WO2020026373A1 - 貫流ファンおよび空気調和機 - Google Patents
貫流ファンおよび空気調和機 Download PDFInfo
- Publication number
- WO2020026373A1 WO2020026373A1 PCT/JP2018/028810 JP2018028810W WO2020026373A1 WO 2020026373 A1 WO2020026373 A1 WO 2020026373A1 JP 2018028810 W JP2018028810 W JP 2018028810W WO 2020026373 A1 WO2020026373 A1 WO 2020026373A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fan
- once
- wing
- small
- main wing
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/02—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
- F04D17/04—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
Definitions
- the present invention relates to a once-through fan and an air conditioner having the once-through fan.
- An air conditioner is a device that absorbs heat from the outside of a building during a heating operation to heat the inside of a building and releases heat to the outside of the building during a cooling operation to cool the inside of the building. For example, during the cooling operation, heat in the building is taken by the refrigerant flowing in the heat exchanger provided in the indoor unit, and is released to the outside air via the heat exchanger provided in the outdoor unit. For this reason, the indoor unit is provided with a heat exchanger for exchanging heat between air and a refrigerant, and a blower for generating a flow of air.
- a cross-flow fan with multiple wings on the outer periphery of a disk-shaped structure should be used as a blower.
- the once-through fan is mounted in a limited space in the housing, the flow direction of air flowing into and out of the fan during operation is likely to be different from the flow direction on the blade surface. As a result, a separation area is partially generated on the blade surface, and there is room for improvement in fan efficiency.
- Patent Document 1 small blades having a short chord are provided between the main wings of the once-through fan, and the fan efficiency is improved by suppressing the separation at the time of blowing.
- Patent Document 1 does not consider the case where air flows into the fan because the separation area on the blade surface generated when blowing air from the once-through fan is reduced. On the other hand, when the degree of dimensional freedom on the outlet side can be ensured, it is desirable to adopt a blade shape that reduces the separation area on the inlet side.
- the present invention has been made to solve the above-described problems, and has as its object to provide a once-through fan and an air conditioner capable of reducing a separation area on a suction side and improving fan efficiency.
- a cross-flow fan according to the present invention is a once-through fan having at least one or more inlets and outlets in an indoor unit and connected to a fan motor, wherein the once-through fan is a once-through fan.
- the blades of the impeller have alternating main wings with long chords and small wings with short chords, and the small wings are inclined toward the suction side of the main wings from the fan outer circumference toward the fan inner circumference. It is characterized by. Other aspects of the present invention will be described in embodiments described later.
- small blades are provided so as to narrow the flow path width along the flow at the time of air suction, and separation is reduced by reducing the area where the reverse pressure gradient occurs. Control and fan efficiency can be improved.
- FIG. 2 is a partial cross-sectional view illustrating the vicinity of a blade of the once-through fan according to the first embodiment. It is a schematic diagram which shows the flow of the air inside the indoor unit which concerns on 1st Embodiment. It is a schematic diagram which shows the flow around the once-through fan of the comparative example without a small wing. It is a schematic diagram which shows the flow around the once-through fan of the comparative example with a small wing. It is a schematic diagram which shows the flow around the once-through fan according to the first embodiment. It is a fragmentary sectional view showing the neighborhood of the wing of the once-through fan concerning a 2nd embodiment.
- FIG. 1 is a sectional view showing an indoor unit 100 (indoor unit) of the air conditioner according to the first embodiment.
- the housing 10 is provided with a mounting surface 20 for fixing the inside of the building, a front panel 19 facing the building, a vertical plate 18 for sending air flow to the building, and a left and right plate 21.
- the mounting surface 20 side is the rear side
- the front panel 19 side is the front side
- the direction of the vertical wind direction plate 18 is the lower side
- the facing side is the upper side, based on the cross-flow fan 11 installed at the center of the housing 10. Is defined.
- a heat exchanger 14 is provided inside the housing 10 so as to cover the upper part of the cross-flow fan 11.
- the heat exchanger 14 is a cross fin tube type in which a plurality of circular heat transfer tubes 15 penetrate a plate material that becomes fins 16.
- a filter 17 for removing dust and the like when air flows in from the first suction port 31 and the second suction port 32 is provided further outside the heat exchanger 14.
- the once-through fan 11 is a once-through impeller, and has a structure in which a plurality of wings (main wing 1 and small wing 4) are provided on the outer periphery of a disk-shaped support member perpendicular to the disk.
- a fan motor (not shown) is provided at an end of the disk-shaped support member constituting the once-through fan 11, and a rotation axis of the fan motor and a rotation axis of the once-through fan 11 are connected.
- the once-through fan 11 is rotated around a rotation axis by a fan motor, so that the indoor air is passed through only the first suction port 31 or the first suction port 31 according to the opening and closing of the front panel 19. Then, the air is sucked into the housing 10 through the second suction port 32. Then, the once-through fan 11 blows out the sucked air to the outside of the housing 10 through the outlet 33.
- the once-through fan 11 draws indoor air into the inside of the housing 10 to exchange heat with the refrigerant in the heat exchanger 14, and outputs the heat-exchanged air (air temperature-controlled to one of the cooling and heating) to the housing 10. It blows out into the room which is the outside of 10.
- FIG. 2 is a partial cross-sectional view showing the vicinity of the blade of the once-through fan 11 according to the first embodiment.
- the main wing 1 having a long chord and the small wings 4 having a short chord are alternately arranged on the outer peripheral side of the once-through fan 11.
- the pitch between two main wings 1 adjacent to each other across the small wing 4 and the pitch between two small wings 4 adjacent to each other across the main wing 1 are constant over the entire area of the once-through fan 11.
- the main wing 1 and the small wings 4 are curved wings having a convex surface on one side and a concave surface on the other side in a side sectional view.
- the convex surface is referred to as a small blade suction surface 5, and the concave surface of the small blade 4 is referred to as a small blade pressure surface 6.
- the main wing 1 has a line segment length L M connecting a fan outer peripheral end to a fan inner peripheral end with a straight line, and a maximum blade thickness ⁇ M. Also, at the end of the fan in the peripheral side, and the tangent of the concentric 8a for cross-flow fan 11, the angle of the main wing suction surface 2 has a beta M. Similarly, for the small blade 4 as well, the length of a straight line connecting the end on the fan outer peripheral side to the end on the fan inner peripheral side is L S , and the maximum thickness of the blade is ⁇ S.
- the angle of the winglet suction surface 5 has a beta S.
- the angle beta S is about 70% of the angle beta M.
- the thickness [delta] S winglet 4 has a thinner shape than the thickness [delta] M of the main wing 1.
- the line segment extending perpendicularly from the main wing pressure surface 3 to the small wing suction surface 5 becomes the flow path width of the small wing suction surface 5, and the line segment extending perpendicularly from the main wing suction surface 2 to the small wing pressure surface 6.
- the flow path width at the end on the fan outer peripheral side is Lo 1
- the flow path width at the end on the fan inner peripheral side is Li 1
- the flow path width at the end on the fan inner peripheral side is Li 1
- the flow path width at the end on the fan outer peripheral side is Lo 2
- the flow path width at the end on the fan inner peripheral side is Li 2 .
- Equation (1) means that the flow path width at the fan outer peripheral end is relatively smaller than the flow path width at the fan inner peripheral end of the flow path of the small blade negative pressure surface 5. ing. In other words, it can be said that the small wings 4 are inclined in the direction of the main wing negative pressure surface 2 from the outer peripheral side of the fan toward the inner peripheral side. Further, the flow path width Lo 1 of the small blade negative pressure surface 5 at the end on the fan outer peripheral side is about half of the flow path width Lo 2 of the small blade pressure surface 6. In other words, the flow path width of the small blade negative pressure surface 5 increases as going from the fan outer peripheral side to the fan inner peripheral side, and the flow path width of the small blade pressure surface 6 decreases. The difference between the flow channel widths is large on the outer peripheral side of the fan and smaller on the inner peripheral side of the fan.
- FIG. 3 is a schematic diagram illustrating the flow of air inside the indoor unit 100 (the indoor unit) according to the first embodiment.
- the once-through fan 11 rotates clockwise by a fan motor (not shown).
- air flows in from a region on the front side above the line connecting the front nose 12 and the back nose 13, and air flows out of the outlet 33 from the other region.
- the air inside the building exchanges heat with the refrigerant flowing through the heat exchanger 14 by passing through the suction ports (the first suction port 31 and the second suction port 32), the filter 17, and the heat exchanger 14, and then flows through the building. It is sucked into 11.
- the flow that has flowed out of the once-through fan 11 passes through the lower part of the housing 10 and is blown into the building with the blowing direction being controlled by the vertical wind direction plates 18 and the left and right wind direction plates 21 (see FIG. 1).
- FIG. 4 is a schematic view showing the flow around the once-through fan 11 of the comparative example having no small wing.
- the direction of flow may suddenly change before and after the blades of the once-through fan 11 because the heat exchanger 14 and the once-through fan 11 are arranged close to each other.
- the flow that has flowed in cannot follow the negative pressure surface 2 of the main wing, and a wide separation region 7 is generated. Since energy is dissipated downstream of the separation region 7 due to the vortex, the pressure and air volume obtained for the applied energy are reduced, and the fan efficiency is reduced.
- FIG. 5 is a schematic diagram showing the flow around the once-through fan of the comparative example having small blades.
- FIG. 5 shows a structure in which the main wings 1 and the small wings 4 are alternately arranged, except that the small wings 4 are inclined toward the pressure surface side of the main wing 1 from the outer peripheral side to the inner peripheral side of the once-through fan 11.
- the air that has flowed into the flow path of the small wing pressure surface 6 has a reverse pressure gradient because the flow path gradually expands, and the separation region 7 easily occurs on the main wing negative pressure surface 2.
- FIG. 6 is a schematic diagram showing the flow around the cross-flow fan 11 according to the first embodiment.
- the total flow path cross-sectional area on the inner peripheral side of the fan is smaller than that on the outer peripheral side of the fan, so that the average flow velocity increases toward the downstream side, but the flow path width Lo of the small blade negative pressure surface 5 on the outer peripheral side of the fan is increased. 1 (see FIG. 2) is made smaller than the flow path width Lo 2 (see FIG. 2) of the small blade pressure surface 6, so that the flow path width on the inner circumferential side of the fan having a high average flow velocity is made closer to increase the frictional drag. Has been suppressed. In particular, the effect is high when the flow path ratio between Lo 1 and Lo 2 satisfies the expression (2).
- Equation (2) indicates that when the flow path ratio is 0.7 or more, the frictional resistance of the small blade pressure surface 6 increases due to acceleration of the flow inside the fan, and when the flow path ratio is 0.5 or less, the frictional resistance becomes small.
- the flow path of the small wing negative pressure surface 5 has a reverse pressure gradient because the flow path expands along the flow, and the separation easily occurs.
- the outlet angle ⁇ S of the small wing 4 on the inner peripheral side of the fan is reduced.
- the expansion of the flow path width is moderated, and the separation area 7 is suppressed.
- the effect is high when the angle ratio between the exit angle ⁇ S of the small wing 4 and the exit angle ⁇ M of the main wing 1 is set to the relation of the equation (3).
- Equation (3) indicates that when the angle ratio is 0.8 or more, separation from the small wing suction surface 5 is likely to occur, and when the angle ratio is 0.6 or less, the contraction structure of the small wing pressure surface 6 is weakened. This indicates that separation from the main wing negative pressure surface 2 is likely to occur.
- a line segment L S connecting the end of the small wing 4 on the fan outer peripheral side to the end of the main wing 1 on the fan inner peripheral side is a line segment L S connecting the end of the main wing 1 on the fan outer peripheral side to the fan inner peripheral end. It is about 60% of M.
- FIG. 7 is a partial cross-sectional view showing the vicinity of the blade of the once-through fan 11 according to the second embodiment.
- FIG. 8 is an explanatory diagram showing the pitch between the main wing and the small wing according to the second embodiment.
- the pitch between the main wing 1 and the small wing 4 is different from that in the first embodiment.
- differences from the first embodiment will be described.
- the pitch between two main wings 1 adjacent to each other across the small wing 4 is denoted by P M
- P S along the angle ⁇ from the chain line in the figure.
- the difference between the maximum value and the minimum value of the interval of the main wings 1 adjacent to each other across the small wing 4 is the maximum value and the minimum value of the interval of the small wings 4 adjacent to each other across the main wing 1. It is smaller than the value difference (see the pitch P Si in FIG. 8).
- the once-through fan 11 is likely to generate noise at a frequency calculated from the product of the number of revolutions per second and the number of blades arranged on the circumference. This is due to pressure fluctuations generated from the front nose 12, the back nose 13, and the blade tip of the fan. Also in the structure of the first embodiment, noise corresponding to the number of blades passing per second at an arbitrary point is likely to occur.
- the peak frequency noise can be reduced by making the pitches of the wings arranged on the circumference non-uniform and shifting the wing passage timing to an arbitrary point.
- the change in the pitch of the main wing 1 that performs work is made smaller than the change in the pitch of the small wings 4, so that the main wing 1 that performs work is used efficiently, and noise is reduced by the small wing 4. it can.
- the main wings 1 by arranging the main wings 1 at a constant pitch and changing the pitch of the small wings 4 as in the present embodiment, the effect is enhanced.
- FIG. 9A is an explanatory diagram illustrating a wing shape of a comparative example.
- FIG. 9A is FIG. 7 of Patent Document 1.
- FIG. 9B is an explanatory diagram illustrating the wing shape according to the first embodiment. Referring to FIGS. 9A and 9B, differences between the two will be compared.
- the flow path width Lo 2a formed by the main wing suction surface 2 and the small wing pressure surface 6 and the flow passage width Lo 1a formed by the main wing pressure surface 3 and the small wing suction surface 5 are substantially equal. It is.
- the small wings 4 are provided on the suction surface side (main wing suction surface 2) of the main wing where the separation easily occurs, so that the flow path width becomes narrow along the flow when the air is sucked, and a reverse pressure gradient is generated.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
Abstract
室内ユニットに少なくとも1つ以上の吸込み口および吹出し口とを有し、ファンモータに連結された貫流ファン(11)であって、貫流ファン(11)は、貫流羽根車の翼が翼弦が長い主翼(1)と、翼弦が短い小翼(4)を交互に備えており、小翼(4)がファン外周側からファン内周側に向かって、主翼(1)の負圧面側に傾いている。
Description
本発明は貫流ファンおよびその貫流ファンを有する空気調和機に関する。
空気調和機は、建屋内を加熱する暖房運転の際に建屋外から熱を吸収し、建屋内を冷却する冷房運転の際に建屋外へ熱を放出する装置である。例えば冷房運転時には、建屋内の熱は室内機に設けた熱交換器内を流動する冷媒によって奪われ、室外機に設けた熱交換器を介して外気へと放出される。このため、室内機には空気と冷媒を熱交換させる熱交換器と、空気の流れを生み出す送風装置が備わっている。
一般家庭向けの機器については、省スペース性の観点から奥行き寸法の小ささが求められているため、送風装置として円盤状の構造体の外周に複数の翼を供えた貫流ファンが採用されることが多い。貫流ファンは筐体内の限られたスペースに実装されるために、運転時にファンに出入りする空気の流れ方向と翼面上の流れ方向の相違が生じやすい。これにより、部分的に翼面にはく離領域が生じるため、ファン効率に改善の余地がある。
前記の課題に対して、特許文献1では、貫流ファンの主翼の間に翼弦の短い小翼を設け、吹出し時のはく離を抑制することでファン効率の向上を実現している。
特許文献1は、貫流ファンから空気を吹出す際に生じる翼面上のはく離領域を低減するものであるため、ファンに対して空気が流入する場合については考慮されていない。一方で、吹出し側の寸法自由度が確保できる場合には、吸込側のはく離領域を低減する翼形状とすることが望ましい。
本発明は、前記の課題を解決するための発明であって、吸込み側のはく離領域を低減し、ファン効率を改善することができる貫流ファンおよび空気調和機を提供することを目的とする。
前記目的を達成するために、本発明の貫流ファンは、室内ユニットに少なくとも1つ以上の吸込み口および吹出し口とを有し、ファンモータに連結された貫流ファンであって、貫流ファンは、貫流羽根車の翼が翼弦が長い主翼と、翼弦が短い小翼を交互に備えており、小翼がファン外周側からファン内周側に向かって、主翼の負圧面側に傾いていることを特徴とする。本発明のその他の態様については、後記する実施形態において説明する。
本発明によれば、はく離の生じ易い主翼の負圧面側について、空気吸込み時に流れに沿って流路幅が狭くなるように小翼を設け、逆圧力勾配となる領域を低減することではく離を抑制し、ファン効率を向上できる。
以下、本発明における実施形態について、図面を参照して詳細に説明する。
<<第1実施形態>>
図1は、第1実施形態に係る空気調和機の室内機100(室内ユニット)を示す断面図である。筺体10は、建屋内に固定するための取り付け面20と、建屋内側に面した前面パネル19、空気の流れを建屋内へ送る上下風向板18、左右風向板21を備えている。本実施形態では、筺体10の中心に設置した貫流ファン11を基準として、取り付け面20側を背面側、前面パネル19側を前面側、上下風向板18の方向を下側、その対面側を上側と定義する。
<<第1実施形態>>
図1は、第1実施形態に係る空気調和機の室内機100(室内ユニット)を示す断面図である。筺体10は、建屋内に固定するための取り付け面20と、建屋内側に面した前面パネル19、空気の流れを建屋内へ送る上下風向板18、左右風向板21を備えている。本実施形態では、筺体10の中心に設置した貫流ファン11を基準として、取り付け面20側を背面側、前面パネル19側を前面側、上下風向板18の方向を下側、その対面側を上側と定義する。
筺体10の内部には、貫流ファン11の上部を覆うように熱交換器14が設けられている。熱交換器14は複数の円形の伝熱管15がフィン16となる板材を貫通した形状のクロスフィンチューブ型である。熱交換器14のさらに外側には、第1吸込口31、第2吸込口32からの空気流入時の埃などを取り除くためのフィルタ17が設置されている。
貫流ファン11の前面下側と背面上側には、それぞれ貫流ファン11に近接してフロントノーズ12とバックノーズ13が設置されている。貫流ファン11は、貫流羽根車であり、円盤状の支持材の外周に、円盤に対して垂直に複数の翼(主翼1、小翼4)を設けた構造となっている。貫流ファン11を構成する円盤状の支持材の端部には、ファンモータ(図示外)が設置されており、ファンモータの回転軸と貫流ファン11の回転軸が接続されている。
この貫流ファン11は、ファンモータによって、回転軸周りに回転することで、室内の空気を、前記の前面パネル19の開閉に応じて第1吸込口31のみを介して、又は第1吸込口31及び第2吸込口32を介して筺体10の内側に吸い込む。そして、貫流ファン11は、吸い込んだ空気を吹出口33を介して筺体10の外側に吹出すようになっている。つまり、この貫流ファン11は、室内の空気を筺体10の内側に吸い込んで熱交換器14の冷媒と熱交換を行わせ、熱交換した空気(冷暖房のいずれかに温度調整された空気)を筺体10の外側である室内に吹出すようになっている。
図2は、第1実施形態に係る貫流ファン11の翼付近を示す部分断面図である。貫流ファン11の外周側に翼弦が長い主翼1と、翼弦が短い小翼4を交互に配置した構造となっている。ここで、小翼4を挟んで隣接する2つの主翼1のピッチと、主翼1を挟んで隣接する2つの小翼4のピッチは、貫流ファン11の全域にわたって一定である。
主翼1と小翼4は、側断面視で一方に凸面、他方に凹面となるような湾曲する翼であり、凹面側が、図2中の右回り(時計回り)に回転する貫流ファン11の回転方向を向くように配置されている。即ち、主翼1と小翼4は、それぞれが円弧状の曲面で構成され、主翼1の凸側の面を主翼負圧面2、主翼1の凹側の面を主翼圧力面3、小翼4の凸側の面を小翼負圧面5、小翼4の凹側の面を小翼圧力面6と称する。
図2において、主翼1は、ファン外周側の端部からファン内周側の端部を直線で結んだ線分の長さがLM、翼の最大肉厚がδMとなっている。また、ファン内周側の端部における、貫流ファン11に対する同心円8aの接線と、主翼負圧面2のなす角度はβMとなっている。同様に、小翼4についても、ファン外周側の端部からファン内周側の端部を直線で結んだ線分の長さがLS、翼の最大肉厚がδSとなっている。また、ファン内周側の端部における、貫流ファン11に対する同心円8bの接線と、小翼負圧面5のなす角度はβSとなっている。ここで、線分LSの長さは線分LMの長さの約6割、角度βSは角度βMの約7割となっている。また、小翼4の肉厚δSは主翼1の肉厚δMよりも薄い形状となっている。
小翼負圧面5に対して主翼圧力面3から垂直に伸ばした線分が小翼負圧面5の流路幅となり、小翼圧力面6に対して主翼負圧面2から垂直に伸ばした線分が小翼圧力面6の流路幅となる。ここで、小翼負圧面5について、ファン外周側の端部における流路幅はLo1、ファン内周側の端部における流路幅はLi1となっている。また、小翼圧力面6について、ファン外周側の端部における流路幅はLo2、ファン内周側の端部における流路幅はLi2となっている。この4つの流路幅は、式(1)を満たす関係となっている。
式(1)は、小翼負圧面5の流路について、ファン内周側の端部における流路幅に比べて、ファン外周側の端部における流路幅が相対的に狭いことを意味している。言い換えれば、小翼4はファン外周側から内周側に向かって、主翼負圧面2の方向に傾いていると言える。さらに、ファン外周側の端部における小翼負圧面5の流路幅Lo1は、小翼圧力面6の流路幅Lo2の約半分となっている。すなわち、ファン外周側からファン内周側へ向かうに連れて、小翼負圧面5は流路幅が広がっていき、小翼圧力面6は流路幅が狭くなっていく。そして互いの流路幅の差は、ファン外周側で大きく、ファン内周側で小さくなっている。
本実施形態の作用と効果について説明する。
図3は、第1実施形態に係る室内機100(室内ユニット)内部の空気の流れを示す模式図である。図示外のファンモータによって、貫流ファン11は時計回りに回転する。これにより、フロントノーズ12とバックノーズ13を結んだ線分よりも前面上側の領域から空気が流入し、もう一方の領域から空気が吹出口33から流出する。建屋内の空気は、吸込口(第1吸込口31、第2吸込口32)、フィルタ17、熱交換器14を経由することで熱交換器14を流通する冷媒と熱交換した後、貫流ファン11へと吸い込まれる。貫流ファン11を流出した流れは筺体10の下部を経由し、上下風向板18、左右風向板21(図1参照)によって吹出し方向が制御されて建屋内へと吹き出す。
図3は、第1実施形態に係る室内機100(室内ユニット)内部の空気の流れを示す模式図である。図示外のファンモータによって、貫流ファン11は時計回りに回転する。これにより、フロントノーズ12とバックノーズ13を結んだ線分よりも前面上側の領域から空気が流入し、もう一方の領域から空気が吹出口33から流出する。建屋内の空気は、吸込口(第1吸込口31、第2吸込口32)、フィルタ17、熱交換器14を経由することで熱交換器14を流通する冷媒と熱交換した後、貫流ファン11へと吸い込まれる。貫流ファン11を流出した流れは筺体10の下部を経由し、上下風向板18、左右風向板21(図1参照)によって吹出し方向が制御されて建屋内へと吹き出す。
本実施形態の貫流ファン11の流れ場を説明する前に、比較例の貫流ファン11の流れ場について、図4および図5を参照して説明する。
図4は、小翼のない比較例の貫流ファン11周りの流れを示す模式図である。図3における貫流ファン11の前面上側の領域においては、熱交換器14と貫流ファン11を近接して配置するために、貫流ファン11の翼前後で、流れの向きが急激に変化する場合がある。このとき、図4に示すように、流入した流れは主翼負圧面2を追従できずに、広いはく離領域7が生じる。はく離領域7の下流は渦によるエネルギの散逸が生じるため、加えたエネルギに対して得られる圧力と風量が減少し、ファン効率が低下する。
図5は、小翼のある比較例の貫流ファン周りの流れを示す模式図である。図5を用いて、本実施形態の寸法関係と異なる小翼4を設けた場合の流れ場について説明する。図5は、主翼1と小翼4を交互に配置した構造だが、貫流ファン11の外周側から内周側に向かって小翼4が主翼1の圧力面側に傾いている点が異なる。この場合、小翼圧力面6の流路に流入した空気は、流路が次第に拡大するため逆圧力勾配となり、主翼負圧面2にはく離領域7が生じ易くなる。
図6は、第1実施形態に係る貫流ファン11周りの流れを示す模式図である。流路幅を式(1)の関係にすることで、小翼圧力面6の流路が空気の流れに沿って縮小する。これにより主翼負圧面2に順圧力勾配の領域が生じ、流れが加速するためにはく離が生じにくくなる。
ここで、ファン外周側に比べてファン内周側の総風路断面積が小さくなるため、下流ほど平均流速が増加することとなるが、ファン外周側において小翼負圧面5の流路幅Lo1(図2参照)を小翼圧力面6の流路幅Lo2(図2参照)よりも小さくすることで、平均流速の高いファン内周側の流路幅を近づけて、摩擦抗力の増加を抑制している。特に、Lo1とLo2の流路比は式(2)を満たす関係とする場合に効果が高い。
式(2)は流路比が0.7以上の場合にはファン内側の流れの加速によって小翼圧力面6の摩擦抵抗が大きくなり、流路比が0.5以下の場合には、小翼負圧面側の流路が過剰に狭くなることで流れが流入しにくくなり、ファン効率が低下することを意味している。
小翼負圧面5の流路は流れに沿って流路が拡大するため逆圧力勾配となり、はく離が生じ易くなるが、ファン内周側における小翼4の出口角度βS(図2参照)を主翼1の出口角度βM(図2参照)よりも小さくすることで、流路幅の拡大をゆるやかにして、はく離領域7を抑制している。特に、小翼4の出口角度βSと主翼1の出口角度βMの角度比を式(3)の関係とする場合に効果が高い。
小翼負圧面5の流路は流れに沿って流路が拡大するため逆圧力勾配となり、はく離が生じ易くなるが、ファン内周側における小翼4の出口角度βS(図2参照)を主翼1の出口角度βM(図2参照)よりも小さくすることで、流路幅の拡大をゆるやかにして、はく離領域7を抑制している。特に、小翼4の出口角度βSと主翼1の出口角度βMの角度比を式(3)の関係とする場合に効果が高い。
式(3)は角度比が0.8以上の場合には、小翼負圧面5からのはく離が生じ易くなり、0.6以下の場合には小翼圧力面6の縮流構造が弱まることで、主翼負圧面2からのはく離が生じ易くなることを示している。
小翼4のファン外周側の端部からファン内周側の端部を結んだ線分LSは、主翼1のファン外周側の端部からファン内周側の端部を結んだ線分LMの約6割となっている。小翼4の長さLSを主翼長さLMの半分以上とすることで、小翼自身も流れに対して仕事を加えつつ、主翼負圧面2の曲率変化が大きい領域を覆うことではく離領域7を低減し、ファン効率を向上することができる。さらに、小翼4は流れの整流が主目的であるため、主翼1よりも薄くし、小翼4の後流領域を低減することで、エネルギ損失を抑制している。
以上の原理により、本実施形態によって従来生じていた貫流ファン11の主翼負圧面2のはく離を抑制し、ファン効率を向上することが可能となる。
<<第2実施形態>>
第2実施形態について図7~図8を参照して説明する。
図7は、第2実施形態に係る貫流ファン11の翼付近を示す部分断面図である。図8は、第2実施形態に係る主翼と小翼のピッチを示した説明図である。第2実施形態は、第1実施形態と比べて主翼1と小翼4のピッチが異なる。以下、第1実施形態との相違点について説明する。
第2実施形態について図7~図8を参照して説明する。
図7は、第2実施形態に係る貫流ファン11の翼付近を示す部分断面図である。図8は、第2実施形態に係る主翼と小翼のピッチを示した説明図である。第2実施形態は、第1実施形態と比べて主翼1と小翼4のピッチが異なる。以下、第1実施形態との相違点について説明する。
小翼4を挟んで隣接する2つの主翼1のピッチをPM、主翼1を挟んで隣接する2つの小翼4のピッチをPSとし、図中の一転鎖線からの角度θに沿ってそれぞれの間隔に番号を与える。このときのθと小翼4および主翼1のピッチの関係は図8のようになっている。主翼1のピッチは角度θに関わらずほぼ一定だが、小翼4のピッチは広い部分と狭い部分が交互に存在する。
すなわち、小翼4を挟んで隣接する主翼1の間隔の最大値と最小値の差(図8のピッチPMi参照)は、主翼1を挟んで隣接する小翼4の間隔の最大値と最小値の差(図8のピッチPSi参照)よりも小さい。
貫流ファン11は1秒間あたりの回転数と、円周上に並んだ翼の枚数の積から算出される周波数の騒音が発生しやすい。これはフロントノーズ12やバックノーズ13、さらにはファンの翼端から生ずる圧力変動が原因である。第1実施形態の構造についても、任意の点における1秒間あたりの翼の通過枚数に対応する騒音が発生しやすい。
前記に対して、円周上に並んだ翼のピッチを不均等にして、任意の点に対する翼の通過タイミングをずらすことで、ピーク周波数の騒音を低減できる。本実施形態に対しては、仕事を行う主翼1のピッチの変化を、小翼4のピッチの変化より小さくすることで、仕事を行う主翼1を効率よく使用し、小翼4によって騒音を低減できる。特に、本実施形態のように主翼1を一定のピッチで配置し、小翼4のピッチを変化させることで、効果が高まる。
以上の構成により、第1の実施形態に比べて特定の周波数の騒音が少なく、ファン効率が高い貫流ファン11を提供できる。
図9Aは、比較例の翼形状を示す説明図である。図9Aは、特許文献1の図7である。図9Bは、第1実施形態に係る翼形状を示す説明図である。図9Aと図9Bを参照して、両者の相違点を比較する。図9Aでは、翼の外周側において、主翼負圧面2と小翼圧力面6のなす流路幅Lo2aと、主翼圧力面3と小翼負圧面5のなす流路幅Lo1aは、ほぼ同等である。
一方、図9Bでは、翼の外周側において、主翼負圧面2と小翼圧力面6のなす流路幅Lo2bと、主翼圧力面3と小翼負圧面5のなす流路幅Lo1bの関係は、
Lo2b>Lo1b ・・・(4)
となっている。このような構成とすることで、外周側から内周側に向かう吸込み側の流れに対して、主翼負圧面2と小翼圧力面6のなす流路幅は減少していき、主翼負圧面2におけるはく離領域を低減することができる。吐出側では、吸込み側に対して流速が速く、多少のはく離が生じた場合でも、翼間から気流が吐き出されるため問題はない。
Lo2b>Lo1b ・・・(4)
となっている。このような構成とすることで、外周側から内周側に向かう吸込み側の流れに対して、主翼負圧面2と小翼圧力面6のなす流路幅は減少していき、主翼負圧面2におけるはく離領域を低減することができる。吐出側では、吸込み側に対して流速が速く、多少のはく離が生じた場合でも、翼間から気流が吐き出されるため問題はない。
本実施形態によれば、はく離の生じ易い主翼の負圧面側(主翼負圧面2)について、空気吸込み時に流れに沿って流路幅が狭くなるように小翼4を設け、逆圧力勾配となる領域を低減することではく離を抑制し、ファン効率を向上できる。
1 主翼
2 主翼負圧面(主翼の負圧面)
3 主翼圧力面(主翼の圧力面)
4 小翼
5 小翼負圧面(小翼の負圧面)
6 小翼圧力面(小翼の圧力面)
7 はく離領域
8a,8b 同心円
10 筐体
11 貫流ファン
12 フロントノーズ
13 バックノーズ
14 熱交換器
15 伝熱管
16 フィン
17 フィルタ
18 上下風向板
19 前面パネル
20 取り付け面
21 左右風向板
31 第1吸込口(吸込み口)
32 第2吸込口(吸込み口)
33 吹出口(吹出し口)
100 室内機(室内ユニット)
2 主翼負圧面(主翼の負圧面)
3 主翼圧力面(主翼の圧力面)
4 小翼
5 小翼負圧面(小翼の負圧面)
6 小翼圧力面(小翼の圧力面)
7 はく離領域
8a,8b 同心円
10 筐体
11 貫流ファン
12 フロントノーズ
13 バックノーズ
14 熱交換器
15 伝熱管
16 フィン
17 フィルタ
18 上下風向板
19 前面パネル
20 取り付け面
21 左右風向板
31 第1吸込口(吸込み口)
32 第2吸込口(吸込み口)
33 吹出口(吹出し口)
100 室内機(室内ユニット)
Claims (9)
- 室内ユニットに少なくとも1つ以上の吸込み口および吹出し口とを有し、ファンモータに連結された貫流ファンであって、
前記貫流ファンは、貫流羽根車の翼が翼弦が長い主翼と、翼弦が短い小翼を交互に備えており、前記小翼がファン外周側からファン内周側に向かって、前記主翼の負圧面側に傾いている、貫流ファン。 - 請求項1に記載の貫流ファンにおいて、
前記小翼の前記ファン外周側の端部における、前記小翼の圧力面側と前記主翼の負圧面側のなす流路幅Lo2よりも、前記小翼の負圧面側と前記主翼の圧力面側のなす流路幅Lo1が小さいことを特徴とする、貫流ファン。 - 請求項1に記載の貫流ファンにおいて、
前記ファン内周側における、前記小翼と前記主翼の端部に対する、前記貫流ファンと同心円の接線と、それぞれの翼の負圧面側のなす角度を出口角度βとしたとき、
前記小翼の前記出口角度βSが、前記主翼の前記出口角度βMよりも小さいことを特徴とする、貫流ファン。 - 請求項1に記載の貫流ファンにおいて、
前記小翼の前記ファン外周側の端部と前記ファン内周側の端部を結んだ線分は、前記主翼の前記ファン外周側の端部と前記ファン内周側の端部を結んだ線分の半分よりも大きいことを特徴とする、貫流ファン。 - 請求項1に記載の貫流ファンにおいて、
前記小翼を挟んで隣接する前記主翼の間隔の最大値と最小値の差は、前記主翼を挟んで隣接する前記小翼の間隔の最大値と最小値の差よりも小さいことを特徴とする、貫流ファン。 - 請求項1から請求項8のいずれか1項に記載の貫流ファンと、熱交換器とを有することを特徴とする、空気調和機。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/028810 WO2020026373A1 (ja) | 2018-08-01 | 2018-08-01 | 貫流ファンおよび空気調和機 |
JP2020533965A JPWO2020026373A1 (ja) | 2018-08-01 | 2018-08-01 | 貫流ファンおよび空気調和機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/028810 WO2020026373A1 (ja) | 2018-08-01 | 2018-08-01 | 貫流ファンおよび空気調和機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020026373A1 true WO2020026373A1 (ja) | 2020-02-06 |
Family
ID=69230615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/028810 WO2020026373A1 (ja) | 2018-08-01 | 2018-08-01 | 貫流ファンおよび空気調和機 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2020026373A1 (ja) |
WO (1) | WO2020026373A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6019990A (ja) * | 1983-07-11 | 1985-02-01 | Matsushita Electric Ind Co Ltd | 横断流送風機の羽根車 |
JPH0479991U (ja) * | 1990-11-26 | 1992-07-13 | ||
JPH05340379A (ja) * | 1992-06-12 | 1993-12-21 | Toshiba Corp | 横流ファン |
JPH0814193A (ja) * | 1994-03-07 | 1996-01-16 | Carrier Corp | 横型ファン用インペラー |
JPH10299694A (ja) * | 1997-04-22 | 1998-11-10 | Toshiba Corp | 送風機 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58187232U (ja) * | 1982-06-08 | 1983-12-13 | ヤンマー農機株式会社 | 脱穀機における横断流吸引フアン構造 |
-
2018
- 2018-08-01 WO PCT/JP2018/028810 patent/WO2020026373A1/ja active Application Filing
- 2018-08-01 JP JP2020533965A patent/JPWO2020026373A1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6019990A (ja) * | 1983-07-11 | 1985-02-01 | Matsushita Electric Ind Co Ltd | 横断流送風機の羽根車 |
JPH0479991U (ja) * | 1990-11-26 | 1992-07-13 | ||
JPH05340379A (ja) * | 1992-06-12 | 1993-12-21 | Toshiba Corp | 横流ファン |
JPH0814193A (ja) * | 1994-03-07 | 1996-01-16 | Carrier Corp | 横型ファン用インペラー |
JPH10299694A (ja) * | 1997-04-22 | 1998-11-10 | Toshiba Corp | 送風機 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020026373A1 (ja) | 2021-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9995303B2 (en) | Air conditioner | |
WO2013150673A1 (ja) | 空気調和装置の室内機 | |
WO2009139422A1 (ja) | 遠心送風機 | |
WO2007114090A1 (ja) | 多翼ファン | |
JP5971667B2 (ja) | プロペラファン、送風装置及び室外機 | |
JP2007170308A (ja) | 空気調和機の室内機 | |
KR20200096721A (ko) | 팬 및 이를 구비하는 공기 조화기 실내기 | |
JP2611595B2 (ja) | 空気調和装置 | |
CN110914553B (zh) | 叶轮、送风机及空调装置 | |
JP6811866B2 (ja) | プロペラファン、送風装置、及び冷凍サイクル装置 | |
JP2701604B2 (ja) | 空気調和装置 | |
JP4937331B2 (ja) | 送風機及びヒートポンプ装置 | |
WO2020026373A1 (ja) | 貫流ファンおよび空気調和機 | |
WO2009136585A1 (ja) | クロスフローファン及びこれを備えた空気調和機 | |
WO2022191034A1 (ja) | プロペラファンおよび冷凍装置 | |
JP6000454B2 (ja) | 空気調和装置の室内機 | |
JP2002357194A (ja) | 貫流ファン | |
JP5774206B2 (ja) | 空気調和装置の室内機 | |
WO2015064617A1 (ja) | 貫流ファン及び空気調和機 | |
JP6625213B2 (ja) | 多翼ファン及び空気調和機 | |
WO2015063851A1 (ja) | 貫流ファン及び空気調和機 | |
WO2019021391A1 (ja) | 空気調和機 | |
JP6692456B2 (ja) | プロペラファン及び空気調和装置の室外機 | |
JP2022152380A (ja) | 空気調和装置 | |
JPH0370139B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18928697 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020533965 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18928697 Country of ref document: EP Kind code of ref document: A1 |