WO2020021659A1 - 光投影装置および光投影方法 - Google Patents

光投影装置および光投影方法 Download PDF

Info

Publication number
WO2020021659A1
WO2020021659A1 PCT/JP2018/027929 JP2018027929W WO2020021659A1 WO 2020021659 A1 WO2020021659 A1 WO 2020021659A1 JP 2018027929 W JP2018027929 W JP 2018027929W WO 2020021659 A1 WO2020021659 A1 WO 2020021659A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
light
scanning
spot
scanning unit
Prior art date
Application number
PCT/JP2018/027929
Other languages
English (en)
French (fr)
Inventor
啓一朗 中島
雙木 満
福島 郁俊
健寛 三木
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2018/027929 priority Critical patent/WO2020021659A1/ja
Publication of WO2020021659A1 publication Critical patent/WO2020021659A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to a light projection device and a light projection method.
  • Patent Document 1 the light emitted from the tip of the optical fiber is applied to the subject via a lens. Therefore, the light emitted to the subject has aberrations such as field curvature caused by the lens. Diagnosis or treatment requires a sharp endoscopic image of a subject, and for that purpose, it is necessary to correct aberrations according to the shape of the subject surface. However, Patent Literature 1 has a problem that it is not possible to appropriately correct aberrations, particularly curvature of field.
  • the present invention has been made in view of the above circumstances, and provides an optical projection device and an optical projection method that can correct aberration of illumination light for illuminating an object according to the shape of the object surface. Aim.
  • One embodiment of the present invention is a light source unit that emits laser light, a light guide optical system that guides the laser light emitted from the light source unit, and a laser light spot that condenses the laser light and emits the spot of the laser light to a subject.
  • An imaging optical system for projecting, and a mirror for deflecting the laser light guided by the light guiding optical system toward the imaging optical system, and the spot is spirally scanned by swinging the mirror.
  • a first scanning unit, and the light source unit, at least a part of the light guide optical system, and at least a part of the imaging optical system are relatively positioned on an optical axis from the light source unit to the imaging optical system.
  • a second scanning unit that linearly scans the spot in the direction along the optical axis of the imaging optical system by moving the spot, and controls the first scanning unit and the second scanning unit in synchronization with each other.
  • Spy on the spot by An optical projection apparatus and a control unit which linearly scans during one cycle of Le scanning.
  • Another aspect of the present invention is a light projection method for converging laser light deflected by a mirror and projecting a spot of the laser light on a subject, wherein the mirror is swung to set the spot to a predetermined spot. Spiral scanning around the optical axis, and linearly scanning the spot in a direction along the predetermined optical axis, by performing the spiral scanning and the linear scanning in synchronization with each other. This is a light projection method in which the spot is linearly scanned during one spiral scanning cycle.
  • the aberration of the illumination light for illuminating the subject can be corrected according to the shape of the subject surface.
  • FIG. 1 is an overall configuration diagram of an optical projection device according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a scanning locus of an intermediate spot when the movable lens is stationary.
  • FIG. 7 is a diagram illustrating a scanning locus of an intermediate spot when the movable lens is moving. It is a figure explaining the positional relationship of a movable lens and an intermediate spot, and is a figure showing the state where a movable lens is arranged at a reference position.
  • FIG. 3B is a diagram showing a state in which the movable lens has been displaced from the reference position in FIG. 3A to the ⁇ Z side.
  • FIG. 3B is a diagram illustrating a state where the movable lens is displaced from the reference position in FIG.
  • FIG. 7 is a diagram illustrating a change in an image plane of the relay lens and the objective lens when the movable lens is stationary.
  • FIG. 7 is a diagram illustrating a change in an image plane of the relay lens and the objective lens when the movable lens is moving.
  • 2 is a timing chart illustrating an operation of the light projection device in FIG. 1.
  • FIG. 3 is a diagram illustrating a non-corrected image plane and a target image plane on the surface of a subject.
  • FIG. 7 is a diagram illustrating a specific example of a second drive signal.
  • FIG. 8 is a diagram illustrating an intermediate image plane formed based on a second drive signal S21 in FIG. 7.
  • FIG. 8 is a diagram illustrating an intermediate image plane formed based on a second drive signal S22 in FIG. 7.
  • FIG. 8 is a diagram illustrating an intermediate image plane formed based on a second drive signal S23 in FIG. 7.
  • FIG. 9 is a diagram illustrating an example of a change in a second drive signal due to a user I / F.
  • FIG. 9 is a diagram illustrating an example of a change in an intermediate image plane due to a user I / F.
  • FIG. 11 is a diagram illustrating another example of the target image plane.
  • FIG. 11 is a diagram illustrating another example of the target image plane.
  • FIG. 9 is a diagram illustrating a positional relationship between a movable element and an intermediate spot in a modification of the light projection device in FIG. FIG.
  • FIG. 12B is a diagram illustrating a state in which the intermediate spot has been displaced to the ⁇ Z side due to displacement of the movable element from the reference position in FIG. 12A.
  • FIG. 12B is a diagram illustrating a state where the movable element is displaced to the intermediate spot + Z side by the displacement of the movable element from the reference position in FIG. 12A.
  • FIG. 13 is a diagram illustrating a positional relationship between a movable lens and an intermediate spot in another modification of the light projection device in FIG. 1, and is a diagram illustrating a state where a movable element is arranged at a reference position.
  • FIG. 13B is a diagram showing a state where the intermediate spot is displaced to the ⁇ Z side due to displacement of the movable element from the reference position in FIG. 13A.
  • FIG. 13B is a diagram showing a state in which the intermediate spot has been displaced to the + Z side by displacement of the movable element from the reference position in FIG. 13A.
  • the optical projection device 1 is built in an endoscope 100 as shown in FIG.
  • the endoscope 100 includes a hard and long scope 20, a handle 30 connected to a base end of the scope 20, and a controller 40.
  • the light projection device 1 includes a light source unit 2, a light guide optical system 3, an imaging optical system 4, a first scanning unit 5, a second scanning unit 6, and a control unit 7.
  • the light source unit 2 and the light guide optical system 3 are arranged on the same optical axis A ′, and the imaging optical system 4 is arranged on the optical axis A that intersects the optical axis A ′.
  • the laser light L from the light source unit 2 and the light guide optical system 3 is deflected by the first scanning unit 5 toward the imaging optical system 4.
  • an XYZ orthogonal coordinate system using the optical axis A of the imaging optical system 4 as the Z axis will be used.
  • the + Z direction is the traveling direction of the laser light L (forward of the optical axis A)
  • the -Z direction is the direction opposite to the traveling direction of the laser light L (back of the optical axis A).
  • the X axis and the Y axis are orthogonal to the optical axis A and mutually orthogonal.
  • the light source unit 2 is provided in the handle 30 and includes a laser light source such as a laser diode.
  • the light source unit 2 emits laser light L, which is divergent light emitted from a laser light source, toward the first scanning unit 5.
  • the light guide optical system 3 includes at least one lens. In the drawings to be referred to, the light guide optical system 3 is constituted by a single convex lens.
  • the light guide optical system 3 forms the laser light L from the light source unit 2 into parallel light using at least one lens.
  • the imaging optical system 4 condenses the laser light L deflected by the first scanning unit 5 and projects the spot P1 of the laser light L on the subject B.
  • the imaging optical system 4 includes a light-collecting optical system 8 provided in a handle 30, and a relay lens 9 and an objective lens 10 provided in a scope 20.
  • the condensing optical system 8 has at least one lens.
  • the condensing optical system 8 is disposed between the first scanning unit 5 and the relay lens 9 and has a focal point F2 at the base end 9a of the relay lens 9 or near the base end 9a.
  • the condensing optical system 8 condenses the laser light L from the first scanning unit 5 at the focal point F2, and forms an intermediate spot P2 at the focal point F2.
  • the relay lens 9 is a long gradient index (GRIN) lens disposed along the longitudinal direction of the scope 20.
  • the relay lens 9 relays the laser light L that has entered the base end 9a from the focusing optical system 8.
  • the objective lens 10 is a short GRIN lens arranged along the longitudinal direction of the scope 20, and is arranged at the tip of the scope 20.
  • the objective lens 10 is joined to the tip of the relay lens 9, focuses the laser light L emitted from the tip of the relay lens 9, and projects the spot P 1 of the laser light L on the subject B.
  • the condensing optical system 8 includes a movable lens that is movable along the optical axis A with respect to the scope 20 and the handle 30.
  • the condensing optical system 8 includes a single convex lens, and the convex lens is a movable lens (hereinafter, also referred to as a movable lens 8).
  • the movement of the movable lens 8 causes the intermediate spot P2 to move linearly in a direction along the optical axis A.
  • the lenses 9 and 10 of the imaging optical system 4 excluding the light source unit 2, the light guide optical system 3, and the movable lens 8 are fixed to the scope 20 and the handle 30.
  • the first scanning unit 5 is a two-axis galvanometer mirror (mirror) that can swing around two mutually orthogonal swing axes.
  • the two swing axes are parallel to the X axis and the Y axis, respectively.
  • the first scanning unit 5 deflects the laser beam L from the light guide optical system 3 toward the imaging optical system 4 along the optical axis A. Further, the first scanning unit 5 swings around the two swing axes according to the first drive signals S1_X and S1_Y (see FIG. 5) from the control unit 7, thereby causing the first scanning unit 5 to rotate from the light guide optical system 3. Is spirally scanned along a spiral scanning trajectory around the optical axis A.
  • FIG. 2A shows a scanning trajectory of the intermediate spot P2.
  • the first scanning unit 5 forms a non-corrected image plane I1 (see FIG. 4A) by spirally scanning the spot P1 with the movable lens 8 stationary at a predetermined reference position.
  • the second scanning unit 6 linearly moves the movable lens 8 along the optical axis A according to the second drive signal S2 (see FIG. 5) from the control unit 7.
  • the intermediate spot P2 moves in the direction along the optical axis A as shown in FIGS. 3A to 3C.
  • the spot P1 is also linearly scanned in the direction along the optical axis A following the intermediate spot P2.
  • FIG. 3A shows a state where the movable lens 8 is disposed at a reference position where the intermediate spot P2 coincides with the base end 9a of the relay lens 9.
  • FIG. 3B shows a state where the movable lens 8 is displaced in the ⁇ Z direction from the reference position.
  • FIG. 3C shows a state where the movable lens 8 is displaced in the + Z direction from the reference position.
  • the second scanning section 6 has a fixed section 6a fixed to the handle 30 and a movable section 6b fixed to the movable lens 8, and the movable section 6b is oriented in the direction along the optical axis A with respect to the fixed section 6a. Can be moved to
  • the second scanning unit 6 is an arbitrary element that can move the movable lens 8 in one axis direction.
  • the second scanning unit 6 includes a piezo actuator or a voice coil motor.
  • FIG. 4A shows the relationship between the image plane I2 formed by the scanned intermediate spot P2 and the field curvature generated in the relay lens 9 and the objective lens 10.
  • An intermediate image plane I2 is formed at or near the base end 9a of the relay lens 9.
  • the intermediate image plane I2 is a plane on which the intermediate spot P2 is scanned by the first and second scanning units 5, 6.
  • the intermediate image plane I2 becomes a flat surface perpendicular to the optical axis A as shown in FIGS. 2A and 4A.
  • An image transmitted through the relay lens 9 and the objective lens 10, which are GRIN lenses, is gradually added with field curvature.
  • the image surface I3 at the tip of the objective lens 10 is a curved surface that is convex on the + Z side (subject B side), and the image surface formed by the scanned spot P1 (non- The (corrected image plane) I1 also becomes a curved surface convex on the + Z side.
  • the non-corrected image plane I1 is a plane on which the spot P1 is scanned by the first scanning unit 5 in a state where the movable lens 8 is stationary at the reference position.
  • the control unit 7 generates the first drive signals S1_X, S1_Y and the second drive signal S2, as shown in FIG.
  • the control unit 7 supplies the first drive signals S1_X and S1_Y to the first scanning unit 5, and supplies the second drive signal S2 to the second scanning unit 6.
  • the first drive signals S1_X and S1_Y are vibration waves whose amplitude envelopes change with time in a constant cycle T in a sinusoidal manner.
  • the amplitude of the first drive signals S1_X and S1_Y corresponds to the swing angle of the first scanning unit 5.
  • the first scanning unit 5 scans the laser beam L in the X direction by oscillating around a swing axis parallel to the Y axis in accordance with the first drive signal S1_X for the X direction.
  • the first scanning unit 5 scans the laser beam L in the Y direction by oscillating around a swing axis parallel to the X axis in accordance with the first drive signal S1_Y for the Y direction.
  • the phase of the drive signal S1_X and the phase of the drive signal S1_Y are mutually shifted by ⁇ / 2.
  • the first scanning unit 5 spirally scans the spots P1 and P2 radially outward during the first period ⁇ t1 in accordance with the first drive signals S1_X and S1_Y, and performs the first period ⁇ t1. During the following second period ⁇ t2, the spots P1 and P2 are spirally scanned radially inward.
  • the second drive signal S2 is a triangular wave or a sine wave.
  • the magnitude of the second drive signal S2 corresponds to the amount of movement of the movable lens 8 from the initial position in the + Z direction.
  • the initial position is a position where the intermediate spot P2 is separated from the base end 9a in the ⁇ Z direction.
  • the second drive signal S2 has the same cycle T as the cycle T of the first drive signals S1_X and S1_Y.
  • the control unit 7 controls the first scanning unit 5 and the second scanning unit 6 in synchronization by synchronizing the first driving signals S1_X and S1_Y with the second driving signal S2. At this time, based on the difference between the non-corrected image plane I1 and the target image plane I1 ', the control unit 7 moves the spot P1 spirally scanned by the first scanning unit 5 from the position on the non-corrected image plane I1 to the target.
  • the moving direction and the moving amount of the movable lens 8 are controlled by the second drive signal S2 so as to be displaced to the position on the image plane I1 ', whereby the non-corrected image plane I1 is corrected to the target image plane I1'.
  • the target image plane I1 ' is, for example, a plane set in the control unit 7 by a user. This makes it possible to control the image plane on which the spot P1 is scanned to a surface having an arbitrary shape, and to correct the aberration of the illumination light, particularly the curvature of field, according to the shape of the surface of the subject B.
  • the moving direction and the moving amount of the movable lens 8 are calculated from the difference between the known shape of the uncorrected image plane I1 and the shape of the target image plane I1 '.
  • the moving direction and the moving amount of the movable lens 8 may be stored in a storage device (not shown) in advance.
  • the control unit 7 sets the amplitudes of the first drive signals S1_X and S1_Y and the amplitude of the second drive signal S2 at the same time as shown in FIG.
  • the first drive signals S1_X, S1_Y and the second drive signal S2 are synchronized so that they become maximum and become minimum at the same time.
  • the second scanning unit 6 moves the movable lens 8 in a direction approaching the base end 9a.
  • the second scanning unit 6 moves the movable lens 8 in a direction away from the base end 9a.
  • the intermediate image plane I2 becomes a curved surface or a conical surface that is convex on the ⁇ Z side, and the curvature of the image plane by the lenses 9 and 10 is canceled by the curvature of the intermediate image plane I2.
  • the non-corrected image plane I1 is corrected to a flat target image plane I1 '. In this manner, the non-corrected image plane I1 convex toward the subject B is corrected to a flat surface without using a lens having a negative refractive power.
  • the control unit 7 includes, for example, a processor, a storage device, a signal generator, and a digital-to-analog (DA) converter (all not shown) incorporated in the controller 40.
  • the processor is, for example, a central processing unit, and generates a control signal according to a control program stored in a storage device.
  • the control signal is a signal that defines parameters such as frequency, amplitude, and phase of each of the drive signals S1_X, S1_Y, and S2.
  • the signal generator generates a digital waveform according to the control signal.
  • the DA converter generates drive signals S1_X, S1_Y, and S2, which are analog signals, by performing DA conversion on the digital waveform.
  • the laser light L emitted from the light source unit 2 is formed into parallel light by the light guide optical system 3, deflected by the first scanning unit 5, and condensed light
  • the light enters the relay lens 9 via the system 8, is relayed by the relay lens 9, and is focused on the subject B by the objective lens 10.
  • the spot P1 of the laser beam L formed on the subject B is spirally scanned around the optical axis A by the first scanning unit 5. Further, the spot P1 is linearly scanned in a direction along the optical axis A by moving the movable lens 8 linearly by the second scanning unit 6.
  • the spiral scanning by the first scanning unit 5 and the linear scanning by the second scanning unit 6 are executed by the control unit 7 in synchronization with each other so that the spot P1 is linearly scanned during one period of the spiral scanning.
  • the non-corrected image plane I1 of the laser beam L illuminating the subject B is corrected to a flat target image plane I1 '. Therefore, it is possible to scan a flat or less uneven surface of the subject B with the small spot P1 of the laser beam L.
  • signal light such as fluorescence or reflected light of the laser light L is generated.
  • the signal light is detected by a detection optical system (not shown) provided in the scope 20, and information on the intensity of the signal light is transmitted from the detection optical system to the controller 40.
  • an image of the subject B is generated by associating the intensity of the signal light with the position of the spot P1 on the scanning locus.
  • FIG. 5 shows an example in which an image of the subject B is acquired on the outward path of the spiral scanning.
  • the control unit 7 generates a pulse signal as a photographing trigger at a timing when the drive signals S1_X, S1_Y, and S2 are maximized.
  • the detection optical system detects the signal light over an imaging period of a predetermined length in response to the imaging trigger.
  • FIG. 6 shows the relationship between the shape of the surface of the subject B and the shapes of the image planes I1 and I1 '.
  • the spot diameter of the laser beam L on the surface of the subject B increases, and as a result, , The image is blurred. Image blur becomes more remarkable as the deviation ⁇ between the uncorrected image plane I1 and the surface of the subject B increases.
  • the non-corrected image plane I1 is corrected to a flat target image plane I1 'according to the surface shape of the subject B that is flat or has little unevenness. Therefore, there is an advantage that an image in which the entire surface of the subject B is in focus can be obtained.
  • the large curvature of field generated by the GRIN lenses 9 and 10 can be easily corrected by a simple means of simply moving the movable lens 8 other than the GRIN lenses 9 and 10 linearly.
  • the uncorrected image plane I1 has a spread of 0.26 mm in the direction along the optical axis A due to field curvature. Even such a large curvature of field, which is difficult to correct using the refractive power of the lens, can be easily corrected by moving the movable lens 8.
  • the galvanomirror of the first scanning unit 5 needs about 0.1 ms in order to acquire one image in the observation range in 16.7 ms. Is required.
  • the movable lens 8 only needs to make one reciprocation within 16.7 ms. Such mechanical movement of the movable lens 8 is easy to realize.
  • the curvature of field caused by the INGRIN lenses 9 and 10 can also be corrected by arranging a concave lens having a negative refractive power at the distal end of the scope 20.
  • a concave lens having a negative refractive power at the distal end of the scope 20.
  • the curvature of field is corrected by moving the movable lens 8 in the handle 30, there is an advantage that the present embodiment can be suitably applied to the ultrafine scope 20.
  • FIG. 7 shows a specific example of the second drive signal S2
  • FIGS. 8A to 8C show specific examples of the scanning trajectory of the intermediate spot P2, that is, the intermediate image plane I2.
  • a second driving signal S21 for moving the movable lens 8 at a constant speed a second driving signal S22 for gradually increasing the moving speed of the movable lens 8, and a moving speed of the movable lens 8 are gradually reduced.
  • the second drive signal S23 is shown.
  • the intermediate image plane I2 formed according to the second drive signal S21 has a conical shape as shown in FIG. 8A.
  • the intermediate image plane I2 formed according to the second drive signal S22 has a substantially conical shape with concave side surfaces.
  • the intermediate image plane I2 formed according to the second drive signal S23 has a substantially conical shape with a convex side surface.
  • the specific waveform shape of the second drive signal S2 can be variously set according to the curvature of field generated by the lenses 9 and 10.
  • the user wants to change the target image plane I1 'while observing the subject B.
  • the shape of the surface of the subject B in the observation range may differ depending on the position in the body cavity.
  • a user interface (I / F) 11 for the user to change the shape of the intermediate image plane I2 may be provided.
  • the user I / F 11 may be provided in the controller 40.
  • the user I / F 11 is a dial provided on the handle 30.
  • the second drive signal S2 can be continuously changed between two patterns 1 and 2 having different amplitudes.
  • the size of the intermediate image plane I2 in the direction along the optical axis A is changed according to the change in the amplitude of the second drive signal S2.
  • the user I / F 11 may be configured to be able to change the moving speed of the movable lens 8.
  • the target image plane I1 ' is not limited to a flat surface, but can be set to an arbitrary shape according to the shape of the surface of the subject B.
  • 11A and 11B show another example of the target image plane I1 '.
  • the target image plane I1 ′ illustrated in FIG. 11A is a curved surface that is larger on the + Z side and has a larger curvature than the uncorrected image plane I1.
  • Such a target image plane I1 ' is advantageous in that, for example, when observing a narrow cavity, it is possible to obtain an image whose focus is not only on the front but also on the inner surface of the cavity.
  • control unit 7 moves the movable lens 8 in the direction away from the base end 9a by the second scanning unit 6 during the first period ⁇ t1 in order to form the intermediate image plane I2 convex on the + Z side. Then, the movable lens 8 is moved by the second scanning unit 6 in a direction approaching the base end 9a during the second period ⁇ t2.
  • the target image plane I1 ′ shown in FIG. 11B is a curved surface that is convex on the ⁇ Z side.
  • a target image plane I1 ' is advantageous in that, for example, when observing the surface of the raised subject B, the entire subject B can be observed without blurring.
  • the control unit 7 causes the second scanning unit 6 to move the movable lens 8 so that the intermediate image plane I2 is further convex on the ⁇ Z side than the intermediate image plane I2 shown in FIG.
  • the second scanning unit 6 in order to relatively move at least a part of the light source unit 2, at least a part of the light guide optical system 3, and at least a part of the imaging optical system 4, the second scanning unit 6 includes only the movable lens 8.
  • the movable element moved by the second scanning unit 6 may be any element that can move the intermediate spot P2 along the optical axis A.
  • one or more elements of the light source unit 2, the light guide optical system 3, and the image forming optical system 4, excluding the GRIN lenses 9, 10, can be selected as the movable elements.
  • the light source unit 2 is a movable element.
  • the second scanning unit 6 supports the light source unit 2 and moves the light source unit 2 along the optical axis A ′.
  • the intermediate spot P2 moves to the + Z side. Therefore, when forming the intermediate image plane I2 that is convex on the ⁇ Z side, the control unit 7 causes the second scanning unit 6 to move the light source unit 2 toward the light guide optical system 3 in the first period ⁇ t1.
  • the light source unit 2 is moved by the second scanning unit 6 in a direction away from the light guide optical system 3 during the second period ⁇ t2.
  • the light guide optical system 3 is a movable element.
  • the second scanning unit 6 supports the light guide optical system 3, and moves the light guide optical system 3 along the optical axis A '.
  • the control unit 7 separates the light guide optical system 3 from the first scanning unit 5 by the second scanning unit 6 during the first period ⁇ t1.
  • the light guiding optical system 3 is moved in a direction approaching the first scanning unit 5 by the second scanning unit 6 during the second period ⁇ t2.
  • each of the light guide optical system 3 and the condensing optical system 8 is an optical system including a single lens.
  • the light guide optical system 3 and the condensing optical system 8 can be configured from a combination of a plurality of lenses. The position of the lens in the light guiding optical system 3 and the imaging optical system 8 as the movable element can be freely selected by the practitioner of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Astronomy & Astrophysics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

光投影装置(1)は、光源部(2)と、導光光学系(3)と、レーザ光(L)を集光させスポット(P1)を被写体(B)に投影する結像光学系(4)と、導光光学系(3)と結像光学系(4)との間に配置され、ミラーの揺動によってスポット(P1)をスパイラル走査する第1の走査部(5)と、光源部(2)、導光光学系(3)の少なくとも一部および結像光学系(4)の少なくとも一部を光軸(A',A)上で相対的に移動させることによってスポット(P1)を光軸Aに沿う方向に直線走査する第2の走査部(6)と、第1および第2の走査部(5,6)を制御することによってスポット(P1)をスパイラル走査の1周期の間に直線走査させる制御部(7)とを備える。

Description

光投影装置および光投影方法
 本発明は、光投影装置および光投影方法に関するものである。
 従来、光ファイバの先端を振動させることによって、光ファイバから被写体に照射される光を走査する内視鏡用の光ファイバスキャナが知られている(例えば、特許文献1参照。)。
特許第5069105号公報
 特許文献1において、光ファイバの先端から射出された光は、レンズを経由して被写体に照射される。したがって、被写体に照射される光には、レンズに起因する像面湾曲等の収差が発生する。診断または治療には鮮鋭な被写体の内視鏡画像が必要であり、そのためには、被写体面の形状に応じて収差を補正する必要がある。しかしながら、特許文献1は、収差、特に像面湾曲を適切に補正することができないという問題がある。
 本発明は、上述した事情に鑑みてなされたものであって、被写体を照明する照明光の収差を被写体面の形状に応じて補正することができる光投影装置および光投影方法を提供することを目的とする。
 本発明の一態様は、レーザ光を発する光源部と、該光源部から発せられた前記レーザ光を導光する導光光学系と、前記レーザ光を集光させ前記レーザ光のスポットを被写体に投影する結像光学系と、前記導光光学系によって導光された前記レーザ光を前記結像光学系に向かって偏向するミラーを有し、該ミラーを揺動させることによって前記スポットをスパイラル走査する第1の走査部と、前記光源部と前記導光光学系の少なくとも一部と前記結像光学系の少なくとも一部とを前記光源部から前記結像光学系までの光軸上で相対的に移動させることによって前記スポットを前記結像光学系の光軸に沿う方向に直線走査する第2の走査部と、前記第1の走査部および前記第2の走査部を同期させて制御することによって前記スポットをスパイラル走査の1周期の間に直線走査させる制御部とを備える光投影装置である。
 本発明の他の態様は、ミラーによって偏向されたレーザ光を集光させ、該レーザ光のスポットを被写体に投影する光投影方法であって、前記ミラーを揺動させることによって前記スポットを所定の光軸回りにスパイラル走査するステップと、前記スポットを前記所定の光軸に沿う方向に直線走査するステップとを含み、前記スパイラル走査するステップと前記直線走査するステップとを同期させて実行することによって前記スポットをスパイラル走査の1周期の間に直線走査させる光投影方法である。
 本発明によれば、被写体を照明する照明光の収差を被写体面の形状に応じて補正することができるという効果を奏する。
本発明の一実施形態に係る光投影装置の全体構成図である。 可動レンズが静止しているときの中間スポットの走査軌跡を示す図である。 可動レンズが移動しているときの中間スポットの走査軌跡を示す図である。 可動レンズと中間スポットとの位置関係を説明する図であり、可動レンズが基準位置に配置されている状態を示す図である。 可動レンズが図3Aの基準位置から-Z側に変位した状態を示す図である。 可動レンズが図3Aの基準位置から+Z側に変位した状態を示す図である。 可動レンズが静止しているときのリレーレンズおよび対物レンズにおける像面の変化を示す図である。 可動レンズが移動しているときのリレーレンズおよび対物レンズにおける像面の変化を示す図である。 図1の光投影装置の動作を示すタイミングチャートである。 被写体の表面における非補正像面および目標像面を説明する図である。 第2の駆動信号の具体例を示す図である。 図7の第2の駆動信号S21に基づいて形成される中間像面を示す図である。 図7の第2の駆動信号S22に基づいて形成される中間像面を示す図である。 図7の第2の駆動信号S23に基づいて形成される中間像面を示す図である。 ユーザI/Fによる第2の駆動信号の変化例を示す図である。 ユーザI/Fによる中間像面の変化例を示す図である。 目標像面の他の例を示す図である。 目標像面の他の例を示す図である。 図1の光投影装置の変形例における可動素子と中間スポットとの位置関係を説明する図であり、可動素子が基準位置に配置されている状態を示す図である。 図12Aの基準位置からの可動素子の変位によって中間スポットが-Z側に変位した状態を示す図である。 図12Aの基準位置からの可動素子の変位によって中間スポット+Z側に変位した状態を示す図である。 図1の光投影装置の他の変形例における可動レンズと中間スポットとの位置関係を説明する図であり、可動素子が基準位置に配置されている状態を示す図である。 図13Aの基準位置からの可動素子の変位によって中間スポットが-Z側に変位した状態を示す図である。 図13Aの基準位置からの可動素子の変位によって中間スポットが+Z側に変位した状態を示す図である。
 以下に、本発明の一実施形態に係る光投影装置1および光投影方法について図面を参照して説明する。
 本実施形態に係る光投影装置1は、図1に示されるように、内視鏡100に内蔵される。内視鏡100は、硬質で長尺のスコープ20と、スコープ20の基端に接続されるハンドル30と、コントローラ40とを備えている。
 光投影装置1は、光源部2と、導光光学系3と、結像光学系4と、第1の走査部5と、第2の走査部6と、制御部7とを備えている。
 光源部2および導光光学系3は同一の光軸A’上に配列され、結像光学系4は、光軸A’と交差する光軸A上に配置されている。光源部2および導光光学系3からのレーザ光Lが第1の走査部5によって結像光学系4に向かって偏向される。
 以下の説明において、結像光学系4の光軸AをZ軸とするXYZ直交座標系を用いる。+Z方向は、レーザ光Lの進行方向(光軸Aの前方)であり、-Z方向は、レーザ光Lの進行方向とは逆方向(光軸Aの後方)である。X軸およびY軸は、光軸Aに直交し、かつ、相互に直交している。
 光源部2は、ハンドル30内に設けられており、レーザダイオードのようなレーザ光源を備えている。光源部2は、レーザ光源が発した発散光であるレーザ光Lを第1の走査部5に向かって射出する。
 導光光学系3は、少なくとも1つのレンズを備えている。参照する図面では、導光光学系3は、単一の凸レンズから構成されている。導光光学系3は、光源部2からのレーザ光Lを少なくとも1つのレンズによって平行光に形成する。
 結像光学系4は、第1の走査部5によって偏向されたレーザ光Lを集光させ、レーザ光LのスポットP1を被写体Bに投影する。具体的には、結像光学系4は、ハンドル30内に設けられた集光光学系8と、スコープ20内に設けられたリレーレンズ9および対物レンズ10と、を備えている。
 集光光学系8は、少なくとも1つのレンズを備えている。集光光学系8は、第1の走査部5とリレーレンズ9との間に配置され、リレーレンズ9の基端9aまたは基端9aの近傍に焦点F2を有している。集光光学系8は、第1の走査部5からのレーザ光Lを焦点F2に集光させ、焦点F2に中間スポットP2を形成する。
 リレーレンズ9は、スコープ20の長手方向に沿って配置された長尺の屈折率分布型(GRIN)レンズである。リレーレンズ9は、集光光学系8から基端9aに入射したレーザ光Lをリレーする。
 対物レンズ10は、スコープ20の長手方向に沿って配置された短尺のGRINレンズであり、スコープ20の先端に配置されている。対物レンズ10は、リレーレンズ9の先端に接合されており、リレーレンズ9の先端から射出されたレーザ光Lを集光させ、レーザ光LのスポットP1を被写体Bに投影する。
 集光光学系8は、スコープ20およびハンドル30に対して光軸Aに沿って移動可能である可動レンズを備えている。参照する図面では、集光光学系8は、単一の凸レンズから構成され、該凸レンズが可動レンズ(以下、可動レンズ8ともいう。)である。可動レンズ8の移動によって、中間スポットP2が光軸Aに沿う方向に直線移動する。
 光源部2、導光光学系3、および、可動レンズ8を除く結像光学系4のレンズ9,10は、スコープ20およびハンドル30に対して固定されている。
 第1の走査部5は、相互に直交する2つの揺動軸回りに揺動可能である2軸ガルバノミラー(ミラー)である。2つの揺動軸は、X軸およびY軸にそれぞれ平行である。第1の走査部5は、導光光学系3からのレーザ光Lを結像光学系4に向かって光軸Aに沿って偏向する。また、第1の走査部5は、制御部7からの第1の駆動信号S1_X,S1_Y(図5参照。)に従って2つの揺動軸回りに揺動振動することによって、導光光学系3からのレーザ光Lを光軸A回りのスパイラル状の走査軌跡に沿ってスパイラル走査する。これにより、図2Aに示されるように、中間スポットP2およびスポットP1が光軸A回りにスパイラル走査される。図2Aは、中間スポットP2の走査軌跡を示している。第1の走査部5は、可動レンズ8が所定の基準位置に静止した状態でスポットP1をスパイラル走査することによって非補正像面I1(図4A参照。)を形成する。
 第2の走査部6は、制御部7からの第2の駆動信号S2(図5参照。)に従って可動レンズ8を光軸Aに沿って直線移動させる。可動レンズ8が光源部2および導光光学系3に対して相対的に光軸A上を移動することによって、図3Aから図3Cに示されるように、中間スポットP2が光軸Aに沿う方向に直線走査され、中間スポットP2に追従してスポットP1も光軸Aに沿う方向に直線走査される。図3Aは、中間スポットP2がリレーレンズ9の基端9aに一致する基準位置に可動レンズ8が配置されている状態を示している。図3Bは、可動レンズ8が、基準位置から-Z方向に変位した状態を示している。図3Cは、可動レンズ8が、基準位置から+Z方向に変位した状態を示している。
 第2の走査部6は、ハンドル30に固定される固定部6aと、可動レンズ8に固定される可動部6bとを有し、可動部6bが固定部6aに対して光軸Aに沿う方向に移動可能である。このような第2の走査部6は、可動レンズ8を1軸方向に移動させることができる任意の素子である。例えば、第2の走査部6は、ピエゾアクチュエータまたはボイスコイルモータを備える。
 図4Aは、走査される中間スポットP2によって形成される像面I2と、リレーレンズ9および対物レンズ10において発生する像面湾曲との関係を示している。
 リレーレンズ9の基端9aまたは基端9aの近傍には、中間像面I2が形成される。中間像面I2は、第1および第2の走査部5,6によって中間スポットP2が走査される面である。可動レンズ8が静止している場合、中間像面I2は、図2Aおよび図4Aに示されるように、光軸Aに垂直な平坦面になる。GRINレンズであるリレーレンズ9および対物レンズ10内を伝送される像には、像面湾曲が徐々に加算される。したがって、中間像面I2が平坦面である場合、対物レンズ10の先端における像面I3は+Z側(被写体B側)に凸の曲面になり、走査されるスポットP1によって形成される像面(非補正像面)I1も、+Z側に凸の曲面になる。非補正像面I1は、可動レンズ8が基準位置に静止した状態で第1の走査部5によってスポットP1が走査される面である。
 制御部7は、図5に示されるように、第1の駆動信号S1_X,S1_Yおよび第2の駆動信号S2を生成する。制御部7は、第1の駆動信号S1_X,S1_Yを第1の走査部5に供給し、第2の駆動信号S2を第2の走査部6に供給する。
 第1の駆動信号S1_X,S1_Yは、振幅包絡線が一定の周期Tで正弦波状に時間変化する振動波である。第1の駆動信号S1_X,S1_Yの振幅が、第1の走査部5の揺動角度に相当する。第1の走査部5は、X方向用の第1の駆動信号S1_Xに従って、Y軸に平行な揺動軸回りに揺動振動することによって、レーザ光LをX方向に走査する。また、第1の走査部5は、Y方向用の第1の駆動信号S1_Yに従ってX軸に平行な揺動軸回りに揺動振動することによって、レーザ光LをY方向に走査する。駆動信号S1_Xの位相と駆動信号S1_Yの位相は、相互にπ/2だけずれている。
 第1の走査部5は、このような第1の駆動信号S1_X,S1_Yに従って、第1の期間Δt1中にスポットP1,P2を径方向外方に向かってスパイラル走査し、第1の期間Δt1に続く第2の期間Δt2中にスポットP1,P2を径方向内方に向かってスパイラル走査する。
 第2の駆動信号S2は、三角波または正弦波である。第2の駆動信号S2の大きさが、可動レンズ8の初期位置からの+Z方向の移動量に相当する。初期位置は、中間スポットP2が、基端9aから-Z方向に離間した位置である。第2の駆動信号S2は、第1の駆動信号S1_X,S1_Yの周期Tと同一の周期Tを有する。
 制御部7は、第1の駆動信号S1_X,S1_Yと第2の駆動信号S2とを同期させることによって第1の走査部5と第2の走査部6とを同期させて制御する。このときに、制御部7は、非補正像面I1と目標像面I1’との差に基づき、第1の走査部5によってスパイラル走査されるスポットP1を非補正像面I1上の位置から目標像面I1’上の位置に変位させるように、第2の駆動信号S2によって可動レンズ8の移動方向および移動量を制御し、それにより、非補正像面I1を目標像面I1’に補正する。目標像面I1’は、例えば、ユーザによって制御部7に設定された面である。これにより、スポットP1が走査される像面を任意の形状の面に制御し、照明光の収差、特に像面湾曲を被写体Bの表面の形状に応じて補正することができる。可動レンズ8の移動方向および移動量は、既知の非補正像面I1の形状と目標像面I1’の形状との差分から算出される。あるいは、可動レンズ8の移動方向および移動量が、図示しない記憶装置に予め記憶されていてもよい。
 例えば、目標像面I1’が平坦面である場合、制御部7は、図5に示されるように、第1の駆動信号S1_X,S1_Yの振幅および第2の駆動信号S2の振幅が同一時刻に最大となり、同一時刻に最小となるように、第1の駆動信号S1_X,S1_Yと第2の駆動信号S2とを同期させる。これにより、スポットP1,P2が径方向外方に向かってスパイラル走査される第1の期間Δt1中に、第2の走査部6は可動レンズ8を基端9aに近接する方向に移動させる。また、スポットP1,P2が径方向内方に向かってスパイラル走査される第2の期間Δt2中に、第2の走査部6は可動レンズ8を基端9aから離間する方向に移動させる。その結果、図2Bおよび図4Bに示されるように、中間像面I2が-Z側に凸の曲面または円錐面になり、レンズ9,10による像面湾曲が中間像面I2の湾曲によって相殺され、非補正像面I1は平坦な目標像面I1’に補正される。このように、被写体B側に凸の非補正像面I1が、負の屈折力を有するレンズを使用することなく、平坦面に補正される。
 このような制御部7は、例えば、コントローラ40に内蔵されたプロセッサ、記憶装置、信号発生器、およびデジタルアナログ(DA)変換器(いずれも図示略。)を備える。プロセッサは、例えば中央演算処理装置であり、記憶装置に記憶された制御プログラムに従って制御信号を生成する。制御信号は、駆動信号S1_X,S1_Y,S2の各々の周波数、振幅および位相等のパラメータを規定する信号である。信号発生器は、制御信号に従ってデジタル波形を発生させる。DA変換器は、デジタル波形をDA変換することによって、アナログ信号である駆動信号S1_X,S1_Y,S2を生成する。
 次に、光投影装置1による光投影方法について説明する。
 本実施形態に係る光投影装置1によれば、光源部2から発せられたレーザ光Lは、導光光学系3によって平行光に形成され、第1の走査部5によって偏向され、集光光学系8を経由してリレーレンズ9に入射し、リレーレンズ9によってリレーされ、対物レンズ10によって被写体B上に集光させられる。
 被写体B上に形成されたレーザ光LのスポットP1は、第1の走査部5によって光軸A回りにスパイラル走査される。また、スポットP1は、可動レンズ8が第2の走査部6によって直線移動させられることで、光軸Aに沿う方向に直線走査される。スポットP1がスパイラル走査の1周期の間に直線走査されるように、第1の走査部5によるスパイラル走査と第2の走査部6による直線走査は、制御部7によって相互に同期して実行される。これにより、被写体Bを照明するレーザ光Lの非補正像面I1は平坦な目標像面I1’に補正される。したがって、平坦な、または凹凸の少ない被写体Bの表面をレーザ光Lの小さなスポットP1で走査することができる。
 被写体B上のスポットP1の位置では、蛍光またはレーザ光Lの反射光のような信号光が発生する。信号光は、スコープ20に設けられた検出光学系(図示略)によって検出され、検出光学系からコントローラ40に信号光の強度の情報が送信される。コントローラ40において、信号光の強度が走査軌跡上のスポットP1の位置と対応付られることによって、被写体Bの画像が生成される。図5には、スパイラル走査の往路において被写体Bの画像を取得する例が示されている。制御部7は、駆動信号S1_X,S1_Y,S2が最大となるタイミングで、撮影トリガであるパルス信号を発生させる。検出光学系は、撮影トリガに応答して、所定の長さの撮影期間にわたって信号光を検出する。
 図6は、被写体Bの表面の形状と像面I1,I1’の形状との関係を示している。図6に示されるように、非補正像面I1の形状と被写体Bの表面の形状との間にずれが存在している場合、被写体Bの表面におけるレーザ光Lのスポット径が広がり、その結果、画像にぼけが生じる。画像のぼけは、非補正像面I1と被写体Bの表面との間のずれδが大きい程、顕著になる。
 本実施形態によれば、平坦なまたは凹凸の少ない被写体Bの表面形状に応じて、非補正像面I1が平坦な目標像面I1’に補正される。したがって、全体にわたって被写体Bの表面に焦点が合った画像を取得することができるという利点がある。
 また、本実施形態によれば、GRINレンズ9,10が発生させる大きな像面湾曲を、GRINレンズ9,10以外の可動レンズ8を直線移動させるだけの簡易な手段によって容易に補正することができるという利点がある。例えば、図4Aに示されるように、GRINレンズ9,10の一設計例において、非補正像面I1は、像面湾曲によって、光軸Aに沿う方向に0.26mmの広がりを有する。このような、レンズの屈折力を利用した補正が困難な大きな像面湾曲であっても、可動レンズ8の移動によって容易に補正することができる。
 例えば、スパイラル状の走査軌跡の周回数が180周である場合、観察範囲の1枚の画像を16.7msで取得するために、第1の走査部5のガルバノミラーには、0.1ms程度の振動周期が要求される。一方、可動レンズ8は、16.7msの間に一往復すればよい。このような可動レンズ8の機械的な移動の実現は容易である。
 GRINレンズ9,10による像面湾曲は、負の屈折力を有する凹レンズをスコープ20の先端に配置することによっても、補正することができる。ただし、極細のスコープ20の場合、凹レンズをスコープ20の先端に配置することが困難である。本実施形態によれば、ハンドル30内の可動レンズ8の移動によって像面湾曲を補正するので、極細のスコープ20にも好適に適用することができるという利点がある。
 図7は、第2の駆動信号S2の具体例を示し、図8Aから図8Cは、中間スポットP2の走査軌跡、すなわち中間像面I2の具体例を示している。
 図7において、可動レンズ8を一定の速度で移動させる第2の駆動信号S21と、可動レンズ8の移動速度を次第に増大させる第2の駆動信号S22と、可動レンズ8の移動速度を次第に低下させる第2の駆動信号S23が示されている。
 第2の駆動信号S21に従って形成される中間像面I2は、図8Aに示されるように、円錐形である。第2の駆動信号S22に従って形成される中間像面I2は、図8Bに示されるように、側面が凹状の略円錐形である。第2の駆動信号S23に従って形成される中間像面I2は、図8Cに示されるように、側面が凸状の略円錐形である。このように、第2の駆動信号S2の具体的な波形形状は、レンズ9,10によって発生する像面湾曲に応じて様々に設定することができる。
 被写体Bの観察中に、目標像面I1’を変化させたいことがある。例えば、体腔内の観察において、観察範囲の被写体Bの表面の形状が体腔内の位置によって異なることがある。このような場合のために、ユーザが中間像面I2の形状を変化させるためのユーザインタフェース(I/F)11が設けられていてもよい。ユーザI/F11は、コントローラ40に設けられていてもよい。あるいは、ユーザI/F11は、ハンドル30に設けられたダイヤルである。
 例えば、ユーザによるユーザI/F11の操作によって、図9に示されるように、第2の駆動信号S2が、振幅が異なる2つのパターン1,2の間で連続的に変更可能であり、図10に示されるように、第2の駆動信号S2の振幅の変更に従って光軸Aに沿う方向の中間像面I2の寸法が変更される。図7に示されるように、ユーザI/F11は、可動レンズ8の移動速度を変更することができるように構成されていてもよい。
 本実施形態において、目標像面I1’は、平坦面に限定されるものではなく、被写体Bの表面の形状に応じて任意の形状に設定することができる。
 図11Aおよび図11Bは、目標像面I1’の他の例を示している。
 図11Aに示される目標像面I1’は、非補正像面I1よりも大きな曲率を有する+Z側に凸の曲面である。このような目標像面I1’は、例えば、細い空洞内の観察において、焦点が正面のみならず空洞の内面にも合った画像を得ることができる点で、有利である。この場合、+Z側に凸の中間像面I2を形成するために、制御部7は、第1の期間Δt1中に可動レンズ8を第2の走査部6によって基端9aから離間する方向に移動させ、第2の期間Δt2中に可動レンズ8を第2の走査部6によって基端9aに近接する方向に移動させる。
 図11Bに示される目標像面I1’は、-Z側に凸の曲面である。このような目標像面I1’は、例えば、盛り上がった被写体Bの表面の観察において、被写体B全体をボケなく観察することができる点において、有利である。さらに、レーザ光Lによる患部の焼灼または結石の破壊等の治療において、患部である被写体Bにレーザ光Lを均一の強度で照射することができる、あるいは、一定以上のエネルギー密度を担保することができる点で有利である。
 この場合、中間像面I2が、図4Bに示される中間像面I2よりも-Z側にさらに凸となるように、制御部7は、第2の走査部6によって可動レンズ8を移動させる。
 本実施形態においては、光源部2と導光光学系3の少なくとも一部と結像光学系4の少なくとも一部とを相対的に移動させるために、第2の走査部6が可動レンズ8のみを移動させることしたが、第2の走査部6によって移動させられる可動素子は、中間スポットP2を光軸Aに沿って移動させることができる任意の素子であってよい。具体的には、光源部2、導光光学系3および結像光学系4のうち、GRINレンズ9,10を除く1つ以上の素子を可動素子として選択することができる。
 図12Aから図13Cは、可動素子の他の例を示している。
 図12Aから図12Cにおいて、光源部2が可動素子である。第2の走査部6は、光源部2を支持し、光源部2を光軸A’に沿って移動させる。光源部2が導光光学系3に近接するにつれて中間スポットP2は+Z側に移動する。したがって、-Z側に凸の中間像面I2を形成する場合、制御部7は、第1の期間Δt1中に第2の走査部6によって光源部2を導光光学系3に近接する方向に移動させ、第2の期間Δt2中に第2の走査部6によって光源部2を導光光学系3から離間する方向に移動させる。
 図13Aから図13Cにおいて、導光光学系3が可動素子である。第2の走査部6は、導光光学系3を支持し、導光光学系3を光軸A’に沿って移動させる。導光光学系3が第1の走査部5に近接するにつれて中間スポットP2は-Z側に移動する。したがって、-Z側に凸の中間像面I2を形成する場合、制御部7は、第1の期間Δt1中に第2の走査部6によって導光光学系3を第1の走査部5から離間する方向に移動させ、第2の期間Δt2中に第2の走査部6によって導光光学系3を第1の走査部5に近接する方向に移動させる。
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態のみに限定されるべきものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 例えば、上述した実施形態において、導光光学系3および集光光学系8はそれぞれ単一のレンズからなる光学系であったが、導光光学系3および集光光学系8の具体的な構成はこれに限定されず、複数のレンズの組み合わせから導光光学系3および集光光学系8をそれぞれ構成することが可能である。導光光学系3および結像光学系8うちいずれの位置のレンズを可動素子とするかは、本発明の実施者が自由に選択することができる。
1 光投影装置
2 光源部
3 導光光学系
4 結像光学系
5 第1の走査部、ガルバノミラー(ミラー)
6 第2の走査部
6a 固定部(第2の走査部)
6b 可動部(第2の走査部)
7 制御部
8 集光光学系(結像光学系、可動レンズ)
9 リレーレンズ(結像光学系、屈折率分布型レンズ)
10 対物レンズ(結像光学系、屈折率分布型レンズ)
11 ユーザインタフェース
20 スコープ
30 ハンドル
40 コントローラ
100 内視鏡
A 光軸
I1 非補正像面
I1’ 目標像面
I2 中間像面
P1 スポット
P2 中間スポット

Claims (9)

  1.  レーザ光を発する光源部と、
     該光源部から発せられた前記レーザ光を導光する導光光学系と、
     前記レーザ光を集光させ前記レーザ光のスポットを被写体に投影する結像光学系と、
     前記導光光学系によって導光された前記レーザ光を前記結像光学系に向かって偏向するミラーを有し、該ミラーを揺動させることによって前記スポットをスパイラル走査する第1の走査部と、
     前記光源部と前記導光光学系の少なくとも一部と前記結像光学系の少なくとも一部とを前記光源部から前記結像光学系までの光軸上で相対的に移動させることによって前記スポットを前記結像光学系の光軸に沿う方向に直線走査する第2の走査部と、
     前記第1の走査部および前記第2の走査部を同期させて制御することによって前記スポットをスパイラル走査の1周期の間に直線走査させる制御部とを備える光投影装置。
  2.  前記第1の走査部による前記スポットのスパイラル走査の周期の長さと、前記第2の走査部による前記スポットの直線走査の周期の長さとが、相互に同一である請求項1に記載の光投影装置。
  3.  前記第1の走査部は、前記光源部、前記導光光学系および前記結像光学系が所定の基準位置に静止した状態で前記スポットをスパイラル走査することによって非補正像面を形成し、
     前記制御部は、前記第2の走査部を制御することによって、前記スポットを、前記非補正像面上の位置から目標像面上の位置に前記結像光学系の光軸に沿う方向に変位させる請求項1または請求項2に記載の光投影装置。
  4.  前記非補正像面が、前記被写体側に凸の曲面であり、
     前記目標像面が、平坦面である請求項3に記載の光投影装置。
  5.  前記結像光学系が、屈折率分布型レンズを含み、
     前記第2の走査部が、前記光源部、前記導光光学系および前記結像光学系のうち、前記屈折率分布型レンズを除く少なくとも一部を移動させる請求項1から請求項4のいずれかに記載の光投影装置。
  6.  前記制御部は、前記第1の走査部によって前記スポットが径方向外方に向かってスパイラル走査されている第1の期間中に前記第2の走査部によって前記光源部、前記導光光学系の少なくとも一部および前記結像光学系の少なくとも一部のいずれかを一方向に移動させ、前記第1の走査部によって前記スポットが径方向内方に向かってスパイラル走査されている第2の期間中に前記第2の走査部によって前記光源部、前記導光光学系の少なくとも一部および前記結像光学系の少なくとも一部のいずれかを反対方向に移動させる請求項5に記載の光投影装置。
  7.  前記結像光学系が、前記第1の走査部と前記屈折率分布型レンズとの間に配置され、前記第1の走査部によって偏向された前記レーザ光を集光させて前記レーザ光の中間スポットを形成する集光光学系を備え、
     前記第2の走査部が、前記集光光学系を移動させ、
     前記制御部は、前記第1の期間中に前記第2の走査部によって前記集光光学系を前記屈折率分布型レンズに近接する方向に移動させ、前記第2の期間中に前記第2の走査部によって前記集光光学系を前記屈折率分布型レンズから離間する方向に移動させる請求項6に記載の光投影装置。
  8.  前記第2の走査部が、前記光源部を移動させ、
     前記制御部は、前記第1の期間中に前記第2の走査部によって前記光源部を前記導光光学系に近接する方向に移動させ、前記第2の期間中に前記第2の走査部によって前記光源部を前記導光光学系から離間する方向に移動させる請求項6に記載の光投影装置。
  9.  ミラーによって偏向されたレーザ光を集光させ、該レーザ光のスポットを被写体に投影する光投影方法であって、
     前記ミラーを揺動させることによって前記スポットを所定の光軸回りにスパイラル走査するステップと、
     前記スポットを前記所定の光軸に沿う方向に直線走査するステップとを含み、
     前記スパイラル走査するステップと前記直線走査するステップとを同期させて実行することによって前記スポットをスパイラル走査の1周期の間に直線走査させる光投影方法。
PCT/JP2018/027929 2018-07-25 2018-07-25 光投影装置および光投影方法 WO2020021659A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027929 WO2020021659A1 (ja) 2018-07-25 2018-07-25 光投影装置および光投影方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027929 WO2020021659A1 (ja) 2018-07-25 2018-07-25 光投影装置および光投影方法

Publications (1)

Publication Number Publication Date
WO2020021659A1 true WO2020021659A1 (ja) 2020-01-30

Family

ID=69180661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027929 WO2020021659A1 (ja) 2018-07-25 2018-07-25 光投影装置および光投影方法

Country Status (1)

Country Link
WO (1) WO2020021659A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695016A (ja) * 1992-09-09 1994-04-08 Brother Ind Ltd 光走査装置
JP2000505275A (ja) * 1997-06-24 2000-04-25 エルディティ ゲーエムベーハー ウント シーオー.レーザー―ディスプレー―テクノロギー カーゲー ビデオ画像を表示するための方法、装置および該装置の製造工程
JP2017173622A (ja) * 2016-03-24 2017-09-28 パイオニア株式会社 揺動体装置の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695016A (ja) * 1992-09-09 1994-04-08 Brother Ind Ltd 光走査装置
JP2000505275A (ja) * 1997-06-24 2000-04-25 エルディティ ゲーエムベーハー ウント シーオー.レーザー―ディスプレー―テクノロギー カーゲー ビデオ画像を表示するための方法、装置および該装置の製造工程
JP2017173622A (ja) * 2016-03-24 2017-09-28 パイオニア株式会社 揺動体装置の制御装置

Similar Documents

Publication Publication Date Title
JP5856116B2 (ja) 走査装置
JP5525136B2 (ja) シート光を発生するための光学装置
JP6270830B2 (ja) 光走査ユニット、光走査型観察装置、および光ファイバ走査装置
US10151918B2 (en) Scanner, scanning illuminator, and scanning observation apparatus
TW201328657A (zh) 雷射掃描器
JP2017044871A (ja) 走査型顕微鏡
JP2011156235A (ja) 光走査型内視鏡、光走査型内視鏡駆動装置、および光走査型内視鏡システム
JP2012231911A (ja) 光走査装置および走査型観察装置
US9823456B2 (en) Laser scanning microscope
JP2015112278A (ja) 光走査装置および光走査型観察装置
JP2012189792A (ja) 顕微鏡装置
US20170318181A1 (en) Optical scanning method and optical scanning apparatus
JP5865562B1 (ja) 走査型内視鏡用画像処理装置
WO2020021659A1 (ja) 光投影装置および光投影方法
WO2020021658A1 (ja) 光投影装置および光投影方法
WO2016116962A1 (ja) 光走査方法及び光走査装置
JP2012078733A (ja) 共焦点内視鏡装置
JP5993531B1 (ja) 走査型内視鏡
WO2016116968A1 (ja) 光走査装置
WO2016170612A1 (ja) 光ファイバスキャナおよび走査型観察装置
JP6416277B2 (ja) 光走査型内視鏡装置
JP6382004B2 (ja) 光走査型観察装置
JP7171238B2 (ja) 走査型レーザ印字装置
WO2017109814A1 (ja) 光走査型観察装置
JP2009145567A (ja) 走査顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP