WO2020024240A1 - 激光二极管封装模块及距离探测装置、电子设备 - Google Patents

激光二极管封装模块及距离探测装置、电子设备 Download PDF

Info

Publication number
WO2020024240A1
WO2020024240A1 PCT/CN2018/098418 CN2018098418W WO2020024240A1 WO 2020024240 A1 WO2020024240 A1 WO 2020024240A1 CN 2018098418 W CN2018098418 W CN 2018098418W WO 2020024240 A1 WO2020024240 A1 WO 2020024240A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser diode
light
package module
substrate
module according
Prior art date
Application number
PCT/CN2018/098418
Other languages
English (en)
French (fr)
Inventor
刘祥
郑国光
洪小平
王铭钰
董帅
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to EP18928943.2A priority Critical patent/EP3832741A4/en
Priority to PCT/CN2018/098418 priority patent/WO2020024240A1/zh
Priority to CN201880009571.8A priority patent/CN111758169B/zh
Priority to JP2021502976A priority patent/JP7119271B2/ja
Publication of WO2020024240A1 publication Critical patent/WO2020024240A1/zh
Priority to US17/165,744 priority patent/US11862929B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02315Support members, e.g. bases or carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4056Edge-emitting structures emitting light in more than one direction

Definitions

  • the present invention relates generally to the field of integrated circuits, and more particularly to a laser diode package module, a distance detection device, and an electronic device.
  • Semiconductor lasers are a class of lasers that mature earlier and progress faster. Because of their wide wavelength range, simple fabrication, low cost, and easy mass production, and because of their small size, light weight, and long life, the variety is developing rapidly and being applied. wide range. Semiconductor lasers are currently the most widely used side-emitting lasers (Edge Emitting Lasers, EELs).
  • EELs Electronic Electrode Lasers
  • the laser diode chip of a side-emitting laser is generally narrow and long, the light emitting surface is the smallest surface of the chip, and the two largest surfaces of the chip are metallized surfaces, which are external electrical connection points.
  • the TO packaging technology refers to a transistor outline or through-hole packaging technology, that is, a fully enclosed packaging technology.
  • the TO package laser has a large parasitic inductance, so it cannot produce narrow pulses in application scenarios that require narrow pulses; and the mounting efficiency is relatively low, and Surface Mounting Technology (Surface Mounted Technology) SMT).
  • the present invention has been made to solve at least one of the problems described above.
  • the invention provides a laser diode package module, which can improve the problem of large parasitic inductance in the current TO package and can overcome the problems described above.
  • an aspect of the present invention provides a laser diode packaging module, where the packaging module includes:
  • a cover body is disposed on the first surface of the substrate, and an accommodation space is formed between the substrate and the cover body, wherein a light-transmitting area is at least partially provided on a surface of the cover body opposite to the substrate;
  • a laser diode chip disposed in the accommodating space
  • a reflecting surface is disposed in the accommodating space, and is configured to cause the light emitted from the laser diode chip to be reflected by the reflecting surface to be emitted through the light transmitting region.
  • the light emitted from the laser diode chip is reflected by the reflective surface, it is emitted through the light transmitting region in a direction substantially perpendicular to the first surface of the substrate.
  • the packaging module further includes a semiconductor having an anisotropic structure
  • the reflective surface is specifically an inclined surface prepared by etching the semiconductor using anisotropy, or the reflective surface includes plating on the inclined surface prepared by etching the semiconductor using anisotropy. Reflective film.
  • the semiconductor includes a semiconductor wafer.
  • the semiconductor is silicon, and an angle between the inclined surface and a bottom surface of the semiconductor is substantially 54.74 °.
  • At least two inclined reflective surfaces are disposed in the packaging module, and each reflective surface is opposite to the exit surface of at least one of the laser diode chips, so that the exit light of each of the laser diode chips After being reflected by the reflecting surface, it is emitted through the light transmitting area.
  • each reflection surface is opposite to the exit surfaces of at least two laser diode chips arranged side by side, so that the light emitted from each laser diode chip is reflected by the reflection surface and passes through the transparent surface. The light area is emitted.
  • the packaging module includes a semiconductor having an anisotropic structure, and the at least two inclined reflective surfaces are disposed on different inclined surfaces prepared by etching the semiconductor using anisotropy.
  • the two inclined reflection surfaces are disposed on two opposite inclined surfaces symmetrically disposed on the semiconductor.
  • the packaging module includes at least two semiconductors having an anisotropic structure, and the at least two obliquely disposed reflective surfaces are respectively disposed on different inclined surfaces prepared by using anisotropic etching. .
  • a plurality of the laser diode chips opposite to the same reflecting surface are arranged at equal intervals on the first surface of the substrate.
  • the distance between the emitting surface of each of the laser diode chips opposite to the same reflecting surface and the reflecting surface is equal.
  • a notch or a shallow groove is provided at a sharp corner of the bottom surface of the semiconductor.
  • the cutout is a notch formed by a sharp corner at the bottom of the semiconductor removal portion
  • the shallow groove is disposed at a sharp-edged edge of the bottom surface and is deep from a bottom portion of the semiconductor to a recessed portion of a top surface of the semiconductor.
  • the semiconductor includes a first portion on a bottom portion and a second portion on a portion surface of the first portion, wherein the reflective surface is disposed on at least one inclined surface of the second portion.
  • the laser diode chip is mounted on a surface of the first portion outside the reflection surface, and an emission surface of the laser diode chip is disposed opposite to the reflection surface.
  • the reflective film includes a metal layer, and the metal layer on the reflective surface further extends to cover a part of the surface of the first portion exposed outside the reflective surface, wherein the metal layer is located on the first portion A portion on the surface is used for electrical connection with the bottom surface of the laser diode chip.
  • the laser diode chip covers a partial surface of the reflective film on the first partial surface, and the reflective film is electrically connected to a pad on the substrate through a wire to connect the laser diode chip.
  • the electrodes on the bottom surface are led out.
  • the semiconductor is an SOI wafer, wherein a buried oxide of the SOI wafer and a silicon layer located below the buried oxide are used as the first part, and the SOI wafer is located in the SOI wafer.
  • a silicon layer on the surface of the buried oxide portion serves as the second portion.
  • the packaging module further includes glass, wherein the reflective surface includes a reflective film plated on an inclined surface of the glass.
  • two inclined reflective surfaces are respectively disposed on two inclined surfaces opposite to each other on the glass, wherein each reflective surface is disposed opposite to an exit surface of at least one of the laser diode chips, so that each The light emitted from each of the laser diode chips is reflected by the reflective surface and emitted through the light-transmitting area.
  • the glass is in the shape of a triangular pyramid or a triangular pyramid, and three inclined reflective surfaces are respectively disposed on the three inclined surfaces on the glass, wherein each of the reflective surfaces and at least one of the reflective surfaces
  • the exit surfaces of the laser diode chips are oppositely arranged, so that the exit light of each laser diode chip is reflected by the reflective surface and emitted through the light-transmitting area.
  • the reflective surface is a concave surface.
  • the direction of the light emitted by the laser diode chip is perpendicular to the bottom edge of the reflective surface.
  • the semiconductor and / or glass provided with the reflective surface and the laser diode chip are both mounted on a first surface of the substrate.
  • the packaging module further includes a collimating element for reducing the divergence angle of the light beam in the fast axis direction, and the collimating element is disposed between the laser diode chip and the reflective surface, so that The light emitted from the laser diode chip passes through the collimating element to the reflecting surface.
  • the collimating element is mounted on the first surface of the substrate.
  • the collimating element is a cylindrical lens
  • the curved surface of the cylindrical lens is opposite to the exit surface of the laser diode chip, so that the outgoing light of the laser diode chip is irradiated onto the curved surface of the cylindrical lens.
  • a curved surface size of the cylindrical lens is larger than a size of a light spot irradiated on the cylindrical lens by the light emitted from the laser diode chip.
  • a surface on which the cylindrical lens is mounted on the substrate is a flat surface; and / or, a top surface of the cylindrical lens is a flat surface.
  • the laser diode chip includes a first electrode and a second electrode disposed opposite to each other, and a surface on which the first electrode is located is mounted on a first surface of the substrate.
  • the first electrode is mounted on the first surface of the substrate through a conductive adhesive layer.
  • the second electrode is electrically connected to the substrate through a wire.
  • a plurality of the laser diode chips are mounted on the first surface of the substrate, and the first electrode of each of the laser diode chips is mounted on the first surface corresponding to a conductive adhesive layer. On the first surface of the substrate.
  • the second electrodes of the plurality of laser diodes opposite to the same reflecting surface are electrically connected to the same pad on the substrate through a wire.
  • an area of the conductive adhesive layer is larger than a bottom surface area of the laser diode chip; and / or
  • the conductive adhesive layer is electrically connected to a pad on the substrate through a wire to lead the first electrode out.
  • the cover body includes a U-shaped or square cover body with a window, and a light-transmitting plate covering the window to form the light-transmitting area, and the light emitted from the laser diode chip passes through the light-transmitting area.
  • the light plate is emitted; or the cover body is a light-transmitting plate structure.
  • the cover body is fixedly disposed on the first surface of the substrate by welding.
  • the material of the cover body includes metal, resin or ceramic.
  • the packaging module further includes a driving chip for controlling emission of the laser diode chip, the driving chip is disposed in the accommodating space, wherein the driving chip is mounted on a first of the substrate surface.
  • the packaging module further includes a device mounted with a solder paste, and the device mounted with the solder paste is disposed outside the accommodation space.
  • the solder paste mounted device includes a resistor and a capacitor, and the resistor and the capacitor are mounted on the first surface of the substrate outside the accommodation space by a solder paste.
  • the substrate includes a PCB substrate or a ceramic substrate.
  • the material of the conductive adhesive layer includes a conductive silver paste, solder, or a conductive chip connection film.
  • the reflective film includes at least one of gold and silver.
  • the bottom surface of the laser diode chip is mounted in the accommodating space, and the side surface of the laser diode chip emits light, and the emitted light from the laser diode chip is substantially parallel to the first surface of the substrate.
  • Another aspect of the present invention provides a distance detection device, including:
  • the aforementioned laser diode package module is configured to emit a laser pulse in a direction at a certain angle with the first surface of the substrate of the laser diode package module, and the angle is less than 90 degrees;
  • a collimating lens is disposed outside the light-transmitting area, and is used to collimate the light emitted from the light-transmitting area;
  • the first optical path changing element is disposed outside the light-transmitting area, and is used to change the optical path of the outgoing light emitted from the light-transmitting area, so that the laser pulse from the laser diode package module substantially follows The direction of the central axis of the collimating lens is incident on the collimating lens.
  • the first optical path changing element includes:
  • a first reflecting mirror the first reflecting mirror being offset from an optical axis of the collimating lens, and configured to reflect outgoing light emitted from the light transmitting region to the collimating lens.
  • the laser diode packaging module is located on one side of the central axis of the collimating lens, and the first surface of the substrate in the laser diode packaging module is substantially parallel to the central axis of the collimating lens ;
  • the first reflector is located on a central axis of the collimating lens, and is configured to reflect a laser pulse emitted by the laser diode package module to a direction substantially along the central axis of the collimating lens.
  • the collimating lens is further used for condensing at least a part of the returned light reflected by the probe;
  • the laser emitting device further includes:
  • a second reflecting mirror, a third reflecting mirror and a detector are arranged at the center;
  • the second reflecting mirror is disposed between the collimating lens and the first reflecting mirror, allows a light beam reflected by the first reflecting mirror to pass through, and is used to focus the returning light focused by the collimating lens. Light is reflected to the third mirror;
  • the third reflecting mirror is respectively opposite to the second reflecting mirror and the detector, and is configured to reflect the return light reflected by the second reflecting mirror to the detector;
  • the detector is configured to convert the received optical signal into an electrical signal, and the electrical signal is used to measure a distance between the detection object and the distance detection device.
  • an electronic device including the foregoing laser diode package module, and the electronic device includes a drone, a car, or a robot.
  • the packaging scheme of the present invention can be packaged by a substrate packaging operation method, which has high packaging efficiency, and the packaged chip is suitable for surface mounting technology (SMT).
  • SMT surface mounting technology
  • the pin path is short, and the parasitic inductance is greatly reduced compared to the TO package.
  • the laser diode chip emits light from the side, and the direction of the emitted light is generally parallel to the first surface of the substrate.
  • a reflecting surface is provided on the propagation path of the emitted light from the laser diode chip, and the reflected light is transmitted through the cover after being reflected. The light area is emitted to change the beam propagation direction.
  • the bottom surface of the laser diode chip can be mounted in the accommodation space while the outgoing beam can be approximately perpendicular to the first It emits in the direction of the surface, and the area of the bottom surface of the laser diode chip is large, which is convenient for the chip placement, and it is also convenient to set the position of the packaging module in the whole device.
  • the distance detection device implemented based on the package module structure according to the embodiment of the present invention can improve transmission power, fast response to fast pulse driving signals, improve reliability and accuracy, reduce production cost and complexity, and improve Increased productivity.
  • FIG. 1 is a schematic structural diagram of a laser diode in a laser diode package module provided by the present invention
  • FIG. 2 shows a cross-sectional view of the laser diode of FIG. 1 along the B-B direction;
  • 3A is a schematic cross-sectional view of a silicon wafer after etching using anisotropy according to an embodiment of the present invention
  • 3B is a schematic cross-sectional view of a silicon wafer having a reflective surface on an inclined surface according to an embodiment of the present invention.
  • the left image is a silicon wafer with one inclined surface
  • the right image is a Silicon wafer
  • 3C is a schematic cross-sectional view of a silicon wafer provided with a cutout at a sharp corner of a bottom surface according to an embodiment of the present invention
  • 3D is a schematic cross-sectional view of a silicon wafer with shallow grooves provided at sharp corners of the bottom surface in an embodiment of the present invention
  • 4A is a cross-sectional view showing a structure of a laser diode package module according to an embodiment of the present invention.
  • FIG. 4B illustrates a top view of the laser diode package module structure in FIG. 4A after the cover is removed;
  • 4C is a cross-sectional view of a laser diode package module structure in another embodiment of the present invention.
  • FIG. 4D is a top view of the laser diode package module structure in FIG. 4C after the cover is removed;
  • 4E is a cross-sectional view of a laser diode package module structure according to another embodiment of the present invention.
  • FIG. 4F illustrates a top view of the laser diode package module structure in FIG. 4E after the cover is removed;
  • 4G is a cross-sectional view of a laser diode package module structure in still another embodiment of the present invention.
  • 4H is a cross-sectional view showing a structure of a laser diode package module in another embodiment of the present invention.
  • 4I is a cross-sectional view of a laser diode package module structure in another embodiment of the present invention.
  • 5A is a cross-sectional view of an SOI wafer in an embodiment of the present invention.
  • 5B is a cross-sectional view of a reflective surface provided on an inclined surface of an SOI wafer according to an embodiment of the present invention
  • 6A is a cross-sectional view showing a structure of a laser diode package module in another embodiment of the present invention.
  • FIG. 6B is a top view of the laser diode package module structure in FIG. 6A after the cover is removed;
  • 6C is a cross-sectional view showing a structure of a laser diode package module in another embodiment of the present invention.
  • FIG. 7A illustrates a cross-sectional view of a glass having an inclined surface in another embodiment of the present invention
  • 7B is a cross-sectional view showing a structure of a laser diode package module in an embodiment of the present invention.
  • 7C is a cross-sectional view showing a structure of a laser diode package module in another embodiment of the present invention.
  • FIG. 8A is a cross-sectional view of a glass with a concave surface in another embodiment of the present invention.
  • 8B is a cross-sectional view of a laser diode package module structure according to an embodiment of the present invention.
  • 8C is a cross-sectional view showing a structure of a laser diode package module in another embodiment of the present invention.
  • FIG. 9A is a partial perspective view of a laser diode package module structure according to an embodiment of the present invention.
  • FIG. 9B shows an equivalent position diagram of the laser diode chip in FIG. 9A
  • FIG. 9C shows a partial perspective view of a laser diode package module structure according to another embodiment of the present invention.
  • FIG. 9D shows an equivalent position diagram of the laser diode chip in FIG. 9C
  • FIG. 10 shows a schematic diagram of an embodiment of the distance detection device of the present invention.
  • FIG. 11 is a schematic diagram of another embodiment of a distance detection device according to the present invention.
  • FIG. 12 is a schematic diagram illustrating still another embodiment of the distance detection device of the present invention.
  • the packaging module includes:
  • a cover body is disposed on the first surface of the substrate, and an accommodation space is formed between the substrate and the cover body;
  • a laser diode chip disposed in the accommodating space
  • a reflecting surface is disposed in the accommodating space, and is configured to cause the light emitted from the laser diode chip to be reflected by the reflecting surface to be emitted through the light transmitting region.
  • the packaging scheme of the present invention can be packaged by a substrate packaging operation method, which has high packaging efficiency, and the packaged chip is suitable for surface mounting technology (SMT).
  • SMT surface mounting technology
  • the pin path is short, and the parasitic inductance is greatly reduced compared to the TO package.
  • the laser diode chip emits light on the side, and the direction of the emitted light is generally parallel to the first surface of the substrate.
  • a reflecting surface is provided on the propagation path of the emitted light of the laser diode chip, and the emitted light is reflected from the cover body after transmission The light area is emitted to change the beam propagation direction.
  • the bottom surface of the laser diode chip can be mounted in the accommodation space while the outgoing beam can be approximately perpendicular to the first It emits in the direction of the surface, and the area of the bottom surface of the laser diode chip is large, which is convenient for the chip placement, and it is also convenient to set the position of the packaging module in the whole device.
  • FIG. 4A illustrates a cross-sectional view of a laser diode package module structure in an embodiment of the present invention
  • FIG. 4B illustrates a top view of the laser diode package module structure in FIG. 4A.
  • the laser diode package module structure of the present invention includes a substrate 300 having a first surface 30.
  • the substrate 300 may include various types of substrates such as a PCB substrate (Printed Circuit Board), a ceramic substrate, a pre-mold substrate, and the like.
  • the ceramic substrate may be aluminum nitride or aluminum oxide. Substrate.
  • the PCB is made of different components and a variety of complex process technologies, among which the structure of the PCB circuit board has single-layer, double-layer, and multi-layer structures, and the manufacturing methods of different hierarchical structures are different. .
  • the printed circuit board is mainly composed of pads, vias, mounting holes, wires, components, connectors, pads, electrical boundaries, and the like.
  • the common layer structure of printed circuit boards includes three types: single layer PCB (Double Layer PCB), double layer PCB (Multilayer Layer PCB) and multi-layer PCB (Multilayer Layer PCB).
  • single layer PCB Double Layer PCB
  • double layer PCB Multilayer Layer PCB
  • multi-layer PCB Multilayer Layer PCB
  • Single-layer board a circuit board with copper on only one side and no copper on the other side. Components are usually placed on the side where copper is not deposited, and the copper side is mainly used for wiring and soldering.
  • Double-layer board a circuit board with copper on both sides, usually called one side as the top layer and the other side as the bottom layer.
  • the top layer is used as the component surface
  • the bottom layer is used as the component welding surface.
  • Multi-layer board a circuit board that contains multiple working layers. In addition to the top and bottom layers, it also contains several intermediate layers. Usually, the intermediate layer can be used as a wire layer, a signal layer, a power layer, and a ground layer. The layers are insulated from each other, and the connection of the layers is usually achieved through vias.
  • the printed circuit board includes many types of working layers, such as a signal layer, a protective layer, a silk screen layer, an internal layer, and the like, and is not repeated here.
  • the substrate described in this application may also be a ceramic substrate.
  • a ceramic substrate refers to a copper foil directly bonded to the surface of alumina (Al 2 O 3 ) or aluminum nitride (AlN) ceramic substrate (single-sided) at high temperature. Or double-sided).
  • the prepared ultra-thin composite substrate has excellent electrical insulation properties, high thermal conductivity, excellent solderability and high adhesion strength, and can etch out various patterns like a PCB board, and has a large current carrying capacity. ability.
  • the substrate may be a pre-molded substrate, wherein the pre-molded substrate has injection-molded wires and pins, and the injection-molded wires are embedded in the main structure of the substrate, and the pins
  • the substrate is located on a surface of the main structure of the substrate, such as an inner surface and / or an outer surface, so as to realize electrical connection between the substrate and the laser diode chip, the driving chip, and the circuit board, respectively.
  • the method for preparing a pre-molded substrate can be formed through conventional injection molding processes, planer digging, and mold embossing, which are not repeated here.
  • the injection molding material of the Pre-mold substrate can be selected from conventional materials, for example, it can be a thermally conductive plastic material, etc., and is not limited to a certain type.
  • the pre-mold substrate The shape is defined by the injection-molded frame and is not limited to a certain type.
  • the laser diode package module structure further includes a laser diode chip 303 disposed in the accommodating space.
  • the laser diode chip 303 is mounted on the first surface 30 of the substrate 300.
  • the laser diode chip 303 is a side laser, that is, the side of the laser diode chip emits light.
  • the structure of the laser diode chip is shown in FIGS. 1 and 2, and FIG. 1 shows a laser diode provided by the present invention.
  • 2 is a cross-sectional view of the laser diode in FIG. 1 along the BB direction.
  • the laser diode chip includes a first electrode 201 and a second electrode 202 disposed opposite to each other. The surface on which the electrode 201 is located is mounted on the first surface of the substrate.
  • the first electrode 201 and the second electrode 202 are both metallized electrodes, the first electrode 201 is disposed on a bottom surface of the laser diode chip, the first electrode 201 is an n electrode, and the first electrode 201 is an n-electrode.
  • Two electrodes 202 are disposed on the top surface of the laser diode chip, and the second electrode 202 is a p electrode.
  • the first electrode of the laser diode chip 303 is mounted on a first surface of the substrate through a conductive adhesive layer, for example, mounted on the first surface of the substrate 300. 30 on the corresponding substrate metal layer 3041.
  • the laser diode chip 303 is a bare chip, that is, a small “grain” with a circuit cut from a wafer, and is mounted on a substrate by a die bonding method. 300 on.
  • Die bonding refers to a process in which a chip is bonded to a specified area of a substrate through a gel, generally a conductive adhesive or an insulating adhesive, to form a thermal path or an electrical path to provide conditions for subsequent wire bonding.
  • the first surface of the substrate is covered with a patterned substrate metal layer.
  • a first surface 30 of the substrate 300 is provided for realizing A substrate metal layer 3041 electrically connected to the laser diode chip 303.
  • the substrate metal layer 3041 can be a pattern formed by etching a copper foil on a ceramic substrate.
  • the substrate metal layers can also be variously formed on the substrate. Used as an alignment mark during device mounting.
  • each laser diode chip corresponds to a substrate metal layer 3041, and the substrate metal layers 3041 are isolated from each other.
  • the substrate metal layer 3041 is also used to lead the electrode on the bottom surface of the laser diode chip 303 to facilitate electrical connection with other devices.
  • a first electrode of each laser diode chip 303 (that is, an electrode mounted on a substrate, which can also be referred to as an electrode on the bottom surface of the laser diode chip) is correspondingly attached to a conductive adhesive layer (not shown).
  • the substrate Mounted on the first surface of the substrate, for example, on the corresponding substrate metal layer 3041 on the first surface 30 of the substrate 300, and adjacent conductive adhesive layers are isolated from each other to prevent a laser diode
  • the electrodes on the bottom surface of the chip are electrically connected.
  • an area of the conductive adhesive layer is larger than a bottom surface area of the laser diode chip; and / or the conductive adhesive layer is electrically connected to a pad on the substrate through a wire to connect the conductive adhesive layer to the pad on the substrate.
  • the first electrode is drawn out.
  • the laser diode chip 303 is mounted on the substrate through a conductive adhesive layer (not shown) to form an electrical path, wherein the material of the conductive adhesive layer (not shown) includes conductive silver.
  • Paste, solder or conductive die attach film (DAF) wherein the conductive silver paste may be ordinary silver paste or nano-silver paste, and the solder includes but is not limited to AuSn20, optionally, In order to ensure the accuracy of the placement position and high heat dissipation, the AuSn20 eutectic is used for mounting.
  • solder such as AuSn20
  • solder paste solder solder
  • the second electrode is electrically connected to the substrate through a wire 305
  • the second electrode for example, the p-pole
  • the wire 305 may be a metal wire, such as a gold wire, wherein the diameter of the gold wire is about 1 mil (25.4 micrometers) or other suitable diameter size, and the number of the wire 305 can be reasonably set according to actual needs. Multiple wires can be used side by side to achieve the electrical connection between the second electrode and the pad, and the wire arc is pulled as low as possible.
  • the shape of the laser diode chip is a cylindrical structure, for example, it may be a rectangular parallelepiped structure, or may be a polyhedron, a column, or other suitable shapes, which are not listed here one by one.
  • the laser diode chip The exit surface of the laser diode chip can be disposed on a side surface of one end of the cylindrical structure of the laser diode chip, and the side surface can be the smallest surface of the laser diode chip. Further, the bottom surface of the laser diode chip is mounted in the accommodation space, where The area of the bottom surface of the laser diode chip is large, for example, it is larger than the area of the emitting surface.
  • the bottom surface of the laser diode chip is mounted on the first surface of the substrate, and the side of the laser diode chip emits light. Because of the setting of the reflective surface, the bottom surface of the laser diode chip can be mounted in the accommodation space while emitting light. The laser diode chip can be emitted in a direction substantially perpendicular to the first surface. The area of the bottom surface of the laser diode chip is large, which is convenient for the chip placement and the position of the package module in the whole device.
  • the laser diode chip has a rectangular parallelepiped structure, and the exit surface of the laser diode chip refers to a side surface at one end of the rectangular parallelepiped structure. As shown in FIG. 1, the exit surface of the laser diode chip is a rectangular parallelepiped. The side surface at the left end of the structure, wherein the light emitting region 203 is disposed below the second electrode, and the light emitting region 203 is close to the second electrode 202, as shown in FIG. 2.
  • the emitting surface (also referred to as a light emitting surface) refers to a surface from which the laser diode chip emits light, and the emitting surface may also be a side surface of the right end of the laser diode chip, or may be a surface of the laser diode chip.
  • the front surface and the rear surface are not limited to the above examples.
  • the laser diode package module structure of the present invention further includes a reflective surface, which is disposed in the accommodating space, and is configured to cause the light emitted from the laser diode chip to be reflected through the reflective surface to be emitted through the light transmitting region. Going out, optionally, after the light emitted from the laser diode chip is reflected by the reflecting surface, it is emitted through the light transmitting area in a direction substantially perpendicular to the first surface of the substrate.
  • the packaging module further includes a semiconductor having an anisotropic structure, wherein the semiconductor having an anisotropic structure may include, but is not limited to, silicon, and may also be other materials such as germanium, and III-V groups ( Semiconductor materials such as GaAs) compound semiconductors.
  • the semiconductor includes a semiconductor wafer, such as a single crystal silicon wafer.
  • the reflective surface is an inclined surface prepared by etching the semiconductor using anisotropy. Since the semiconductor itself has a reflection effect on the light beam, the inclined surface of the semiconductor can be directly used as the reflective surface.
  • the semiconductor is a silicon wafer 301.
  • the material of the semiconductor-silicon has an anisotropic characteristic due to its diamond cubic lattice structure, and has anisotropy in terms of etching. Characteristics. As shown in FIG. 3A, the ⁇ 100> crystal orientation of the silicon wafer 301 is at an angle of 54.74 ° with the ⁇ 111> crystal orientation.
  • a 54.74 ° trapezoid is formed, that is, an included angle between an inclined surface prepared by the semiconductor by using anisotropy and the bottom surface of the semiconductor is generally 54.74 °. Because the angle is determined by the lattice structure of the material, it will not change with the fluctuation of the parameters of the production process, so the angle of the inclined surface prepared with a silicon wafer is basically 54.74 °.
  • the etching may use any suitable etchant, for example, an inorganic alkali solution or an organic alkali solution is used as the etchant.
  • the inorganic alkali solution includes, but is not limited to, KOH
  • the organic alkali solution includes, but is not limited to, tetramethyl.
  • Ammonium hydroxide (TMAH) is used as the etchant.
  • the semiconductor is etched using anisotropy to obtain at least one inclined surface.
  • at least two inclined reflective surfaces are disposed on different inclined surfaces prepared by etching the semiconductor using anisotropy.
  • the silicon wafer 301 is prepared by using anisotropic etching to obtain an inclined surface.
  • At least one inclined surface may be obtained by a suitable etching method, for example,
  • the structure shown in FIG. 3B is formed by etching through the upper and lower surfaces of the silicon wafer, wherein the silicon wafer 301 with an inclined surface is shown in the left diagram of FIG. 3B, or the Two oppositely facing silicon wafers 301.
  • the cross-sectional shape of the semiconductor (for example, the silicon wafer 301) may be a right-angled trapezoid or an isosceles trapezoid.
  • the reflective surface mentioned in this article is provided on a different inclined surface prepared by etching the semiconductor using anisotropy, which may refer to directly using the inclined surface of a semiconductor (such as a silicon wafer) as the reflective surface.
  • the reflective surface includes a reflective film plated on an inclined surface prepared by etching the semiconductor using anisotropy.
  • the quantum efficiency of single crystal silicon absorption exceeds 50%.
  • the wavelength of the light beam emitted by the laser diode chip is about 905 nm. Within this range, the reflectance of single crystal silicon is approximately 70%.
  • a reflective film is plated on the inclined surface of the single crystal silicon.
  • the silicon wafer 301 is made using anisotropy.
  • a reflective film 302 is plated on the inclined surface prepared by etching to increase the reflectance of the light on the reflective surface, thereby increasing the output power of the laser.
  • the material of the reflection film 302 may include any suitable metal material having reflection on light.
  • the reflection film 302 includes at least one of gold, silver, and aluminum. Among them, gold or silver has a wavelength of 905 nm. The reflectivity of the light beam is above 95%.
  • the reflective film 302 may be formed on the inclined surface of the semiconductor using a deposition method such as vacuum evaporation.
  • the bottom corner of the semiconductor (such as the silicon wafer 301 shown in FIG. 3B) is relatively thin due to the pressing down. There may be a risk of chipping, which will cause the slope to break near the bottom. And produce debris.
  • a notch or a shallow groove is provided at a sharp corner of the bottom surface of the semiconductor. Because the preset notch or shallow groove is more controllable in size and formation position than the chipping angle formed by pressing down, it can be ensured that the reflection surface can receive the emission from the laser diode chip without generating chipping angle. The spot of all outgoing light.
  • a cutout 3011 is provided at a sharp corner of a bottom surface of a semiconductor (for example, a silicon wafer 301).
  • the cutout is specifically formed by a sharp corner at the bottom of the semiconductor removal portion.
  • the incision can be removed by etching at the bottom corner.
  • the etching may use a conventional dry etching process, such as reactive ion etching, ion beam etching, plasma etching, laser ablation, or any combination of these methods.
  • a single etching method may be used, or more than one etching method may be used.
  • FIG. 3C a dry etching process
  • a shallow groove 3012 is provided at a sharp corner of a bottom surface of a semiconductor (for example, a silicon wafer 301).
  • the shallow groove 3012 is provided at a sharp corner of the bottom surface.
  • the shallow trench 3012 may be formed by an etching method. The etching includes, but is not limited to, wet etching or dry etching.
  • the method for forming the shallow trench may be: on the bottom surface of the semiconductor A mask such as a photoresist is formed thereon, and then a predetermined pattern of shallow grooves is defined in the photoresist by a photolithography process, and then the semiconductor is etched from the bottom surface using the photoresist layer as a mask. In order to form the shallow trench 3012, the photoresist layer is finally removed.
  • an inclined reflective surface is provided in the packaging module.
  • the reflective surface is included in the semiconductor (for example, silicon wafer 301) using anisotropy.
  • the reflective film 302 plated on the inclined surface obtained by etching is disposed opposite to the exit surface of one of the laser diode chips 303 so that the exit light of the laser diode chip 303 is reflected by the reflective surface.
  • the light emitted from the laser diode chip 303 passes through the reflective surface After reflection, it is emitted through the light transmitting area at an angle of about 19.48 ° from the normal of the substrate.
  • an inclined reflective surface is provided in the packaging module, and the reflective surface is included in the semiconductor (for example, silicon wafer 301) using anisotropy.
  • the reflective film 302 plated on the inclined surface obtained by etching is disposed opposite to the exit surfaces of at least two laser diode chips 303 arranged side by side so that each of the laser diode chips 303 The emitted light is reflected by the reflective surface and emitted through a light-transmitting area, thereby realizing a 1 ⁇ N one-dimensional multi-line packaging structure, where N is greater than or equal to 2.
  • the semiconductor for example, silicon wafer 301
  • the semiconductor is mounted on the first surface 30 of the substrate 300 through an adhesive layer (not shown), for example, on the first surface of the substrate 300 30 is provided with a substrate metal layer 3042 corresponding to the semiconductor, and the semiconductor is mounted on the surface of the substrate metal layer 3042 on the first surface 30 of the substrate through an adhesive layer.
  • the material of the adhesive layer may be the same as the aforementioned conductive adhesive layer.
  • the material of the conductive adhesive layer (not shown) includes conductive silver paste, solder, or a conductive die attach film. film, DAF), wherein the conductive silver paste may be ordinary silver paste or nano-silver paste.
  • the solder includes, but is not limited to, AuSn20.
  • AuSn20 eutectic is used for chip mounting.
  • the method of using AuSn eutectic for chip mounting includes the following steps: bonding the back surface of the semiconductor and the surface of the substrate metal layer together, where the substrate metal layer 4042 may be an AuSn alloy Gold is provided on the back surface of the semiconductor, and then heating is performed to form an alloy between the gold on the back surface of the semiconductor and the substrate metal layer, which plays a role of fixing the semiconductor on the first surface of the substrate and making a good electrical connection.
  • the adhesive layer includes an adhesive
  • the semiconductor is coated with an adhesive at a predetermined position on the substrate, and then the semiconductor is placed on the adhesive, and then processed by baking and curing to make the semiconductor Mounted on the first surface of the substrate.
  • a plurality of the laser diode chips 303 are mounted on the first surface of the substrate 300, and the first electrode (for example, n-pole) of each of the laser diode chips 303 is mounted. ) Is mounted on the first surface of the substrate 300 corresponding to a substrate metal layer 3041, and adjacent substrate metal layers 3041 are isolated from each other.
  • the second electrodes (for example, p-poles) of the plurality of laser diode chips 303 opposite to the same reflecting surface are electrically connected to the substrate 300 by a wire 305.
  • the material of the pad 306 may include aluminum or other suitable metal materials.
  • the packaging module includes a semiconductor having an anisotropic structure, and at least two inclined reflective surfaces are disposed on different inclined surfaces prepared by etching the semiconductor using anisotropy, for example, as As shown in the right diagram of FIG. 3B, two inclined reflection surfaces are disposed on the semiconductor (for example, silicon wafer 301) symmetrically disposed on two opposite inclined surfaces, or two inclined surfaces may be disposed.
  • the reflective surface is disposed on two adjacent inclined surfaces on the semiconductor.
  • At least two inclined reflective surfaces are disposed in the packaging module, and each reflective surface is opposite to the exit surface of at least one of the laser diode chips, so that the output of each of the laser diode chips is The reflected light is emitted through the light-transmitting area after being reflected by the reflecting surface.
  • the packaging module includes at least two semiconductors having an anisotropic structure, and at least two obliquely disposed reflective surfaces are respectively disposed on different inclined surfaces prepared by using anisotropic etching. .
  • the different semiconductors may be arranged on the substrate in any suitable arrangement.
  • the semiconductors may be arranged on the substrate in a spaced-apart manner from each other.
  • a silicon wafer is used as an example, as shown in FIG. 4E.
  • the package module includes three silicon wafers 301 having an anisotropic structure, and the three inclined reflection surfaces are respectively disposed on different inclined surfaces prepared by etching different silicon wafers 301 using anisotropy.
  • each reflecting surface is disposed opposite to the exit surfaces of at least two laser diode chips arranged side by side, so that the outgoing light of each laser diode chip is reflected by the reflecting surface and passes through the light transmission.
  • the area is emitted to achieve M ⁇ N two-dimensional multi-line packaging.
  • each reflection surface is disposed opposite to the emission surface of six laser diode chips 303 arranged side by side, so that the light emitted from each of the laser diode chips 303 passes through the reflection surface. After reflection, it is emitted through the light-transmitting area.
  • the number of the laser diode chips 303 opposite to the same reflecting surface can be reasonably selected according to the needs of the actual device. It is worth mentioning that in FIG. 4F, only a semiconductor having one inclined surface is shown, and the semiconductor may also be a semiconductor having at least two inclined surfaces.
  • the plurality of laser diode chips opposite to the same reflecting surface may be arranged at any suitable interval on the first surface of the substrate.
  • the plurality of laser diodes facing the same reflecting surface The diode chips 303 are arranged at equal intervals on the first surface of the substrate 300 so that the light emitted from different laser diode chips 303 reflected by the reflecting surface is emitted at equal intervals.
  • the packaging module of the present application is applied to a lidar
  • the light emitted from the light-transmitting area corresponds to each receiver, that is, a part of the laser light emitted by each laser diode chip is reflected back to the corresponding receiver, so the emission and The receiving positions need to be calibrated so that they correspond one-to-one. Therefore, the laser diode chips 303 are arranged at equal intervals, which makes it easier to arrange the receivers.
  • the distance between the emitting surface of the laser diode chip opposite to the same reflecting surface and the reflecting surface can be reasonably set according to the needs of the specific device.
  • each of the lasers facing the same reflecting surface The distance between the emitting surface of the diode chip 303 and the reflecting surface is equal to ensure the consistency of the light of each laser diode chip reaching the reflecting surface.
  • the direction of the light emitted by the laser diode chip 303 is perpendicular to the bottom edge of the reflective surface and is parallel to the first surface of the substrate, as shown in FIGS. 4A and 4B.
  • the reflecting surface is a quadrangle, and a side adjacent to the first surface of the substrate and parallel to the first surface is used as a bottom side.
  • the light beam emitted by the laser diode chip is an elliptical light spot, and the beam divergence angle is large along the direction perpendicular to the first surface of the substrate (herein referred to as the y direction). (Vertical) The beam divergence angle is small, which is called the slow axis. Because of the difference between the beam waist and divergence angle of the fast and slow axis, the fast and slow axis beam quality BPP of the semiconductor laser is very different.
  • the package module of the present invention can also also Optionally, a collimating element is used to collimate the beam, reduce the divergence angle of the beam in the fast axis direction or reduce the divergence angle of the fast axis and the slow axis direction, and the collimation element is disposed on the laser diode chip. And the reflecting surface so that the light emitted from the laser diode chip passes through the collimating element to the reflecting surface, the collimating element eliminates astigmatism between the slow and fast axes, improves the beam quality, and compresses the beam The divergence angle in the fast axis direction improves the radiation utilization rate of the laser diode chip.
  • the collimating element may be any element known to those skilled in the art and capable of collimating light, such as a cylindrical lens, a D lens, a fiber rod, an aspheric lens, and the like.
  • the cylindrical lens 309 is disposed between the laser diode chip and the reflecting surface in order to make the exit surface from each of the laser diode chips 303 All the reflected outgoing light reaches the cylindrical lens 309, and the curved surface of the cylindrical lens is opposite to the outgoing surface of the laser diode chip 303, so that the outgoing light of the laser diode chip 303 is irradiated onto the curved surface of the cylindrical lens 309.
  • the size of the curved surface of the cylindrical lens 309 is larger than the size of the light spot of the light emitted from the laser diode chip 303 on the plane where the light incident surface of the cylindrical lens 309 is located, so as to ensure that all the outgoing light can The light is collimated by being irradiated onto the cylindrical lens 309.
  • the collimating element is mounted on the first surface of the substrate.
  • a cylindrical lens 309 is mounted on the first surface 30 of the substrate 300.
  • the surface on which the collimating element is mounted on the substrate 300 is a plane, and the arrangement of the plane can better combine the collimating element and the first surface of the substrate, so that the collimating element is easy to install.
  • the top surface of the collimating element is planar. In the process of mounting a collimation element on a substrate, it usually involves using a transfer tool to pick up the collimation element and then place it at a predetermined position. The top surface of the collimation element is flat, which is suitable for making the collimation element suitable. draw.
  • the collimating element can be mounted on the substrate in any suitable manner.
  • the collimating element for example, the lenticular lens 309 can be mounted on the first surface of the substrate 300 through an adhesive layer.
  • the laser diode package module structure further includes a cover body, which is disposed on the first surface 30 of the substrate 300, and an accommodation space is formed between the substrate 300 and the cover body, wherein the cover body and the A light-transmitting region is at least partially provided on the opposite surface of the substrate 300.
  • the cover body is not limited to a certain structure.
  • a light-transmitting area is at least partially provided on the cover body, and the light emitted by the laser diode chip passes through the reflection surface and passes through.
  • the light-transmitting area is emitted, for example, the cover body is a metal shell with a glass window in this embodiment.
  • the cover body includes a U-shaped or square cover body 307 having a window, and a light-transmitting plate 308 covering the window to form the cover.
  • the light-transmitting area the light emitted from the laser diode chip 303 is emitted from the light-transmitting plate after being reflected, wherein the light-transmitting plate is parallel to the first surface of the base body; or the cover body is completely transparent.
  • Light plate structure Further, the cover body provides protection and an air-tight environment for the chip enclosed inside.
  • the projection of the U-shaped cover body 307 with a window on the first surface of the substrate is a circle, or other suitable shape, and the square cover body 307 is on the first surface of the substrate.
  • the projection is square.
  • the square cover body matches the size of the substrate, which can effectively reduce the package size.
  • the material of the cover body includes metal, resin, or ceramic.
  • the material of the cover body 307 is optionally a metal material, and the metal material is optionally a material similar to the thermal expansion coefficient of the light-transmitting plate 308, for example, Kovar Alloy, since the thermal expansion coefficient of the cover body 307 and the light-transmitting plate 308 are similar, when the light-transmitting plate is pasted to the window of the cover body 307, the light-transmitting plate caused by the difference in thermal expansion coefficient can be avoided. Cracked problem.
  • the cover body may be fixedly connected to the first surface of the substrate by welding. The welding may use any suitable welding method, such as parallel seam welding or energy storage welding.
  • the light-transmitting plate 308 is also adhered to an inner side of a window of the cover body.
  • the light-transmitting plate 308 may be selected from commonly used light-transmitting materials, such as glass, and the glass must have high transmittance to the wavelength of the laser light emitted by the laser diode chip.
  • the cover is a plate-like structure that is entirely transparent.
  • the plate-shaped structure is selected from commonly used light-transmitting materials, such as glass, and the glass must have high transmittance to the wavelength of the laser light emitted by the laser diode chip.
  • the overall structure of the substrate may be in the shape of a groove.
  • the groove may be a square groove or a circular groove.
  • the cover is disposed on the top of the groove of the substrate and is engaged with the top surface of the substrate. The groove is sealed to form an accommodation space between the substrate and the cover.
  • the pin path is short, the parasitic inductance is greatly reduced compared to the TO package, and the package can be packaged through the operation method of the substrate package, which has high packaging efficiency and packaging.
  • the latter chip is suitable for SMT.
  • the packaging module further includes a module for controlling the laser diode chip.
  • the driving chip 310 emitted by 303 is disposed in the accommodating space, wherein the driving chip 310 is mounted on the first surface 30 of the substrate 300.
  • the driving chip 310 and the laser diode chip that control the emission of the laser diode chip are directly packaged together, and both are packaged in a receiving space formed between the substrate and the cover.
  • the laser diode chip may be placed as close as possible to the driving chip.
  • the loss of the transmitting module on the distributed inductance will be much smaller, and it is easier to realize high-power laser emission.
  • the reduction of the distributed inductance also makes it possible to drive a narrow pulse laser.
  • the packaging module further includes a switch chip, wherein the switch chip is also disposed in the accommodating space, wherein the switch chip includes a switch circuit, and the switch circuit is used for The driving of the driving circuit controls the laser diode chip to emit laser light.
  • devices such as FET devices or other types of switching devices, or driving chips of switching devices, necessary resistors and capacitors 311, and surface mount devices are provided on the substrate.
  • Devices such as mounted circuit (SMT) can be mounted on the substrate through conductive materials, such as conductive glue (including but not limited to solder paste) through Surface Mounted Technology (SMT).
  • the laser diode chip 303, the driving chip 310, the reflective surface, and other devices are all mounted on the first surface of the substrate 300, and all are disposed on the cover.
  • a non-volatile or low-volatile conductive adhesive layer is used to mount on the first surface of the substrate, such an arrangement can be avoided.
  • the driving chip 310, the reflective surface, and the laser diode chip 303 are packaged in the accommodating space, and the package module further includes solder paste
  • the solder paste-mounted device is disposed outside the accommodating space, that is, on a substrate outside the cover.
  • the solder paste-mounted device includes, but is not limited to, a FET device or other types. Switching device, or driving chip of the switching device, necessary resistors and capacitors 311, etc.
  • the resistors and capacitors 311 are taken as an example, and the resistors and capacitors 311 are mounted outside the accommodating space by solder paste.
  • the integrated driving chip 310 and the laser diode chip 303 are integrated in the accommodation space, so that there is a short distance between the two, and the purpose of reducing parasitic inductance is achieved.
  • the solder paste is mounted The device is isolated from the laser diode chip 303, so as to prevent the flux in the solder paste from evaporating, contaminating the laser diode chip and the reflector, thereby affecting the light emitting efficiency of the laser diode chip.
  • a reflecting surface is provided on the propagation path of the outgoing light of the laser diode chip, and the outgoing light originally parallel to the first surface of the substrate is reflected, and the reflected light is emitted from the cover.
  • the light-transmitting area is emitted, and the laser diode chip emits light from the side.
  • the direction of the emitted light is generally parallel to the first surface of the substrate.
  • a reflecting surface is provided on the propagation path of the emitted light from the laser diode chip, and the emitted light is reflected from the cover. The light-transmitting area on the body is emitted, thereby changing the beam propagation direction.
  • the bottom surface of the laser diode chip can be mounted in the accommodation space while the outgoing beam can be roughly
  • the light is emitted in a direction perpendicular to the first surface, and the area of the bottom surface of the laser diode chip is large, which is convenient for the chip placement and the position setting of the packaging module in the whole device.
  • the reflective surface of the present invention is specifically an inclined surface prepared by etching the semiconductor using anisotropy. Each semiconductor has a specific crystal orientation, so the angle of the inclined surface formed is also specific. Thereby, the light reflected by the reflecting surface is emitted in a specific direction.
  • the package module of the present invention has a short pin path, and the parasitic inductance is greatly reduced compared with the TO package. Therefore, the package can be packaged through the operation method of the substrate package, the package efficiency is high, and the packaged chip is suitable for SMT.
  • FIGS. 5A to 5B and FIGS. 6A to 6C In order to avoid repetition, in this embodiment, regarding the structure and materials of the substrate 400, the laser diode For descriptions of the same features of the chip 403, the cover body 407, the light-transmitting plate 408, and the like as in the first embodiment, reference may be made to the first embodiment, and details are not described herein again.
  • the difference between this embodiment and the first embodiment is that the structure of the anisotropic semiconductor included in the packaging module is different.
  • the package module includes an anisotropic semiconductor, and the semiconductor is disposed in a receiving space formed by a cover and a substrate, wherein the semiconductor includes A first portion 4011 and a second portion 4012 on a partial surface of the first portion 4011, wherein the reflective surface is disposed on at least one inclined surface of the second portion 4012.
  • the reflective surface is an inclined surface prepared by etching the semiconductor using anisotropy.
  • the semiconductor is etched by a wet etching method, and the etching stops in the semiconductor. Without etching through the upper and lower surfaces of the semiconductor substrate to form a semiconductor including a first portion 4011 and a second portion 4012, wherein the second portion has at least one inclined surface due to the anisotropy of the semiconductor, such as in the When the semiconductor is silicon, the acute angle between the inclined surface and the second portion below is about 54.74 °.
  • the semiconductor is an SOI wafer 401 as an example.
  • the SOI wafer 401 includes a buried oxide and two upper and lower silicon layers separated by the buried oxide.
  • the second portion 4012 is formed by etching one of the two silicon layers.
  • the etching may be wet etching, for example, wet etching may be used, and wet etching may use an etchant having a high selectivity to silicon relative to the buried oxide, such as a KOH solution.
  • a mask layer such as a photoresist may also be formed on a part of the surface of the SOI wafer 401 to be etched, and a predetermined formation is defined in the mask layer by a photolithography process.
  • the pattern of the surface of the second portion 4012 that is, the surface of the second portion 4012 that is to be formed is covered with a patterned masking layer, and areas other than the surface of the second portion 4012 are exposed.
  • the SOI wafer 401 having the mask layer formed on the surface area is etched and stopped in the buried oxide 401b. Due to the anisotropy of the semiconductor, the formed second portion 4012 has at least one inclined surface.
  • the reflective surface may be at least one inclined surface of the second portion 4012.
  • the buried oxide 401b and the buried oxide 401b The silicon layer 401a is used as the first part 4011, and the silicon layer on the buried layer oxide 401b after anisotropic etching is used as the second part 4012.
  • the reflective surface includes a reflective film 402 plated on an inclined surface prepared by etching the semiconductor using anisotropy to improve the reflectance of the reflective surface light. , Thereby increasing the output power of the laser.
  • at least a part of the exposed surface of the first portion 4011 is further covered with a conductive layer.
  • the reflective film 402 is a conductive reflective film, and the reflective film 402 on the reflective surface further extends to cover at least a part of the surface of the first portion 4011 exposed outside the reflective surface.
  • the reflective film 402 extends onto a surface of a portion of the buried oxide 401b outside the second portion 4012.
  • the conductive reflective film 402 may be a metal layer, and the material of the reflective film 402 may include any suitable metal material that reflects light.
  • the reflective film 402 includes at least one of gold, silver, and aluminum.
  • the reflective film 402 can be formed on the inclined surface of the semiconductor using a deposition method such as vacuum evaporation.
  • the laser diode chip 403 is mounted on a surface of the first portion 4011 outside the reflecting surface, and an exit surface of the laser diode chip 403 is disposed opposite to the reflecting surface so that The light emitted from the laser diode chip is reflected by the reflective surface and emitted through the light transmitting region.
  • the features such as the positional relationship between the laser diode chip and the reflective surface in the first embodiment are also applicable.
  • one surface of the first portion 4011 outside each reflective surface is provided with the laser diode chip, and an exit surface of the laser diode chip is opposite to the reflective surface, or It is also possible that at least two laser diode chips are arranged on the surface of the first part outside each reflecting surface, and the emitting surface of each laser diode chip is opposite to the reflecting surface.
  • the laser diode chip 403 is disposed on the reflective film 402 that is conductive on the surface of the first portion, wherein the reflective film 402 that is conductive on the surface of the first portion is The pattern matches and is electrically connected to the bottom surface of the laser diode chip, and the area of the reflective film 402 on the surface of the first portion is larger than the area of the bottom surface of the laser diode chip so that the portion is located on the surface of the first portion
  • the upper conductive reflective film 402 is exposed from the outside of the laser diode chip, which facilitates the extraction of the electrodes on the bottom surface of the laser diode chip.
  • each reflective film corresponds to a laser diode chip.
  • the reflective film 402 on the surface of the first portion 4011 may be formed by any suitable method.
  • the method of forming the reflective film 402 includes the following steps: First, step A1, a semiconductor is provided, and the semiconductor (for example, A silicon wafer or a SOI wafer) includes a first portion 4011 on the bottom and a second portion 4012 on a portion surface of the first portion 4011, wherein the reflective surface is disposed at least one of the second portions 4012 is inclined Next, step A2 is performed to form a reflective film 402 to completely cover the exposed surface of the first portion 4011 and the second portion, wherein the reflective film 402 can be formed using a method such as vacuum evaporation.
  • step A3 is performed, and the reflective film 402 is patterned by using a photolithography process and an etching process.
  • a photoresist layer is coated on the reflective film, and the photoresist is exposed using photolithography processes and development steps.
  • the patterned photoresist layer defines parameters such as the shape and position of a pattern of a reflective film predetermined to be formed on the first portion 4011, and the patterned photoresist Layer covering the inclined surface of the second portion intended to be used as a reflective surface, and etching the reflective film on the first portion 4011 with a patterned photoresist layer as a mask, stopping in the first portion 4011, To form a patterned reflective film 402 on the surface of the first portion 4011, the photoresist layer is finally removed.
  • the pattern of the reflective film 402 on the first portion 4011 can also be used as an alignment mark. Because the pattern of the alignment mark is formed by photolithography and etching, its accuracy can be within 2 ⁇ m, and the high-precision alignment mark can improve the position accuracy of the laser diode chip and the laser diode chip during loading. Relative position accuracy with the reflecting surface.
  • the laser diode chip 403 is mounted on the surface of the first part in the manner described in the first embodiment, for example, the laser diode chip 403 is mounted on the reflection on the first part through a conductive adhesive layer. On the film 402 to realize the electrical connection between the laser diode chip 403 and the reflective film 402.
  • an anisotropic semiconductor (such as a silicon wafer or an SOI wafer) is mounted on the first surface 40 of the substrate 400 through a conductive adhesive layer, that is, The bottom surface of the first portion 4011 is mounted on the substrate 400 and is disposed in the accommodation space.
  • the laser diode chip 403 includes a first electrode and a second electrode opposite to each other.
  • the bottom surface of the laser diode chip 403 is provided with the first electrode.
  • the top surface of the laser diode chip 403 is provided as a second electrode, the first electrode may be a p-pole, the second electrode may be an n-pole, or the first electrode may be an n-pole, and the second The electrode may be a p-pole.
  • the first electrode and the second electrode are electrically connected to the substrate 400 through wires, in particular, to different pads on the first surface of the substrate 400, for example, the top surface of the laser diode chip 403.
  • the upper electrode is electrically connected to the pad 4062 through a wire 4052, and the electrode on the bottom surface of the laser diode chip 403 is electrically connected to the pad 4061 through a wire 4051. Since the electrode on the bottom surface and the reflective film 402 on the first portion 4011 Therefore, the reflective film 402 is electrically connected to the bonding pad 4062 through a wire, so as to achieve the electrical connection between the electrode on the bottom surface of the laser diode chip 403 and the bonding pad 4062.
  • the bonding pad 4062 and the bonding pad 4061 are spaced from each other.
  • the area of the reflective film 402 on the first portion 4011 can be larger than the area of the bottom surface of the laser diode chip 403, that is, the laser diode chip 403 covers the first portion.
  • 4011 is a partially reflective film 402 on the surface.
  • the above-mentioned method of drawing out the first electrode and the second electrode is merely an example, and other suitable methods may also be applicable to the present invention.
  • it may also be performed under each of the laser diode chips.
  • a contact hole is provided through the first part and electrically connected to the bottom electrode of the laser diode chip, and the bottom electrode (for example, the first electrode) of the laser diode chip is electrically connected through the contact hole.
  • a base metal layer is disposed under the bottom surface of the first part, and the base metal layer can be electrically connected to the bottom electrode (for example, the first electrode) of the laser diode chip through a contact hole, so as to lead out the bottom electrode of the laser diode chip.
  • FIG. 6C illustrates a structure of a packaging module.
  • the structure of the packaging module is different from that shown in FIG. 6A as follows:
  • the second portion 4012 has two symmetrical, Opposite inclined surfaces, the inclined surfaces are reflective surfaces, and each of the reflective surfaces is opposite to the exit surface of at least one laser diode chip 403, and each laser diode chip 403 is mounted on the
  • the reflective film 402 on the first part is used to realize the electrical connection between the laser diode chip 403 and the reflective film 402.
  • a 2 ⁇ N type package structure is shown in FIG. 6C.
  • the anisotropic semiconductor can also be replaced with other suitable materials, such as glass, ceramic, or resin.
  • the packaging structure in this embodiment also has the reflective film on the reflective surface, in addition to reflecting the light emitted from the laser diode chip.
  • the part on the first part outside the reflective surface is also used to electrically connect the bottom surface of the laser diode chip, and used as an external mark when the laser diode chip is mounted.
  • the reflective film on the first part is formed by photolithography and etching. Its precision is high, so the position accuracy of the laser diode chip mounting and the relative position accuracy between the laser diode chip and the reflective film can be improved.
  • FIGS. 7A to 7C, FIGS. 8A to 8C, and FIGS. 9A to 9D are described with reference to FIGS. 7A to 7C, FIGS. 8A to 8C, and FIGS. 9A to 9D.
  • the substrate 400 for the description of the structures and materials, the reflective film 502, the laser diode chip 503, the cover body 507, the light-transmitting plate 508, the substrate metal layers 5041, 5042, and the like, the descriptions of some of the same features as in the foregoing first and second embodiments can refer to the foregoing The first embodiment and the second embodiment are not described herein again.
  • the difference between this embodiment and the foregoing first embodiment lies in that the anisotropic semiconductor in the first embodiment is replaced with the glass in this embodiment.
  • the packaging module includes glass 501, the glass 501 includes at least one inclined surface, and the reflective surface includes plating on the inclined surface of the glass 501.
  • the included angle between the reflective surface and the bottom surface of the glass may be any suitable angle less than 90 °.
  • the included angle between the reflective surface and the bottom surface of the glass is about 45 °.
  • the glass 501 having at least one inclined surface can be formed by any suitable method.
  • the conventional optical element manufacturing method is used to grind, polish, and coat the optical glass into a glass prism of a predetermined size, so that the reflective surface and The included angle of the bottom surface of the glass is 45 ° or any other angle.
  • glass 501 of a predetermined size can also be formed by molding.
  • the molding method is to pour the molten optical glass blank in a state above 50 ° C above the glass transition point. Press molding in a low temperature mold.
  • FIG. 7B illustrates glass 501 having only one inclined surface, a reflective film 502 is provided on the inclined surface as a reflective surface, and at least one laser is disposed on a first surface of a substrate outside the reflective surface.
  • a diode chip 503, an emission surface of each of the laser diode chips is disposed opposite to the reflection surface, and further, the emission light emitted from the emission surface of the laser diode chip is perpendicular to the bottom edge of the reflection surface, and the reflection surface
  • the included angle with the bottom surface of the glass is about 45 °, so that after the light emitted from the output surface of the laser diode chip 503 is reflected by the reflective surface, the light exits in a direction perpendicular to the first surface of the substrate.
  • the light-transmitting area on the cover is emitted.
  • FIG. 7C shows a glass 501 having two inclined surfaces disposed opposite to each other, and a reflective film 502 is provided on the two inclined surfaces as a reflective surface, wherein, on the outside of each reflective surface, At least one laser diode chip 503 is disposed on the first surface of the substrate 500.
  • the inclined surfaces disposed opposite to each other of the glass may be symmetrically disposed or asymmetrically disposed, that is, one of the inclined surfaces and the glass may be disposed.
  • the included angle of the bottom surface is different from the included angle between the other inclined surface and the bottom surface of the glass.
  • the reflective surface may also be a concave surface, and the concave surface is specifically a concave surface of an anisotropic semiconductor, or a concave surface of glass, or other suitable concave surface on a mirror material.
  • the concave surface is specifically a concave surface of an anisotropic semiconductor, or a concave surface of glass, or other suitable concave surface on a mirror material.
  • it can also play a role similar to the aforementioned collimation element, which can reduce the astigmatism between the fast and slow axes, improve the beam quality, and reduce the divergence angle in the fast axis direction. , To improve the radiation utilization rate under the condition of limited light stop.
  • the reflective surface is a concave surface of glass 5011 as an example, and the reflective surface further includes a reflective film 502 plated on at least one concave surface of the glass 5011, wherein, FIG. 8B shows that the reflecting surface is specifically a concave surface of the glass, and FIG. 8C shows that the reflecting surface is specifically two opposite concave surfaces of the glass, and the two facing concave surfaces may also be symmetrically disposed.
  • the glass 5011 having a concave surface may be formed by any suitable method.
  • the reflective surface of the glass is made into a concave shape by a molding method, and the reflective film 502 is plated on the concave surface.
  • the concave surface may be formed by any suitable method known to those skilled in the art, for example, the semiconductor may be wetted isotropically. Etching to obtain the above-mentioned concave surface.
  • the aforementioned glass is mounted on the first surface of the substrate through a conductive adhesive layer.
  • the laser diode chip 503 may be attached to the first surface 50 of the substrate 500 through a conductive adhesive layer.
  • the second electrode (ie, the electrode on the top surface) of the diode chip 503 is electrically connected to the pad 506 on the first surface 50 of the substrate 500 through a wire 505.
  • two inclined reflective surfaces are respectively disposed on two inclined surfaces opposite to each other on the glass 5012, wherein each reflective surface is connected to at least one of the laser diode chips.
  • the exit surfaces of 503 are oppositely arranged, so that the exit light of each of the laser diode chips 503 is reflected by the reflective surface and emitted through the light-transmitting area.
  • the glass 5012 has a triangular prism shape and a triangular prism shape.
  • FIG. 9A shows the outside of each reflecting surface
  • Four laser diode chips 503 are arranged side by side, and different numbers of laser diode chips 503 can also be arranged on the outside of different reflecting surfaces. The number can be selected reasonably according to the needs of the device structure. For example, There are 3 laser diode chips on the outside of each reflecting surface, and 4 laser diode chips on the outside of the other side.
  • FIG. 9B shows the laser diode in FIG. 9A.
  • the black dots shown in the figure only represent the positional relationship, and have nothing to do with the shape of the light source.
  • the chips 503 are arranged at equal intervals.
  • the glass may also have a triangular pyramid shape or a triangular pyramid shape.
  • the glass 5013 shown in FIG. 9C has a triangular pyramid shape, and three inclined reflective surfaces are respectively disposed on the glass. Inclined surfaces, wherein each of the reflecting surfaces is opposite to the exit surface of at least one of the laser diode chips 503, so that the light emitted from each of the laser diode chips 503 passes through the reflecting surface after being reflected by the reflecting surface. The light-transmitting area is emitted.
  • three laser diode chips 503 are provided on the outside of each reflective surface.
  • FIG. 9C is an equivalent position diagram of the laser diode chip 503 in FIG. 9, where the black dots shown in the figure only represent positional relationships, and have nothing to do with the shape of the light source.
  • the above-mentioned glass is not only a double-sided reflection but also a polyhedral reflection, and its shape can be an N-edge or N-pyramid, where N is greater than or equal to 3, and not only the glass has a plurality of inclined settings.
  • the reflective surface may also be the anisotropic semiconductor or other materials in the foregoing first and second embodiments, and may also have a plurality of inclined reflective surfaces, forming a structure such as a triangular prism, an N pyramid, or an N pyramid.
  • the packaging module in this embodiment also has the advantages of the packaging module in the first embodiment, and for the example where the reflecting surface is concave, in addition to reflecting the light emitted from the laser diode chip, it can also reduce the speed axis. Astigmatism between them improves the quality of the beam, and at the same time, it is possible to avoid setting an optical collimation element such as a cylindrical lens on the substrate, which can reduce the size of the package module structure.
  • the package structures in the first embodiment, the second embodiment, and the third embodiment are merely exemplary, and the package structure in the present invention is not limited to the above examples, and various modifications of the above examples can also be applied to the present invention.
  • Invention for example, mounting a semiconductor and glass provided with an inclined reflective surface in a packaging module; the number of laser diodes opposite each reflective surface, the number and size of semiconductors or glass included in the packaging module can be based on The actual need to make a reasonable choice is no longer enumerated here.
  • the distance detection device 800 includes a light emitting module 810 and a reflected light receiving module 820.
  • the light transmitting module 810 includes at least one laser diode packaging module in the first embodiment, the second embodiment, or the third embodiment for transmitting optical signals, and the optical signals emitted by the optical transmitting module 810 cover the vision of the distance detecting device 800.
  • Field angle FOV; the reflected light receiving module 820 is configured to receive the light reflected by the light emitting module 810 after it meets the object to be measured, and calculate the distance of the distance detection device 800 from the object to be measured.
  • the light transmitting module 810 and its working principle will be described below with reference to FIG. 10.
  • the light emitting module 810 may include a light emitter 811 and a light beam expanding unit 812.
  • the light emitter 811 is configured to emit light
  • the light beam expanding unit 812 is configured to perform at least one of the following processes on the light emitted by the light emitter 811: collimation, beam expansion, light uniformity, and field of view expansion.
  • the light emitted by the light transmitter 811 passes through at least one of the collimation, beam expansion, uniformization, and FOV expansion of the light beam expanding unit 812, so that the emitted light becomes divergent and uniformly distributed, and can cover a certain two-dimensional scene.
  • the angle, as shown in FIG. 8, the emitted light can cover at least part of the surface of the object to be measured.
  • the light emitter 811 may be a laser diode.
  • the wavelength of the light emitted by the light emitter 811 in one example, light with a wavelength between 895 nanometers and 915 nanometers can be selected, for example, light with a wavelength of 905 nanometers is selected.
  • light with a wavelength between 1540 nanometers and 1560 nanometers may be selected, such as light with a wavelength of 1550 nanometers.
  • other suitable wavelengths of light can also be selected according to the application scenario and various needs.
  • the light beam expanding unit 812 may be implemented by using a one-stage or multi-stage beam expanding system.
  • the light beam expanding process may be reflective or transmissive, or a combination of the two.
  • a holographic filter can be used to obtain a large-angle beam composed of multiple sub-beams.
  • a laser diode array can also be used, and a laser diode can be used to form multiple beams of light, and a laser beam similar to an expanded beam can be obtained (for example, a VCSEL array laser).
  • a two-dimensionally adjustable micro-electromechanical system (MEMS) lens can be used to reflect the emitted light, and the MEMS micromirror can be driven to change the angle between the mirror surface and the light beam at any time, so that the angle of reflected light The time changes, so that it diverges into a two-dimensional angle to cover the entire surface of the object to be measured.
  • MEMS micro-electromechanical system
  • the distance detecting device is used for sensing external environment information, such as distance information, angle information, reflection intensity information, speed information, and the like of an environmental target.
  • the distance detection device according to the embodiment of the present invention may be applied to a mobile platform, and the distance detection device may be installed on a platform body of the mobile platform.
  • a mobile platform with a distance detection device can measure the external environment, for example, measuring the distance between the mobile platform and an obstacle for obstacle avoidance and other purposes, and performing two-dimensional or three-dimensional mapping on the external environment.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, and a remotely controlled vehicle.
  • the distance detection device is applied to an unmanned aerial vehicle
  • the platform body is the fuselage of the unmanned aerial vehicle.
  • the distance detection device is applied to a car
  • the platform body is the body of the car.
  • the distance detection device is applied to a remote control car
  • the platform body is the body of the remote control car.
  • the light emitted by the light emitting module 810 can cover at least part of the surface or even the entire surface of the object to be measured, correspondingly, the light is reflected after reaching the surface of the object. Arrayed.
  • the reflected light receiving module 820 includes a photo-sensing unit array 821 and a lens 822. Among them, after the light reflected from the surface of the object to be measured reaches the lens 822, based on the principle of lens imaging, it can reach the corresponding photosensor unit in the photosensor unit array 821, and then be received by the photosensor unit, causing photoelectricity. Sensed Photoelectric Response.
  • the light transmitter 811 and the photo-sensing unit array 821 are controlled by a clock control module (such as the clock shown in FIG. 10 included in the distance detection device 800).
  • the control module 830, or a clock control module other than the distance detection device 800, performs synchronous clock control on them, so according to the time-of-flight (TOF) principle, the distance between the point where the reflected light arrives and the distance detection device 800 can be obtained.
  • TOF time-of-flight
  • the photo-sensing unit since the photo-sensing unit is not a single point, but the photo-sensing unit array 821, it passes through a data processing module (such as the data processing module 840 shown in FIG. 8 included in the distance detection device 800, or the distance detection The data processing of the data processing module outside the device 800) can obtain distance information of all points in the field of view of the entire distance detection device, that is, point cloud data of the distance of the external environment to which the distance detection device faces.
  • a data processing module such as the data processing module 840 shown in FIG. 8 included in the distance detection device 800, or the distance detection
  • the data processing of the data processing module outside the device 800 can obtain distance information of all points in the field of view of the entire distance detection device, that is, point cloud data of the distance of the external environment to which the distance detection device faces.
  • Lidar is a perception system for the outside world. It can learn three-dimensional and three-dimensional information of the outside world, and it is no longer limited to the way of the plane perception of the outside world such as cameras. Its principle is to actively emit a laser pulse signal to the outside, detect the reflected pulse signal, determine the distance of the measured object based on the time difference between transmission and reception, and combine the light pulse's emission angle information to reconstruct the three-dimensional depth information. .
  • the invention provides a distance detection device, which can be used to measure the distance between the detection object and the detection device and the orientation of the detection object relative to the detection device.
  • the detection device may include a radar, such as a lidar.
  • the detection device can detect the distance between the detection object and the detection device by measuring the time of light propagation between the detection device and the detection object, that is, Time-of-Flight (TOF).
  • TOF Time-of-Flight
  • the distance detection device may use a coaxial optical path, that is, the light beam emitted by the detection device and the reflected light beam share at least a part of the optical path in the detection device.
  • the detection device may also adopt an off-axis light path, that is, the light beam emitted by the detection device and the reflected light beam are transmitted along different optical paths in the detection device, respectively.
  • FIG. 11 shows a schematic diagram of a distance detection device according to the present invention.
  • the distance detecting device 100 includes a light transmitting and receiving device 110.
  • the light transmitting and receiving device 110 includes a light source 103, a collimating element 104, a detector 105, and an optical path changing element 106.
  • the optical transceiver device 110 is configured to transmit a light beam, receive the returned light, and convert the returned light into an electrical signal.
  • the light source 103 is used to emit a light beam. In one embodiment, the light source 103 may emit a laser beam.
  • the light source includes the laser diode package module according to the first embodiment, the second embodiment, or the third embodiment, and is configured to emit a laser pulse in a direction at a certain angle with the first surface of the substrate of the laser diode package module. , The included angle is less than 90 degrees.
  • the laser beam emitted by the light source 103 is a narrow-bandwidth beam with a wavelength outside the visible light range.
  • the collimating element 104 is disposed outside the light-transmitting area of the laser packaging module, and is used to collimate the outgoing light emitted from the light-transmitting area (that is, collimate the light beam emitted from the light source 103), and collimate the light beam emitted by the light source 103.
  • the collimation is parallel light, and the collimation element is also used to condense at least a part of the returned light reflected by the probe.
  • the collimating element 104 may be a collimating lens or other elements capable of collimating a light beam.
  • the distance detection device 100 further includes a scanning module 102.
  • the scanning module 102 is placed on the outgoing light path of the optical transceiver 110.
  • the scanning module 102 is used to change the transmission direction of the collimated light beam 119 emitted by the collimating element 104 and project it to the external environment, and project the returning light onto the collimating element 104. .
  • the returned light is focused on the detector 105 via the collimating element 104.
  • the scanning module 102 may include one or more optical elements, such as a lens, a mirror, a prism, a grating, an optical phased array, or any combination thereof.
  • multiple optical elements of the scanning module 102 can rotate around a common axis 109, and each rotating optical element is used to continuously change the propagation direction of the incident light beam.
  • multiple optical elements of the scanning module 102 can be rotated at different rotation speeds.
  • multiple optical elements of the scan module 102 may be rotated at substantially the same rotation speed.
  • multiple optical elements of the scanning module may also rotate around different axes, or vibrate in the same direction, or vibrate in different directions, which is not limited herein.
  • the scanning module 102 includes a first optical element 114 and a driver 116 connected to the first optical element 114.
  • the driver 116 is configured to drive the first optical element 114 to rotate about the rotation axis 109, so that the first optical element 114 is changed.
  • the first optical element 114 projects the collimated light beam 119 to different directions.
  • the angle between the direction of the collimated light beam 119 after being changed by the first optical element and the rotation axis 109 changes with the rotation of the first optical element 114.
  • the first optical element 114 includes a pair of opposing non-parallel surfaces through which a collimated light beam 119 passes.
  • the first optical element 114 includes a wedge-shaped prism, which is directed toward the straight beam 119 for refraction.
  • the first optical element 114 is coated with an antireflection coating, and the thickness of the antireflection coating is equal to the wavelength of the light beam emitted by the light source 103, which can increase the intensity of the transmitted light beam.
  • the scanning module 102 includes a second optical element 115 that rotates about a rotation axis 109.
  • the rotation speed of the second optical element 115 is different from the rotation speed of the first optical element 114.
  • the second optical element 115 changes the direction of the light beam projected by the first optical element 114.
  • the second optical element 115 is connected to another driver 117, and the driver 117 drives the second optical element 115 to rotate.
  • the first optical element 114 and the second optical element 115 can be driven by different drivers, so that the rotation speeds of the first optical element 114 and the second optical element 115 are different, so that the collimated light beam 119 is projected into different directions of the external space and can be scanned Large spatial range.
  • the controller 118 controls the drivers 116 and 117 to drive the first optical element 114 and the second optical element 115, respectively.
  • the rotation speeds of the first optical element 114 and the second optical element 115 can be determined according to the area and pattern expected to be scanned in practical applications.
  • Drivers 116 and 117 may include motors or other driving devices.
  • the second optical element 115 includes a pair of opposing non-parallel surfaces through which the light beam passes.
  • the second optical element 115 includes a wedge-shaped prism.
  • the second optical element 115 is coated with an antireflection coating, which can increase the intensity of the transmitted light beam.
  • the rotation of the scanning module 102 can project light to different directions, such as directions 111 and 113, so as to scan the space around the detection device 100.
  • directions 111 and 113 are directions that are projected by the scanning module 102 to scan the space around the detection device 100.
  • the scanning module 102 receives the return light 112 reflected by the detection object 101 and projects the return light 112 onto the collimating element 104.
  • the collimating element 104 condenses at least a part of the return light 112 reflected by the probe 101.
  • the collimating element 104 is coated with an antireflection coating, which can increase the intensity of the transmitted light beam.
  • the detector 105 and the light source 103 are placed on the same side of the collimating element 104.
  • the detector 105 is used to convert at least a part of the returned light passing through the collimating element 104 into an electrical signal.
  • the detector 105 may include an avalanche photodiode.
  • the avalanche photodiode is a high-sensitivity semiconductor device and can use a photocurrent effect to convert an optical signal into an electrical signal.
  • the distance detection device 100 includes a measurement circuit, such as a TOF unit 107, which can be used to measure TOF to measure the distance of the detection object 101.
  • the distance detection device 100 can determine the time t according to the time difference between the light beam 103 emitted by the light source 103 and the return light received by the detector 105, and can further determine the distance D.
  • the distance detection device 100 can also detect the position of the detection object 101 in the distance detection device 100.
  • the distance and orientation detected by the distance detection device 100 can be used for remote sensing, obstacle avoidance, mapping, modeling, navigation, and the like.
  • the light source 103 may include a laser diode through which laser light in the nanosecond range is emitted.
  • the laser pulse emitted by the light source 103 lasts 10 ns, and the pulse duration of the returned light detected by the detector 105 is substantially equal to the emitted laser pulse duration.
  • the laser pulse receiving time may be determined, for example, the laser pulse receiving time is determined by detecting a rising edge time and / or a falling edge time of an electrical signal pulse.
  • the electrical signal may be amplified in multiple stages. In this way, the distance detection device 100 can calculate the TOF by using the pulse reception time information and the pulse emission time information, thereby determining the distance from the detection object 101 to the distance detection device 100.
  • FIG. 12 is a schematic diagram of another embodiment of the distance detection device 600.
  • the distance detection device 600 is similar to the distance detection device 100 shown in FIG. 11.
  • the optical transceiver 610 of the distance detection device 600 of the embodiment shown in FIG. 12 includes a plurality of optical path changing elements 6061. -6063, changing the light path of the outgoing beam and the return path of the light emitted by the light source 603.
  • a collimator lens 604 with a longer focal length can be used.
  • the light source 603 and the detector 605 are equivalent. Is located at the focal position of the collimating lens 604. In this way, the optical path is folded by the optical path changing element 6061-6063, so that the structure of the distance detecting device 600 is compact, which is beneficial to miniaturization.
  • the light source 603 includes the laser package module structure of the first embodiment, the second embodiment, or the third embodiment, and is configured to emit a laser pulse in a direction at a certain angle with the first surface of the substrate of the laser diode package module. The angle is less than 90 degrees.
  • the package module in the first embodiment further includes a semiconductor having an anisotropic structure, and the reflective surface is specifically an inclined surface prepared by etching the semiconductor using anisotropy, or,
  • the reflective surface includes a reflective film plated on an inclined surface prepared by etching the semiconductor using anisotropy, and an inclined surface as a reflective surface prepared after the etching, and the inclined surface and the bottom surface of the semiconductor are
  • the included angle is generally 54.74 °, and the light emitted from the laser diode chip is reflected by the reflective surface and is emitted through the light transmitting area at an angle of about 19.48 ° with the normal of the substrate, that is, at a distance from the
  • the first surface of the substrate of the laser diode package module emits a laser pulse in a direction with a certain included angle, and the included angle is less than 90 degrees; wherein the collimating lens 604 is disposed on the laser
  • the plurality of optical path changing elements 6061-6063 may include a mirror, a prism, or other optical elements that change the optical path.
  • the plurality of optical path changing elements 6061-6063 include a first optical path changing element 6061, a second optical path changing element 6062, and a second optical path changing element 6063.
  • the first optical path changing element 6061 is disposed outside the light transmitting area and faces the light source 603 and the collimating lens 604.
  • the first light path changing element 6061 is used to change the light path of the outgoing light emitted from the light transmitting area of the laser diode package module so that The laser pulse of the laser diode package module is incident on the collimating lens 604 in a direction substantially along the central axis of the collimating lens.
  • the first optical path changing element 6061 is a reflector, and the first optical path changing element 6061 is located on a central axis of the collimating lens, and is configured to reflect a laser pulse emitted from the laser diode package module to a general edge.
  • the reflecting surface is specifically an inclined surface prepared by etching the semiconductor using anisotropy as an example
  • the inclined surface prepared after the etching and The included angle between the bottom surfaces of the semiconductor is approximately 54.74 °, and the light emitted from the laser diode chip is reflected by the reflective surface and emitted through the light transmission area at an angle of about 19.48 ° from the normal of the substrate.
  • the light source 603 emits the light beam obliquely downward, the light beam reaches the first optical path changing element 6061, and the first optical path changing element 6061 reflects the light beam in the direction of the collimating lens 604.
  • the first optical path changing element 6061 of the reflector is placed obliquely with respect to the optical axis of the collimating lens 604, that is, deviates from the optical axis of the collimating lens 604, and faces the light source 603 and the collimating lens 604.
  • the outgoing light emitted from the transparent area is reflected to the collimating lens 604. That is, the light source 603 emits the light beam obliquely downward, the light beam reaches the first optical path changing element 6061, and the first optical path changing element 6061 reflects the light beam in the direction of the collimating lens 604.
  • the center of the second optical path changing element 6062 is provided with a light transmitting region, such as a through hole 6064.
  • the through hole 6064 is located approximately in the middle of the second optical path changing element 6062.
  • the through hole 6064 is trapezoidal. In other embodiments, the through hole 6064 may be rectangular, circular, or other shapes.
  • the second optical path changing element 6062 is located between the first optical path changing element 6061 and the collimating lens 604 and faces the collimating lens 604.
  • the optical axis of the collimating lens 604 may pass through the through-hole 6064.
  • the light beam reflected by the first optical path changing element 6061 passes through the through hole 6064 of the second optical path changing element 6062, is projected onto the collimating lens 604, and is collimated by the collimating lens 604.
  • the detector 605 is located on the other side of the distance detection device 600 relative to the light source 603 and is used to convert the received optical signal into an electrical signal, and the electrical signal is used to measure the detection object. Distance from the distance detection device.
  • the returned light collected by the collimating lens 604 passes through the second optical path changing element 6062 and the third optical path changing element 6063 and is converged to the detector 605.
  • the third optical path changing element 6063 is located outside the collimating lens 604, and is located above the detector 605 near the collimating lens 604, and faces the second optical path changing element 6062 and the detector 605, respectively, with the second optical path changing element 6062 and
  • the detector 605 is oppositely disposed.
  • the returned light collected by the collimating lens 604 is reflected by the second optical path changing element 6062 to the third optical path changing element 6063, and the third optical path changing element 6063 reflects the returned light to the detector 605.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another device, or some features can be ignored or not implemented.
  • the various component embodiments of the present invention may be implemented by hardware, or by software modules running on one or more processors, or by a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used to implement some or all functions of some modules according to embodiments of the present invention.
  • DSP digital signal processor
  • the invention may also be implemented as a device program (e.g., a computer program and a computer program product) for performing part or all of the method described herein.
  • a program that implements the present invention may be stored on a computer-readable medium or may have the form of one or more signals. Such signals can be downloaded from an Internet website, provided on a carrier signal, or provided in any other form.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光二极管封装模块及距离探测装置、电子设备。该封装模块包括:具有第一表面的基板;设置在该基板的第一表面上的罩体,该基板和该罩体之间形成容纳空间,其中,该罩体与该基板相对的面上至少部分地设置透光区域;设置于该容纳空间内的激光二极管芯片;设置于该容纳空间内的反射面,用于使该激光二极管芯片的出射光经该反射面反射后通过该透光区域发射出去。本发明的封装方案在激光二极管芯片的出射光的传播路径上设置反射面,将出射光反射后从罩体上的透光区域发射出去,从而改变光束传播方向。

Description

激光二极管封装模块及距离探测装置、电子设备
说明书
技术领域
本发明总地涉及集成电路领域,更具体地涉及一种激光二极管封装模块及距离探测装置、电子设备。
背景技术
半导体激光器是成熟较早、进展较快的一类激光器,由于它的波长范围宽,制作简单、成本低、易于大量生产,并且由于体积小、重量轻、寿命长,因此,品种发展快,应用范围广。半导体激光器目前应用最为广泛是侧边发光激光器(Edge Emitting Lasers,EELs)。侧边发光激光器的激光二极管芯片(Laser diode die)一般为狭长型,发光面为芯片的最小面,芯片的两个最大面为金属化面,是对外的电气连接点。
而封装上,为保证竖直方向出光,一般采用金属TO封装,TO封装技术是指晶体管外形(Transistor Outline)或者通孔(Through-hole)封装技术,也就是全封闭式封装技术。采用TO封装的激光器,其寄生电感较大,所以在要求窄脉冲的应用场景,无法产生窄脉冲;并且贴装的作业效率比较低,无法在自动化机台上进行表面封装技术(Surface Mounted Technology,SMT)。
因此,为了解决上述技术问题需要对目前激光器的封装进行改进。
发明内容
为了解决上述问题中的至少一个而提出了本发明。本发明提供一种激光二极管封装模块,其可以改进目前TO封装存在的寄生电感较大的问题,能够克服上面描述的问题。
具体地,本发明一方面提供一种激光二极管封装模块,所述封装模块包括:
基板,具有第一表面;
罩体,设置在所述基板的第一表面上,所述基板和所述罩体之间形成容纳空间,其中,所述罩体与所述基板相对的面上至少部分地设置透光区域;
激光二极管芯片,设置于所述容纳空间内;
反射面,设置于所述容纳空间内,用于使所述激光二极管芯片的出射光经所述反射面反射后通过所述透光区域发射出去。
示例性地,所述激光二极管芯片的出射光经所述反射面反射后以大体与所述基板的所述第一表面垂直的方向通过所述透光区域发射出去。
示例性地,所述封装模块还包括具有各向异性结构的半导体;
所述反射面具体为所述半导体利用各向异性进行刻蚀而制备获得的倾斜面,或者,所述反射面包括在所述半导体利用各向异性进行刻蚀而制备获得的倾斜面上镀的反射膜。
示例性地,所述半导体包括半导体晶圆。
示例性地,所述半导体为硅,其中,所述倾斜面与所述半导体的底面之间的夹角大体为54.74°。
示例性地,所述封装模块内设置有至少两个倾斜设置的反射面,每个反射面与至少一个所述激光二极管芯片的出射面相对设置,以使每个所述激光二极管芯片的出射光经所述反射面反射后通过所述透光区域发射出去。
示例性地,所述每个反射面与至少两个并列排布的激光二极管芯片的出射面相对设置,以使每个所述激光二极管芯片的出射光经所述反射面反射后通过所述透光区域发射出去。
示例性地,所述封装模块包括具有各向异性结构的半导体,所述至少两个倾斜设置的反射面设置在所述半导体利用各向异性进行刻蚀而制备获得的不同倾斜面上。
示例性地,所述两个倾斜设置的反射面设置在所述半导体上对称设置的、相背的两个倾斜面上。
示例性地,所述封装模块包括至少两个具有各向异性结构的半导体,所述至少两个倾斜设置的反射面分别设置在不同的半导体利用各向异性进行刻蚀而制备获得的倾斜面上。
示例性地,与同一反射面相对的多个所述激光二极管芯片在所述基板的第一表面上等间隔排布。
示例性地,与同一反射面相对的每个所述激光二极管芯片的出射面与该反射面之间的距离相等。
示例性地,所述半导体的底面的尖角处设置有切口或浅槽。
示例性地,所述切口具体为所述半导体去除部分底部尖角而形成的缺口;
所述浅槽设置在所述底面的尖角的边缘处并自所述半导体的底面向所述半导体的顶面凹陷部分深度。
示例性地,所述半导体包括位于底部的第一部分和位于所述第一部分的部分表面上的第二部分,其中,所述反射面设置在所述第二部分的至少一个倾斜面上。
示例性地,所述激光二极管芯片贴装在所述反射面外侧的所述第一部分的表面上,并使所述激光二极管芯片的出射面与所述反射面相对设置。
示例性地,所述反射膜包括金属层,所述反射面上的金属层还进一步延伸覆盖所述反射面外侧的所述第一部分露出的部分表面,其中,所述金属层位于所述第一部分的表面上的部分用于和所述激光二极管芯片的底面电连接。
示例性地,所述激光二极管芯片覆盖所述第一部分表面上的所述反射膜的部分表面,所述反射膜通过导线与位于所述基板上的焊盘电连接,以将所述激光二极管芯片的底面上的电极引出。
示例性地,所述半导体为SOI晶圆,其中,所述SOI晶圆的埋层氧化物以及位于所述埋层氧化物下方的硅层作为所述第一部分,所述SOI晶圆位于所述埋层氧化物部分表面上的硅层作为所述第二部分。
示例性地,所述封装模块还包括玻璃,其中,所述反射面包括在所述玻璃的倾斜面上镀的反射膜。
示例性地,两个倾斜设置的反射面分别设置在所述玻璃上相背的两个倾斜面上,其中,每个反射面与至少一个所述激光二极管芯片的出射面相对设置,以使每个所述激光二极管芯片的出射光经所述反射面反射后通过所述透光区域发射出去。
示例性地,所述玻璃呈三棱锥或者三棱台状,三个倾斜设置的反射面分别设置在所述玻璃上的三个倾斜面上,其中,每个所述反射面与至少一个所述激光二极管芯片的出射面相对设置,以使每个所述激光二极管芯片的出射光经所述反射面反射后通过所述透光区域发射出去。
示例性地,所述反射面为凹面。
示例性地,所述激光二极管芯片的出射光的方向与所述反射面的底边垂直。
示例性地,设置有所述反射面的半导体和/或玻璃与所述激光二极管芯片均贴装于所述基板的第一表面。
示例性地,所述封装模块还包括准直元件,用于减小光束在快轴方向的发散角,所述准直元件设置在所述激光二极管芯片和所述反射面之间,以使所述激光二极管芯片的出射光经所述准直元件后至所述反射面。
示例性地,所述准直元件贴装于所述基板的所述第一表面。
示例性地,所述准直元件为柱透镜,所述柱透镜的曲面与所述激光二极管芯片的出射面相对,以使所述激光二极管芯片的出射光照射到所述柱透镜的曲面上。
示例性地,所述柱透镜的曲面尺寸大于从所述激光二极管芯片发出的出射光照射到所述柱透镜上的光斑的尺寸。
示例性地,所述柱透镜贴装于所述基板上的表面为平面;和/或,所述柱透镜的顶面为平面。
示例性地,所述激光二极管芯片包括彼此相对设置的第一电极和第二电极,所述第一电极所在的表面贴装在所述基板的第一表面上。
示例性地,所述第一电极通过导电粘接层贴装在所述基板的第一表面上。
示例性地,所述第二电极通过导线电连接至所述基板。
示例性地,在所述基板的第一表面上贴装多个所述激光二极管芯片,其中,每个所述激光二极管芯片的所述第一电极与一导电粘接层相对应而贴装在所述基板的第一表面上。
示例性地,与同一所述反射面相对的多个所述激光二极管的所述第二电极通过导线电连接至所述基板上的同一焊盘。
示例性地,所述导电粘接层的面积大于所述激光二极管芯片的底面面积;和/或
通过导线将所述导电粘接层与所述基板上的焊盘电连接,以将所述第一电极引出。
示例性地,所述罩体包括具有窗口的U形或方形罩体本体,以及封罩所述窗口的透光板以形成所述透光区域,所述激光二极管芯片的出射光经所述透光板发射出去;或所述罩体为全部透光的板状结构。
示例性地,所述罩体本体通过焊接的方式固定设置在所述基板的所述第一表面上。
示例性地,所述罩体本体的材料包括金属、树脂或陶瓷。
示例性地,所述封装模块还包括用于控制所述激光二极管芯片发射的驱动芯片,所述驱动芯片设置于所述容纳空间内,其中,所述驱动芯片贴装于所述基板的第一表面。
示例性地,所述封装模块还包括焊锡膏贴装的器件,所述焊锡膏贴装的器件设置在所述容纳空间之外。
示例性地,所述焊锡膏贴装的器件包括电阻和电容,所述电阻和电容由焊锡膏贴装在所述容纳空间之外的所述基板的第一表面上。
示例性地,所述基板包括PCB基板或陶瓷基板。
示例性地,所述导电粘接层的材料包括导电的银浆、焊料或导电的芯片连接薄膜。
示例性地,所述反射膜包括金和银中的至少一种。
示例性地,所述激光二极管芯片的底面贴装在所述容纳空间内,以及所述激光二极管芯片的侧面出光,且所述激光二极管芯片的出射光与所述基板的第一表面大体平行。
本发明另一方面提供一种距离探测装置,包括:
前述的激光二极管封装模块,用于以与所述激光二极管封装模块的基板的第一表面呈一定夹角的方向出射激光脉冲,所述夹角小于90度;
准直透镜,设置于所述透光区域的外侧,用于准直从所述透光区域发射出去的出射光;
第一光路改变元件,设置于所述透光区域的外侧,用于改变所述从所 述透光区域发射出去的出射光的光路,使得来自所述激光二极管封装模块的激光脉冲以大体沿着所述准直透镜的中心轴的方向入射至所述准直透镜。
示例性地,所述第一光路改变元件包括:
第一反射镜,所述第一反射镜偏离所述准直透镜的光轴,用于将从所述透光区域发射出去的出射光反射至所述准直透镜。
示例性地,所述激光二级管封装模块位于所述准直透镜的中心轴的一侧,且所述激光二极管封装模块中的基板的第一表面大体平行于所述准直透镜的中心轴;
所述第一反射镜位于所述准直透镜的中心轴上,用于将所述激光二极管封装模块出射的激光脉冲反射至大体沿着所述准直透镜的中心轴的方向。
示例性地,所述准直透镜还用于会聚经探测物反射的回光的至少一部分;
所述激光发射装置还包括:
中心设有透光区域的第二反射镜、第三反射镜和探测器;
所述第二反射镜设置于所述准直透镜和所述第一反射镜之间,允许经所述第一反射镜反射的光束穿过,且用于将所述准直透镜所汇聚的回光反射至所述第三反射镜;
所述第三反射镜分别与所述第二反射镜和所述探测器相对设置,用于将经所述第二反射镜反射的所述回光反射至所述探测器;
所述探测器用于将接收到的光信号转成电信号,所述电信号用于测量所述探测物与所述距离探测装置的距离。
本发明再一方面还提供一种电子设备,其特征在于,包括前述的激光二极管封装模块,所述电子设备包括无人机、汽车或机器人。
本发明的封装方案可以通过基板封装的作业方式,来进行封装,封装效率高,且封装后的芯片,适用于表面封装技术(Surface Mounted Technology,SMT)。并且,本发明的封装模块结构中引脚路径短,寄生电感较TO封装大大降低。而且,激光二极管芯片是侧面出光的,出射光的方向大体与基板的第一表面平行,在激光二极管芯片的出射光的传播路径 上设置反射面,将出射光进行反射后从罩体上的透光区域发射出去,从而改变光束传播方向,由于在出射光的传播路径上加入了反射面,使得激光二极管芯片的底面可以贴装在容纳空间内的同时使得出射光束可以沿着大致垂直于第一表面的方向出射,而且激光二极管芯片的底面的面积较大,便于芯片的贴装的同时,也便于封装模块在整机设备中的位置设置。此外,基于根据本发明实施例的封装模块结构实现的距离探测装置能够提高发射功率,对快速的脉冲驱动信号的快速的响应,提高了可靠性和准确度,降低了生产成本和复杂度,提高了生产效率。
附图说明
图1示出本发明提供的激光二极管封装模块中激光二极管的结构示意图;
图2示出图1激光二极管沿B-B方向的剖视图;
图3A示出了本发明一实施例中的利用各向异性进行刻蚀后的硅晶圆的剖面示意图;
图3B示出了本发明一实施例中的在倾斜面设置有反射面的硅晶圆的剖面示意图,其中,左图为具有一个倾斜面的硅晶圆,右图为具有两个倾斜面的硅晶圆;
图3C示出了本发明一实施例中的底面的尖角处设置有切口的硅晶圆的剖面示意图;
图3D示出了本发明一实施例中的底面的尖角处设置有浅槽的硅晶圆的剖面示意图;
图4A示出了本发明一个实施例中的激光二极管封装模块结构的剖视图;
图4B示出了图4A中激光二极管封装模块结构去除罩体后的俯视图;
图4C示出了本发明另一个实施例中的激光二极管封装模块结构的剖视图;
图4D示出了图4C中激光二极管封装模块结构去除罩体后的俯视图;
图4E示出了本发明又一个实施例中的激光二极管封装模块结构的剖视图;
图4F示出了图4E中激光二极管封装模块结构去除罩体后的俯视图;
图4G示出了本发明再一个实施例中的激光二极管封装模块结构的剖视图;
图4H示出了本发明另一个实施例中的激光二极管封装模块结构的剖视图;
图4I示出了本发明另一个实施例中的激光二极管封装模块结构的剖视图;
图5A示出了本发明一个实施例中的SOI晶圆的剖视图;
图5B示出了本发明一个实施例中的在SOI晶圆的倾斜面上设置反射面的剖视图;
图6A示出了本发明另一个实施例中的激光二极管封装模块结构的剖视图;
图6B示出了图6A中激光二极管封装模块结构去除罩体后的俯视图;
图6C示出了本发明另一个实施例中的激光二极管封装模块结构的剖视图;
图7A示出了本发明另一实施例中的具有倾斜面的玻璃的剖视图;
图7B示出了本发明一个实施例中的激光二极管封装模块结构的剖视图;
图7C示出了本发明另一个实施例中的激光二极管封装模块结构的剖视图;
图8A示出了本发明另一实施例中的具有凹面的玻璃的剖视图;
图8B示出了本发明一个实施例中的激光二极管封装模块结构的剖视图;
图8C示出了本发明另一个实施例中的激光二极管封装模块结构的剖视图;
图9A示出了本发明一个实施例中的激光二极管封装模块结构的局部立体示意图;
图9B示出了图9A中激光二极管芯片的等效位置图;
图9C示出了本发明另一个实施例中的激光二极管封装模块结构的局部立体示意图;
图9D示出了图9C中激光二极管芯片的等效位置图;
图10示出了本发明的距离探测装置的一个实施例的示意图。
图11示出本发明的距离探测装置的另一个实施例的示意图;
图12示出了本发明的距离探测装置的再一个实施例的示意图。
具体实施方式
为了使得本发明的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本发明的示例实施例。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。基于本发明中描述的本发明实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本发明的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本发明,将在下列的描述中提出详细的结构,以便阐释本发明提出的技术方案。本发明的可选实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
为了解决上述问题,本发明提供了一种激光二极管封装模块。所述封装模块包括:
基板,具有第一表面;
罩体,设置在所述基板的第一表面上,所述基板和所述罩体之间形成容纳空间,其中,所述罩体与所述基板相对的面上至少部分地设置透光区域;
激光二极管芯片,设置于所述容纳空间内;
反射面,设置于所述容纳空间内,用于使所述激光二极管芯片的出射光经所述反射面反射后通过所述透光区域发射出去。
本发明的封装方案可以通过基板封装的作业方式,来进行封装,封装效率高,且封装后的芯片,适用于表面封装技术(Surface Mounted Technology,SMT)。并且,本发明的封装模块结构中引脚路径短,寄生电感较TO封装大大降低。而且,激光二极管芯片是侧面出光的,出射光的方向大体与基板的第一表面平行,在激光二极管芯片的出射光的传播路径上设置反射面,将出射光进行反射后从罩体上的透光区域发射出去,从而改变光束传播方向,由于在出射光的传播路径上加入了反射面,使得激光二极管芯片的底面可以贴装在容纳空间内的同时使得出射光束可以沿着大致垂直于第一表面的方向出射,而且激光二极管芯片的底面的面积较大,便于芯片的贴装的同时,也便于封装模块在整机设备中的位置设置。
实施例一
下面参照附图1、附图2、图3A至图3D、图4A至图4I,对本发明的激光二极管封装模块的一个具体实施例进行详细的说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
如图4A示出了本发明一个实施例中的激光二极管封装模块结构的剖视图;图4B示出了图4A中激光二极管封装模块结构的俯视图。在一个实施例中,本发明的激光二极管封装模块结构包括具有第一表面30的基板300。
其中,所述基板300可以包括PCB基板(Printed Circuit Board,印制电路板)、陶瓷基板、预注塑(Pre-mold)基板等等各种类型的基板,陶瓷基板可以是氮化铝或氧化铝基板。
其中,所述PCB由不同的元器件和多种复杂的工艺技术处理等制作而成,其中PCB线路板的结构有单层、双层、多层结构,不同的层次结构其制作方式是不同的。
可选地,印刷电路板主要由焊盘、过孔、安装孔、导线、元器件、接插件、填充、电气边界等组成。
进一步,印刷电路板常见的板层结构包括单层板(Single Layer PCB)、双层板(Double Layer PCB)和多层板(Multi Layer PCB)三种,其具体结构如下所述:
(1)单层板:即只有一面敷铜而另一面没有敷铜的电路板。通常元器件放置在没有敷铜的一面,敷铜的一面主要用于布线和焊接。
(2)双层板:即两个面都敷铜的电路板,通常称一面为顶层(Top Layer),另一面为底层(Bottom Layer)。一般将顶层作为放置元器件面,底层作为元器件焊接面。
(3)多层板:即包含多个工作层面的电路板,除了顶层和底层外还包含若干个中间层,通常中间层可作为导线层、信号层、电源层、接地层等。层与层之间相互绝缘,层与层的连接通常通过过孔来实现。
其中,印刷电路板包括许多类型的工作层面,如信号层、防护层、丝印层、内部层等,在此不再赘述。
此外,在本申请中所述基板还可以选用陶瓷基板,陶瓷基板是指铜箔在高温下直接键合到氧化铝(Al 2O 3)或氮化铝(AlN)陶瓷基片表面(单面或双面)上的特殊工艺板。所制成的超薄复合基板具有优良电绝缘性能,高导热特性,优异的软钎焊性和高的附着强度,并可像PCB板一样能刻蚀出各种图形,具有很大的载流能力。
进一步,所述基板可以为预注塑(Pre-mold)基板,其中,所述预注塑基板中具有注塑导线和引脚,所述注塑导线嵌于所述基板的主体结构之内,所述引脚位于所述基板的主体结构的表面,例如内表面和/或外表面等,以实现所述基板分别与激光二极管芯片、驱动芯片,以及电路板的电连接。
其中,所述预注塑(Pre-mold)基板的制备方法可先后经过常规的注塑流程、刨刀挖制及模具压印成型形成,此处不赘述。
其中,所述预注塑(Pre-mold)基板的注塑材料可以选用常规的材料,例如可以为导热塑胶材料等,并不局限于某一种,其中,所述预注塑(Pre-mold)基板的形状由注塑框架来限定,并不局限于某一种。
进一步地,激光二极管封装模块结构还包括激光二极管芯片303,设 置于所述容纳空间内。可选地,所述激光二极管芯片303贴装于所述基板300的第一表面30。
作为示例,所述激光二极管芯片303为侧边激光器,也即激光二极管芯片侧面出光,其中,所述激光二极管芯片的结构如图1和图2所示,图1示出本发明提供的激光二极管封装模块中激光二极管的结构示意图;图2示出图1激光二极管沿B-B方向的剖视图;其中,所述激光二极管芯片包括:彼此相对设置的第一电极201和第二电极202,所述第一电极201所在的表面贴装在所述基板的第一表面上。
可选地,所述第一电极201和所述第二电极202均为金属化电极,所述第一电极201设置在激光二极管芯片的底面,所述第一电极201为n电极,所述第二电极202设置在所述激光二极管芯片的顶面,所述第二电极202为p电极。
在一个示例中,如图4A所示,所述激光二极管芯片303的第一电极通过导电粘接层贴装在所述基板的第一表面上,例如贴装在所述基板300的第一表面30上的相对应的基板金属层3041上。
其中,所述激光二极管芯片303为裸芯片(bare die),即自晶圆(Wafer)上所切下一小片有线路的"晶粒",通过装片(die bond)的方式贴装在基板300上。装片(die bond)是指通过胶体,一般是导电胶或绝缘胶把芯片粘结在基板的指定区域,形成热通路或电通路,为后序的打线连接提供条件的工序。在本实施例中,在所述基板的第一表面上覆盖有图案化的基板金属层,例如,如图4A和图4B所示,在所述基板300的第一表面30上设置有用于实现与激光二极管芯片303电连接的基板金属层3041,该基板金属层3041可以由对陶瓷基板上的铜箔进行刻蚀而形成的图案,其中,该些基板金属层还可以在基板上的各种器件装片的过程中用作对位标记。
示例性地,如图4C和图4D所示,基板的第一表面贴装多个激光二极管芯片,则每个激光二极管芯片对应一基板金属层3041,并且该些基板金属层3041之间彼此隔离,基板金属层3041还用于将激光二极管芯片303位于底面的电极引出,以便于和其他的器件进行电连接。进一步地,每个激光二极管芯片303的第一电极(也即贴装于基板上的电极,也可称为激光二极管芯片的底面的电极)与一导电粘接层(未示出)相对应贴装在所 述基板的第一表面上,例如贴装在所述基板300的第一表面30上相应的基板金属层3041上,并且,相邻导电粘接层之间彼此隔离,以防止激光二极管芯片的底面的电极电连接。
在一个示例中,所述导电粘接层的面积大于所述激光二极管芯片的底面面积;和/或通过导线将所述导电粘接层与所述基板上的焊盘电连接,以将所述第一电极引出。
在本实施例中,通过导电粘接层(未示出)将激光二极管芯片303贴装在基板上,形成电通路,其中,所述导电粘接层(未示出)的材料包括导电的银浆、焊料或导电的芯片连接薄膜(die attach film,DAF),其中,所述导电的银浆可以是普通的银浆或者也可以是纳米银浆,焊料包括但不限于AuSn20,可选地,为了保证贴装位置精度及高散热性,采用AuSn20共晶进行装片。由于采用例如AuSn20的焊料作为导电粘接层,其相比其他含有挥发性的助焊剂的焊料(例如锡膏焊料)基本上无挥发或低挥发,因此,不会产生由于焊料中具有挥发性物质而污染激光二极管芯片和反射面,影响激光二极管芯片的出光效率的问题。
示例性地,所述第二电极通过导线305电连接至所述基板,例如,所述第二电极(例如p极)通过导线305电连接至设置在所述基板上的焊盘306,可选地,所述导线305可以使用金属导线,例如金线,其中,所述金线的直径大约为1mil(25.4微米)左右或者其他适合的直径尺寸,可以根据实际的需要合理设置导线305的数量,可以并排使用多根所述导线以实现第二电极和焊盘的电连接,线弧尽可能拉低。
在一个示例中,所述激光二极管芯片的形状为柱形结构,例如可以呈长方体结构,还可以是多面体,柱形等其他合适的形状,在此不再一一列举,其中所述激光二极管芯片的出射面均可以设置于所述激光二极管芯片柱形结构一端的侧面上,该侧面可以为激光二极管芯片的最小的面,进一步地,激光二极管芯片的底面贴装在容纳空间内,其中,所述激光二极管芯片的底面的面积较大,例如大于出射面的面积。可选的,激光二极管芯片的底面贴装在基板的第一表面上,激光二极管芯片的侧面出光,因为反射面的设置,使得激光二极管芯片的底面可以贴装在容纳空间内的同时使得出射光束可以沿着大致垂直于第一表面的方向出射,激光二极管芯片 的底面的面积较大,便于芯片的贴装的同时,也便于封装模块在整机设备中的位置设置。
在一具体实施方式中,所述激光二极管芯片呈长方体结构,所述激光二极管芯片的出射面是指所述长方体结构一端的侧面,如图1所示,所述激光二极管芯片的出射面为长方体结构左端的侧面,其中发光区域203设置于所述第二电极的下方,并且所述发光区域203靠近第二电极202,如图2所示。
需要说明的是,出射面(也指发光面)是指激光二极管芯片发出出射光的表面,所述出射面还可以为所述激光二极管芯片的右端的侧面,还可以为所述激光二极管芯片的前表面和后表面,并不局限于上述示例。
作为示例,本发明的激光二极管封装模块结构还包括反射面,其设置于所述容纳空间内,用于使所述激光二极管芯片的出射光经所述反射面反射后通过所述透光区域发射出去,可选地,所述激光二极管芯片的出射光经所述反射面反射后以大体与所述基板的所述第一表面垂直的方向通过所述透光区域发射出去。
在一个示例中,所述封装模块还包括具有各向异性结构的半导体,其中,所述具有各向异性结构的半导体可以包括但不限于硅,还可以是其他如锗、及III~V族(如GaAs)化合物半导体等半导体材料。可选地,所述半导体包括半导体晶圆,例如单晶硅晶圆。
在一个示例中,所述反射面具体为所述半导体利用各向异性进行刻蚀而制备获得的倾斜面,由于半导体自身对光束具有反射的作用,因此可以直接使用半导体的倾斜面作为反射面。作为示例,如图3A和图3B所示,所述半导体为硅晶圆301,半导体的材料-硅因其金刚石立方晶格结构,具有各向异性的特性,在刻蚀方面,具有各向异性的特性。如3A所示,硅晶圆301的<100>晶向与<111>晶向成54.74°的角度。在[100]向下刻蚀时,因为<111>晶向与[100]晶向刻蚀速度相差巨大,<111>晶向基本不会被刻蚀,<100>晶向快速被腐蚀,从而形成54.74°的梯形,也即所述半导体利用各向异性进行刻蚀而制备获得的倾斜面与所述半导体的底面之间的夹角大体为54.74°。因角度是材料晶格结构决定,是不会随生产的过程的参数波动而改变的,所以以硅晶圆制备的倾斜面的角度基本上是54.74°。其中, 所述刻蚀可以采用使用任意适合的刻蚀剂,例如采用无机碱溶液或者有机碱性溶液作为刻蚀剂,无机碱溶液包括但不限于KOH,有机碱性溶液包括但不限于四甲基氢氧化铵(TMAH)。
进一步地,所述半导体利用各向异性进行刻蚀而制备获得至少一个倾斜面。在一个示例中,至少两个倾斜设置的反射面设置在所述半导体利用各向异性进行刻蚀而制备获得的不同倾斜面上。以硅晶圆为例,如图3A和图3B所示,所述硅晶圆301利用各向异性进行刻蚀而制备获得倾斜面,可以通过适合的刻蚀方法制备获得至少一个倾斜面,例如刻蚀贯穿硅晶圆的上下表面而形成如图3B所示的结构,其中如图3B左侧图所示为具有一个倾斜面的硅晶圆301,或者如图3B右侧图所示为具有两个相背的倾斜面的硅晶圆301。其中,所述半导体(例如硅晶圆301)的剖面形状可以为直角梯形或者等腰梯形。
其中,本文中提到的反射面设置在所述半导体利用各向异性进行刻蚀而制备获得的不同倾斜面上,可以是指直接使用半导体(例如硅晶圆)的倾斜面作为所述反射面,或者所述反射面包括在所述半导体利用各向异性进行刻蚀而制备获得的倾斜面上镀的反射膜。对于波长在300~1200nm的光束,单晶硅吸收的量子效率都超过50%。在一个实施例中,激光二极管芯片出射的光束的波长是905nm左右。在这个范围内,单晶硅的反射率大体在70%左右。可选地,在半导体采用单晶硅的情况中,为了提高反射率,在单晶硅的倾斜面镀一层反射膜,例如,如图3B所示,在硅晶圆301利用各向异性进行刻蚀而制备获得的倾斜面上镀一层反射膜302,以提高反射面对光的反射率,从而提高激光器的输出功率。其中,所述反射膜302的材料可以包括任意适合的对光具有反射的金属材料,例如所述反射膜302包括金、银和铝中的至少一种,其中,金或银对波长为905nm的光束的反射率在95%以上。可以使用例如真空蒸镀的沉积方法在半导体的倾斜面上形成反射膜302。
在装片(die bond)过程中,由于下压,而半导体(例如图3B所示的硅晶圆301)的底部尖角处比较薄,可能有崩角的风险,会造成斜面靠近底部附近断裂,并产生碎屑。为了避免上述崩角的问题,在所述半导体的底面的尖角处设置有切口或浅槽。由于预先设置的切口或浅槽相比由于下 压而形成的崩角其尺寸和形成位置更加可控,从而可以保证在不产生崩角的情况下,反射面能够接收从所述激光二极管芯片发射的全部出射光的光斑。
在一个示例中,如图3C所示,在半导体(例如硅晶圆301)的底面的尖角处设置有切口3011,可选地,所述切口具体为所述半导体去除部分底部尖角而形成的切口,可以通过刻蚀的方法去除部分底部尖角。所述刻蚀可以使用传统干刻蚀工艺,例如反应离子刻蚀、离子束刻蚀、等离子刻蚀、激光烧蚀或者这些方法的任意组合。可以使用单一的刻蚀方法,或者也可以使用多于一个的刻蚀方法。在另一个示例中,如图3D所示,在半导体(例如硅晶圆301)的底面的尖角处设置有浅槽3012,可选地,所述浅槽3012设置在所述底面的尖角的边缘处并自所述半导体的底面向所述半导体的顶面凹陷部分深度。其中,可以通过刻蚀的方法形成所述浅槽3012,所述刻蚀包括但不限湿法刻蚀或者干法刻蚀,在一个示例中,形成浅槽的方法可以是:在半导体的底面上形成例如光刻胶的掩膜,然后通过光刻工艺在光刻胶中定义出预定形成的浅槽的图案,再以该光刻胶层为掩膜,自所述底面刻蚀所述半导体以形成所述浅槽3012,最后去除所述光刻胶层。
在一个示例中,所述封装模块内设置有一个倾斜设置的反射面,例如,图4A和图4B所示,所述反射面包括在所述半导体(例如硅晶圆301)利用各向异性进行刻蚀而制备获得的倾斜面上镀的反射膜302,所述反射面与一个所述激光二极管芯片303的出射面相对设置,以使所述激光二极管芯片303的出射光经所述反射面反射后通过透光区域发射出去,其中,反射面与所述半导体(例如硅晶圆301)的底面之间的夹角大体为54.74°时,所述激光二极管芯片303的出射光经所述反射面反射后以与所述基板的法线成约19.48°的角度通过透光区域发射出去。
在另一个示例中,如图4C和图4D所示,所述封装模块内设置有一个倾斜设置的反射面,所述反射面包括在所述半导体(例如硅晶圆301)利用各向异性进行刻蚀而制备获得的倾斜面上镀的反射膜302,所述反射面与至少两个并列排布的所述激光二极管芯片303的出射面相对设置,以使每个所述激光二极管芯片303的出射光经所述反射面反射后通过透光区域发射出去,从而实现1×N的一维多线型的封装结构,其中N大于或等于2。
在本实施例中,所述半导体(例如硅晶圆301)通过粘接层(未示出) 贴装在所述基板300的第一表面30上,例如,在所述基板300的第一表面30设置有与该半导体对应的基板金属层3042,则所述半导体通过粘接层贴装在所述基板的第一表面30上的基板金属层3042表面。
其中,该粘接层的材料可以使用与前述的导电粘接层相同的材料,所述导电粘接层(未示出)的材料包括导电的银浆、焊料或导电的芯片连接薄膜(die attach film,DAF),其中,所述导电的银浆可以是普通的银浆或者也可以是纳米银浆,焊料包括但不限于AuSn20,可选地,为了保证贴装位置精度及高散热性,采用AuSn20共晶进行装片,在一个示例中,采用AuSn共晶进行装片的方法包括以下步骤:将半导体的背面和基板金属层的表面贴合在一起,其中,基板金属层4042可以是AuSn合金,在半导体的背面设置有金,随后进行加热使半导体背面的金和基板金属层形成合金,起到将半导体固定在基板的第一表面上和良好电连接的作用。
在另一个示例中,所述粘接层包括粘接胶,在基板上预定放置半导体的位置涂覆粘接胶,然后将半导体放置粘接胶上,再进行烘烤固化等处理,从而使半导体贴装在所述基板的第一表面上。
进一步地,如图4D所示,在所述基板300的第一表面上贴装多个所述激光二极管芯片303,其中,每个所述激光二极管芯片303的所述第一电极(例如n极)与一基板金属层3041相对应而贴装在所述基板300的第一表面上,并且相邻的基板金属层3041之间彼此隔离。
在一个示例中,如图4D所示,与同一所述反射面相对的多个所述激光二极管芯片303的所述第二电极(例如p极)通过导线305电连接至所述基板300上的同一焊盘306,其中,该焊盘306为长条形,设置在所述激光二极管芯片303与所述出射面相对的表面外侧。所述焊盘306的材料可以包括铝或者其他适合的金属材料。
在一个示例中,所述封装模块包括具有各向异性结构的半导体,至少两个倾斜设置的反射面设置在所述半导体利用各向异性进行刻蚀而制备获得的不同倾斜面上,例如,如图3B的右侧图所示,两个倾斜设置的反射面设置在所述半导体(例如硅晶圆301)上对称设置的、相背的两个倾斜面上,或者,还可以两个倾斜设置的反射面设置在所述半导体上相邻的两个倾斜面上。
在一个示例中,所述封装模块内设置有至少两个倾斜设置的反射面,每个反射面与至少一个所述激光二极管芯片的出射面相对设置,以使每个所述激光二极管芯片的出射光经所述反射面反射后通过所述透光区域发射出去。
在一个具体示例中,所述封装模块包括至少两个具有各向异性结构的半导体,至少两个倾斜设置的反射面分别设置在不同的半导体利用各向异性进行刻蚀而制备获得的倾斜面上。所述不同的半导体可以以任意适合的排布方式设置在所述基板上,可以是所述半导体彼此间隔并排成行设置在所述基板上,例如,以硅晶圆为例,如图4E所示,所述封装模块包括3个具有各向异性结构的硅晶圆301,三个倾斜设置的反射面分别设置在不同的硅晶圆301利用各向异性进行刻蚀而制备获得的倾斜面上。
进一步地,所述每个反射面与至少两个并列排布的激光二极管芯片的出射面相对设置,以使每个所述激光二极管芯片的出射光经所述反射面反射后通过所述透光区域发射出去,以实现M×N的二维多线封装。例如,如图4E和图4F所示,每个反射面与6个并列排布的激光二极管芯片303的出射面相对设置,以使每个所述激光二极管芯片303的出射光经所述反射面反射后通过所述透光区域发射出去,其中,与同一反射面相对的激光二极管芯片303的数量可以根据实际器件的需要进行合理选择。值得一提的是,在所述图4F中仅示出了具有一个倾斜面的半导体,而所述半导体还可以是具有至少两个倾斜面的半导体。
与同一反射面相对的多个激光二极管芯片在所述基板的第一表面上可以以任意适合的间隔排布,可选地,如图4F所示,与同一反射面相对的多个所述激光二极管芯片303在所述基板300的第一表面上等间隔排布,以使经所述反射面反射的不同激光二极管芯片303的出射光等间隔出射,在将本申请的封装模块应用于激光雷达时,每个从透光区域发射出去的光要和每个接收器一一对应,也即每个激光二极管芯片发射的激光经物体反射后有一部分要回到对应的接收器内,所以发射和接收的位置要经过校准以使它们一一对应,因此,激光二极管芯片303等间隔排布,更方便接收器的排布。
与同一反射面相对的激光二极管芯片的出射面和该反射面之间的距离 可以根据具体器件的需要合理设置,可选地,如图4F所示,与同一反射面相对的每个所述激光二极管芯片303的出射面与该反射面之间的距离相等,以保证到达该反射面的每个激光二极管芯片的光大体的一致性。
在本发明的技术方案中,可选地,所述激光二极管芯片303的出射光的方向与所述反射面的底边垂直,并且与基板的第一表面平行,如图4A和图4B所示,所述反射面为四边形,其邻近所述基板的第一表面并与所述第一表面平行的边作为底边。
激光二极管芯片出射光束为椭圆形光斑,沿着与基板的第一表面垂直的方向(在此称为y方向)光束发散角大,称为快轴,沿着x方向(其中x方向与y方向垂直)的光束发散角小,称为慢轴;因为快慢轴的光束束腰及发散角的差异,导致半导体激光器的快慢轴光束质量BPP相差很大,因此,本发明的所述封装模块还可以选择性地包括准直元件,用于对光束准直,减小光束在快轴方向的发散角或减小快轴和慢轴方向的发散角,所述准直元件设置在所述激光二极管芯片和所述反射面之间,以使所述激光二极管芯片的出射光经所述准直元件后至所述反射面,所述准直元件消除快慢轴间的像散,改善光束质量,压缩光束在快轴方向的发散角,提高激光二极管芯片的辐射利用率。其中,所述准直元件可以是本领域技术人员熟知的任何能够对光起到准直作用的元件,例如柱透镜、D透镜、光纤棒、非球面透镜等。
如图4G所示,以所述准直元件为柱透镜309为例,柱透镜309设置在所述激光二极管芯片和所述反射面之间为了使从每个所述激光二极管芯片303的出射面反射的出射光全部到达柱透镜309,所述柱透镜的曲面与所述激光二极管芯片303的出射面相对,以使所述激光二极管芯片303的出射光照射到所述柱透镜309的曲面上。可选地,所述柱透镜309的曲面尺寸大于从所述激光二极管芯片303发出的出射光在所述柱透镜309的入光面所在平面上的光斑的尺寸,以保证全部的出射光均能照射到柱透镜309上而被准直。
在一个示例中,所述准直元件贴装于所述基板的所述第一表面,例如如图4G所示,柱透镜309贴装于所述基板300的所述第一表面30上。
在一个示例中,所述准直元件贴装于所述基板300上的表面为平面, 平面的设置可以使准直元件和基板的第一表面更好的结合,使所述准直元件便于装片在基板上。在一个示例中,所述准直元件的顶面为平面。在将准直元件贴装于基板的过程中,通常会涉及使用传输工具来吸取该准直元件,再将其放置于预定的位置,准直元件的顶面为平面有利于使准直元件适合吸取。
所述准直元件可以通过任意适合的方式贴装于基板上,例如,所述准直元件(例如柱透镜309)可以通过粘接层贴装在所述基板300的第一表面上。
进一步地,激光二极管封装模块结构还包括罩体,其设置在所述基板300的第一表面30上,所述基板300和所述罩体之间形成容纳空间,其中,所述罩体与所述基板300相对的面上至少部分地设置透光区域。
在本发明的一个实施例中所述罩体也并不局限于某一结构,所述罩体上至少部分地设置透光区域,所述激光二极管芯片的出射光经所述反射面反射后通过所述透光区域发射出去,例如,在本实施中所述罩体为带玻璃窗口的金属外壳。
进一步地,如图4A、图4C、图4E、图4G所示,所述罩体包括具有窗口的U形或方形罩体本体307,以及封罩所述窗口的透光板308以形成所述透光区域,所述激光二极管芯片303的出射光经反射后从所述透光板发射出去,其中,所述透光板与所述基体的第一表面平行;或所述罩体为全部透光的板状结构。进一步地,所述罩体为其内部封罩的芯片提供保护和气密环境。
示例性地,所述具有窗口的U型罩体本体307在所述基板的第一表面上的投影为圆形,或者其他适合的形状,方形罩体本体307在所述基板的第一表面上的投影为方形,其中,方形罩体本体与基板的尺寸相匹配,可以有效降低封装尺寸。
所述罩体本体的材料可以使用任意适合的材料,例如,所述罩体本体的材料包括金属、树脂或陶瓷。在一个示例中,所述罩体本体307的材料可选地使用金属材料,所述金属材料可选地使用与所述透光板308的热膨胀系数相近的材料,例如,使用可伐(Kovar)合金,由于罩体本体307和透光板308的热膨胀系数相近,因此,在将透光板粘贴在所述罩体本体 307的窗口时,能够避免产生由于热膨胀系数的差异而导致的透光板破裂的问题。可选地,可以通过焊接的方式将所述罩体本体固定连接至所述基板的第一表面,所述焊接可以使用任意适合的焊接方式,例如平行缝焊或储能焊。示例性地,所述透光板308还粘接在所述罩体本体的窗口的内侧。
其中,所述透光板308可以选用常用的透光材料,例如玻璃,所述玻璃必须是对激光二极管芯片发出的激光波长具有高的通过性。
在另一个示例中,所述罩体为全部透光的板状结构。所述板状结构选用常用的透光材料,例如玻璃,所述玻璃必须是对激光二极管芯片发出的激光波长具有的高通过性。其中,所述基板整体结构可以呈凹槽形状,所述凹槽可以是方形凹槽或者圆形凹槽,所述罩体设置在所述基板的凹槽顶部,与基板的顶面接合,以封罩所述凹槽,在所述基板和所述罩体之间形成容纳空间。
在前述图4A至图4G所示的封装模块方案中,由于引脚路径短,因此寄生电感较TO封装大大降低,并且,可以通过基板封装的作业方式,来进行封装,封装效率高,且封装后的芯片,适用于SMT。
在一个示例中,如图4H和图4I所示,为了提高封装的集成度,缩短激光二极管芯片与驱动芯片间的引线,进一步降低电感,所述封装模块还包括用于控制所述激光二极管芯片303发射的驱动芯片310,所述驱动芯片310设置于所述容纳空间内,其中,所述驱动芯片310贴装于所述基板300的第一表面30。在该实施例中直接将控制所述激光二极管芯片发射的驱动芯片310和激光二极管芯片封装在一起,均封装在所述基板和所述罩体之间形成的容纳空间内,通过所述设置可以消除目前TO封装中激光二极管芯片和激光二极管芯片旁边的驱动电路之间的电感、线路上的分布电感,以减小所述封装模块的分布电感,,实现大功率的激光出射,实现窄脉冲激光驱动。
可选地,在所述封装模块中,可以将激光二极管芯片尽量靠近驱动芯片放置,所述激光二极管芯片和所述驱动芯片的距离越小可以更有效的减小分布电感,通过所述设置所述发射模块在分布电感上的损耗就会小得多,更容易实现大功率的激光出射,分布电感的减小也使得窄脉冲激光驱动成为可能。
在本发明的一具体实施例中,所述封装模块还包括开关芯片,其中所述开关芯片同样设置于所述容纳空间内,其中所述开关芯片包括开关电路,所述开关电路用于在所述驱动电路的驱动下控制所述激光二极管芯片发射激光。
此外,如图4H和图4I所示,在所述基板上还设置有其他器件,例如,FET器件或者其他类型的开关器件、或者开关器件的驱动芯片、必要的电阻和电容311,以及表面贴装电路(SMT IC)等器件,可以通过导电材料,例如导电胶(包括但不局限于锡膏)通过表面封装技术(Surface Mounted Technology,SMT)贴装在基板上。
其中,在如图4H所示的封装模块结构中,将激光二极管芯片303、驱动芯片310、所述反射面以及其他器件均贴装在所述基板300的第一表面上,并均设置在罩体和基板之间的容纳空间中,可选地,在该封装模块结构中,均采用无挥发或低挥发的导电粘接层贴装在所述基板的第一表面上,这样的设置可以避免挥发性的导电粘接层中的挥发物质的挥发而污染激光二极管芯片、反射面以及透光区域,影响激光二极管芯片的出光效率的问题的产生。
在另一个示例中,如图4I所示的封装模块结构,所述驱动芯片310、所述反射面以及所述激光二极管芯片303封装在所述容纳空间中,而所述封装模块还包括焊锡膏贴装的器件,所述焊锡膏贴装的器件设置在所述容纳空间之外,也即设置在罩体外侧的基板上,其中,焊锡膏贴装的器件包括但不限于FET器件或者其他类型的开关器件、或者开关器件的驱动芯片、必要的电阻和电容311等,本实施例中,以电阻和电容311为例,所述电阻和电容311由焊锡膏贴装在所述容纳空间之外的所述基板的第一表面上,也即所述罩体外侧的所述基板的第一表面上。这样设置的优点在于:达到了将集成驱动芯片310和激光二极管芯片303集成在容纳空间内,使两者之间具有很短的距离,实现了降低寄生电感的目的,同时,将焊锡膏贴装的器件与激光二极管芯片303隔离,避免锡膏内的助焊剂挥发,污染激光二极管芯片和反射镜,进而影响激光二极管芯片出光效率的问题。
综上,上述实施例的封装模块结构,在激光二极管芯片的出射光的传播路径上设置反射面,将原本平行于基板的第一表面的出射光进行反射, 反射后的光线从罩体上的透光区域发射出去,激光二极管芯片是侧面出光的,出射光的方向大体与基板的第一表面平行,在激光二极管芯片的出射光的传播路径上设置反射面,将出射光进行反射后从罩体上的透光区域发射出去,从而改变光束传播方向,由于在出射光的传播路径上加入了反射面,使得激光二极管芯片的底面可以贴装在容纳空间内的同时使得出射光束可以沿着大致垂直于第一表面的方向出射,而且激光二极管芯片的底面的面积较大,便于芯片的贴装的同时,也便于封装模块在整机设备中的位置设置。,而且,本发明的反射面具体为所述半导体利用各向异性进行刻蚀而制备获得的倾斜面,每个半导体由于其晶向是特定的,所以其形成的倾斜面的角度也是特定的,从而使经反射面反射的光沿特定的方向出射。并且本发明的封装模块中引脚路径短,寄生电感较TO封装大大降低,因此,可以通过基板封装的作业方式,来进行封装,封装效率高,且封装后的芯片,适用于SMT。
实施例二
下面,参考图5A至图5B和图6A至图6C对本发明的封装模块结构的另一个实施例进行描述,其中,为了避免重复,在本实施例中,对于基板400的结构和材料、激光二极管芯片403、罩体本体407、透光板408等和前述实施例一中相同的一些特征的描述均可参照前述实施例一,在此不再做赘述。本实施例与前述实施例一的不同在于所述封装模块包括的各向异性的半导体的结构不同。
具体地,作为示例,如图6A和图6B所示,所述封装模块包括各向异性的半导体,所述半导体设置在由罩体和基板形成的容纳空间内,其中,所述半导体包括位于底部的第一部分4011和位于所述第一部分4011的部分表面上的第二部分4012,其中,所述反射面设置在所述第二部分4012的至少一个倾斜面上。
示例性地,所述反射面具体为所述半导体利用各向异性进行刻蚀而制备获得的倾斜面,例如,通过湿法刻蚀的方法对半导体进行刻蚀,该刻蚀停止在半导体中,而并未刻蚀贯穿半导体衬底的上下表面,从而形成包括第一部分4011和第二部分4012的半导体,其中,由于半导体的各向异性, 使得第二部分具有至少一个倾斜面,例如在所述半导体为硅时,则所述倾斜面与其下方的第二部分之间的锐角夹角大体为54.74°。
在一个示例中,如图5A和图5B所示,以所述半导体为SOI晶圆401为例,SOI晶圆401包括埋层氧化物以及由埋层氧化物隔离开的上下两层硅层,通过刻蚀所述两层硅层中的一个而形成所述第二部分4012。所述刻蚀可以为湿法刻蚀,例如可以使用湿法刻蚀,湿法刻蚀可以采用对硅相对埋层氧化物具有高选择性的刻蚀剂,例如KOH溶液。示例性地,在刻蚀之前,还可以在SOI晶圆401待刻蚀的表面的部分区域上形成例如光刻胶的掩膜层,并通过光刻工艺在该掩膜层中定义出预定形成的第二部分4012的表面的图案,也即以图案化的掩膜层覆盖预定形成的第二部分4012的表面,而露出第二部分4012的表面以外的其他区域。再对表面部分区域形成有掩膜层的SOI晶圆401进行刻蚀,并停止于埋层氧化物401b中。由于半导体的各向异性,形成的第二部分4012具有至少一个倾斜面,所述反射面可以为所述第二部分4012的至少一个倾斜面,而埋层氧化物401b以及埋层氧化物401b下方的硅层401a作为所述第一部分4011,经各向异性刻蚀后的埋层氧化物401b上的硅层用作第二部分4012。
在另一个示例中,如图5B所示,所述反射面包括在所述半导体利用各向异性进行刻蚀而制备获得的倾斜面上镀的反射膜402,以提高反射面对光的反射率,从而提高激光器的输出功率。可选地,所述第一部分4011露出的至少部分表面上还覆盖有导电层。
例如,所述反射膜402为导电的反射膜,所述反射面上的反射膜402还进一步延伸覆盖所述反射面外侧的所述第一部分4011露出的至少部分表面上。在所述半导体为SOI晶圆时,所述反射膜402延伸到所述第二部分4012外侧的部分所述埋层氧化物401b的表面上。例如所述导电的反射膜402可以为金属层,所述反射膜402的材料可以包括任意适合的对光具有反射的金属材料,例如所述反射膜402包括金、银和铝中的至少一种,可以使用例如真空蒸镀的沉积方法在半导体的倾斜面上形成反射膜402。
在一个示例中,所述激光二极管芯片403贴装在所述反射面外侧的所述第一部分4011的表面上,并使所述激光二极管芯片403的出射面与所述反射面相对设置,以使所述激光二极管芯片的出射光经所述反射面反射后 通过所述透光区域发射出去,在本实施例中,前述实施例一中激光二极管芯片和反射面之间的位置关系等特征也适用于此,例如,如图6A至图6C所示,每个反射面外侧的第一部分4011的表面上设置一个所述激光二极管芯片,并且该激光二极管芯片的出射面和所述反射面相对,或者,也可以是每个反射面外侧的第一部分的表面上设置至少两个激光二极管芯片,并且每个激光二极管芯片的出射面和所述反射面相对。
在一个示例中,如图6B所示,所述激光二极管芯片403设置在位于所述第一部分的表面上导电的反射膜402上,其中,位于所述第一部分的表面上导电的反射膜402的图案与所述激光二极管芯片的底面相匹配并电连接,位于所述第一部分的表面上的反射膜402的面积大于所述激光二极管芯片的底面的面积,以使部分位于所述第一部分的表面上导电的反射膜402从所述激光二极管芯片的外侧露出,便于将激光二极管芯片的位于底面上的电极引出,例如,图6B中位于第一部分4011表面上的反射膜402的形状为T型,或者也可以为其他适合的条形、十字型等形状。值得一提的是,尽管图6B中仅示出了仅在第一部分4011的表面上设置一个激光二极管芯片的情况,但是对于在第一部分4011的表面上还可以设置并排的至少两个激光二极管芯片,那么在该第一部分的表面上则对应设置有彼此间隔的多个所述反射膜,每个反射膜与一个激光二极管芯片相对应。
可以采用任意适合的方法形成位于第一部分4011表面上的所述反射膜402,在一个示例中,形成所述反射膜402的方法包括以下步骤:首先,步骤A1,提供半导体,所述半导体(例如硅晶圆或SOI晶圆)包括位于底部的第一部分4011和位于所述第一部分4011的部分表面上的第二部分4012,其中,所述反射面设置在所述第二部分4012的至少一个倾斜面上;接着,执行步骤A2,形成反射膜402完全覆盖所述第一部分4011和所述第二部分露出的表面,其中可以使用例如真空蒸镀的方法形成反射膜402。接着,执行步骤A3,利用光刻工艺和刻蚀工艺对反射膜402进行图案化,例如,在反射膜上涂覆光刻胶层,利用光刻工艺的曝光和显影等步骤对该光刻胶层进行图案化,形成图案化的光刻胶层,该图案化的光刻胶层定义有预定形成在第一部分4011上的反射膜的图案形状、位置等参数,并且该图案化的光刻胶层覆盖所述第二部分预定用作反射面的倾斜面,再以图案 化的光刻胶层为掩膜,刻蚀所述第一部分4011上的反射膜,停止于所述第一部分4011内,以形成位于所述第一部分4011表面上的图案化的反射膜402,最后去除光刻胶层。
进一步地,在本实施例的封装结构的技术方案中,在将激光二极管贴装在所述第一部分4011的表面上时,位于第一部分4011上的反射膜402的图形还可以用作对位标记,由于该对位标记的图形是通过光刻和刻蚀形成的,因此其精度可以做到2μm以内,而高精度的对位标记,可以提高激光二极管芯片在装片时的位置精度和激光二极管芯片与反射面之间的相对位置精度。
在本实施例中,激光二极管芯片403通过例如前述实施例一中的方式贴装于第一部分的表面上,例如,激光二极管芯片403通过导电粘接层贴装在位于所述第一部分上的反射膜402上,以实现激光二极管芯片403和所述反射膜402的电连接。
在一个示例中,如图6A和图6B所示,各向异性的半导体(例如硅晶圆或SOI晶圆)通过导电粘接层贴装在所述基板400的第一表面40上,也即所述第一部分4011的底面贴装在所述基板400上,并设置在容纳空间内。
在一个示例中,如图6A和图6B所示,所述激光二极管芯片403包括相对设置的第一电极和第二电极,例如,所述激光二极管芯片403的底面设置所述第一电极,所述激光二极管芯片403的顶面设置为第二电极,所述第一电极可以为p极,所述第二电极可以为n极,或者,所述第一电极可以为n极,所述第二电极可以为p极。所述第一电极和第二电极分别通过导线电连接至所述基板400,特别是电连接至所述基板400的第一表面上的不同焊盘,例如,所述激光二极管芯片403的顶面上的电极通过导线4052电连接至焊盘4062,而所述激光二极管芯片403的底面上的电极通过导线4051电连接至焊盘4061,由于底面上的电极与位于第一部分4011上的反射膜402电连接,因此,通过导线电连接所述反射膜402至焊盘4062,从而实现激光二极管芯片403底面上的电极和焊盘4062的电连接,其中,焊盘4062和焊盘4061彼此间隔设置,并且为了保证反射膜能够将激光二极管芯片403的底面的电极引出,还可以使第一部分4011上的反射膜402 的面积大于激光二极管芯片403的底面的面积,也即激光二极管芯片403覆盖位于第一部分4011的表面上的部分反射膜402。
值得一提的是,上述将第一电极和第二电极引出的方法仅作为示例,对于其他的适合的方法也可以适用于本发明,例如,还可以是通过在每个所述激光二极管芯片下方设置贯穿所述第一部分并与所述激光二极管芯片的底面电极电连接的接触孔,通过所述接触孔电连接所述激光二极管芯片的底面电极(例如第一电极),在基板上的半导体的第一部分的底面下设置有基板金属层,该基板金属层可以通过接触孔与激光二极管芯片的底面电极(例如第一电极)电连接,从而实现将激光二极管芯片的底面电极引出。
在一个示例中,图6C示出了一种封装模块的结构,该封装模块的结构和图6A中示出的结构不同为:在图6C中,所述第二部分4012具有两个对称的、相背设置的倾斜面,所述倾斜面为反射面,每个所述反射面与至少一个激光二极管芯片403的出射面相对设置,每个激光二极管芯片403通过导电粘接层贴装在位于所述第一部分上的反射膜402上,以实现激光二极管芯片403和所述反射膜402的电连接,由此图6C中示出了2×N型的封装结构。
值得一提的是,在本实施例中各向异性的半导体还可以替换为其他适合的材料,例如玻璃,陶瓷、或树脂等适合的材料。
综上,本实施例中的封装结构除了也同样具备前述实施例一中封装结构的优点之外,其反射面上的反射膜除了用于反射激光二极管芯片的出射光之外,所述反射膜位于反射面外侧的第一部分上的部分还用于电连接激光二极管芯片的底面,以及在激光二极管芯片贴装时用作对外标记,通过光刻和刻蚀形成的位于第一部分上的反射膜,其精度高,因此可以提高激光二极管芯片装片的位置精度和激光二极管芯片和反射膜间的相对位置精度。
实施例三
下面,参考图7A至图7C、图8A至图8C以及图9A至图9D对本发明的封装模块结构的再一个实施例进行描述,其中,为了避免重复,在本实施例中,对于基板400的结构和材料、反射膜502、激光二极管芯片503、罩体本体507、透光板508、基板金属层5041、5042等和前述实施例一和 实施例二中相同的一些特征的描述均可参照前述实施例一和实施例二,在此不再做赘述。本实施例与前述实施例一的不同在于将实施例一中的各向异性的半导体替换为本实施中的玻璃。
具体地,在一个示例中,如图7A至图7C所示,所述封装模块包括玻璃501,所述玻璃501包括至少一个倾斜面,所述反射面包括在所述玻璃501的倾斜面上镀的反射膜502。
所述反射面与所述玻璃的底面之间的夹角可以是任意适合的小于90°的角度,可选地,所述反射面与玻璃的底面之间的夹角约为45°,这样设置,可以使从所述激光二极管芯片503的出射面发出的出射光经所述反射面反射后,以与所述基板的第一表面垂直的方向从罩体上的透光区域发射出去。
可以通过任意适合的方法形成具有至少一个倾斜面的玻璃501,例如采用传统光学元件的制造方法,通过对光学玻璃进行研磨、抛光和镀膜等工艺,加工成预定尺寸的玻璃棱镜,使反射面和玻璃底面的夹角为45°或其他任意角度,或者,也可以通过模压的方法形成预定尺寸的玻璃501,模压的方法是将熔融状态的光学玻璃毛坯倒入高于玻璃转化点50℃以上的低温模具中加压成型。
在一个示例中,图7B示出了仅具有一个倾斜面的玻璃501,在该倾斜面上设置有反射膜502作为反射面,在所述反射面外侧的基板的第一表面上设置至少一个激光二极管芯片503,每个所述激光二极管芯片的出射面与该反射面相对设置,进一步,从所述激光二极管芯片的出射面发出的出射光与所述反射面的底边垂直,所述反射面与玻璃的底面之间的夹角约为45°,使从所述激光二极管芯片503的出射面发出的出射光经所述反射面反射后,以与所述基板的第一表面垂直的方向从罩体上的透光区域发射出去。
在另一个示例中,图7C示出了具有两个相背设置的倾斜面的玻璃501,在该两个倾斜面上设置有反射膜502作为反射面,其中,在每个反射面的外侧的所述基板500的第一表面上设置至少一个激光二极管芯片503,其中,该玻璃的相背设置的倾斜面可以是对称设置,也可以是非对称设置的,也即可以是其中一个倾斜面和玻璃的底面的夹角与另一个倾斜面和玻 璃的底面之间的夹角不同。
进一步地,所述反射面还可以是凹面,所述凹面具体为各向异性的半导体的凹面,或者玻璃的凹面或者其他适合的可以作为反射镜材料上的凹面,该凹面的反射面除了能够起到反射激光二极管芯片的出射光的作用外,还可以起到与前述的准直元件类似的作用,其可以减小快慢轴之间的像散,改善光束质量,减小快轴方向的发散角,在有限的出光光阑条件下提高辐射利用率。
在一个示例中,如图8A至图8C所示,所述反射面为玻璃5011的凹面为例,所述反射面还包括在所述玻璃5011的至少一个凹面上镀的反射膜502,其中,图8B示出了所述反射面具体为所述玻璃的一个凹面,图8C示出了所述反射面具体为所述玻璃的两个相背的凹面,两个向背的凹面还可以对称设置。
可以通过任意适合的方法形成所述具有凹面的玻璃5011,例如采用模压的方法将玻璃的反射面做成凹面的形状,并在该凹面上镀反射膜502。
可选地,在所述反射面具体为各向异性的半导体的凹面时,可以通过本领域技术人员熟知的任何适合的方法形成所述凹面,例如可以通过对所述半导体进行各向同性的湿法刻蚀从而获得上述的凹面。
值得一提的是,前述玻璃通过导电粘接层贴装在所述基板的第一表面上,具体描述可以参照前述实施例一,在此不做赘述。
示例性地,如图7B至图7C、图8B至图8C所示,所述激光二极管芯片503可以通过导电粘接层贴装到所述基板500的第一表面50上,其中,所述激光二极管芯片503的第二电极(也即顶面上的电极)通过导线505电连接至所述基板500的第一表面50上的焊盘506。
值得一提的是,对于设置为凹面的反射面的外侧的激光二极管芯片503的设置方式可以参照前述实施例一和实施例二,在此不做赘述。
在另一示例中,如图9A所示,两个倾斜设置的反射面分别设置在所述玻璃5012上相背的两个倾斜面上,其中,每个反射面与至少一个所述激光二极管芯片503的出射面相对设置,以使每个所述激光二极管芯片503的出射光经所述反射面反射后通过所述透光区域发射出去,其中,该玻璃5012呈三棱柱状,该三棱柱形的玻璃的一个侧面贴装在所述基板的第一表 面上,另外两个侧面为倾斜面作为所述反射面,并且在该反射面包括在所述倾斜面上镀的反射膜(未示出),进一步地,作为反射面的两个倾斜面与三棱柱贴装在基板上的底面之间的夹角可以为45°或者其他适合的角度,图9A中示出了在每个反射面外侧并排设置4个激光二极管芯片503,还可以在不同反射面的外侧设置不同数目的激光二极管芯片503,该数量的选择可以根据器件结构的需要进行合理的选择,例如,一个反射面的外侧设置3个激光二极管芯片,另一侧的外侧设置4个激光二极管芯片,在每个反射面的外侧设置有4个激光二极管芯片时,图9B所示为图9A中激光二极管芯片503的等效位置图,其中该图中示出的黑点仅代表位置关系,与光源形状无关,图中所示的两列激光二极管芯片503两两相对设置,并且每列所述激光二极管芯片503等间隔排列。
在另一个示例,所述玻璃还可以呈三棱锥或者三棱台状,例如,图9C中所示的玻璃5013呈三棱锥状,三个倾斜设置的反射面分别设置在所述玻璃上的三个倾斜面上,其中,每个所述反射面与至少一个所述激光二极管芯片503的出射面相对设置,以使每个所述激光二极管芯片503的出射光经所述反射面反射后通过所述透光区域发射出去,例如图9C和图9D中示出的在每个反射面的外侧设置三个激光二极管芯片503,该每侧的三个激光二极管芯片503等间隔排列,图9D所示为图9C中激光二极管芯片503的等效位置图,其中该图中示出的黑点仅代表位置关系,与光源形状无关。
值得一提的是,上述的玻璃不仅是双面反射,还可以是多面反射,其形状可以是N棱台或者N棱锥,其中,N大于或者等于3,并且,不仅玻璃具有多个倾斜设置的反射面,还可以是前述实施例一和实施例二中的各向异性的半导体或者其他的材料也可以具有多个倾斜设置的反射面,形成例如三棱柱、N棱台或者N棱锥的结构。
本实施例中的封装模块同样具有前述实施例一中的封装模块的优点,并且,对于反射面为凹面的示例,其除了对激光二极管芯片的出射光有反射作用外,还可以减小快慢轴之间的像散,改善光束质量,同时可以避免在基板上再设置例如柱透镜的光学准直元件,可以使封装模块结构的尺寸减小。
需要说明是上述实施例一、实施例二和实施例三中的封装结构仅仅是 示例性的,本发明中所述封装结构并不局限于上述示例,上述示例的各种变型也可以应用于本发明,例如将设置有倾斜反射面的半导体和玻璃等贴装在一个封装模块中;与每个反射面相对的激光二极管的数目,封装模块中包括的半导体或玻璃的数目以及尺寸等均可以根据实际需要进行合理选择,在此不再一一列举。
实施例四
如图10所示,本发明所提供的距离探测装置800包括光发射模块810和反射光接收模块820。其中,光发射模块810包括实施例一、实施例二或实施例三中的至少一个激光二极管封装模块,用于发射光信号,且光发射模块810所发射的光信号覆盖距离探测装置800的视场角FOV;反射光接收模块820用于接收光发射模块810发射的光遇到待测物体后反射的光,并计算距离探测装置800距离所述待测物体的距离。下面将参考图10描述光发射模块810及其工作原理。
如图10所示,光发射模块810可以包括光发射器811和光扩束单元812。其中,光发射器811用于发射光,光扩束单元812用于对光发射器811所发射的光进行以下处理中的至少一项:准直、扩束、匀光和扩视场。光发射器811发出的光经过光扩束单元812的准直、扩束、匀光和扩FOV中的至少一项,使得出射光变得发散、分布均匀,能够覆盖场景中的一定的二维角度,如图8所示的,出射光能够覆盖待测物体的至少部分表面。
在一个示例中,光发射器811可以为激光二极管。对于光发射器811所发射光的波长,在一个示例中,可以选择波长位于895纳米到915纳米之间的光,例如选择905纳米波长的光。在另一个示例中,可以选择波长位于1540纳米到1560纳米之间的光,例如选择1550纳米波长的光。在其他示例中,也可以根据应用场景和各种需要选择其他合适波长的光。
在一个示例中,光扩束单元812可以采用一级或多级扩束系统来实现。其中,该光扩束处理可以是反射式的或透射式的,也可以是二者的结合。在一个示例中,可以采用全息滤光片(holographic filter)来得到多个子光束组成的大角度光束。
在又一个示例中,也可以采用激光二极管阵列,利用激光二极管形成 多束光,也可以得到类似于扩束的激光(例如VCSEL阵列激光器)。
在再一个示例中,也可以采用二维角度可调的微机电系统(MEMS)透镜,对发出的光进行反射,通过驱动MEMS微镜时刻改变自身镜面与光束间的角度,使反射光的角度时刻在变化,从而发散成一个二维的角度,以覆盖待测物体的整个表面。
该距离探测装置用于感测外部环境信息,例如,环境目标的距离信息、角度信息、反射强度信息、速度信息等。具体地,本发明实施方式的距离探测装置可应用于移动平台,所述距离探测装置可安装在移动平台的平台本体。具有距离探测装置的移动平台可对外部环境进行测量,例如,测量移动平台与障碍物的距离用于避障等用途,和对外部环境进行二维或三维的测绘。在某些实施方式中,移动平台包括无人飞行器、汽车和遥控车中的至少一种。当距离探测装置应用于无人飞行器时,平台本体为无人飞行器的机身。当距离探测装置应用于汽车时,平台本体为汽车的车身。当距离探测装置应用于遥控车时,平台本体为遥控车的车身。
由于光发射模块810发射的光能够覆盖待测物体的至少部分表面甚至整个表面,相应地,光到达物体表面后发生反射,反射光到达的反射光接收模块820也不是单点的,而是成阵列化分布的。
反射光接收模块820包括光电感测单元阵列821和透镜822。其中,从待测物体表面反射回来的光到达透镜822后,基于透镜成像的原理,可以到达光电感测单元阵列821中的相应的光电感测单元,然后被光电感测单元所接收,引起光电感测的光电响应。
由于自光出射到光电感测单元接收到反射光这一过程中,光发射器811和光电感测单元阵列821受时钟控制模块(例如包括在距离探测装置800内的如图10所示的时钟控制模块830,或者距离探测装置800之外的时钟控制模块)对它们进行同步时钟控制,因而根据飞行时间(TOF)原理,能够得到反射光到达的点与距离探测装置800的距离。
此外,由于光电感测单元不是单点的,而是光电感测单元阵列821,所以经过数据处理模块(例如包括在距离探测装置800内的如图8所示的数据处理模块840,或者距离探测装置800之外的数据处理模块)的数据处理能够得到整个距离探测装置视场内所有点的距离信息,即距离探测装 置所面向的外界环境距离的点云数据。
基于前文所述的根据本发明实施例的激光二极管封装模块的结构和工作原理以及根据本发明实施例的距离探测装置的结构和工作原理,本领域技术人员可以理解根据本发明实施例的电子设备的结构和工作原理,为了简洁,此处不再赘述。
实施例五
随着科学技术的发展,探测和测量技术应用于各种领域。激光雷达是对外界的感知系统,可以获知外界的立体三维信息,不再局限于相机等对外界的平面感知方式。其原理为主动对外发射激光脉冲信号,探测到反射回来的脉冲信号,根据发射--接收之间的时间差,判断被测物体的距离,结合光脉冲的发射角度信息,便可重建获知三维深度信息。
本发明提供了一种距离探测装置,所述距离探测装置可以用来测量探测物到探测装置的距离以及探测物相对探测装置的方位。在一个实施例中,探测装置可以包括雷达,例如激光雷达。探测装置可以通过测量探测装置和探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物到探测装置的距离。
距离探测装置中可以采用同轴光路,也即探测装置出射的光束和经反射回来的光束在探测装置内共用至少部分光路。或者,探测装置也可以采用异轴光路,也即探测装置出射的光束和经反射回来的光束在探测装置内分别沿不同的光路传输。图11示出了本发明的距离探测装置的示意图。
距离探测装置100包括光收发装置110,光收发装置110包括光源103、准直元件104、探测器105和光路改变元件106。光收发装置110用于发射光束,且接收回光,将回光转换为电信号。光源103用于发射光束。在一个实施例中,光源103可发射激光束。其中,所述光源包括实施例一、实施例二或实施例三所述的激光二极管封装模块,用于以与所述激光二极管封装模块的基板的第一表面呈一定夹角的方向出射激光脉冲,所述夹角小于90度。可选的,光源103发射出的激光束为波长在可见光范围之外的窄带宽光束。准直元件104设置于激光封装模块的透光区域的外侧,用于准直从所述透光区域发射出去的出射光(也即准直从光源103发出的光束),将光源103发出的光束准直为平行光,准直元件还用于会聚经探测物反射 的回光的至少一部分。该准直元件104可以是准直透镜或者是其他能够准直光束的元件。
距离探测装置100还包括扫描模块102。扫描模块102放置于光收发装置110的出射光路上,扫描模块102用于改变经准直元件104出射的准直光束119的传输方向并投射至外界环境,并将回光投射至准直元件104。回光经准直元件104汇聚到探测器105上。
在一个实施例中,扫描模块102可以包括一个或多个光学元件,例如,透镜、反射镜、棱镜、光栅、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。在一些实施例中,扫描模块102的多个光学元件可以绕共同的轴109旋转,每个旋转的光学元件用于不断改变入射光束的传播方向。在一个实施例中,扫描模块102的多个光学元件可以以不同的转速旋转。在另一个实施例中,扫描模块102的多个光学元件可以以基本相同的转速旋转。
在一些实施例中,扫描模块的多个光学元件也可以是绕不同的轴旋转,或者沿相同的方向振动,或者沿不同的方向振动,在此不作限制。
在一个实施例中,扫描模块102包括第一光学元件114和与第一光学元件114连接的驱动器116,驱动器116用于驱动第一光学元件114绕转动轴109转动,使第一光学元件114改变准直光束119的方向。第一光学元件114将准直光束119投射至不同的方向。在一个实施例中,准直光束119经第一光学元件改变后的方向与转动轴109的夹角随着第一光学元件114的转动而变化。在一个实施例中,第一光学元件114包括相对的非平行的一对表面,准直光束119穿过该对表面。在一个实施例中,第一光学元件114包括楔角棱镜,对准直光束119进行折射。在一个实施例中,第一光学元件114上镀有增透膜,增透膜的厚度与光源103发射出的光束的波长相等,能够增加透射光束的强度。
在图11所示的实施例中,扫描模块102包括第二光学元件115,第二光学元件115绕转动轴109转动,第二光学元件115的转动速度与第一光学元件114的转动速度不同。第二光学元件115改变第一光学元件114投射的光束的方向。在一个实施例中,第二光学元件115与另一驱动器117连接,驱动器117驱动第二光学元件115转动。第一光学元件114和第二 光学元件115可以由不同的驱动器驱动,使第一光学元件114和第二光学元件115的转速不同,从而将准直光束119投射至外界空间不同的方向,可以扫描较大的空间范围。在一个实施例中,控制器118控制驱动器116和117,分别驱动第一光学元件114和第二光学元件115。第一光学元件114和第二光学元件115的转速可以根据实际应用中预期扫描的区域和样式确定。驱动器116和117可以包括电机或其他驱动装置。
在一个实施例中,第二光学元件115包括相对的非平行的一对表面,光束穿过该对表面。第二光学元件115包括楔角棱镜。在一个实施例中,第二光学元件115上镀有增透膜,能够增加透射光束的强度。
扫描模块102旋转可以将光投射至不同的方向,例如方向111和113,如此对探测装置100周围的空间进行扫描。当扫描模块102投射出的方向111的光打到探测物101时,一部分光被探测物101沿与投射的光的方向111相反的方向反射至探测装置100。扫描模块102接收探测物101反射的回光112,将回光112投射至准直元件104。
准直元件104会聚探测物101反射的回光112的至少一部分。在一个实施例中,准直元件104上镀有增透膜,能够增加透射光束的强度。探测器105与光源103放置于准直元件104的同一侧,探测器105用于将穿过准直元件104的至少部分回光转换为电信号。在一些实施例中,探测器105可以包括雪崩光电二极管,雪崩光电二极管为高灵敏度的半导体器件,能够利用光电流效应将光信号转换为电信号。
在一些实施例中,距离探测装置100包括测量电路,例如TOF单元107,可以用于测量TOF,来测量探测物101的距离。例如,TOF单元107可以通过公式t=2D/c来计算距离,其中,D表示探测装置和探测物之间的距离,c表示光速,t表示光从探测装置投射到探测物和从探测物返回到探测装置所花的总时间。距离探测装置100可以根据光源103发射光束和探测器105接收到回光的时间差,确定时间t,进而可以确定距离D。距离探测装置100还可以探测探测物101在距离探测装置100的方位。距离探测装置100探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。
在一些实施例中,光源103可以包括激光二极管,通过激光二极管发射纳秒级别的激光。例如,光源103发射的激光脉冲持续10ns,探测器105探测到的回光的脉冲持续时间与发射的激光脉冲持续时间基本相等。 进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。在一些实施例中,可以对电信号进行多级放大。如此,距离探测装置100可以利用脉冲接收时间信息和脉冲发出时间信息计算TOF,从而确定探测物101到距离探测装置100的距离。
图12所示为距离探测装置600的另一个实施例的示意图。距离探测装置600类似于图11所示的距离探测装置100,相比较图11所示的实施例,图12所示的实施例的距离探测装置600的光收发装置610包括多个光路改变元件6061-6063,改变光源603发射出的出射光束的光路和回光的光路,如此可以使用焦距较长的准直透镜604,通过多个光路改变元件6061-6063,使光源603和探测器605等效于位于准直透镜604的焦点位置。如此通过光路改变元件6061-6063折叠光路,使距离探测装置600的结构紧凑,有利于小型化。
光源603包括前述实施例一、实施例二或实施例三的激光封装模块结构,用于以与所述激光二极管封装模块的基板的第一表面呈一定夹角的方向出射激光脉冲,所述夹角小于90度,例如前述实施例一中的封装模块还包括具有各向异性结构的半导体,所述反射面具体为所述半导体利用各向异性进行刻蚀而制备获得的倾斜面,或者,所述反射面包括在所述半导体利用各向异性进行刻蚀而制备获得的倾斜面上镀的反射膜,刻蚀后制备的作为反射面的倾斜面,所述倾斜面与所述半导体的底面之间的夹角大体为54.74°,所述激光二极管芯片的出射光经所述反射面反射后以与所述基板的法线成约19.48°的角度通过透光区域发射出去,也即以与所述激光二极管封装模块的基板的第一表面呈一定夹角的方向出射激光脉冲,所述夹角小于90度;其中,准直透镜604设置于激光二极管封装模块的透光区域的外侧,用于准直从所述透光区域发射出去的出射光,所述准直透镜还用于会聚经探测物反射的回光的至少一部分。所述激光二级管封装模块位于所述准直透镜604的中心轴的一侧,且所述激光二极管封装模块中的基板的第一表面大体平行于所述准直透镜604的中心轴。
多个光路改变元件6061-6063可以包括反射镜、棱镜或其他改变光路的光学元件。在图示实施例中,多个光路改变元件6061-6063包括第一光路改变元件6061、第二光路改变元件6062和第二光路改变元件6063。第 一光路改变元件6061设置于所述透光区域的外侧,面向光源603和准直透镜604,用于改变所述从激光二极管封装模块的透光区域发射出去的出射光的光路,使得来自所述激光二极管封装模块的激光脉冲以大体沿着所述准直透镜的中心轴的方向入射至所述准直透镜604。例如,所述第一光路改变元件6061为反射镜,所述第一光路改变元件6061位于所述准直透镜的中心轴上,用于将所述激光二极管封装模块出射的激光脉冲反射至大体沿着所述准直透镜的中心轴的方向,以所述反射面具体为所述半导体利用各向异性进行刻蚀而制备获得的倾斜面的情况为例,刻蚀后制备的所述倾斜面与所述半导体的底面之间的夹角大体为54.74°,所述激光二极管芯片的出射光经所述反射面反射后以与所述基板的法线成约19.48°的角度通过透光区域发射出去,之后照射到第一光路改变元件6061上,经第一光路改变元件6061反射至大体沿着所述准直透镜的中心轴的方向。光源603斜向下发射光束,光束到达第一光路改变元件6061,第一光路改变元件6061向准直透镜604方向反射光束。
例如反射镜的第一光路改变元件6061相对于准直透镜604的光轴倾斜放置,也即偏离所述准直透镜604的光轴,面向光源603和准直透镜604,用于将从所述透光区域发射出去的出射光反射至所述准直透镜604。也即光源603斜向下发射光束,光束到达第一光路改变元件6061,第一光路改变元件6061向准直透镜604方向反射光束。
第二光路改变元件6062的中心设有透光区域,例如通孔6064。通孔6064大致位于第二光路改变元件6062的中部。通孔6064呈梯形。在其他实施例中,通孔6064可以呈矩形、圆形或其他形状。继续参考图12,第二光路改变元件6062位于第一光路改变元件6061和准直透镜604之间,面向准直透镜604。准直透镜604的光轴可以穿过通孔6064。第一光路改变元件6061反射出的光束穿过第二光路改变元件6062的通孔6064,投射至准直透镜604,经准直透镜604准直。
在图示实施例中,探测器605位于距离探测装置600的相对于光源603的另一侧边,用于将接收到的光信号转成电信号,所述电信号用于测量所述探测物与所述距离探测装置的距离。由准直透镜604所汇聚的回光通过第二光路改变元件6062和第三光路改变元件6063,会聚至探测器605。第三光路改变元件6063位于准直透镜604的外侧,位于探测器605靠近准直 透镜604的上方,面向第二光路改变元件6062和探测器605,分别与所述第二光路改变元件6062和所述探测器605相对设置。准直透镜604所汇聚的回光通过第二光路改变元件6062向第三光路改变元件6063反射,第三光路改变元件6063再将回光反射至探测器605。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本发明的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本发明的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本发明的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本发明的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的一些模块的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本发明的具体实施方式或对具体实施方式的说明,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围应以权利要求的保护范围为准。

Claims (51)

  1. 一种激光二极管封装模块,其特征在于,所述封装模块包括:
    基板,具有第一表面;
    罩体,设置在所述基板的第一表面上,所述基板和所述罩体之间形成容纳空间,其中,所述罩体与所述基板相对的面上至少部分地设置透光区域;
    激光二极管芯片,设置于所述容纳空间内;
    反射面,设置于所述容纳空间内,用于使所述激光二极管芯片的出射光经所述反射面反射后通过所述透光区域发射出去。
  2. 根据权利要求1所述的封装模块,其特征在于,所述激光二极管芯片的出射光经所述反射面反射后以大体与所述基板的所述第一表面垂直的方向通过所述透光区域发射出去。
  3. 根据权利要求1所述的封装模块,其特征在于,所述封装模块还包括具有各向异性结构的半导体;
    所述反射面具体为所述半导体利用各向异性进行刻蚀而制备获得的倾斜面,或者,所述反射面包括在所述半导体利用各向异性进行刻蚀而制备获得的倾斜面上镀的反射膜。
  4. 根据权利要求3所述的封装模块,其特征在于,所述半导体包括半导体晶圆。
  5. 根据权利要求3所述的封装模块,其特征在于,所述半导体为硅,其中,所述倾斜面与所述半导体的底面之间的夹角大体为54.74°。
  6. 根据权利要求1所述的封装模块,其特征在于,所述封装模块内设置有至少两个倾斜设置的反射面,每个反射面与至少一个所述激光二极管芯片的出射面相对设置,以使每个所述激光二极管芯片的出射光经所述反射面反射后通过所述透光区域发射出去。
  7. 根据权利要求6所述的封装模块,其特征在于,所述每个反射面与至少两个并列排布的激光二极管芯片的出射面相对设置,以使每个所述激光二极管芯片的出射光经所述反射面反射后通过所述透光区域发射出去。
  8. 根据权利要求6所述的封装模块,其特征在于,所述封装模块包 括具有各向异性结构的半导体,所述至少两个倾斜设置的反射面设置在所述半导体利用各向异性进行刻蚀而制备获得的不同倾斜面上。
  9. 根据权利要求8所述的封装模块,其特征在于,所述两个倾斜设置的反射面设置在所述半导体上对称设置的、相背的两个倾斜面上。
  10. 根据权利要求6所述的封装模块,其特征在于,所述封装模块包括至少两个具有各向异性结构的半导体,所述至少两个倾斜设置的反射面分别设置在不同的半导体利用各向异性进行刻蚀而制备获得的倾斜面上。
  11. 根据权利要求7所述的封装模块,其特征在于,与同一反射面相对的多个所述激光二极管芯片在所述基板的第一表面上等间隔排布。
  12. 根据权利要求7所述的封装模块,其特征在于,与同一反射面相对的每个所述激光二极管芯片的出射面与该反射面之间的距离相等。
  13. 根据权利要求3所述的封装模块,其特征在于,所述半导体的底面的尖角处设置有切口或浅槽。
  14. 根据权利要求13所述的封装模块,其特征在于,所述切口具体为所述半导体去除部分底部尖角而形成的切口;
    所述浅槽设置在所述底面的尖角的边缘处并自所述半导体的底面向所述半导体的顶面凹陷部分深度。
  15. 根据权利要求3所述的封装模块,其特征在于,所述半导体包括位于底部的第一部分和位于所述第一部分的部分表面上的第二部分,其中,所述反射面设置在所述第二部分的至少一个倾斜面上。
  16. 根据权利要求15所述的封装模块,其特征在于,所述激光二极管芯片贴装在所述反射面外侧的所述第一部分的表面上,并使所述激光二极管芯片的出射面与所述反射面相对设置。
  17. 根据权利要求15所述的封装模块,其特征在于,所述反射膜包括金属层,所述反射面上的金属层还进一步延伸覆盖所述反射面外侧的所述第一部分露出的部分表面,其中,所述金属层位于所述第一部分的表面上的部分用于和所述激光二极管芯片的底面电连接。
  18. 根据权利要求17所述的封装模块,其特征在于,所述激光二极管芯片覆盖所述第一部分表面上的所述反射膜的部分表面,所述反射膜通过导线与位于所述基板上的焊盘电连接,以将所述激光二极管芯片的底面上 的电极引出。
  19. 根据权利要求15所述的封装模块,其特征在于,所述半导体为SOI晶圆,其中,所述SOI晶圆的埋层氧化物以及位于所述埋层氧化物下方的硅层作为所述第一部分,所述SOI晶圆位于所述埋层氧化物部分表面上的硅层作为所述第二部分。
  20. 根据权利要求1所述的封装模块,其特征在于,所述封装模块还包括玻璃,其中,所述反射面包括在所述玻璃的倾斜面上镀的反射膜。
  21. 根据权利要求20所述的封装模块,其特征在于,两个倾斜设置的反射面分别设置在所述玻璃上相背的两个倾斜面上,其中,每个反射面与至少一个所述激光二极管芯片的出射面相对设置,以使每个所述激光二极管芯片的出射光经所述反射面反射后通过所述透光区域发射出去。
  22. 根据权利要求20所述的封装模块,其特征在于,所述玻璃呈三棱锥或者三棱台状,三个倾斜设置的反射面分别设置在所述玻璃上的三个倾斜面上,其中,每个所述反射面与至少一个所述激光二极管芯片的出射面相对设置,以使每个所述激光二极管芯片的出射光经所述反射面反射后通过所述透光区域发射出去。
  23. 根据权利要求1所述的封装模块,其特征在于,所述反射面为凹面。
  24. 根据权利要求1所述的封装模块,其特征在于,所述激光二极管芯片的出射光的方向与所述反射面的底边垂直。
  25. 根据权利要求1所述的封装模块,其特征在于,设置有所述反射面的半导体和/或玻璃与所述激光二极管芯片均贴装于所述基板的第一表面。
  26. 根据权利要求1所述的封装模块,其特征在于,所述封装模块还包括准直元件,用于减小光束在快轴方向的发散角,所述准直元件设置在所述激光二极管芯片和所述反射面之间,以使所述激光二极管芯片的出射光经所述准直元件后至所述反射面。
  27. 根据权利要求26所述的封装模块,其特征在于,所述准直元件贴装于所述基板的所述第一表面。
  28. 根据权利要求26所述的封装模块,其特征在于,所述准直元件 为柱透镜,所述柱透镜的曲面与所述激光二极管芯片的出射面相对,以使所述激光二极管芯片的出射光照射到所述柱透镜的曲面上。
  29. 根据权利要求28所述的封装模块,其特征在于,所述柱透镜的曲面尺寸大于从所述激光二极管芯片发出的出射光照射到所述柱透镜上的光斑的尺寸。
  30. 根据权利要求28所述的封装模块,其特征在于,所述柱透镜贴装于所述基板上的表面为平面;和/或,所述柱透镜的顶面为平面。
  31. 根据权利要求1所述的封装模块,其特征在于,所述激光二极管芯片包括彼此相对设置的第一电极和第二电极,所述第一电极所在的表面贴装在所述基板的第一表面上。
  32. 根据权利要求31所述的封装模块,其特征在于,所述第一电极通过导电粘接层贴装在所述基板的第一表面上。
  33. 根据权利要求31所述的封装模块,其特征在于,所述第二电极通过导线电连接至所述基板。
  34. 根据权利要求31所述的封装模块,其特征在于,在所述基板的第一表面上贴装多个所述激光二极管芯片,其中,每个所述激光二极管芯片的所述第一电极与一导电粘接层相对应而贴装在所述基板的第一表面上。
  35. 根据权利要求31所述的封装模块,其特征在于,与同一所述反射面相对的多个所述激光二极管的所述第二电极通过导线电连接至所述基板上的同一焊盘。
  36. 根据权利要求32所述的封装模块,其特征在于,所述导电粘接层的面积大于所述激光二极管芯片的底面面积;和/或
    通过导线将所述导电粘接层与所述基板上的焊盘电连接,以将所述第一电极引出。
  37. 根据权利要求1所述的封装模块,其特征在于,所述罩体包括具有窗口的U形或方形罩体本体,以及封罩所述窗口的透光板以形成所述透光区域,所述激光二极管芯片的出射光经所述透光板发射出去;或所述罩体为全部透光的板状结构。
  38. 根据权利要求37所述的封装模块,其特征在于,所述罩体本体 通过焊接的方式固定设置在所述基板的所述第一表面上。
  39. 根据权利要求37所述的封装模块,其特征在于,所述罩体本体的材料包括金属、树脂或陶瓷。
  40. 根据权利要求1所述的封装模块,其特征在于,所述封装模块还包括用于控制所述激光二极管芯片发射的驱动芯片,所述驱动芯片设置于所述容纳空间内,其中,所述驱动芯片贴装于所述基板的第一表面。
  41. 根据权利要求1所述的封装模块,其特征在于,所述封装模块还包括焊锡膏贴装的器件,所述焊锡膏贴装的器件设置在所述容纳空间之外。
  42. 根据权利要求41所述的封装模块,其特征在于,所述焊锡膏贴装的器件包括电阻和电容,所述电阻和电容由焊锡膏贴装在所述容纳空间之外的所述基板的第一表面上。
  43. 根据权利要求1所述的封装模块,其特征在于,所述基板包括PCB基板或陶瓷基板。
  44. 根据权利要求32、34和36中任一项所述的封装模块,其特征在于,所述导电粘接层的材料包括导电的银浆、焊料或导电的芯片连接薄膜。
  45. 根据权利要求3、17、18或20中任一项所述的封装模块,其特征在于,所述反射膜包括金和银中的至少一种。
  46. 根据权利要求1所述的封装模块,其特征在于,所述激光二极管芯片的底面贴装在所述容纳空间内,以及所述激光二极管芯片的侧面出光,且所述激光二极管芯片的出射光与所述基板的第一表面大体平行。
  47. 一种距离探测装置,其特征在于,包括:
    权利要求1至46之一所述的激光二极管封装模块,用于以与所述激光二极管封装模块的基板的第一表面呈一定夹角的方向出射激光脉冲,所述夹角小于90度;
    准直透镜,设置于所述透光区域的外侧,用于准直从所述透光区域发射出去的出射光;
    第一光路改变元件,设置于所述透光区域的外侧,用于改变所述从所述透光区域发射出去的出射光的光路,使得来自所述激光二极管封装模块的激光脉冲以大体沿着所述准直透镜的中心轴的方向入射至所述准直透镜。
  48. 如权利要求47所述的激光发射装置,其特征在于,所述第一光路改变元件包括:
    第一反射镜,所述第一反射镜偏离所述准直透镜的光轴,用于将从所述透光区域发射出去的出射光反射至所述准直透镜。
  49. 如权利要求48所述的激光发射装置,其特征在于,所述激光二级管封装模块位于所述准直透镜的中心轴的一侧,且所述激光二极管封装模块中的基板的第一表面大体平行于所述准直透镜的中心轴;
    所述第一反射镜位于所述准直透镜的中心轴上,用于将所述激光二极管封装模块出射的激光脉冲反射至大体沿着所述准直透镜的中心轴的方向。
  50. 如权利要求48所述的激光发射装置,其特征在于,所述准直透镜还用于会聚经探测物反射的回光的至少一部分;
    所述激光发射装置还包括:
    中心设有透光区域的第二反射镜、第三反射镜和探测器;
    所述第二反射镜设置于所述准直透镜和所述第一反射镜之间,允许经所述第一反射镜反射的光束穿过,且用于将所述准直透镜所汇聚的回光反射至所述第三反射镜;
    所述第三反射镜分别与所述第二反射镜和所述探测器相对设置,用于将经所述第二反射镜反射的所述回光反射至所述探测器;
    所述探测器用于将接收到的光信号转成电信号,所述电信号用于测量所述探测物与所述距离探测装置的距离。
  51. 一种电子设备,其特征在于,包括权利要求1至46之一所述的激光二极管封装模块,所述电子设备包括无人机、汽车或机器人。
PCT/CN2018/098418 2018-08-03 2018-08-03 激光二极管封装模块及距离探测装置、电子设备 WO2020024240A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18928943.2A EP3832741A4 (en) 2018-08-03 2018-08-03 LASER DIODE PACKAGING MODULE, DISTANCE SENSING DEVICE AND ELECTRONIC DEVICE
PCT/CN2018/098418 WO2020024240A1 (zh) 2018-08-03 2018-08-03 激光二极管封装模块及距离探测装置、电子设备
CN201880009571.8A CN111758169B (zh) 2018-08-03 2018-08-03 激光二极管封装模块及距离探测装置、电子设备
JP2021502976A JP7119271B2 (ja) 2018-08-03 2018-08-03 レーザダイオードパッケージモジュールおよび距離検出装置、電子機器
US17/165,744 US11862929B2 (en) 2018-08-03 2021-02-02 Laser diode packaging module, distance detection device, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/098418 WO2020024240A1 (zh) 2018-08-03 2018-08-03 激光二极管封装模块及距离探测装置、电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/165,744 Continuation US11862929B2 (en) 2018-08-03 2021-02-02 Laser diode packaging module, distance detection device, and electronic device

Publications (1)

Publication Number Publication Date
WO2020024240A1 true WO2020024240A1 (zh) 2020-02-06

Family

ID=69230772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098418 WO2020024240A1 (zh) 2018-08-03 2018-08-03 激光二极管封装模块及距离探测装置、电子设备

Country Status (5)

Country Link
US (1) US11862929B2 (zh)
EP (1) EP3832741A4 (zh)
JP (1) JP7119271B2 (zh)
CN (1) CN111758169B (zh)
WO (1) WO2020024240A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200287349A1 (en) * 2019-03-08 2020-09-10 Horiba, Ltd. Semiconductor laser device and analysis apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11334733B1 (en) * 2021-04-28 2022-05-17 Zebra Technologies Corporation Machine vision devices with configurable illumination and aiming pattern generation
US20220383011A1 (en) * 2021-05-28 2022-12-01 Zebra Technologies Corporation Compact diffractive optical element laser aiming system
DE102021129698A1 (de) * 2021-11-15 2023-05-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches bauteil und verfahren zur herstellung eines optoelektronischen bauteils
CN216489008U (zh) * 2021-11-24 2022-05-10 深圳市中光工业技术研究院 激光封装装置
CN114199147B (zh) * 2021-12-10 2023-05-30 中国工程物理研究院流体物理研究所 一种测量装置、炮管内膛内径及同轴度测量方法
US11982748B2 (en) 2022-01-20 2024-05-14 Silc Technologies, Inc. Imaging system having multiple cores

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000151009A (ja) * 1998-10-02 2000-05-30 Siemens Ag マイクロオプティカルコンポ―ネントおよびその製造方法
US20130264946A1 (en) * 2012-04-04 2013-10-10 Axlen, Inc. Optically efficient solid-state lighting device packaging
CN103872230A (zh) * 2012-12-18 2014-06-18 Jds尤尼弗思公司 光源及光源制造方法
CN106469660A (zh) * 2015-08-21 2017-03-01 意法半导体(R&D)有限公司 具有光学树脂透镜的模制测距和接近度传感器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3032376B2 (ja) * 1992-05-11 2000-04-17 松下電子工業株式会社 半導体レーザ装置
DE59305898D1 (de) * 1993-12-22 1997-04-24 Siemens Ag Optoelektronisches Bauelement und Verfahren zu dessen Herstellung
KR100258927B1 (ko) * 1996-10-29 2000-06-15 윤종용 다중 트랙 스캔 가능한 호환형 광픽업장치
DE19838518A1 (de) * 1998-08-25 2000-03-02 Bosch Gmbh Robert Anordnung
JP2007065600A (ja) * 2005-09-02 2007-03-15 Fujifilm Corp 合波レーザ装置
JP2008102282A (ja) * 2006-10-18 2008-05-01 Sony Corp 光モジュール
WO2010021529A2 (ko) * 2008-08-22 2010-02-25 Kim Jeong Soo 외부 공진기를 이용한 반도체 레이저
US8471289B2 (en) * 2009-12-28 2013-06-25 Sanyo Electric Co., Ltd. Semiconductor laser device, optical pickup device and semiconductor device
US20110187878A1 (en) * 2010-02-02 2011-08-04 Primesense Ltd. Synchronization of projected illumination with rolling shutter of image sensor
US8897327B2 (en) * 2012-04-16 2014-11-25 Osram Opto Semiconductors Gmbh Laser diode devices
CA2871502C (en) * 2012-04-26 2021-06-08 Neptec Design Group Ltd. High speed 360 degree scanning lidar head
CN102928831B (zh) * 2012-10-26 2014-03-26 北京敏视达雷达有限公司 一种激光测量光机系统
US9647419B2 (en) * 2014-04-16 2017-05-09 Apple Inc. Active silicon optical bench
TWI568117B (zh) * 2015-04-20 2017-01-21 友嘉科技股份有限公司 雷射的封裝結構及其相關元件
JP6217706B2 (ja) * 2015-07-29 2017-10-25 日亜化学工業株式会社 光学部材の製造方法、半導体レーザ装置の製造方法及び半導体レーザ装置
WO2017027045A1 (en) * 2015-08-13 2017-02-16 Advanced Bionics Ag Cochlear implants having bone-anchored magnet apparatus and associated methods
DE102015217908A1 (de) * 2015-09-18 2017-03-23 Robert Bosch Gmbh Lidarsensor
JP7007560B2 (ja) * 2017-09-28 2022-01-24 日亜化学工業株式会社 光源装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000151009A (ja) * 1998-10-02 2000-05-30 Siemens Ag マイクロオプティカルコンポ―ネントおよびその製造方法
US20130264946A1 (en) * 2012-04-04 2013-10-10 Axlen, Inc. Optically efficient solid-state lighting device packaging
CN103872230A (zh) * 2012-12-18 2014-06-18 Jds尤尼弗思公司 光源及光源制造方法
CN106469660A (zh) * 2015-08-21 2017-03-01 意法半导体(R&D)有限公司 具有光学树脂透镜的模制测距和接近度传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3832741A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200287349A1 (en) * 2019-03-08 2020-09-10 Horiba, Ltd. Semiconductor laser device and analysis apparatus
US11949210B2 (en) * 2019-03-08 2024-04-02 Horiba, Ltd. Semiconductor laser device and analysis apparatus

Also Published As

Publication number Publication date
US20210159664A1 (en) 2021-05-27
EP3832741A1 (en) 2021-06-09
EP3832741A4 (en) 2022-03-16
JP2021531656A (ja) 2021-11-18
JP7119271B2 (ja) 2022-08-17
CN111758169A (zh) 2020-10-09
US11862929B2 (en) 2024-01-02
CN111758169B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
US11862929B2 (en) Laser diode packaging module, distance detection device, and electronic device
CN211265963U (zh) 激光二极管封装模块及距离探测装置、电子设备
US20210281040A1 (en) Laser diode packaging module, distance detection device, and electronic device
WO2019205153A1 (zh) 激光二极管封装模块及发射装置、测距装置、电子设备
JP2018511799A (ja) ビームステアリングladarセンサ
US20080194054A1 (en) Led array package structure having silicon substrate and method of making the same
JP2005277380A (ja) Led及びその製造方法
TW201216523A (en) Optoelectronic devices with laminate leadless carrier packaging in side-looker or top-looker device orientation
JPH09222540A (ja) 高さの低い光学的サブアセンブリ
US20220329039A1 (en) Micromechanical optical component and manufacturing method
JP4643891B2 (ja) パラレル光学系接続装置用の位置決め方法
JP2021064792A (ja) 半導体装置
CN112041985A (zh) 具有多个发射器和多个接收器的光探测和测距传感器以及相关联的系统和方法
WO2022061820A1 (zh) 一种接收芯片及其制备方法、测距装置、可移动平台
WO2021072752A1 (zh) 激光二极管封装模块及距离探测装置、电子设备
WO2021022917A1 (zh) 激光扫描装置
CN109384193B (zh) 用于光学器件的倾斜芯片组件
WO2020087337A1 (zh) 激光二极管芯片、封装模块、发射及测距装置、电子设备
US20210223691A1 (en) Substrate of an optical electrical module
KR102486332B1 (ko) 표면발광 레이저패키지 및 이를 포함하는 광 모듈
KR100985362B1 (ko) 일체형 광모듈 패키지 및 그 제조방법
WO2023070442A1 (zh) 激光二极管芯片的封装结构及方法、测距装置、可移动平台
JP2009295772A (ja) 発光モジュール
WO2023184378A1 (zh) 激光器、激光雷达及可移动平台
JP2019074651A (ja) 光学装置および光学モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502976

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018928943

Country of ref document: EP

Effective date: 20210303