WO2020021952A1 - エンジンの吸気装置 - Google Patents

エンジンの吸気装置 Download PDF

Info

Publication number
WO2020021952A1
WO2020021952A1 PCT/JP2019/025515 JP2019025515W WO2020021952A1 WO 2020021952 A1 WO2020021952 A1 WO 2020021952A1 JP 2019025515 W JP2019025515 W JP 2019025515W WO 2020021952 A1 WO2020021952 A1 WO 2020021952A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
intake
egr
engine
connection port
Prior art date
Application number
PCT/JP2019/025515
Other languages
English (en)
French (fr)
Inventor
二郎 加藤
山内 武俊
光則 早田
吉田 健
健治 ▲高▼見
山本 亮
春菜 柳田
理克 東尾
謙介 足利
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to CN201980048170.8A priority Critical patent/CN112449665B/zh
Priority to US17/261,551 priority patent/US11378041B2/en
Priority to EP19840003.8A priority patent/EP3808966B1/en
Publication of WO2020021952A1 publication Critical patent/WO2020021952A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/39Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with two or more EGR valves disposed in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/162Control of the pumps by bypassing charging air by bypassing, e.g. partially, intake air from pump inlet to pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/03EGR systems specially adapted for supercharged engines with a single mechanically or electrically driven intake charge compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/19Means for improving the mixing of air and recirculated exhaust gases, e.g. venturis or multiple openings to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/21Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system with EGR valves located at or near the connection to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/44Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which a main EGR passage is branched into multiple passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/66Lift valves, e.g. poppet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/66Lift valves, e.g. poppet valves
    • F02M26/67Pintles; Spindles; Springs; Bearings; Sealings; Connections to actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/70Flap valves; Rotary valves; Sliding valves; Resilient valves

Definitions

  • the present invention relates to an intake device for an engine.
  • Patent Document 1 discloses that a supercharger that increases the pressure of air introduced into an engine combustion chamber is arranged in an intake passage of a multi-cylinder engine, a bypass passage that bypasses the supercharger is provided in the intake passage, and the bypass is provided. It is described that a bypass valve for adjusting the opening degree of the passage is provided in the passage, and an EGR valve is provided in an EGR passage connecting the intake passage and the exhaust passage.
  • reference numeral 25 denotes a bypass passage forming an intake passage
  • reference numeral 69 denotes a connection port of the EGR passage provided with the EGR valve 62.
  • fresh air flows in the upper side of the bypass passage 25 as shown by a broken line
  • EGR gas flows mainly from the connection port 69 to the lower side of the bypass passage 25 as shown by a solid line.
  • the fresh air and the EGR gas flow to the downstream side of the bypass passage 25 in a manner divided into two layers, in short. This can be understood from the EGR concentration distribution of each portion in the bypass passage 25 shown in FIG.
  • the bypass passage 25 is divided into a region A where the concentration of the EGR gas is high and a region B where the concentration is low.
  • the high density area A and the low density area B decrease, and the intermediate density area C expands.
  • the bypass passage 25 branches into the branch portions 25a and 25b and is connected to the surge tank 75 the high-concentration region A and the low-concentration region B still remain in the branch portion 25a. That is, it is understood that the fresh air and the EGR gas flow into the surge tank 75 without being completely mixed. Therefore, the EGR amount tends to vary among the cylinders.
  • an enlarged portion having an enlarged passage cross-sectional area for reducing the flow velocity of the EGR gas flowing into the intake passage is provided in front of a connection port of the EGR passage with the intake passage.
  • the intake device of the engine disclosed here is: An intake passage that guides intake air to the combustion chamber of a multi-cylinder engine, An exhaust passage for discharging exhaust gas from the combustion chamber; An EGR passage for connecting the intake passage and the exhaust passage, and recirculating a part of the exhaust gas from the exhaust passage as the EGR gas to the intake passage;
  • the EGR passage has an increased passage cross-sectional area for reducing the flow rate of the EGR gas before the connection port to the intake passage so as to suppress the drift of the EGR gas flowing into the intake passage at the connection port. It is characterized by having an enlarged portion.
  • the flow rate of the EGR gas in the EGR passage decreases before the connection port to the intake passage, so that the drift of the EGR gas at the connection port is suppressed. That is, the degree of the drift becomes weak, and the EGR gas easily flows into the intake passage from the entire circumference of the connection port.
  • the EGR gas easily collides with the fresh air, that is, the mixing of the fresh air and the EGR gas easily progresses, and the EGR amount is reduced. Inter-cylinder variation is suppressed. Therefore, it is advantageous for ensuring the combustion stability of the engine.
  • the EGR passage intersects the intake passage toward the connection port and extends in a direction intersecting a center line of the connection port.
  • a turning portion that changes direction and reaches the connection port, and the expanding portion is provided in the turning portion.
  • a poppet type EGR valve provided at the connection port for adjusting the amount of recirculation of the EGR gas is provided, and a valve shaft of the EGR valve passes through the bypass passage. According to this, the collision between the fresh air flowing around the valve shaft and the EGR gas flowing along the valve shaft occurs around the valve shaft, so that the mixing of the fresh air and the EGR gas can easily proceed.
  • a bypass valve provided in the bypass passage which adjusts a supercharging pressure of intake air by the supercharger, is provided, and the connection port is opened on an upstream side of the bypass valve in the bypass passage. ing. According to this, since the flow of the fresh air and the EGR gas is disturbed when passing through the bypass valve, the mixing of the fresh air and the EGR gas becomes easy to progress.
  • the enlarged portion includes a divergent portion whose passage cross-sectional area gradually increases toward the connection port. According to this, when the EGR gas passes through the divergent portion, the flow rate gradually decreases toward the connection port, and thus the EGR gas easily spreads over the entire enlarged portion. Therefore, the deviation of the EGR gas flow can be suppressed without greatly disturbing the EGR gas flow.
  • the EGR passage includes, before the connection port with respect to the intake path, an enlarged portion having an enlarged passage cross-sectional area for reducing the flow rate of the EGR gas so as to suppress the drift of the EGR gas at the connection port. Therefore, the EGR gas flowing into the intake passage easily collides with the fresh air, and therefore, the mixing of the fresh air and the EGR gas easily progresses. As a result, the variation in the EGR amount between the cylinders is suppressed. This is advantageous for ensuring combustion stability of the engine.
  • FIG. 1 is a configuration diagram of an engine system.
  • FIG. 2 is a sectional view of an intake system of the engine.
  • FIG. 2 is a perspective view of an intake system of the engine.
  • FIG. 2 is a front view of an intake system of the engine.
  • 1 is an engine
  • 2 is an intake passage of the engine
  • 3 is an exhaust passage of the engine
  • 4 is a fuel tank.
  • the system includes an evaporative fuel processing device 5 for guiding evaporative fuel generated in a fuel tank 4 to an intake passage 2 of the engine 1.
  • the engine 1 is an in-line four-cylinder compression ignition engine.
  • FIG. 1 shows only one cylinder of the engine 1.
  • the engine 1 described in the present embodiment is merely an example, and in the present invention, the type and specific configuration of the engine are not particularly limited.
  • the engine 1 includes a direct injection type fuel injection valve 11 facing a combustion chamber 10 of each cylinder, a spark plug 12, and an in-cylinder pressure sensor 13.
  • the intake port of the engine 1 is provided with an intake valve 14, and the exhaust port is provided with an exhaust valve 15.
  • the engine 1 includes variable valve mechanisms 16, 17 for opening and closing the intake valve 14 and the exhaust valve 15, respectively.
  • Reference numeral 18 denotes a piston of the engine 1.
  • the intake passage 2 includes an intake manifold (not shown) for branching and introducing intake air into the combustion chamber 10 of each cylinder.
  • the intake passage 2 has an air cleaner 21, a throttle valve 22 for adjusting the amount of fresh air introduced into the combustion chamber 10, and a supercharger for increasing the pressure of gas introduced into the combustion chamber 10 in order from the upstream side to the downstream side.
  • An intercooler 24 for cooling the gas introduced into the combustion chamber 10 by the supercharger 3 and the supercharger 3 is provided.
  • a bypass passage 25 is provided downstream of the throttle valve 22 and connecting the upstream side of the supercharger 23 and the downstream side of the intercooler 24.
  • the intake passage 2 includes a supercharging passage in which a supercharger 23 for increasing the pressure of intake air introduced into the combustion chamber 10 is arranged, and a bypass passage 25 that bypasses the supercharger 23 and guides intake air to the combustion chamber 10. It has.
  • the bypass passage 25 is provided with a bypass valve 26 for adjusting a gas flow rate flowing through the bypass passage 25.
  • the supercharger 23 of this example is a mechanical supercharger driven by a belt by the crankshaft of the engine 1.
  • the mechanical supercharger 44 can be, for example, a Roots type, or it can be a Riesholm type, a vane type or a centrifugal type. Note that, instead of the mechanical supercharger, an electric supercharger or a turbocharger driven by exhaust energy may be employed.
  • the supercharger 23 is connected to the crankshaft of the engine 1 via the electromagnetic clutch 27. By connecting and disconnecting the electromagnetic clutch 27, transmission of power from the engine 1 to the supercharger 23 and disconnection thereof are performed.
  • the supercharging pressure is adjusted to a desired pressure by controlling the bypass valve 26. That is, when the bypass valve 26 is opened, part of the intake air that has passed through the supercharger 23 flows backward through the bypass passage 25 to the upstream side of the supercharger 23. Since the reverse flow rate of the intake air changes according to the opening degree of the bypass valve 26, the supercharging pressure of the intake air introduced into the combustion chamber 10 can be controlled.
  • the exhaust passage 3 is provided with an exhaust manifold 31 for collecting and discharging the exhaust gas of each cylinder.
  • the exhaust passage 3 downstream of the exhaust manifold 31 is provided with two catalytic converters for purifying exhaust gas.
  • the upstream catalytic converter has a three-way catalyst 32 and a GPF (gasoline particulate filter) 33 and is disposed in the engine room of the vehicle.
  • the downstream catalytic converter has a three-way catalyst 34 and is disposed outside the engine room.
  • An exhaust shutter valve 35 is provided on each branch pipe of the exhaust manifold 31.
  • the intake passage 2 and the exhaust passage 3 are connected by an EGR passage 6 that recirculates part of the exhaust gas to the intake passage 2 as EGR gas.
  • the upstream end of the EGR passage 6 is connected between the upstream catalytic converter and the downstream catalytic converter in the exhaust passage 3.
  • the downstream end of the EGR passage 6 is connected in the middle of the bypass passage 25 so as to supply the EGR gas downstream of the throttle valve 22 and upstream of the supercharger 23 in the intake passage 2.
  • the EGR gas enters the intake passage 2 upstream of the supercharger 23 without passing through the bypass valve 26 of the bypass passage 25.
  • the EGR passage 6 is provided with an EGR cooler 61 for cooling the EGR gas, and an EGR valve 62 for adjusting a recirculation amount of the EGR gas.
  • the EGR valve 62 is illustrated as being provided in the middle of the EGR passage 6, but in the present embodiment, the EGR valve 62 is provided at a connection port of the EGR passage 6 with respect to the bypass passage 25. ing.
  • the fuel tank 4 is connected to the fuel injection valve 11 by a fuel supply path 41.
  • the upstream end of the fuel supply path 41 is connected to a fuel strainer 40 in the fuel tank 4.
  • the fuel supply path 41 is provided with a fuel pump 42 and a common rail 43.
  • the fuel pump 42 pumps fuel to the common rail 43.
  • the common rail 43 stores the fuel pumped from the fuel pump 42 at a high fuel pressure.
  • the evaporative fuel processing device 5 includes a canister 51 that adsorbs the evaporative fuel generated in the fuel tank 4 to activated carbon.
  • the fuel tank 4 and the canister 51 are connected by a tank-side passage 52, and the canister 51 and the intake passage 2 are connected by a purge passage 53.
  • the canister 51 is connected to an outside air introduction passage 54 having an air opening.
  • a purge valve 55 for opening and closing the purge passage 53 is provided in the purge passage 53.
  • the purge valve 55 is opened when a predetermined purge condition is satisfied, for example, when the air-fuel ratio of the engine 1 can be appropriately controlled by controlling the fuel injection amount by the fuel injection valve 11.
  • the engine system is equipped with a blow-by gas recirculation device.
  • the blow-by gas recirculation device includes a blow-by passage 57 and an air introduction passage 58.
  • One end of the blow-by passage 57 is connected to the crankcase 1 a of the engine 1, and the other end is connected to the intake passage 2 downstream of the throttle valve 22 and upstream of the supercharger 23.
  • a PCV (Positive Crankcase Ventilation) valve 59 is provided in the blow-by passage 57.
  • the PCV valve 59 allows only gas to pass from the crankcase 1a to the intake passage 2 side.
  • the opening of the PCV valve 59 changes in accordance with the degree of the negative pressure when the pressure downstream of the throttle valve 22 in the intake passage 2 is lower than the pressure of the crankcase 1a. That is, the flow rate of the blow-by gas from the crankcase 1a to the intake passage 2 is adjusted to an appropriate amount according to the negative pressure.
  • the air introduction passage 58 has one end connected to the crankcase 1 a via the cylinder head 1 b of the engine 1, and the other end connected between the air cleaner 21 and the throttle valve 22 in the intake passage 2.
  • the air introduction passage 58 is provided with a check valve 60 that allows only air to pass from the intake passage 2 toward the crankcase 1a.
  • an air flow sensor 63 for detecting the amount of intake air for controlling the engine 1 and a pressure sensor 64 for detecting an intake pressure downstream of the throttle valve 22 (upstream of the supercharger 23).
  • a temperature sensor 65 for detecting the temperature of the intake air discharged from the supercharger 23 and a pressure sensor 66 for detecting the intake pressure downstream of the intercooler 24 are provided.
  • a linear O 2 sensor 67 for detecting the oxygen concentration in the exhaust gas upstream of the three-way catalyst 32, and a lambda O for detecting the oxygen concentration in the exhaust gas downstream of the three-way catalyst 32.
  • Two sensors 68 are provided.
  • the supercharger 23 is provided in an upper part of the engine 1 in a state where an axis thereof extends in a cylinder row direction.
  • An upstream intake pipe 71 that constitutes the intake passage 2 extending in the cylinder row direction is connected to the supercharger 23.
  • a drive unit housing 72 of the supercharger 23 protrudes from the supercharger 23 on a side opposite to the upstream intake pipe 71.
  • the drive unit housing 72 houses an electromagnetic clutch 27 and a drive shaft for driving the supercharger 23 with the crankshaft of the engine 1.
  • a transmission belt 74 is wound around a pulley 73 connected to the drive shaft.
  • the upstream end of a discharge duct 76 for guiding pressurized intake air to a surge tank (reference numeral 75 in FIG. 4) extending in the cylinder row direction is connected to a side surface of the supercharger 23.
  • the discharge duct 76 extends below the supercharger 23, and has a lower end connected to the intercooler 24 arranged below the supercharger 23.
  • a throttle body 77 having a throttle valve 22 is provided at an upstream end of the upstream-side intake pipe 71.
  • the throttle valve 22 is a butterfly valve, and its valve shaft 22a is provided horizontally.
  • the bypass pipe 78 forming the bypass passage 25 is inclined from the upper surface of the upstream intake pipe 71 toward the upstream of the upstream intake pipe 71. I'm standing up. That is, the connection port 79 of the bypass passage 25 opens at the top of the upper half of the intake passage 2 formed by the upstream intake pipe 71 on the downstream side of the throttle valve 22.
  • the upstream-side intake pipe 71 forms a passage enlarged portion 2b whose passage cross-sectional area increases toward the supercharger 3 downstream of the connection port 79 of the bypass passage 25. 3 is connected.
  • the bypass pipe 78 has a folded portion 78a which is bent and turned toward the downstream side of the upstream intake pipe 71 following the above-mentioned inclined rising portion.
  • the bypass pipe 78 extends in the cylinder row direction above the supercharger 23 toward the center of the surge tank 75 following the folded portion 78a.
  • An EGR pipe (not shown in FIG. 3) that forms the EGR passage 6 is connected to the bypass pipe 78 downstream of the turnover portion 78 a, and a connection port of the EGR passage 6 with the bypass passage 25.
  • the EGR valve 62 is provided at 69.
  • the connection port 69 opens on the side surface of the bypass passage 25.
  • the bypass pipe 78 branches into a first branch pipe 78b extending in one direction in the cylinder row direction and a second branch pipe 78c extending in the other direction in the cylinder row direction.
  • the branch portions 25a and 25b of the bypass passage 25 formed by the two branch pipes 78b and 78c are connected to the surge tank 75.
  • the bypass valve 26 is provided in the bypass pipe 78 downstream of the EGR valve 62. That is, the connection port 69 of the EGR passage 6 opens into the bypass passage 25 on the upstream side of the bypass valve 26.
  • the bypass valve 26 is a butterfly valve, and its valve shaft 26a is provided horizontally.
  • the surge tank 75 is integrally provided with an intake air introduction passage 80.
  • the intake passage 80 extends below the surge tank 75 and is connected to the intercooler 24.
  • the EGR pipe 81 extending from the exhaust passage 3 includes a rising part 91 rising from a position lower than the bypass pipe 78 toward the side surface of the bypass pipe 78, and an upper end of the rising part 91 is formed. It is connected to the side of the bypass pipe 78.
  • the rising portion 91 of the EGR pipe 81 crosses the bypass passage 25 toward the connection port 69 of the EGR passage 6 in the bypass passage 25 and extends in a direction crossing the center line D of the connection port 69.
  • a passage 92 is formed.
  • a flexible portion (bellows portion) 93 that absorbs displacement between an upstream portion and a downstream portion is provided at an intermediate portion of the rising portion 91.
  • An upper end portion of the rising portion 91 forms a turning portion 94 that is directed to the center line D of the connection port 69 following the passage portion 92 and reaches the connection port 69 in front of the connection port 69.
  • the turning portion 94 is formed with an enlarged portion 95 having a passage cross-sectional area larger than that of the passage portion 92 (a circular passage portion on the downstream side of the flexible portion 84).
  • the enlarged portion 95 includes a divergent portion 96 whose passage sectional area gradually increases from the downstream end of the passage portion 92 toward the connection port 69.
  • the passage cross-sectional area of the enlarged portion 95 is larger than the passage cross-sectional area of the connection port 69.
  • the diverting portion 94 has a portion where the cross-sectional area of the passage is reduced to reach the connection port 69 following the enlarged portion 95, and a valve seat 97 of the EGR valve 62 that opens and closes the connection port 69 is formed in the reduced portion. .
  • the EGR valve 62 is of a poppet type, and its valve shaft 98 extends through the bypass passage 25 in the direction of the center line D of the connection port 69. That is, the valve shaft 98 crosses the inside of the bypass passage 25 in the direction of the center line D of the connection port 69.
  • the valve shaft 98 is driven by a solenoid-type EGR valve drive unit 85 shown in FIG. 2 to move forward and backward, and the connection port 69 is opened by the movement of the EGR valve 62 to the enlarged portion 95 side.
  • reference numeral 83 denotes a drive unit of the throttle valve 22
  • reference numeral 84 denotes a drive unit of the bypass valve 26.
  • the EGR valve 62 when the EGR valve 62 is opened (the open state is indicated by a chain line), the EGR gas is guided upward through the passage portion 92 of the EGR passage 6.
  • the flow direction of the EGR gas changes from the upward direction to the lateral direction in the turning portion 94, and flows into the bypass passage 25 from around the EGR valve 62 through the connection port 69.
  • the turning direction of the EGR gas is changed.
  • the flow is biased.
  • the higher the flow rate of the EGR gas the more easily the EGR gas flows into the bypass passage 25 from the upper side of the EGR valve 62 through the connection port 69 while biasing the upper half circumference of the deflection portion 94.
  • the EGR gas proceeds obliquely downward from the upper side of the EGR valve 62 toward the connection port 69, and flows into the lower half of the bypass passage 25. Therefore, as shown in FIGS. In this case, the fresh air and the EGR gas tend to be separated into two layers.
  • the flow rate of the EGR gas flowing through the passage section 92 decreases in the enlarged section 95. Due to the decrease in the flow velocity, the bias of the EGR gas in the turning portion 94 is suppressed, and the EGR gas relatively uniformly flows from the periphery of the EGR valve 62 through the connection port 69 into the bypass passage 25. As a result, in the bypass passage 25, the EGR gas easily hits the flow of fresh air from the side, and therefore, the fresh air and the EGR gas are easily mixed.
  • the enlarged portion 95 has the divergent portion 96 on the upstream side, when the EGR gas passes through the divergent portion 96, the flow rate gradually decreases and the EGR gas easily spreads over the entire enlarged portion. Therefore, it is advantageous for suppressing the bias of the flow of the EGR gas.
  • valve shaft 98 of the EGR valve 62 crosses the bypass passage 25
  • fresh air traveling around the valve shaft 98 collides with EGR gas flowing along the valve shaft 98. This makes it easier for fresh air and EGR gas to mix. Further, when the fresh air and the EGR gas pass through the bypass valve 26, the flow is disturbed by the bypass valve 26, so that the mixing easily proceeds.
  • the bias of the flow of the EGR gas passing through the connection port 69 is suppressed, and the mixing of the fresh air and the EGR gas in the bypass passage 25 is easily advanced.
  • the variation in the EGR amount between the cylinders is suppressed, and therefore, This is advantageous for ensuring combustion stability of the engine.
  • the EGR valve 62 of the above embodiment is a poppet type, even a butterfly type EGR valve passes through the connection port 69 by providing the above-described enlarged portion near the connection port downstream of the EGR valve. Of the EGR gas flow can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

エンジンの吸気通路(過給機をバイパスするバイパス通路)25にEGR通路6を接続する。上記EGR通路は、吸気通路25に対する接続口69の手前に、吸気通路25に流入するEGRガスの接続口69における偏流が抑制されるように、EGRガスの流速を低下させる通路断面積が拡大した拡大部95を備えている。

Description

エンジンの吸気装置
 本発明はエンジンの吸気装置に関する。
 特許文献1には、多気筒エンジンの吸気通路にエンジン燃焼室に導入する空気の圧力を高める過給機を配置すること、その吸気通路に過給機をバイパスするバイパス通路を設けること、そのバイパス通路に該通路の開度を調節するバイパス弁を設けること、吸気通路と排気通路を接続するEGR通路にEGR弁を設けることが記載されている。
特開2003-322039号公報
 EGRガスを還流させるようにした多気筒エンジンの場合、気筒間でEGR量がばらつくと、全ての気筒において安定した燃焼を行なわせることができなくなる。本発明者がEGR量の気筒間ばらつきを調べたところ、そのばらつきは、吸気通路に還流されたEGRガスと吸気通路を流れる新気とが吸気通路から各気筒に分配されるまでに充分に混合しないことが一因になっていることが判明した。
 図7において、25は吸気通路を構成するバイパス通路、69はEGR弁62が設けられたEGR通路の接続口である。この例では、新気は破線で示すようにバイパス通路25内の上側を流れ、EGRガスは実線で示すように、接続口69から主としてバイパス通路25内の下側に流入している。その結果、新気とEGRガスが、端的に言えば、二層に分かれたようになってバイパス通路25の下流側に流れている。このことは、図8に示すバイパス通路25内各部のEGR濃度分布からもわかる。
 図8によれば、接続口69の直ぐ下流側においては、バイパス通路25内は、EGRガスに係る濃度が高い領域Aと濃度が低い領域Bに分かれている。バイパス通路25の下流側にいくに従って、高濃度領域Aと低濃度領域Bが減少していき、中間濃度領域Cが拡大している。しかし、バイパス通路25は分岐部25a,25bに分岐してサージタンク75に接続されているところ、分岐部25aにおいても、高濃度領域Aと低濃度領域Bが残っている。すなわち、新気とEGRガスは、完全に混合することなく、サージタンク75に流入することがわかる。そのため、気筒間でEGR量にばらつきを生じ易くなる。
 特に問題になるのは、エンジンの運転状態(例えば、エンジン回転数)に応じて、吸気通路(図7,8の例ではバイパス通路)における新気の流れの偏り状態が変化するだけでなく、EGRガスが上記接続口69から吸気通路に流入するときの流れの偏り状態も変わってくるということである。その結果、エンジンの運転状態によって、気筒間のEGR量のばらつきがことなるものになり、燃焼安定性の確保が難しくなる。
 そこで、本発明は、新気とEGRガスを効率よく混合させることを課題とする。
 本発明は、上記課題を解決するために、EGR通路の吸気通路に対する接続口の手前に吸気通路に流入するEGRガスの流速を低下させる通路断面積が拡大した拡大部を設けた。
 ここに開示するエンジンの吸気装置は、
 多気筒エンジンの燃焼室に吸気を導く吸気通路と、
 上記燃焼室から排気ガスを排出する排気通路と、
 上記吸気通路と上記排気通路を接続し、該排気通路から排気ガスの一部をEGRガスとして上記吸気通路に還流させるためのEGR通路とを備え、
 上記EGR通路は、上記吸気通路に対する接続口の手前に、上記吸気通路に流入する上記EGRガスの上記接続口における偏流が抑制されるように該EGRガスの流速を低下させる通路断面積が拡大した拡大部を備えていることを特徴とする。
 これによれば、EGR通路におけるEGRガスの流速が吸気通路に対する接続口の手前において低下することにより、EGRガスの当該接続口における偏流が抑制される。すなわち、偏流の度合が弱くなって、EGRガスが上記接続口の全周から吸気通路に流入し易くなる。その結果、仮に吸気通路を流れる新気の流れに多少の偏りがあっても、EGRガスが新気に衝突し易くなり、すなわち、新気とEGRガスとの混合が進み易くなり、EGR量の気筒間ばらつきが抑制される。従って、エンジンの燃焼安定性の確保に有利になる。
 一実施形態では、上記EGR通路は、上記接続口に向かって上記吸気通路に交差し且つ上記接続口の中心線に交差する方向に延びる通路部と、該通路部から上記接続口の中心線の方向に向きが変わって上記接続口に至る変向部とを備え、この変向部に上記拡大部が設けられている。
 EGR通路における吸気通路に対する接続口の手前に、EGRガスの流れ方向が変わる変向部がある場合は、EGRガスの流れに偏りを生じ易くなるところ、その変向部に拡大部が設けられていることによって、当該偏りが抑制される。
 一実施形態では、上記吸気通路は、上記燃焼室に導入する吸気の圧力を高める過給機を配置した過給用通路と、上記過給機の上流側と下流側を結び上記過給機をバイパスして吸気を上記燃焼室に導くバイパス通路とを備え、上記EGR通路は、上記吸気通路の上記バイパス通路に接続されている。
 新気が過給機を通らずにバイパス通路から燃焼室に導かれるときは、過給機による新気とEGRガスの混合は望めない。しかし、この場合でも、上述の如く、EGR通路に拡大部が設けられていることにより、バイパス通路において新気とEGRガスの混合が進み易くなり、EGR量の気筒間ばらつきが抑制される。
 一実施形態では、上記接続口に設けられた、上記EGRガスの還流量を調節するポペット式のEGR弁を備え、該EGR弁の弁軸が上記バイパス通路を貫通している。これによれば、弁軸まわりにおいて、弁軸を迂回して流れる新気と弁軸に沿って流れるEGRガスとの衝突を生ずることにより、新気とEGRガスの混合が進み易くなる。
 一実施形態では、上記バイパス通路に設けられた、上記過給機による吸気の過給圧を調節するバイパス弁を備え、上記接続口は、上記バイパス通路における上記バイパス弁よりも上流側に開口している。これによれば、新気とEGRガスの流れがバイパス弁を通るときに乱されるため、新気とEGRガスの混合が進み易くなる。
 一実施形態では、上記拡大部は、通路断面積が上記接続口に向かって漸次拡大した末広部を備えている。これによれば、EGRガスは、末広部を通過するときに接続口に向かって流速が漸次低下しながら、拡大部の全体に広がり易くなる。よって、EGRガス流れを大きく乱すことなく、EGRガスの流れの偏りを抑制することができる。
 本発明によれば、EGR通路が吸気通路に対する接続口の手前に、該接続口におけるEGRガスの偏流が抑制されるように該EGRガスの流速を低下させる通路断面積が拡大した拡大部を備えているから、吸気通路に流入するEGRガスが新気に衝突し易くなり、従って、新気とEGRガスとの混合が進み易くなり、その結果、EGR量の気筒間ばらつきが抑制されるため、エンジンの燃焼安定性の確保に有利になる。
エンジンシステムの構成図。 エンジンの正面図。 エンジンの吸気系統の断面図。 エンジンの吸気系統の斜視図。 エンジンの吸気系統の正面図。 バイパス通路とEGR通路の接続部の断面図。 新気とEGRガスの流れを示す側面図。 バイパス通路内各部のEGR濃度分布を示す図。
 以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
 <エンジン全体構成>
 図1に示す車両搭載エンジンシステムにおいて、1はエンジン、2はエンジン1の吸気通路、3はエンジン1の排気通路、4は燃料タンクである。同システムは燃料タンク4で発生する蒸発燃料をエンジン1の吸気通路2に導く蒸発燃料処理装置5を備えている。
 エンジン1は、直列4気筒圧縮着火式エンジンである。図1では、エンジン1の1気筒のみを図示している。本実施形態で説明するエンジン1は一例に過ぎず、本発明において、エンジンの種類や具体的構成は特に限定されるものでない。エンジン1は、各気筒の燃焼室10に臨む直噴式燃料噴射弁11、点火プラグ12及び筒内圧力センサ13を備えている。エンジン1の吸気ポートには吸気弁14が設けられ、排気ポートには排気弁15が設けられている。エンジン1は、吸気弁14及び排気弁15各々の開閉駆動のための可変動弁機構16,17を備えている。18はエンジン1のピストンである。
 吸気通路2は、吸気を各気筒の燃焼室10に分岐導入するための吸気マニホールド(図示省略)を備えている。吸気通路2には、その上流側から下流側に向かって順に、エアクリーナー21、燃焼室10への新気導入量を調節するスロットル弁22、燃焼室10に導入するガスの圧力を高める過給機23、並びに過給機3によって燃焼室10に導入されるガスを冷却するインタークーラ24が配設されている。また、吸気通路2には、スロットル弁22よりも下流側において、過給機23よりも上流側とインタークーラー24よりも下流側を結ぶバイパス通路25が設けられている。
 すなわち、吸気通路2は、燃焼室10に導入する吸気の圧力を高める過給機23を配置した過給用通路と、過給機23をバイパスして吸気を燃焼室10に導くバイパス通路25とを備えている。バイパス通路25には、バイパス通路25を流れるガス流量を調節するバイパス弁26が設けられている。
 本例の過給機23は、エンジン1のクランク軸によってベルト駆動される機械式過給機である。機械式の過給機44は、例えばルーツ式とすることができ、或いはリショルム式、ベーン式又は遠心式としてもよい。なお、機械式過給機に代えて、電動式の過給機、或いは排気エネルギによって駆動されるターボ過給機を採用してもよい。
 過給機23は、電磁クラッチ27を介してエンジン1のクランク軸に接続されている。電磁クラッチ27の接続及び遮断により、エンジン1から過給機23への動力の伝達とその遮断が行なわれる。
 電磁クラッチ27が遮断状態にされるときは(過給機23の非作動時)、バイパス弁26は全開にされる。これにより、吸気は過給機23を通らずバイパス通路25によってエンジン1の燃焼室10に導入される。すなわち、エンジン1は自然吸気(非過給)状態で運転される。
 電磁クラッチ27が接続状態にされるときは(過給機23の作動時)、バイパス弁26の制御によって過給圧が所望の圧力になるように調整される。すなわち、バイパス弁26の開かれると、過給機23を通過した吸気の一部がバイパス通路25を通って過給機23の上流側に逆流する。バイパス弁26の開度に応じて吸気の逆流量が変わるから、燃焼室10に導入する吸気の過給圧を制御することができる。
 排気通路3は、各気筒の排気ガスを集合させて排出するための排気マニホールド31を備えている。排気マニホールド31よりも下流側の排気通路3には、排気ガスを浄化する二つの触媒コンバーターが設けられている。上流側の触媒コンバーターは、三元触媒32とGPF(ガソリンパティキュレートフィルタ)33とを有し、車両のエンジンルームに配設される。下流側の触媒コンバーターは三元触媒34を有し、エンジンルーム外に配設される。排気マニホールド31の各分岐管には排気シャッター弁35が設けられている。
 吸気通路2と排気通路3は、排気ガスの一部をEGRガスとして吸気通路2に還流させるEGR通路6によって結ばれている。EGR通路6の上流端は、排気通路3における上流側触媒コンバーターと下流側触媒コンバーターとの間に接続されている。EGR通路6の下流端は、EGRガスを吸気通路2におけるスロットル弁22よりも下流側であって過給機23よりも上流側に供給すべく、バイパス通路25の途中に接続されている。EGRガスは、バイパス通路25のバイパス弁26を通らずに、吸気通路2における過給機23の上流側に入る。EGR通路6には、EGRガスを冷却するEGRクーラー61、並びにEGRガスの還流量を調節するEGR弁62が配設されている。
 なお、図1では、EGR弁62がEGR通路6の途中に設けられているように描かれているが、本実施形態では、バイパス通路25に対するEGR通路6の接続口にEGR弁62が設けられている。
 燃料タンク4は、燃料供給路41によって燃料噴射弁11に接続されている。燃料供給路41の上流端は燃料タンク4内の燃料ストレーナー40に接続されている。燃料供給路41には、燃料ポンプ42とコモンレール43が設けられている。燃料ポンプ42はコモンレール43に燃料を圧送する。コモンレール43は、燃料ポンプ42から圧送された燃料を高い燃料圧力で蓄える。燃料噴射弁11が開弁すると、コモンレール43に蓄えられていた燃料が燃料噴射弁11の噴口から燃焼室10の中に噴射される。
 蒸発燃料処理装置5は、燃料タンク4で発生した蒸発燃料を活性炭に吸着するキャニスタ51を備えている。燃料タンク4とキャニスタ51がタンク側通路52によって接続され、キャニスタ51と吸気通路2がパージ通路53によって接続されている。キャニスタ51には、大気開放口を有する外気導入路54が接続されている。パージ通路53には、パージ通路53を開閉するパージ弁55が設けられている。パージ弁55は、所定のパージ条件が成立しているとき、例えば、燃料噴射弁11による燃料噴射量の制御によってエンジン1の空燃比を適正に制御し得る状態にあるときに、開となる。
  パージ弁55が開いた状態において、吸気通路2におけるスロットル弁22の下流側に負圧が生じると、キャニスタ51に捕集された蒸発燃料がパージされる。すなわち、外気導入通路54からキャニスタ51に導入された空気と共に蒸発燃料がパージ通路53から吸気通路21におけるスロットル弁22の下流側にパージされる。パージされた蒸発燃料は、過給機23又はバイパス通路25を通ってエンジン1の燃焼室10に供給されて、燃料噴射弁11から供給された燃料と共に燃焼する。
 エンジンシステムはブローバイガス還流装置を備えている。ブローバイガス還流装置は、ブローバイ通路57と空気導入通路58を備えている。ブローバイ通路57は、その一端がエンジン1のクランクケース1aに接続され、他端は吸気通路2のスロットル弁22よりも下流側であって過給機23よりも上流側に接続されている。ブローバイ通路57には、PCV(Positive Crankcase Ventilation)バルブ59が設けられている。
 PCVバルブ59は、クランクケース1a側から吸気通路2側に向かう方向へのガスの通過のみを許容する。PCVバルブ59は、吸気通路2のスロットル弁22よりも下流側の圧力がクランクケース1aの圧力に比べて低い負圧時に、該負圧の程度に応じて開度が変化する。すなわち、当該負圧に応じてクランクケース1aから吸気通路2へのブローバイガス流量が適量に調整される。
 空気導入通路58は、その一端がエンジン1のシリンダヘッド1bを介してクランクケース1aに接続され、他端が吸気通路2のエアクリーナ21とスロットル弁22の間に接続されている。空気導入通路58には、吸気通路2側からクランクケース1a側へ向かう方向への空気の通過のみを許容する逆止弁60が設けられている。
 クランクケース1aからブローバイガスがブローバイ通路57を通して吸気通路2に出されるとき、エアクリーナ21でろ過された空気が空気導入通路58をからクランクケース1aに導入される。これにより、クランクケース1aが換気される。
 吸気通路2には、エンジン1を制御するための、吸入空気量を検出するエアフローセンサ63、スロットル弁22よりも下流側(過給機23よりも上流側)の吸気圧力を検出する圧力センサ64、過給機23から吐出された吸気の温度を検出する温度センサ65、並びにインタークーラ24よりも下流側において吸気圧力を検出する圧力センサ66が設けられている。排気通路3には、三元触媒32よりも上流側において排気ガス中の酸素濃度を検知するリニアOセンサ67、三元触媒32よりも下流側において排気ガス中の酸素濃度を検知するラムダOセンサ68が設けられている。
 <エンジンシステム構成要素の構造>
 図2に示すように、過給機23はエンジン1の上部において軸心を気筒列方向に延ばした状態に設けられている。この過給機23に気筒列方向に延びる吸気通路2を構成する上流側吸気管71が結合されている。過給機23における上流側吸気管71の反対側に該過給機23の駆動部ハウジング72が突出している。この駆動部ハウジング72に、エンジン1のクランク軸で過給機23を駆動するための電磁クラッチ27及び駆動軸が収容されている。その駆動軸に結合したプーリ73に伝動ベルト74が巻き掛けられている。
 過給機23の側面には、加圧された吸気を気筒列方向に延びるサージタンク(図4の符号75)に導くための吐出ダクト76の上流端が接続されている。吐出ダクト76は、過給機23の下方に延び、その下端が過給機23の下方に配置したインタークーラ24に接続されている。
 図3に示すように、上流側吸気管71の上流端部にはスロットル弁22を備えたスロットルボディ77が設けられている。スロットル弁22は、バタフライ弁であり、その弁軸22aは水平に設けられている。スロットルボディ77よりも下流側(過給機23よりも上流側)において、バイパス通路25を形成するバイパス管78が上流側吸気管71の上面から上流側吸気管71の上流側に向かって斜めに立ち上がっている。すなわち、スロットル弁22よりも下流側において、上流側吸気管71によって形成された吸気通路2の上半周部の頂部に、バイパス通路25の接続口79が開口している。
 上流側吸気管71は、バイパス通路25の接続口79よりも下流側において、通路断面積が過給機3に向かって拡大した通路拡大部2bを形成しており、その拡大端が過給機3に接続されている。
 バイパス管78は、上述の斜めになった立上り部に続いて上流側吸気管71の下流側に向かうように湾曲して折り返された折返し部78aを有する。バイパス管78は、当該折返し部78aに続いてサージタンク75の中央側に向かって過給機23の上側を気筒列方向に延びている。バイパス管78の折返し部78aよりも下流側には、EGR通路6を形成するEGR管(図3では図示を省略している。)が接続されていて、EGR通路6のバイパス通路25に対する接続口69にEGR弁62が設けられている。接続口69はバイパス通路25の側面に開口している。バイパス管78は、気筒列方向の一方に延びる第1枝管78bと、気筒列方向の他方に延びる第2枝管78cとに分岐している。
 図4に示すように、両枝管78b,78c各々によって形成されたバイパス通路25の分岐部25a,25bがサージタンク75に接続されている。
 図3に示すように、EGR弁62よりも下流側のバイパス管78内にバイパス弁26が設けられている。すなわち、EGR通路6の接続口69は、バイパス弁26よりも上流側において、バイパス通路25に開口している。バイパス弁26はバタフライ弁であり、その弁軸26aは水平に設けられている。
 図5に示すように、サージタンク75には吸気導入路80が一体に設けられている。吸気導入路80はサージタンク75の下方に延びインタークーラ24に接続されている。また、同図に示すように、排気通路3から延びるEGR管81は、バイパス管78よりも低い位置からバイパス管78の側面に向かって立ち上がった立上り部91を備え、立上り部91の上端部がバイパス管78の側面に接続されている。
 図6に示すように、EGR管81の立上り部91は、バイパス通路25におけるEGR通路6の接続口69に向かってバイパス通路25に交差し且つ接続口69の中心線Dに交差する方向に延びる通路部92を形成している。この立上り部91の中間部にその上流側部分と下流側部分の間の変位を吸収するフレキシブル部(蛇腹部)93が設けられている。立上り部91の上端部は、接続口69の手前において、通路部92に続く、接続口69の中心線Dの方向に向きが変わって接続口69に至る変向部94を形成している。
 変向部94には、通路部92(フレキシブル部84よりも下流側の断面円形通路部分)よりも、通路断面積が拡大した拡大部95が形成されている。拡大部95は、通路部92の下流端から通路断面積が接続口69に向かって漸次拡大した末広部96を備えている。拡大部95の通路断面積は接続口69の通路断面積よりも大きい。変向部94は、拡大部95に続いて通路断面積が縮小して接続口69に至る部分を備え、該縮小部に接続口69を開閉するEGR弁62の弁座97が形成されている。
 EGR弁62はポペット式であり、その弁軸98はバイパス通路25を貫通して接続口69の中心線Dの方向に延びている。すなわち、弁軸98はバイパス通路25内を接続口69の中心線Dの方向に横切っている。弁軸98は、図2に示すソレノイド式EGR弁駆動部85によって駆動されて進退し、EGR弁62が拡大部95側に移動することによって接続口69が開口する。
 なお、図2において、83はスロットル弁22の駆動部、84はバイパス弁26の駆動部である。
 <EGRガスと新気の混合>
 上記実施形態では、図3に示す過給機23の非作動時には、吸気通路2のスロットル弁22を通過した新気は、接続口79よりバイパス通路25に流入する。その新気は、バイパス通路25のEGR弁62を設けた部分及びバイパス弁26を設けた部分を通り、図4に示す分岐部25a,25bからサージタンク75に導入される。
 図6に示すように、EGR弁62が開弁すると(開弁状態を鎖線で示す)、EGRガスがEGR通路6の通路部92を通って上方へ導かれる。EGRガスは、変向部94において流れ方向が上方向から横方向に変わり、EGR弁62の周囲から接続口69を通ってバイパス通路25に流入する。
 このように、EGRガスの流れ方向が変向部94で変わるときは、従来であれば、エンジンの運転状態に応じて、すなわち、EGRガスの流速に応じて、変向部94においてEGRガスの流れに偏りを生ずる。例えば、EGRガスは、その流速が高くなるほど、変向部94の上半周側を偏ってEGR弁62の上側から接続口69を通ってバイパス通路25に流入し易くなる。この場合、EGRガスは、EGR弁62の上側から接続口69に向かって斜め下方へ進む結果、バイパス通路25の下半周側に流入するため、図7及び図8に示すように、バイパス通路25において、新気とEGRガスが2層に分かれた状態になり易くなる。
 これに対して、上記実施形態では、変向部94に通路断面積の拡大部95が形成されているから、通路部92を流れてきたEGRガスの流速が拡大部95において低下する。この流速の低下によって、変向部94におけるEGRガスの偏りが抑制され、EGRガスがEGR弁62の周囲から比較的均等に接続口69を通ってバイパス通路25に流入するようになる。その結果、バイパス通路25において、EGRガスが新気の流れに対して側面から当たり易くなり、そのため、新気とEGRガスが混合し易くなる。
 しかも、上記実施形態では、拡大部95はその上流側が末広部96になっているから、EGRガスが末広部96を通過するときに流速が漸次低下しながら、拡大部の全体に広がり易くなる。よって、EGRガスの流れの偏り抑制に有利になる。
 また、上記実施形態では、EGR弁62の弁軸98がバイパス通路25を横切っているから、弁軸98を迂回して進む新気と弁軸98に沿って流れるEGRガスとが衝突する形になり、新気とEGRガスが混合し易くなる。さらに、新気とEGRガスは、バイパス弁26を通過するときに、該バイパス弁26によって流れが乱されるため、混合が進み易くなる。
 このように、接続口69を通過するEGRガスの流れの偏りが抑制され、バイパス通路25での新気とEGRガスの混合が進み易くなる結果、EGR量の気筒間ばらつきが抑制され、従って、エンジンの燃焼安定性の確保に有利になる。
 なお、上記実施形態のEGR弁62はポペット式であるが、バタフライ式EGR弁であっても、該EGR弁の下流の接続口近傍に上述の如き拡大部を設けることにより、接続口69を通過するEGRガスの流れの偏りを抑制することができる。
  1 エンジン
  2 吸気通路
  3 排気通路
  6 EGR通路
 10 燃焼室
 23 過給機
 25 バイパス通路
 26 バイパスバルブ
 62 EGR弁
 69 接続口
 92 通路部
 94 変向部
 95 拡大部
 96 末広部
 98 弁軸

Claims (6)

  1.  多気筒エンジンの燃焼室に吸気を導く吸気通路と、
     上記燃焼室から排気ガスを排出する排気通路と、
     上記吸気通路と上記排気通路を接続し、該排気通路から排気ガスの一部をEGRガスとして上記吸気通路に還流させるためのEGR通路とを備えているエンジンの吸気装置であって、
     上記EGR通路は、上記吸気通路に対する接続口の手前に、上記吸気通路に流入する上記EGRガスの上記接続口における偏流が抑制されるように該EGRガスの流速を低下させる通路断面積が拡大した拡大部を備えていることを特徴とするエンジンの吸気装置。
  2.  請求項1において、
     上記EGR通路は、上記接続口に向かって上記吸気通路に交差し且つ上記接続口の中心線に交差する方向に延びる通路部と、該通路部に続いて上記接続口の中心線の方向に向きが変わって上記接続口に至る変向部とを備え、
     上記変向部に上記拡大部が設けられていることを特徴とするエンジンの吸気装置。
  3.  請求項1又は請求項2において、
     上記吸気通路は、上記燃焼室に導入する吸気の圧力を高める過給機を配置した過給用通路と、上記過給機の上流側と下流側を結び上記過給機をバイパスして吸気を上記燃焼室に導くバイパス通路とを備え、
     上記EGR通路は、上記吸気通路の上記バイパス通路に接続されていることを特徴とするエンジンの吸気装置。
  4.  請求項3において、
     上記接続口に設けられた、上記EGRガスの還流量を調節するポペット式のEGR弁を備え、
     上記EGR弁の弁軸が上記バイパス通路を貫通していることを特徴とするエンジンの吸気装置。
  5.  請求項3又は請求項4において、
     上記バイパス通路に設けられた、上記過給機による吸気の過給圧を調節するバタフライ式のバイパス弁を備え、
     上記接続口は、上記バイパス通路における上記バイパス弁よりも上流側に開口していることを特徴とするエンジンの吸気装置。
  6.  請求項1乃至請求項5のいずれか一において、
     上記拡大部は、通路断面積が上記接続口に向かって漸次拡大した末広部を備えていることを特徴とするエンジンの吸気装置。
PCT/JP2019/025515 2018-07-24 2019-06-27 エンジンの吸気装置 WO2020021952A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980048170.8A CN112449665B (zh) 2018-07-24 2019-06-27 发动机的进气装置
US17/261,551 US11378041B2 (en) 2018-07-24 2019-06-27 Air intake device for engine
EP19840003.8A EP3808966B1 (en) 2018-07-24 2019-06-27 Air intake device for engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018138348A JP7172234B2 (ja) 2018-07-24 2018-07-24 エンジンの吸気装置
JP2018-138348 2018-07-24

Publications (1)

Publication Number Publication Date
WO2020021952A1 true WO2020021952A1 (ja) 2020-01-30

Family

ID=69182081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025515 WO2020021952A1 (ja) 2018-07-24 2019-06-27 エンジンの吸気装置

Country Status (5)

Country Link
US (1) US11378041B2 (ja)
EP (1) EP3808966B1 (ja)
JP (1) JP7172234B2 (ja)
CN (1) CN112449665B (ja)
WO (1) WO2020021952A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200208569A1 (en) * 2017-07-26 2020-07-02 Mmt ag Fluid metering valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020012429A (ja) * 2018-07-19 2020-01-23 マツダ株式会社 エンジンの蒸発燃料処理装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119664U (ja) * 1984-07-10 1986-02-04 トヨタ自動車株式会社 過給機付エンジンの排気ガス再循環装置
US5333456A (en) * 1992-10-01 1994-08-02 Carter Automotive Company, Inc. Engine exhaust gas recirculation control mechanism
JP2003322039A (ja) 2002-04-26 2003-11-14 Suzuki Motor Corp 過給機付エンジンの給気冷却制御装置
US20070271920A1 (en) * 2006-05-24 2007-11-29 Honeywell International, Inc. Exhaust gas recirculation mixer
JP2013060921A (ja) * 2011-09-14 2013-04-04 Fuji Heavy Ind Ltd エンジンの排気ガス還流装置
JP2013108479A (ja) * 2011-11-24 2013-06-06 Fuji Heavy Ind Ltd ディーゼルエンジン
US20150013651A1 (en) * 2013-07-09 2015-01-15 GM Global Technology Operations LLC Dedicated EGR Engine with Dynamic Load Control
JP2015124755A (ja) * 2013-12-27 2015-07-06 大豊工業株式会社 ガス混合装置
JP2016121540A (ja) * 2014-12-24 2016-07-07 三菱自動車工業株式会社 インテークマニホールド
EP3067547A1 (fr) * 2015-03-11 2016-09-14 Renault S.A.S. Connecteur d entree de turbocompresseur avec diffuseur de gaz egr

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6138651A (en) * 1997-05-30 2000-10-31 Nissan Motor Co., Ltd. Exhaust gas recirculation system for engine
FR2847946B1 (fr) * 2002-11-28 2006-06-23 Renault Sa Systeme de recirculation de gaz d'echappement perfectionne pour moteur a combustion interne de vehicule automobile
US7624722B2 (en) * 2007-12-31 2009-12-01 Cummins, Inc Apparatus and system for efficiently recirculating an exhaust gas in a combustion engine
US8056339B2 (en) * 2010-01-08 2011-11-15 Ford Global Technologies, Llc Warming intake air using EGR cooler in dual-throttle boosted engine system
JP6051881B2 (ja) * 2013-01-15 2016-12-27 いすゞ自動車株式会社 内燃機関とegrガス混合装置
US9382825B2 (en) * 2013-04-25 2016-07-05 Ford Global Technologies, Llc System and method for gas purge control
WO2014181394A1 (ja) * 2013-05-08 2014-11-13 トヨタ自動車株式会社 過給機付き内燃機関
JP6040128B2 (ja) * 2013-09-03 2016-12-07 本田技研工業株式会社 Egr装置
US9422877B2 (en) * 2013-10-11 2016-08-23 General Electric Company System and method for control of exhaust gas recirculation (EGR) utilizing process temperatures
US9206752B2 (en) * 2014-01-31 2015-12-08 Achates Power, Inc. Air handling system for an opposed-piston engine in which a supercharger provides boost during engine startup and drives EGR during normal engine operation
DE102014210508A1 (de) * 2014-06-03 2015-12-03 Bayerische Motoren Werke Aktiengesellschaft Aufgeladene Brennkraftmaschine
CN204458107U (zh) * 2014-12-25 2015-07-08 潍柴动力股份有限公司 废气再循环系统的混合装置
US10094337B2 (en) * 2015-03-10 2018-10-09 Fca Us Llc Dual path cooled exhaust gas recirculation for turbocharged gasoline engines
JP6582863B2 (ja) * 2015-10-20 2019-10-02 アイシン精機株式会社 過給機付き内燃機関の吸気システム
US10247143B2 (en) * 2016-03-10 2019-04-02 Subaru Corporation Exhaust gas recirculation apparatus
JP6232093B2 (ja) * 2016-03-10 2017-11-15 株式会社Subaru ガス還流装置
JP2018025123A (ja) * 2016-08-09 2018-02-15 アイシン精機株式会社 吸気装置
WO2019038920A1 (ja) * 2017-08-25 2019-02-28 マツダ株式会社 エンジンの吸気システム
CN107327337A (zh) * 2017-08-31 2017-11-07 如皋市明德包装有限公司 一种新型环保节能的柴油机装置结构

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119664U (ja) * 1984-07-10 1986-02-04 トヨタ自動車株式会社 過給機付エンジンの排気ガス再循環装置
US5333456A (en) * 1992-10-01 1994-08-02 Carter Automotive Company, Inc. Engine exhaust gas recirculation control mechanism
JP2003322039A (ja) 2002-04-26 2003-11-14 Suzuki Motor Corp 過給機付エンジンの給気冷却制御装置
US20070271920A1 (en) * 2006-05-24 2007-11-29 Honeywell International, Inc. Exhaust gas recirculation mixer
JP2013060921A (ja) * 2011-09-14 2013-04-04 Fuji Heavy Ind Ltd エンジンの排気ガス還流装置
JP2013108479A (ja) * 2011-11-24 2013-06-06 Fuji Heavy Ind Ltd ディーゼルエンジン
US20150013651A1 (en) * 2013-07-09 2015-01-15 GM Global Technology Operations LLC Dedicated EGR Engine with Dynamic Load Control
JP2015124755A (ja) * 2013-12-27 2015-07-06 大豊工業株式会社 ガス混合装置
JP2016121540A (ja) * 2014-12-24 2016-07-07 三菱自動車工業株式会社 インテークマニホールド
EP3067547A1 (fr) * 2015-03-11 2016-09-14 Renault S.A.S. Connecteur d entree de turbocompresseur avec diffuseur de gaz egr

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3808966A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200208569A1 (en) * 2017-07-26 2020-07-02 Mmt ag Fluid metering valve
US11578685B2 (en) * 2017-07-26 2023-02-14 Mmt ag Fluid metering valve

Also Published As

Publication number Publication date
CN112449665B (zh) 2022-10-21
US11378041B2 (en) 2022-07-05
JP2020016164A (ja) 2020-01-30
EP3808966B1 (en) 2022-04-20
US20210262420A1 (en) 2021-08-26
CN112449665A (zh) 2021-03-05
EP3808966A4 (en) 2021-04-21
EP3808966A1 (en) 2021-04-21
JP7172234B2 (ja) 2022-11-16

Similar Documents

Publication Publication Date Title
US8056340B2 (en) EGR mixer for high-boost engine systems
US9670881B2 (en) Supercharger-equipped internal combustion engine
US8261724B2 (en) Intake apparatus for internal combustion engine
US10718260B2 (en) Exhaust gas purification apparatus for an internal combustion engine
US7971579B2 (en) Air-exhaust mixing apparatus
JP2012062822A (ja) 過給式エンジンの排気再循環システム
WO2007066833A1 (ja) 内燃機関の排気浄化システム
US6439212B1 (en) Bypass venturi assembly and elbow with turning vane for an exhaust gas recirculation system
WO2020021952A1 (ja) エンジンの吸気装置
JP6076212B2 (ja) 過給機付きエンジンの排気還流装置における新気導入装置
US11591991B1 (en) Methods and systems for merging EGR with intake air
KR101898197B1 (ko) 차압 밸브를 이용한 듀얼 퍼지 시스템
WO2020017218A1 (ja) エンジンの蒸発燃料処理装置
US10760477B2 (en) Turbocharger engine
US10316738B2 (en) Turbocharger engine
US9695779B2 (en) Exhaust gas mixing system
GB2535995A (en) A geared valve system
US20130199176A1 (en) Exhaust gas throttle valve
US20170218890A1 (en) A turbomachinery assembly for an internal combustion engine using a venturi apparatus
JP7003681B2 (ja) 内燃機関の吸気マニホールド
JP2020159339A (ja) 内燃機関の制御装置
KR20180059000A (ko) 이지알시스템용 밸브장치
JP2012062882A (ja) 内燃機関用吸排気システム、そのシステムの運転方法、およびそのシステムを備える内燃機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019840003

Country of ref document: EP

Effective date: 20210118