JP2005247953A - Adhesive composition for semiconductor and adhesive sheet for semiconductor using the same - Google Patents

Adhesive composition for semiconductor and adhesive sheet for semiconductor using the same Download PDF

Info

Publication number
JP2005247953A
JP2005247953A JP2004058627A JP2004058627A JP2005247953A JP 2005247953 A JP2005247953 A JP 2005247953A JP 2004058627 A JP2004058627 A JP 2004058627A JP 2004058627 A JP2004058627 A JP 2004058627A JP 2005247953 A JP2005247953 A JP 2005247953A
Authority
JP
Japan
Prior art keywords
adhesive
semiconductor
resin
adhesive composition
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004058627A
Other languages
Japanese (ja)
Inventor
Hideki Shinohara
英樹 篠原
Daikichi Nishioka
大吉 西岡
Hiroshi Tsuchiya
浩史 土谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004058627A priority Critical patent/JP2005247953A/en
Publication of JP2005247953A publication Critical patent/JP2005247953A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/4826Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adhesive composition for a semiconductor device, having high adhesiveness, high resistance to solder reflow, and excellent wire bonding processability. <P>SOLUTION: The adhesive composition for the semiconductor device comprises at least one kind of a thermoplastic resin selected from a copolymer containing butadiene as a copolymerizing component and a copolymer containing an acrylic ester and a methacrylic ester having 1-8C side chain as copolymerizing components, a thermoset resin, and inorganic particles having ≤10μm maximum particle diameter and >0.1 μm and ≤2 μm average particle diameter. The content of the inorganic particles is regulated so as to be ≥25 and ≤50 wt.% based on the whole amount of the composition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体集積回路を実装し、パッケージ化をする際に用いられる半導体集積回路接続用基板(インターポーザー)を構成する半導体装置に用いられる接着剤組成物に関する。   The present invention relates to an adhesive composition used for a semiconductor device constituting a semiconductor integrated circuit connection substrate (interposer) used when a semiconductor integrated circuit is mounted and packaged.

近年の代表的な半導体パッケージであるLOC(lead on chip)は図1に示されるような構造をしており、半導体チップ1とリードフレーム4のインナーリードとの接着には、エポキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂等から成る接着剤3が用いられている。この接着剤には、接着性と半田リフロー時のパッケージクラックを生じない耐熱性とを両立することが要求される。   LOC (lead on chip), which is a typical semiconductor package in recent years, has a structure as shown in FIG. 1, and an epoxy resin or a polyamide resin is used for bonding the semiconductor chip 1 and the inner lead of the lead frame 4. An adhesive 3 made of polyimide resin, polyamideimide resin or the like is used. This adhesive is required to have both adhesiveness and heat resistance that does not cause package cracks during solder reflow.

また最近、LOCに属する半導体パッケージとして、図2に示されるような構造を持つものがある。本パッケージは、リードフレーム9と半導体チップ6を直接、ワイヤーボンディング接続7を行わず、リードフレーム9からポリイミドフィルム基板10にワイヤーボンディング接続した後、ポリイミドフィルム基板10から半導体チップにワイヤーボンディング接続される。この半導体パッケージを用いると、半導体チップの回路設計を変えることなく、フィルム基板の回路パターンを変えることで、半導体パッケージとしての設計自由度が大きく増すため、コスト面からも大変有用である。ここで用いられるポリイミドフィルム基板は、TAB(Tape Automated Bonding)テープ、フレキシブルプリント基板等が挙げられ、具体的にはポリイミドフィルムに接着剤層を介し導体パターンを形成してある3層型TABテープや、ポリイミド樹脂層に直接銅層を形成した2層型TABテープが挙げられる。   Recently, some semiconductor packages belonging to LOC have a structure as shown in FIG. In this package, the lead frame 9 and the semiconductor chip 6 are not directly connected by wire bonding 7, but are connected by wire bonding from the lead frame 9 to the polyimide film substrate 10 and then connected from the polyimide film substrate 10 to the semiconductor chip by wire bonding. . The use of this semiconductor package is very useful from the viewpoint of cost because the degree of design freedom as a semiconductor package is greatly increased by changing the circuit pattern of the film substrate without changing the circuit design of the semiconductor chip. Examples of the polyimide film substrate used here include a TAB (Tape Automated Bonding) tape and a flexible printed circuit board. Specifically, a three-layer TAB tape in which a conductor pattern is formed on a polyimide film via an adhesive layer, And a two-layer TAB tape in which a copper layer is directly formed on the polyimide resin layer.

上記形態のような半導体パッケージにおけるリードフレームとポリイミドフィルム基板を接着する接着剤層には、リードフレームとポリイミドフィルム基板の高接着性や、当該半導体パッケージをベース基板へ実装する際の耐リフロー性が要求される。また、特にピン数の多い半導体パッケージでは、動作温度が100℃を超える高温となり、線膨張係数の異なる材料、すなわちポリイミドフィルム基板とリードフレームを接着する場合には、発生する応力を緩和する、いわゆる耐サーマルサイクル性も接着剤層には要求される。   The adhesive layer that bonds the lead frame and the polyimide film substrate in the semiconductor package as described above has high adhesion between the lead frame and the polyimide film substrate, and reflow resistance when the semiconductor package is mounted on the base substrate. Required. In particular, in a semiconductor package having a large number of pins, the operating temperature becomes a high temperature exceeding 100 ° C., and when a material having a different linear expansion coefficient, that is, a polyimide film substrate and a lead frame are bonded, so-called stress is relieved. Thermal cycle resistance is also required for the adhesive layer.

ポリイミドフィルム基板とリードフレームとの接着に用いられる接着剤組成物としては、アクリロニトリル−ブタジエン共重合体を主成分とした系が多く提案されており、耐リフロー性に優れたものとして、カルボキシル基含有アクリロニトリル−ブタジエン共重合体、エポキシ樹脂、硬化剤から成る接着剤が挙げられる(例えば特許文献1参照)。また、耐リフロー性ならびに耐サーマルサイクル性に優れたものとして、エポキシ樹脂、熱可塑性樹脂、シリカ粉末を含有する接着剤が提案されている(例えば特許文献2参照)。さらに、無機微粒子を含有した高弾性率を有する接着剤組成物(例えば特許文献3参照)がある。
特開平11−116924号公報(7〜16段落) 特開平10−178067号公報(16〜41段落) 特開2003−113320号公報(8〜90段落)
As an adhesive composition used for bonding a polyimide film substrate and a lead frame, many systems based on an acrylonitrile-butadiene copolymer have been proposed as a main component and have excellent reflow resistance. Examples thereof include an adhesive composed of an acrylonitrile-butadiene copolymer, an epoxy resin, and a curing agent (see, for example, Patent Document 1). In addition, an adhesive containing an epoxy resin, a thermoplastic resin, and silica powder has been proposed as one excellent in reflow resistance and thermal cycle resistance (see, for example, Patent Document 2). Furthermore, there is an adhesive composition having a high elastic modulus containing inorganic fine particles (see, for example, Patent Document 3).
JP-A-11-116924 (7-16 paragraphs) Japanese Patent Laid-Open No. 10-178067 (paragraphs 16 to 41) JP 2003-113320 A (8-90 paragraphs)

しかしながら、これらの接着剤を図2に示されるような半導体パッケージに適用すると、高接着性、耐リフロー性を示すものの、半導体チップとポリイミドフィルム基板間、ポリイミドフィルム基板とリードフレーム間をワイヤーボンディングする際、ポリイミドフィルム基板上のボンディングパッドが凹み、ボンディングができないという大きな問題が生じる。これは通常のボンディング温度150℃付近において、ポリイミドフィルム基板とリードフレームを接着している接着剤層が柔らかくなり、変形することによってボンディングパッド部分に凹みが生じることに因る。さらに無機微粒子を添加しただけでは、高弾性率は示すものの耐リフロー性が劣る。   However, when these adhesives are applied to a semiconductor package as shown in FIG. 2, they exhibit high adhesion and reflow resistance, but wire bonding is performed between the semiconductor chip and the polyimide film substrate and between the polyimide film substrate and the lead frame. At this time, the bonding pad on the polyimide film substrate is recessed, which causes a big problem that bonding cannot be performed. This is due to the fact that the adhesive layer that bonds the polyimide film substrate and the lead frame becomes soft near the normal bonding temperature of 150 ° C., and that the bonding pad portion is dented by deformation. Furthermore, if only inorganic fine particles are added, the reflow resistance is inferior although it exhibits a high elastic modulus.

本発明の目的は、上述の半導体用接着剤組成物のワイヤーボンディング時における問題点を解決し、高接着性、高耐リフロー性を有し、ワイヤーボンディング加工性に優れる半導体装置用接着剤組成物を提供することにある。   An object of the present invention is to solve the problems in wire bonding of the above-mentioned adhesive composition for semiconductors, has high adhesion, high reflow resistance, and has excellent wire bonding processability. Is to provide.

すなわち本発明は、ブタジエンを共重合成分とする共重合体、もしくは炭素数1〜8の側鎖を有するアクリル酸エステルおよびメタクリル酸エステルを共重合成分とする共重合体、から少なくとも1種選ばれる熱可塑性樹脂、熱可塑性樹脂、最大粒径10μm以下、平均粒径0.1μmを越えて2μm以下の無機粒子を有し、無機粒子の含有量が組成物全体量に対し25重量%以上50重量%以下であることを特徴とする半導体装置用接着剤組成物である。   That is, the present invention is at least one selected from a copolymer having butadiene as a copolymer component, or a copolymer having an acrylic acid ester and a methacrylic acid ester having a side chain having 1 to 8 carbon atoms as a copolymer component. Thermoplastic resin, thermoplastic resin, inorganic particles having a maximum particle size of 10 μm or less and an average particle size of more than 0.1 μm and 2 μm or less, and the content of inorganic particles is 25% by weight or more and 50% by weight with respect to the total amount of the composition % Of the adhesive composition for a semiconductor device.

本発明によれば、高接着性、高耐リフロー性を有し、ワイヤーボンディング加工性に優れる半導体装置用接着剤組成物を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, it has high adhesiveness and high reflow resistance, and can obtain the adhesive composition for semiconductor devices which is excellent in wire bonding workability.

本発明における半導体用接着剤組成物とは、半導体素子やリードフレーム、配線基板(インターポーザー)用の層間接着剤であり、それら被着体の形状および材料は特に限定されない。   The semiconductor adhesive composition in the present invention is an interlayer adhesive for semiconductor elements, lead frames, and wiring boards (interposers), and the shape and material of these adherends are not particularly limited.

本発明の接着剤層を構成する接着剤組成物は熱可塑性樹脂と熱硬化性樹脂をそれぞれ少なくとも1種類を含むことが好ましい。熱可塑性樹脂は接着性、可撓性、熱応力の緩和、低吸水性による絶縁性の向上等の機能を有する。   The adhesive composition constituting the adhesive layer of the present invention preferably contains at least one kind of thermoplastic resin and thermosetting resin. The thermoplastic resin has functions such as adhesion, flexibility, relaxation of thermal stress, and improvement of insulation due to low water absorption.

熱可塑性樹脂としては、リードフレーム金属素材との接着性、可撓性、熱応力の緩和効果の点から、ブタジエンを共重合成分とする共重合体、もしくは炭素数1〜8の側鎖を有するアクリル酸エステルおよびメタクリル酸エステルを共重合成分とする共重合体から少なくとも1種選ばれ、1種類でも複数種用いても良い。これらの熱可塑性樹脂は後述の熱硬化性樹脂との反応が可能な官能基を有していてもよい。具体的には、アミノ基、カルボキシル基、エポキシ基、水酸基、メチロール基、イソシアネート基、ビニル基、シラノール基等である。これらの官能基により熱硬化性樹脂との結合が強固になり、耐熱性が向上するので好ましい。   The thermoplastic resin has a copolymer containing butadiene as a copolymer component or a side chain having 1 to 8 carbon atoms from the viewpoint of adhesion to the lead frame metal material, flexibility, and relaxation effect of thermal stress. At least one selected from copolymers having acrylic acid esters and methacrylic acid esters as copolymerization components may be used, or one or more may be used. These thermoplastic resins may have a functional group capable of reacting with a thermosetting resin described later. Specific examples include an amino group, a carboxyl group, an epoxy group, a hydroxyl group, a methylol group, an isocyanate group, a vinyl group, and a silanol group. These functional groups are preferable because the bond with the thermosetting resin becomes stronger and the heat resistance is improved.

また、より好ましい熱可塑性樹脂としては、金属との接着性、耐薬品性等の観点から、アクリロニトリル−ブタジエン共重合体(NBR)、スチレン−ブタジエン−エチレン樹脂(SEBS)、スチレン−ブタジエン樹脂(SBS)等が挙げられる。さらにブタジエンを必須共重合成分としかつカルボキシル基を有する共重合体はより好ましく、たとえばNBR(NBR−C)およびSEBS(SEBS−C)、SBS(SBS−C)等が挙げられる。ここで「C」はカルボキシル基を有するという意味である。NBR−Cとしては、例えばアクリロニトリルとブタジエンを約10/90〜50/50のモル比で共重合させた共重合ゴムの末端基をカルボキシル化したもの、あるいはアクリロニトリル、ブタジエンとアクリル酸、マレイン酸などのカルボキシル基含有重合性単量体の三元系共重合ゴムなどが挙げられる。具体的には、PNR−1H(日本合成ゴム(株)製)、”ニポール”1072J、”ニポール”DN612、”ニポール”DN631(以上日本ゼオン(株)製)、”ハイカー”CTBN(BFグッドリッチ社製)等がある。また、SEBS−CとしてはMX−073(旭化成(株)製)が、SBS−CとしてはD1300X(シェルジャパン(株)製)が例示できる。   More preferable thermoplastic resins include acrylonitrile-butadiene copolymer (NBR), styrene-butadiene-ethylene resin (SEBS), and styrene-butadiene resin (SBS) from the viewpoints of adhesion to metal and chemical resistance. ) And the like. Further, copolymers having butadiene as an essential copolymer component and having a carboxyl group are more preferable, and examples thereof include NBR (NBR-C), SEBS (SEBS-C), and SBS (SBS-C). Here, “C” means having a carboxyl group. Examples of NBR-C include those obtained by carboxylating terminal groups of a copolymer rubber obtained by copolymerizing acrylonitrile and butadiene at a molar ratio of about 10/90 to 50/50, or acrylonitrile, butadiene and acrylic acid, maleic acid, etc. And terpolymer rubbers of carboxyl group-containing polymerizable monomers. Specifically, PNR-1H (manufactured by Nippon Synthetic Rubber Co., Ltd.), “Nipole” 1072J, “Nipol” DN612, “Nipol” DN631 (manufactured by Nippon Zeon Co., Ltd.), “Hiker” CTBN (BF Goodrich) Etc.). Moreover, MX-073 (made by Asahi Kasei Co., Ltd.) can be illustrated as SEBS-C, and D1300X (made by Shell Japan Co., Ltd.) can be exemplified as SBS-C.

熱硬化性樹脂は耐熱性、高温での絶縁性、耐薬品性、接着剤層の強度等のバランスを実現するために必要である。熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂、キシレン樹脂、フラン樹脂、シアン酸エステル樹脂、等公知のものが例示される。特に、エポキシ樹脂およびフェノール樹脂は絶縁性に優れるので好適である。   The thermosetting resin is necessary to realize a balance of heat resistance, insulation at high temperature, chemical resistance, strength of the adhesive layer, and the like. Examples of the thermosetting resin include known resins such as epoxy resins, phenol resins, melamine resins, xylene resins, furan resins, and cyanate ester resins. In particular, an epoxy resin and a phenol resin are preferable because of excellent insulation.

エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するものなら特に制限されないが、ビスフェノールF、ビスフェノールA、ビスフェノールS、レゾルシノール、ジヒドロキシナフタレン、ジシクロペンタジエンジフェノール等のジグリシジルエーテル、エポキシ化フェノールノボラック、エポキシ化クレゾールノボラック、エポキシ化トリスフェニロールメタン、エポキシ化テトラフェニロールエタン、エポキシ化メタキシレンジアミン、シクロヘキサンエポキサイド等の脂環式エポキシ等が挙げられる。具体的には、YD−128(東都化成(株)製)、”エピコート”828、”エピコート”180(油化シェルエポキシ(株)製)等が例示できる。さらに、難燃性付与のために、ハロゲン化エポキシ樹脂、特に臭素化エポキシ樹脂を用いることも有効である。この際、臭素化エポキシ樹脂のみでは難燃性の付与はできるものの接着剤の耐熱性の低下が大きくなるため非臭素化エポキシ樹脂との混合系とすることがさらに有効である。臭素化エポキシ樹脂の例としては、テトラブロモビスフェノールAとビスフェノールAの共重合型エポキシ樹脂、あるいは”BREN”−S(日本化薬(株)製)等の臭素化フェノールノボラック型エポキシ樹脂が挙げられる。これらの臭素化エポキシ樹脂は臭素含有量およびエポキシ当量を考慮して2種類以上混合しても良い。   The epoxy resin is not particularly limited as long as it has two or more epoxy groups in one molecule, but diglycidyl ether such as bisphenol F, bisphenol A, bisphenol S, resorcinol, dihydroxynaphthalene, dicyclopentadiene diphenol, and epoxidation Examples include phenol novolak, epoxidized cresol novolak, epoxidized trisphenylol methane, epoxidized tetraphenylol ethane, epoxidized metaxylene diamine, cyclohexane epoxide, and the like. Specifically, YD-128 (manufactured by Toto Kasei Co., Ltd.), “Epicoat” 828, “Epicoat” 180 (manufactured by Yuka Shell Epoxy Co., Ltd.) and the like can be exemplified. Furthermore, it is also effective to use a halogenated epoxy resin, particularly a brominated epoxy resin, for imparting flame retardancy. At this time, although it is possible to impart flame retardancy with a brominated epoxy resin alone, it is more effective to use a mixed system with a non-brominated epoxy resin because the heat resistance of the adhesive is greatly reduced. Examples of brominated epoxy resins include copolymerized epoxy resins of tetrabromobisphenol A and bisphenol A, or brominated phenol novolac type epoxy resins such as “BREN” -S (manufactured by Nippon Kayaku Co., Ltd.). . Two or more kinds of these brominated epoxy resins may be mixed in consideration of bromine content and epoxy equivalent.

フェノール樹脂としては、ノボラック型フェノール樹脂、レゾール型フェノール樹脂等の公知のフェノール樹脂がいずれも使用できる。たとえば、フェノール、クレゾール、p−t−ブチルフェノール、ノニルフェノール、p−フェニルフェノール等のアルキル置換フェノール、テルペン、ジシクロペンタジエン等の環状アルキル変性フェノール、ニトロ基、ハロゲン基、シアノ基、アミノ基等のヘテロ原子を含む官能基を有するもの、ナフタレン、アントラセン等の骨格を有するもの、ビスフェノールF、ビスフェノールA、ビスフェノールS、レゾルシノール、ピロガロール等の多官能性フェノールからなる樹脂が挙げられる。   As the phenol resin, any known phenol resin such as novolak type phenol resin and resol type phenol resin can be used. For example, alkyl-substituted phenols such as phenol, cresol, pt-butylphenol, nonylphenol, p-phenylphenol, cyclic alkyl-modified phenols such as terpene and dicyclopentadiene, hetero groups such as nitro groups, halogen groups, cyano groups, and amino groups Examples thereof include those having functional groups containing atoms, those having a skeleton such as naphthalene and anthracene, and resins composed of polyfunctional phenols such as bisphenol F, bisphenol A, bisphenol S, resorcinol, and pyrogallol.

熱硬化性樹脂の添加量は熱可塑性樹脂100重量部に対して5〜400重量部、好ましくは50〜200重量部である。熱硬化性樹脂の添加量が5重量部未満であると、高温での弾性率低下が著しく、半導体装置を実装した機器の使用中に半導体集積回路接続用基板の変形が生じるとともに加工工程において取り扱いの作業性に欠けるので好ましくない。熱硬化性樹脂の添加量が400重量部を越えると弾性率が高く、熱膨張係数が小さくなり熱応力の緩和効果が小さいので好ましくない。   The addition amount of the thermosetting resin is 5 to 400 parts by weight, preferably 50 to 200 parts by weight with respect to 100 parts by weight of the thermoplastic resin. If the amount of the thermosetting resin added is less than 5 parts by weight, the elastic modulus will decrease significantly at high temperatures, and the semiconductor integrated circuit connection substrate will be deformed during use of the device mounted with the semiconductor device and handled in the processing process. This is not preferable because of lack of workability. If the addition amount of the thermosetting resin exceeds 400 parts by weight, the elastic modulus is high, the thermal expansion coefficient is small, and the thermal stress relaxation effect is small, which is not preferable.

本発明の接着剤層にエポキシ樹脂およびフェノール樹脂の硬化剤および硬化促進剤を添加することは何等制限されない。たとえば、トリエチルアミン、ベンジルジメチルアミン、α−メチルベンジルジメチルアミン、2−(ジメチルアミノメチル)フェノール、2,4,6−トリス(ジメチルアミノメチル)フェノールおよび1,8−ジアザビシクロ(5,4,0)ウンデセン−7などの3級アミン化合物、3,3’5,5’−テトラメチル−4,4’−ジアミノジフェニルメタン、3,3’5,5’−テトラエチル−4,4’−ジアミノジフェニルメタン、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジアミノジフェニルメタン、3,3’−ジクロロ−4,4’−ジアミノジフェニルメタン、2,2’3,3’−テトラクロロ−4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノベンゾフェノン、3,4,4’−トリアミノジフェニルスルホン等の芳香族ポリアミン、三フッ化ホウ素トリエチルアミン錯体等の三フッ化ホウ素のアミン錯体、2−アルキル−4−メチルイミダゾール、2−フェニル−4−アルキルイミダゾール等のイミダゾール誘導体、無水フタル酸、無水トリメリット酸等の有機酸、ジシアンジアミド、トリフェニルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリ(p−メチルフェニル)ホスフィンおよびトリ(ノニルフェニル)ホスフィンなどの有機ホスフィン化合物等が使用できる。これらを単独または2種以上混合しても良い。添加量は接着剤組成物100重量部に対して0.1〜50重量部であると好ましい。   Addition of an epoxy resin and phenolic resin curing agent and curing accelerator to the adhesive layer of the present invention is not limited. For example, triethylamine, benzyldimethylamine, α-methylbenzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol and 1,8-diazabicyclo (5,4,0) Tertiary amine compounds such as undecene-7, 3,3′5,5′-tetramethyl-4,4′-diaminodiphenylmethane, 3,3′5,5′-tetraethyl-4,4′-diaminodiphenylmethane, 3, , 3′-dimethyl-5,5′-diethyl-4,4′-diaminodiphenylmethane, 3,3′-dichloro-4,4′-diaminodiphenylmethane, 2,2′3,3′-tetrachloro-4, 4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminobenzophenone Aromatics such as 3,3′-diaminodiphenyl sulfone, 4,4′-diaminodiphenyl sulfone, 3,4′-diaminodiphenyl sulfone, 4,4′-diaminobenzophenone, 3,4,4′-triaminodiphenyl sulfone Boron trifluoride amine complexes such as polyamine, boron trifluoride triethylamine complex, imidazole derivatives such as 2-alkyl-4-methylimidazole and 2-phenyl-4-alkylimidazole, phthalic anhydride, trimellitic anhydride, etc. Organic phosphine compounds such as organic acid, dicyandiamide, triphenylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, tri (p-methylphenyl) phosphine and tri (nonylphenyl) phosphine can be used. These may be used alone or in combination of two or more. The addition amount is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the adhesive composition.

また、硬化剤として、シランカップリング剤を併用することもできる。シランカップリング剤は、ケイ素に有機マトリックスと親和もしくは結合可能な有機官能基と無機材料と結合可能な加水分解基を持った構造している。有機官能基としては、アルキル基、フェニル基、アミノ基、エポキシ基、ビニル基、メタクリロキシ基、メルカプトキシ基等があり、一般的には炭素数1〜6のアルキレン基を介してケイ素原子と結合している。また、有機官能基はエポキシ基、アミノ基を有しているものが反応性がよく、接着剤の耐リフロー性に優れ、好ましい。具体的には、有機官能基がアミノ基の場合、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピル−トリス(β−メトキシ−エトキシ−エトキシ)シラン、N−メチル−γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、 N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、トリアミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−4,5ジヒドロキシイミダゾールプロピルトリエトキシシランが挙げられる。有機官能基がエポキシ基の場合、β−3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシランが挙げられる。   Moreover, a silane coupling agent can also be used together as a hardening | curing agent. The silane coupling agent has a structure in which silicon has an organic functional group capable of binding or binding to an organic matrix and a hydrolyzable group capable of binding to an inorganic material. Examples of the organic functional group include an alkyl group, a phenyl group, an amino group, an epoxy group, a vinyl group, a methacryloxy group, a mercaptooxy group, and generally bonded to a silicon atom via an alkylene group having 1 to 6 carbon atoms. doing. Moreover, what has an epoxy group and an amino group as an organic functional group has good reactivity, and is excellent in the reflow resistance of an adhesive agent, and preferable. Specifically, when the organic functional group is an amino group, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltris (β-methoxy-ethoxy-ethoxy) silane, N-methyl -Γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, triaminopropyltrimethoxysilane, Examples thereof include N-phenyl-γ-aminopropyltrimethoxysilane and γ-4,5 dihydroxyimidazolepropyltriethoxysilane. When the organic functional group is an epoxy group, β-3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyl Diethoxysilane is mentioned.

以上の成分以外に、接着剤組成物のワイヤーボンディング時における変形を抑制し、かつ膜強度を向上させる目的で無機粒子成分を添加する。無機粒子成分の粒径については、分散性および塗工性、耐リフロー性等の観点から、最大粒径10μm以下が好ましく、さらに好ましくは最大粒径5μm以下である。また平均粒径0.1μmを越えて2μm以下が好ましく、さらに好ましくは、平均粒径0.1μmを越えて1μm以下である。平均粒径が2μmを越えると、接着剤組成分中の粒子の分散が劣り、膜強度向上効果も低くなることから要求特性を満たさない。また、最大粒径10μmを越えると、被着体への接着剤埋まり込みを悪化させ、接着強度、耐リフロー性が低下する。平均粒径が0.1μm以下であると接着剤製造工程中での接着剤塗料中で粒子の凝集が起こりやすく、均一な分散状態にすることが困難で、目的とする効果が得られない。なお、平均粒径、最大粒径は、レーザー回折/散乱式粒子径分布測定装置、動的光散乱式粒径分布測定装置などを用いて測定することができる。また、硬化後の接着剤層断面のTEM(透過型電子顕微鏡)観察により、接着剤層中に含有する粒子径を調べることもできる。   In addition to the above components, an inorganic particle component is added for the purpose of suppressing deformation of the adhesive composition during wire bonding and improving the film strength. The particle size of the inorganic particle component is preferably a maximum particle size of 10 μm or less, more preferably a maximum particle size of 5 μm or less, from the viewpoints of dispersibility, coating properties, reflow resistance and the like. The average particle size is preferably more than 0.1 μm and not more than 2 μm, more preferably more than the average particle size of 0.1 μm and not more than 1 μm. If the average particle diameter exceeds 2 μm, the dispersion of the particles in the adhesive composition will be inferior and the effect of improving the film strength will be low, so that the required characteristics will not be satisfied. On the other hand, when the maximum particle size exceeds 10 μm, the embedding of the adhesive into the adherend is worsened, and the adhesive strength and reflow resistance are lowered. If the average particle size is 0.1 μm or less, the particles are likely to aggregate in the adhesive coating during the adhesive manufacturing process, making it difficult to achieve a uniform dispersion state, and the intended effect cannot be obtained. The average particle size and the maximum particle size can be measured using a laser diffraction / scattering particle size distribution measuring device, a dynamic light scattering particle size distribution measuring device, or the like. Moreover, the particle diameter contained in an adhesive bond layer can also be investigated by TEM (transmission electron microscope) observation of the adhesive bond cross section after hardening.

また、特に耐リフロー性の点より、半田リフロー時の250〜260℃といった温度で分解が生じないもの、具体例としては、シリカ、アルミナ、酸化ジルコニウム、酸化亜鉛、三酸化アンチモン、五酸化アンチモン、酸化マグネシウム、酸化チタン、酸化鉄、酸化コバルト、酸化クロム、タルク等の金属酸化物、アルミニウム、金、銀、ニッケル、鉄、等の金属微粒子、あるいはカーボンブラック、ガラスが挙げられる。これらを単独または2種以上混合して用いても良い。   In particular, from the viewpoint of reflow resistance, those that do not decompose at a temperature of 250 to 260 ° C. during solder reflow, specific examples include silica, alumina, zirconium oxide, zinc oxide, antimony trioxide, antimony pentoxide, Examples thereof include metal oxides such as magnesium oxide, titanium oxide, iron oxide, cobalt oxide, chromium oxide and talc, fine metal particles such as aluminum, gold, silver, nickel and iron, carbon black and glass. You may use these individually or in mixture of 2 or more types.

中でも熱分解温度が300℃を大きく超える点、接着剤シートの流動性を調整しやすい点、粒径の安定性からシリカが特に好ましい。粒子形状、結晶性は特に制限はされず、破砕系、球状、鱗片状などが用いられるが、塗料への分散性の良さ、接着剤組成物の接着強度・膜強度等が優れ、かつ熱膨張係数の低下効果が大きい、溶融球状シリカが好ましく用いられる。ここでいう溶融シリカとは、真比重2.3の非晶性シリカを意味する。この溶融シリカの製造は、必ずしも溶融状態を経る必要はなく、例えば結晶性シリカを溶融する方法および各種原料から合成する方法などが挙げられる。   Of these, silica is particularly preferable because the thermal decomposition temperature greatly exceeds 300 ° C., the fluidity of the adhesive sheet is easily adjusted, and the particle size is stable. The particle shape and crystallinity are not particularly limited, and crushing systems, spheres, scales, etc. are used. Good dispersibility in paints, excellent adhesive strength and film strength of the adhesive composition, and thermal expansion. Fused spherical silica, which has a large coefficient reduction effect, is preferably used. The fused silica here means amorphous silica having a true specific gravity of 2.3. The production of the fused silica does not necessarily need to go through a molten state, and examples thereof include a method of melting crystalline silica and a method of synthesizing from various raw materials.

無機粒子の配合量は、接着剤組成物全体の25重量%以上50重量%以下が好ましく、30重量%以上45重量%以下がさらに好ましい。25重量%未満であると、目的である熱硬化済み接着剤のレジンフローが大きくなり、好ましくない。また、50重量部を超えるとレジンフローは小さくなるが、被着体への接着強度が低下する。   The blending amount of the inorganic particles is preferably 25% by weight to 50% by weight and more preferably 30% by weight to 45% by weight of the entire adhesive composition. If it is less than 25% by weight, the resin flow of the target heat-cured adhesive becomes large, which is not preferable. On the other hand, if it exceeds 50 parts by weight, the resin flow becomes small, but the adhesion strength to the adherend is lowered.

また、実装後の信頼性向上のため、粒子の純度は99%を越え、好ましくは99.8%を越え、さらに好ましくは99.9%を越えることが好ましい。純度99%以下であると、ウラン、トリウム等の放射線不純物により放出されるα線により、半導体素子のソフトエラーが生じやすくなる。また、これらの無機粒子に耐熱性、接着強度等の向上のため、シランカップリング剤等を用いて、表面処理を施しても良い。   In order to improve reliability after mounting, it is preferable that the purity of the particles exceeds 99%, preferably exceeds 99.8%, and more preferably exceeds 99.9%. When the purity is 99% or less, a soft error of the semiconductor element is likely to occur due to α rays emitted by radiation impurities such as uranium and thorium. These inorganic particles may be subjected to surface treatment using a silane coupling agent or the like in order to improve heat resistance, adhesive strength and the like.

本発明の半導体装置用接着剤シートは、本発明の半導体装置用接着剤組成物から作成され、熱硬化済みの該接着剤組成物が、圧着温度150℃、圧着圧力35MPa、圧着時間5分の圧着におけるレジンフロー測定において、レジンフローが120%以下であることが好ましく、さらに好ましくは110%以下である。レジンフローが120%を越えると、半導体パッケージ加工時における通常のボンディング温度150℃付近において、TABテープとリードフレームを接着している接着剤層が柔らかくなり、変形しやすくなることからボンディングパッドが凹み、ボンディングが出来ない問題が生じ、好ましくない。熱硬化済みの接着剤のレジンフローは以下の方法により求めた。直径6mm、厚さ100μmの接着剤単膜を、ガラス板/接着剤/銅板の構成となるようにラミネートを行った後、ポストキュアを行う。次いでこのサンプルを圧着温度150℃、圧着圧力35MPa、圧着時間5分の条件下で圧着する。圧着によって接着剤単膜が変形するので、その変形量を圧着前の直径6mmに対する圧着後の直径から以下の式を用いて算出し、これをレジンフロー[%]とする。
レジンフロー(%)=(圧着後の直径/圧着前の直径6mm)×100。
The adhesive sheet for a semiconductor device of the present invention is prepared from the adhesive composition for a semiconductor device of the present invention, and the thermally cured adhesive composition has a pressing temperature of 150 ° C., a pressing pressure of 35 MPa, and a pressing time of 5 minutes. In the resin flow measurement in the pressure bonding, the resin flow is preferably 120% or less, more preferably 110% or less. If the resin flow exceeds 120%, the adhesive layer that bonds the TAB tape and the lead frame becomes soft and deforms easily at the normal bonding temperature of 150 ° C when processing semiconductor packages. This causes a problem that bonding cannot be performed, which is not preferable. The resin flow of the heat-cured adhesive was determined by the following method. After laminating an adhesive single film having a diameter of 6 mm and a thickness of 100 μm so as to have a glass plate / adhesive / copper plate configuration, post-cure is performed. Next, this sample is pressure bonded under the conditions of a pressure bonding temperature of 150 ° C., a pressure bonding pressure of 35 MPa, and a pressure bonding time of 5 minutes. Since the adhesive single film is deformed by pressure bonding, the amount of deformation is calculated from the diameter after pressure bonding with respect to the diameter of 6 mm before pressure bonding using the following formula, and this is defined as resin flow [%].
Resin flow (%) = (diameter after crimping / diameter 6 mm before crimping) × 100.

また本発明の接着剤組成物は、熱硬化済みの該接着剤組成物の150℃における貯蔵弾性率が3MPa以上、さらに好ましくは5MPa以上であることが好ましい。3MPa未満であると接着剤の膜強度が低く、高温時の接着剤変形が大きくなり、ワイヤーボンディングに好ましくない。ワイヤーボンディングには、貯蔵弾性率が大きい方が好ましいが、接着強度、耐リフロー性、応力緩和効果の点から100MPa以下であることが好ましい。なお、貯蔵弾性率測定は、引っ張りモードの動的粘弾性測定装置にて周波数1Hz、昇温速度5℃/分、温度測定範囲−70〜300℃で測定を行う。   In the adhesive composition of the present invention, the heat-cured adhesive composition preferably has a storage elastic modulus at 150 ° C. of 3 MPa or more, more preferably 5 MPa or more. If it is less than 3 MPa, the film strength of the adhesive is low, and deformation of the adhesive at high temperatures becomes large, which is not preferable for wire bonding. For wire bonding, a larger storage elastic modulus is preferable, but it is preferably 100 MPa or less from the viewpoint of adhesive strength, reflow resistance, and stress relaxation effect. The storage elastic modulus is measured with a tensile mode dynamic viscoelasticity measuring device at a frequency of 1 Hz, a heating rate of 5 ° C./min, and a temperature measurement range of −70 to 300 ° C.

本発明の接着剤層の厚みは、接着強度、レジンフロー、貯蔵弾性率との関係で適宜選択できるが、10μm以上250μm以下が好ましく、さらに好ましくは12μm以上150μm以下である。   The thickness of the adhesive layer of the present invention can be appropriately selected depending on the relationship between adhesive strength, resin flow, and storage elastic modulus, but is preferably 10 μm or more and 250 μm or less, and more preferably 12 μm or more and 150 μm or less.

本発明の半導体装置用接着剤シートは、有機絶縁性フィルムの少なくとも一方の面に本発明の組成物からなる接着剤層が形成されたものであれば良く、接着剤層の両面に有機絶縁性フィルムを有している態様も含む。用いられる有機絶縁性フィルムは大きく分けて2通りあり、基材として用いられる場合と保護層として用いられる場合とで以下のような材料が挙げられる。   The adhesive sheet for a semiconductor device of the present invention may be any sheet as long as the adhesive layer made of the composition of the present invention is formed on at least one surface of the organic insulating film. The aspect which has a film is also included. The organic insulating film to be used is roughly divided into two types, and the following materials can be mentioned depending on whether they are used as a base material or a protective layer.

有機絶縁性フィルムを基材として用いられた場合を以下に示す。銅箔等の金属板を、本発明の接着剤層により有機絶縁性フィルムへ貼り合わせ、銅箔をエッチングすることによりパターン形成をすると、配線基板として用いることができる。このときの有機絶縁性フィルムは、ポリイミド、ポリエステル、ポリフェニレンスルフィド、ポリエーテルスルホン、ポリエーテルエーテルケトン、アラミド、ポリカーボネート、ポリアリレート等のプラスチックあるいはエポキシ樹脂含浸ガラスクロス等の複合材料からなる、厚さ10〜125μmの可撓性を有する絶縁性フィルムが用いられる。   The case where an organic insulating film is used as a base material is shown below. When a metal plate such as a copper foil is bonded to an organic insulating film with the adhesive layer of the present invention and the copper foil is etched to form a pattern, it can be used as a wiring board. The organic insulating film at this time is made of a composite material such as polyimide, polyester, polyphenylene sulfide, polyethersulfone, polyetheretherketone, aramid, polycarbonate, polyarylate, or a plastic or epoxy resin-impregnated glass cloth. An insulating film having flexibility of ˜125 μm is used.

次に有機絶縁性フィルムを接着剤の保護層(以下、保護フィルムともいう)の役割として用いる場合を以下に示す。本発明の半導体装置用接着剤シートは、接着剤層の保護のために、少なくとも片面、必要であれば両面に保護層を有することは構わない。保護層の材料は、絶縁体層および導体パターンからなる配線基板層(TABテープ等)、あるいは導体パターンが形成されていない層(リードフレーム、ヒートスプレッター等)に接着剤層を貼り合わせる前に、接着剤層の形態および機能を損なわず、また必要に応じ剥離できれば特に限定されない。その具体例はポリエステル、ポリオレフィン、ポリフェニレンスルフィド、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリビニルブチラール、ポリ酢酸ビニル、ポリビニルアルコール、ポリカーボネート、ポリアミド、ポリイミド、ポリメチルメタクリレート等のプラスチックフィルム、これらにシリコーン、アルキッド系樹脂、ポリオレフィン系樹脂あるいは含フッ素化合物等の離型剤のコーティング処理を施したフィルム、あるいはこれらのフィルムをラミネートした紙やこれらフィルムの積層体、離型性のある樹脂を含浸あるいはコーティング処理した紙等が挙げられる。また、サンドマット加工フィルムも挙げられる。これはフィルム表面を微粒子吹きつけなどにより、微小の凹凸を付けたもので、離型性を凹凸レベルにより調節できる。これらの保護フィルムの中で、特に本発明で好ましく用いられるものは離型性の調節に優れる、シリコーンあるいは含フッ素化合物等の離型処理を施したフィルムである。さらに好ましくは、前述の離型処理が施されたポリエステルフィルムが耐熱性の点で優れている。   Next, the case where an organic insulating film is used as a role of an adhesive protective layer (hereinafter also referred to as a protective film) will be described below. The adhesive sheet for a semiconductor device of the present invention may have a protective layer on at least one side and, if necessary, on both sides in order to protect the adhesive layer. The material of the protective layer is a wiring board layer (TAB tape or the like) composed of an insulator layer and a conductor pattern, or a layer where a conductor pattern is not formed (lead frame, heat spreader, etc.) It will not specifically limit if the form and function of an adhesive bond layer are not impaired and it can peel as needed. Specific examples are polyester, polyolefin, polyphenylene sulfide, polyvinyl chloride, polytetrafluoroethylene, polyvinyl fluoride, polyvinyl butyral, polyvinyl acetate, polyvinyl alcohol, polycarbonate, polyamide, polyimide, polymethyl methacrylate, and other plastic films. Films that have been coated with a release agent such as silicone, alkyd resin, polyolefin resin, or fluorine-containing compound, paper laminated with these films, laminates of these films, or impregnated with releasable resins Examples thereof include coated paper. Moreover, a sand mat processed film is also mentioned. This is a film with fine irregularities formed by spraying fine particles on the film surface, and the releasability can be adjusted by the irregularity level. Among these protective films, those particularly preferably used in the present invention are films which have been subjected to a release treatment such as silicone or a fluorine-containing compound, which are excellent in controlling the release properties. More preferably, the polyester film subjected to the above-described mold release treatment is excellent in terms of heat resistance.

また、特に図3のように接着剤層の両面に保護フィルムを有する場合は、それぞれの保護フィルムの接着剤層に対する剥離力をF1、F2(F1>F2)としたとき、F1−F2は好ましくは5N/m以上、さらに好ましくは10N/m以上が必要である。F1−F2が5N/mより小さい場合は、剥離面がいずれの保護フィルム側になるかが安定せず、使用上問題となるので好ましくない。また、剥離力F1、F2はいずれも1〜200N/m、好ましくは3〜150N/m、さらに好ましくは3〜100N/mである。1N/mより小さい場合は保護フィルムの脱落が生じ、200N/mを越えると剥離が困難になり好ましくない。   In particular, when protective films are provided on both sides of the adhesive layer as shown in FIG. 3, F1-F2 is preferable when the peel strength of each protective film to the adhesive layer is F1, F2 (F1> F2). Needs 5 N / m or more, more preferably 10 N / m or more. When F1-F2 is less than 5 N / m, it is not preferable which side of the protective film the release surface is on, which is not stable because it causes a problem in use. The peeling forces F1 and F2 are both 1 to 200 N / m, preferably 3 to 150 N / m, and more preferably 3 to 100 N / m. If it is less than 1 N / m, the protective film will drop off, and if it exceeds 200 N / m, peeling becomes difficult, which is not preferable.

保護フィルムは、加工時に視認性が良いように顔料による着色が施されていても良い。これにより、先に剥離する側の保護フィルムが簡便に認識できるため、誤使用を避けることができる。   The protective film may be colored with a pigment so as to have good visibility during processing. Thereby, since the protective film of the side which peels previously can be recognized easily, misuse can be avoided.

また、本発明における接着剤シートは、銅箔や補強板等の被着体へ貼り合わせ時に気泡を噛み込むとリフロー時の膨れ原因にもなり好ましくない。したがって接着剤自体の粘着性を下げるため、接着剤層の片面、必要であれば両面が粗面化されていても構わない。この方法によれば、接着剤層自体の粘着性が高くても粗面化することで、貼り合わせる対象物への接点が分散されることにより粘着性が低減される。接着剤の粗面化の方法は、特に限定されるものではないが、次の例が挙げられる。接着剤組成物が溶解された塗液をフィルム上に塗布、乾燥し、半硬化状態の接着剤シートを作製する際、接着剤組成物が塗布されるフィルムの表面形状に凹凸があれば、その凹凸が接着剤シート表面に転写され、粗面化できる。例えばエンボス加工やサンドマット加工されたフィルムであれば良い。また、作製された接着剤シートの保護フィルムに凹凸のあるフィルムを用い、ラミネートすれば同様に凹凸が接着剤シート表面に転写される。ただし、フィルム表面の凹凸に接着剤が埋まり込むことより、実際の使用の際、フィルムを剥がしにくくなることがある。このため、特に本発明で好ましく用いられるフィルムは、シリコーンあるいは含フッ素化合物等の離型処理を施したフィルムである。その他にも、接着剤シートを凹凸のあるゴムロールなどで粗面化することもできる。   In addition, the adhesive sheet in the present invention is not preferable if air bubbles are bitten into an adherend such as a copper foil or a reinforcing plate at the time of reflow. Therefore, in order to reduce the adhesiveness of the adhesive itself, one side of the adhesive layer, and if necessary, both sides may be roughened. According to this method, even if the adhesive layer itself has high tackiness, the surface is roughened, and the contacts to the object to be bonded are dispersed, thereby reducing the tackiness. The method for roughening the adhesive is not particularly limited, but the following examples can be given. When a coating liquid in which the adhesive composition is dissolved is applied onto a film and dried to produce a semi-cured adhesive sheet, if the surface shape of the film to which the adhesive composition is applied is uneven, Unevenness can be transferred to the surface of the adhesive sheet and roughened. For example, any film that has been embossed or sand-matted may be used. Moreover, if a film with unevenness is used for the protective film of the produced adhesive sheet and laminated, the unevenness is similarly transferred to the surface of the adhesive sheet. However, since the adhesive is embedded in the unevenness of the film surface, it may be difficult to peel off the film in actual use. For this reason, the film preferably used in the present invention is a film which has been subjected to mold release treatment such as silicone or a fluorine-containing compound. In addition, the adhesive sheet can be roughened with an uneven rubber roll.

また、本発明の接着剤層に、低粘着な接着剤層を薄く積層して粘着性を下げる手法と粗面化を組み合わせることで、より低粘着な接着剤シートにすることもできる。低粘着な接着剤層の具体的な例としては、無機粒子を増量した組成から成る接着剤、もしくは薄厚の接着剤シートを加熱エージングをかけることで粘着性をコントロールしたものなどが挙げられる。   Moreover, it can also be set as a low-adhesive adhesive sheet by combining the technique which lowers | sticks adhesiveness and the roughening by laminating | stacking a low-adhesive adhesive layer thinly to the adhesive layer of this invention. Specific examples of the low-adhesive adhesive layer include an adhesive having a composition in which the amount of inorganic particles is increased, or an adhesive layer whose adhesiveness is controlled by subjecting a thin adhesive sheet to heat aging.

次に、本発明の半導体装置用接着剤シートおよびそれを用いた半導体集積回路接続用基板の製造方法、半導体装置の製造方法の例について説明する。
(1)半導体装置用接着剤シートの作成:本発明の接着剤組成物を溶剤に溶解した塗料を、両面ともに離型処理を行ったポリエステルフィルム上に塗布、乾燥することで半硬化、すなわちBステージ状態の接着剤を得る。接着剤層の膜厚は10〜100μmとなるように塗布することが好ましい。乾燥条件は、100〜200℃、1〜5分である。溶剤は特に限定されないが、トルエン、キシレン、クロルベンゼン等の芳香族系、メチルエチルケトン、メチルエチルイソブチルケトン(MIBK)等のケトン系、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、Nメチルピロドリン等の非プロトン系極性溶剤単独あるいは混合物が好適である。
Next, an example of an adhesive sheet for a semiconductor device, a method for manufacturing a substrate for connecting a semiconductor integrated circuit using the same, and a method for manufacturing a semiconductor device will be described.
(1) Preparation of an adhesive sheet for a semiconductor device: A paint obtained by dissolving the adhesive composition of the present invention in a solvent is applied onto a polyester film which has been subjected to a release treatment on both sides, and is semi-cured, that is, B A staged adhesive is obtained. It is preferable to apply so that the thickness of the adhesive layer is 10 to 100 μm. Drying conditions are 100 to 200 ° C. and 1 to 5 minutes. Solvents are not particularly limited, but aromatics such as toluene, xylene and chlorobenzene, ketones such as methyl ethyl ketone and methyl ethyl isobutyl ketone (MIBK), aprotic such as dimethylformamide (DMF), dimethylacetamide and N-methylpyrodoline A polar system solvent alone or a mixture is preferred.

塗工、乾燥した接着剤層上にさらに高い離型性を有するポリエステルあるいはポリオレフィン系の保護フィルムをラミネートして、本発明の接着剤シートを得る。さらに接着剤厚みを増す場合は、接着剤シートを複数回積層すればよく、場合によってはラミネート後に、例えば40〜100℃で1〜200時間程度エージングして硬化度を調整してもよい。図3に本発明で得られた半導体装置用接着剤シートの形状を例示する。保護フィルム13を接着剤層14の両面に有している。   A polyester or polyolefin protective film having higher releasability is laminated on the coated and dried adhesive layer to obtain the adhesive sheet of the present invention. Further, when the thickness of the adhesive is increased, the adhesive sheet may be laminated a plurality of times. In some cases, the degree of curing may be adjusted by, for example, aging at 40 to 100 ° C. for about 1 to 200 hours after lamination. FIG. 3 illustrates the shape of the adhesive sheet for a semiconductor device obtained in the present invention. The protective film 13 is provided on both surfaces of the adhesive layer 14.

(2)接着剤付きTABテープの作成:ポリイミドフィルム上に接着剤層および保護フィルム層を積層した3層構造のTABテープを下記(a)〜(d)の工程により加工する。(a)スプロケットおよびデバイス孔の穿孔、(b)銅箔との熱ラミネート、(c)スズまたは金メッキ処理を施す。以上のようにして、パターン付きTABテープを得る。そのTABテープ裏面のポリイミドフィルム面に上記(1)作成した半導体装置用接着剤シートの片面の保護フィルムを剥がした後にラミネートする。貼り合わせ条件は温度20〜200℃、圧力0.1〜5MPaが好適である。また、半導体装置の形状によって、適宜打ち抜き、切断加工が施される。   (2) Preparation of TAB tape with adhesive: A TAB tape having a three-layer structure in which an adhesive layer and a protective film layer are laminated on a polyimide film is processed by the following steps (a) to (d). (A) Drilling of sprockets and device holes, (b) Thermal lamination with copper foil, (c) Tin or gold plating treatment. As described above, a patterned TAB tape is obtained. The protective film on one side of the adhesive sheet for a semiconductor device prepared in (1) above is peeled off and laminated on the polyimide film surface on the back surface of the TAB tape. The bonding conditions are preferably a temperature of 20 to 200 ° C. and a pressure of 0.1 to 5 MPa. Further, depending on the shape of the semiconductor device, punching and cutting are appropriately performed.

(3)半導体装置の作成:(2)で得られた部品(接着剤付きTABテープ)から保護フィルムを剥がし、適宜成型したリードフレームに貼り合わせる。リードフレームに用いられる金属としては、42アロイ、銅が好適で、厚さ0.05〜0.5mmが通常である。貼り合わせ条件は、温度20〜200℃、圧力0.1〜5MPaが好適である。最後に熱風オーブン内で接着剤層の加熱硬化のため、80〜200℃で15〜180分程度のポストキュアを行う。   (3) Production of semiconductor device: The protective film is peeled off from the part (TAB tape with adhesive) obtained in (2), and is bonded to an appropriately molded lead frame. As the metal used for the lead frame, 42 alloy and copper are suitable, and the thickness is usually 0.05 to 0.5 mm. The bonding conditions are preferably a temperature of 20 to 200 ° C. and a pressure of 0.1 to 5 MPa. Finally, post-curing is performed at 80 to 200 ° C. for about 15 to 180 minutes in order to heat and cure the adhesive layer in a hot air oven.

図2に本発明の接着剤組成物が用いられる半導体装置の一態様の断面図を示す。ポストキュアを行った後、半導体チップ6をリードフレーム9上にダイボンディングし、半導体チップとTABテープ10間、ならびにTABテープとリードフレーム間をワイヤボンディング7する。次いで、封止樹脂12による封止工程を経て半導体装置を作成する。   FIG. 2 shows a cross-sectional view of one embodiment of a semiconductor device in which the adhesive composition of the present invention is used. After the post cure, the semiconductor chip 6 is die-bonded on the lead frame 9, and the wire bonding 7 is performed between the semiconductor chip and the TAB tape 10 and between the TAB tape and the lead frame. Next, a semiconductor device is formed through a sealing process using the sealing resin 12.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。まず、実施例および比較例で用いた評価方法について説明する。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited at all by these Examples. First, evaluation methods used in Examples and Comparative Examples will be described.

<1>接着強度
0.35mm厚の純銅板上に厚み50μmの接着剤シートを130℃、1MPaの条件でラミネートした。その後、ポリイミドフィルム(75μm:宇部興産(株)製「ユーピレックス75S」)を先の純銅板上にラミネートした接着剤シート面に130℃、1MPaの条件でさらにラミネートした後、エアオーブン中で、100℃、1時間、150℃、1時間の順次ポストキュアを行い、評価用サンプルを作成した。ポリイミドフィルムを5mm幅にスリットした後、5mm幅のポリイミドフィルムを90°方向に50mm/分の速度で剥離し、その際の接着力を測定した。接着強度としては、加工性、ハンドリング性、半導体装置の信頼性の観点より、10N/cm以上であることが好ましい。
<1> Adhesive strength An adhesive sheet having a thickness of 50 μm was laminated on a pure copper plate having a thickness of 0.35 mm under the conditions of 130 ° C. and 1 MPa. Thereafter, the polyimide film (75 μm: “UPILEX 75S” manufactured by Ube Industries Co., Ltd.) was further laminated on the surface of the adhesive sheet laminated on the pure copper plate at 130 ° C. and 1 MPa, and then in an air oven, 100 A post-cure was sequentially performed at 1 ° C. for 1 hour, 150 ° C. for 1 hour, and an evaluation sample was prepared. After slitting the polyimide film to a width of 5 mm, the polyimide film having a width of 5 mm was peeled at a rate of 50 mm / min in the 90 ° direction, and the adhesive force at that time was measured. The adhesive strength is preferably 10 N / cm or more from the viewpoint of processability, handling properties, and reliability of the semiconductor device.

<2>耐リフロー性
上記<1>の方法で作成したポストキュア済みサンプルを30mm角に切断したものを10個片準備する。そのサンプルを125℃、12時間の加熱乾燥させた後に30℃、70%RHの条件下、168時間吸湿させた後、すみやかに最高温度260℃、10秒のIRリフローにかけ、その剥離状態を超音波短傷機により観察した。この試験で剥離が生じたサンプルが10個片中何個あるかを調べた。
<2> Reflow resistance Ten pieces prepared by cutting the post-cured sample prepared by the above method <1> into 30 mm squares are prepared. The sample was heat-dried at 125 ° C. for 12 hours, and then moisture-absorbed for 168 hours under conditions of 30 ° C. and 70% RH, and then immediately subjected to IR reflow at a maximum temperature of 260 ° C. for 10 seconds. Observation was performed with a sonic short wound machine. In this test, it was examined how many samples were peeled off in 10 pieces.

<3>レジンフロー
直径6mm、厚さ100μmのBステージ状の接着剤を、ガラス板/接着剤/銅板の構成となるように130℃、1MPaの条件でラミネートを行った後、100℃、1時間、150℃、1時間のポストキュアを行う。次いでこのサンプルを圧着温度150℃、圧着圧力35MPa、圧着時間5分の条件下で圧着する。以下の式に基づいて、レジンフローを算出した。
レジンフロー(%)=(圧着後の直径/圧着前の直径6mm)×100。
<3> Resin Flow After laminating a B-stage adhesive having a diameter of 6 mm and a thickness of 100 μm under the conditions of 130 ° C. and 1 MPa so as to form a glass plate / adhesive / copper plate, Post-cure for 1 hour at 150 ° C. Next, this sample is pressure bonded under the conditions of a pressure bonding temperature of 150 ° C., a pressure bonding pressure of 35 MPa, and a pressure bonding time of 5 minutes. The resin flow was calculated based on the following formula.
Resin flow (%) = (diameter after crimping / diameter 6 mm before crimping) × 100.

<4>貯蔵弾性率測定
厚さ100μmのBステージ状の接着剤単膜を、100℃、1時間、150℃、1時間のポストキュアを行った。このサンプルを引っ張りモードの動的粘弾性測定装置(RHEOVIBRON−DDV−II/III−EA、(株)オリエンテック製)にて周波数1Hz、昇温速度5℃/分、温度測定範囲−70〜300℃で測定を行った。
<4> Storage elastic modulus measurement A B-stage adhesive single film having a thickness of 100 μm was post-cured at 100 ° C., 1 hour, 150 ° C., 1 hour. This sample was subjected to a tensile mode dynamic viscoelasticity measurement apparatus (RHEOVIBRON-DDV-II / III-EA, manufactured by Orientec Co., Ltd.) at a frequency of 1 Hz, a temperature increase rate of 5 ° C./min, and a temperature measurement range of -70 to 300. Measurements were made at ° C.

<5>ワイヤーボンディング加工性
ポリイミドフィルム厚み25μm、銅箔厚み12μmで導体幅50μm、導体間距離50μmの模擬パターンを形成したTABテープを準備する。TABテープのパターン裏面、すなわちポリイミドフィルム側に乾燥後厚さ50μmになるよう、接着剤組成物を130℃、1MPaの条件でラミネートを行い、次いで0.35mm厚の純銅板上に、TABテープ/接着剤/純銅板の構成となるように、130℃、1MPaの条件でさらにラミネートを行った。最後にエアオーブン中で、100℃、1時間、150℃、1時間のポストキュアを行い、評価用サンプルとした。本TABテープの導体パターン上に金ワイヤーでボンディングを行い、その可否を調べた。ボンディング条件については、金ワイヤー径25μm、金ワイヤーキャピラリーのホール径35μm、外径140μm、ボンディング温度150℃、超音波出力2.0W、超音波印可時間0.1秒、ボンド加重0.5Nで行った。
<5> Wire bonding processability A TAB tape is prepared in which a simulated pattern having a polyimide film thickness of 25 μm, a copper foil thickness of 12 μm, a conductor width of 50 μm, and a distance between conductors of 50 μm is prepared. Laminate the adhesive composition under the conditions of 130 ° C. and 1 MPa so that the thickness is 50 μm after drying on the pattern back side of the TAB tape, that is, the polyimide film side, and then on the pure copper plate of 0.35 mm thickness, Lamination was further performed under the conditions of 130 ° C. and 1 MPa so as to obtain an adhesive / pure copper plate configuration. Finally, post-cure was performed at 100 ° C. for 1 hour, 150 ° C. for 1 hour in an air oven to obtain a sample for evaluation. Bonding was performed on the conductor pattern of the TAB tape with a gold wire, and the feasibility was examined. Bonding conditions were as follows: gold wire diameter 25 μm, gold wire capillary hole diameter 35 μm, outer diameter 140 μm, bonding temperature 150 ° C., ultrasonic power output 2.0 W, ultrasonic wave application time 0.1 seconds, bond weight 0.5 N. It was.

参考例1(ポリアミド樹脂の合成)
酸としてダイマー酸PRIPOL1009(ユニケマ社製)およびアジピン酸を用い、酸/アミン比を等量で、酸/アミン反応物、消泡剤および1%以下のリン酸触媒を加え、140℃、1時間、205℃、1.5時間撹拌加熱を行った。2KPaの真空下で、0.5時間保持、放冷させた。最後に酸化防止剤を添加し、重量平均分子量20000、酸価10のポリアミド樹脂を得た。
Reference Example 1 (Synthesis of polyamide resin)
Using dimer acid PRIPOL 1009 (manufactured by Unikema) and adipic acid as the acid, the acid / amine ratio is equal, and the acid / amine reactant, antifoaming agent and 1% or less phosphoric acid catalyst are added, 140 ° C. for 1 hour The mixture was stirred and heated at 205 ° C. for 1.5 hours. Under a vacuum of 2 KPa, it was kept for 0.5 hours and allowed to cool. Finally, an antioxidant was added to obtain a polyamide resin having a weight average molecular weight of 20000 and an acid value of 10.

実施例1
下記熱可塑性樹脂、エポキシ樹脂およびその他添加剤を、それぞれ表1に示した組成比となるように配合し、濃度28重量%となるようにDMF(ジメチルホルムアミド)/モノクロルベンゼン/MIBK(メチルエチルイソブチルケトン)混合溶媒に40℃で撹拌、溶解して接着剤溶液を作成した。
A.熱硬化性樹脂
1.o−クレゾールノボラック型エポキシ樹脂(油化シェルエポキシ(株)製、”エピコート”180、エポキシ当量:200)
2.ビスフェノールA型エポキシ樹脂(油化シェルエポキシ(株)製、”エピコート”828、エポキシ当量:186)
B.熱可塑性樹脂
1.SEBS−C(旭化成(株)製、MX−073)
2.参考例で作製したダイマー酸ポリアミド
C.無機粒子
1.平均粒径1.6μm、最大粒径7μmの球状シリカ((株)アドマテックス製、SO−C5)
2.平均粒径0.7μm、最大粒径3μmの球状シリカ((株)トクヤマ製、SE−1)
3.平均粒径0.2μm、最大粒径1.5μmの球状シリカ((株)アドマテックス製、SO−C1)
4.平均粒径5μm、最大粒径15μmの球状シリカ(富士シリシア化学(株)製、サイリシア740)
5.平均粒径0.04μm、最大粒径0.2μmの球状シリカ(日本アエロジル(株)製、OX50)
D.フェノール樹脂
フェノールノボラック樹脂(水酸基当量:107、群栄化学工業(株)製、PSM4261)
E.添加剤
1.4,4’−ジアミノジフェニルスルホン
2.γ−アミノプロピルトリエトキシシラン
3.2−ヘプタデシルイミダゾール
これらの接着剤溶液をバーコータで、両面ともシリコーン処理された厚さ75μmのポリエステルフィルム(以下、ポリエステルフィルム1という)に、50μmの乾燥厚さとなるように塗布し、100℃、1分および150℃で5分間乾燥し、その上にポリエステルフィルム1より剥離力が低いポリエステルフィルム(以下、ポリエステルフィルム2という)をラミネートしながらロール上に巻き取り、Bステージ状の接着剤厚さ50μmの接着剤シートを作製した。得られた接着剤シートは図3に示された構造を有する。
Example 1
The following thermoplastic resins, epoxy resins and other additives are blended so as to have the composition ratios shown in Table 1, respectively, and DMF (dimethylformamide) / monochlorobenzene / MIBK (methyl ethyl isobutyl) to a concentration of 28% by weight. The adhesive solution was prepared by stirring and dissolving in a ketone) mixed solvent at 40 ° C.
A. Thermosetting resin o-cresol novolac type epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd., “Epicoat” 180, epoxy equivalent: 200)
2. Bisphenol A type epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd., “Epicoat” 828, epoxy equivalent: 186)
B. Thermoplastic resin SEBS-C (Asahi Kasei Corporation, MX-073)
2. Dimer acid polyamide C.I. Inorganic particles Spherical silica with an average particle size of 1.6 μm and a maximum particle size of 7 μm (manufactured by Admatechs, SO-C5)
2. Spherical silica with an average particle size of 0.7 μm and a maximum particle size of 3 μm (SE-1 manufactured by Tokuyama Corporation)
3. Spherical silica with an average particle size of 0.2 μm and a maximum particle size of 1.5 μm (manufactured by Admatechs, SO-C1)
4). Spherical silica having an average particle size of 5 μm and a maximum particle size of 15 μm (Fuji Silysia Chemical Ltd., Silicia 740)
5). Spherical silica with an average particle size of 0.04 μm and a maximum particle size of 0.2 μm (manufactured by Nippon Aerosil Co., Ltd., OX50)
D. Phenol resin Phenol novolak resin (hydroxyl equivalent: 107, manufactured by Gunei Chemical Industry Co., Ltd., PSM4261)
E. Additive 1.4,4'-diaminodiphenylsulfone2. γ-aminopropyltriethoxysilane 3.2-heptadecylimidazole These adhesive solutions were applied to a 75 μm-thick polyester film (hereinafter referred to as polyester film 1) that had been subjected to silicone treatment on both sides with a dry thickness of 50 μm. And then dried at 100 ° C. for 1 minute and 150 ° C. for 5 minutes, and a polyester film having a lower peel strength than polyester film 1 (hereinafter referred to as polyester film 2) is laminated on the roll while being laminated. A B-staged adhesive sheet having a thickness of 50 μm was prepared. The obtained adhesive sheet has the structure shown in FIG.

実施例2〜6、比較例1〜5
表1記載の組成で上記実施例1と同様に作製した。
Examples 2-6, Comparative Examples 1-5
It was produced in the same manner as in Example 1 with the composition shown in Table 1.

Figure 2005247953
Figure 2005247953

表1の実施例および比較例の結果から明らかなように、本発明により得られた半導体装置用接着剤シートは、接着強度、耐リフロー性、ワイヤーボンディング加工性、いずれにも優れていることが分かる。   As is apparent from the results of Examples and Comparative Examples in Table 1, the adhesive sheet for semiconductor devices obtained by the present invention is excellent in all of adhesive strength, reflow resistance, and wire bonding processability. I understand.

LOC(lead on chip)の半導体装置断面図。LOC (lead on chip) semiconductor device sectional view. 本発明の半導体装置用接着剤シートを用いて加工した半導体装置断面図。Sectional drawing of the semiconductor device processed using the adhesive agent sheet for semiconductor devices of this invention. 本発明の半導体装置用接着剤シートの一態様の断面図。Sectional drawing of the one aspect | mode of the adhesive agent sheet for semiconductor devices of this invention.

符号の説明Explanation of symbols

1、6 半導体集積回路(半導体チップ)
2、7 ボンディングワイヤー
3、11 半導体用接着フィルム
4、9 リードフレーム
5、12 封止樹脂
8、14 本発明の接着剤組成物より構成される接着剤層
10 TABテープ(ポリイミドフィルム基板)
13 保護フィルム(保護層)
1, 6 Semiconductor integrated circuit (semiconductor chip)
2, 7 Bonding wire 3, 11 Adhesive film for semiconductor 4, 9 Lead frame 5, 12 Sealing resin 8, 14 Adhesive layer composed of the adhesive composition of the present invention 10 TAB tape (polyimide film substrate)
13 Protective film (protective layer)

Claims (4)

ブタジエンを共重合成分とする共重合体、もしくは炭素数1〜8の側鎖を有するアクリル酸エステルおよびメタクリル酸エステルを共重合成分とする共重合体、から少なくとも1種選ばれる熱可塑性樹脂、熱硬化性樹脂、最大粒径10μm以下、平均粒径0.1μmを越えて2μm以下の無機粒子を有し、無機粒子の含有量が組成物全体量に対し25重量%以上50重量%以下であることを特徴とする半導体装置用接着剤組成物。 A thermoplastic resin selected from at least one selected from a copolymer having butadiene as a copolymer component, or a copolymer having an acrylic ester and a methacrylic ester having a side chain having 1 to 8 carbon atoms as a copolymer component, Curable resin, having inorganic particles with a maximum particle size of 10 μm or less and an average particle size of more than 0.1 μm and 2 μm or less, and the content of inorganic particles is 25% by weight or more and 50% by weight or less with respect to the total amount of the composition An adhesive composition for semiconductor devices. 熱硬化済みの接着剤が、圧着温度150℃、圧着圧力35MPa、圧着時間5分の圧着におけるレジンフロー測定において、レジンフローが120%以下である請求項1記載の半導体装置用接着剤組成物。 The adhesive composition for a semiconductor device according to claim 1, wherein the heat-cured adhesive has a resin flow of 120% or less in a resin flow measurement in a press bonding temperature of 150 ° C., a press bonding pressure of 35 MPa, and a press bonding time of 5 minutes. 150℃での動的粘弾性測定による貯蔵弾性率が3MPa以上である請求項1記載の半導体装置用接着剤組成物。 The adhesive composition for a semiconductor device according to claim 1, wherein the storage elastic modulus by dynamic viscoelasticity measurement at 150 ° C. is 3 MPa or more. 有機絶縁性フィルムの少なくとも一方の面に接着剤層を有する半導体装置用接着剤シートであって、接着剤層が請求項1〜3のいずれか記載の接着剤組成物である半導体装置用接着剤シート。 An adhesive sheet for a semiconductor device having an adhesive layer on at least one surface of the organic insulating film, wherein the adhesive layer is the adhesive composition according to any one of claims 1 to 3. Sheet.
JP2004058627A 2004-03-03 2004-03-03 Adhesive composition for semiconductor and adhesive sheet for semiconductor using the same Pending JP2005247953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004058627A JP2005247953A (en) 2004-03-03 2004-03-03 Adhesive composition for semiconductor and adhesive sheet for semiconductor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004058627A JP2005247953A (en) 2004-03-03 2004-03-03 Adhesive composition for semiconductor and adhesive sheet for semiconductor using the same

Publications (1)

Publication Number Publication Date
JP2005247953A true JP2005247953A (en) 2005-09-15

Family

ID=35028748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004058627A Pending JP2005247953A (en) 2004-03-03 2004-03-03 Adhesive composition for semiconductor and adhesive sheet for semiconductor using the same

Country Status (1)

Country Link
JP (1) JP2005247953A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520051A (en) * 2005-12-15 2009-05-21 ナショナル スターチ アンド ケミカル インベストメント ホールディング コーポレイション Multilayer adhesive film for die stacking
JP2010024431A (en) * 2008-06-17 2010-02-04 Hitachi Chem Co Ltd Adhesive composition, film type adhesive, adhesive sheet, and semiconductor device
US8247702B2 (en) 2009-02-27 2012-08-21 Denso Corporation Integrated circuit mounted board, printed wiring board, and method of manufacturing integrated circuit mounted board
WO2015105028A1 (en) * 2014-01-08 2015-07-16 日東電工株式会社 Film-like adhesive, dicing tape with film-like adhesive, method for manufacturing semiconductor device, and semiconductor device
KR20210041569A (en) 2018-08-03 2021-04-15 쇼와덴코머티리얼즈가부시끼가이샤 Adhesive composition, film adhesive, adhesive sheet, and method of manufacturing a semiconductor device
WO2023100499A1 (en) * 2021-12-03 2023-06-08 ニッカン工業株式会社 Resin composition, coverlay film using same, adhesive sheet, resin-attached metal foil, metal clad laminate, or printed wiring board

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520051A (en) * 2005-12-15 2009-05-21 ナショナル スターチ アンド ケミカル インベストメント ホールディング コーポレイション Multilayer adhesive film for die stacking
JP2010024431A (en) * 2008-06-17 2010-02-04 Hitachi Chem Co Ltd Adhesive composition, film type adhesive, adhesive sheet, and semiconductor device
US8247702B2 (en) 2009-02-27 2012-08-21 Denso Corporation Integrated circuit mounted board, printed wiring board, and method of manufacturing integrated circuit mounted board
WO2015105028A1 (en) * 2014-01-08 2015-07-16 日東電工株式会社 Film-like adhesive, dicing tape with film-like adhesive, method for manufacturing semiconductor device, and semiconductor device
KR20210041569A (en) 2018-08-03 2021-04-15 쇼와덴코머티리얼즈가부시끼가이샤 Adhesive composition, film adhesive, adhesive sheet, and method of manufacturing a semiconductor device
WO2023100499A1 (en) * 2021-12-03 2023-06-08 ニッカン工業株式会社 Resin composition, coverlay film using same, adhesive sheet, resin-attached metal foil, metal clad laminate, or printed wiring board
JP2023083121A (en) * 2021-12-03 2023-06-15 ニッカン工業株式会社 Resin composition, and coverlay film, adhesive sheet, metallic foil with resin, metal-clad laminated plate or printed wiring board using the same
JP7348673B2 (en) 2021-12-03 2023-09-21 ニッカン工業株式会社 Resin composition, and coverlay film, adhesive sheet, resin-coated metal foil, metal-clad laminate, or printed wiring board using the same

Similar Documents

Publication Publication Date Title
JP4893046B2 (en) Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same
KR100417776B1 (en) Adhesive Sheet for Semiconductor Connecting Substrate, Adhesive-Backed Tape for TAB, Adhesive-Backed Tape for Wire-Bonding Connection, Semiconductor Connecting Substrate, and Semiconductor Device
JP5742375B2 (en) Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same
JP5200386B2 (en) Adhesive sheet for electronic materials
JP2008095014A (en) Thermosetting resin composition for qfn(quad flat non-lead) and adhesive sheet
JP4714406B2 (en) Die bonding material for semiconductor device and semiconductor device using the same
JP2008231335A (en) Adhesive sheet for use in electronic appliance and manufacturing method thereof
JP5760702B2 (en) Adhesive composition for electronic device and adhesive sheet for electronic device
JP2006176764A (en) Adhesive composition for electronic equipment, adhesive sheet for electronic equipment, and electronic part and electronic equipment using the same
JPH10178251A (en) Board for connecting semiconductor integrated circuit, parts constituting it, and semiconductor device
JP3956771B2 (en) Adhesive sheet for semiconductor device, semiconductor connection substrate and semiconductor device
JP4876317B2 (en) Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrate for semiconductor connection, and semiconductor device
JP2006117824A (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using it
JP4534100B2 (en) Double-sided adhesive film for electronic parts, organic substrate for semiconductor mounting, and semiconductor device
JP5233066B2 (en) Adhesive sheet for electronic materials
JP2005247953A (en) Adhesive composition for semiconductor and adhesive sheet for semiconductor using the same
JP5564782B2 (en) Adhesive composition, film adhesive, adhesive sheet and semiconductor device
JP4742402B2 (en) Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, and semiconductor device
JP2005277135A (en) Adhesive composition for semiconductor, and adhesive sheet for semiconductor using the same, substrate for connecting semiconductor integrated circuit, and semiconductor device
JP2012044193A (en) Adhesive sheet for semiconductor device, component for semiconductor device and semiconductor device using the same
JP4483270B2 (en) Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrate for semiconductor connection, semiconductor device
JP2007266394A (en) Adhesive sheet for semiconductor, substrate for connecting semiconductor using the same, and semiconductor device
JP2008222815A (en) Adhesive composition and adhesive sheet using it
JPH10178054A (en) Board for semiconductor integrated circuit connection, component constituting the same, and semiconductor device
JP2009158817A (en) Thermosetting type resin composition for qfn, and adhesive sheet for qfn using it