WO2020021937A1 - 蓄電デバイス用負極材料 - Google Patents

蓄電デバイス用負極材料 Download PDF

Info

Publication number
WO2020021937A1
WO2020021937A1 PCT/JP2019/025079 JP2019025079W WO2020021937A1 WO 2020021937 A1 WO2020021937 A1 WO 2020021937A1 JP 2019025079 W JP2019025079 W JP 2019025079W WO 2020021937 A1 WO2020021937 A1 WO 2020021937A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
less
electrode material
particles
based alloy
Prior art date
Application number
PCT/JP2019/025079
Other languages
English (en)
French (fr)
Inventor
友紀 廣野
澤田 俊之
Original Assignee
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽特殊製鋼株式会社 filed Critical 山陽特殊製鋼株式会社
Priority to KR1020207028802A priority Critical patent/KR20210033936A/ko
Publication of WO2020021937A1 publication Critical patent/WO2020021937A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes

Definitions

  • the present invention relates to a material suitable for a negative electrode of a power storage device that involves movement of lithium ions during charging and discharging, such as a lithium ion secondary battery, an all solid lithium ion secondary battery, and a hybrid capacitor.
  • lithium ion secondary battery In recent years, mobile phones, portable music players, portable terminals, and the like have been rapidly spreading. These portable devices have a lithium ion secondary battery. Electric vehicles and hybrid vehicles also have lithium ion secondary batteries. Further, lithium ion secondary batteries and hybrid capacitors are used as stationary power storage devices for home use.
  • the negative electrode In lithium ion secondary batteries, the negative electrode occludes lithium ions during discharge. When charging a lithium ion secondary battery, lithium ions are released from the negative electrode.
  • the negative electrode has a current collector and an active material fixed to the surface of the current collector.
  • a carbon-based material such as natural graphite, artificial graphite, and coke is used as an active material in the negative electrode.
  • the theoretical capacity of this carbon-based material for lithium ions is only 372 mAh / g.
  • An active material having a large capacity is desired.
  • Si As an active material in a negative electrode. Si reacts with lithium ions. The reaction forms a compound. Typical compounds are Li 22 Si 5. By this reaction, a large amount of lithium ions is occluded in the negative electrode. Si can increase the storage capacity of the negative electrode.
  • the active material layer containing Si occludes lithium ions
  • the active material layer expands due to the formation of the aforementioned compound.
  • the expansion rate of the active material is about 400%.
  • the active material layer contracts.
  • the active material falls off the current collector by repeating the expansion and contraction. This drop reduces the storage capacity. The repetition of expansion and contraction may inhibit the conductivity between the active materials.
  • the life of a conventional lithium ion secondary battery in which the negative electrode contains Si is not long.
  • the electrical conductivity of ⁇ ⁇ Si alone is lower than that of carbon-based materials and metal-based materials. If Si is used in combination with a conductive material such as a carbon-based material for the negative electrode, the electrical conductivity can be improved.
  • Various proposals have been made for improving the charge / discharge characteristics of a combination of Si and a conductive material.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2017-216172 discloses a negative electrode material for a lithium ion secondary battery including a Si phase having a crystallite size of 20 nm or less and a silicide phase having a crystallite size of 30 nm or less. .
  • a graphite material is dispersed in a matrix of Si.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2013-168328 discloses a composite material in which particles containing a solid phase mainly composed of Si and a Si intermetallic compound phase containing Cr or Ti are composited with a carbon material. Is disclosed. This composite material is for a negative electrode of a lithium ion secondary battery. The composite further contains a conductivity enhancer.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2017-216172
  • many by-products such as Li 2 O are formed on the surface of the Si material. This by-product is generated by a decomposition reaction of the electrolytic solution. This by-product is insulating. Due to the formation of many by-products, the conductivity of the negative electrode is hindered, and the cycle characteristics of the secondary battery deteriorate. In addition, the capacity of the secondary battery is reduced due to the consumption of lithium ions in the electrolytic solution by-products.
  • SiIn the negative electrode material disclosed in Patent Document 2 Japanese Patent Application Laid-Open No. 2013-168328
  • a Si—C bond is formed.
  • Si bonded to C cannot store lithium ions.
  • the formation of the Si—C bond causes a reduction in the capacity of the secondary battery.
  • the Si—C compound is insulating, the conductivity of the negative electrode material is inhibited by the Si—C, and the cycle characteristics of the secondary battery are inhibited.
  • An object of the present invention is to provide a negative electrode material capable of obtaining a power storage device having a large storage capacity and suppressing a reduction in the storage capacity due to repeated charging and discharging.
  • the negative electrode material for an electric storage device includes a large number of particles.
  • Each particle has a base particle made of a Si-based alloy and a coating layer made of a carbon-based material that covers the base particle.
  • the balance is unavoidable impurities.
  • the element A is at least one element selected from the group consisting of V, Fe, Ni, Mo, Nb, Co, Al, and Sn.
  • This Si-based alloy has a Si phase and a silicide phase.
  • the ratio (II / I) of the diffraction peak intensity II of the (111) plane, which is the silicide domain peak, to the diffraction peak intensity I of the (111) plane, which is the Si main peak is 1.0 or more.
  • the ratio Pp of the particles present as primary particles and having a particle diameter of 10 ⁇ m or less to the total particles in the base powder, which is an aggregate of a large number of base particles, is 50% by volume or more.
  • the content Pc of the carbon-based material in the negative electrode material is 0.010% by mass or more and 5.0% by mass or less.
  • the ratio (D2 / D1) of the average particle diameter D2 of the coating layer to the average particle diameter D1 of the Si-based alloy is 0.8 or less.
  • the Si phase is amorphous or low crystalline.
  • the crystallite size of the Si phase is 30 nm or less.
  • the crystallite size of the silicide phase is 40 nm or less.
  • the carbon-based material is acetylene black, Ketjen black, carbon nanofiber or carbon nanotube.
  • the average particle size of the negative electrode material is 0.1 ⁇ m or more and 25 ⁇ m or less.
  • the BET specific surface area of the negative electrode material is from 2.0 m 2 / g to 40.0 m 2 / g.
  • the content of element A in the Si-based alloy is 0.1 at. % At least 10 at. % Or less.
  • An electric storage device using the negative electrode material according to the present invention has a large electric storage capacity because the base particles are made of a Si-based alloy.
  • the coating layer suppresses the decomposition reaction of the electrolytic solution, suppresses the formation of an excessive resistance film, and suppresses the exhaustion of the electrolytic solution.
  • stress due to expansion and contraction of charge and discharge is reduced.
  • a reduction in the power storage capacity due to repeated charging and discharging is suppressed.
  • FIG. 1 is a micrograph showing one particle of a negative electrode material according to an embodiment of the present invention.
  • FIG. 2 is a photomicrograph showing the base particles of the particles of FIG.
  • FIG. 3 is a chart showing the results of electron beam diffraction of the Si-based alloy of the base particles of FIG.
  • FIG. 4 is a micrograph showing a mother powder, which is an aggregate of the mother particles of FIG.
  • FIG. 5 is a micrograph showing a state before the mother powder of FIG. 4 is crushed.
  • This embodiment is a negative electrode material of a lithium ion secondary battery.
  • This lithium ion secondary battery is an example of a power storage device that involves movement of lithium ions during charging and discharging.
  • the negative electrode of the lithium ion secondary battery has a current collector, an active material, a conductive material, and a binder.
  • the active material, the conductive material, and the binder are attached to the current collector in a mixed state.
  • the conductive material assists the conductivity of the active material.
  • the binder fixes the active material particles to other active material particles.
  • the binder further fixes the active material particles to the current collector.
  • the negative electrode material according to the present invention can be used.
  • Anode material is composed of many particles.
  • the collection of many particles is a powder.
  • FIG. 1 shows one particle. Although not shown, the particles have base particles and a coating layer.
  • the coating layer covers the base particles.
  • the coating layer may cover the entire surface of the mother particle.
  • the coating layer may partially cover the surface of the base particle.
  • FIG. 2 shows the base particles.
  • the base particles are made of a Si-based alloy. This Si-based alloy Si: 50 at. % At least 95 at. % Or less Cr: 5 at. % At least 20 at. % Or less Ti: 5 at. % At least 20 at. % Or less and element A: 0 at. % At least 10 at. % Or less.
  • the composition of the Si-based alloy is Si: 50 at. % At least 95 at. % Or less Cr: 5 at. % At least 20 at. % Or less Ti: 5 at. % At least 20 at. % Or less Element A: 0 at. % At least 10 at. % Or less and the balance: unavoidable impurities.
  • the Si-based alloy forms a Si phase.
  • the main component of the Si phase is Si.
  • the Si phase may include another element that is dissolved in the Si matrix.
  • Si combines with lithium ions. Si also releases lithium ions. In other words, the negative electrode material containing Si stores and releases lithium ions. The lithium ion storage charges the lithium ion secondary battery. The discharge of the lithium ions discharges the lithium ion secondary battery.
  • Si has about 10 times or more the theoretical capacity as compared with a carbon-based material generally used as a negative electrode material.
  • the storage capacity of a lithium ion secondary battery in which the negative electrode material contains Si is large.
  • the content of Si in the Si-based alloy is 50 at. % Or more, preferably 60 at. % Is more preferable, and 70 at. % Is particularly preferable.
  • the Si content is 95 at. %, Preferably 90 at. % Or less, more preferably 85 at. % Is particularly preferred.
  • the Si phase is amorphous or low crystalline.
  • this Si phase there are many paths for moving lithium ions.
  • Low crystallinity means that the crystallite size of Si is 30 nm.
  • the Si-based alloy contains Cr and Ti.
  • an intermetallic compound such as Si 2 (Cr, Ti) precipitates.
  • This intermetallic compound forms a silicide phase.
  • the Si phase and the silicide phase are finely mixed.
  • Si absorbs lithium ions the Si phase expands.
  • the silicide phase relaxes the stress during the expansion.
  • Si releases lithium ions the Si phase contracts.
  • the silicide phase relaxes the stress at the time of this contraction. Relaxation of the stress suppresses the negative electrode material from falling off the negative electrode.
  • the relaxation of the stress also suppresses the electrical isolation of the Si phase. Therefore, a lithium ion secondary battery having a negative electrode containing a silicide phase has excellent cycle characteristics.
  • CrCr content in the Si-based alloy is 5 at. % At least 20 at. % Or less is preferable.
  • the content is 5 at. % Or more has excellent cycle characteristics.
  • the content is 6 at. % Or more is more preferable, and 7 at. % Is particularly preferable.
  • the lithium ion secondary battery has excellent storage capacity. From this viewpoint, the content is 18 at. % Or less, more preferably 15 at. % Is particularly preferred.
  • the content of Ti in the Si-based alloy is 5 at. % At least 20 at. % Or less is preferable. When the content is 5 at. % Or more has excellent cycle characteristics. From this viewpoint, the content is 7 at. % Or more, more preferably 9 at. % Is particularly preferable. When this content is 20 at. % Or less, the lithium ion secondary battery has excellent storage capacity. From this viewpoint, the content is 18 at. % Or less, more preferably 16 at. % Is particularly preferred.
  • the total content of Cr and Ti in the Si-based alloy is 10 at. % At least 40 at. % Or less is preferable.
  • the content is 10 at. % Or more has excellent cycle characteristics. From this viewpoint, this content is 14 at. % Or more, more preferably 16 at. % Is particularly preferable.
  • this content is 40 at. % Or less, the lithium ion secondary battery has excellent storage capacity. From this viewpoint, this content is 35 at. % Or less, more preferably 30 at. % Is particularly preferred.
  • the Si-based alloy may include the element A.
  • the element A is at least one element selected from the group consisting of V, Fe, Ni, Mo, Nb, Co, Al, and Sn. Element A is not an essential component.
  • V, Fe, Ni, Mo, Nb and Co form a solid solution in silicide.
  • V, Fe, Ni, Mo, Nb and Co expand the crystal lattice of silicide.
  • This silicide is excellent in diffusivity of lithium ions moving inside itself.
  • the lithium ion secondary battery having this silicide is excellent in cycle characteristics and reaction efficiency.
  • V, Fe, Ni, Mo, Nb and Co have a catalytic action. Therefore, these elements can enhance battery characteristics.
  • Al and Sn can be dissolved in Si. Al and Sn increase the conductivity of the Si phase.
  • the negative electrode material having this Si phase has a small electric resistance.
  • the lithium ion secondary battery having this Si phase is excellent in charge and discharge efficiency.
  • Al and Sn can each be dispersed in the negative electrode material as a single substance. Simple Al and Sn are flexible and excellent in toughness. Simple Al and Sn can relieve stress during expansion and contraction of the Si phase.
  • the content of the element A in the Si-based alloy is 0.1 at. % Or more, preferably 1 at. % Or more, more preferably 2 at. % Or more is more preferable. % Is particularly preferable. From the viewpoint of the storage capacity, this content is 10 at. % Or less, and 8 at. % Or less, more preferably 7 at. % Is more preferable.
  • FIG. 3 shows the diffraction peak intensity I of the (111) plane, which is the Si main peak, and the diffraction peak intensity II of the (111) plane, which is the silicide domain peak.
  • the ratio (II / I) of the diffraction peak intensity II to the diffraction peak intensity I is preferably 1.0 or more.
  • the Si phase and the silicide phase are finely dispersed and mixed.
  • the negative electrode material containing this Si-based alloy cracking, electrical isolation and falling off of the particles due to stress during charging and discharging hardly occur.
  • a lithium ion secondary battery having this negative electrode material has excellent cycle characteristics.
  • the ratio (II / I) is more preferably equal to or greater than 2.0, and particularly preferably equal to or greater than 5.0.
  • the ratio (II / I) is preferably 10.0 or less.
  • X-ray diffraction a CuK ⁇ ray having a wavelength of 1.54059 angstroms is used as an X-ray source. The measurement is performed in a range where 2 ⁇ is 20 degrees or more and 80 degrees or less. Thereby, a diffraction spectrum is obtained.
  • the intensity value of the (111) plane, which is the Si main peak, and the intensity value of the (111) plane, which is the silicide domain peak, are selected from the diffraction spectra obtained when 2 ⁇ is in the range of 20 degrees to 80 degrees. (II / I) is calculated.
  • the crystallite size of the Si phase is preferably 30 nm or less.
  • the crystallite size is more preferably equal to or less than 20 nm, and particularly preferably equal to or less than 10 nm.
  • the crystallite size of this phase is considered to be zero.
  • the lower limit of the crystallite size of the Si phase is not particularly limited, but typically exceeds 0 nm, more typically 0.1 nm or more, and still more typically 0.2 nm or more. .
  • the crystallite size of the silicide phase is preferably 40 nm or less.
  • the negative electrode material having a crystallite size of 40 nm or less lithium ions can easily move in the compound phase.
  • the crystallite size is more preferably equal to or less than 20 nm, and particularly preferably equal to or less than 15 nm.
  • the lower limit of the crystallite size of the silicide phase is not particularly limited, but is typically 0.1 nm or more, more typically 0.2 nm or more, and still more typically 0.5 nm or more. is there.
  • Crystallite size can be confirmed by X-ray diffraction.
  • D represents the size of the crystallite (angstrom)
  • K represents the Scherrer's constant
  • represents the wavelength of the X-ray tube
  • represents the spread of the diffraction line due to the size of the crystallite.
  • represent diffraction angles.
  • the control of the crystallite size of the Si phase and the silicide phase can be performed by adjusting the components of the raw materials.
  • the control of the crystallite size can also be performed by controlling the cooling rate at the time of solidification after dissolving the raw material powder. Further, the crystallite size can also be controlled by pulverization of particles described below and pulverization of secondary particles.
  • the surface of the particles shown in FIG. 1 is smoother than the surface of the particles shown in FIG. There are few irregularities on this surface.
  • This surface state is achieved by the coating layer.
  • This coating layer is made of a carbon-based material.
  • Si-based alloys are active in reacting with an electrolytic solution.
  • the negative electrode material does not have a coating layer, the decomposition reaction of the electrolytic solution on the Si-based surface layer is remarkable, and many resistance films are formed.
  • This resistance film increases the electric resistance of the negative electrode.
  • This resistance film impairs the storage capacity of the lithium ion secondary battery.
  • the resistive film is peeled off and deposited in the negative electrode. This deposition impairs the cycle characteristics of the lithium ion secondary battery.
  • the coating layer suppresses a reaction between the Si-based alloy and the electrolyte. In a lithium ion secondary battery having a coating layer, formation of a resistive film is suppressed, and depletion of the electrolyte is also suppressed.
  • Examples of carbon-based materials suitable for the coating layer include acetylene black, Ketjen black, other carbon blacks, carbon nanofibers, carbon nanotubes, and amorphous carbon. Acetylene black, Ketjen black, carbon nanofibers and carbon nanotubes are preferred.
  • the coating layer may contain two or more carbon-based materials.
  • the content Pc of the carbon-based material in the negative electrode material is preferably 0.010% by mass or more and 5.0% by mass or less.
  • the negative electrode material having a content Pc of 0.010% by mass or more the reaction of the Si-based alloy with the electrolytic solution is sufficiently suppressed.
  • the content Pc is more preferably equal to or greater than 0.05% by mass, and particularly preferably equal to or greater than 0.10% by mass.
  • a negative electrode material having a content Pc of 5.0% by mass or less has excellent storage capacity.
  • the content Pc is more preferably equal to or less than 4.7% by mass, and particularly preferably equal to or less than 4.5% by mass.
  • the carbon-based material is not substantially contained in the base particles. Therefore, the bond between Si and C does not substantially occur inside the base particles.
  • the coating layer is formed by attaching a plurality of fine particles made of a carbon-based material to the surface of mother particles made of a Si-based alloy.
  • the ratio (D2 / D1) of the average particle diameter D2 of the coating layer to the average particle diameter D1 of the Si alloy is preferably 0.8 or less. In other words, it is preferable that the difference between the particle size D1 and the particle size D2 is large.
  • the carbon-based material enters the fine irregularities of the base particles shown in FIG. Therefore, the coating layer can be formed densely and uniformly on the surface layer of the Si-based alloy.
  • the ratio (D2 / D1) is more preferably equal to or less than 0.10, and particularly preferably equal to or less than 0.05.
  • the ratio (D2 / D1) is preferably equal to or greater than 0.00010.
  • the average particle diameter D1 means an average value of diameters of base particles (primary particles) made of a Si-based alloy.
  • the average particle diameter D2 means the average value of the diameter of fine particles (primary particles) made of a carbon-based material.
  • Examples of the method for producing the mother powder include a water atomizing method, a single-roll quenching method, a twin-roll quenching method, a gas atomizing method, a disk atomizing method, and a centrifugal atomizing method.
  • Preferred production methods are a single roll cooling method, a gas atomizing method and a disk atomizing method.
  • Manufacturing conditions are not limited to those described below.
  • the raw material is charged into a quartz tube having a pore at the bottom.
  • This raw material is heated and melted by a high-frequency induction furnace in an argon gas atmosphere.
  • the raw material flowing out of the pores is dropped on the surface of the copper roll and cooled, and a ribbon is obtained.
  • This ribbon is put into the pot together with the ball.
  • the material of the ball include zirconia, SUS304 and SUJ2.
  • Examples of the pot material include zirconia, SUS304 and SUJ2.
  • the pot is filled with nitrogen gas or argon gas, and the pot is sealed.
  • This ribbon is pulverized by milling to obtain a mother powder. Examples of the milling include a ball mill, a bead mill, a planetary ball mill, an attritor, and a vibrating ball mill.
  • a raw material is charged into a quartz crucible having a pore at the bottom. This raw material is heated and melted by a high-frequency induction furnace in an argon gas atmosphere. In an argon gas atmosphere, argon gas is injected into the raw material flowing out of the pores. The raw material is quenched and solidified to obtain a powder. This powder is subjected to mechanical processing such as mechanical milling to obtain a mother powder. Examples of the milling method include a ball mill method, a bead mill method, a planetary ball mill method, an attritor method, and a vibrating ball mill method.
  • raw materials are charged into a quartz crucible having a pore at the bottom.
  • This raw material is heated and melted by a high-frequency induction furnace in an argon gas atmosphere.
  • an argon gas atmosphere the raw material flowing out of the pores is dropped on a disk rotating at a high speed. The rotation speed is from 40,000 rpm to 60,000 rpm.
  • the raw material is quenched by the disk and solidified to obtain a powder.
  • This powder is subjected to mechanical processing such as mechanical milling to obtain a mother powder. Examples of the milling method include a ball mill method, a bead mill method, a planetary ball mill method, an attritor method, and a vibrating ball mill method.
  • FIG. 5 The mother powder obtained by these methods is shown in FIG. In FIG. 5, the base particles are aggregated.
  • This mother powder is crushed by machining.
  • Examples of the crushing method include a ball mill, a bead mill, a planetary ball mill, an attritor and a vibrating ball mill, a dry jet mill, a wet jet mill method, and the like.
  • the crushed mother powder is shown in FIG. Due to the disintegration, many base particles are present as primary particles (particles that are not aggregated).
  • This mother powder is coated.
  • the surfaces of the base particles are coated with the carbon-based material, and the particles shown in FIG. 1 are obtained.
  • Specific examples of the coating treatment include a ball mill, a bead mill, a planetary ball mill, an attritor and a vibrating ball mill, mechanochemical, CVD and PVD.
  • the coating may be made by carbonization of the base particles. Even by the coating treatment, the carbon-based material does not enter the center of the base particles.
  • the ratio Pp of the particles present as primary particles and having a particle size of 10 ⁇ m or less to the total particles in the mother powder shown in FIG. 4 is preferably 50% by volume or more.
  • the proportion Pp is more preferably equal to or greater than 60% by volume, and particularly preferably equal to or greater than 70% by volume. The larger the ratio Pp is, the more preferable it is.
  • the upper limit is not particularly limited, but is typically 95% by volume or less, more typically 93% by volume or less, and still more typically 90% by volume or less. % By volume or less.
  • the particle size of the primary particles is determined by dispersing the particles in a solvent such as water (a dispersing agent can be used if it is difficult to disperse), feeding the particles into a laser diffraction / scattering type particle size distribution analyzer, irradiating the particles with laser light, It is determined from the scattering pattern obtained therefrom.
  • the negative electrode material is composed of a large number of particles (see FIG. 1).
  • the collection of many particles is a powder.
  • the average particle size of this powder is preferably 0.1 ⁇ m or more and 25 ⁇ m or less.
  • the average particle size is more preferably equal to or greater than 0.2 ⁇ m, and particularly preferably equal to or greater than 0.3 ⁇ m.
  • a negative electrode material having an average particle size of 25 ⁇ m or less sufficiently reacts with lithium ions. Therefore, the capacity of the lithium ion secondary battery having this negative electrode material is large.
  • the average particle size is more preferably equal to or less than 20 ⁇ m, and particularly preferably equal to or less than 10 ⁇ m.
  • the average particle diameter is a particle diameter at a point where the cumulative curve becomes 50% when a cumulative curve is obtained with the total volume of the powder being 100%, and is generally called a median diameter or D50. .
  • the average particle size is measured by a laser diffraction / scattering type particle size distribution measuring device.
  • the BET specific surface area of the powder as the negative electrode material is preferably from 2.0 m 2 / g to 40.0 m 2 / g.
  • a powder having a BET specific surface area of 2.0 m 2 / g or more the Si-based alloy can react with lithium ions in a wide area. Therefore, the negative electrode using this powder has a large storage capacity.
  • a powder having a specific surface area of 2.0 m 2 / g or more a difference in stress between the inside of the particle and the surface of the particle during charging and discharging is small. Therefore, in the negative electrode using this powder, the pulverization of the particles is suppressed, and the storage capacity is maintained.
  • the specific surface area is more preferably more than 2.5m 2 / g, 3.0m 2 / g or more is particularly preferable.
  • the powder having a specific surface area of 40.0 m 2 / g or less the decomposition reaction of the electrolytic solution on the surface of the particles is suppressed. Therefore, in the negative electrode using this powder, reduction of lithium ions is suppressed, and formation of a solid electrolyte is suppressed. In this negative electrode, the storage capacity is maintained.
  • the specific surface area BET specific surface area is more preferably 30.0 m 2 / g or less, 20.0 m 2 / g or less is particularly preferred. The BET specific surface area is measured according to the standard of “JIS Z 8830: 2013”.
  • the solvent was evaporated by this drying to obtain an active material layer.
  • the active material layer and the copper foil were pressed with a roll.
  • the active material layer and the copper foil were punched into a shape suitable for a coin cell to obtain a negative electrode.
  • a mixed solvent of ethylene carbonate and dimethyl carbonate was prepared as an electrolyte.
  • the mass ratio between the two was 3: 7.
  • lithium hexafluorophosphate (LiPF 6 ) was prepared as a supporting electrolyte.
  • the amount of the supporting electrolyte is 1 mol per liter of the electrolytic solution. This supporting electrolyte was dissolved in the electrolytic solution.
  • a separator and a positive electrode having a shape suitable for a coin cell were prepared. This positive electrode was stamped from a lithium foil. The separator was immersed in the electrolyte under reduced pressure, and allowed to stand for 5 hours to sufficiently penetrate the separator with the electrolyte.
  • a negative electrode, separator and positive electrode were incorporated in a coin-type cell.
  • the coin cell was filled with the electrolyte. Note that the electrolyte needs to be handled in an inert atmosphere where the dew point is controlled. Therefore, the cell was assembled in a glove box in an inert atmosphere.
  • the initial discharge capacity X and the discharge capacity Y after 50 cycles of charging and discharging were measured. Further, the ratio (retention rate) of the discharge capacity Y to the discharge capacity X was calculated. The results are shown in Tables 1 to 5 below.
  • the initial discharge capacity is preferably 500 mAh / g or more.
  • the maintenance ratio is preferably 80% or more.
  • No. Nos. 1 to 40 are the compositions of the negative electrode materials according to the examples of the present invention.
  • Reference numerals 41 to 90 denote compositions of the negative electrode material according to the comparative example.
  • the negative electrode materials of the respective examples have an excellent balance between the initial discharge capacity and the maintenance ratio. From the evaluation results, the superiority of the present invention is clear.
  • the negative electrode described above can be applied not only to a lithium ion secondary battery, but also to various power storage devices such as an all-solid lithium ion secondary battery and a hybrid capacitor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

蓄電容量が大きく、かつ充放電の繰り返しによる蓄電容量低下が抑制された蓄電デバイスが得られる、負極材料が提供される。蓄電デバイス用負極材料は、多数の粒子からなる。それぞれの粒子は、Si系合金製である母粒子と、この母粒子を覆いかつ炭素系材料製である被覆層とを有する。このSi系合金は、Si:50at.%以上95at.%以下、Cr:5at.%以上20at.%以下、Ti:5at.%以上20at.%以下、及び元素A:0at.%以上10at.%以下を含む。元素Aは、V、Fe、Ni、Mo、Nb、Co、Al及びSnからなる群から選択された1種又は2種以上である。

Description

蓄電デバイス用負極材料
 本発明は、リチウムイオン二次電池、全固体リチウムイオン二次電池、ハイブリットキャパシタ等の、充放電時にリチウムイオンの移動を伴う蓄電デバイスの負極に適した材料に関する。
 近年、携帯電話機、携帯音楽プレーヤー、携帯端末等が急速に普及している。これらの携帯機器は、リチウムイオン二次電池を有している。電気自動車及びハイブリッド自動車も、リチウムイオン二次電池を有している。さらに、家庭用の定置蓄電デバイスとして、リチウムイオン二次電池及びハイブリットキャパシタが用いられている。
 リチウムイオン二次電池では、放電時に負極がリチウムイオンを吸蔵する。リチウムイオン二次電池の充電時には、負極からリチウムイオンが放出される。負極は、集電体と、この集電体の表面に固着された活物質とを有している。
 負極における活物質として、天然黒鉛、人造黒鉛、コークス等の炭素系材料が用いられている。この炭素系材料の、リチウムイオンに対する理論上の容量は、372mAh/gにすぎない。容量の大きな活物質が望まれている。
 負極における活物質として、Siが注目されている。Siは、リチウムイオンと反応する。この反応により、化合物が形成される。典型的な化合物は、Li22Siである。この反応により、大量のリチウムイオンが負極に吸蔵される。Siは、負極の蓄電容量を高めうる。
 Siを含む活物質層がリチウムイオンを吸蔵すると、前述の化合物の生成により、この活物質層が膨張する。活物質の膨張率は、約400%である。活物質層からリチウムイオンが放出されると、この活物質層が収縮する。膨張と収縮との繰り返しにより、活物質が集電体から脱落する。この脱落は、蓄電容量を低下させる。膨張と収縮との繰り返しにより、活物質間の導電性が阻害されることもある。負極がSiを含む従来のリチウムイオン二次電池の寿命は、長くない。
 Siの単体での電気伝導性は、炭素系材料及び金属系材料のそれに比べて低い。Siと、炭素系材料等の導電性材料とが組み合わされて負極に用いられれば、電気伝導性が改善されうる。Siと導電性材料との組み合わせにおける、充放電特性の改善が、種々提案されている。
 特許文献1(特開2017-216172号公報)には、結晶子サイズが20nm以下のSi相と、結晶子サイズが30nm以下のシリサイド相を含むリチウムイオン二次電池の負極材料が開示されている。この負極材料では、Siのマトリクス中に黒鉛材料が分散している。
 特許文献2(特開2013-168328号公報)には、Siを主体とする固相と、Cr又はTiを含むSi金属間化合物相とを含む粒子が、炭素材料と複合化されてなる複合材料が開示されている。この複合材料は、リチウムイオン二次電池の負極用である。この複合材料はさらに、導電性向上材を含有する。
特開2017-216172号公報 特開2013-168328号公報
 特許文献1(特開2017-216172号公報)に開示された負極材料では、Si材料の表面において、LiO等の副生成物が多く形成される。この副生成物は、電解液の分解反応によって生じる。この副生成物は、絶縁性である。この副生成物が多く形成されることにより、負極の導電性が阻害され、二次電池のサイクル特性の低下を招来する。しかも、電解液中のリチウムイオンが副生成物に消費されることに起因して、二次電池の容量が低下する。
 特許文献2(特開2013-168328号公報)に開示された負極材料では、Si-C結合が形成される。Cと結合したSiは、リチウムイオンを吸蔵し得ない。Si-C結合の形成は、二次電池の容量の低下を招来する。さらに、このSi-C化合物は絶縁性なので、このSi-Cによって負極材料の導電性が阻害され、二次電池のサイクル特性が阻害される。
 同様の問題は、リチウムイオン二次電池以外の、様々な蓄電デバイスにおいても、生じている。
 本発明の目的は、蓄電容量が大きく、かつ充放電の繰り返しによる蓄電容量低下が抑制された蓄電デバイスが得られる、負極材料の提供にある。
 本発明に係る蓄電デバイス用負極材料は、多数の粒子からなる。それぞれの粒子は、Si系合金製である母粒子と、この母粒子を覆う炭素系材料製の被覆層とを有している。このSi系合金は、
 Si:50at.%以上95at.%以下
 Cr:5at.%以上20at.%以下
 Ti:5at.%以上20at.%以下及び
 元素A:0at.%以上10at.%以下を含んでいる。残部は、不可避的不純物である。この元素Aは、V、Fe、Ni、Mo、Nb、Co、Al及びSnからなる群から選択された1種又は2種以上である。このSi系合金は、Si相とシリサイド相とを有している。このSi系合金における、Siメインピークである(111)面の回折ピーク強度Iに対する、シリサイドメインピークである(111)面の回折ピーク強度IIの比(II/I)は、1.0以上である。多数の母粒子の集合である母粉末における、一次粒子として存在しておりかつその粒子径が10μm以下である粒子の、全粒子に対する比率Ppは、50体積%以上である。この負極材料における炭素系材料の含有率Pcは、0.010質量%以上5.0質量%以下である。Si系合金の平均粒径D1に対する被覆層の平均粒径D2の比(D2/D1)は、0.8以下である。
 好ましくは、Si相は、非晶質又は低結晶性である。
 好ましくは、Si相の結晶子サイズは、30nm以下である。好ましくは、シリサイド相の結晶子サイズは、40nm以下である。
 好ましくは、炭素系材料は、アセチレンブラック、ケッチェンブラック、カーボンナノファイバー又はカーボンナノチューブである。
 好ましくは、負極材料の平均粒子径は、0.1μm以上25μm以下である。
 好ましくは、負極材料のBET比表面積は、2.0m/g以上40.0m/g以下である。
 好ましくは、Si系合金における元素Aの含有率が0.1at.%以上10at.%以下である。
 本発明に係る負極材料が用いられた蓄電デバイスは、母粒子がSi系合金製なので、蓄電容量が大きい。この負極材料では、被覆層が電解液分解反応を抑制し、過剰な抵抗被膜の形成を抑制し、かつ電解液の枯渇を抑制する。この負極材料では、充放電の膨張収縮による応力が、緩和される。この蓄電デバイスでは、充放電の繰り返しによる蓄電容量低下が抑制される。
図1は、本発明の一実施形態に係る負極材料の1つの粒子が示された顕微鏡写真である。 図2は、図1の粒子の母粒子が示された顕微鏡写真である。 図3は、図2の母粒子のSi系合金の電子線回折の結果が示されたチャートである。 図4は、図2の母粒子の集合である母粉末が示された顕微鏡写真である。 図5は、図4の母粉末の解砕前の様子が示された顕微鏡写真である。
 以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。
 本実施形態は、リチウムイオン二次電池の負極材料である。このリチウムイオン二次電池は、充放電時にリチウムイオンの移動を伴う蓄電デバイスの一例である。リチウムイオン二次電池の負極は、集電体、活物質、導電材及び結着材を有している。活物質、導電材及び結着材が混ざり合った状態で、これらが集電体に付着している。導電材は、活物質の導電性を補助する。結着材は、活物質粒子を他の活物質粒子に固着させる。結着材はさらに、活物質粒子を集電体に固着させる。この活物質として、本発明に係る負極材料が用いられうる。
 負極材料は、多数の粒子からなる。多数の粒子の集合は、粉末である。図1に、1つの粒子が示されている。図示されないが、この粒子は、母粒子と被覆層とを有している。被覆層は、母粒子を覆っている。被覆層が、母粒子の表面全体を覆ってもよい。被覆層が、母粒子の表面を部分的に覆ってもよい。
 図2には、母粒子が示されている。この母粒子は、Si系合金製である。このSi系合金は、
 Si:50at.%以上95at.%以下
 Cr:5at.%以上20at.%以下
 Ti:5at.%以上20at.%以下及び
 元素A:0at.%以上10at.%以下
を含んでいる。
 好ましくは、このSi系合金の組成は、
 Si:50at.%以上95at.%以下
 Cr:5at.%以上20at.%以下
 Ti:5at.%以上20at.%以下
 元素A:0at.%以上10at.%以下及び
 残部:不可避的不純物
である。
 負極材料においてSi系合金は、Si相を形成する。このSi相の主成分は、Siである。Si相が、Siマトリクスに固溶する他の元素を含んでもよい。
 Siは、リチウムイオンと結合する。Siはさらに、リチウムイオンを放出する。換言すれば、Siを含む負極材料は、リチウムイオンを吸蔵し、かつ放出する。リチウムイオンの吸蔵により、リチウムイオン二次電池が充電される。リチウムイオンの放出により、リチウムイオン二次電池が放電される。
 Siは、負極材料として一般的である炭素系物質に比較すると、約10倍以上の理論容量を持つ。負極材料がSiを含むリチウムイオン二次電池の蓄電容量は、大きい。蓄電容量の観点から、Si系合金におけるSiの含有率は50at.%以上が好ましく、60at.%以上がより好ましく、70at.%以上が特に好ましい。Si系合金が十分な量の他の元素を含有しうるとの観点から、Siの含有率は95at.%以下が好ましく、90at.%以下がより好ましく、85at.%以下が特に好ましい。
 好ましくは、Si相は、非晶質又は低結晶性である。このSi相では、リチウムイオンの移動パスが多い。低結晶性とは、Siの結晶子サイズが30nmであることを意味する。
 前述の通り、Si系合金はCr及びTiを含んでいる。このSi系合金では、Si(Cr,Ti)のような金属間化合物が析出する。この金属間化合物により、シリサイド相が形成される。Si相とシリサイド相とは、微細に混在し合う。Siがリチウムイオンを吸蔵するとき、Si相は膨張する。この膨張のときの応力を、シリサイド相が緩和する。Siがリチウムイオンを放出するとき、Si相は収縮する。この収縮のときの応力を、シリサイド相が緩和する。応力の緩和により、負極材料の負極からの脱落が抑制される。応力の緩和により、Si相の電気的孤立も抑制される。従って、シリサイド相を含む負極を有するリチウムイオン二次電池は、サイクル特性に優れる。
 Si系合金におけるCrの含有率は、5at.%以上20at.%以下が好ましい。含有率が5at.%以上であるリチウムイオン二次電池は、サイクル特性に優れる。この観点から、この含有率は6at.%以上がより好ましく、7at.%以上が特に好ましい。この含有率が20at.%以下であるリチウムイオン二次電池は、蓄電容量に優れる。この観点から、この含有率は18at.%以下がより好ましく、15at.%以下が特に好ましい。
 Si系合金におけるTiの含有率は、5at.%以上20at.%以下が好ましい。含有率が5at.%以上であるリチウムイオン二次電池は、サイクル特性に優れる。この観点から、この含有率は7at.%以上がより好ましく、9at.%以上が特に好ましい。この含有率が20at.%以下であるリチウムイオン二次電池は、蓄電容量に優れる。この観点から、この含有率は18at.%以下がより好ましく、16at.%以下が特に好ましい。
 Si系合金におけるCrとTiとの合計の含有率は、10at.%以上40at.%以下が好ましい。含有率が10at.%以上であるリチウムイオン二次電池は、サイクル特性に優れる。この観点から、この含有率は14at.%以上がより好ましく、16at.%以上が特に好ましい。この含有率が40at.%以下であるリチウムイオン二次電池は、蓄電容量に優れる。この観点から、この含有率は35at.%以下がより好ましく、30at.%以下が特に好ましい。
 前述の通り、Si系合金は、元素Aを含みうる。この元素Aは、V、Fe、Ni、Mo、Nb、Co、Al及びSnからなる群から選択された1種又は2種以上である。元素Aは、必須の成分ではない。
 V、Fe、Ni、Mo、Nb及びCoは、シリサイドに固溶する。V、Fe、Ni、Mo、Nb及びCoは、シリサイドの結晶格子を拡大させる。このシリサイドは、自らの内部を移動するリチウムイオンの拡散性に優れる。このシリサイドを有するリチウムイオン二次電池は、サイクル特性及び反応効率性に優れる。さらに、V、Fe、Ni、Mo、Nb及びCoは、触媒作用を有する。従ってこれらの元素は、電池特性を高めうる。
 Al及びSnは、Siに固溶しうる。Al及びSnは、Si相の導電性を高める。このSi相を有する負極材料では、電気抵抗が小さい。このSi相を有するリチウムイオン二次電池は、充放電効率に優れる。Al及びSnは、それぞれ単体として負極材料中に分散しうる。単体のAl及びSnは、柔軟で靱性に優れる。単体のAl及びSnは、Si相の膨張時及び収縮時の応力を緩和しうる。
 これらの観点から、Si系合金における元素Aの含有率は0.1at.%以上が好ましく、1at.%以上がより好ましく、2at.%以上がさらに好ましく、3at.%以上が特に好ましい。蓄電容量の観点から、この含有率は10at.%以下が好ましく、8at.%以下がより好ましく、7at.%以下がさらに好ましい。
 図3には、Siメインピークである(111)面の回折ピーク強度I、及びシリサイドメインピークである(111)面の回折ピーク強度IIが示されている。回折ピーク強度Iに対する回折ピーク強度IIの比(II/I)は、1.0以上が好ましい。比(II/I)が1.0以上であるSi系合金では、Si相とシリサイド相とが、微細に分散混合している。このSi系合金を含む負極材料では、充放電時の応力に起因する粒子のひび割れ、電気的孤立及び脱落が生じにくい。この負極材料を有するリチウムイオン二次電池は、サイクル特性に優れる。この観点から、比(II/I)は2.0以上がより好ましく、5.0以上が特に好ましい。比(II/I)は、10.0以下が好ましい。X線回折では、X線源として波長が1.54059オングストロームのCuKα線が用いられる。測定は、2θが20度以上80度以下の範囲でなされる。これにより、回折スペクトルが得られる。2θが20度以上80度以下の範囲で得られた回折スペクトルのなかから、Siメインピークである(111)面の強度値とシリサイドメインピークである(111)面の強度値が選定され、比(II/I)が算出される。
 Si相の結晶子サイズは、30nm以下が好ましい。この結晶子サイズが30nm以下である負極材料では、充放電時の応力に起因する粒子のひび割れ、電気的孤立及び集電体からの脱落が抑制される。この観点から、この結晶子サイズは20nm以下がより好ましく、10nm以下が特に好ましい。本発明では、相が非晶質である場合、この相の結晶子サイズはゼロと見なされる。Si相の結晶子サイズの下限値は特に限定されるものではないが、典型的には0nmを超え、より典型的には0.1nm以上であり、さらに典型的には0.2nm以上である。
 シリサイド相の結晶子サイズは、40nm以下が好ましい。この結晶子サイズが40nm以下である負極材料では、化合物相内でリチウムイオンが容易に移動しうる。この結晶子サイズが40nm以下である負極材料では、充放電時に生じるSi相の膨張及び収縮の応力が緩和される。これらの観点から、この結晶子サイズは20nm以下がより好ましく、15nm以下が特に好ましい。シリサイド相の結晶子サイズの下限値は特に限定されるものではないが、典型的には0.1nm以上、より典型的には0.2nm以上であり、さらに典型的には0.5nm以上である。
 結晶子サイズは、X線回折により確認されうる。X線回折では、X線源として波長が1.54059オングストロームのCuKα線が用いられる。測定は、2θが20度以上80度以下である範囲でなされる。得られる回折スペクトルにおいて、結晶子サイズが小さいほど、ブロードな回折ピークが観測される。粉末X線回折分析で得られるピークの半値幅から、下記のScherrerの式:
  D=(K×λ)/(β×cosθ)
が用いられて、結晶子サイズが求められ得る。この数式において、Dは結晶子の大きさ(オングストローム)を表し、KはScherrerの定数を表し、λはX線管球の波長を表し、βは結晶子の大きさによる回折線の拡がりを表し、θは回折角を表す。
 Si相及びシリサイド相の結晶子サイズの制御は、原料の成分の調整によってなされうる。結晶子サイズの制御は、原料粉末を溶解した後の凝固時の冷却速度の制御によっても、なされうる。さらに、後述される粒子の粉砕加工、及び二次粒子の解砕によっても、結晶子サイズの制御がなされうる。
 図1に示された粒子の表面は、図2に示された粒子の表面よりも滑らかである。この表面では、凹凸が少ない。この表面状態は、被覆層によって達成されている。この被覆層は、炭素系材料製である。
 Si系合金は、電解液との反応に活性である。負極材料が被覆層を有さない場合、Si系合の表層での電解液の分解反応が顕著であり、多くの抵抗皮膜が形成される。この抵抗皮膜は、負極の電気抵抗を高める。この抵抗皮膜は、リチウムイオン二次電池の蓄電容量を阻害する。さらに、充放電時の母粒子の膨張及び収縮により、この抵抗皮膜が剥がれて負極内で堆積する。この堆積は、リチウムイオン二次電池のサイクル特性を阻害する。被覆層は、Si系合金と電解液との反応を抑制する。被覆層を有するリチウムイオン二次電池では、抵抗被膜の形成が抑制され、電解液の枯渇も抑制される。
 被覆層に適した炭素系材料として、アセチレンブラック、ケッチェンブラック、他のカーボンブラック、カーボンナノファイバー、カーボンナノチューブ及び非晶質炭素が例示される。アセチレンブラック、ケッチェンブラック、カーボンナノファイバー及びカーボンナノチューブが、好ましい。被覆層が、2種以上の炭素系材料を含有してもよい。
 負極材料における炭素系材料の含有率Pcは、0.010質量%以上5.0質量%以下が好ましい。含有率Pcが0.010質量%以上である負極材料では、Si系合金の電解液との反応が十分に抑制される。この観点から、含有率Pcは0.05質量%以上がより好ましく、0.10質量%以上が特に好ましい。含有率Pcが5.0質量%以下である負極材料は、蓄電容量に優れる。この観点から、含有率Pcは4.7質量%以下がより好ましく、4.5質量%以下が特に好ましい。
 好ましくは、炭素系材料は、実質的に母粒子には含有されない。従って、母粒子の内部では、SiとCとの結合は、実質的には生じない。
 被覆層は、Si系合金製の母粒子の表面に、炭素系材料製の複数の微粒子が付着することで形成されている。Si系合金の平均粒径D1に対する被覆層の平均粒径D2の比(D2/D1)は、0.8以下が好ましい。換言すれば、粒径D1と粒径D2との差が大きいことが好ましい。比(D2/D1)が0.8以下である負極材料では、図2に示された母粒子の細かな凹凸に炭素系材料が入り込む。従って、Si系合金の表層に、緻密かつ均一に、被覆層が形成されうる。この被覆層により、Si系合金の表層での電解液の分解反応が、十分に抑制される。この観点から、比(D2/D1)は0.10以下がより好ましく、0.05以下が特に好ましい。比(D2/D1)は、0.00010以上が好ましい。平均粒径D1は、Si系合金製である母粒子(一次粒子)の径の平均値を意味する。平均粒径D2は、炭素系材料製である微粒子(一次粒子)の径の平均値を意味する。
 母粉末の製造方法として、水アトマイズ法、単ロール急冷法、双ロール急冷法、ガスアトマイズ法、ディスクアトマイズ法及び遠心アトマイズ法が例示される。好ましい製造方法は、単ロール冷却法、ガスアトマイズ法及びディスクアトマイズ法である。以下、これらの製造方法の一例が、詳説される。製造の条件は、下記に記載されたものに限定されない。
 単ロール冷却法では、底部に細孔を有する石英管の中に、原料が投入される。この原料が、アルゴンガス雰囲気中で、高周波誘導炉によって加熱され、溶融する。細孔から流出する原料が、銅ロールの表面に落とされて冷却され、リボンが得られる。このリボンが、ボールと共にポットに投入される。ボールの材質として、ジルコニア、SUS304及びSUJ2が例示される。ポットの材質として、ジルコニア、SUS304及びSUJ2が例示される。ポットの中に窒素ガスあるいはアルゴンガスが充満され、このポットが密閉される。このリボンがミリングにより粉砕されて、母粉末が得られる。ミリングとして、ボールミル、ビーズミル、遊星ボールミル、アトライタ及び振動ボールミルが例示される。
 ガスアトマイズ法では、底部に細孔を有する石英坩堝の中に、原料が投入される。この原料が、アルゴンガス雰囲気中で、高周波誘導炉によって加熱され、溶融する。アルゴンガス雰囲気において、細孔から流出する原料に、アルゴンガスが噴射される。原料は急冷されて凝固し、粉末が得られる。この粉末に、メカニカルミリング等の機械的加工が施されて、母粉末が得られる。ミリング方法として、ボールミル法、ビーズミル法、遊星ボールミル法、アトライタ法及び振動ボールミル法等が例示される。
 ディスクアトマイズ法では、底部に細孔を有する石英坩堝の中に、原料が投入される。この原料が、アルゴンガス雰囲気中で、高周波誘導炉によって加熱され、溶融する。アルゴンガス雰囲気において、細孔から流出する原料が、高速で回転するディスクの上に落とされる。回転速度は、40000rpmから60000rpmである。ディスクによって原料は急冷され、凝固して、粉末が得られる。この粉末に、メカニカルミリング等の機械的加工が施されて、母粉末が得られる。ミリング方法として、ボールミル法、ビーズミル法、遊星ボールミル法、アトライタ法及び振動ボールミル法等が例示される。
 これらの方法によって得られた母粉末が、図5に示されている。図5では、母粒子が凝集している。
 この母粉末に、機械加工による解砕が施される。解砕方法として、ボールミル、ビーズミル、遊星ボールミル、アトライタ及び振動ボールミル、乾式ジェットミル、湿式ジェットミル法等が例示される。解砕後の母粉末が、図4に示されている。解砕により、多くの母粒子が、一次粒子(凝集していない粒子)として存在する。
 この母粉末に、被覆処理がなされる。被覆処理により、母粒子の表面が炭素系材料で被覆され、図1に示された粒子が得られる。被覆処理の具体例として、ボールミル、ビーズミル、遊星ボールミル、アトライタ及び振動ボールミル、メカノケミカル、CVD及びPVDが例示される。母粒子の炭化により、被覆がなされてもよい。被覆処理によっても、炭素系材料は母粒子の中心内部までは進入しない。
 図4に示された母粉末における、一次粒子として存在しておりかつその粒子径が10μm以下である粒子の、全粒子に対する比率Ppは、50体積%以上が好ましい。この比率Ppが50体積%以上である母粉末から得られた負極材料では、Si相における表面と内部とのリチウムイオンとの反応率の差が、小さい。この負極材料では、リチウムイオンを吸蔵するときの応力集中が生じにくい。この負極材料を有するリチウムイオン二次電池は、サイクル特性に優れる。この観点から、比率Ppは60体積%以上がより好ましく、70体積%以上が特に好ましい。この比率Ppは、大きいほど好ましいため、その上限値は特に限定されるものではないが、典型的には95体積%以下、より典型的には93体積%以下であり、さらに典型的には90体積%以下である。一次粒子の粒子径は、粒子を水等の溶媒中に分散(分散し難い場合は分散剤使用可能)し、レーザー回折・散乱式粒子径分布測定装置に投入、粒子にレーザー光を照射し、そこから得られる散乱パターンから求められる。
 前述の通り、負極材料は、多数の粒子(図1参照)からなる。多数の粒子の集合は、粉末である。この粉末における平均粒子径は、0.1μm以上25μm以下が好ましい。平均粒子径が0.1μm以上である負極材料では、抵抗被膜の形成が抑制されうる。この観点から、平均粒子径は0.2μm以上がより好ましく、0.3μm以上が特に好ましい。平均粒子径が25μm以下である負極材料は、リチウムイオンと十分に反応する。従って、この負極材料を有するリチウムイオン二次電池の容量は、大きい。この観点から、平均粒子径は20μm以下がより好ましく、10μm以下が特に好ましい。
 平均粒子径は、粉末の全体積を100%として累積カーブが求められたとき、その累積カーブが50%となる点の粒子直径であり、メジアン径ないしD50と一般的に称されるものである。平均粒子径は、レーザー回折・散乱式粒子径分布測定装置により測定される。
 負極材料である粉末のBET比表面積は、2.0m/g以上40.0m/g以下が好ましい。BET比表面積が2.0m/g以上である粉末では、Si系合金が広い面積でリチウムイオンと反応しうる。従ってこの粉末が用いられた負極では、蓄電容量が大きい。さらに、この比表面積が2.0m/g以上である粉末では、充放電時の粒子の内部と粒子の表面との応力差が小さい。従ってこの粉末が用いられた負極では、粒子の微粉化が抑制され、蓄電容量が維持される。これらの観点から、この比表面積は2.5m/g以上がより好ましく、3.0m/g以上が特に好ましい。この比表面積が40.0m/g以下である粉末では、粒子の表面での電解液の分解反応が抑制される。従ってこの粉末が用いられた負極では、リチウムイオンの減少が抑制され、固体電解質の形成が抑制される。この負極では、蓄電容量が維持される。これらの観点から、BET比表面積の比表面積は30.0m/g以下がより好ましく、20.0m/g以下が特に好ましい。BET比表面積は、「JIS Z 8830:2013」の規格に準拠して測定される。
 以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。
 本発明に係る負極材料の効果を、二極式コイン型セルを用いて確認した。まず、表1~3に示された組成の原料を準備した。各原料から、ガスアトマイズ法及びメカニカルミリングにより、粉末を製作した。それぞれの粉末、導電材(アセチレンブラック)、結着材(ポリイミド、ポリフッ化ビニリデン等)及び分散液(N-メチルピロリドン)を混合し、スラリーを得た。このスラリーを、集電体である銅箔の上に塗布した。このスラリーを、真空乾燥機で減圧乾燥した。乾燥温度は、ポリイミドが結着材である場合は200℃以上であり、ポリフッ化ビニリデンが結着材である場合は160℃以上であった。この乾燥によって溶媒を蒸発させ、活物質層を得た。この活物質層及び銅箔を、ロールにて押圧した。この活物質層及び銅箔をコイン型セルに適した形状に打ち抜き、負極を得た。
 電解液として、エチレンカーボネートとジメチルカーボネートの混合溶媒を準備した。両者の質量比は、3:7であった。さらに、支持電解質として、六フッ化リン酸リチウム(LiPF)を準備した。この支持電解質の量は、電解液1リットルに対して1モルである。この支持電解質を、電解液に溶解させた。
 コイン型セルに適した形状のセパレータ及び正極を、準備した。この正極は、リチウム箔から打ち抜いた。減圧下で電解液にセパレータを浸漬し、5時間放置して、セパレータに電解液を充分に浸透させた。
 コイン型セルに負極、セパレータ及び正極を組み込んだ。コイン型セルに電解液を充填した。なお、電解液は、露点管理された不活性雰囲気中で取り扱われる必要がある。従って、セルの組み立ては、不活性雰囲気のグローブボックスの中で行った。
 上記コイン型セルにて、温度が25℃であり、電流密度が0.50mA/cmである条件で、正極と負極との電位差が0Vとなるまで充電を行った。その後、電位差が1.5Vとなるまで放電を行った。この充電及び放電を、50サイクル繰り返した。初期の放電容量X及び50サイクルの充電及び放電を繰り返した後の放電容量Yを測定した。さらに、放電容量Xに対する放電容量Yの比率(維持率)を算出した。この結果が、下記の表1~5に示されている。初期放電容量は、500mAh/g以上が好ましい。維持率は、80%以上が好ましい。
 下記の表1~5において、No.1~40は本発明の実施例に係る負極材料の組成であり、No.41~90は比較例に係る負極材料の組成である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1~5に示されるように、各実施例の負極材料は、初期放電容量と維持率とのバランスに優れている。この評価結果から、本発明の優位性は明らかである。
 以上説明された負極は、リチウムイオン二次電池のみならず、全固体リチウムイオン二次電池、ハイブリットキャパシタ等の、種々の蓄電デバイスにも適用されうる。

 

Claims (8)

  1.  多数の粒子からなる蓄電デバイス用負極材料であって、
     それぞれの粒子が、Si系合金製の母粒子と、前記母粒子を覆う炭素系材料製の被覆層とを有しており、
     前記Si系合金が、
     Si:50at.%以上95at.%以下
     Cr:5at.%以上20at.%以下
     Ti:5at.%以上20at.%以下、及び
     元素A:0at.%以上10at.%以下
    を含んでおり、残部が不可避的不純物であり、
     前記元素Aが、V、Fe、Ni、Mo、Nb、Co、Al及びSnからなる群から選択された1種又は2種以上であり、
     前記Si系合金が、Si相とシリサイド相とを有しており、
     前記Si系合金における、Siメインピークである(111)面の回折ピーク強度Iに対する、シリサイドメインピークである(111)面の回折ピーク強度IIの比(II/I)が、1.0以上であり、
     多数の前記母粒子の集合である母粉末における、一次粒子として存在しておりかつその粒子径が10μm以下である粒子の、全粒子に対する比率Ppが、50体積%以上であり、
     前記負極材料における、前記炭素系材料の含有率Pcが、0.010質量%以上5.0質量%以下であり、
     前記Si系合金の平均粒径D1に対する前記被覆層の平均粒径D2の比(D2/D1)が、0.8以下である、負極材料。
  2.  前記Si相が非晶質又は低結晶性である、請求項1に記載の負極材料。
  3.  前記Si相の結晶子サイズが30nm以下である、請求項1又は2に記載の負極材料。
  4.  前記シリサイド相の結晶子サイズが40nm以下である、請求項1~3のいずれか一項に記載の負極材料。
  5.  前記炭素系材料が、アセチレンブラック、ケッチェンブラック、カーボンナノファイバー又はカーボンナノチューブである、請求項1~4のいずれか一項に記載の負極材料。
  6.  前記負極材料の平均粒子径が0.1μm以上25μm以下である、請求項1~5のいずれか一項に記載の負極材料。
  7.  前記負極材料のBET比表面積が2.0m/g以上40.0m/g以下である、請求項1~6のいずれか一項に記載の負極材料。
  8.  前記Si系合金における前記元素Aの含有率が0.1at.%以上10at.%以下である、請求項1~7のいずれか一項に記載の負極材料。

     
PCT/JP2019/025079 2018-07-24 2019-06-25 蓄電デバイス用負極材料 WO2020021937A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020207028802A KR20210033936A (ko) 2018-07-24 2019-06-25 축전 디바이스용 음극재료

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018138368A JP7132781B2 (ja) 2018-07-24 2018-07-24 蓄電デバイス用負極材料
JP2018-138368 2018-07-24

Publications (1)

Publication Number Publication Date
WO2020021937A1 true WO2020021937A1 (ja) 2020-01-30

Family

ID=69182314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025079 WO2020021937A1 (ja) 2018-07-24 2019-06-25 蓄電デバイス用負極材料

Country Status (3)

Country Link
JP (1) JP7132781B2 (ja)
KR (1) KR20210033936A (ja)
WO (1) WO2020021937A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024065690A (ja) * 2022-10-31 2024-05-15 大同特殊鋼株式会社 リチウムイオン電池用の負極材料粉末

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014186992A (ja) * 2013-02-19 2014-10-02 Sanyo Special Steel Co Ltd 蓄電デバイス用Si系合金負極材料およびそれを用いた電極
JP2015115140A (ja) * 2013-12-10 2015-06-22 エルジー・ケム・リミテッド 二次電池用負極材及びそれを用いた二次電池
JP2015133320A (ja) * 2013-12-13 2015-07-23 エルジー・ケム・リミテッド 二次電池用負極材及びこれを用いた二次電池
JP2016225143A (ja) * 2015-05-29 2016-12-28 エルジー・ケム・リミテッド 二次電池用負極材料及びそれを用いた非水電解質二次電池
JP2017228403A (ja) * 2016-06-21 2017-12-28 山陽特殊製鋼株式会社 蓄電デバイス用負極材料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168328A (ja) 2012-02-16 2013-08-29 Hitachi Chemical Co Ltd 負極材料、負極材料の製造方法、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP6630632B2 (ja) 2016-06-01 2020-01-15 山陽特殊製鋼株式会社 蓄電デバイス用負極材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014186992A (ja) * 2013-02-19 2014-10-02 Sanyo Special Steel Co Ltd 蓄電デバイス用Si系合金負極材料およびそれを用いた電極
JP2015115140A (ja) * 2013-12-10 2015-06-22 エルジー・ケム・リミテッド 二次電池用負極材及びそれを用いた二次電池
JP2015133320A (ja) * 2013-12-13 2015-07-23 エルジー・ケム・リミテッド 二次電池用負極材及びこれを用いた二次電池
JP2016225143A (ja) * 2015-05-29 2016-12-28 エルジー・ケム・リミテッド 二次電池用負極材料及びそれを用いた非水電解質二次電池
JP2017228403A (ja) * 2016-06-21 2017-12-28 山陽特殊製鋼株式会社 蓄電デバイス用負極材料

Also Published As

Publication number Publication date
JP7132781B2 (ja) 2022-09-07
KR20210033936A (ko) 2021-03-29
JP2020017375A (ja) 2020-01-30

Similar Documents

Publication Publication Date Title
JP6374678B2 (ja) 蓄電デバイスの負極材料
US9705128B2 (en) Negative electrode material for a rechargeable battery and method for producing the same
EP3131140B1 (en) Negative electrode active material for lithium ion secondary battery, and method for producing same
JP5440099B2 (ja) 非水系二次電池用負極材料
US20200295352A1 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof
KR102452874B1 (ko) 리튬 이차전지 음극재용 탄소-규소복합산화물 복합체 및 이의 제조방법
WO2015041063A1 (ja) ケイ素相含有物黒鉛複合粒子およびその製造方法
US20220271289A1 (en) Silicon/silicon oxide-carbon complex, method for preparing same, and negative electrode active material comprising same for lithium secondary battery
KR20150120349A (ko) 축전 디바이스용 Si계 합금 음극재료 및 이를 이용한 전극
JP2004323284A (ja) 珪素複合体及びその製造方法並びに非水電解質二次電池用負極材
WO2017221693A1 (ja) 蓄電デバイス用負極材料
WO2020021937A1 (ja) 蓄電デバイス用負極材料
JP2020053162A (ja) 蓄電デバイス用負極材料
KR101942654B1 (ko) 금속/카본 결정 입자 복합체, 이의 제조방법 및 이를 함유하는 에너지 저장소자
JP6630632B2 (ja) 蓄電デバイス用負極材料
WO2018193864A1 (ja) 蓄電デバイス用負極材料
JP7514630B2 (ja) 蓄電デバイス用負極材料
JP7465672B2 (ja) 蓄電デバイス用負極材料
KR102569385B1 (ko) 이차전지용 음극재
JP7178278B2 (ja) 蓄電デバイス用負極材料
WO2018180212A1 (ja) 蓄電デバイス用負極材料
JP2023012417A (ja) 酸化ケイ素系の負極材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19839913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19839913

Country of ref document: EP

Kind code of ref document: A1