接着剤片は、水酸基当量150g/eq以下の硬化剤を含み且つ120℃における溶融粘度が1000~11500Pa・sである熱硬化性樹脂組成物からなる。 A semiconductor device according to the present disclosure includes a substrate, a first semiconductor element provided on the substrate, and a region of the substrate where the first semiconductor element is arranged. and the surface of the cured adhesive piece opposite to the substrate side, and is larger than the first semiconductor element in plan view and a second semiconductor element having an area, wherein the adhesive piece is made of a thermosetting resin composition containing a curing agent having a hydroxyl equivalent of 150 g/eq or less and having a melt viscosity of 1000 to 11500 Pa s at 120 ° C. Become.
 上記半導体装置は、第1の半導体素子(例えば、コントローラチップ)が熱硬化性樹脂組成物の硬化物に埋め込まれた態様であり、動作の高速化が可能である。第1の半導体素子の埋込みに、120℃における溶融粘度が1000~11500Pa・sである接着剤片が使用されていることで、基板又は第1の半導体素子との界面における空隙が十分に少ないとともに、基板の汚染及びブリードの問題の発生も十分に抑制されるため、基板と第1の半導体素子との優れた接続信頼性を達成できる。 The above semiconductor device has a mode in which the first semiconductor element (for example, a controller chip) is embedded in the cured product of the thermosetting resin composition, and can operate at high speed. By using an adhesive piece having a melt viscosity of 1000 to 11500 Pa·s at 120° C. for embedding the first semiconductor element, there are sufficiently few gaps at the interface with the substrate or the first semiconductor element. , the occurrence of the problems of contamination and bleeding of the substrate is sufficiently suppressed, so that excellent connection reliability between the substrate and the first semiconductor element can be achieved.
 本開示における熱硬化性樹脂組成物は、120℃における溶融粘度の調整の観点から、分子量10万~100万の高分子量成分(例えば、アクリルゴム)を含んでもよい。熱硬化性樹脂組成物に含まれる樹脂成分の質量100質量部に対する高分子量成分の含有量は、例えば、25~45質量部である。高分子量成分の含有量が25質量部以上であることで、ブリードをより高度に抑制しやすく、他方、45質量部以下であることで、より優れた埋込性を達成しやすい。なお、高分子量成分の分子量は重量平均分子量を意味する。重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレンによる検量線を用いて換算した値を意味する。 The thermosetting resin composition in the present disclosure may contain a high molecular weight component (for example, acrylic rubber) with a molecular weight of 100,000 to 1,000,000 from the viewpoint of adjusting the melt viscosity at 120°C. The content of the high molecular weight component is, for example, 25 to 45 parts by mass with respect to 100 parts by mass of the resin component contained in the thermosetting resin composition. When the content of the high-molecular-weight component is 25 parts by mass or more, it is easy to suppress bleeding to a higher degree. In addition, the molecular weight of a high molecular weight component means a weight average molecular weight. The weight average molecular weight means a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve.
 上記熱硬化性樹脂組成物は無機フィラーを含んでもよい。熱硬化性樹脂組成物の全質量基準で、無機フィラーの含有量は、5~50質量%である。無機フィラーの含有量が5質量%以上であることで、ブリードをより高度に抑制しやすく、他方、50質量%以下であることで、より優れた埋込性を達成しやすい。 The thermosetting resin composition may contain an inorganic filler. The content of the inorganic filler is 5 to 50% by mass based on the total mass of the thermosetting resin composition. When the content of the inorganic filler is 5% by mass or more, it is easy to suppress bleeding to a higher degree, and when it is 50% by mass or less, it is easy to achieve more excellent embeddability.
 本開示に係る接着フィルムは、チップ埋込型の半導体装置の製造に使用されるものであり、上記熱硬化性樹脂組成物からなる。本開示に係るダイシング・ダイボンディング一体型フィルムは、粘着層と、上記接着フィルムとを備える。 The adhesive film according to the present disclosure is used for manufacturing chip-embedded semiconductor devices, and is made of the above thermosetting resin composition. A dicing/die bonding integrated film according to the present disclosure includes an adhesive layer and the adhesive film.
 本開示によれば、チップ埋込型の半導体装置の製造に有用な熱硬化性樹脂組成物であって、半導体素子の埋込性に優れるとともに、ブリードの発生を十分に抑制できる熱硬化性樹脂組成物が提供される。すなわち、この熱硬化性樹脂組成物は、半導体素子(例えば、コントローラチップ)の優れた埋込性を有するとともに、埋め込み時の周辺回路の汚染及び樹脂の過剰な流動に起因する問題を十分に抑制できる。また、本開示によれば、優れた接続信頼性を有する半導体装置及びその製造方法、並びに、上記熱硬化性樹脂組成物を用いた接着フィルム及びダイシング・ダイボンディング一体型フィルムが提供される。 According to the present disclosure, a thermosetting resin composition useful for manufacturing a chip-embedded semiconductor device is a thermosetting resin that is excellent in the embedding property of a semiconductor element and can sufficiently suppress the occurrence of bleeding. A composition is provided. That is, this thermosetting resin composition has excellent embedding properties for semiconductor elements (eg, controller chips), and sufficiently suppresses problems caused by contamination of peripheral circuits and excessive flow of resin during embedding. can. Further, according to the present disclosure, there are provided a semiconductor device having excellent connection reliability, a method for manufacturing the same, and an adhesive film and a dicing/die bonding integrated film using the thermosetting resin composition.
図1は半導体装置の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor device. 図2は接着フィルムと第2の半導体素子とからなる接着剤片付き半導体素子の一例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an example of a semiconductor element with an adhesive piece comprising an adhesive film and a second semiconductor element. 図3は図1に示す半導体装置を製造する過程を模式的に示す断面図である。3A to 3C are cross-sectional views schematically showing the process of manufacturing the semiconductor device shown in FIG. 図4は図1に示す半導体装置を製造する過程を模式的に示す断面図である。4A to 4D are cross-sectional views schematically showing the process of manufacturing the semiconductor device shown in FIG. 図5は図1に示す半導体装置を製造する過程を模式的に示す断面図である。5A to 5D are cross-sectional views schematically showing the process of manufacturing the semiconductor device shown in FIG. 図6は図1に示す半導体装置を製造する過程を模式的に示す断面図である。6A to 6C are cross-sectional views schematically showing the process of manufacturing the semiconductor device shown in FIG. 図7(a)~図7(e)は、接着剤片と第2の半導体素子とからなる積層体を製造する過程を模式的に示す断面図である。7(a) to 7(e) are cross-sectional views schematically showing the process of manufacturing a laminate composed of an adhesive piece and a second semiconductor element.
 以下、図面を参照しつつ、本開示の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、本明細書において、「(メタ)アクリル酸」とは、アクリル酸又はメタクリル酸を意味し、「(メタ)アクリレート」とは、アクリレート又はそれに対応するメタクリレートを意味する。「A又はB」とは、AとBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments. In this specification, "(meth)acrylic acid" means acrylic acid or methacrylic acid, and "(meth)acrylate" means acrylate or its corresponding methacrylate. "A or B" may include either A or B, or may include both.
 本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。また、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。 In this specification, the term "layer" includes not only a shape structure formed over the entire surface but also a shape structure formed partially when observed as a plan view. In addition, the term "step" as used herein refers not only to an independent step, but also to the term if the desired action of the step is achieved even if it cannot be clearly distinguished from other steps. included. Further, a numerical range indicated using "-" indicates a range including the numerical values described before and after "-" as the minimum and maximum values, respectively.
 本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、例示材料は特に断らない限り単独で用いてもよいし、二種以上を組み合わせて用いてもよい。また、本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 In the present specification, the content of each component in the composition refers to the total amount of the multiple substances present in the composition when there are multiple substances corresponding to each component in the composition, unless otherwise specified. means. In addition, unless otherwise specified, the exemplified materials may be used alone, or two or more of them may be used in combination. In addition, in the numerical ranges described stepwise in this specification, the upper limit or lower limit of the numerical range at one stage may be replaced with the upper limit or lower limit of the numerical range at another stage. Moreover, in the numerical ranges described in this specification, the upper and lower limits of the numerical ranges may be replaced with the values shown in the examples.
[半導体装置]
 図1は本実施形態に係る半導体装置を模式的に示す断面図である。この図に示す半導体装置100は、基板10と、基板10の表面上に配置された第1の半導体素子Waと、第1の半導体素子Waを封止している接着剤片の硬化物20と、第1の半導体素子Waの上方に配置された第2の半導体素子Wbと、第2の半導体素子Wbを封止している封止層40とを備える。
[Semiconductor device]
FIG. 1 is a cross-sectional view schematically showing a semiconductor device according to this embodiment. The semiconductor device 100 shown in this figure includes a substrate 10, a first semiconductor element Wa arranged on the surface of the substrate 10, and a cured adhesive piece 20 sealing the first semiconductor element Wa. , a second semiconductor element Wb disposed above the first semiconductor element Wa, and a sealing layer 40 sealing the second semiconductor element Wb.
 基板10は、表面に回路パターン10a,10bを有する。半導体装置100の反りを抑制する観点から、基板10の厚さは、例えば、90~180μmであり、90~140μmであってもよい。なお、基板10は有機基板であっても、リードフレーム等の金属基板であってもよい。 The substrate 10 has circuit patterns 10a and 10b on its surface. From the viewpoint of suppressing warping of the semiconductor device 100, the thickness of the substrate 10 is, for example, 90 to 180 μm, and may be 90 to 140 μm. The substrate 10 may be an organic substrate or a metal substrate such as a lead frame.
 本実施形態において、第1の半導体素子Waは半導体装置100を駆動するためのコントローラチップである。第1の半導体素子Waは、回路パターン10a上に接着剤15を介して接着されており、また、第1のワイヤ11を介して回路パターン10bに接続されている。平面視における第1の半導体素子Waの形状は、例えば矩形(正方形又は長方形)である。第1の半導体素子Waの一辺の長さは、例えば、5mm以下であり、2~4mm又は1~4mmであってもよい。第1の半導体素子Waの厚さは、例えば、10~150μmであり、20~100μmであってもよい。 In this embodiment, the first semiconductor element Wa is a controller chip for driving the semiconductor device 100 . The first semiconductor element Wa is adhered onto the circuit pattern 10a via an adhesive 15, and is connected via the first wire 11 to the circuit pattern 10b. The shape of the first semiconductor element Wa in plan view is, for example, a rectangle (square or rectangle). The length of one side of the first semiconductor element Wa is, for example, 5 mm or less, and may be 2 to 4 mm or 1 to 4 mm. The thickness of the first semiconductor element Wa is, for example, 10 to 150 μm, and may be 20 to 100 μm.
 平面視において、第2の半導体素子Wbは、第1の半導体素子Waよりも大きい面積を有する。第2の半導体素子Wbは、第1の半導体素子Waの全体と回路パターン10bの一部とが覆われるように接着剤片の硬化物20を介して基板10上に搭載されている。平面視における第2の半導体素子Wbの形状は、例えば矩形(正方形又は長方形)である。第2の半導体素子Wbの一辺の長さは、例えば、20mm以下であり、4~20mm又は4~12mmであってもよい。第2の半導体素子Wbの厚さは、例えば、10~170μmであり、20~120μmであってもよい。第2の半導体素子Wbは、第2のワイヤ12を介して回路パターン10bに接続されるとともに封止層40により封止されている。 In plan view, the second semiconductor element Wb has a larger area than the first semiconductor element Wa. The second semiconductor element Wb is mounted on the substrate 10 via a cured adhesive piece 20 so that the entire first semiconductor element Wa and part of the circuit pattern 10b are covered. The shape of the second semiconductor element Wb in plan view is, for example, a rectangle (square or rectangle). The length of one side of the second semiconductor element Wb is, for example, 20 mm or less, and may be 4 to 20 mm or 4 to 12 mm. The thickness of the second semiconductor element Wb is, for example, 10-170 μm, and may be 20-120 μm. The second semiconductor element Wb is connected to the circuit pattern 10b via the second wire 12 and sealed with the sealing layer 40 .
 接着剤片の硬化物20は接着剤片20P(図2参照)が硬化したものである。なお、図2に示すとおり、接着剤片20Pと第2の半導体素子Wbは実質的に同じサイズである。図2に示す接着剤片付き半導体素子30は、接着剤片20Pと第2の半導体素子Wbとからなる。接着剤片付き半導体素子30は、後述のとおり、ダイシング工程及びピックアップ工程を経ることによって作製される(図7参照)。 The cured adhesive piece 20 is the cured adhesive piece 20P (see FIG. 2). Note that, as shown in FIG. 2, the adhesive piece 20P and the second semiconductor element Wb are substantially the same size. A semiconductor element 30 with an adhesive piece shown in FIG. 2 is composed of an adhesive piece 20P and a second semiconductor element Wb. The semiconductor element 30 with an adhesive piece is produced through a dicing process and a pick-up process, as described later (see FIG. 7).
[半導体装置の製造方法]
 半導体装置100の製造方法について説明する。まず、図3に示す構造体50(部材)を作製する。すなわち、基板10の表面上に接着剤15を介して第1の半導体素子Waを設置する。その後、第1の半導体素子Waと回路パターン10bとを第1のワイヤ11で電気的に接続する。
[Method for manufacturing a semiconductor device]
A method for manufacturing the semiconductor device 100 will be described. First, the structure 50 (member) shown in FIG. 3 is manufactured. That is, the first semiconductor element Wa is placed on the surface of the substrate 10 with the adhesive 15 interposed therebetween. After that, the first semiconductor element Wa and the circuit pattern 10b are electrically connected with the first wire 11. Next, as shown in FIG.
 次に、図4に示すように、別途準備した接着剤片付き半導体素子30の接着剤片20Pを基板10に対して押圧する。これによって、第1の半導体素子Wa及び第1のワイヤ11を接着剤片20Pに埋め込む。接着剤片20Pの厚さは、第1の半導体素子Waの厚さ等に応じて適宜設定すればよく、例えば、20~200μmの範囲であればよく、30~200μm又は40~150μmであってもよい。接着剤片20Pの厚さを上記範囲とすることで、第1の半導体素子Waと第2の半導体素子Wbの間隔(図5における距離G)を十分に確保することができる。距離Gは、例えば50μm以上であることが好ましく、50~75μm又は50~80μmであってもよい。 Next, as shown in FIG. 4, the adhesive piece 20P of the separately prepared semiconductor element 30 with an adhesive piece is pressed against the substrate 10. Then, as shown in FIG. As a result, the first semiconductor element Wa and the first wires 11 are embedded in the adhesive piece 20P. The thickness of the adhesive piece 20P may be appropriately set according to the thickness of the first semiconductor element Wa and the like. good too. By setting the thickness of the adhesive piece 20P within the above range, a sufficient distance (distance G in FIG. 5) between the first semiconductor element Wa and the second semiconductor element Wb can be ensured. The distance G is, for example, preferably 50 μm or more, and may be 50-75 μm or 50-80 μm.
 接着剤片20Pの基板10に対する圧着は、例えば、80~180℃、0.01~0.50MPaの条件で、0.5~3.0秒間にわたって実施することが好ましい。 The pressure bonding of the adhesive piece 20P to the substrate 10 is preferably performed, for example, under conditions of 80 to 180° C. and 0.01 to 0.50 MPa for 0.5 to 3.0 seconds.
 次に、加熱によって接着剤片20Pを硬化させる。この硬化処理は、例えば、60~175℃、0.01~1.0MPaの条件で、5分間以上にわたって実施することが好ましい。これにより、接着剤片20Pの硬化物20で第1の半導体素子Waが封止される(図6参照)。接着剤片20Pの硬化処理は、ボイドの低減の観点から、加圧雰囲気下で実施してもよい。第2の半導体素子Wbと回路パターン10bとを第2のワイヤ12で電気的に接続した後、封止層40によって第2の半導体素子Wbを封止することによって半導体装置100が完成する(図1参照)。 Next, the adhesive piece 20P is cured by heating. This curing treatment is preferably carried out, for example, under conditions of 60 to 175° C. and 0.01 to 1.0 MPa for 5 minutes or longer. As a result, the first semiconductor element Wa is sealed with the cured product 20 of the adhesive piece 20P (see FIG. 6). The curing treatment of the adhesive piece 20P may be performed under a pressurized atmosphere from the viewpoint of reducing voids. After electrically connecting the second semiconductor element Wb and the circuit pattern 10b with the second wire 12, the second semiconductor element Wb is sealed with the sealing layer 40 to complete the semiconductor device 100 (FIG. 1).
[接着剤片付き半導体素子の作製方法]
 図7(a)~図7(e)を参照しながら、図2に示す接着剤片付き半導体素子30の作製方法の一例について説明する。まず、ダイシング・ダイボンディング一体型フィルム8(以下、場合により「フィルム8」という。)を所定の装置(不図示)に配置する。フィルム8は、基材層1と粘着層2と接着層20Aとをこの順序で備える。基材層1は、例えば、ポリエチレンテレフタレートフィルム(PETフィルム)である。半導体ウェハWは、例えば、厚さ10~100μmの薄型半導体ウェハである。半導体ウェハWは、単結晶シリコンであってもよいし、多結晶シリコン、各種セラミック、ガリウム砒素等の化合物半導体であってもよい。
[Method for producing a semiconductor element with an adhesive piece]
An example of a method for manufacturing the semiconductor element 30 with adhesive pieces shown in FIG. 2 will be described with reference to FIGS. 7(a) to 7(e). First, a dicing/die-bonding integrated film 8 (hereinafter sometimes referred to as "film 8") is arranged in a predetermined device (not shown). The film 8 comprises a substrate layer 1, an adhesive layer 2 and an adhesive layer 20A in this order. The base material layer 1 is, for example, a polyethylene terephthalate film (PET film). The semiconductor wafer W is, for example, a thin semiconductor wafer with a thickness of 10-100 μm. The semiconductor wafer W may be monocrystalline silicon, polycrystalline silicon, various ceramics, or compound semiconductors such as gallium arsenide.
 図7(a)及び図7(b)に示すように、半導体ウェハWの一方の面に接着層20Aが接するようにフィルム8を貼り付ける。この工程は、好ましくは50~100℃、より好ましくは60~80℃の温度条件下で実施する。温度が50℃以上であると、半導体ウェハWを接着層20Aとの良好な密着性を得ることができ、100℃以下であると、この工程において接着層20Aが過度に流動することが抑制される。 As shown in FIGS. 7(a) and 7(b), the film 8 is attached to one surface of the semiconductor wafer W so that the adhesive layer 20A is in contact therewith. This step is preferably carried out at a temperature of 50-100°C, more preferably 60-80°C. When the temperature is 50° C. or higher, good adhesion between the semiconductor wafer W and the adhesive layer 20A can be obtained. be.
 図7(c)に示すように、半導体ウェハW、粘着層2及び接着層20Aをダイシングする。これにより、半導体ウェハWが個片化されて半導体素子Wbとなる。接着層20Aも個片化されて接着剤片20Pとなる。ダイシング方法としては、回転刃又はレーザを用いる方法が挙げられる。なお、半導体ウェハWのダイシングに先立って半導体ウェハWを研削することによって薄膜化してもよい。 As shown in FIG. 7(c), the semiconductor wafer W, the adhesive layer 2 and the adhesive layer 20A are diced. As a result, the semiconductor wafer W is separated into individual semiconductor elements Wb. The adhesive layer 20A is also singulated to form adhesive pieces 20P. A dicing method includes a method using a rotary blade or a laser. In addition, the semiconductor wafer W may be thinned by grinding the semiconductor wafer W prior to the dicing of the semiconductor wafer W. FIG.
 次に、粘着層2が例えばUV硬化型である場合、図7(d)に示すように、粘着層2に対して紫外線を照射することにより粘着層2を硬化させ、粘着層2と接着剤片20Pとの間の粘着力を低下させる。紫外線照射後、図7(e)に示されるように、常温又は冷却条件下において基材層1をエキスパンドすることによって半導体素子Wbを互いに離間させつつ、ニードル42で突き上げることによって粘着層2から接着剤片付き半導体素子30の接着剤片20Pを剥離させるとともに、接着剤片付き半導体素子30を吸引コレット44で吸引してピックアップする。 Next, when the adhesive layer 2 is, for example, a UV curable type, the adhesive layer 2 is cured by irradiating the adhesive layer 2 with ultraviolet rays, as shown in FIG. It reduces the adhesive force between pieces 20P. After the ultraviolet irradiation, as shown in FIG. 7(e), the base material layer 1 is expanded under room temperature or cooling conditions to separate the semiconductor elements Wb from each other, and the needles 42 are pushed up to adhere from the adhesive layer 2. The adhesive piece 20P of the semiconductor element 30 with the adhesive piece is peeled off, and the semiconductor element 30 with the adhesive piece is sucked by the suction collet 44 and picked up.
[熱硬化性樹脂組成物]
 接着剤片20Pを構成する熱硬化性樹脂組成物について説明する。なお、接着剤片20Pは接着層20A(接着フィルム)を個片化したものであり、両者は同じ熱硬化性樹脂組成物からなる。この熱硬化性樹脂組成物は、例えば、半硬化(Bステージ)状態を経て、その後の硬化処理によって完全硬化物(Cステージ)状態となり得るものである。
[Thermosetting resin composition]
The thermosetting resin composition that constitutes the adhesive piece 20P will be described. The adhesive piece 20P is obtained by dividing the adhesive layer 20A (adhesive film) into individual pieces, and both are made of the same thermosetting resin composition. This thermosetting resin composition can, for example, go through a semi-cured (B stage) state and then become a fully cured (C stage) state by a subsequent curing treatment.
熱硬化性樹脂組成物は以下の成分を含むことが好ましい。
(a)熱硬化性樹脂(以下、単に「(a)成分」という場合がある。)
(b)高分子量成分(以下、単に「(b)成分」という場合がある。)
(c)無機フィラー(以下、単に「(c)成分」という場合がある。)
 なお、本実施形態においては、(a)熱硬化性樹脂がエポキシ樹脂を含む場合、エポキシ樹脂(以下、単に「(a1)成分」という場合がある。)が「低分子量成分」に該当する。この場合、(a)熱硬化性樹脂は、エポキシ樹脂の硬化剤となり得るフェノール樹脂(以下、単に「(a2)成分」という場合がある。)を含む。
The thermosetting resin composition preferably contains the following components.
(a) Thermosetting resin (hereinafter sometimes simply referred to as "(a) component")
(b) high molecular weight component (hereinafter sometimes simply referred to as "(b) component")
(c) Inorganic filler (hereinafter sometimes simply referred to as "(c) component")
In the present embodiment, when (a) the thermosetting resin contains an epoxy resin, the epoxy resin (hereinafter sometimes simply referred to as "(a1) component") corresponds to the "low molecular weight component". In this case, (a) the thermosetting resin contains a phenolic resin (hereinafter sometimes simply referred to as "(a2) component") that can be a curing agent for epoxy resins.
  熱硬化性樹脂組成物は以下の成分を更に含んでもよい。
(d)カップリング剤(以下、単に「(d)成分」という場合がある。)
(e)硬化促進剤(以下、単に「(e)成分」という場合がある。)
The thermosetting resin composition may further contain the following components.
(d) Coupling agent (hereinafter sometimes simply referred to as "(d) component")
(e) curing accelerator (hereinafter sometimes simply referred to as "(e) component")
 上記熱硬化性樹脂組成物は、分子量10~1000の低分子量成分((a1)成分)と、分子量10万~100万の高分子量成分((b)成分)との両方を含むことが好ましい。これらの成分を併用することで、低分子量成分が優れた埋込性に寄与し、他方、高分子量成分が過剰な流動に起因する問題、例えばブリードの抑制に寄与する。なお、低分子量成分の分子量は分子式から求められる分子量を意味する。 The thermosetting resin composition preferably contains both a low molecular weight component (component (a1)) with a molecular weight of 10 to 1,000 and a high molecular weight component (component (b)) with a molecular weight of 100,000 to 1,000,000. By using these components together, the low-molecular-weight component contributes to excellent embeddability, while the high-molecular-weight component contributes to suppression of problems caused by excessive flow, such as bleeding. In addition, the molecular weight of the low molecular weight component means the molecular weight obtained from the molecular formula.
 低分子量成分の含有量M1は、熱硬化性樹脂組成物に含まれる樹脂成分の質量100質量部に対して20~45質量部であることが好ましく、21~40質量部であることがより好ましい。低分子量成分の含有量M1が20質量部以上であることで、優れた埋込性を達成しやすく、他方、45質量部以下であることで、優れたピックアップ性を達成しやすいという効果が奏される。低分子量成分の軟化点は50℃以下であることが好ましく、例えば、10~30℃であってもよい。なお、本明細書において「軟化点」とは、JIS K7234-1986に準拠し、環球法によって測定される値を意味する。 The content M1 of the low molecular weight component is preferably 20 to 45 parts by mass, more preferably 21 to 40 parts by mass, with respect to 100 parts by mass of the resin component contained in the thermosetting resin composition. . When the content M1 of the low-molecular-weight component is 20 parts by mass or more, excellent embedding properties can be easily achieved, and when it is 45 parts by mass or less, excellent pickup properties can be easily achieved. be done. The softening point of the low molecular weight component is preferably 50°C or less, and may be, for example, 10 to 30°C. As used herein, the term "softening point" means a value measured by the ring and ball method in accordance with JIS K7234-1986.
 高分子量成分の含有量M2は、熱硬化性樹脂組成物に含まれる樹脂成分の質量100質量部に対して25~45質量部であることが好ましく、30~43質量部であることがより好ましい。高分子量成分の含有量M2が25質量部以上であることで、過剰な流動に起因する問題(ブリード、基板の汚染、ヒケ及び反り等)を抑制しやすく、他方、45質量部以下であることで、優れた埋込性を達成しやすいという効果が奏される。より一層優れた埋込性を達成する観点から、高分子量成分の含有量M2の上限値は、42質量部、40質量部又は39質量部であってもよい。高分子量成分の軟化点は50℃超100℃以下であることが好ましい。 The content M2 of the high molecular weight component is preferably 25 to 45 parts by mass, more preferably 30 to 43 parts by mass, with respect to 100 parts by mass of the resin component contained in the thermosetting resin composition. . When the content M2 of the high molecular weight component is 25 parts by mass or more, problems caused by excessive flow (bleeding, substrate contamination, sink marks, warping, etc.) can be easily suppressed, and on the other hand, it is 45 parts by mass or less. , the effect of easily achieving excellent embeddability is exhibited. From the viewpoint of achieving even better embedding properties, the upper limit of the content M2 of the high molecular weight component may be 42 parts by mass, 40 parts by mass, or 39 parts by mass. The softening point of the high molecular weight component is preferably above 50°C and 100°C or less.
 熱硬化性樹脂組成物に含まれる樹脂成分の質量100質量部に対し、低分子量成分と高分子量成分の合計量(M1+M2)は50~80質量部であることが好ましく、51~76質量部であることがより好ましい。この合計量が50質量部以上であることで、これらの成分を併用したことの効果が十分に発揮される傾向にあり、他方、80質量部以下であることで、優れたピックアップ性を達成しやすいという効果が奏される。なお、熱硬化性樹脂組成物に含まれる樹脂成分であって、低分子量成分及び高分子量成分以外のものとしては、主に、分子量が1001~9万9000の熱硬化性樹脂等が挙げられる。 The total amount of the low molecular weight component and the high molecular weight component (M1+M2) is preferably 50 to 80 parts by weight, preferably 51 to 76 parts by weight, with respect to 100 parts by weight of the resin component contained in the thermosetting resin composition. It is more preferable to have When the total amount is 50 parts by mass or more, the effect of the combined use of these components tends to be sufficiently exhibited, while when the total amount is 80 parts by mass or less, excellent pickup properties are achieved. It has the effect of making it easier. The resin components contained in the thermosetting resin composition other than the low molecular weight component and the high molecular weight component mainly include thermosetting resins having a molecular weight of 1,001 to 99,000.
 熱硬化性樹脂組成物の120℃における溶融粘度は、接続信頼性の観点から、1000~11500Pa・sである。この溶融粘度が1000Pa・s以上であることで、圧着処理時等における基板10の汚染及びブリードの問題の発生を十分に抑制する傾向にある。熱硬化性樹脂組成物の120℃における溶融粘度が11500Pa・s以下であることで、優れた埋込性を達成でき、具体的には、基板10又は第1の半導体素子Waとの界面における空隙を十分に少なくできる傾向にある。この溶融粘度は、好ましくは2000~11000Pa・sであり、より好ましくは3000~10000Pa・sであり、更に好ましくは4000~9000Pa・sである。なお、溶融粘度は、ARES(TA Instruments社製)を用いてフィルム状に成形した熱硬化性樹脂組成物に5%の歪みを与えながら5℃/分の昇温速度で昇温させながら測定した場合の測定値を意味する。 The melt viscosity of the thermosetting resin composition at 120°C is 1000 to 11500 Pa·s from the viewpoint of connection reliability. When the melt viscosity is 1000 Pa·s or more, the problem of contamination and bleeding of the substrate 10 during pressure bonding tends to be sufficiently suppressed. When the melt viscosity of the thermosetting resin composition at 120° C. is 11500 Pa s or less, excellent embedding properties can be achieved. can be sufficiently reduced. The melt viscosity is preferably 2,000 to 11,000 Pa·s, more preferably 3,000 to 10,000 Pa·s, still more preferably 4,000 to 9,000 Pa·s. The melt viscosity was measured using ARES (manufactured by TA Instruments) while applying a strain of 5% to the thermosetting resin composition molded into a film while increasing the temperature at a rate of 5°C/min. Means the measured value of the case.
 熱硬化性樹脂組成物の80℃における溶融粘度は、接続信頼性の観点から、3500~12500Pa・sであることが好ましい。この溶融粘度が3500Pa・s以上であることで、圧着処理時等における基板10の汚染及びブリードの問題の発生を十分に抑制することができる。他方、この溶融粘度が12500Pa・s以下であることで、優れた埋込性を達成でき、具体的には、基板10又は第1の半導体素子Waとの界面における空隙を十分に少なくできる。この溶融粘度は、好ましくは5500~10500Pa・sである。なお、120℃及び80℃における熱硬化性樹脂組成物の溶融粘度は、高分子量成分の含有量を少なくすると低下する傾向にあり、また、無機フィラーの含有量を少なくすると低下する傾向にある。 The melt viscosity of the thermosetting resin composition at 80°C is preferably 3500 to 12500 Pa·s from the viewpoint of connection reliability. When the melt viscosity is 3500 Pa·s or more, it is possible to sufficiently suppress the occurrence of problems such as contamination and bleeding of the substrate 10 during compression bonding. On the other hand, when the melt viscosity is 12500 Pa·s or less, excellent embeddability can be achieved, and specifically, voids at the interface with the substrate 10 or the first semiconductor element Wa can be sufficiently reduced. The melt viscosity is preferably 5500 to 10500 Pa·s. The melt viscosity of the thermosetting resin composition at 120° C. and 80° C. tends to decrease as the content of the high molecular weight component decreases, and tends to decrease as the content of the inorganic filler decreases.
<(a)熱硬化性樹脂>
 (a1)成分は、分子内にエポキシ基を有するものであれば、特に制限なく用いることができる。(a1)成分としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、ジシクロペンタジエン骨格含有エポキシ樹脂、スチルベン型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、フルオレン骨格含有エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、多官能フェノール類、アントラセン等の多環芳香族類のジグリシジルエーテル化合物などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、(a1)成分は、耐熱性の観点から、クレゾールノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、又はビスフェノールA型エポキシ樹脂であってもよい。
<(a) thermosetting resin>
Component (a1) can be used without any particular limitation as long as it has an epoxy group in its molecule. Examples of the component (a1) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolak type epoxy resin. Epoxy resins, dicyclopentadiene skeleton-containing epoxy resins, stilbene-type epoxy resins, triazine skeleton-containing epoxy resins, fluorene skeleton-containing epoxy resins, triphenolmethane-type epoxy resins, biphenyl-type epoxy resins, xylylene-type epoxy resins, biphenylaralkyl-type epoxy resins , naphthalene-type epoxy resins, polyfunctional phenols, and diglycidyl ether compounds of polycyclic aromatics such as anthracene. You may use these individually by 1 type or in combination of 2 or more types. Among these, the component (a1) may be a cresol novolac type epoxy resin, a bisphenol F type epoxy resin, or a bisphenol A type epoxy resin from the viewpoint of heat resistance.
 (a1)成分のエポキシ当量は、90~300g/eq、110~290g/eq、又は130~280g/eqであってよい。(a1)成分のエポキシ当量がこのような範囲にあると、接着フィルムのバルク強度を維持しつつ、流動性を確保することができる傾向にある。ここでいう「エポキシ当量」は、JIS K7236-2009に準拠し、電位差滴定法によって測定される値を意味する。 The epoxy equivalent of component (a1) may be 90-300 g/eq, 110-290 g/eq, or 130-280 g/eq. When the epoxy equivalent of component (a1) is within this range, there is a tendency that fluidity can be ensured while maintaining the bulk strength of the adhesive film. The term "epoxy equivalent" as used herein means a value measured by potentiometric titration in accordance with JIS K7236-2009.
 (a1)成分の含有量は、(a)成分、(b)成分、及び(c)成分の総質量100質量部に対して、5~50質量部、10~40質量部、又は20~30質量部であってよい。(a1)成分の含有量が5質量部以上であると、接着フィルムの埋込性がより良好となる傾向にある。(a1)成分の含有量が50質量部以下であると、ブリードの発生をより抑制できる傾向にある。 The content of component (a1) is 5 to 50 parts by mass, 10 to 40 parts by mass, or 20 to 30 parts by mass with respect to 100 parts by mass of the total mass of components (a), (b), and (c). It may be parts by mass. When the content of the component (a1) is 5 parts by mass or more, the embedding property of the adhesive film tends to be better. When the content of component (a1) is 50 parts by mass or less, the occurrence of bleeding tends to be more suppressed.
 (a2)成分は、分子内にフェノール性水酸基を有する硬化剤である。(a2)成分の水酸基当量は、150g/eq以下であり、例えば、50~150g/eq、60~140g/eq又は70~130g/eqであってもよい。(a2)成分の水酸基当量が150g/eq以下であることで、熱硬化性樹脂組成物の架橋密度を十分に高くすることができ、これにより、溶融粘度が比較的高くでもブリードの発生を十分に抑制することができる。他方、(a2)成分の水酸基当量が50g/eq以上であることで、熱硬化性樹脂組成物の接着力をより高く維持することができる傾向にある。(a2)成分の軟化点は、50~140℃、55~130℃、又は60~125℃であってよい。ここでいう「水酸基当量」は、JIS K0070に記載の中和滴定法によって測定できるものを意味する。 The (a2) component is a curing agent having a phenolic hydroxyl group in its molecule. The hydroxyl equivalent of component (a2) is 150 g/eq or less, and may be, for example, 50 to 150 g/eq, 60 to 140 g/eq, or 70 to 130 g/eq. When the hydroxyl equivalent of the component (a2) is 150 g/eq or less, the crosslink density of the thermosetting resin composition can be sufficiently increased, thereby sufficiently preventing bleeding even when the melt viscosity is relatively high. can be suppressed to On the other hand, when the hydroxyl equivalent of the component (a2) is 50 g/eq or more, the adhesive strength of the thermosetting resin composition tends to be maintained at a higher level. The softening point of component (a2) may be 50-140°C, 55-130°C, or 60-125°C. The "hydroxyl equivalent" referred to here means that which can be measured by the neutralization titration method described in JIS K0070.
 (a2)成分としては、例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化ナフタレンジオール、フェノールノボラック、フェノール等のフェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、(a2)成分は、吸湿性及び耐熱性の観点から、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、又はノボラック型フェノール樹脂であってもよい。 Component (a2) includes, for example, phenols such as phenol, cresol, resorcinol, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol, and/or naphthols such as α-naphthol, β-naphthol and dihydroxynaphthalene. Phenols such as novolac-type phenolic resins, allylated bisphenol A, allylated bisphenol F, allylated naphthalenediol, phenol novolak, and phenol obtained by condensing or co-condensing a compound having an aldehyde group such as formaldehyde in the presence of an acidic catalyst and/or phenol aralkyl resins and naphthol aralkyl resins synthesized from naphthols and dimethoxyparaxylene or bis(methoxymethyl)biphenyl. You may use these individually by 1 type or in combination of 2 or more types. Among these, the component (a2) may be a phenol aralkyl resin, a naphthol aralkyl resin, or a novolak-type phenol resin from the viewpoint of hygroscopicity and heat resistance.
 (a2)成分の含有量は、(a)成分、(b)成分、及び(c)成分の総質量100質量部に対して、5~50質量部、10~40質量部又は20~30質量部であってよい。(a2)成分の含有量が5質量部以上であると、より良好な硬化性が得られる傾向にある。(a2)成分の含有量が50質量部以下であると、埋込性がより良好になる傾向にある。 The content of component (a2) is 5 to 50 parts by mass, 10 to 40 parts by mass, or 20 to 30 parts by mass with respect to 100 parts by mass of the total mass of components (a), (b), and (c). can be a department. When the content of component (a2) is 5 parts by mass or more, better curability tends to be obtained. When the content of the component (a2) is 50 parts by mass or less, the embedding property tends to be better.
 (a1)成分のエポキシ当量と(a2)成分の水酸基当量との比((a1)成分のエポキシ当量/(a2)成分の水酸基当量)は、硬化性の観点から、0.30/0.70~0.70/0.30、0.35/0.65~0.65/0.35、0.40/0.60~0.60/0.40、又は0.45/0.55~0.55/0.45であってよい。当該当量比が0.30/0.70以上であると、より充分な硬化性が得られる傾向にある。当該当量比が0.70/0.30以下であると、粘度が高くなり過ぎることを防ぐことができ、より充分な流動性を得ることができる。 The ratio of the epoxy equivalent of component (a1) to the hydroxyl equivalent of component (a2) (epoxy equivalent of component (a1)/hydroxy equivalent of component (a2)) is 0.30/0.70 from the viewpoint of curability. ~0.70/0.30, 0.35/0.65~0.65/0.35, 0.40/0.60~0.60/0.40, or 0.45/0.55~ It may be 0.55/0.45. When the corresponding amount ratio is 0.30/0.70 or more, more sufficient curability tends to be obtained. When the corresponding amount ratio is 0.70/0.30 or less, it is possible to prevent the viscosity from becoming too high and obtain more sufficient fluidity.
<(b)高分子量成分>
 (b)成分は、ガラス転移温度(Tg)が50℃以下であるものが好ましい。(b)成分としては、例えば、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、シリコーン樹脂、ブタジエン樹脂、アクリロニトリル樹脂及びこれらの変性体等が挙げられる。
<(b) High molecular weight component>
Component (b) preferably has a glass transition temperature (Tg) of 50° C. or lower. Component (b) includes, for example, acrylic resins, polyester resins, polyamide resins, polyimide resins, silicone resins, butadiene resins, acrylonitrile resins and modified products thereof.
 (b)成分は、流動性の観点から、アクリル樹脂を含んでいてもよい。ここで、アクリル樹脂とは、(メタ)アクリル酸エステルに由来する構成単位を含むポリマーを意味する。アクリル樹脂は、構成単位として、エポキシ基、アルコール性又はフェノール性水酸基、カルボキシル基等の架橋性官能基を有する(メタ)アクリル酸エステルに由来する構成単位を含むポリマーであることが好ましい。また、アクリル樹脂は、(メタ)アクリル酸エステルとアクリルニトリルとの共重合体等のアクリルゴムであってもよい。 The (b) component may contain an acrylic resin from the viewpoint of fluidity. Here, acrylic resin means a polymer containing structural units derived from (meth)acrylic acid ester. The acrylic resin is preferably a polymer containing, as a structural unit, a structural unit derived from a (meth)acrylic acid ester having a crosslinkable functional group such as an epoxy group, an alcoholic or phenolic hydroxyl group, or a carboxyl group. The acrylic resin may also be acrylic rubber such as a copolymer of (meth)acrylic acid ester and acrylonitrile.
 アクリル樹脂のガラス転移温度(Tg)は、-50~50℃又は-30~30℃であってよい。アクリル樹脂のTgが-50℃以上であると、接着剤組成物の柔軟性が高くなり過ぎることを防ぐことができる傾向にある。これにより、ウェハダイシング時に接着フィルムを切断し易くなり、バリの発生を防ぐことが可能となる。アクリル樹脂のTgが50℃以下であると、接着剤組成物の柔軟性の低下を抑えることができる傾向にある。これにより、接着フィルムをウェハに貼り付ける際に、ボイドを充分に埋め込み易くなる傾向にある。また、ウェハの密着性の低下によるダイシング時のチッピングを防ぐことが可能となる。ここで、ガラス転移温度(Tg)は、DSC(熱示差走査熱量計)(例えば、株式会社リガク製「Thermo Plus 2」)を用いて測定した値を意味する。 The glass transition temperature (Tg) of the acrylic resin may be -50 to 50°C or -30 to 30°C. When the Tg of the acrylic resin is −50° C. or higher, it tends to be possible to prevent the flexibility of the adhesive composition from becoming too high. This makes it easier to cut the adhesive film during wafer dicing, making it possible to prevent the occurrence of burrs. When the Tg of the acrylic resin is 50°C or less, it tends to be possible to suppress a decrease in the flexibility of the adhesive composition. As a result, when the adhesive film is attached to the wafer, it tends to be easy to fill the voids sufficiently. Also, it is possible to prevent chipping during dicing due to deterioration in adhesion of the wafer. Here, the glass transition temperature (Tg) means a value measured using a DSC (differential scanning calorimeter) (for example, "Thermo Plus 2" manufactured by Rigaku Corporation).
 アクリル樹脂の重量平均分子量(Mw)は、10万~300万又は50万~200万であってよい。アクリル樹脂のMwがこのような範囲にあると、フィルム形成性、フィルム状における強度、可撓性、タック性等を適切に制御することができるとともに、リフロー性に優れ、埋込性を向上することができる。ここで、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレンによる検量線を用いて換算した値を意味する。 The weight average molecular weight (Mw) of the acrylic resin may be 100,000 to 3,000,000 or 500,000 to 2,000,000. When the Mw of the acrylic resin is in such a range, it is possible to appropriately control film formability, strength in film form, flexibility, tackiness, etc., as well as excellent reflow properties and improved embedding properties. be able to. Here, Mw means a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve.
 アクリル樹脂の市販品としては、例えば、SG-70L、SG-708-6、WS-023 EK30、SG-280 EK23、SG-P3(いずれもナガセケムテックス株式会社製)が挙げられる。 Commercially available acrylic resins include, for example, SG-70L, SG-708-6, WS-023 EK30, SG-280 EK23, and SG-P3 (all manufactured by Nagase ChemteX Corporation).
 (b)成分の含有量は、(a)成分、(b)成分、及び(c)成分の総質量100質量部に対して、5~70質量部、10~50質量部、又は15~30質量部であってよい。(b)成分の含有量が5質量部以上であると、成形時の流動性の制御及び高温での取り扱い性をより一層良好にすることができる。(b)成分の含有量が70質量部以下であると、埋込性をより一層良好にすることができる。 The content of component (b) is 5 to 70 parts by mass, 10 to 50 parts by mass, or 15 to 30 parts by mass with respect to 100 parts by mass of the total mass of components (a), (b), and (c). It may be parts by mass. When the content of the component (b) is 5 parts by mass or more, the fluidity control during molding and the handleability at high temperatures can be further improved. If the content of the component (b) is 70 parts by mass or less, the embeddability can be further improved.
<(c)無機フィラー>
 (c)成分としては、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ホウ酸アルミウィスカ、窒化ホウ素、シリカ等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、(c)成分は、樹脂との相溶性の観点から、シリカであってもよい。
<(c) inorganic filler>
Component (c) includes, for example, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whiskers, and boron nitride. , silica and the like. You may use these individually by 1 type or in combination of 2 or more types. Among these, the component (c) may be silica from the viewpoint of compatibility with the resin.
 (c)成分の平均粒径は、接着性の向上の観点から、0.005~1μm又は0.05~0.5μmであってよい。ここで、平均粒径は、BET比表面積から換算することによって求められる値を意味する。 The average particle diameter of component (c) may be 0.005 to 1 μm or 0.05 to 0.5 μm from the viewpoint of improving adhesiveness. Here, the average particle diameter means a value obtained by converting from the BET specific surface area.
 (c)成分の含有量は、(a)成分、(b)成分、及び(c)成分の総質量100質量部に対して、5~50質量部、15~45質量部、又は25~39質量部であってよい。(c)成分の含有量が5質量部以上であると、接着フィルムの流動性がより向上する傾向にある。(c)成分の含有量が50質量部以下であると、接着フィルムのダイシング性がより良好となる傾向にある。 The content of component (c) is 5 to 50 parts by mass, 15 to 45 parts by mass, or 25 to 39 parts by mass with respect to 100 parts by mass of the total mass of components (a), (b), and (c). It may be parts by mass. When the content of component (c) is 5 parts by mass or more, the fluidity of the adhesive film tends to be further improved. When the content of component (c) is 50 parts by mass or less, the dicing property of the adhesive film tends to be better.
<(d)カップリング剤>
 (d)成分は、シランカップリング剤であってよい。シランカップリング剤としては、例えば、γ-ウレイドプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。
<(d) Coupling agent>
(d) Component may be a silane coupling agent. Silane coupling agents include, for example, γ-ureidopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3-(2-aminoethyl)aminopropyltrimethoxysilane, and the like. be done. You may use these individually by 1 type or in combination of 2 or more types.
 (d)成分の含有量は、(a)成分、(b)成分、及び(c)成分の総質量100質量部に対して、0.01~5質量部であってよい。 The content of component (d) may be 0.01 to 5 parts by mass with respect to 100 parts by mass of the total mass of components (a), (b) and (c).
<(e)硬化促進剤>
 (e)成分は、特に限定されず、一般に使用されるものを用いることができる。(e)成分としては、例えば、イミダゾール類及びその誘導体、有機リン系化合物、第二級アミン類、第三級アミン類、第四級アンモニウム塩等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、反応性の観点から(e)成分はイミダゾール類及びその誘導体であってもよい。
<(e) Curing accelerator>
Component (e) is not particularly limited, and commonly used components can be used. Component (e) includes, for example, imidazoles and their derivatives, organophosphorus compounds, secondary amines, tertiary amines, quaternary ammonium salts and the like. You may use these individually by 1 type or in combination of 2 or more types. Among these, imidazoles and derivatives thereof may be used as component (e) from the viewpoint of reactivity.
 イミダゾール類としては、例えば、2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。 Examples of imidazoles include 2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole and the like. You may use these individually by 1 type or in combination of 2 or more types.
 (e)成分の含有量は、(a)成分、(b)成分、及び(c)成分の総質量100質量部に対して、0.01~1質量部であってよい。 The content of component (e) may be 0.01 to 1 part by mass with respect to 100 parts by mass of the total mass of components (a), (b) and (c).
[ダイシング・ダイボンディング一体型フィルム及びその製造方法]
 図7(a)に示すダイシング・ダイボンディング一体型フィルム8及びその製造方法について説明する。フィルム8の製造方法は、溶剤を含有する接着剤組成物のワニスを基材フィルム(不図示)上に塗布する工程と、塗布されたワニスを50~150℃で加熱乾燥することによって接着層20Aを形成する工程とを含む。
[Dicing/die bonding integrated film and its manufacturing method]
The dicing/die-bonding integrated film 8 shown in FIG. 7A and its manufacturing method will be described. The method for producing the film 8 includes the steps of applying a varnish of an adhesive composition containing a solvent onto a base film (not shown), and drying the applied varnish by heating at 50 to 150° C. to form an adhesive layer 20A. and forming.
 接着剤組成物のワニスは、例えば、(a)~(c)成分、必要に応じて(d)成分及び(e)成分を、溶剤中で混合又は混練することによって調製することができる。混合又は混練は、通常の撹拌機、らいかい機、三本ロール、ボールミル等の分散機を用い、これらを適宜組み合わせて行うことができる。 The varnish of the adhesive composition can be prepared, for example, by mixing or kneading components (a) to (c) and, if necessary, components (d) and (e) in a solvent. Mixing or kneading can be carried out by using an ordinary dispersing machine such as a stirrer, a kneading machine, a triple roll, a ball mill, or the like, and by appropriately combining these.
 ワニスを作製するための溶剤は、上記各成分を均一に溶解、混練又は分散できるものであれば制限はなく、従来公知のものを使用することができる。このような溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、Nメチルピロリドン、トルエン、キシレン等が挙げられる。乾燥速度が速く、価格が安い点でメチルエチルケトン、シクロヘキサノン等を使用することが好ましい。 The solvent for preparing the varnish is not limited as long as it can uniformly dissolve, knead, or disperse the above components, and conventionally known solvents can be used. Examples of such solvents include ketone-based solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene and xylene. It is preferable to use methyl ethyl ketone, cyclohexanone, etc., because of their high drying speed and low price.
 基材フィルムとしては、特に制限はなく、例えば、ポリエステルフィルム、ポリプロピレンフィルム(OPPフィルム等)、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリエーテルイミドフィルム、ポリエチレンナフタレートフィルム、ポリメチルペンテンフィルム等が挙げられる。 The base film is not particularly limited, and examples include polyester film, polypropylene film (OPP film, etc.), polyethylene terephthalate film, polyimide film, polyetherimide film, polyethylene naphthalate film, polymethylpentene film, and the like.
 基材フィルムにワニスを塗布する方法としては、公知の方法を用いることができ、例えば、ナイフコート法、ロールコート法、スプレーコート法、グラビアコート法、バーコート法、カーテンコート法等が挙げられる。加熱乾燥の条件は、使用した溶剤が充分に揮散する条件であれば特に制限はないが、例えば、50~150℃で、1~30分間加熱して行うことができる。加熱乾燥は、50~150℃の範囲内の温度で段階的に昇温させて行ってもよい。ワニスに含まれる溶剤を加熱乾燥によって揮発させることによって基材フィルムと、接着層20Aとの積層フィルムを得ることができる。 As a method for applying the varnish to the substrate film, a known method can be used, and examples thereof include a knife coating method, a roll coating method, a spray coating method, a gravure coating method, a bar coating method, a curtain coating method, and the like. . The conditions for drying by heating are not particularly limited as long as the solvent used is sufficiently volatilized. Heat drying may be carried out by stepwise raising the temperature within the range of 50 to 150°C. By volatilizing the solvent contained in the varnish by heating and drying, a laminated film of the substrate film and the adhesive layer 20A can be obtained.
 上記のようにして得た積層フィルムと、ダイシングテープ(基材層1と粘着層2の積層体)とを貼り合わせることによってフィルム8を得ることができる。基材層1としては、例えば、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリイミドフィルム等のプラスチックフィルム等が挙げられる。また、基材層1は、必要に応じて、プライマー塗布、UV処理、コロナ放電処理、研磨処理、エッチング処理等の表面処理が行われていてもよい。粘着層2は、UV硬化型であってもよいし、感圧型であってもよい。フィルム8は、粘着層2を覆う保護フィルム(不図示)を更に備えたものであってもよい。 The film 8 can be obtained by laminating the laminated film obtained as described above and the dicing tape (laminated body of the base layer 1 and the adhesive layer 2). Examples of the substrate layer 1 include plastic films such as polytetrafluoroethylene film, polyethylene terephthalate film, polyethylene film, polypropylene film, polymethylpentene film, and polyimide film. Further, the substrate layer 1 may be subjected to surface treatment such as primer coating, UV treatment, corona discharge treatment, polishing treatment, etching treatment, etc., as necessary. The adhesive layer 2 may be UV curable or pressure sensitive. The film 8 may further include a protective film (not shown) covering the adhesive layer 2 .
 以上、本開示の実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態においては、二つの半導体素子Wa,Wbが積層された態様のパッケージを例示したが、第2の半導体素子Wbの上方に第3の半導体素子が積層されていてもよいし、その上方に更に一つ又は複数の半導体素子が積層されていてもよい。 Although the embodiments of the present disclosure have been described in detail above, the present invention is not limited to the above embodiments. For example, in the above embodiment, the package in which the two semiconductor elements Wa and Wb are stacked is illustrated, but a third semiconductor element may be stacked above the second semiconductor element Wb, One or more semiconductor elements may be stacked thereon.
 以下、実施例を挙げて本開示についてより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present disclosure will be described more specifically with examples. However, the present invention is not limited to the following examples.
(実施例1~5及び比較例1~3)
 表1及び表2に示す成分を含むワニス(計8種類)を次のようにして調製した。すなわち、エポキシ樹脂と、フェノール樹脂と、無機フィラーとを含む組成物にシクロヘキサノンを加えて撹拌した。これに、アクリルゴムを加えて撹拌した後、カップリング剤と硬化促進剤とを更に加え、各成分が十分に均一になるまで撹拌することによってワニスを得た。
(Examples 1 to 5 and Comparative Examples 1 to 3)
Varnishes (8 types in total) containing the components shown in Tables 1 and 2 were prepared as follows. That is, cyclohexanone was added to a composition containing an epoxy resin, a phenol resin, and an inorganic filler, and the mixture was stirred. After the acrylic rubber was added and stirred, a coupling agent and a curing accelerator were further added, and the mixture was stirred until each component was sufficiently uniform to obtain a varnish.
 表1及び表2に記載の成分は以下のとおりである。
(エポキシ樹脂)
・YDF-8170C(商品名、新日鉄住金化学株式会社製、ビスフェノールF型エポキシ樹脂、エポキシ当量:159g/eq、常温で液体)
・N-500P-10(商品名、DIC株式会社製、o-クレゾールノボラック型エポキシ樹脂、エポキシ当量:204g/eq、軟化点:75~85℃)
(フェノール樹脂)
・PSM-4326(商品名、群栄化学工業株式会社製、フェノールノボラック型フェノール樹脂、水酸基当量:105g/eq、軟化点:120℃)
・MEH-7800M(商品名、明和化学株式会社製、フェニルアラルキル型フェノール樹脂、水酸基当量:174g/eq、軟化点:80℃)
(アクリルゴム)
 SG-P3溶剤変更品(SG-P3(商品名)の溶剤をシクロヘキサノンに変更したもの、ナガセケムテックス株式会社製、アクリルゴム、重量平均分子量:80万、Tg:12℃)
(無機フィラー)
・SC2050-HLG(商品名):アドマテックス株式会社製、シリカフィラー分散液、平均粒径0.50μm
(硬化促進剤)
・キュアゾール2PZ-CN(商品名):四国化成工業株式会社製、1-シアノエチル-2-フェニルイミダゾール
The components listed in Tables 1 and 2 are as follows.
(Epoxy resin)
・ YDF-8170C (trade name, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., bisphenol F type epoxy resin, epoxy equivalent: 159 g / eq, liquid at room temperature)
・N-500P-10 (trade name, manufactured by DIC Corporation, o-cresol novolak type epoxy resin, epoxy equivalent: 204 g / eq, softening point: 75 to 85 ° C.)
(Phenolic resin)
・ PSM-4326 (trade name, manufactured by Gun Ei Chemical Industry Co., Ltd., phenol novolac type phenol resin, hydroxyl equivalent: 105 g / eq, softening point: 120 ° C.)
・ MEH-7800M (trade name, manufactured by Meiwa Chemical Co., Ltd., phenylaralkyl-type phenol resin, hydroxyl equivalent: 174 g / eq, softening point: 80 ° C.)
(acrylic rubber)
SG-P3 solvent change product (SG-P3 (trade name) solvent changed to cyclohexanone, manufactured by Nagase ChemteX Corporation, acrylic rubber, weight average molecular weight: 800,000, Tg: 12 ° C.)
(Inorganic filler)
・ SC2050-HLG (trade name): manufactured by Admatechs Co., Ltd., silica filler dispersion, average particle size 0.50 μm
(Curing accelerator)
・Curesol 2PZ-CN (trade name): 1-cyanoethyl-2-phenylimidazole manufactured by Shikoku Chemical Industry Co., Ltd.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記成分を含むワニスを100メッシュのフィルターでろ過し、真空脱泡した。真空脱泡後のワニスを、離型処理を施したポリエチレンテレフタレート(PET)フィルム(厚さ38μm)上に塗布した。塗布したワニスを、90℃で5分間、続いて140℃で5分間の二段階で加熱乾燥した。こうして、基材フィルムとしてのPETフィルムと、Bステージ状態にある接着フィルム(厚さ60μm)とを備えた接着シートを得た。 The varnish containing the above ingredients was filtered through a 100-mesh filter and vacuum defoamed. The varnish after vacuum defoaming was applied onto a release-treated polyethylene terephthalate (PET) film (thickness: 38 μm). The applied varnish was dried by heating in two steps, 90° C. for 5 minutes and then 140° C. for 5 minutes. In this way, an adhesive sheet comprising a PET film as a base film and an adhesive film (thickness of 60 μm) in a B-stage state was obtained.
<接着フィルムの溶融粘度の測定>
 接着フィルムの100℃及び120℃における溶融粘度は次の方法で測定した。すなわち、厚さ60μmの接着フィルムを五枚積層することによって厚さを300μmとし、これを10mm×10mmのサイズに打ち抜くことによって測定用の試料を得た。動的粘弾性装置ARES(TA Instruments社製)に直径8mmの円形アルミプレート治具をセットし、更にここに上記試料をセットした。その後、35℃で5%の歪みを与えながら5℃/分の昇温速度で130℃まで昇温させながら測定し、80℃及び120℃のときの溶融粘度の値を記録した。表3及び表4に結果を示す。
<Measurement of melt viscosity of adhesive film>
The melt viscosity of the adhesive film at 100°C and 120°C was measured by the following method. That is, five adhesive films each having a thickness of 60 μm were laminated to obtain a thickness of 300 μm, which was then punched into a size of 10 mm×10 mm to obtain a sample for measurement. A circular aluminum plate jig with a diameter of 8 mm was set in a dynamic viscoelasticity device ARES (manufactured by TA Instruments), and the sample was further set thereon. After that, measurements were taken while the temperature was raised to 130°C at a heating rate of 5°C/min while applying a strain of 5% at 35°C, and the melt viscosity values at 80°C and 120°C were recorded. Tables 3 and 4 show the results.
<接着フィルムの評価>
 接着フィルムについて、以下の項目について評価を行った。
(1)埋込性
 接着フィルムの埋込性を次の方法により評価した。
(第1の接着剤片付き半導体素子の作製)
 半導体ウェハ(直径:8インチ、厚さ:50μm)にダイシング・ダイボンディング一体型フィルムHR-9004-10(昭和電工マテリアルズ(株)製、接着層の厚さ10μm、粘着層の厚さ110μm)を貼り付けた。これをダイシングすることによって第1の半導体素子(コントローラチップ、サイズ:3.0mm×3.0mm)と、第1の接着剤片とからなる第1の接着剤片付き半導体素子を得た。
(第2の接着剤片付き半導体素子の作製)
 実施例及び比較例に係る各接着フィルム(厚さ120μm)とダイシング用粘着フィルムとからなるダイシング・ダイボンディング一体型フィルムを作製した。これを半導体ウェハ(直径:8インチ、厚さ:50μm)に貼り付けた。これをダイシングすることによって第2の半導体素子(サイズ:7.5mm×7.5mm)と第2の接着剤片とからなる第2の接着剤片付き半導体素子を得た。
(第1及び第2の半導体素子の接着)
 第1及び第2の半導体素子を圧着するための基板(表面の凹凸:最大6μm)を準備した。この基板に第1の接着剤片を介して第1の半導体素子を、130℃、0.20MPa、2秒間の条件で圧着した後、120℃で2時間にわたって加熱することによって第1の接着剤片を半硬化させた。
 次に、第1の半導体素子を覆うように、評価対象の第2の接着剤片を介して第2の半導体素子を、130℃、0.20MPa、2秒間の条件で圧着した。この際、先に圧着された第1の半導体素子と第2の半導体素子の中心位置が平面視で一致するように位置合わせをした。
 上記のようにして得た構造体を加圧オーブンに投入し、35℃から3℃/分の昇温速度で170℃まで昇温させ、170℃で30分加熱した。加熱処理後の構造体を超音波映像装置SAT(株式会社日立パワーソリューションズ製、品番FS200II、プローブ:25MHz)にて分析することによって、埋込性を確認した。以下の基準で評価を行った。表3及び表4に結果を示す。
 A:所定の断面におけるボイドの面積割合が5%未満。
 B:所定の断面におけるボイドの面積割合が5%以上。
<Evaluation of adhesive film>
The following items were evaluated for the adhesive film.
(1) Embedability The embeddability of the adhesive film was evaluated by the following method.
(Preparation of semiconductor element with first adhesive piece)
Semiconductor wafer (diameter: 8 inches, thickness: 50 μm) Dicing / die bonding integrated film HR-9004-10 (manufactured by Showa Denko Materials Co., Ltd., adhesive layer thickness 10 μm, adhesive layer thickness 110 μm) pasted. By dicing this, a semiconductor element with a first adhesive piece, which consists of a first semiconductor element (controller chip, size: 3.0 mm×3.0 mm) and a first adhesive piece, was obtained.
(Preparation of semiconductor element with second adhesive piece)
A dicing/die-bonding integrated film comprising each adhesive film (thickness: 120 μm) according to Examples and Comparative Examples and an adhesive film for dicing was produced. This was attached to a semiconductor wafer (diameter: 8 inches, thickness: 50 μm). By dicing this, a semiconductor element with a second adhesive piece, which consists of a second semiconductor element (size: 7.5 mm×7.5 mm) and a second adhesive piece, was obtained.
(Adhesion of first and second semiconductor elements)
A substrate (surface unevenness: maximum 6 μm) was prepared for pressure bonding of the first and second semiconductor elements. After pressing the first semiconductor element to this substrate via the first adhesive piece under the conditions of 130° C., 0.20 MPa, and 2 seconds, the first adhesive was applied by heating at 120° C. for 2 hours. The pieces were semi-cured.
Next, the second semiconductor element was crimped under the conditions of 130° C., 0.20 MPa, and 2 seconds via the second adhesive piece to be evaluated so as to cover the first semiconductor element. At this time, alignment was performed so that the center positions of the first semiconductor element and the second semiconductor element, which had been pressure-bonded earlier, were aligned in a plan view.
The structure obtained as described above was placed in a pressure oven, heated from 35° C. to 170° C. at a rate of 3° C./min, and heated at 170° C. for 30 minutes. The implantability was confirmed by analyzing the heat-treated structure with an ultrasonic imaging device SAT (manufactured by Hitachi Power Solutions Co., Ltd., product number FS200II, probe: 25 MHz). Evaluation was performed according to the following criteria. Tables 3 and 4 show the results.
A: The area ratio of voids in a given cross section is less than 5%.
B: The area ratio of voids in a predetermined cross section is 5% or more.
(2)パッケージ汚染の有無
 埋込性の評価に供した構造体の上部及び側面を顕微鏡で観察することによって、汚染の有無を確認した。
(3)ブリードの評価
 埋込性の評価に供した構造体における第2の半導体素子の四辺の中心から、接着剤(第2の接着剤片)がはみ出している長さを顕微鏡下で測定し、その平均値をブリード量とした。以下の基準で評価を行った。表3及び表4に結果を示す。
 A:ブリード量が60μm未満。
 B:ブリード量が60μm以上100μm以下。
 C:ブリード量が100μmより大きい。
(2) Presence or Absence of Package Contamination Presence or absence of contamination was confirmed by observing the top and side surfaces of the structure subjected to evaluation of embeddability with a microscope.
(3) Evaluation of Bleeding The protruding length of the adhesive (second adhesive piece) from the center of the four sides of the second semiconductor element in the structure subjected to embedding evaluation was measured under a microscope. , and the average value thereof was taken as the amount of bleeding. Evaluation was performed according to the following criteria. Tables 3 and 4 show the results.
A: The bleeding amount is less than 60 μm.
B: The bleeding amount is 60 μm or more and 100 μm or less.
C: The amount of bleeding is greater than 100 μm.
(4)接着強度の測定
 実施例及び比較例に係る接着フィルムの硬化物の接着強度(ダイシェア強度)を次の方法により測定した。まず、実施例及び比較例に係る各接着フィルム(厚さ120μm)を半導体ウェハ(厚さ400μm)に70℃で貼り付けた。これをダイシングすることによって半導体素子(サイズ:5mm×5mm)と接着剤片とからなる接着剤片付き半導体素子を得た。他方、表面にソルダーレジストインキ(AUS308)を塗布した基板を準備した。この表面に接着剤片を介して半導体素子を、120℃、0.1MPa、5秒間の条件で圧着した。その後、これを110℃で1時間にわたって加熱処理した後、更に、170℃で3時間にわたって加熱することによって、接着剤片を硬化させることによって測定用の試料を得た。この試料を85℃、60%RH条件の下、168時間放置した。その後、試料を25℃、50%RH条件下で30分間放置してから、250℃でダイシェア強度を測定し、これを接着強度とした。ダイシェア強度の測定にはDage社製の万能ボンドテスタ シリーズ4000を使用した。表3及び表4に結果を示す。
(4) Measurement of Adhesive Strength The adhesive strength (die shear strength) of cured adhesive films according to Examples and Comparative Examples was measured by the following method. First, each adhesive film (120 μm thick) according to Examples and Comparative Examples was attached to a semiconductor wafer (400 μm thick) at 70°C. By dicing this, a semiconductor element with an adhesive piece, which consists of a semiconductor element (size: 5 mm×5 mm) and an adhesive piece, was obtained. On the other hand, a substrate having a surface coated with a solder resist ink (AUS308) was prepared. A semiconductor element was press-bonded to this surface via an adhesive piece under conditions of 120° C., 0.1 MPa, and 5 seconds. After that, it was heat-treated at 110° C. for 1 hour, and further heated at 170° C. for 3 hours to cure the adhesive piece, thereby obtaining a sample for measurement. This sample was left under conditions of 85° C. and 60% RH for 168 hours. After that, the sample was allowed to stand under conditions of 25° C. and 50% RH for 30 minutes, and then the die shear strength was measured at 250° C., which was defined as the adhesive strength. A Universal Bond Tester Series 4000 manufactured by Dage was used to measure the die shear strength. Tables 3 and 4 show the results.
 表3及び表4に示した結果から明らかなように、実施例1~5の接着フィルムは、比較例1~3の接着フィルムと比較して、加圧オーブンによる処理後において埋込性に優れるとともにパッケージ汚染及びブリードの発生を抑えることができることが確認された。 As is clear from the results shown in Tables 3 and 4, the adhesive films of Examples 1 to 5 have excellent embeddability after treatment in a pressure oven, compared to the adhesive films of Comparative Examples 1 to 3. It was also confirmed that package contamination and bleeding can be suppressed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
1…基材層、2…粘着層、8…ダイボンディング一体型フィルム、10…基板、10a,10b…回路パターン、11…第1のワイヤ、12…第2のワイヤ、20…接着剤片の硬化物、20A…接着層(接着フィルム)、20P…接着剤片、30…接着剤片付き半導体素子、40…封止層、50…構造体、100…半導体装置、W…半導体ウェハ、Wa…第1の半導体素子、Wb…第2の半導体素子 DESCRIPTION OF SYMBOLS 1... Base material layer, 2... Adhesive layer, 8... Die-bonding integrated film, 10... Substrate, 10a, 10b... Circuit pattern, 11... First wire, 12... Second wire, 20... Adhesive piece Cured product 20A Adhesive layer (adhesive film) 20P Adhesive piece 30 Semiconductor element with adhesive piece 40 Encapsulation layer 50 Structure 100 Semiconductor device W Semiconductor wafer Wa . 1 semiconductor element, Wb ... the second semiconductor element

Claims (9)

  1. (A)基板と、前記基板上に設置された第1の半導体素子とを備える部材を準備する工程と、
    (B)熱硬化性樹脂組成物からなる接着剤片と、第2の半導体素子とを含む積層体である接着剤片付き半導体素子を準備する工程と、
    (C)前記第1の半導体素子が前記接着剤片に埋め込まれるように、前記基板に対して前記接着剤片付き半導体素子を圧着する工程と、
    (D)加熱によって前記接着剤片を硬化させる工程と、
    を含み、
     前記熱硬化性樹脂組成物は、水酸基当量150g/eq以下の硬化剤を含み且つ120℃における溶融粘度が1000~11500Pa・sである、半導体装置の製造方法。
    (A) preparing a member comprising a substrate and a first semiconductor element placed on the substrate;
    (B) preparing a semiconductor element with an adhesive piece, which is a laminate including an adhesive piece made of a thermosetting resin composition and a second semiconductor element;
    (C) pressing the semiconductor element with the adhesive piece to the substrate so that the first semiconductor element is embedded in the adhesive piece;
    (D) curing the adhesive strip by heating;
    including
    The method for manufacturing a semiconductor device, wherein the thermosetting resin composition contains a curing agent having a hydroxyl equivalent of 150 g/eq or less and has a melt viscosity of 1000 to 11500 Pa·s at 120°C.
  2.  前記熱硬化性樹脂組成物が分子量10万~100万の高分子量成分を含み、
     前記熱硬化性樹脂組成物に含まれる樹脂成分の質量100質量部に対する前記高分子量成分の含有量が25~45質量部である、請求項1に記載の半導体装置の製造方法。
    The thermosetting resin composition contains a high molecular weight component with a molecular weight of 100,000 to 1,000,000,
    2. The method of manufacturing a semiconductor device according to claim 1, wherein the content of said high molecular weight component is 25 to 45 parts by mass with respect to 100 parts by mass of said resin component contained in said thermosetting resin composition.
  3.  前記熱硬化性樹脂組成物が無機フィラーを含み、
     前記熱硬化性樹脂組成物における前記無機フィラーの含有量は、前記熱硬化性樹脂組成物の全質量基準で、5~50質量%ある、請求項1又は2に記載の半導体装置の製造方法。
    The thermosetting resin composition contains an inorganic filler,
    3. The method of manufacturing a semiconductor device according to claim 1, wherein the content of said inorganic filler in said thermosetting resin composition is 5 to 50% by mass based on the total mass of said thermosetting resin composition.
  4.  基板と、
     前記基板上に設置された第1の半導体素子と、
     前記基板における前記第1の半導体素子が配置された領域を覆うように配置されており、前記第1の半導体素子を封止している接着剤片の硬化物と、
     前記接着剤片の硬化物における前記基板の側とは反対側の表面を覆うように配置されており、平面視において前記第1の半導体素子よりも大きい面積を有する第2の半導体素子と、
    を備え、
     前記接着剤片は、水酸基当量150g/eq以下の硬化剤を含み且つ120℃における溶融粘度が1000~11500Pa・sである熱硬化性樹脂組成物からなる、半導体装置。
    a substrate;
    a first semiconductor element placed on the substrate;
    a cured adhesive piece that is arranged to cover a region of the substrate where the first semiconductor element is arranged and seals the first semiconductor element;
    a second semiconductor element arranged to cover the surface of the cured adhesive piece opposite to the substrate side and having a larger area than the first semiconductor element in a plan view;
    with
    The semiconductor device according to claim 1, wherein the adhesive piece comprises a thermosetting resin composition containing a curing agent having a hydroxyl equivalent of 150 g/eq or less and having a melt viscosity of 1000 to 11500 Pa·s at 120°C.
  5.  チップ埋込型の半導体装置の製造に使用される熱硬化性樹脂組成物であって、
     水酸基当量150g/eq以下の硬化剤を含み且つ120℃における溶融粘度が1000~11500Pa・sである、熱硬化性樹脂組成物。
    A thermosetting resin composition used in the manufacture of chip-embedded semiconductor devices,
    A thermosetting resin composition containing a curing agent having a hydroxyl equivalent of 150 g/eq or less and having a melt viscosity of 1000 to 11500 Pa·s at 120°C.
  6.  分子量10万~100万の高分子量成分を含み、
     当該熱硬化性樹脂組成物に含まれる樹脂成分の質量100質量部に対する前記高分子量成分の含有量が25~45質量部である、請求項5に記載の熱硬化性樹脂組成物。
    Containing a high molecular weight component with a molecular weight of 100,000 to 1,000,000,
    6. The thermosetting resin composition according to claim 5, wherein the content of the high molecular weight component is 25 to 45 parts by mass with respect to 100 parts by mass of the resin component contained in the thermosetting resin composition.
  7.  無機フィラーを含み、
     前記無機フィラーの含有量が当該熱硬化性樹脂組成物の全質量基準で、5~50質量%ある、請求項5又は6に記載の熱硬化性樹脂組成物。
    containing inorganic fillers,
    7. The thermosetting resin composition according to claim 5, wherein the content of the inorganic filler is 5 to 50% by mass based on the total mass of the thermosetting resin composition.
  8.  チップ埋込型の半導体装置の製造に使用される接着フィルムであって、
     請求項5~7のいずれか一項に記載の熱硬化性樹脂組成物からなる、接着フィルム。
    An adhesive film used in the manufacture of a chip-embedded semiconductor device,
    An adhesive film comprising the thermosetting resin composition according to any one of claims 5 to 7.
  9.  粘着層と、
     請求項8に記載の前記接着フィルムと、
    を備えるダイシング・ダイボンディング一体型フィルム。
    an adhesive layer;
    The adhesive film of claim 8;
    A dicing/die bonding integrated film.
PCT/JP2022/001802 2021-01-28 2022-01-19 Semiconductor device, method for producing same, thermosetting resin composition, bonding film and integrated dicing/die bonding film WO2022163465A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280011093.0A CN116762169A (en) 2021-01-28 2022-01-19 Semiconductor device, method for manufacturing the same, thermosetting resin composition, adhesive film, and dicing die-bonding integrated film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-012231 2021-01-28
JP2021012231A JP2022115581A (en) 2021-01-28 2021-01-28 Semiconductor device and manufacturing method thereof, thermosetting resin composition, adhesive film and dicing/die bonding integrated film

Publications (1)

Publication Number Publication Date
WO2022163465A1 true WO2022163465A1 (en) 2022-08-04

Family

ID=82653363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001802 WO2022163465A1 (en) 2021-01-28 2022-01-19 Semiconductor device, method for producing same, thermosetting resin composition, bonding film and integrated dicing/die bonding film

Country Status (4)

Country Link
JP (1) JP2022115581A (en)
CN (1) CN116762169A (en)
TW (1) TW202231809A (en)
WO (1) WO2022163465A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122422A (en) * 2013-12-24 2015-07-02 日東電工株式会社 Adhesive film, dicing/die-bonding film, method for manufacturing semiconductor device, and semiconductor device
WO2019220540A1 (en) * 2018-05-15 2019-11-21 日立化成株式会社 Semiconductor device, thermosetting resin composition used for production thereof, and dicing die bonding integrated tape
WO2020013250A1 (en) * 2018-07-11 2020-01-16 日立化成株式会社 Method for manufacturing semiconductor device, heat-curable resin composition, and dicing-die attach film
WO2020157805A1 (en) * 2019-01-28 2020-08-06 日立化成株式会社 Adhesive composition, film-like adhesive, adhesive sheet and method for producing semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122422A (en) * 2013-12-24 2015-07-02 日東電工株式会社 Adhesive film, dicing/die-bonding film, method for manufacturing semiconductor device, and semiconductor device
WO2019220540A1 (en) * 2018-05-15 2019-11-21 日立化成株式会社 Semiconductor device, thermosetting resin composition used for production thereof, and dicing die bonding integrated tape
WO2020013250A1 (en) * 2018-07-11 2020-01-16 日立化成株式会社 Method for manufacturing semiconductor device, heat-curable resin composition, and dicing-die attach film
WO2020157805A1 (en) * 2019-01-28 2020-08-06 日立化成株式会社 Adhesive composition, film-like adhesive, adhesive sheet and method for producing semiconductor device

Also Published As

Publication number Publication date
CN116762169A (en) 2023-09-15
JP2022115581A (en) 2022-08-09
TW202231809A (en) 2022-08-16

Similar Documents

Publication Publication Date Title
JP2023123595A (en) Method for manufacturing semiconductor device, adhesive layer and dicing-die bonding integrated film
JP7327416B2 (en) Adhesive composition, film adhesive, adhesive sheet, and method for manufacturing semiconductor device
JP2023017948A (en) Adhesive composition, film-like adhesive, adhesive sheet, and method for manufacturing semiconductor device
TWI791751B (en) Semiconductor device manufacturing method and adhesive film
JP7136200B2 (en) Semiconductor device, thermosetting resin composition and dicing die bonding integrated tape used for its manufacture
WO2022163465A1 (en) Semiconductor device, method for producing same, thermosetting resin composition, bonding film and integrated dicing/die bonding film
TWI829727B (en) Adhesive composition, film-like adhesive, adhesive sheet, and method for manufacturing semiconductor device
JP7322897B2 (en) Adhesive film, dicing/die bonding integrated film, and method for manufacturing semiconductor package
JP7028264B2 (en) Film-shaped adhesive and its manufacturing method, and semiconductor device and its manufacturing method
WO2020136902A1 (en) Die bonding film, adhesive sheet, and semiconductor package and method for manufacturing same
WO2023181397A1 (en) Adhesive film for semiconductor, dicing die-bonding film, and method for manufacturing semiconductor device
JP7283399B2 (en) Thermosetting resin composition, film adhesive, adhesive sheet, and method for manufacturing semiconductor device
WO2023152837A1 (en) Film-form adhesive, dicing and die-bonding two-in-one film, semiconductor device, and method for manufacturing same
WO2023157846A1 (en) Film-like adhesive and method for producing same, integrated dicing/die bonding film, and semiconductor device and method for producing same
WO2022149581A1 (en) Adhesive agent composition, film-form adhesive agent, dicing/die-bonding integrated film, semiconductor device, and method for manufacturing same
WO2022149582A1 (en) Film-like adhesive, integrated dicing/die bonding film, semiconductor device and method for producing same
JP2023142901A (en) Adhesive film for semiconductor, integration-type film for dicing and die bonding, and method for manufacturing semiconductor device
TW202414550A (en) Semiconductor device manufacturing method, adhesive layer and die-cut die-bonding integrated film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745686

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280011093.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745686

Country of ref document: EP

Kind code of ref document: A1