WO2020026439A1 - 健全性診断装置 - Google Patents

健全性診断装置 Download PDF

Info

Publication number
WO2020026439A1
WO2020026439A1 PCT/JP2018/029251 JP2018029251W WO2020026439A1 WO 2020026439 A1 WO2020026439 A1 WO 2020026439A1 JP 2018029251 W JP2018029251 W JP 2018029251W WO 2020026439 A1 WO2020026439 A1 WO 2020026439A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
deformation
rail
diagnostic device
guide rails
Prior art date
Application number
PCT/JP2018/029251
Other languages
English (en)
French (fr)
Inventor
然一 伊藤
郷平 山中
健 宮川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880095658.1A priority Critical patent/CN112512948B/zh
Priority to JP2020511835A priority patent/JP6741366B2/ja
Priority to PCT/JP2018/029251 priority patent/WO2020026439A1/ja
Publication of WO2020026439A1 publication Critical patent/WO2020026439A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/02Guideways; Guides

Definitions

  • the present invention relates to a soundness diagnostic device that diagnoses the soundness of a diagnosis target that is at least one of a building provided with an elevator and an elevator.
  • the deformation state of the guide rail is measured by the deformation state measurement unit.
  • the deformation state of the building is estimated based on the measured deformation state of the guide rail, and the soundness of the building is evaluated (for example, see Patent Literature 1).
  • the soundness of the building is evaluated based on the deformation state of the guide rail.
  • the deformation of the guide rail of the elevator may not coincide with the deformation of the building.
  • the present invention has been made to solve the above-described problems, and has as its object to obtain a soundness diagnostic device that can diagnose the soundness of a diagnosis target with higher accuracy.
  • a soundness diagnosis device includes a rail deformation detection unit that detects a deformation state of a plurality of guide rails of an elevator installed in a building for each guide rail, and a plurality of rail detection units that are detected by the rail deformation detection unit.
  • a diagnosis unit is provided for diagnosing the soundness of a diagnosis target, which is at least one of a building and an elevator, based on a deformed state of the guide rail.
  • the soundness of the diagnosis target can be diagnosed with higher accuracy.
  • FIG. 1 is a configuration diagram illustrating a building including a health diagnostic device according to Embodiment 1 of the present invention. It is explanatory drawing which shows the state which the deformation
  • FIG. 2 is an explanatory diagram showing a state in which a car is deformed in the front-rear direction only on a first car guide rail of FIG. FIG.
  • FIG. 2 is a block diagram illustrating a health diagnostic device according to the first embodiment.
  • 7 is a graph showing an example of a reference value set in the diagnostic device main body of FIG. 6. It is a graph which shows an example of the measurement value at the time of diagnosis measured at the time of soundness diagnosis.
  • 7 is a flowchart illustrating a soundness diagnosing operation performed by the diagnostic device body of FIG. 6. It is a block diagram which shows the building provided with the health diagnostic device by Embodiment 2 of this invention. It is explanatory drawing which shows an example of the deformation
  • FIG. 9 is a block diagram illustrating a health diagnostic device according to a second embodiment.
  • FIG. 14 is a configuration diagram illustrating a first example of a sensor used as the first, second, third, and fourth sensors in FIG. 13.
  • FIG. 15 is a configuration diagram illustrating a state in which the car of FIG. 14 is tilted.
  • FIG. 14 is a configuration diagram illustrating a second example of a sensor used as the first, second, third, and fourth sensors in FIG. 13.
  • FIG. 14 is a configuration diagram illustrating a third example of a sensor used as the first, second, third, and fourth sensors in FIG. 13. It is a front view which shows the light receiver of FIG.
  • FIG. 14 is a configuration diagram illustrating a fourth example of a sensor used as the first, second, third, and fourth sensors in FIG. 13.
  • FIG. 20 is a configuration diagram showing a state in which first and second car guide rails of FIG. 19 have been deformed.
  • FIG. 3 is a configuration diagram illustrating a first example of a processing circuit that realizes each function of the diagnostic apparatus main bodies according to the first and second embodiments.
  • FIG. 3 is a configuration diagram illustrating a second example of a processing circuit that implements each function of the diagnostic apparatus main bodies according to the first and second embodiments.
  • FIG. 1 is a configuration diagram showing a building provided with a health diagnostic device according to Embodiment 1 of the present invention.
  • a building 1 is provided with a hoistway 2 and a machine room 3.
  • the machine room 3 is arranged above the hoistway 2.
  • the machine room 3 is equipped with a hoisting machine 4.
  • the hoist 4 includes a drive sheave 5, a hoist motor (not shown), and a hoist brake (not shown).
  • the hoist motor rotates the drive sheave 5.
  • the hoisting machine brake keeps the driving sheave 5 stationary or brakes the rotation of the driving sheave 5.
  • the suspension 6 is wound around the drive sheave 5.
  • a plurality of ropes or a plurality of belts are used as the suspension 6.
  • a car 7 as an elevating body is connected to the first end of the suspension body 6.
  • a counterweight 8 is connected to the second end of the suspension 6.
  • the car 7 and the counterweight 8 are suspended in the hoistway 2 by the suspension 6.
  • the car 7 and the counterweight 8 move up and down in the hoistway 2 by rotating the drive sheave 5.
  • the car 7 has a car frame 9 and a car room 10.
  • the suspension 6 is connected to the car frame 9.
  • the car room 10 is supported by the car frame 9.
  • a first car guide rail 11a, a second car guide rail 11b, a first counterweight guide rail 12a, and a second counterweight guide rail 12b are provided in the hoistway 2.
  • the first and second car guide rails 11a and 11b guide the car 7 up and down.
  • the first car guide rail 11a is arranged on one side of the car 7 in the width direction.
  • the second car guide rail 11b is arranged on the other side of the car 7 in the width direction.
  • the first and second counterweight guide rails 12a and 12b guide the lifting and lowering of the counterweight 8.
  • the first counterweight guide rail 12 a is arranged on one side of the counterweight 8 in the width direction.
  • the second counterweight guide rail 12b is arranged on the other side of the counterweight 8 in the width direction.
  • the first car guide rail 11a, the second car guide rail 11b, the first counterweight guide rail 12a, and the second counterweight guide rail 12b are held by a plurality of rail brackets 13, respectively.
  • Each rail bracket 13 is fixed to a hoistway wall.
  • the car frame 9 is provided with a first upper guide device 15a, a second upper guide device 15b, a first lower guide device 16a, and a second lower guide device 16b.
  • the first and second upper guide devices 15a and 15b are provided above the car frame 9.
  • the first and second lower guide devices 16 a and 16 b are provided below the car frame 9.
  • the first upper guide device 15a and the first lower guide device 16a are in contact with the first car guide rail 11a.
  • the second upper guide device 15b and the second lower guide device 16b are in contact with the second car guide rail 11b.
  • a sliding guide shoe or a roller guide device is used as each of the guide devices 15a, 15b, 16a, 16b.
  • Elevator control device 17 is installed in machine room 3.
  • the elevator control device 17 controls the operation of the car 7 by controlling the hoisting machine 4.
  • the elevator control device 17 has a computer.
  • the elevator 20 includes a hoisting machine 4, a suspension body 6, a car 7, a counterweight 8, guide rails 11a, 11b, 12a, 12b, rail brackets 13, guide devices 15a, 15b, 16a, 16b, And an elevator control device 17.
  • the soundness diagnostic device of the first embodiment has a diagnostic device main body 21.
  • the diagnostic device main body 21 is installed in the machine room 3.
  • the diagnostic device main body 21 is communicably connected to the elevator control device 17.
  • the first, second, third, and fourth reaction force information is input to the diagnostic device main body 21.
  • the first reaction force information is information relating to the reaction force received by the first upper guide device 15a from the first car guide rail 11a.
  • the second reaction force information is information on the reaction force received by the second upper guide device 15b from the second car guide rail 11b.
  • the third reaction force information is information relating to the reaction force received by the first lower guide device 16a from the first car guide rail 11a.
  • the fourth reaction force information is information on the reaction force received by the second lower guide device 16b from the second car guide rail 11b.
  • the reaction force received by the guide devices 15a, 15b, 16a, 16b slightly fluctuates due to minute deformation of the car guide rails 11a, 11b, but it is basically different. It is constant.
  • the first and second car guide rails 11a and 11b are similarly deformed. For this reason, the interval between the first and second car guide rails 11a and 11b is substantially constant.
  • the Y-axis direction is the width direction of the car 7 before the first and second car guide rails 11a and 11b are deformed.
  • the X-axis direction is a front-rear direction of the car 7 before the first and second car guide rails 11a and 11b are deformed.
  • the Z-axis direction is a vertical direction.
  • reaction force received by the guide devices 15a, 15b, 16a, 16b is indicated by arrows.
  • the length of each arrow indicates the magnitude of the reaction force.
  • the deformation states of the first and second car guide rails 11a, 11b can be determined. Can be detected.
  • the deformed state of the first car guide rail 11a is different from the deformed state of the second car guide rail 11b, only the first car guide rail 11a or the second car guide rail 11b is deformed. Can be estimated.
  • FIG. 4 shows a state in which the car 7 has been deformed in the front-rear direction in the entire building 1.
  • FIG. 5 shows a state in which the car 7 is deformed in the front-rear direction only on the first car guide rail 11a.
  • FIG. 6 is a block diagram showing the health diagnostic apparatus of the first embodiment.
  • the health diagnostic device of the first embodiment has a first upper sensor 22a, a second upper sensor 22b, a first lower sensor 23a, and a second lower sensor 23b in addition to the diagnostic device main body 21. ing.
  • the first upper sensor 22a is provided in the first upper guide device 15a.
  • the first upper sensor 22a generates a signal corresponding to the magnitude of the reaction force received by the first upper guide device 15a as the first reaction force information.
  • the second upper sensor 22b is provided in the second upper guide device 15b. Further, the second upper sensor 22b generates a signal corresponding to the magnitude of the reaction force received by the second upper guide device 15b as the second reaction force information.
  • the first lower sensor 23a is provided in the first lower guide device 16a. Further, the first lower sensor 23a generates a signal corresponding to the magnitude of the reaction force received by the first lower guide device 16a as the third reaction force information.
  • the second lower sensor 23b is provided in the second lower guide device 16b. Further, the second lower sensor 23b generates a signal corresponding to the magnitude of the reaction force received by the second lower guide device 16b as the fourth reaction force information.
  • the diagnostic device body 21 of the first embodiment diagnoses the soundness of the diagnostic target after the occurrence of the earthquake.
  • the diagnosis target is at least one of the building 1 and the elevator 20.
  • the diagnostic device body 21 determines, as the soundness of the diagnosis target after the occurrence of the earthquake, whether or not there is an abnormality that hinders restarting the automatic operation of the elevator 20.
  • the diagnostic device main body 21 outputs a command for causing the elevator control device 17 to run the car 7 at the time of soundness diagnosis.
  • the elevator control device 17 causes the car 7 to travel at the time of soundness diagnosis.
  • the diagnostic device main body 21 has, as functional blocks, a rail deformation detecting unit 21a, a determining unit 21b as a diagnostic unit, a storage unit 21c, and an alarm unit 21d.
  • the rail deformation detection unit 21a uses signals from the first upper sensor 22a, the second upper sensor 22b, the first lower sensor 23a, and the second lower sensor 23b as input signals.
  • the rail deformation detecting unit 21a performs first and second signals based on signals from the first upper sensor 22a, the second upper sensor 22b, the first lower sensor 23a, and the second lower sensor 23b.
  • the deformation state of the car guide rails 11a and 11b is detected for each of the first and second car guide rails 11a and 11b.
  • the deformation state is a deformation amount.
  • the determination unit 21b diagnoses the soundness of the diagnosis target based on the deformation state of the first and second car guide rails 11a and 11b detected by the rail deformation detection unit 21a. That is, the determination unit 21b compares the measured values of the deformation amounts of the first and second car guide rails 11a and 11b with the reference values, thereby obtaining the deformation amounts of the first and second car guide rails 11a and 11b. The presence or absence of abnormality is determined.
  • the determination unit 21b determines whether only the first car guide rail 11a or the second car guide rail 11b is deformed or the entire building 1 is deformed.
  • the storage unit 21c stores the above reference value.
  • the notification unit 21d issues a determination result by the determination unit 21b to the elevator control device 17 and a remote control room.
  • FIG. 7 is a graph showing an example of the reference value set in the diagnostic device main body 21 of FIG.
  • the reference value is set by, for example, adding an allowable value to an initial measurement value measured when the elevator 20 is installed. This is because the first and second car guide rails 11a and 11b may be slightly deformed due to an error at the time of installation or the like even when there is no abnormality.
  • the measurement of the initial measurement value is performed by moving the car 7 over the entire up-and-down stroke.
  • the traveling speed of the car 7 may be changed from the speed during normal operation. For example, when measuring the initial measurement value, the traveling speed of the car 7 may be lower than the rated speed.
  • the reference value may be updated when there is no abnormality in the maintenance and inspection. Further, the reference value may be updated periodically at a set cycle.
  • FIG. 8 is a graph showing an example of a measured value at the time of diagnosis measured at the time of diagnosing soundness.
  • the measurement value at the time of diagnosis exceeds a reference value in a part of the up-and-down stroke.
  • the determination unit 21b determines that there is an abnormality.
  • the diagnosis of soundness may be performed after a disaster other than an earthquake occurs, or may be performed at an arbitrary timing by inputting a diagnosis command manually.
  • FIG. 9 is a flowchart showing a soundness diagnosis operation by the diagnosis device main body 21 of FIG.
  • the diagnosis device main body 21 first outputs a command to start traveling of the car 7 to the elevator control device 17 in step S1.
  • the diagnostic device main body 21 determines in steps S2 and S3 the information from the first and second upper sensors 22a and 22b and the first and second information until the traveling of the car 7 is completed. 2 from the lower sensors 23a and 23b.
  • the diagnostic device main body 21 measures the deformation amounts of the first and second car guide rails 11a and 11b in step S4. Then, in step S5, the diagnostic device main body 21 determines whether or not the deformation amounts of the first and second car guide rails 11a and 11b are abnormal. Further, in step S5, the diagnostic device main body 21 determines whether only the first car guide rail 11a or the second car guide rail 11b is deformed, or whether the entire building 1 is deformed.
  • the diagnostic device main body 21 reports the determination result to the elevator control device 17 and the remote management room, and ends the processing.
  • the deformed state of the first and second car guide rails 11a and 11b is detected for each of the first and second car guide rails 11a and 11b. Then, based on the deformed state of the first and second car guide rails 11a and 11b, the soundness of the diagnosis target is diagnosed.
  • the rail deformation detection unit 21a uses signals from the sensors 22a, 22b, 23a, and 23b provided in the car 7 as input signals. Therefore, by causing the car 7 to travel, the deformed state of the first and second car guide rails 11a and 11b can be detected over the entirety.
  • the rail deformation detection unit 21a uses signals from the first and second upper sensors 22a and 22b and the first and second lower sensors 23a and 23b as input signals. For this reason, it is possible to more accurately determine whether only the first car guide rail 11a or the second car guide rail 11b is deformed or whether the entire building 1 is deformed.
  • the deformed state of the first and second car guide rails 11a and 11b similarly to the deformed state of the first and second car guide rails 11a and 11b, the deformed state of the first and second counterweight guide rails 12a and 12b may be detected.
  • the sensor is not limited to a sensor that detects a reaction force received by the guide device.
  • Each of the guide devices 15a, 15b, 16a, 16b is provided with an elastic member such as a spring or rubber for vibration isolation. For this reason, the deformation state of each guide rail 11a, 11b, 12a, 12b may be detected from the deformation amount of the elastic member provided in each of the guide devices 15a, 15b, 16a, 16b.
  • signals from a plurality of cameras provided on the hoistway may be subjected to image processing to detect the deformation state of the plurality of guide rails for each guide rail.
  • a plurality of types of sensors may be used in combination.
  • a sensor that detects the reaction force of the guide device and a sensor that detects the inclination angle of the car may be used in combination.
  • FIG. 10 is a configuration diagram showing a building provided with a health diagnostic device according to Embodiment 2 of the present invention.
  • a plurality of elevators are installed in the building 1.
  • the elevator 20A of the car A, the elevator 20B of the car B, the elevator 20C of the car C, and the elevator 20D of the car D are installed in the building 1.
  • each of the elevators 20A to 20D is the same as that of the elevator 20 of the first embodiment.
  • FIG. 10 shows only the car 7, the first and second car guide rails 11a and 11b, and the rail bracket 13 of each of the elevators 20A to 20D for simplicity.
  • the elevator control devices 17 of the elevators 20A to 20D are controlled by a group management device (not shown).
  • the health diagnostic device of the second embodiment has a diagnostic device main body 31.
  • the diagnostic device main body 31 is installed in the machine room 3.
  • the diagnostic device main body 31 is communicably connected to the elevator control devices 17 of the elevators 20A to 20D.
  • the first, second, third, and fourth sensor information is input to the diagnostic device body 31.
  • the contents of the first, second, third, and fourth sensor information will be described later.
  • the diagnostic device main body 31 diagnoses the soundness of the diagnosis target by comparing the deformation states of the first and second car guide rails 11a and 11b of the elevators 20A to 20D.
  • a configuration for measuring the deformation state of the guide rail a configuration in which an acceleration sensor is installed on an existing car, a configuration using a hoisting machine torque, a configuration in which an optical fiber is directly installed on a guide rail, and the like are exemplified.
  • a configuration for measuring the deformation state of the guide rail a configuration in which an acceleration sensor is installed on an existing car, a configuration using a hoisting machine torque, a configuration in which an optical fiber is directly installed on a guide rail, and the like are exemplified. are known.
  • the deformation of the guide rail is the sum of the deformation of the building in which the guide rail is installed and the deformation of the guide rail itself. Therefore, it is difficult to determine whether only the guide rail is deformed or the building is deformed based on only one piece of information.
  • the deformation states of the first and second car guide rails 11a and 11b are similarly detected by a plurality of elevators 20A to 20D installed in one building 1. Then, by comparing the detection results, the soundness is evaluated separately for the elevator 20 and the building 1.
  • FIG. 13 is a block diagram showing a health diagnostic apparatus according to the second embodiment.
  • the soundness diagnostic device of the second embodiment has a first sensor 32a, a second sensor 32b, a third sensor 32c, and a fourth sensor 32d in addition to the diagnostic device main body 31.
  • the first sensor 32a generates the first sensor information when the car 7 of the A-car is driven.
  • the first sensor information is a signal corresponding to the deformed state of the first and second car guide rails 11a and 11b of the A car.
  • the second sensor 32b generates the second sensor information when the car 7 of the car B runs.
  • the second sensor information is a signal corresponding to the deformed state of the first and second car guide rails 11a and 11b of the B-unit.
  • the third sensor 32c generates third sensor information when the car 7 of the C-th car is driven.
  • the third sensor information is a signal corresponding to the deformed state of the first and second car guide rails 11a and 11b of the C-th car.
  • the fourth sensor 32d generates fourth sensor information when the car 7 of the D-th car is driven.
  • the fourth sensor information is a signal corresponding to the deformed state of the first and second car guide rails 11a and 11b of the D-th car.
  • the diagnostic device main body 31 of the second embodiment diagnoses the soundness of the diagnostic target after the occurrence of the earthquake.
  • the diagnosis target is at least one of the building 1 and the elevator 20.
  • the diagnostic device main body 31 also determines, as the soundness of the diagnosis target after the occurrence of the earthquake, whether or not there is an abnormality that hinders restarting the automatic operation of the elevators 20A to 20D.
  • the diagnostic device main body 31 outputs a command to run the car 7 of the elevators 20A to 20D to the group management device at the time of soundness diagnosis.
  • Each elevator control device 17 drives the corresponding car 7 at the time of soundness diagnosis.
  • the diagnostic device main body 31 has, as functional blocks, a rail deformation detecting unit 31a, a determining unit 31b as a diagnostic unit, a storage unit 31c, and an alarm unit 31d.
  • the rail deformation detection unit 31a uses signals from the first, second, third, and fourth sensors 32a to 32d as input signals. Further, the rail deformation detecting unit 31a, based on signals from the first, second, third, and fourth sensors 32a to 32d, respectively, controls the first and second car guide rails 11a of the elevators 20A to 20D. , 11b are detected. In this example, the deformation state is a deformation amount.
  • the determination unit 31b diagnoses the soundness of the diagnosis target based on the deformation state of the first and second car guide rails 11a and 11b detected by the rail deformation detection unit 31a. That is, the determination unit 31b compares the measured values of the deformation amounts of the first and second car guide rails 11a and 11b with the reference values, thereby obtaining the deformation amounts of the first and second car guide rails 11a and 11b. The presence or absence of abnormality is determined.
  • the determining unit 31b determines whether there is an abnormality in the soundness of only a part of the elevators 20A to 20D, or whether there is an abnormality in the soundness of the entire building 1.
  • the storage unit 31c stores the above reference value.
  • the method of setting the reference value is the same as in the first embodiment.
  • the notification unit 31d issues a determination result by the determination unit 31b to the group management device and a remote management room.
  • the flow of the soundness diagnosis operation by the diagnosis device main body 31 of the second embodiment is the same as that in FIG.
  • FIG. 14 is a configuration diagram showing a first example of a sensor used as the first, second, third, and fourth sensors 32a to 32d of FIG.
  • a plurality of vibration isolating members 33 are interposed between the car frame 9 and the lower part of the car room 10.
  • the displacement meter 34 is used as the first, second, third, and fourth sensors 32a to 32d.
  • the displacement meter 34 is provided in an upper part of the car room 10.
  • the displacement meter 34 When the car 7 is tilted, the distance between the upper part of the car room 10 and the car frame 9 changes.
  • the displacement meter 34 generates a signal corresponding to the distance between the upper part of the cab 10 and the car frame 9. As described above, the displacement meter 34 generates a signal corresponding to the movement of the car room 10 with respect to the car frame 9 due to the inclination of the car 7. That is, the displacement meter 34 functions as a tilt sensor that generates a signal corresponding to the tilt of the car 7.
  • the car frame 9 is inclined, for example, as shown in FIG. At this time, since the car room 10 is supported by the car frame 9 via the vibration isolating member 33, the inclination angle of the car frame 9 does not match the inclination angle of the car room 10.
  • the distance from the upper part of the car room 10 to the car frame 9 changes, and the output of the displacement meter 34 also changes.
  • the distance from the upper part of the car room 10 to the car frame 9 increases from ⁇ 1 to ⁇ 2.
  • the rail deformation detection unit 31a can use the signals from the displacement meters 34 provided in the elevators 20A to 20D as input signals.
  • FIG. 16 is a block diagram showing a second example of the sensors used as the first, second, third, and fourth sensors 32a to 32d in FIG.
  • inclination sensors that generate signals according to the deformation of the vibration isolation member 33 are used.
  • the car frame 9 is tilted by the forced displacement input from the first and second car guide rails 11a and 11b.
  • the horizontal distance d1 to the vibration isolating member 33 on one side and the distance d2 to the vibration isolating member 33 on the other side change with respect to the center of gravity g of the car room 10.
  • the reaction force from the vibration isolating member 33 changes.
  • FIG. 17 is a configuration diagram showing a third example of the sensors used as the first, second, third, and fourth sensors 32a to 32d in FIG.
  • an inclinometer 35 as an inclination sensor is provided above the car 7.
  • the inclinometer 35 generates a signal corresponding to the inclination of the car 7.
  • a laser oscillator 36 is provided at the bottom of the hoistway 2.
  • the laser oscillator 36 is disposed directly below the car 7 and emits laser light vertically upward.
  • a light receiver 37 is provided below the car 7.
  • the light receiver 37 is a two-dimensional sensor that receives laser light from the laser oscillator 36 on a light receiving surface.
  • FIG. 18 is a front view showing the light receiver 37 of FIG.
  • the light receiver 37 functions as a displacement sensor that generates a signal according to the horizontal displacement of the car 7.
  • a combination of an inclinometer 35, a laser oscillator 36, and a light receiver 37 is used as the first, second, third, and fourth sensors 32a to 32d.
  • the rail deformation detection unit 31a uses a signal from the light receiver 37 as an input signal in addition to a signal from the inclinometer 35.
  • the deformation state of the first and second car guide rails 11a and 11b can also be detected by the first example, the second example, or the inclinometer 35. However, by detecting the horizontal displacement of the car 7 in addition to the tilt of the car 7, the deformed state of the first and second car guide rails 11a and 11b can be detected in more detail.
  • the laser oscillator 36 may be arranged downward at the top of the hoistway 2 and the light receiver 37 may be arranged upward at the top of the car 7.
  • the laser oscillator 36 may be arranged downward at the lower part of the car 7 and the light receiver 37 may be arranged at the bottom of the hoistway 2.
  • the laser oscillator 36 may be arranged upward at the top of the car 7 and the light receiver 37 may be arranged downward at the top of the hoistway 2.
  • the combination of the laser oscillator 36 and the light receiver 37 may be added to the configuration of the first embodiment.
  • the deformed state of the first and second car guide rails 11a and 11b can be detected in more detail.
  • FIG. 19 is a block diagram showing a fourth example of the sensors used as the first, second, third, and fourth sensors 32a to 32d in FIG.
  • the fourth example as the first, second, third, and fourth sensors 32a to 32d, sensors that detect displacement of the landing position of the car 7 are used.
  • the landing position changes.
  • the landing position is shifted from the normal landing position h0 to the landing position h1 by ⁇ h.
  • the traveling direction of the car 7 and the traveling start floor are not limited to the above example.
  • the displacement of the landing position is detected by comparing the rotation amount of the drive sheave 5 or the extension amount of the suspension 6 when the car 7 is landed at the same position before and after the occurrence of the earthquake. You may.
  • the deformation state of the first and second car guide rails 11a and 11b of each of the elevators 20A to 20D is detected. Then, by comparing the deformation states of the first and second car guide rails 11a and 11b of the different elevators 20A to 20D, the soundness of the diagnosis target is diagnosed.
  • the deformed state of the first and second car guide rails 11a and 11b can be detected more reliably.
  • the deformation state of the first and second car guide rails 11a and 11b can be detected more reliably. Can be.
  • first and second car guide rails for each of the elevators 20A to 20D are detected by detecting the deformed state of the first and second car guide rails 11a and 11b based on the displacement of the landing position of the car 7.
  • the deformation state of 11a and 11b can be easily detected.
  • the first and second car guide rails 11a and 11b are firstly and secondly moved for each of the elevators 20A to 20D.
  • the deformation state of the second car guide rails 11a and 11b can also be detected.
  • the number of elevators installed in the building 1 may be any number as long as it is two or more.
  • the deformed state of the first and second car guide rails 11a and 11b may be detected in the same manner as in the first embodiment.
  • the deformed state of the first and second car guide rails 11a and 11b is detected.
  • the deformed state of one of the first and second car guide rails 11a and 11b is detected. You may. Further, the deformation state of at least one of the first and second counterweight guide rails 12a and 12b may be detected.
  • the diagnosis of soundness may be performed after a disaster other than an earthquake occurs, or may be performed at an arbitrary timing by inputting a diagnosis command manually.
  • first and second embodiments can be implemented in combination.
  • FIG. 21 is a configuration diagram illustrating a first example of a processing circuit that realizes each function of the diagnostic device main bodies 21 and 31 of the first and second embodiments.
  • the processing circuit 100 of the first example is dedicated hardware.
  • the processing circuit 100 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. Applicable. Further, each function of the diagnostic device main bodies 21 and 31 may be realized by the individual processing circuit 100, or each function may be realized by the processing circuit 100 collectively.
  • FIG. 22 is a configuration diagram illustrating a second example of a processing circuit that realizes each function of the diagnostic device main bodies 21 and 31 according to the first and second embodiments.
  • the processing circuit 200 of the second example includes a processor 201 and a memory 202.
  • each function of the diagnostic device main bodies 21 and 31 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are described as programs and stored in the memory 202.
  • the processor 201 implements each function by reading and executing the program stored in the memory 202.
  • the program stored in the memory 202 causes a computer to execute the procedure or method of each unit described above.
  • the memory 202 is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Memory Only), an EEPROM (Electrical Memory, etc.). Or volatile semiconductor memory.
  • a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, and the like also correspond to the memory 202.
  • the processing circuit can realize the function of each unit described above by hardware, software, firmware, or a combination thereof.

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)

Abstract

健全性診断装置は、レール変形検出部と診断部とを有している。レール変形検出部は、建物内に設置されているエレベータの複数のガイドレールの変形状態を、ガイドレール毎に検出する。診断部は、レール変形検出部で検出されたガイドレールの変形状態に基づいて、診断対象の健全性を診断する。診断対象は、建物とエレベータとの少なくともいずれか一方である。

Description

健全性診断装置
 この発明は、エレベータが設けられている建物とエレベータとの少なくともいずれか一方である診断対象の健全性を診断する健全性診断装置に関するものである。
 従来の地震損傷計測システムでは、変形状態計測部により、ガイドレールの変形状態が計測される。また、計測されたガイドレールの変形状態に基づいて、建築物の変形状態が推定され、建築物の健全性が評価される(例えば、特許文献1参照)。
特許第5197992号公報
 上記のような従来の地震損傷計測システムでは、ガイドレールの変形状態に基づいて、建築物の健全性が評価されている。しかし、実際には、エレベータのガイドレールの変形が建物の変形とは一致しない場合がある。特に、地震の揺れでガイドレールのみが変形した場合、従来の地震損傷計測システムでは、建築物もガイドレールと同様に変形したと判定される。
 この発明は、上記のような課題を解決するためになされたものであり、診断対象の健全性を、より高精度に診断することができる健全性診断装置を得ることを目的とする。
 この発明に係る健全性診断装置は、建物内に設置されているエレベータの複数のガイドレールの変形状態を、ガイドレール毎に検出するレール変形検出部、及びレール変形検出部で検出された複数のガイドレールの変形状態に基づいて、建物とエレベータとの少なくともいずれか一方である診断対象の健全性を診断する診断部を備えている。
 この発明の健全性診断装置によれば、診断対象の健全性を、より高精度に診断することができる。
この発明の実施の形態1による健全性診断装置を備えた建物を示す構成図である。 図1の建物にかごの幅方向への変形が生じた状態を示す説明図である。 図1の第1のかごガイドレールのみにかごの幅方向への変形が生じた状態を示す説明図である。 図1の建物にかごの前後方向への変形が生じた状態を示す説明図である。 図1の第1のかごガイドレールのみにかごの前後方向の変形が生じた状態を示す説明図である。 実施の形態1の健全性診断装置を示すブロック図である。 図6の診断装置本体に設定された基準値の一例を示すグラフである。 健全性の診断時に計測された診断時計測値の一例を示すグラフである。 図6の診断装置本体による健全性診断動作を示すフローチャートである。 この発明の実施の形態2による健全性診断装置を備えた建物を示す構成図である。 図10の建物の健全性に異常がある場合の第1及び第2のかごガイドレールの変形状態の一例を示す説明図である。 図10の1台のエレベータの健全性に異常がある場合の第1及び第2のかごガイドレールの変形状態の一例を示す説明図である。 実施の形態2の健全性診断装置を示すブロック図である。 図13の第1、第2、第3及び第4のセンサとして使用されるセンサの第1の例を示す構成図である。 図14のかごに傾きが生じた状態を示す構成図である。 図13の第1、第2、第3、及び第4のセンサとして使用されるセンサの第2の例を示す構成図である。 図13の第1、第2、第3、及び第4のセンサとして使用されるセンサの第3の例を示す構成図である。 図17の受光器を示す正面図である。 図13の第1、第2、第3、及び第4のセンサとして使用されるセンサの第4の例を示す構成図である。 図19の第1及び第2のかごガイドレールに変形が生じた状態を示す構成図である。 実施の形態1、2の診断装置本体の各機能を実現する処理回路の第1の例を示す構成図である。 実施の形態1、2の診断装置本体の各機能を実現する処理回路の第2の例を示す構成図である。
 以下、この発明を実施するための形態について、図面を参照して説明する。
 実施の形態1.
 図1は、この発明の実施の形態1による健全性診断装置を備えた建物を示す構成図である。図において、建物1には、昇降路2及び機械室3が設けられている。機械室3は、昇降路2の上部に配置されている。
 機械室3には、巻上機4が設置されている。巻上機4は、駆動シーブ5、図示しない巻上機モータ、及び図示しない巻上機ブレーキを有している。巻上機モータは、駆動シーブ5を回転させる。巻上機ブレーキは、駆動シーブ5の静止状態を保持、又は駆動シーブ5の回転を制動する。
 駆動シーブ5には、懸架体6が巻き掛けられている。懸架体6としては、複数本のロープ又は複数本のベルトが用いられている。
 懸架体6の第1の端部には、昇降体としてのかご7が接続されている。懸架体6の第2の端部には、釣合おもり8が接続されている。かご7及び釣合おもり8は、懸架体6により昇降路2内に吊り下げられている。また、かご7及び釣合おもり8は、駆動シーブ5を回転させることにより、昇降路2内を昇降する。
 かご7は、かご枠9及びかご室10を有している。懸架体6は、かご枠9に接続されている。かご室10は、かご枠9に支持されている。
 昇降路2内には、第1のかごガイドレール11a、第2のかごガイドレール11b、第1の釣合おもりガイドレール12a、及び第2の釣合おもりガイドレール12bが設置されている。
 第1及び第2のかごガイドレール11a,11bは、かご7の昇降を案内する。第1のかごガイドレール11aは、かご7の幅方向の一側に配置されている。第2のかごガイドレール11bは、かご7の幅方向の他側に配置されている。
 第1及び第2の釣合おもりガイドレール12a,12bは、釣合おもり8の昇降を案内する。第1の釣合おもりガイドレール12aは、釣合おもり8の幅方向の一側に配置されている。第2の釣合おもりガイドレール12bは、釣合おもり8の幅方向の他側に配置されている。
 第1のかごガイドレール11a、第2のかごガイドレール11b、第1の釣合おもりガイドレール12a、及び第2の釣合おもりガイドレール12bは、それぞれ複数のレールブラケット13に保持されている。各レールブラケット13は、昇降路壁に固定されている。
 かご枠9には、第1の上部ガイド装置15a、第2の上部ガイド装置15b、第1の下部ガイド装置16a、及び第2の下部ガイド装置16bが設けられている。第1及び第2の上部ガイド装置15a,15bは、かご枠9の上部に設けられている。第1及び第2の下部ガイド装置16a,16bは、かご枠9の下部に設けられている。
 第1の上部ガイド装置15a及び第1の下部ガイド装置16aは、第1のかごガイドレール11aに接する。第2の上部ガイド装置15b及び第2の下部ガイド装置16bは、第2のかごガイドレール11bに接する。
 ガイド装置15a,15b,16a,16bとしては、それぞれスライディングガイドシュー又はローラガイド装置が用いられている。
 機械室3には、エレベータ制御装置17が設置されている。エレベータ制御装置17は、巻上機4を制御することにより、かご7の運行を制御する。エレベータ制御装置17は、コンピュータを有している。
 実施の形態1のエレベータ20は、巻上機4、懸架体6、かご7、釣合おもり8、ガイドレール11a,11b,12a,12b、レールブラケット13、ガイド装置15a,15b,16a,16b、及びエレベータ制御装置17を含んでいる。
 また、実施の形態1の健全性診断装置は、診断装置本体21を有している。診断装置本体21は、機械室3に設置されている。また、診断装置本体21は、エレベータ制御装置17に通信可能に接続されている。
 診断装置本体21には、第1、第2、第3、及び第4の反力情報が入力される。第1の反力情報は、第1の上部ガイド装置15aが第1のかごガイドレール11aから受ける反力に関する情報である。第2の反力情報は、第2の上部ガイド装置15bが第2のかごガイドレール11bから受ける反力に関する情報である。
 第3の反力情報は、第1の下部ガイド装置16aが第1のかごガイドレール11aから受ける反力に関する情報である。第4の反力情報は、第2の下部ガイド装置16bが第2のかごガイドレール11bから受ける反力に関する情報である。
 ここで、かご7が乗客を乗せていない状態で走行する場合、ガイド装置15a,15b,16a,16bが受ける反力は、かごガイドレール11a,11bの微小な変形等により多少変動するものの、基本的には一定である。
 これに対して、例えば地震によってかごガイドレール11a,11bが変形し、その変形部分をかご7が通過すると、ガイド装置15a,15b,16a,16bが受ける反力が変化する。
 例えば、図2に示すように、建物1にかご7の幅方向への変形が生じると、第1及び第2のかごガイドレール11a,11bが同じように変形する。このため、第1及び第2のかごガイドレール11a,11bの間隔は、ほぼ一定となる。
 一方、図3に示すように、建物1が変形せず、第1のかごガイドレール11aのみに変形が生じると、第1及び第2のかごガイドレール11a,11bの間隔が変化する。
 なお、図2及び図3において、Y軸方向は、第1及び第2のかごガイドレール11a,11bの変形前のかご7の幅方向である。また、X軸方向は、第1及び第2のかごガイドレール11a,11bの変形前のかご7の前後方向である。また、Z軸方向は、鉛直方向である。
 また、図2及び図3において、ガイド装置15a,15b,16a,16bが受ける反力を矢印で示している。また、各矢印の長さは、反力の大きさを示している。
 図3では、第1及び第2の上部ガイド装置15a,15bの位置で、第1及び第2のかごガイドレール11a,11bの間隔が大きくなっている。このとき、かご7は第1のかごガイドレール11a側へ傾く。また、第1及び第2の上部ガイド装置15a,15bが受ける反力は、同時に小さくなる。
 このように、かご7の上下左右に設置されたガイド装置15a,15b,16a,16bが受ける反力を全て測定することで、第1及び第2のかごガイドレール11a,11bそれぞれの変形状態を検出できる。
 そして、第1のかごガイドレール11aの変形状態と第2のかごガイドレール11bの変形状態とが異なっていれば、第1のかごガイドレール11a又は第2のかごガイドレール11bのみが変形していると推定することができる。
 また、第1及び第2のかごガイドレール11a,11bの変形状態が同じであれば、建物1全体が変形していると推定することができる。即ち、健全性を、エレベータ20と建物1とで切り分けて評価することができる。
 かご7の前後方向への変形についても、同様のことが言える。一例として、図4は、建物1全体にかご7の前後方向への変形が生じた状態を示している。また、図5は、第1のかごガイドレール11aのみにかご7の前後方向への変形が生じた状態を示している。
 図6は、実施の形態1の健全性診断装置を示すブロック図である。実施の形態1の健全性診断装置は、診断装置本体21に加えて、第1の上部センサ22a、第2の上部センサ22b、第1の下部センサ23a、及び第2の下部センサ23bを有している。
 第1の上部センサ22aは、第1の上部ガイド装置15aに設けられている。また、第1の上部センサ22aは、第1の反力情報として、第1の上部ガイド装置15aが受ける反力の大きさに応じた信号を発生する。
 第2の上部センサ22bは、第2の上部ガイド装置15bに設けられている。また、第2の上部センサ22bは、第2の反力情報として、第2の上部ガイド装置15bが受ける反力の大きさに応じた信号を発生する。
 第1の下部センサ23aは、第1の下部ガイド装置16aに設けられている。また、第1の下部センサ23aは、第3の反力情報として、第1の下部ガイド装置16aが受ける反力の大きさに応じた信号を発生する。
 第2の下部センサ23bは、第2の下部ガイド装置16bに設けられている。また、第2の下部センサ23bは、第4の反力情報として、第2の下部ガイド装置16bが受ける反力の大きさに応じた信号を発生する。
 実施の形態1の診断装置本体21は、地震発生後の診断対象の健全性を診断する。診断対象は、建物1とエレベータ20との少なくともいずれか一方である。また、診断装置本体21は、地震発生後の診断対象の健全性として、エレベータ20の自動運転を再開するために支障となる異常の有無を判定する。
 また、診断装置本体21は、健全性の診断時に、エレベータ制御装置17にかご7を走行させる指令を出力する。エレベータ制御装置17は、健全性の診断時に、かご7を走行させる。
 また、診断装置本体21は、機能ブロックとして、レール変形検出部21a、診断部としての判定部21b、記憶部21c、及び発報部21dを有している。
 レール変形検出部21aは、第1の上部センサ22a、第2の上部センサ22b、第1の下部センサ23a、及び第2の下部センサ23bからの信号を入力信号として用いる。
 また、レール変形検出部21aは、第1の上部センサ22a、第2の上部センサ22b、第1の下部センサ23a、及び第2の下部センサ23bからの信号に基づいて、第1及び第2のかごガイドレール11a,11bの変形状態を、第1及び第2のかごガイドレール11a,11b毎に検出する。この例では、変形状態は、変形量である。
 判定部21bは、レール変形検出部21aで検出された第1及び第2のかごガイドレール11a,11bの変形状態に基づいて、診断対象の健全性を診断する。即ち、判定部21bは、第1及び第2のかごガイドレール11a,11bの変形量の計測値を、基準値と比較することにより、第1及び第2のかごガイドレール11a,11bの変形量の異常の有無を判定する。
 また、判定部21bは、第1のかごガイドレール11a又は第2のかごガイドレール11bのみが変形しているのか、建物1全体が変形しているのかを判定する。
 記憶部21cは、上記の基準値を記憶する。発報部21dは、判定部21bによる判定結果を、エレベータ制御装置17及び遠隔の管理室に発報する。
 図7は、図6の診断装置本体21に設定された基準値の一例を示すグラフである。この例では、基準値は、例えばエレベータ20の据付時に計測された初期計測値に許容値を加えることで設定される。これは、異常がない状態でも、据付時の誤差等により、第1及び第2のかごガイドレール11a,11bが僅かに変形していることがあるためである。
 初期計測値の計測は、昇降行程の全体に渡ってかご7を走行させることにより行われる。このとき、精度向上のため、かご7の走行速度を通常運転時の速度から変更してもよい。例えば、初期計測値の計測時には、かご7の走行速度を定格速度よりも低速としてもよい。基準値は、保守点検で異常がなかった際に更新してもよい。また、基準値は、設定周期で定期的に更新してもよい。
 図8は、健全性の診断時に計測された診断時計測値の一例を示すグラフである。この例では、昇降行程の一部で、診断時計測値が基準値を超えている。これにより、判定部21bは、異常ありと判定する。健全性の診断は、地震以外の災害の発生後に行ってもよいし、人手による診断指令の入力により任意のタイミングで行ってもよい。
 図9は、図6の診断装置本体21による健全性診断動作を示すフローチャートである。健全性診断動作において、診断装置本体21は、まずステップS1において、かご7の走行を開始させる指令をエレベータ制御装置17に出力する。
 かご7の走行が開始されると、診断装置本体21は、ステップS2、3において、かご7の走行が終了するまで、第1及び第2の上部センサ22a,22bからの情報と第1及び第2の下部センサ23a,23bからの情報とを取得する。
 かご7の走行が終了すると、診断装置本体21は、ステップS4において、第1及び第2のかごガイドレール11a,11bの変形量を計測する。そして、診断装置本体21は、ステップS5において、第1及び第2のかごガイドレール11a,11bの変形量の異常の有無を判定する。また、診断装置本体21は、ステップS5において、第1のかごガイドレール11a又は第2のかごガイドレール11bのみが変形しているのか、建物1全体が変形しているのかを判定する。
 この後、診断装置本体21は、判定結果をエレベータ制御装置17及び遠隔の管理室に発報して、処理を終了する。
 このような健全性診断装置では、第1及び第2のかごガイドレール11a,11bの変形状態が、第1及び第2のかごガイドレール11a,11b毎に検出される。そして、第1及び第2のかごガイドレール11a,11bの変形状態に基づいて、診断対象の健全性が診断される。
 このため、第1のかごガイドレール11a又は第2のかごガイドレール11bのみが変形しているのか、建物1全体が変形しているのかを、判定することができる。従って、診断対象の健全性を、より高精度に診断することができる。
 また、レール変形検出部21aは、かご7に設けられたセンサ22a,22b,23a,23bからの信号を入力信号として用いている。このため、かご7を走行させることにより、第1及び第2のかごガイドレール11a,11bの変形状態を全体に渡って検出することができる。
 また、レール変形検出部21aは、第1及び第2の上部センサ22a,22bと、第1及び第2の下部センサ23a,23bとからの信号を入力信号として用いている。このため、第1のかごガイドレール11a又は第2のかごガイドレール11bのみが変形しているのか、建物1全体が変形しているのかを、より正確に判定することができる。
 なお、第1及び第2のかごガイドレール11a,11bの変形状態と同様に、第1及び第2の釣合おもりガイドレール12a,12bの変形状態を検出してもよい。
 また、センサは、ガイド装置が受ける反力を検出するセンサに限定されない。
 また、各ガイド装置15a,15b,16a,16bには、防振のため、ばね又はゴム等の弾性部材が設けられている。このため、各ガイド装置15a,15b,16a,16bに設けられた弾性部材の変形量から、各ガイドレール11a,11b,12a,12bの変形状態を検出してもよい。他にも、昇降路に設けられた複数のカメラからの信号を画像処理して、複数のガイドレールの変形状態をガイドレール毎に検出してもよい。
 加えて、複数の種類のセンサを併用してもよい。例えば、ガイド装置の反力を検出するセンサと、かごの傾斜角度を検出するセンサとを併用してもよい。
 実施の形態2.
 次に、図10は、この発明の実施の形態2による健全性診断装置を備えた建物を示す構成図である。実施の形態2では、建物1に複数機のエレベータが設置されている。図10の例では、A号機のエレベータ20A、B号機のエレベータ20B、C号機のエレベータ20C、及びD号機のエレベータ20Dが建物1に設置されている。
 各エレベータ20A~20Dの構成は、実施の形態1のエレベータ20と同様である。また、図10では、簡単のため、各エレベータ20A~20Dのかご7、第1及び第2のかごガイドレール11a,11b、及びレールブラケット13のみを示している。
 エレベータ20A~20Dのエレベータ制御装置17は、図示しない群管理装置により制御されている。
 実施の形態2の健全性診断装置は、診断装置本体31を有している。診断装置本体31は、機械室3に設置されている。また、診断装置本体31は、エレベータ20A~20Dのエレベータ制御装置17に通信可能に接続されている。
 診断装置本体31には、第1、第2、第3、及び第4のセンサ情報が入力される。第1、第2、第3、及び第4のセンサ情報の内容については、後述する。
 診断装置本体31は、エレベータ20A~20Dのそれぞれの第1及び第2のかごガイドレール11a,11bの変形状態を比較することにより、診断対象の健全性を診断する。
 ここで、ガイドレールの変形状態を測定するための構成としては、既存のかごに加速度センサを設置した構成、巻上機トルクを利用した構成、及びガイドレールに光ファイバを直接設置した構成等が知られている。
 しかし、ガイドレールの変形は、ガイドレールが設置された建物の変形と、ガイドレール自体の変形とが加算されたものである。このため、1つの情報のみで、ガイドレールだけが変形したのか、建物が変形したのかを判定することは難しい。
 これに対して、実施の形態2では、1つの建物1内に設置された複数のエレベータ20A~20Dで、第1及び第2のかごガイドレール11a,11bの変形状態を同じように検出する。そして、検出結果を比較することで、健全性を、エレベータ20と建物1とで切り分けて評価する。
 例えば、図11に示すように、全てのエレベータ20A~20Dにおいて、同じかご位置で大きく第1及び第2のかごガイドレール11a,11bが変形していれば、建物1の健全性に異常があると推定できる。
 一方、図12に示すように、1台のエレベータ20Cのみにおいて、大きく値が変化していれば、1台のエレベータ20Cのみの健全性に異常があると推定できる。
 図13は、実施の形態2の健全性診断装置を示すブロック図である。実施の形態2の健全性診断装置は、診断装置本体31に加えて、第1のセンサ32a、第2のセンサ32b、第3のセンサ32c、及び第4のセンサ32dを有している。
 第1のセンサ32aは、A号機のかご7を走行させたときに、第1のセンサ情報を発生する。第1のセンサ情報は、A号機の第1及び第2のかごガイドレール11a,11bの変形状態に応じた信号である。
 第2のセンサ32bは、B号機のかご7を走行させたときに、第2のセンサ情報を発生する。第2のセンサ情報は、B号機の第1及び第2のかごガイドレール11a,11bの変形状態に応じた信号である。
 第3のセンサ32cは、C号機のかご7を走行させたときに、第3のセンサ情報を発生する。第3のセンサ情報は、C号機の第1及び第2のかごガイドレール11a,11bの変形状態に応じた信号である。
 第4のセンサ32dは、D号機のかご7を走行させたときに、第4のセンサ情報を発生する。第4のセンサ情報は、D号機の第1及び第2のかごガイドレール11a,11bの変形状態に応じた信号である。
 実施の形態2の診断装置本体31は、地震発生後の診断対象の健全性を診断する。診断対象は、建物1とエレベータ20との少なくともいずれか一方である。また、診断装置本体31は、地震発生後の診断対象の健全性として、エレベータ20A~20Dの自動運転を再開するために支障となる異常の有無を判定する。
 また、診断装置本体31は、健全性の診断時に、エレベータ20A~20Dのかご7を走行させる指令を群管理装置に出力する。各エレベータ制御装置17は、健全性の診断時に、対応するかご7を走行させる。
 また、診断装置本体31は、機能ブロックとして、レール変形検出部31a、診断部としての判定部31b、記憶部31c、及び発報部31dを有している。
 レール変形検出部31aは、第1、第2、第3、及び第4のセンサ32a~32dからの信号を入力信号として用いる。また、レール変形検出部31aは、第1、第2、第3、及び第4のセンサ32a~32dからの信号に基づいて、エレベータ20A~20Dのそれぞれの第1及び第2のかごガイドレール11a,11bの変形状態を検出する。この例では、変形状態は、変形量である。
 判定部31bは、レール変形検出部31aで検出された第1及び第2のかごガイドレール11a,11bの変形状態に基づいて、診断対象の健全性を診断する。即ち、判定部31bは、第1及び第2のかごガイドレール11a,11bの変形量の計測値を、基準値と比較することにより、第1及び第2のかごガイドレール11a,11bの変形量の異常の有無を判定する。
 また、判定部31bは、エレベータ20A~20Dのうちの一部のみの健全性に異常があるのか、建物1全体の健全性に異常があるのかを判定する。
 記憶部31cは、上記の基準値を記憶する。基準値の設定方法は、実施の形態1と同様である。発報部31dは、判定部31bによる判定結果を、群管理装置及び遠隔の管理室に発報する。
 実施の形態2の診断装置本体31による健全性診断動作の流れは、図9と同様である。
 以下、第1、第2、第3、及び第4のセンサ32a~32dの具体的な構成について説明する。
 図14は、図13の第1、第2、第3、及び第4のセンサ32a~32dとして使用されるセンサの第1の例を示す構成図である。かご枠9とかご室10の下部との間には、複数の防振部材33が介在している。
 第1の例では、第1、第2、第3、及び第4のセンサ32a~32dとして、変位計34が使用されている。変位計34は、かご室10の上部に設けられている。
 かご7に傾きが生じると、かご室10の上部とかご枠9との間の距離が変化する。変位計34は、かご室10の上部とかご枠9との間の距離に応じた信号を発生する。このように、変位計34は、かご7の傾きによるかご枠9に対するかご室10の動きに応じた信号を発生する。即ち、変位計34は、かご7の傾きに応じた信号を発生する傾きセンサとして機能する。
 通常時にかご7が乗客を乗せていない状態で走行した場合、かご7は傾かないため、変位計34の出力は、図14のδ1に対応した値のまま変化しない。
 一方、地震によって建物1及びかごガイドレール11a,11bが変形すると、例えば図15に示すように、かご枠9が傾く。このとき、かご室10は、防振部材33を介してかご枠9に支持されているため、かご枠9の傾斜角度とかご室10の傾斜角度とは一致しない。
 これにより、かご室10の上部からかご枠9までの距離が変化し、変位計34の出力も変化する。図15では、かご室10の上部からかご枠9までの距離が、δ1からδ2に増大している。
 このように、レール変形検出部31aは、エレベータ20A~20Dにそれぞれ設けられている変位計34からの信号を入力信号として用いることができる。
 次に、図16は、図13の第1、第2、第3、及び第4のセンサ32a~32dとして使用されるセンサの第2の例を示す構成図である。第2の例では、第1、第2、第3、及び第4のセンサ32a~32dとして、防振部材33の変形に応じた信号を発生する傾きセンサが使用されている。
 図16では、第1及び第2のかごガイドレール11a,11bからの強制変位入力で、かご枠9が傾いている。これにより、かご室10の重心位置gに対して、一側の防振部材33までの水平距離d1と、他側の防振部材33までの距離d2とが変化する。そして、防振部材33からの反力が変化する。
 このため、防振部材33の変形に応じた信号として、防振部材33の変形量に応じた信号、又は防振部材33に生じる反力に応じた信号を発生する傾きセンサを用いても、第1及び第2のかごガイドレール11a,11bの変形状態を検出することができる。
 次に、図17は、図13の第1、第2、第3、及び第4のセンサ32a~32dとして使用されるセンサの第3の例を示す構成図である。第3の例では、傾きセンサとしての傾斜計35がかご7の上部に設けられている。傾斜計35は、かご7の傾きに応じた信号を発生する。
 昇降路2の底部には、レーザ発振器36が設置されている。レーザ発振器36は、かご7の真下に配置されており、鉛直上方へ向けてレーザ光を発射する。かご7の下部には、受光器37が設けられている。受光器37は、レーザ発振器36からのレーザ光を受光面で受ける2次元センサである。
 図18は、図17の受光器37を示す正面図である。通常時にかご7が乗客を乗せていない状態で走行した場合、かご7の水平方向の位置は同じであるため、受光器37におけるレーザ光点38の位置は動かない。
 一方、地震によって建物1及びかごガイドレール11a,11bが変形した状態でかご7が走行すると、かご7の水平方向の位置が動くため、図18の矢印に示すように、レーザ光点38が移動する。
 このように、受光器37は、かご7の水平変位に応じた信号を発生する変位センサとして機能する。
 第3の例では、第1、第2、第3、及び第4のセンサ32a~32dとして、傾斜計35、レーザ発振器36、及び受光器37の組み合わせが用いられている。レール変形検出部31aは、傾斜計35からの信号に加えて、受光器37からの信号を入力信号として用いる。
 第1及び第2のかごガイドレール11a,11bの変形状態は、第1の例、第2の例、又は傾斜計35によっても検出することができる。しかし、かご7の傾きに加えて、かご7の水平方向の変位を検出することにより、第1及び第2のかごガイドレール11a,11b変形状態を、より詳細に検出することができる。
 なお、レーザ発振器36を昇降路2の頂部に下向きに配置し、受光器37をかご7の上部に上向きに配置してもよい。
 また、レーザ発振器36をかご7の下部に下向きに配置し、受光器37を昇降路2の底部に配置してもよい。
 また、レーザ発振器36をかご7の上部に上向きに配置し、受光器37を昇降路2の頂部に下向きに配置してもよい。
 また、レーザ発振器36及び受光器37の組み合わせを、実施の形態1の構成に追加してもよい。これにより、実施の形態1においても、第1及び第2のかごガイドレール11a,11b変形状態を、より詳細に検出することができる。
 次に、図19は、図13の第1、第2、第3、及び第4のセンサ32a~32dとして使用されるセンサの第4の例を示す構成図である。第4の例では、第1、第2、第3、及び第4のセンサ32a~32dとして、かご7の着床位置のずれを検出するセンサが用いられている。
 通常時にかご7を最上階から最下階まで走行させた場合、懸架体6の繰り出し量は一定である。
 一方、地震によって建物1及びかごガイドレール11a,11bが変形した場合、通常時と同じ懸架体6の繰り出し量で、かご7を最上階から最下階まで走行させると、例えば図20に示すように、着床位置が変化する。図20では、着床位置が、通常時の着床位置h0から着床位置h1にΔhだけずれている。
 この着床位置のずれ量を、各階で測定することによって、第1及び第2のかごガイドレール11a,11bの変形状態を検出することができる。
 なお、第4の例において、かご7の走行方向、及び走行開始階は、上記の例に限定されない。
 また、第4の例において、地震発生前後でかご7を同じ位置に着床させた場合の駆動シーブ5の回転量又は懸架体6の繰り出し量を比較して、着床位置のずれを検出してもよい。
 このような健全性診断装置では、エレベータ20A~20Dのそれぞれの第1及び第2のかごガイドレール11a,11bの変形状態が検出される。そして、異なるエレベータ20A~20Dの第1及び第2のかごガイドレール11a,11bの変形状態を比較することにより、診断対象の健全性が診断される。
 このため、エレベータ20A~20Dのうちの一部のみの健全性に異常があるのか、建物1全体の健全性に異常があるのかを、判定することができる。従って、診断対象の健全性を、より高精度に診断することができる。
 また、レール変形検出部31aの入力信号として、傾きセンサからの信号を用いることにより、エレベータ20A~20D毎の第1及び第2のかごガイドレール11a,11bの変形状態を容易に検出することができる。
 また、かご枠9に対するかご室10の動きに応じた信号を発生する傾きセンサを用いることにより、第1及び第2のかごガイドレール11a,11bの変形状態をより確実に検出することができる。
 また、かご枠9とかご室10との間の距離に応じた信号を発生する傾きセンサを用いることにより、第1及び第2のかごガイドレール11a,11bの変形状態をより確実に検出することができる。
 また、防振部材33の変形に応じた信号を発生する傾きセンサを用いることにより、第1及び第2のかごガイドレール11a,11bの変形状態をより確実に検出することができる。
 また、レール変形検出部31aの入力信号として、傾きセンサからの信号に加えて、変位センサからの信号を用いることにより、診断対象の健全性を、より高精度に診断することができる。
 また、かご7の着床位置のずれに基づいて、第1及び第2のかごガイドレール11a,11bの変形状態を検出することにより、エレベータ20A~20D毎の第1及び第2のかごガイドレール11a,11bの変形状態を容易に検出することができる。
 加えて、かご7を昇降させる巻上機4のトルク情報に基づいて、第1及び第2のかごガイドレール11a,11bの変形状態を検出することにより、エレベータ20A~20D毎の第1及び第2のかごガイドレール11a,11bの変形状態を検出することもできる。
 なお、実施の形態2において、建物1に設置されているエレベーの台数は、2台以上であれば何台であってもよい。
 また、実施の形態2において、実施の形態1と同様の方法で第1及び第2のかごガイドレール11a,11bの変形状態を検出してもよい。
 また、実施の形態2では、第1及び第2のかごガイドレール11a,11bの変形状態を検出したが、第1及び第2のかごガイドレール11a,11bのいずれか一方の変形状態を検出してもよい。また、第1及び第2の釣合おもりガイドレール12a,12bの少なくともいずれか一方の変形状態を検出してもよい。
 また、健全性の診断は、地震以外の災害の発生後に行ってもよいし、人手による診断指令の入力により任意のタイミングで行ってもよい。
 また、実施の形態1、2を組み合わせて実施することも可能である。
 また、実施の形態1、2の診断装置本体21,31の各機能は、処理回路によって実現される。図21は、実施の形態1、2の診断装置本体21,31の各機能を実現する処理回路の第1の例を示す構成図である。第1の例の処理回路100は、専用のハードウェアである。
 また、処理回路100は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。また、診断装置本体21,31の各機能それぞれを個別の処理回路100で実現してもよいし、各機能をまとめて処理回路100で実現してもよい。
 また、図22は、実施の形態1、2の診断装置本体21,31の各機能を実現する処理回路の第2の例を示す構成図である。第2の例の処理回路200は、プロセッサ201及びメモリ202を備えている。
 処理回路200では、診断装置本体21,31の各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアは、プログラムとして記述され、メモリ202に格納される。プロセッサ201は、メモリ202に記憶されたプログラムを読み出して実行することにより、各機能を実現する。
 メモリ202に格納されたプログラムは、上述した各部の手順又は方法をコンピュータに実行させるものであるとも言える。ここで、メモリ202とは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable and Programmable Read Only Memory)等の、不揮発性又は揮発性の半導体メモリである。また、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等も、メモリ202に該当する。
 なお、上述した各部の機能について、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述した各部の機能を実現することができる。
 1 建物、7 かご(昇降体)、9 かご枠、10 かご室、11a 第1のかごガイドレール、11b 第2のかごガイドレール、20,20A,20B,20C,20D エレベータ、21,31 診断装置本体、21a,31a レール変形検出部、21b,31b 判定部(診断部)、22a 第1の上部センサ、22b 第2の上部センサ、23a 第1の下部センサ、23b 第2の下部センサ、34 変位計(傾きセンサ)、35 傾斜計(傾きセンサ)、37 受光器(変位センサ)。

Claims (12)

  1.  建物内に設置されているエレベータの複数のガイドレールの変形状態を、前記ガイドレール毎に検出するレール変形検出部、及び
     前記レール変形検出部で検出された前記複数のガイドレールの変形状態に基づいて、前記建物と前記エレベータとの少なくともいずれか一方である診断対象の健全性を診断する診断部
     を備えている健全性診断装置。
  2.  前記レール変形検出部は、1台の前記エレベータに含まれている前記複数のガイドレールの変形状態を、前記ガイドレール毎に検出する請求項1記載の健全性診断装置。
  3.  前記エレベータの昇降体に設けられており、対応する前記ガイドレールの変形量に応じた信号を発生する複数のセンサ
     をさらに備え、
     前記レール変形検出部は、前記複数のセンサからの信号を入力信号として用いる請求項1又は請求項2に記載の健全性診断装置。
  4.  前記複数のガイドレールは、前記昇降体の一側に配置されている第1のガイドレールと、前記昇降体の他側に配置されている第2のガイドレールとを含み、
     前記複数のセンサは、
     前記昇降体の上部に設けられている第1の上部ガイド装置が前記第1のガイドレールから受ける反力の大きさに応じた信号を発生する第1の上部センサと、
     前記昇降体の上部に設けられている第2の上部ガイド装置が前記第2のガイドレールから受ける反力の大きさに応じた信号を発生する第2の上部センサと、
     前記昇降体の下部に設けられている第1の下部ガイド装置が前記第1のガイドレールから受ける反力の大きさに応じた信号を発生する第1の下部センサと、
     前記昇降体の下部に設けられている第2の下部ガイド装置が前記第2のガイドレールから受ける反力の大きさに応じた信号を発生する第2の下部センサと
     を有している請求項3記載の健全性診断装置。
  5.  前記レール変形検出部は、前記建物内に設置されている複数の前記エレベータのそれぞれの前記ガイドレールの変形状態を検出する請求項1記載の健全性診断装置。
  6.  前記診断部は、異なる前記エレベータの前記ガイドレールの変形状態を比較することにより、前記診断対象の健全性を診断する請求項5記載の健全性診断装置。
  7.  前記複数のエレベータのそれぞれの昇降体の傾きに応じた信号を発生する複数の傾きセンサ
     をさらに備え、
     前記レール変形検出部は、前記複数の傾きセンサからの信号を入力信号として用いる請求項5又は請求項6に記載の健全性診断装置。
  8.  各前記傾きセンサは、対応する前記エレベータのかご枠に対するかご室の動きに応じた信号を発生する請求項7記載の健全性診断装置。
  9.  各前記傾きセンサは、対応する前記かご枠と対応する前記かご室との間の距離に応じた信号を発生する請求項8記載の健全性診断装置。
  10.  各前記傾きセンサは、対応する前記かご枠と対応する前記かご室との間に介在する防振部材の変形に応じた信号を発生する請求項8記載の健全性診断装置。
  11.  前記複数のエレベータのそれぞれの前記昇降体の水平変位に応じた信号を発生する複数の変位センサ
     をさらに備え、
     前記レール変形検出部は、前記複数の傾きセンサからの信号に加えて、前記複数の変位センサからの信号を入力信号として用いる請求項7から請求項10までのいずれか1項に記載の健全性診断装置。
  12.  前記レール変形検出部は、前記複数のエレベータのそれぞれのかごの着床位置のずれに基づいて、前記複数のエレベータのそれぞれの前記ガイドレールの変形状態を検出する請求項5又は請求項6に記載の健全性診断装置。
PCT/JP2018/029251 2018-08-03 2018-08-03 健全性診断装置 WO2020026439A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880095658.1A CN112512948B (zh) 2018-08-03 2018-08-03 健全性诊断装置
JP2020511835A JP6741366B2 (ja) 2018-08-03 2018-08-03 健全性診断装置
PCT/JP2018/029251 WO2020026439A1 (ja) 2018-08-03 2018-08-03 健全性診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/029251 WO2020026439A1 (ja) 2018-08-03 2018-08-03 健全性診断装置

Publications (1)

Publication Number Publication Date
WO2020026439A1 true WO2020026439A1 (ja) 2020-02-06

Family

ID=69232500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029251 WO2020026439A1 (ja) 2018-08-03 2018-08-03 健全性診断装置

Country Status (3)

Country Link
JP (1) JP6741366B2 (ja)
CN (1) CN112512948B (ja)
WO (1) WO2020026439A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042642A1 (ja) * 2022-08-24 2024-02-29 三菱電機ビルソリューションズ株式会社 エレベーターのガイドレールの変形検出システムおよび変形検出方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142746A (en) * 1977-05-16 1978-12-12 Hitachi Ltd Method of detecting guide rail curve for elevator
JPH04338081A (ja) * 1991-03-13 1992-11-25 Otis Elevator Co 垂直昇降路レール上のエレベータかごの水平偏差を測定する方法及び装置
JPH05310386A (ja) * 1992-03-09 1993-11-22 Toshiba Corp エレベータの制振装置
JP2008281435A (ja) * 2007-05-10 2008-11-20 Toshiba Corp 地震損傷計測システムおよび地震損傷計測方法
JP2009120337A (ja) * 2007-11-15 2009-06-04 Toshiba Elevator Co Ltd エレベータ仮復旧運転システム
JP2010173824A (ja) * 2009-01-30 2010-08-12 Hitachi Ltd エレベータ運転システム
JP2010195567A (ja) * 2009-02-27 2010-09-09 Hitachi Ltd 位置検出装置を備えたエレベータ
JP2017171449A (ja) * 2016-03-24 2017-09-28 株式会社日立ビルシステム エレベーター装置、異常監視装置及び異常特定方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551184A (ja) * 1991-08-26 1993-03-02 Hitachi Building Syst Eng & Service Co Ltd エレベータガイドレール歪み検出装置
JP3759804B2 (ja) * 1997-02-20 2006-03-29 株式会社日立製作所 エレベーター装置
JPH1135248A (ja) * 1997-07-11 1999-02-09 Taisei Corp 免震建物のエレベータ
KR100303013B1 (ko) * 1999-02-11 2001-09-13 장병우 엘리베이터용 안내 레일의 연삭장치 및 그 굴곡 측정방법
JP2001002346A (ja) * 1999-06-22 2001-01-09 Hitachi Ltd ロープ式エレベータ及びロープ式エレベータシステム
JP2009096580A (ja) * 2007-10-16 2009-05-07 Mitsubishi Electric Corp エレベーターの点検装置
CN104583113B (zh) * 2012-08-14 2016-08-24 三菱电机株式会社 电梯的对重装置
JP6096965B1 (ja) * 2016-04-28 2017-03-15 東芝エレベータ株式会社 エレベータの診断装置、及び診断方法
CN106698163A (zh) * 2017-03-28 2017-05-24 安徽理工大学 一种矿井立井提升机轨道检测系统
CN107152099B (zh) * 2017-05-25 2020-10-02 广州容柏生建筑结构设计事务所(普通合伙) 一种不同标高层间隔震结构的设置方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142746A (en) * 1977-05-16 1978-12-12 Hitachi Ltd Method of detecting guide rail curve for elevator
JPH04338081A (ja) * 1991-03-13 1992-11-25 Otis Elevator Co 垂直昇降路レール上のエレベータかごの水平偏差を測定する方法及び装置
JPH05310386A (ja) * 1992-03-09 1993-11-22 Toshiba Corp エレベータの制振装置
JP2008281435A (ja) * 2007-05-10 2008-11-20 Toshiba Corp 地震損傷計測システムおよび地震損傷計測方法
JP2009120337A (ja) * 2007-11-15 2009-06-04 Toshiba Elevator Co Ltd エレベータ仮復旧運転システム
JP2010173824A (ja) * 2009-01-30 2010-08-12 Hitachi Ltd エレベータ運転システム
JP2010195567A (ja) * 2009-02-27 2010-09-09 Hitachi Ltd 位置検出装置を備えたエレベータ
JP2017171449A (ja) * 2016-03-24 2017-09-28 株式会社日立ビルシステム エレベーター装置、異常監視装置及び異常特定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042642A1 (ja) * 2022-08-24 2024-02-29 三菱電機ビルソリューションズ株式会社 エレベーターのガイドレールの変形検出システムおよび変形検出方法

Also Published As

Publication number Publication date
CN112512948B (zh) 2022-05-10
CN112512948A (zh) 2021-03-16
JPWO2020026439A1 (ja) 2020-08-06
JP6741366B2 (ja) 2020-08-19

Similar Documents

Publication Publication Date Title
JP5050362B2 (ja) エレベータ
CN101316781B (zh) 电梯的控制装置
JP6549065B2 (ja) エレベーター装置及びプログラム
JP2002068626A (ja) エレベータの診断方法
JP6987255B2 (ja) エレベータ診断システム
KR20180031032A (ko) 엘리베이터 장치
JP6218706B2 (ja) エレベータの制御装置およびエレベータの制御方法
CN111252638B (zh) 用于监测电梯系统的装置和方法
WO2020026439A1 (ja) 健全性診断装置
JP2008156127A (ja) エレベータ
CN109476445B (zh) 电梯的控制装置和控制方法
JP2012250829A (ja) ダブルデッキエレベータ
JP7047972B2 (ja) エレベーターの滑り検出システム
JP7019046B2 (ja) 健全性診断装置
JP2014088242A (ja) エレベータ用長周期振動検出装置およびエレベータ用長周期振動検出方法
CN108689273B (zh) 电梯超行程测试系统和方法
KR102556783B1 (ko) 엘리베이터 안전 시스템을 위한 방법 및 컴퓨터 판독가능 매체
JP7410777B2 (ja) エレベータ式駐車設備
WO2024042642A1 (ja) エレベーターのガイドレールの変形検出システムおよび変形検出方法
EP4313829A1 (en) Method and system for estimating rope slip in an elevator system
JP2022121812A (ja) エレベーター制御装置
WO2019175398A1 (en) Elevator arrangement enabling methods for determining and monitoring a minimum counterweight to buffer distance
JP2012096871A (ja) エレベータ装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020511835

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928386

Country of ref document: EP

Kind code of ref document: A1