WO2020020353A1 - 触控基板及其制备方法、触控装置 - Google Patents

触控基板及其制备方法、触控装置 Download PDF

Info

Publication number
WO2020020353A1
WO2020020353A1 PCT/CN2019/097931 CN2019097931W WO2020020353A1 WO 2020020353 A1 WO2020020353 A1 WO 2020020353A1 CN 2019097931 W CN2019097931 W CN 2019097931W WO 2020020353 A1 WO2020020353 A1 WO 2020020353A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
touch
electrodes
substrate
lines
Prior art date
Application number
PCT/CN2019/097931
Other languages
English (en)
French (fr)
Inventor
郭建东
Original Assignee
京东方科技集团股份有限公司
重庆京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 重庆京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/644,653 priority Critical patent/US11086460B2/en
Publication of WO2020020353A1 publication Critical patent/WO2020020353A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present disclosure relates to the field of touch technology, and in particular, to a touch substrate, a manufacturing method thereof, and a touch device.
  • a self-contained touch panel is a common touch panel.
  • the self-capacitive touch panel generally includes a substrate and a touch electrode formed on the substrate. When the touch panel is touched, the capacitance between the touched touch electrode and the ground changes, so that the current on the lead wire connected to the touch electrode also changes. Touch IC (Integrated Circuit) The change in current on the line determines where it is touched.
  • Embodiments of the present disclosure provide a touch substrate, a preparation method thereof, and a touch device.
  • an embodiment of the present disclosure provides a touch substrate, including:
  • a substrate having a first region and a second region arranged side by side in a direction parallel to the substrate;
  • a plurality of touch electrodes the plurality of touch electrode arrays being arranged on the substrate, the plurality of touch electrodes including a plurality of first touch electrodes located in the first area and a plurality of touch electrodes located in the second area Second touch electrodes;
  • Multiple lead-out wires which are located on the substrate and extend along the arrangement direction of the first region and the second region, and the multiple lead-out wires include multiple first lead-out wires and multiple second lead-out wires Line and multiple third leads,
  • the plurality of first lead-out lines are located in the first area and are connected one-to-one with the first touch electrode, and the plurality of second lead-out lines are located in the second area and are in contact with the second touch.
  • the electrodes are connected one-to-one correspondingly, and the plurality of first lead-out wires and the plurality of second lead-out wires both extend toward the side where the first region is located,
  • the plurality of third lead-out wires are located in the first region and are insulated from the first touch electrode.
  • the plurality of third lead-out wires are connected to the plurality of second lead-out wires one-to-one correspondingly.
  • the resistance of the third lead-out line is smaller than the resistance of the second lead-out line per unit length.
  • the plurality of third lead-out lines are different from the first touch electrode.
  • the width of the third lead-out is greater than the width of the second lead-out, and the third lead-out and the second lead-out are made of the same material.
  • each of the touch electrodes is rectangular, and a width of the third lead-out line is greater than 20% of a width of the touch electrode.
  • the thickness of the third lead-out line is the same as the thickness of the second lead-out line.
  • the third lead-out line overlaps a projection portion of the first touch electrode on the substrate.
  • the plurality of third lead-out lines are on the same layer as the plurality of second lead-out lines; or, the third lead-out line is on a different layer from the second lead-out line, and the third lead-out line and The second lead-out wire is connected through a via.
  • the second touch electrode includes two layers of sub-electrodes, the orthographic projections of the two layers of sub-electrodes on the substrate coincide, and the two layers of sub-electrodes are connected through vias.
  • one of the two sub-electrodes is on the same layer as the first touch electrode, and the other of the two sub-electrodes is on the same layer as the third lead-out line.
  • the second touch electrode is a single-layer electrode.
  • the second touch electrode is different from the first touch electrode.
  • the second touch electrode is on the same layer as the first touch electrode.
  • the thickness of the second touch electrode is greater than the thickness of the first touch electrode.
  • the plurality of first lead-out lines are on the same layer as the plurality of first touch electrodes.
  • the plurality of second lead-out lines are in the same layer as the plurality of first touch electrodes.
  • the touch substrate further includes a fourth lead line located on a different layer from the second lead line, and an orthographic projection of the fourth lead line on the substrate and the second lead line The orthographic projections on the substrate overlap, and the fourth lead-out line and the second lead-out line are connected through a via.
  • the plurality of touch electrodes and the plurality of lead wires are all made of a transparent conductive material.
  • the plurality of touch electrodes, the first lead-out line and the second lead-out line are made of a transparent conductive material, and the third lead-out line is made of a metal material.
  • an embodiment of the present disclosure further provides a touch device including the aforementioned touch substrate.
  • an embodiment of the present disclosure further provides a method for manufacturing a touch substrate, including:
  • a plurality of touch electrodes and a plurality of lead wires are formed on the substrate, the plurality of touch electrode arrays are arranged on the substrate, the plurality of touch electrodes include a plurality of first touch electrodes located in a first area, and A second touch electrode in a second region, the first region and the second region are arranged side by side on the substrate, and the plurality of lead-out lines extend along an arrangement direction of the first region and the second region
  • the plurality of lead-out lines includes a plurality of first lead-out lines, a plurality of second lead-out lines, and a plurality of third lead-out lines, and the plurality of first lead-out lines are located in the first area and are in touch with the first
  • the electrodes are connected one-to-one correspondingly, the plurality of second lead-out wires are located in the second area and are one-to-one corresponding to the second touch electrode, the plurality of first lead-out wires and the plurality of second lead-outs
  • the lines extend toward the side
  • forming a plurality of touch electrodes and a plurality of lead wires on the substrate includes:
  • One of the first pattern layer and the second pattern layer includes the plurality of first touch electrodes, the plurality of first lead-out lines, and the plurality of first sub-electrodes.
  • the other one of the second pattern layers includes the plurality of second lead lines, the plurality of third lead lines, and a plurality of second sub-electrodes.
  • the plurality of second lead lines and the plurality of second The sub-electrodes are connected one-to-one correspondingly, the orthographic projections of the plurality of second sub-electrodes and the plurality of first sub-electrodes on the substrate coincide, and the plurality of second sub-electrodes and the plurality of first sub-electrodes
  • the electrodes are connected in one-to-one correspondence through the vias to form a plurality of the second touch electrodes.
  • forming a plurality of touch electrodes and a plurality of lead wires on the substrate includes:
  • a first pattern layer is formed on the substrate, the first pattern layer includes the plurality of first touch electrodes, the plurality of second touch electrodes, and the plurality of first lead-out lines, and the second touch A thickness of the electrode is greater than a thickness of the first touch electrode;
  • the thickness of the insulating layer being smaller than the thickness of the second touch electrode and greater than the thickness of the first touch electrode;
  • a second pattern layer is formed on the insulating layer, and the second pattern layer includes the plurality of second lead lines and the plurality of third lead lines.
  • forming a plurality of touch electrodes and a plurality of lead wires on the substrate includes:
  • first pattern layer including the plurality of first touch electrodes, the plurality of first lead-out lines, and the plurality of first sub-electrodes;
  • Forming a second pattern layer on the insulating layer, the second pattern layer including the plurality of second lead lines, the plurality of third lead lines, and one-to-one correspondence with the plurality of first sub-electrodes A plurality of second sub-electrodes, the plurality of second sub-electrodes are located in the plurality of openings, and the second sub-electrodes are stacked on the corresponding first sub-electrodes to obtain the plurality of second touches electrode.
  • forming a plurality of touch electrodes and a plurality of lead wires on the substrate includes:
  • One of the first pattern layer and the second pattern layer includes the plurality of first touch electrodes and the plurality of first lead-out lines, and one of the first pattern layer and the second pattern layer The other includes the plurality of second touch electrodes, the plurality of second lead lines, and the plurality of third lead lines.
  • the pattern layer including the plurality of first lead-out lines in the first pattern layer and the second pattern layer further includes a plurality of fourth lead-out lines, and the plurality of fourth lead-out lines and the The orthographic projections of the plurality of second lead-out lines on the substrate coincide, and the plurality of fourth lead-out lines are in one-to-one correspondence with the plurality of second lead-out lines through vias.
  • forming a plurality of touch electrodes and a plurality of lead wires on the substrate includes:
  • One of the first pattern layer and the second pattern layer includes the plurality of first touch electrodes, the plurality of first lead-out lines, the plurality of second touch electrodes, and the plurality of second Lead-out lines, the other of the first pattern layer and the second pattern layer including the plurality of third lead-out lines, the plurality of third lead-out lines and the plurality of second lead-out lines passing through vias One-to-one correspondence.
  • FIG. 1 is a schematic diagram of a partial structure of a touch substrate provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic partial cross-sectional view of a touch substrate provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a first pattern layer according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a second pattern layer according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another first pattern layer according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic partial cross-sectional view of another touch substrate provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another touch substrate provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another touch substrate according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another touch substrate provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another touch substrate provided by an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another touch substrate according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another touch substrate provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another touch substrate according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a touch device according to an embodiment of the present disclosure.
  • FIG. 15 is a flowchart of a method for manufacturing a touch substrate according to an embodiment of the present disclosure
  • FIG. 16 is a flowchart of a method for manufacturing a touch substrate according to an embodiment of the present disclosure
  • 17 to 18 are schematic diagrams of a manufacturing process of a touch substrate provided by an embodiment of the present disclosure.
  • FIG. 19 is a flowchart of a method for manufacturing a touch substrate according to an embodiment of the present disclosure.
  • 20-23 are schematic diagrams of a manufacturing process of a touch substrate according to an embodiment of the present disclosure.
  • FIG. 24 is a flowchart of another method for manufacturing a touch substrate according to an embodiment of the present disclosure.
  • 25 to 26 are schematic diagrams of a manufacturing process of a touch substrate provided by an embodiment of the present disclosure.
  • FIG. 27 is a flowchart of another method for manufacturing a touch substrate according to an embodiment of the present disclosure.
  • 28-29 are schematic diagrams of a manufacturing process of a touch substrate according to an embodiment of the present disclosure.
  • FIG. 30 is another method for manufacturing a touch substrate according to an embodiment of the present disclosure.
  • 31 to 34 are schematic diagrams of a manufacturing process of a touch substrate according to an embodiment of the present disclosure.
  • 35 is a flowchart of another method for manufacturing a touch substrate according to an embodiment of the present disclosure.
  • 36 to 38 are schematic diagrams of a manufacturing process of a touch substrate according to an embodiment of the present disclosure.
  • 39 is a flowchart of a method for manufacturing a touch substrate according to an embodiment of the present disclosure.
  • 40 to 41 are schematic diagrams of a manufacturing process of a touch substrate provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic partial structural diagram of a touch substrate according to an embodiment of the present disclosure.
  • the touch substrate includes a substrate 100, a plurality of touch electrodes (such as touch electrodes 110 and 120 in FIG. 1), and a plurality of lead wires (such as lead wires 130, 140, and 150 in FIG. 1).
  • the substrate 100 has a first region 101 and a second region 102 arranged side by side in a direction parallel to the substrate 100.
  • a plurality of touch electrode arrays are arranged on the substrate 100.
  • the plurality of touch electrodes include a plurality of first touch electrodes 110 located in the first area 101 and a plurality of second touch electrodes 120 located in the second area 102.
  • the first region 101 and the second region 102 are two planar regions divided on the substrate 100, and the two planar regions are arranged side by side in a direction parallel to the substrate 100. As shown in FIG. 1, the first region 101 and the second region 102 are both rectangular, and the first region 101 and the second region 102 are distributed side by side along the X direction in FIG. 1.
  • being located in the first region 101 means that the orthographic projection on the substrate 100 is located in the first region 101
  • being located in the second region 102 means that the orthographic projection on the substrate 100 is located in the second region 102 Inside.
  • the fact that the plurality of first touch electrodes 110 are located in the first area 101 means that the orthographic projections of the plurality of first touch electrodes 110 on the substrate 100 are located in the first area 101.
  • a plurality of lead-out lines are provided on the substrate 100 and extend along the arrangement direction of the first region 101 and the second region 102 (ie, the X direction in FIG. 1).
  • the plurality of lead lines include a plurality of first lead lines 130, a plurality of second lead lines 140, and a plurality of third lead lines 150.
  • the plurality of first lead-out lines 130 are located in the first area 101 and are connected to the first touch electrodes 110 in a one-to-one correspondence.
  • the plurality of second lead-out wires 140 are located in the second region 102 and are connected to the second touch electrodes 120 one-to-one correspondingly.
  • the plurality of first lead-out lines 130 and the plurality of second lead-out lines 140 all extend toward the side where the first region is located (eg, downward in FIG. 1).
  • the plurality of third lead-out lines 150 are located in the first area 101 and are provided with different layers of insulation from the first touch electrode 110.
  • the plurality of third lead-out lines 150 and the plurality of second lead-out lines 140 are connected one-to-one correspondingly.
  • the resistance of the third lead-out line 150 per unit length is smaller than the resistance of the second lead-out line 140 per unit length.
  • different layers may refer to different sides of the same layer, or are formed by different patterning processes, or are in contact with different layers near the surface of the substrate.
  • the orthographic projection of the two-layer structure on the substrate may exist in three cases: overlap, partial overlap (also referred to as interlaced), and non-overlap (also referred to as staggered).
  • the third lead-out line 150 and the first touch electrode 110 in the embodiment shown in FIG. 1 the two are partially overlapped.
  • the third lead-out line 150 and the first touch electrode 110 may not overlap.
  • the orthographic projection of the third lead-out line 150 on the substrate is located on the substrate of the first touch electrode 110 on the substrate. Between the orthographic projections.
  • first lead-out line 130 is arranged in the gap between the adjacent first touch electrodes 110 and the second lead-out line 140 is arranged in the gap between the adjacent second touch electrodes 120, in order to facilitate the first lead-out
  • the line 130 is connected to the first touch electrode 110
  • the second lead line 140 is connected to the second touch electrode 120 and the third lead line 150
  • ends of the first lead line 130 and the second lead line 140 may be provided with a bent portion,
  • bent ends 140 a are provided at both ends of the second lead-out wire 140 shown in FIG. 1.
  • the third lead-out line is insulated from the first touch electrode in the first area in a different layer, and the third lead-out line is connected to the second touch electrode in the second area.
  • the lead wires are connected one-to-one correspondingly. Since the resistance of the third lead wire of unit length is smaller than the resistance of the second lead wire of unit length, the resistance of the lead wire connected between the second touch electrode and the touch IC can be reduced. In the case where the area of the touch substrate is large, it is possible to avoid the effect of a large resistance on the touch detection effect due to the long lead-out line. Because the resistance of the lead-out wire between the second touch electrode and the touch IC is small, the touch signal can be transmitted normally, so that the touch IC can normally recognize the touched position, and the accuracy of touch detection of the touch substrate is improved. degree.
  • a plurality of first lead-out lines 130 are used to connect a plurality of first touch electrodes 110 to the touch IC 7 on the flexible circuit board 5, and a plurality of second lead-out lines 140 and a plurality of third lead-out lines 150 are used.
  • the second touch electrodes 120 are connected to the touch IC 7 on the flexible circuit board 5.
  • the flexible circuit board 5 is located on one side of the touch substrate, and the first region 101 is located between the flexible circuit board 5 and the second region 102.
  • the plurality of first lead-out lines 130 and the plurality of third lead-out lines 150 are all connected to the flexible circuit board 5.
  • the touch IC 7 can be fixed on the flexible circuit board 5.
  • the flexible circuit board 5 may also be connected to the printed circuit board 6 of the touch panel, and the printed circuit board 6 may be connected to a processor and a power source (ie, a motherboard) of the display panel.
  • the touch IC may also be located on a COF (Chip On Film) circuit board.
  • COF Chip On Film
  • the touch panel may include more than one touch IC 7, and each touch IC 7 is respectively connected with multiple touch electrodes. Because the number of touch electrodes that can be connected to each touch IC7 is limited, if only one touch IC7 is provided, the number of touch electrodes per unit area on a touch substrate with a larger area will be smaller than the area. There are few touch substrates, which causes the accuracy of the touch panel to decrease. Therefore, by setting more than one touch IC7, when the touch electrodes are the same size, a larger number of touch electrodes can be provided, which increases the number of touch electrodes per unit area on the touch panel, which is helpful to improve the accuracy of the touch panel. .
  • each touch IC is connected to a part of touch electrodes.
  • the left touch IC 7 is connected to 4 rows of touch electrodes
  • the right touch IC 7 is connected to 3 rows of touch electrodes.
  • the touched position can be recognized even if the touch panel is wider (that is, the size in the Y direction is larger).
  • the numbers of the touch IC and the touch electrodes in FIG. 1 are both examples, and can be set according to actual needs, which is not limited in the present disclosure.
  • the substrate 100 referred to in the embodiment of the present disclosure may be a color filter substrate.
  • the substrate 100 may be a transparent substrate.
  • the touch substrate can be set in a display panel, for example, the substrate 100 can be pasted on a color filter substrate of an existing display panel.
  • FIG. 2 is a schematic partial cross-sectional view of a touch substrate provided by an embodiment of the present disclosure, showing a hierarchical relationship between touch electrodes and lead lines in a first region and a second region.
  • FIG. 2 exemplarily shows one first touch electrode 210 and one second touch electrode 220 adjacent to each other in the arrangement direction of the first region 201 and the second region 202.
  • the lead lines do not include the bent portion as an example for illustrative description.
  • the second touch electrode 220 includes a first sub-electrode 221 and a second sub-electrode 222.
  • the orthographic projections of the first sub-electrode 221 and the second sub-electrode 222 on the substrate 200 are coincident, and the first sub-electrode 221 and the second sub-electrode 222 are connected through a via 223.
  • Setting the second touch electrode in two layers is equivalent to increasing the thickness of the second touch electrode, that is, increasing the cross-sectional area of the second touch electrode, which can help reduce the resistance of the second touch electrode.
  • the thickness of the second touch electrode is equivalent to the sum of the thicknesses of the two sub-electrodes, and is greater than the thickness of the first touch electrode.
  • a first pattern layer, an insulating layer 260, and a second pattern layer are formed on the substrate 200.
  • the first insulating layer 260 covers the first pattern layer, and the second pattern layer is located on the insulating layer 260.
  • the thickness h of the insulating layer 260 is greater than the thickness of the first pattern layer, so that the first insulating layer 260 can cover the first pattern layer.
  • the thickness of the insulating layer 260 refers to a maximum size of the insulating layer 260 in a direction perpendicular to the substrate 200.
  • the insulating layer 260 may be a SiO 2 layer, and the SiO 2 layer has better insulation and light transmittance.
  • FIG. 3 is a schematic structural diagram of a first pattern layer according to an embodiment of the present disclosure.
  • the first pattern layer includes a first touch electrode 210, a first lead-out line 230, and a first sub-electrode 221.
  • the first touch electrodes 210 and the first sub-electrodes 221 are arranged in an array, and the first lead-out lines 230 are connected to the first touch electrodes 210 one-to-one correspondingly.
  • the plurality of first lead-out lines 210 extend along the arrangement direction of the first region 201 and the second region 202 toward the side where the first region 201 is located (that is, the bottom side in FIG. 3).
  • FIG. 4 is a schematic structural diagram of a second pattern layer according to an embodiment of the present disclosure.
  • the second pattern layer includes a second sub-electrode 222, a second lead-out line 240, and a third lead-out line 250.
  • the second sub-electrodes 222 are arranged in an array in the second region 202.
  • the second lead-out lines 240 are connected to the second sub-electrodes 222 one by one, and the plurality of second lead-out lines 240 are arranged along the first region 201 and the second region 202.
  • the direction extends toward the side where the first region 201 is located (that is, the bottom side in FIG. 4).
  • a plurality of third lead-out lines 250 are arranged in the first area 201 in parallel and spaced apart, and the plurality of third lead-out lines 250 and the plurality of second lead-out lines 240 are connected one-to-one correspondingly.
  • FIG. 5 is a schematic structural diagram of another first pattern layer according to an embodiment of the present disclosure.
  • the first pattern layer further includes a plurality of fourth lead-out lines 260.
  • the plurality of fourth lead-out lines 260 are connected one-to-one with the plurality of first sub-electrodes 221.
  • the plurality of fourth lead-out lines 260 extend along the arrangement direction of the first region 201 and the second region 202 toward the side where the first region 201 is located (that is, the bottom side in FIG. 3).
  • FIG. 6 is a schematic partial cross-sectional view of another touch substrate provided by an embodiment of the present disclosure, showing a hierarchical relationship between touch electrodes and lead lines in a first region and a second region.
  • one first touch electrode 210 and one second touch electrode 220 adjacent to each other in the arrangement direction of the first region 201 and the second region 202 are exemplarily shown in FIG. 6.
  • the lead lines do not include the bent portion as an example for illustrative description.
  • the orthographic projection of the fourth lead-out line 260 on the substrate 200 coincides with the orthographic projection of the second lead-out line 240 on the substrate 200, and the fourth lead-out line 260 and the second lead-out line 240 are connected through the via 224.
  • two lead wires are provided for each second touch electrode, which is equivalent to increasing the thickness of the lead wires, thereby increasing the cross-sectional area of the lead wires, which is beneficial to further reducing the resistance of the lead wires located in the second region 202. .
  • FIG. 7 is a schematic structural diagram of another touch substrate according to an embodiment of the present disclosure.
  • the first touch electrode 210 and the first lead-out line 230 are arranged in the same layer as the second sub-electrode 222, that is, they are arranged in the same layer.
  • the same-layer arrangement refers to being located on the same side of the same layer, or formed by a patterning process, or the surfaces close to the substrate are all in contact with the same layer.
  • the first pattern layer includes a first sub-electrode 221, a second lead-out line 240, and a third lead-out line 250.
  • the first sub-electrode 221 is connected to the third lead-out line 250 through the second lead-out line 240.
  • the second pattern layer includes a second sub-electrode 222, a first touch electrode 210, and a first lead-out line 230.
  • the second sub-electrode 222 is connected to the first sub-electrode 221 through a via 223, and the first touch electrode 210 and the first lead-out line 230 connections.
  • one of the two sub-electrodes is disposed on the same layer as the first touch electrode 210, and the other of the two sub-electrodes is disposed on the third layer.
  • the lead-out wires 250 are arranged on the same layer, and the first touch electrode 210 and one layer of sub-electrode can be made at the same time, and the other layer of sub-electrodes and the third lead-out line 250 are made at the same time, saving the process.
  • the first touch electrode may be arranged in a different layer from the first sub-electrode and the second sub-electrode. Because the first touch electrode and the second touch electrode (including the first sub-electrode and the second sub-electrode) are located in different areas, that is, the first touch electrode is located in the first area, the second touch electrode is located in the second area, and the first area The second region and the second region are arranged side by side in a direction parallel to the substrate, so the orthographic projection of the first touch electrode on the substrate and the orthographic projection of the second touch electrode on the substrate do not overlap.
  • a first pattern layer, a second pattern layer, and a third pattern layer are sequentially arranged on the substrate 200, and an insulating layer is provided between adjacent pattern layers.
  • the first touch electrode 210 and the first lead-out line 230 are disposed in the first pattern layer
  • the first sub-electrode 221 is disposed in the second pattern layer
  • the second sub-electrode 222 is disposed in the third pattern layer
  • the electrode 221 and the second sub-electrode 222 are connected through a via 223.
  • the structure shown in FIG. 8 is only an example.
  • the first touch electrode and the first lead-out line may also be disposed in the third pattern layer, and the first sub-electrode may be disposed in the first pattern layer.
  • a second sub-electrode is disposed in the second pattern layer.
  • the first touch electrode and the first lead-out line may be disposed in the second pattern layer, the first sub-electrode may be disposed in the first pattern layer, and the second sub-electrode may be disposed in the third pattern layer.
  • FIG. 9 is a schematic structural diagram of another touch substrate provided by an embodiment of the present disclosure.
  • the second touch electrode 320 is a single-layer electrode.
  • the structure of the single-layer electrode is simpler, and the number of layers of the film layer of the touch substrate can be reduced.
  • a first pattern layer and a second pattern layer are formed on a substrate 300 of the touch substrate, and the first pattern layer and the second pattern layer are separated by an insulating layer 360.
  • the first pattern layer includes a first touch electrode 310 and a first lead line 330
  • the second pattern layer includes a second touch electrode 320, a second lead line 340, and a third lead line 350.
  • the connection relationship between the lead wires and the touch electrodes is the same as that of the touch substrate shown in FIG. 1, and detailed description is omitted here.
  • FIG. 10 is a schematic structural diagram of another touch substrate according to an embodiment of the present disclosure.
  • the first touch electrode 310 and the second touch electrode 320 are both a single-layer structure, and are arranged in different layers.
  • the second touch electrode 320, the second lead-out line 340, and the third lead-out line 350 are located in the first pattern layer, and the first touch electrode 310 and the first lead-out line 330 are located in the second pattern layer.
  • the arrangement of the lead lines and the touch electrodes is the same as that of the touch substrate shown in FIG. 1, and detailed descriptions are omitted here.
  • the production of the first touch electrode 310 and the second touch electrode 320 can be performed separately, which facilitates the production of two touch electrodes with different thicknesses.
  • the thickness of the second touch electrode 320 may be greater than the thickness of the first touch electrode 310. Making the second touch electrode 320 thicker can help reduce the resistance of the second touch electrode 320.
  • first touch electrode 310 and the first lead-out line 330 may be provided in the second pattern layer, and the second touch electrode 320, the second lead-out line 340, and the third lead-out line 350 may be provided in the first pattern layer.
  • second touch electrode 320, the second lead-out line 340, and the third lead-out line 350 may be provided in the first pattern layer.
  • third lead-out line 350 may be provided in the first pattern layer.
  • FIG. 11 is a schematic structural diagram of another touch substrate provided by an embodiment of the present disclosure.
  • the second touch electrode 420 is disposed on the same layer as the first touch electrode 410. Setting the touch electrodes on the same layer can facilitate the production of touch electrodes.
  • a first pattern layer, an insulating layer 460 and a second pattern layer are formed on a substrate 400 of the touch substrate.
  • the first touch electrode 410, the first lead-out line 430, and the second touch electrode 420 are located in the first pattern layer
  • the second lead-out line 440 and the third lead-out line 450 are located in the second pattern layer.
  • the thickness of the second touch electrode 420 is greater than the thickness of the first touch electrode 410, so that the second touch electrode 420 has a smaller resistance than the first touch electrode 410.
  • the thickness of the insulating layer 460 is greater than the thickness of the first touch electrode 410 and smaller than the thickness of the second touch electrode 420, so that in the first region 401, the insulating layer 460 can completely cover the first touch electrode 410 and the first lead-out line 430.
  • the second touch electrode 420 may be exposed on the insulating layer 460.
  • the second lead-out line 440 is connected to a portion of the second touch electrode 420 exposed on the insulating layer.
  • FIG. 12 is a schematic structural diagram of another touch substrate according to an embodiment of the present disclosure.
  • the second touch electrode 420 is disposed on the same layer as the first touch electrode 410.
  • a first pattern layer, an insulating layer 460, and a second pattern layer are formed on the substrate 400 of the touch substrate.
  • the first touch electrode 410, the first lead-out line 430, the second lead-out line 440, and the second touch electrode 420 are located in the first pattern layer, and the third lead-out line 450 is located in the second pattern layer.
  • the third lead-out line 450 and the second lead-out line 440 are connected through a via 441. As shown in FIG.
  • the via 441 is located in the second region 402, and a joint 451 is further provided on the insulating layer 460.
  • the joint 451 is located in the second region 402 to connect the via 441 and the third lead-out line 450.
  • the joint 452 refers to a portion extending from the third lead-out line 450 to the second region 402.
  • the via 441 and the joint 451 may be disposed in the first region 401 to connect the second lead-out wire 440 and the via 441 through the joint 451.
  • the third lead-out line 450 may be provided in the first pattern layer, and the first touch electrode 410, the first lead-out line 430, the second lead-out line 440, and the second touch electrode 420 may be provided. In the second pattern layer.
  • the thickness of the second touch electrode 420 may be the same as the thickness of the first touch electrode 410, and the thickness of the second touch electrode 420 may be greater than the thickness of the first touch electrode 410.
  • a plurality of first lead lines and a plurality of first touch electrodes are disposed on the same layer, which can facilitate the production of the first touch electrodes and the first lead lines.
  • the first lead-out line and the first touch electrode may also be disposed in different layers, and the first lead-out line and the first touch electrode may be connected through a via hole.
  • the plurality of second lead-out lines may be disposed on the same layer as the plurality of third lead-out lines or the plurality of first touch electrodes.
  • a plurality of second lead lines are disposed at the same layer as a plurality of third lead lines.
  • a plurality of second lead lines 440 are provided in the touch substrate shown in FIG. 12 .
  • the second lead-out line is disposed on a different layer from the plurality of second touch electrodes.
  • the plurality of second lead-out lines may be connected to the plurality of second touch electrodes through via holes.
  • the width of the third lead-out line may be larger than the width of the second lead-out line, and the third lead-out line and the second lead-out line may be made of the same material.
  • the width refers to a dimension in a direction perpendicular to the extension direction of the lead-out line and parallel to the surface of the substrate. Since the third lead-out line and the second lead-out line are made of the same material, the third lead-out line has a larger width than the second lead-out line, so the resistance of the third lead-out line per unit length is smaller than the second lead-out line per unit length The resistance. Because the third lead-out line and the second lead-out line are made of the same material, they can be produced simultaneously.
  • the third lead-out line Since the third lead-out line is arranged in the first area, and the touch electrodes distributed in the first area and the third lead-out line are disposed on different layers, the third lead-out line has a larger wiring space and can be set wider. As shown in FIG. 1, a plurality of third lead-out lines 130 are spaced side by side in the first region 101.
  • the width of the first and second lead-out lines may not exceed 20% of the width of the touch electrode.
  • the touch electrode is rectangular, and the width of the touch electrode refers to the length of the shorter side of the touch electrode.
  • the touch electrode has a square shape, for example, a square having a size of 5 mm * 5 mm, and the width of the touch electrode is the length of any side of the square. If the touch electrode is rectangular, the width of the touch electrode is the length of one shorter side of the rectangle.
  • the first and second lead-out lines 130 and 140 need to be arranged between multiple touch electrodes, if the widths of the first and second lead-out lines 130 and 140 are set to be large, the gap between the lead-out lines will be Smaller, it will increase the difficulty of production, and short circuit is easy to occur between the lead wires. Since the third lead-out line 150 has a large wiring space, even if the width is set to a large value, a large gap can be ensured between adjacent third lead-out lines 150, so the width of the third lead-out line 150 can be larger than the touch electrode 20% of the width to increase the cross-sectional area of the third lead-out line 150 and reduce the resistance of the third lead-out line 150.
  • the thickness of the third lead-out line may be the same as the thickness of the second lead-out line.
  • the second lead-out line and the third lead-out line are in the same layer and made of the same material, it is convenient to make both.
  • the thickness of the third lead-out line may be different from the thickness of the second lead-out line.
  • the thickness of the third lead-out line may be greater than the thickness of the second lead-out line to further increase the third lead-out line.
  • the cross-sectional area of the lead wire reduces the resistance.
  • the third lead-out line 150 overlaps a projection portion of the first touch electrode 110 on the substrate 100.
  • both the third lead-out line 150 and the first touch electrode 110 need to be made of a transparent conductive layer material.
  • the first touch electrode can be made of the same transparent conductive material as the first lead-out line, so that the first touch electrode and the first lead-out line can be made at the same time.
  • the second touch electrode may be made of the same transparent conductive material as the second lead-out line, so that when the second touch electrode and the second lead-out line are provided on the same layer, for example, in the touch substrate shown in FIG.
  • the two touch electrodes 320 and the second lead-out line 340 can be fabricated at the same time.
  • each of the plurality of touch electrodes and the plurality of lead wires may be made of a transparent conductive material.
  • the transparent conductive material has high light transmittance, which is beneficial to improving the display effect.
  • the transparent conductive material may include ITO (Indium Tin Oxide), IZO (Indium-doped Zinc Oxide).
  • the third lead-out wire may be made of a metal material, and the second lead-out wire is made of a transparent conductive material. Since metal materials have a lower square resistance than transparent conductive materials (the resistivity divided by the film thickness of the wire is the square resistance when the length and width of the wire are equal), therefore, a unit length of metal wire is more conductive than transparent The wires made of material have low resistance. Using the metal material to make the third lead-out wire can reduce the total resistance of the lead-out wire connected between the second touch electrode and the touch IC.
  • the metal material may include any one of copper, gold, and silver or an alloy of any two of them.
  • the third lead-out line and the first touch electrode are in different layers.
  • the third lead-out line is made of a metal material, it is not necessary to widen the third lead-out line, that is, the third lead-out line The width is small.
  • the third lead-out line can also be on the same layer as the first touch electrode, that is, the third lead-out line is arranged between the first touch electrodes.
  • the substrate may further have a third region.
  • the substrate 500 has a first region 501, a second region 502, and a third region 503 arranged side by side.
  • the plurality of touch electrodes include a plurality of first touch electrodes 510, a plurality of second touch electrodes 520, and a plurality of third touch electrodes 570.
  • the plurality of lead wires include a plurality of first lead wires 530, a plurality of second lead wires 540, A third lead-out line 550, a plurality of fifth lead-out lines 580, and a plurality of sixth lead-out lines 590.
  • the first touch electrode 510, the second touch electrode 520, the first lead-out line 530, the second lead-out line 540, and the third lead-out line 550 are disposed in the same manner as in the touch substrate shown in FIG.
  • the touch substrate shown in FIG. 13 further includes an insulating layer 561.
  • the insulating layer 561 is disposed on the insulating layer 560, and the insulating layer 561 covers the second touch electrode 520, the second lead-out line 540, and the third lead-out line 550.
  • the plurality of third touch electrodes 570, the plurality of fifth lead-out lines 580, and the plurality of sixth lead-out lines 590 are located in the third pattern layer, and the third pattern layer is disposed on the insulating layer 561.
  • a plurality of third touch electrodes 570 and a plurality of fifth lead lines 580 are located in the third area 503.
  • the plurality of third touch electrodes 570 are connected to the plurality of fifth lead lines 580 in a one-to-one correspondence
  • the plurality of sixth lead lines 590 is located in the first region 501 and the second region 502, and a plurality of fifth lead-out lines 580 and a plurality of sixth lead-out lines 590 are connected one-to-one correspondingly.
  • the resistance of the sixth lead-out line 590 per unit length is smaller than the resistance of the fifth lead-out line 580 per unit length.
  • the structure in FIG. 13 can be applied to fabricate a touch substrate with a larger area.
  • the structure shown in FIG. 13 is only an example.
  • the first pattern layer and the second pattern layer may also be arranged in any of the manners in FIGS. 2 to 12, and the third touch electrode 570 may also be provided as a double-layer electrode.
  • more regions may be provided on the substrate, such as a fourth region, a fifth region, and the like. In the arrangement direction of the first region and the second region, the fourth region and the fifth region are sequentially arranged in a direction away from the first region.
  • the touch electrodes in the fourth region and the fifth region and the arrangement of the lead wires connected to the touch electrodes reference may be made to the related description of the foregoing third region, and detailed description is omitted here.
  • An embodiment of the present disclosure further provides a touch device, which includes any one of the touch substrates shown in FIGS. 1 to 13.
  • FIG. 14 is a schematic structural diagram of a touch device according to an embodiment of the present disclosure.
  • the touch device may include an array substrate 1, a liquid crystal layer 2, a touch substrate 3, and a polarizer 4.
  • the touch substrate 3 includes a substrate 31 and a touch layer 32.
  • the touch layer 32 includes a layer structure in which a plurality of touch electrodes and a plurality of lead-out lines are provided in the foregoing embodiments.
  • the substrate 31 may be a color filter substrate.
  • the array substrate 1 and the color filter substrate are arranged in a box.
  • the liquid crystal layer 2 is sandwiched between the array substrate 1 and the color filter substrate.
  • the polarizer 4 is disposed on the touch substrate 3.
  • the substrate 31 may also be a glass substrate. When the substrate 31 is a glass substrate, the glass substrate may be pasted on the color filter substrate.
  • the touch device may be any product or component having a touch function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • FIG. 15 is a flowchart of a method for manufacturing a touch substrate according to an embodiment of the present disclosure. The method is used to fabricate the touch substrate shown in FIGS. 1 to 13. As shown in FIG. 15, the manufacturing method includes:
  • step S11 a substrate is provided.
  • the substrate has a first region and a second region arranged side by side.
  • step S12 a plurality of touch electrodes and a plurality of lead lines are formed on the substrate.
  • a plurality of touch electrode arrays are arranged on a substrate.
  • the plurality of touch electrodes include a plurality of first touch electrodes located in a first area and a second touch electrode located in a second area.
  • the plurality of lead-out lines extend along the arrangement direction of the first region and the second region.
  • the multiple lead lines include multiple first lead lines, multiple second lead lines, and multiple third lead lines.
  • the plurality of first lead-out lines are located in the first area and are connected to the first touch electrodes in a one-to-one correspondence.
  • the plurality of second lead-out wires are located in the second area and are connected to the second touch electrodes one-to-one correspondingly.
  • the plurality of third lead-out wires are located in the first area and are provided in a different layer of insulation from the first touch electrode, and the plurality of third lead-out wires are connected to the plurality of second lead-out wires in a one-to-one correspondence.
  • the resistance of the third lead-out line per unit length is smaller than the resistance of the second lead-out line per unit length.
  • the third lead-out line is insulated from the first touch electrode in the first area in a different layer, and the third lead-out line is connected to the second touch electrode in the second area.
  • the lead wires are connected one-to-one correspondingly. Since the resistance of the third lead wire of a unit length is smaller than that of the second lead wire of a unit length, the resistance of the lead wires connected between the second touch electrode and the touch IC can be reduced, so that The touch IC can recognize the touched position normally, which improves the accuracy of touch detection of the touch substrate.
  • FIG. 16 is a flowchart of a method for manufacturing a touch substrate according to an embodiment of the present disclosure. The method is used for manufacturing the touch substrate shown in FIG. 2. As shown in FIG. 16, the manufacturing method includes:
  • step S21 a substrate is provided.
  • step S22 a first pattern layer is formed on a substrate.
  • the first pattern layer on the substrate 200 includes a plurality of first touch electrodes 210, a plurality of first lead-out lines 230, and a plurality of first sub-electrodes 221 arranged in an array.
  • the plurality of first touch electrodes 210 and The plurality of first lead wires 230 are connected one-to-one correspondingly.
  • a first pattern layer may be formed by forming a first film layer on a substrate and using a patterning process.
  • the first film layer may be made of a transparent conductive material, such as ITO, IZO, and the like.
  • step S23 an insulating layer is formed on the substrate.
  • the insulating layer may be a SiO 2 layer, and the SiO 2 layer has better insulation and light transmittance.
  • the thickness of the insulating layer 260 is greater than the thickness of the first pattern layer.
  • the thickness of the insulating layer 260 refers to a maximum size of the insulating layer 260 in a direction perpendicular to the substrate 200. In this way, the insulating layer 260 can be covered on the first pattern layer.
  • step S24 a via is formed in the insulating layer.
  • a via hole 223 is formed in the insulating layer 260.
  • step S25 a second pattern layer is formed on the insulating layer.
  • the second pattern layer includes a plurality of second sub-electrodes 222, a plurality of second lead lines 240, and a plurality of third lead lines 250 arranged in an array.
  • the plurality of second lead-out lines 240 are connected one-to-one with the plurality of second sub-electrodes 222.
  • the plurality of second sub-electrodes 222 coincide with the orthographic projections of the plurality of first sub-electrodes 221 on the substrate 200, and the plurality of second sub-electrodes 222 and the plurality of first sub-electrodes 221 are connected in one-to-one correspondence through vias 223 to form a plurality of The second touch electrode 220.
  • a second pattern layer may be formed by forming a second film layer on the insulating layer 260 and using a patterning process.
  • the second film layer can be made of a transparent conductive material, such as ITO, IZO.
  • the first pattern layer may further include a plurality of fourth lead lines 260, and the plurality of fourth lead lines 260 and the plurality of second lead lines 240
  • a touch substrate as shown in FIG. 6 can be manufactured.
  • the fourth lead-out line 260 By adding the fourth lead-out line 260, the total resistance of the lead-out line connecting the second touch electrode 260 and the touch IC can be reduced.
  • the manufacturing method shown in FIG. 16 can also be used to manufacture the touch substrate shown in FIG. 7.
  • the patterning process is changed so that the first pattern layer includes a plurality of first sub-electrodes 221, a plurality of second lead lines 240, and a plurality of third lead lines 250, and the second pattern layer includes a plurality of second sub-electrodes 222 , A plurality of first touch electrodes 210 and a plurality of first lead lines 230.
  • the touch substrate shown in FIG. 6 can be manufactured.
  • One of the two sub-electrodes is disposed on the same layer as the first touch electrode, and the other of the two sub-electrodes is disposed on the same layer as the third lead. It can facilitate the simultaneous production of the first touch electrode and the first sub-electrode, and the same layer of the second sub-electrode and the third lead-out line, saving the process.
  • FIG. 19 is a flowchart of a method for manufacturing a touch substrate according to an embodiment of the present disclosure. The method is used for manufacturing the touch substrate shown in FIG. 8. As shown in FIG. 19, the manufacturing method includes:
  • step S31 a substrate is provided.
  • step S32 a first touch electrode and a first lead-out line are formed on the substrate.
  • the first pattern layer includes a plurality of first touch electrodes 210 and a plurality of first lead-out lines 230 arranged in an array, a plurality of first touch electrodes 210 and a plurality of The first lead-out wires 230 are connected one-to-one correspondingly.
  • step S33 a first insulating layer is formed on the substrate.
  • the first insulating layer may be a SiO 2 layer, and the SiO 2 layer has better insulation and light transmittance.
  • a first insulation layer 270 covers a plurality of first touch electrodes 210 and a plurality of first lead-out lines 230.
  • step S34 a first sub-electrode is formed on the first insulating layer.
  • the second pattern layer includes a plurality of first sub-electrodes 221 arranged in an array, and the second pattern layer is formed on the first insulating layer 270.
  • step S35 a second insulating layer is formed on the first insulating layer.
  • the thickness of the second insulating layer 260 is greater than the thickness of the first sub-electrode 221. In this way, the second insulating layer 260 can be covered on the first sub-electrode 221.
  • step S36 a via is formed in the second insulating layer.
  • a via hole 223 is formed in the second insulating layer 260.
  • step S37 a second sub-electrode, a second lead-out line, and a third lead-out line are formed on the second insulating layer.
  • the structure after forming the second sub-electrode, the second lead-out line, and the third lead-out line can be referred to FIG. 8.
  • the third pattern layer includes a second sub-electrode 222, a second lead-out line 240, and a third lead-out line 250 arranged in an array.
  • the plurality of second lead-out lines 240 are connected to the plurality of second sub-electrodes 222 one-to-one.
  • the plurality of second sub-electrodes 222 coincide with the orthographic projections of the plurality of first sub-electrodes 221 on the substrate 200, and the plurality of second sub-electrodes 222 and the plurality of first sub-electrodes 221 are connected in one-to-one correspondence through vias 223 to form a plurality of The second touch electrode 220.
  • FIG. 24 is a flowchart of another method for manufacturing a touch substrate according to an embodiment of the present disclosure. The method can be used to fabricate the touch substrate shown in FIG. 9. As shown in FIG. 24, the manufacturing method includes:
  • step S41 a substrate is provided.
  • step S42 a first pattern layer is formed on a substrate.
  • the first pattern layer includes a plurality of first touch electrodes 310 and a plurality of first lead-out lines 330.
  • a first pattern layer may be formed by forming a first film layer on a substrate and using a patterning process.
  • step S43 an insulating layer is formed in the first region and the second region.
  • the plurality of first touch electrodes 310 and the plurality of first lead-out lines 330 are completely covered by providing the insulating layer 360.
  • step S44 a second pattern layer is formed on the insulating layer.
  • the second pattern layer includes a plurality of second touch electrodes 320, a plurality of second lead lines 340, and a plurality of third lead lines 350.
  • the plurality of second lead-out lines 340 are connected to the plurality of second touch electrodes 320 in a one-to-one correspondence.
  • the plurality of third lead-out lines 350 are connected to the plurality of second lead-out lines 340 in a one-to-one correspondence.
  • the manufacturing method shown in FIG. 24 can also be used to manufacture the touch substrate shown in FIG. 10.
  • the patterning process is changed so that the first pattern layer includes a plurality of second touch electrodes 320, a plurality of second lead lines 340, and a plurality of third lead lines 350.
  • the plurality of second lead-out lines 340 are connected to the plurality of second touch electrodes 320 in a one-to-one correspondence.
  • the second pattern layer includes a plurality of first touch electrodes 310 and a plurality of first lead-out lines 330. Thereby, the touch substrate shown in FIG. 10 can be manufactured.
  • FIG. 27 is a flowchart of another method for manufacturing a touch substrate according to an embodiment of the present disclosure. The method is used for manufacturing the touch substrate shown in FIG. 11. As shown in FIG. 27, the manufacturing method includes:
  • step S51 a substrate is provided.
  • step S52 a first pattern layer is formed on a substrate.
  • the first pattern layer includes a plurality of first touch electrodes 410, a plurality of second touch electrodes 420, and a plurality of first lead-out lines 430.
  • the thickness of the second touch electrodes 420 is greater than the thickness of the first touch electrodes 410.
  • the plurality of first lead-out lines 430 are located in the first area 401 and are connected to the first touch electrodes 410 in a one-to-one correspondence.
  • the first pattern layer may be formed by forming a first film layer on the substrate 400 and using a patterning process. During the patterning process, a photoresist can be formed on the first film layer, and the photoresist is exposed by using a half-tone mask. After developing the photoresist, a photoresist pattern layer may be formed on the first film layer, wherein a thickness of a region of the photoresist pattern layer corresponding to the second touch electrode 420 is greater than a thickness of a region corresponding to the first touch electrode 410. Then, the first film layer is dry-etched, such as electron beam etching.
  • the thickness of the area of the photoresist pattern layer corresponding to the second touch electrode 420 is large, during the etching process, the thickness of the first film layer is etched to be smaller, thereby forming the second touch electrode 420 with a larger thickness.
  • the thickness of the area of the photoresist pattern layer corresponding to the first touch electrode 410 is small.
  • the first film layer is etched with a larger thickness, thereby forming the first touch electrode 410 with a smaller thickness.
  • step S53 an insulating layer is formed on the substrate.
  • the thickness of the insulating layer 460 is smaller than the thickness of the second touch electrode 420 and larger than the thickness of the first touch electrode 410, so that in the first region 401, the insulating layer 460 can connect the first touch electrode 410 and the first A lead-out line 430 is completely covered. In the second region 402, the second touch electrode 420 may be exposed on the insulating layer 460.
  • step S54 a second pattern layer is formed on the insulating layer.
  • the second pattern layer includes a plurality of second lead lines 440 and a plurality of third lead lines 450.
  • a plurality of second lead-out lines 440 are located in the second area 402 and are connected one-to-one with the second touch electrodes 420, and a plurality of third lead-out lines 450 are connected with the plurality of second lead-out lines 440 one-to-one.
  • FIG. 30 is another method for manufacturing a touch substrate according to an embodiment of the present disclosure. The method is also used to fabricate the touch substrate shown in FIG. 11. As shown in FIG. 30, the manufacturing method includes:
  • step S61 a substrate is provided.
  • step S62 a first pattern layer is formed on the substrate.
  • the first pattern layer includes a plurality of first touch electrodes 410 and a plurality of first lead-out lines 430.
  • the plurality of first lead-out lines 430 are located in the first area 401 and are connected to the first touch electrodes 410 in a one-to-one correspondence.
  • a first pattern layer may be formed by forming a first film layer on a substrate and using a patterning process.
  • step S63 an insulating layer covering a plurality of first touch electrodes and a plurality of first lead lines is formed in the first region.
  • an insulating layer 461 is formed in the first region 401.
  • the thickness of the insulation layer 461 is greater than the thickness of the first touch electrode 410, so that the insulation layer 461 can completely cover the first touch electrode 410 and the first lead-out line 430.
  • step S64 a second pattern layer is formed on the substrate.
  • the second pattern layer includes a plurality of second touch electrodes 420, a plurality of second lead lines 440, and a plurality of third lead lines 450.
  • the thickness of the second touch electrode 420 is greater than the thickness of the first touch electrode 410.
  • a plurality of second lead-out lines 440 are located in the second area 402 and are connected one-to-one with the second touch electrodes 420, and a plurality of third lead-out lines 450 are connected with the plurality of second lead-out lines 440 one-to-one.
  • the second pattern layer may be fabricated in the following manner:
  • Step one forming a plurality of second touch electrodes on a second region of the substrate.
  • a second touch electrode 420 is formed in the second region 402.
  • the thickness of the second touch electrode 420 is greater than the thickness of the first touch electrode 410.
  • Step 2 forming an insulating layer on the second region of the substrate.
  • an insulating layer 462 is formed in the second region 402.
  • the thickness of the insulating layer 462 and the insulating layer 461 may be the same.
  • Step 3 forming a plurality of third lead-out lines in the first area and forming a plurality of second lead-out lines in the second area.
  • the structure after forming a plurality of third lead lines and a plurality of second lead lines can refer to FIG. 12.
  • first touch electrode 410 and the second touch electrode 420 are respectively manufactured, and the first touch electrode 410 and the second touch electrode 420 with different thicknesses may be manufactured.
  • FIG. 35 is a flowchart of another method for manufacturing a touch substrate according to an embodiment of the present disclosure. The method can also be used to fabricate the touch substrate shown in FIG. 11. As shown in FIG. 35, the manufacturing method includes:
  • step S71 a substrate is provided.
  • step S72 a first pattern layer is formed on a substrate.
  • the first pattern layer includes a plurality of first touch electrodes 410, a plurality of first lead-out lines 430, and a plurality of first sub-electrodes 421.
  • the plurality of first sub-electrodes 421 are located in the second region 402.
  • a first pattern layer may be formed by forming a first film layer on a substrate and using a patterning process.
  • step S73 an insulating layer covering the first pattern layer is formed on the substrate.
  • the insulating layer 460 As shown in FIG. 37, by providing the insulating layer 460, the plurality of first touch electrodes 410, the plurality of first lead lines 430, and the plurality of first sub-electrodes 421 are completely covered.
  • step S74 a plurality of openings exposing a plurality of first sub-electrodes are formed in the insulating layer.
  • the plurality of openings 460 a and the plurality of first sub-electrodes 421 are arranged in a one-to-one correspondence.
  • the opening 460a coincides with the orthographic projection of the first sub-electrode 421 on the substrate 400, which facilitates subsequent fabrication of the second sub-electrode.
  • step S75 a second pattern layer is formed on the insulating layer.
  • the structure after the second pattern layer is formed can be referred to FIG. 11.
  • the second pattern layer includes a plurality of second lead-out lines 440, a plurality of third lead-out lines 450, and a plurality of second sub-electrodes corresponding to the first sub-electrodes 421 one-to-one.
  • the plurality of second lead-out lines 440 are in one-to-one correspondence with the plurality of second sub-electrodes.
  • the plurality of second sub-electrodes are located in the plurality of openings 460a, the second sub-electrodes are stacked on the corresponding first sub-electrodes 421, and the second touch electrode 420 is formed by the first sub-electrodes 421 and the second sub-electrodes stacked on each other. .
  • the pattern layer including the plurality of first lead-out lines in the first pattern layer and the second pattern layer may further include a plurality of The fourth lead-out lines, the plurality of fourth lead-out lines coincide with the orthographic projections of the second lead-out lines on the substrate, and the fourth lead-out lines and the plurality of second lead-out lines are connected in one-to-one correspondence through the vias.
  • FIG. 39 is a flowchart of a method for manufacturing a touch substrate according to an embodiment of the present disclosure. The method is used for manufacturing the touch substrate shown in FIG. 12. As shown in FIG. 39, the manufacturing method includes:
  • step S81 a substrate is provided.
  • step S82 a first pattern layer is formed on the substrate.
  • the first pattern layer includes a plurality of first touch electrodes 410, a plurality of first lead lines 430, a plurality of second touch electrodes 420, and a plurality of second lead lines 440 arranged in an array.
  • a first pattern layer may be formed by forming a first film layer on a substrate and using a patterning process.
  • the first film layer may be made of a transparent conductive material, such as ITO, IZO.
  • step S83 an insulating layer is formed on the substrate.
  • the insulating layer may be a SiO 2 layer, and the SiO 2 layer has better insulation and light transmittance.
  • the thickness of the insulating layer 460 is greater than the thickness of the first pattern layer, so that the insulating layer 460 covers the first pattern layer.
  • step S84 a via is formed in the insulating layer.
  • a via 441 is formed in the insulating layer 460.
  • step S85 a second pattern layer is formed on the insulating layer.
  • the second pattern layer includes a plurality of third lead lines 450 and a plurality of terminals 451.
  • the plurality of third lead-out wires 450 are connected one-to-one with the plurality of joints 451, and the plurality of joints 451 are connected one-to-one with the plurality of second lead-out wires 440 through the vias 441.
  • a second pattern layer may be formed by forming a second film layer on the insulating layer 260 and using a patterning process.
  • the second film layer can be made of a transparent conductive material, such as ITO, IZO.
  • the joint 451 may be disposed in the first pattern layer, and both the joint 451 and the via 441 are disposed in the first region 401.
  • the third lead-out line 450 may also be set in the first pattern layer by changing the patterning process, and the first touch electrode 410, the first lead-out line 430, the second lead-out line 440, and The second touch electrode 420 is disposed in the second pattern layer.
  • connection relationship and position relationship between the electrodes and the leads in each pattern layer can refer to the foregoing embodiments, and detailed descriptions are omitted here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Input By Displaying (AREA)

Abstract

本公开公开了一种触控基板及其制备方法、触控装置,属于触控技术领域。该触控基板包括:基板,具有并排布置的第一区域和第二区域;多个触摸电极,阵列布置在基板上,包括第一区域内的多个第一触摸电极和第二区域内的多个第二触摸电极;第一引出线在第一区域内且与第一触摸电极一一对应连接,第二引出线在第二区域内且与第二触摸电极一一对应连接,第一引出线和第二引出线均朝向第一区域所在侧延伸,第三引出线在第一区域内且与第一触摸电极绝缘,单位长度的第三引出线的电阻小于单位长度的第二引出线的电阻。

Description

触控基板及其制备方法、触控装置
本公开要求于2018年7月26日提交的申请号为201810833729.5、发明名称为“触控面板及其制备方法、触控装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及触控技术领域,特别涉及一种触控基板及其制备方法、触控装置。
背景技术
自容式触控面板是一种常见的触控面板。自容式触控面板通常包括基板和形成在基板上的触摸电极。在触摸触控面板的时候,被触摸的触摸电极与地之间的电容会发生变化,使得与触摸电极连接的引出线上的电流也产生变化,触控IC(Integrated Circuit,集成电路)根据引出线上的电流变化确定出被触摸的位置。
发明内容
本公开实施例提供了一种触控基板及其制备方法、触控装置。
一方面,本公开实施例提供了一种触控基板,包括:
基板,所述基板上具有在平行于所述基板的方向上并排布置的第一区域和第二区域;
多个触摸电极,所述多个触摸电极阵列布置在所述基板上,所述多个触摸电极包括位于所述第一区域内的多个第一触摸电极和位于所述第二区域内的多个第二触摸电极;
多根引出线,所述多根引出线位于所述基板上且沿所述第一区域和所述第二区域的排列方向延伸,所述多根引出线包括多根第一引出线、多根第二引出线和多根第三引出线,
所述多根第一引出线位于所述第一区域内且与所述第一触摸电极一一对应连接,所述多根第二引出线位于所述第二区域内且与所述第二触摸电极一一对应连接,所述多根第一引出线和所述多根第二引出线均朝向所述第一区域所在 侧延伸,
所述多根第三引出线位于所述第一区域内且与所述第一触摸电极绝缘,所述多根第三引出线与所述多根第二引出线一一对应连接,单位长度的所述第三引出线的电阻小于单位长度的所述第二引出线的电阻。
可选地,所述多根第三引出线与所述第一触摸电极不同层。
可选地,所述第三引出线的宽度大于所述第二引出线的宽度,所述第三引出线与所述第二引出线采用同种材料制成。
可选地,每个所述触摸电极呈矩形,所述第三引出线的宽度大于所述触摸电极的宽度的20%。
可选地,所述第三引出线的厚度与所述第二引出线的厚度相同。
可选地,所述第三引出线与所述第一触摸电极在所述基板上的投影部分重叠。
可选地,所述多根第三引出线与所述多根第二引出线同层;或者,所述第三引出线与所述第二引出线不同层,所述第三引出线与所述第二引出线通过过孔连接。
可选地,所述第二触摸电极包括两层子电极,所述两层子电极在所述基板上的正投影重合,所述两层子电极通过过孔连接。
可选地,所述两层子电极中的一层子电极与所述第一触摸电极同层,所述两层子电极中的另一层子电极与所述第三引出线同层。
可选地,所述第二触摸电极为单层电极。
可选地,所述第二触摸电极与所述第一触摸电极不同层。
可选地,所述第二触摸电极与所述第一触摸电极同层。
可选地,所述第二触摸电极的厚度大于所述第一触摸电极的厚度。
可选地,所述多根第一引出线与所述多个第一触摸电极同层。
可选地,所述多根第二引出线与所述多个第一触摸电极同层。
可选地,所述触控基板还包括与所述第二引出线位于不同层的第四引出线,所述第四引出线在所述基板上的正投影与所述第二引出线在所述基板上的正投影重合,所述第四引出线与所述第二引出线通过过孔连接。
可选地,所述多个触摸电极和所述多根引出线均采用透明导电材料制成。
可选地,所述多个触摸电极、所述第一引出线和所述第二引出线采用透明导电材料制成,所述第三引出线采用金属材料制成。
另一方面,本公开实施例还提供了一种触控装置,包括前述的触控基板。
又一方面,本公开实施例还提供了一种触控基板的制作方法,包括:
提供基板;
在所述基板上形成多个触摸电极和多根引出线,所述多个触摸电极阵列布置在所述基板上,所述多个触摸电极包括位于第一区域内的多个第一触摸电极和位于第二区域内的第二触摸电极,所述第一区域和所述第二区域并排布置在所述基板上,所述多根引出线沿所述第一区域和所述第二区域的排列方向延伸,所述多根引出线包括多根第一引出线、多根第二引出线和多根第三引出线,所述多根第一引出线位于所述第一区域内且与所述第一触摸电极一一对应连接,所述多根第二引出线位于所述第二区域内且与所述第二触摸电极一一对应连接,所述多根第一引出线和所述多根第二引出线均朝向所述第一区域所在侧延伸,所述多根第三引出线位于所述第一区域内且与所述第一触摸电极绝缘,所述多根第三引出线与所述多根第二引出线一一对应连接,单位长度的所述第三引出线的电阻小于单位长度的所述第二引出线的电阻。
可选地,在所述基板上形成多个触摸电极和多根引出线,包括:
在所述基板上形成第一图案层;
在所述基板上形成绝缘层;
在所述绝缘层中形成过孔;
在所述绝缘层上形成第二图案层;
所述第一图案层和所述第二图案层中的一个包括所述多个第一触摸电极、所述多根第一引出线和多个第一子电极,所述第一图案层和所述第二图案层中的另一个包括所述多根第二引出线、所述多根第三引出线和多个第二子电极,所述多根第二引出线与所述多个第二子电极一一对应连接,所述多个第二子电极与所述多个第一子电极在所述基板上的正投影重合,所述多个第二子电极与所述多个第一子电极通过过孔一一对应连接构成多个所述第二触摸电极。
可选地,在所述基板上形成多个触摸电极和多根引出线,包括:
在所述基板上形成第一图案层,所述第一图案层包括所述多个第一触摸电极、所述多个第二触摸电极和所述多根第一引出线,所述第二触摸电极的厚度大于所述第一触摸电极的厚度;
在所述基板上形成绝缘层,所述绝缘层的厚度小于所述第二触摸电极的厚度,且大于所述第一触摸电极的厚度;
在所述绝缘层上形成第二图案层,所述第二图案层包括所述多根第二引出线和所述多根第三引出线。
可选地,在所述基板上形成多个触摸电极和多根引出线包括:
在所述基板上形成第一图案层,所述第一图案层包括所述多个第一触摸电极、所述多根第一引出线和多个第一子电极;
在所述基板上形成覆盖所述第一图案层的绝缘层;
在所述绝缘层中形成露出所述多个第一子电极的多个开口,所述多个开口与所述多个第一子电极一一对应布置;
在所述绝缘层上形成第二图案层,所述第二图案层包括所述多根第二引出线、所述多根第三引出线和与所述多个第一子电极一一对应的多个第二子电极,所述多个第二子电极位于所述多个开口中,所述第二子电极叠置在对应的所述第一子电极上,得到所述多个第二触摸电极。
可选地,在所述基板上形成多个触摸电极和多根引出线,包括:
在所述基板上形成第一图案层;
在形成有所述第一图案层的所述基板上形成绝缘层;
在所述绝缘层上形成第二图案层;
所述第一图案层和所述第二图案层中的一个包括所述多个第一触摸电极和所述多根第一引出线,所述第一图案层和所述第二图案层中的另一个包括所述多个第二触摸电极、所述多根第二引出线和所述多根第三引出线。
可选地,所述第一图案层和所述第二图案层中包括所述多根第一引出线的图案层还包括多根第四引出线,所述多根第四引出线与所述多根第二引出线在所述基板上的正投影重合,所述多根第四引出线与所述多根第二引出线通过过孔一一对应连接
可选地,在所述基板上形成多个触摸电极和多根引出线,包括:
在所述基板上形成第一图案层;
在所述基板上形成绝缘层;
在所述绝缘层中形成过孔;
在所述绝缘层上形成第二图案层;
所述第一图案层和所述第二图案层中的一个包括所述多个第一触摸电极、 所述多根第一引出线、所述多个第二触摸电极、所述多根第二引出线,所述第一图案层和所述第二图案层中的另一个包括所述多根第三引出线,所述多根第三引出线与所述多根第二引出线通过过孔一一对应连接。
附图说明
图1是本公开实施例提供的一种触控基板的局部结构示意图;
图2是本公开实施例提供的一种触控基板的局部截面示意图;
图3是本公开实施例提供的一种第一图案层的结构示意图;
图4是本公开实施例提供的一种第二图案层的结构示意图;
图5是本公开实施例提供的另一种第一图案层的结构示意图;
图6是本公开实施例提供的另一种触控基板的局部截面示意图;
图7是本公开实施例提供的另一种触控基板的结构示意图;
图8是本公开实施例提供的另一种触控基板的结构示意图;
图9是本公开实施例提供的另一种触控基板的结构示意图;
图10是本公开实施例提供的另一种触控基板的结构示意图;
图11是本公开实施例提供的另一种触控基板的结构示意图;
图12是本公开实施例提供的另一种触控基板的结构示意图;
图13是本公开实施例提供的另一种触控基板的结构示意图;
图14是本公开实施例所提供的一种触控装置的结构示意图;
图15是本公开实施例提供的一种触控基板的制作方法流程图;
图16是本公开实施例提供的一种触控基板的制作方法流程图;
图17~18是本公开实施例提供的一种触控基板的制作过程示意图;
图19是本公开实施例提供的一种触控基板的制作方法流程图;
图20~23是本公开实施例提供的一种触控基板的制作过程示意图;
图24是本公开实施例提供的另一种触控基板的制作方法流程图;
图25~26是本公开实施例提供的一种触控基板的制作过程示意图;
图27是本公开实施例提供的另一种触控基板的制作方法流程图;
图28~29是本公开实施例提供的一种触控基板的制作过程示意图;
图30是本公开实施例提供的另一种触控基板的制作方法;
图31~34是本公开实施例提供的一种触控基板的制作过程示意图;
图35是本公开实施例提供的另一种触控基板的制作方法流程图;
图36~38是本公开实施例提供的一种触控基板的制作过程示意图;
图39是本公开实施例提供的一种触控基板的制作方法流程图;
图40~41是本公开实施例提供的一种触控基板的制作过程示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
图1是本公开实施例提供的一种触控基板的局部结构示意图。如图1所示,该触控基板包括基板100、多个触摸电极(如图1中的触摸电极110和120)、多根引出线(如图1中的引出线130、140和150)。
基板100上具有在平行于基板100的方向上并排布置的第一区域101和第二区域102。多个触摸电极阵列布置在基板100上。多个触摸电极包括位于第一区域101内的多个第一触摸电极110和位于第二区域102内的多个第二触摸电极120。第一区域101和第二区域102是基板100上划分出的两个平面区域,两个平面区域沿平行于基板100的方向并排分布。如图1所示,第一区域101和第二区域102均呈矩形,第一区域101和第二区域102沿图1中的X方向并排分布。
本公开实施例中,位于第一区域101内指的是在基板100上的正投影位于第一区域101内,位于第二区域102内指的是在基板100上的正投影位于第二区域102内。例如,多个第一触摸电极110位于第一区域101内指的是多个第一触摸电极110在基板100上的正投影位于第一区域101内。
多根引出线设于基板100上且沿第一区域101和第二区域102的排列方向(即图1中的X方向)延伸。多根引出线包括多根第一引出线130、多根第二引出线140和多根第三引出线150。多根第一引出线130位于第一区域101内且与第一触摸电极110一一对应连接。多根第二引出线140位于第二区域102内且与第二触摸电极120一一对应连接。多根第一引出线130和多根第二引出线140均朝向第一区域所在侧(例如图1中的下方)延伸。
多根第三引出线150位于第一区域101内且与第一触摸电极110异层绝缘设置。多根第三引出线150与多根第二引出线140一一对应连接。单位长度的第三引出线150的电阻小于单位长度的第二引出线140的电阻。
这里,异层即不同层,可以是指位于同一层的不同侧,或者,通过不同的 构图工艺形成,或者靠近衬底基板的表面与不同的层接触等。当两层结构异层时,两层结构在基板上的正投影可以存在重叠、部分重叠(也可以称为交错)和不重叠(也可以称为错开)三种情况。示例性地,对于图1所示实施例中的第三引出线150和第一触摸电极110,两者是部分重叠的。可替代地,在其他实施例中,第三引出线150和第一触摸电极110也可以是不重叠的,例如,第三引出线150在基板上的正投影位于第一触摸电极110在基板上的正投影之间。
由于第一引出线130布置在相邻的第一触摸电极110之间的间隙中,第二引出线140布置在相邻的第二触摸电极120之间的间隙中,因此,为了便于第一引出线130与第一触摸电极110连接,第二引出线140与第二触摸电极120和第三引出线150连接,第一引出线130和第二引出线140的端部可以设有弯折部,例如图1中所示的第二引出线140的两端均设置有弯折部140a。
通过在第一区域内设置第三引出线,第三引出线与第一区域内的第一触摸电极异层绝缘设置,并将第三引出线与第二区域内连接第二触摸电极的第二引出线一一对应连接,由于单位长度的第三引出线的电阻小于单位长度的第二引出线的电阻,因此可以降低连接在第二触摸电极和触控IC之间的引出线的电阻,在触控基板的面积较大的情况下,可以避免由于引出线较长,电阻较大影响触控检测的效果。由于第二触摸电极和触控IC之间的引出线的电阻较小,可以正常传输触控信号,使触控IC可以正常识别出被触摸的位置,提高了触控基板的触控检测的准确度。
在图1中,多根第一引出线130用于将多个第一触摸电极110与柔性电路板5上的触控IC7连接,多根第二引出线140和多根第三引出线150用于将多个第二触摸电极120与柔性电路板5上的触控IC7连接。柔性电路板5位于触控基板的一侧边,第一区域101位于柔性电路板5和第二区域102之间。
多根第一引出线130和多根第三引出线150均与柔性电路板5连接。触控IC7可以固定于柔性电路板5上。柔性电路板5还可以与触控面板的印刷电路板6连接,印刷电路板6可以与显示面板的处理器、电源(即主板)连接。
可替代地,触控IC也可以位于COF(Chip On Film,覆晶薄膜)电路板上。
触控面板可以包括一个以上的触控IC7,每个触控IC7分别连接有多个触摸电极。由于每个触控IC7所能连接的触摸电极的数量是有限的,若只设置一个触控IC7,则在面积较大的触控基板上单位面积内的触摸电极的数量会比面积较小的触控基板少,导致触控面板的精度降低。因此通过设置一个以上的触控IC7, 在触摸电极大小相同的情况下,可以设置更多数量的触摸电极,提高触控面板上单位面积内的触摸电极的数量,有利于提高触控面板的精度。
例如图1中设置有2个触控IC7,每个触控IC连接一部分触摸电极,其中左边的触控IC7连接有4列触摸电极,右边的触控IC7连接有3列触摸电极,通过沿Y方向设置两个或两个以上的触控IC,即使触控面板较宽(即在Y方向上的尺寸较大)也可以识别出触摸的位置。需要说明的是,图1中的触控IC和触摸电极的数量均为举例,可以根据实际需要设置,本公开对此不做限制。
本公开实施例所指的基板100可以是彩膜基板。在其他实施例中,基板100也可以是透明基板。触控基板可以设置到显示面板中,例如可以将基板100粘贴到已有的显示面板的彩膜基板上。
图2是本公开实施例提供的一种触控基板的局部截面示意图,示出了第一区域和第二区域中的触摸电极和引出线之间的层级关系。图2中示例性地示出了在第一区域201和第二区域202的排列方向上相邻的一个第一触摸电极210和一个第二触摸电极220。为了简便,图2中以引出线均不包括弯折部为例进行示例性说明。
如图2所示,第二触摸电极220包括第一子电极221和第二子电极222。第一子电极221和第二子电极222在基板200上的正投影重合,第一子电极221和第二子电极222通过过孔223连接。将第二触摸电极设置为两层,相当于增大了第二触摸电极的厚度,即增大了第二触摸电极的横截面积,可以有利于降低第二触摸电极的电阻。在这种情况下,第二触摸电极的厚度相当于两层子电极的厚度之和,大于第一触摸电极的厚度。
在图2所示的触控基板中,基板200上形成有第一图案层、绝缘层260和第二图案层。第一绝缘层260覆盖第一图案层,第二图案层位于绝缘层260上。
在本实施例中,绝缘层260的厚度h大于第一图案层的厚度,以使得第一绝缘层260能够覆盖第一图案层。在本实施例中,绝缘层260的厚度指的是在垂直于基板200的方向上,绝缘层260的最大尺寸。
示例性地,绝缘层260可以是SiO 2层,SiO 2层具有较好的绝缘性和光透过性。
图3是本公开实施例提供的一种第一图案层的结构示意图。如图3所示,第一图案层包括第一触摸电极210、第一引出线230和第一子电极221。第一触摸电极210和第一子电极221阵列布置,第一引出线230与第一触摸电极210 一一对应连接。多根第一引出线210均沿第一区域201和第二区域202的排列方向朝向第一区域201所在侧(即图3中的底边)延伸。
图4是本公开实施例提供的一种第二图案层的结构示意图。如图4所示。第二图案层包括第二子电极222、第二引出线240和第三引出线250。第二子电极222阵列布置在第二区域202,第二引出线240与第二子电极222一一对应连接,且多根第二引出线240均沿第一区域201和第二区域202的排列方向朝向第一区域201所在侧(即图4中的底边)延伸。多根第三引出线250平行间隔排列在第一区域201中,多根第三引出线250与多根第二引出线240一一对应连接。
图5是本公开实施例提供的另一种第一图案层的结构示意图。如图5所示,除了第一触摸电极210、第一引出线230和第一子电极221,第一图案层还包括多根第四引出线260。多根第四引出线260与多个第一子电极221一一对应连接。多根第四引出线260均沿第一区域201和第二区域202的排列方向朝向第一区域201所在侧(即图3中的底边)延伸。
如图5所示,为了避免第四引出线260与第一引出线230之间出现短路,第四引出线260未连接第一子电极221的一端与第一区域和第二区域的分界线间隔一段距离,呈空置(floating)状态。
图6是本公开实施例提供的另一种触控基板的局部截面示意图,示出了第一区域和第二区域中的触摸电极和引出线之间的层级关系。类似地,图6中示例性地示出了在第一区域201和第二区域202的排列方向上相邻的一个第一触摸电极210和一个第二触摸电极220。为了简便,图6中以引出线均不包括弯折部为例进行示例性说明。
如图6所示,第四引出线260在基板200上的正投影与第二引出线240在基板200上的正投影重合,第四引出线260与第二引出线240通过过孔224连接。这样对应每个第二触摸电极设置两条引出线,相当于增大了引出线的厚度,从而增大了引出线的横截面积,有利于进一步降低位于第二区域202内的引出线的电阻。
图7是本公开实施例提供的另一种触控基板的结构示意图。图7所示的触控基板中,第一触摸电极210和第一引出线230与第二子电极222共层布置,即同层布置。这里,同层布置是指位于同一层的同一侧,或者通过一次构图工艺形成,或者靠近衬底基板的表面均与同一层接触等。如图6所示,第一图案 层包括第一子电极221、第二引出线240和第三引出线250,第一子电极221通过第二引出线240与第三引出线250连接。第二图案层包括第二子电极222、第一触摸电极210和第一引出线230,第二子电极222通过过孔223与第一子电极221连接,第一触摸电极210与第一引出线230连接。
在图2、图6和图7所示实施例中,将两层子电极中的一层子电极与第一触摸电极210同层设置,两层子电极中的另一层子电极与第三引出线250同层设置,可以将第一触摸电极210和一层子电极同时制作,并将另一层子电极与第三引出线250的同时制作,节省工序。
在本公开的其他实施例中,第一触摸电极也可以与第一子电极和第二子电极异层布置。由于第一触摸电极和第二触摸电极(包括第一子电极和第二子电极)位于不同的区域,即第一触摸电极位于第一区域,第二触摸电极位于第二区域,而第一区域和第二区域在平行于基板的方向上是并排布置的,所以第一触摸电极在基板上的正投影和第二触摸电极在基板上的正投影是不重叠的。
示例性地,如图8所示,在基板200上依次第一图案层、第二图案层和第三图案层,相邻的图案层之间设置有绝缘层。这里,第一触摸电极210和第一引出线230设置在第一图案层中,第一子电极221设置在第二图案层中,第二子电极222设置在第三图案层中,第一子电极221和第二子电极222通过过孔223连接。图8所示结构仅为举例,在其他可能的实施方式中,还可以将第一触摸电极和第一引出线设置在第三图案层中,将第一子电极设置在第一图案层中,将第二子电极设置在第二图案层中。或者还可以将第一触摸电极和第一引出线设置在第二图案层中,将第一子电极设置在第一图案层中,将第二子电极设置在第三图案层中。
图9是本公开实施例提供的另一种触控基板的结构示意图。在图9所示实施例中,第二触摸电极320为单层电极。单层电极的结构更加简单,可以减少触控基板的膜层的层数。
如图9所示,该触控基板的基板300上形成有第一图案层和第二图案层,第一图案层和第二图案层之间通过绝缘层360隔开。在本实施例中,第一图案层包括第一触摸电极310和第一引出线330,第二图案层包括第二触摸电极320、第二引出线340和第三引出线350。引出线与触摸电极的连接关系与图1所示的触控基板相同,在此省略详细描述。
图10是本公开实施例提供的另一种触控基板的结构示意图。在图10所示的触摸面板中,第一触摸电极310和第二触摸电极320均为单层结构,且不同层设置。
如图10所示,第二触摸电极320、第二引出线340和第三引出线350位于第一图案层中,第一触摸电极310和第一引出线330位于第二图案层中。引出线与触摸电极的布置方式与图1所示的触控基板相同,在此省略详细描述。
将第一触摸电极310和第二触摸电极320设置在不同的层,可以单独进行第一触摸电极310和第二触摸电极320的制作,方便制作厚度不同的两种触摸电极。
可选地,第二触摸电极320的厚度可以大于第一触摸电极310的厚度。将第二触摸电极320设置的更厚,可以有利于降低第二触摸电极320的电阻。
在其他实施例中,也可以将第一触摸电极310和第一引出线330设置在第二图案层中,而将第二触摸电极320、第二引出线340和第三引出线350设置在第一图案层中。
图11是本公开实施例提供的另一种触控基板的结构示意图。图11所示的触控基板中,第二触摸电极420与第一触摸电极410同层设置。将触摸电极同层设置可以方便触摸电极的制作。
如图11所示,该触控基板的基板400上形成有第一图案层、绝缘层460和第二图案层。这里,第一触摸电极410、第一引出线430和第二触摸电极420位于第一图案层中,第二引出线440和第三引出线450位于第二图案层中。在第一图案层中,第二触摸电极420的厚度大于第一触摸电极410的厚度,使第二触摸电极420相比于第一触摸电极410具有更小的电阻。绝缘层460的厚度大于第一触摸电极410的厚度且小于第二触摸电极420的厚度,使得在第一区域401中,绝缘层460可以将第一触摸电极410和第一引出线430完全覆盖,在第二区域402中,第二触摸电极420可以露出于绝缘层460。第二引出线440与第二触摸电极420的露出于绝缘层的部分连接。
图12是本公开实施例提供的另一种触控基板的结构示意图。图12所示的触控基板中,第二触摸电极420与第一触摸电极410同层设置。该触控基板的基板400上形成有第一图案层、绝缘层460和第二图案层。其中,第一触摸电极410、第一引出线430、第二引出线440和第二触摸电极420位于第一图案层 中,第三引出线450位于第二图案层中。第三引出线450与第二引出线440通过过孔441连接。如图11所示,过孔441位于第二区域402内,在绝缘层460上还设置有接头451,且接头451位于第二区域402内,以连接过孔441和第三引出线450。这里,接头452是指从第三引出线450延伸至第二区域402中的部分。
在本公开的另一些实施例中,可以将过孔441和接头451设置在第一区域401内,以通过接头451连接第二引出线440和过孔441。
在本公开的另一实施例中,可以将第三引出线450设置在第一图案层中,将第一触摸电极410、第一引出线430、第二引出线440和第二触摸电极420设置在第二图案层中。
在图12所示的触控基板中,第二触摸电极420的厚度可以与第一触摸电极410的厚度相同,第二触摸电极420的厚度也可以大于第一触摸电极410的厚度。
在图1~图12所示的触控基板中,多根第一引出线与多个第一触摸电极同层设置,可以便于第一触摸电极和第一引出线的制作。在其他实施例中,也可以将第一引出线和第一触摸电极设置在不同的层中,并通过过孔连接第一引出线和第一触摸电极。
可选地,多根第二引出线可以与多根第三引出线或多个第一触摸电极同层设置。例如在图1~图11所示的触控基板中,多根第二引出线与多根第三引出线同层设置,在图12所示的触控基板中,多根第二引出线440与多个第一触摸电极410同层。当多根第二引出线与多根第三引出线同层设置时,可以将多根第二引出线与多个第二触摸电极同层设置(例如图9所示),也可以将多根第二引出线与多个第二触摸电极不同层设置。当多根第二引出线与多个第二触摸电极不同层设置时,多根第二引出线可以通过过孔与多个第二触摸电极连接。
示例性地,第三引出线的宽度可以大于第二引出线的宽度,第三引出线与第二引出线可以采用同种材料制成。在本实施例中,宽度指的是在垂直于引出线延伸方向且平行于基板的表面的方向上的尺寸。由于第三引出线与第二引出线由同种材料制成,第三引出线具有比第二引出线更大的宽度,因此单位长度的第三引出线的电阻小于单位长度的第二引出线的电阻。由于第三引出线和第二引出线的制作材料相同,使得两者可以同时进行制作。
由于第三引出线布置在第一区域,而分布在第一区域的触摸电极与第三引出线设置在不同的层,因此第三引出线具有较大的布线空间,可以设置得较宽。 如图1所示,多个第三引出线130在第一区域101并排间隔分布。
第一引出线和第二引出线的宽度可以不超过触摸电极的宽度的20%。这里,触摸电极呈矩形,触摸电极的宽度指的是触摸电极的较短的一条边的长度。以图1所示的触控基板为例,触摸电极呈正方形,例如尺寸为5mm*5mm的正方形,则触摸电极的宽度为正方形的任意一条边的长度。若触摸电极呈长方形,则触摸电极的宽度为长方形的较短的一条边的长度。
由于第一引出线130和第二引出线140需要布置在多个触摸电极之间,如果将第一引出线130和第二引出线140的宽度设置的较大,则引出线之间的间隙会较小,会增大制作的难度,而且引出线之间容易出现短路。第三引出线150由于具有较大的布线空间,即使宽度设置的较大也可以确保相邻第三引出线150之间留有较大的间隙,因此第三引出线150的宽度可以大于触摸电极的宽度的20%,以增大第三引出线150的横截面积,降低第三引出线150的电阻。
可选地,第三引出线的厚度可以与第二引出线的厚度相同。当第二引出线与第三引出线同层且采用相同材料制成时,便于两者的制作。可替代地,在一些实施例中,第三引出线的厚度可以与第二引出线的厚度不相同,例如,第三引出线的厚度可以大于第二引出线的厚度,以进一步增大第三引出线的横截面积,降低电阻。
示例性地,参见图1,第三引出线150与第一触摸电极110在基板100上的投影部分重叠。在这种情况下,第三引出线150和第一触摸电极110均需要采用透明导电层材料制成。
示例性地,第一触摸电极可以采用与第一引出线相同的透明导电材料制成,使得第一触摸电极和第一引出线可以同时制作。第二触摸电极可以采用与第二引出线相同的透明导电材料制成,使得在同层设置第二触摸电极和第二引出线同层时,例如在图9所示的触控基板中,第二触摸电极320和第二引出线340可以同时制作。
示例性地,在图1~图12所示的触控基板中,多个触摸电极和多根引出线均可以采用透明导电材料制成。透明导电材料具有较高的光透过性,有利于提高显示效果。
示例性地,透明导电材料可以包括ITO(Indium tin oxide,氧化铟锡)、IZO(indium-doped zinc oxide,氧化铟锌)。
可选地,第三引出线可以采用金属材料制成,而第二引出线采用透明导电 材料制成。由于金属材料具有比透明导电材料更低的方阻,(在导线的长和宽相等的情况下,电阻率除以导线的膜厚即为方阻),因此,单位长度的金属导线比透明导电材料制成的导线的电阻小。采用金属材料制作第三引出线,可以减小连接在第二触摸电极和触控IC之间的引出线的总电阻。
示例性地,金属材料可以包括铜、金、银中的任一种或任意两种的合金。
在图1~12所示的实施例中,第三引出线和第一触摸电极均不同层,而当第三引出线采用金属材料制作时,无需加宽第三引出线,即第三引出线宽度较小,在满足触控精度的情况下,第三引出线也可以与第一触摸电极同层,即第三引出线布置在第一触摸电极之间。
可选地,基板上还可以具有第三区域。如图13所示,基板500上具有并排布置的第一区域501、第二区域502和第三区域503。多个触摸电极包括多个第一触摸电极510、多个第二触摸电极520和多个第三触摸电极570,多根引出线包括多根第一引出线530、多根第二引出线540、多根第三引出线550、多根第五引出线580和多根第六引出线590。其中,第一触摸电极510、第二触摸电极520、第一引出线530、第二引出线540、第三引出线550的设置方式与图9所示触控基板中的相同。图13所示的触控基板还包括绝缘层561,绝缘层561设置在绝缘层560上,且绝缘层561将第二触摸电极520、第二引出线540、第三引出线550覆盖。多个第三触摸电极570、多根第五引出线580和多根第六引出线590位于第三图案层,第三图案层设置在绝缘层561上。其中,多个第三触摸电极570、多根第五引出线580位于第三区域503,且多个第三触摸电极570与多根第五引出线580一一对应连接,多根第六引出线590位于第一区域501和第二区域502,多根第五引出线580与多根第六引出线590一一对应连接。单位长度的第六引出线590的电阻小于单位长度的第五引出线580的电阻。相比于图9所示的结构,图13中的结构可以适用于制作面积更大的触控基板。
图13所示的结构仅为举例,第一图案层和第二图案层也可以采用图2~图12中的任一种方式布置,第三触摸电极570也可以设置为双层电极。在其他实施例中,基板上还可以设置更多的区域,例如第四区域、第五区域等。在第一区域和第二区域的排列方向上,按照远离第一区域的方向,第四区域和第五区域依次布置。第四区域和第五区域中触摸电极的结构以及触摸电极所连接的引出线的布置方式可以参见前述第三区域的相关描述,在此省略详细描述。
本公开实施例还提供了一种触控装置,该触控装置包括图1~图13所示的任一种触控基板。
图14是本公开实施例所提供的一种触控装置的结构示意图。如图14所示,触控装置可以包括阵列基板1、液晶层2、触控基板3和偏光片4。触控基板3包括基板31和触控层32,触控层32包括前述实施例中所提出的多个触摸电极和多根引出线所在的层结构。
可选地,基板31可以是彩膜基板。阵列基板1与彩膜基板对盒设置,液晶层2夹设在阵列基板1和彩膜基板之间,偏光片4设置在触控基板3上。可选地,基板31也可以是玻璃基板,当基板31是玻璃基板时,可以将玻璃基板粘贴在彩膜基板上。
示例性地,该触控装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有触控功能的产品或部件。
图15是本公开实施例提供的一种触控基板的制作方法流程图,该方法用于制作如图1~图13所示的触控基板。如图15所示,该制作方法包括:
在步骤S11中,提供基板。
这里,基板上具有并排布置的第一区域和第二区域。
在步骤S12中,在基板上形成多个触摸电极和多根引出线。
这里,多个触摸电极阵列布置在基板上。多个触摸电极包括位于第一区域内的多个第一触摸电极和位于第二区域内的第二触摸电极。多根引出线沿第一区域和第二区域的排列方向延伸。多根引出线包括多根第一引出线、多根第二引出线和多根第三引出线。多根第一引出线位于第一区域内且与第一触摸电极一一对应连接。多根第二引出线位于第二区域内且与第二触摸电极一一对应连接。多根第三引出线位于第一区域内且与第一触摸电极异层绝缘设置,多根第三引出线与多根第二引出线一一对应连接。单位长度的第三引出线的电阻小于单位长度的第二引出线的电阻。
通过在第一区域内设置第三引出线,第三引出线与第一区域内的第一触摸电极异层绝缘设置,并将第三引出线与第二区域内连接第二触摸电极的第二引出线一一对应连接,由于单位长度的第三引出线的电阻小于单位长度的第二引出线的电阻,因此可以降低连接在第二触摸电极和触控IC之间的引出线的电阻, 使触控IC可以正常识别出被触摸的位置,提高了触控基板的触控检测的准确度。
图16是本公开实施例提供的一种触控基板的制作方法流程图,该方法用于制作如图2所示的触控基板。如图16所示,该制作方法包括:
在步骤S21中,提供基板。
在步骤S22中,在基板上形成第一图案层。
如图17所示,基板200上的第一图案层包括阵列布置的多个第一触摸电极210、多根第一引出线230和多个第一子电极221,多个第一触摸电极210和多根第一引出线230一一对应连接。
示例性地,可以通过在基板上形成第一膜层,采用构图工艺制作出第一图案层。
第一膜层可以采用透明导电材料制成,例如ITO、IZO等。
在步骤S23中,在基板上形成绝缘层。
示例性地,绝缘层可以是SiO 2层,SiO 2层具有较好的绝缘性和光透过性。
如图18所示,绝缘层260的厚度大于第一图案层的厚度。这里,绝缘层260的厚度指的是在垂直于基板200的方向上,绝缘层260的最大尺寸。这样可以使得绝缘层260覆盖在第一图案层上。
在步骤S24中,在绝缘层中形成过孔。
如图18所示,绝缘层260中形成有过孔223。
在步骤S25中,在绝缘层上形成第二图案层。
形成第二图案层后的结构可以参照图2。这里,第二图案层包括阵列布置的多个第二子电极222、多根第二引出线240和多根第三引出线250。多根第二引出线240与多个第二子电极222一一对应连接。多个第二子电极222与多个第一子电极221在基板200上的正投影重合,多个第二子电极222与多个第一子电极221通过过孔223一一对应连接构成多个第二触摸电极220。
示例性地,可以通过在绝缘层260上形成第二膜层,采用构图工艺制作出第二图案层。
第二膜层可以采用透明导电材料制成,例如ITO、IZO。
可选地,在采用图16所示的制作方法制作触控基板时,第一图案层还可以包括多根第四引出线260,多根第四引出线260与多根第二引出线240在基板200上的正投影重合,多根第四引出线260与多根第二引出线240通过过孔224 一一对应连接。这样可以制作出如图6所示的触控基板。通过增加第四引出线260,可以减小连接第二触摸电极260和触控IC的引出线的总电阻。
通过改变构图工艺形成的图形,采用图16所示的制作方法还可以制作图7所示的触控基板。示例性地,改变构图工艺,使第一图案层包括多个第一子电极221、多根第二引出线240和多根第三引出线250,第二图案层包括多个第二子电极222、多个第一触摸电极210和多根第一引出线230。从而可以制得图6所示的触控基板。
通过将两层子电极中的一层子电极与第一触摸电极同层设置,两层子电极中的另一层子电极与第三引出线同层设置。可以便于第一触摸电极和第一子电极的同时制作,以及第二子电极与第三引出线的同层制作,节省工序。
图19是本公开实施例提供的一种触控基板的制作方法流程图,该方法用于制作如图8所示的触控基板。如图19所示,该制作方法包括:
在步骤S31中,提供基板。
在步骤S32中,在基板上形成第一触摸电极和第一引出线。
如图20所示,基板200上形成有第一图案层,第一图案层包括阵列布置的多个第一触摸电极210和多根第一引出线230,多个第一触摸电极210和多根第一引出线230一一对应连接。
在步骤S33中,在基板上形成第一绝缘层。
示例性地,第一绝缘层可以是SiO 2层,SiO 2层具有较好的绝缘性和光透过性。
如图21所示,第一绝缘层270覆盖在多个第一触摸电极210和多根第一引出线230上。
在步骤S34中,在第一绝缘层上形成第一子电极。
如图22所示,第二图案层包括阵列布置的多个第一子电极221,第二图案层形成在第一绝缘层270上。
在步骤S35中,在第一绝缘层上形成第二绝缘层。
如图23所示,第二绝缘层260的厚度大于第一子电极221的厚度。这样可以使得第二绝缘层260覆盖在第一子电极221上。
在步骤S36中,在第二绝缘层中形成过孔。
如图24所示,第二绝缘层260中形成有过孔223。
在步骤S37中,在第二绝缘层上形成第二子电极、第二引出线和第三引出线。
形成第二子电极、第二引出线和第三引出线后的结构可以参照图8。第三图案层包括阵列布置的第二子电极222、第二引出线240和第三引出线250。其中,多根第二引出线240与多个第二子电极222一一对应连接。多个第二子电极222与多个第一子电极221在基板200上的正投影重合,多个第二子电极222与多个第一子电极221通过过孔223一一对应连接构成多个第二触摸电极220。
图24是本公开实施例提供的另一种触控基板的制作方法流程图,该方法可以用于制作如图9所示的触控基板。如图24所示,该制作方法包括:
在步骤S41中,提供基板。
在步骤S42中,在基板上形成第一图案层。
如图25所示,第一图案层包括多个第一触摸电极310和多根第一引出线330。
示例性地,可以通过在基板上形成第一膜层,采用构图工艺制作出第一图案层。
在步骤S43中,在第一区域和第二区域形成绝缘层。
如图26所示,通过设置绝缘层360,将多个第一触摸电极310、多根第一引出线330完全覆盖。
在步骤S44中,在绝缘层上形成第二图案层。
形成第二图案层后的结构可以参照图9。这里第二图案层包括多个第二触摸电极320、多根第二引出线340和多根第三引出线350。多根第二引出线340与多个第二触摸电极320一一对应连接。多根第三引出线350与多根第二引出线340一一对应连接。
通过改变构图工艺形成的图形,采用图24所示的制作方法还可以制作图10所示的触控基板。
示例性地,改变构图工艺,使第一图案层包括多个第二触摸电极320、多根第二引出线340和多根第三引出线350。多根第二引出线340与多个第二触摸电极320一一对应连接。第二图案层包括多个第一触摸电极310和多根第一引出线330。从而可以制得图10所示的触控基板。
图27是本公开实施例提供的另一种触控基板的制作方法流程图,该方法用于制作如图11所示的触控基板。如图27所示,该制作方法包括:
在步骤S51中,提供基板。
在步骤S52中,在基板上形成第一图案层。
如图28所示,第一图案层包括多个第一触摸电极410、多个第二触摸电极420和多根第一引出线430,第二触摸电极420的厚度大于第一触摸电极410的厚度。多根第一引出线430位于第一区域401内且与第一触摸电极410一一对应连接。
示例性地,可以通过在基板400上形成第一膜层,采用构图工艺制作出第一图案层。在进行构图工艺时可以先在第一膜层上形成光刻胶,采用半色调掩膜对光刻胶进行曝光。在对光刻胶显影后可以在第一膜层上形成光刻胶图案层,其中,光刻胶图案层对应第二触摸电极420的区域的厚度大于对应第一触摸电极410的区域的厚度。再对第一膜层进行干法刻蚀,例如电子束刻蚀。由于光刻胶图案层对应第二触摸电极420的区域的厚度较大,在刻蚀过程中,第一膜层被刻蚀的厚度较小,从而形成厚度较大的第二触摸电极420。光刻胶图案层对应第一触摸电极410的区域的厚度较小,在刻蚀过程中,第一膜层被刻蚀的厚度较大,从而形成厚度较小的第一触摸电极410。
在步骤S53中,在基板上形成绝缘层。
如图29所示,绝缘层460的厚度小于第二触摸电极420的厚度,且大于第一触摸电极410的厚度,使得在第一区域401中,绝缘层460可以将第一触摸电极410和第一引出线430完全覆盖,在第二区域402中,第二触摸电极420可以露出于绝缘层460。
在步骤S54中,在绝缘层上形成第二图案层。
形成第二图案层后的结构可以参照图11。这里,第二图案层包括多根第二引出线440和多根第三引出线450。多根第二引出线440位于第二区域402内且与第二触摸电极420一一对应连接,多根第三引出线450与多根第二引出线440一一对应连接。
图30是本公开实施例提供的另一种触控基板的制作方法,该方法同样用于制作如图11所示的触控基板。如图30所示,该制作方法包括:
在步骤S61中,提供基板。
在步骤S62中,在基板上形成第一图案层。
如图31所示,第一图案层包括多个第一触摸电极410和多根第一引出线430。多根第一引出线430位于第一区域401内且与第一触摸电极410一一对应连接。
示例性地,可以通过在基板上形成第一膜层,采用构图工艺制作出第一图案层。
在步骤S63中,在第一区域形成覆盖多个第一触摸电极和多根第一引出线的绝缘层。
如图32所示,第一区域401内形成有绝缘层461。这里,绝缘层461的厚度大于第一触摸电极410的厚度,使得绝缘层461可以将第一触摸电极410和第一引出线430完全覆盖。
在步骤S64中,在基板上形成第二图案层。
这里,第二图案层包括多个第二触摸电极420、多根第二引出线440和多根第三引出线450,第二触摸电极420的厚度大于第一触摸电极410的厚度。多根第二引出线440位于第二区域402内且与第二触摸电极420一一对应连接,多根第三引出线450与多根第二引出线440一一对应连接。
示例性地,第二图案层可以采用如下方式制作:
步骤一、在基板的第二区域形成多个第二触摸电极。
如图33所示,在第二区域402形成有第二触摸电极420。第二触摸电极420的厚度大于第一触摸电极410的厚度。
步骤二、在基板的第二区域形成绝缘层。
如图34所示,在第二区域402形成有绝缘层462。绝缘层462与绝缘层461的厚度可以相同。
步骤三、在第一区域形成多根第三引出线,在第二区域形成多根第二引出线。
形成多根第三引出线和多根第二引出线后的结构可以参照图12。
这里分别制作第一触摸电极410和第二触摸电极420,可以便有制作出厚度不同的第一触摸电极410和第二触摸电极420。
图35是本公开实施例提供的另一种触控基板的制作方法流程图,该方法也可以用于制作如图11所示的触控基板。如图35所示,该制作方法包括:
在步骤S71中,提供基板。
在步骤S72中,在基板上形成第一图案层。
如图36所示,第一图案层包括多个第一触摸电极410、多根第一引出线430和多个第一子电极421,多个第一子电极421位于第二区域402。
示例性地,可以通过在基板上形成第一膜层,采用构图工艺制作出第一图案层。
在步骤S73中,在基板上形成覆盖第一图案层的绝缘层。
如图37所示,通过设置绝缘层460,将多个第一触摸电极410、多根第一引出线430和多个第一子电极421都完全覆盖。
在步骤S74中,在绝缘层中形成露出多个第一子电极的多个开口。
如图38所示,多个开口460a与多个第一子电极421一一对应布置。
开口460a与第一子电极421在基板400上的正投影重合,这样便于后续制作第二子电极。
在步骤S75中,在绝缘层上形成第二图案层。
形成第二图案层后的结构可以参照图11。第二图案层包括多根第二引出线440、多根第三引出线450和与多个第一子电极421一一对应的多个第二子电极。多根第二引出线440与多个第二子电极一一对应连接。多个第二子电极位于多个开口460a中,第二子电极叠置在对应的第一子电极421上,由相互叠置的第一子电极421和第二子电极构成第二触摸电极420。
可选地,在采用图15~图35所示的任一种制作方法制作触控基板时,第一图案层和第二图案层中包括多根第一引出线的图案层还可以包括多根第四引出线,多根第四引出线与多根第二引出线在基板上的正投影重合,多根第四引出线与多根第二引出线通过过孔一一对应连接。通过增加第四引出线,可以减小连接第二触摸电极和触控IC的引出线的总电阻。
图39是本公开实施例提供的一种触控基板的制作方法流程图,该方法用于制作如图12所示的触控基板。如图39所示,该制作方法包括:
在步骤S81中,提供基板。
在步骤S82中,在基板上形成第一图案层。
如图40所示,第一图案层包括阵列布置的多个第一触摸电极410、多根第一引出线430、多个第二触摸电极420和多根第二引出线440。
示例性地,可以通过在基板上形成第一膜层,采用构图工艺制作出第一图案层。
第一膜层可以采用透明导电材料制成,例如ITO、IZO。
在步骤S83中,在基板上形成绝缘层。
示例性地,绝缘层可以是SiO 2层,SiO 2层具有较好的绝缘性和光透过性。
如图41所示,绝缘层460的厚度大于第一图案层的厚度,使得绝缘层460覆盖在第一图案层上。
在步骤S84中,在绝缘层中形成过孔。
如图41所示,绝缘层460中形成有过孔441。
在步骤S85中,在绝缘层上形成第二图案层。
形成第二图案层后的结构可以参照图12。这里,第二图案层包括多根第三引出线450和多个接头451。多根第三引出线450与多个接头451一一对应连接,多个接头451通过过孔441与多根第二引出线440一一对应连接。
示例性地,可以通过在绝缘层260上形成第二膜层,采用构图工艺制作出第二图案层。
第二膜层可以采用透明导电材料制成,例如ITO、IZO。
在本公开的另一实施例中,也可以将接头451设置在第一图案层,将接头451和过孔441都设置在第一区域401内。
在本公开的另一实施例中,也可以通过改变构图工艺,将第三引出线450设置在第一图案层中,将第一触摸电极410、第一引出线430、第二引出线440和第二触摸电极420设置在第二图案层中。
需要说明的是,在图15至图41的相关实施例中,各图案层中电极和引线之间的连接关系和位置关系可以参见前述实施例,在此省略详细描述。
以上所述仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (25)

  1. 一种触控基板,包括:
    基板(100、200、300、400、500),所述基板(100、200、300、400、500)上具有在平行于所述基板(100、200、300、400、500)的方向上并排布置的第一区域(101、201、301、401、501)和第二区域(102、202、302、402、502);
    多个触摸电极,所述多个触摸电极阵列布置在所述基板(100、200、300、400、500)上,所述多个触摸电极包括位于所述第一区域(101、201、301、401、501)内的多个第一触摸电极(110、210、310、410、510)和位于所述第二区域(102、202、302、402、502)内的多个第二触摸电极(120、220、320、420、520);
    多根引出线,所述多根引出线位于所述基板(100、200、300、400、500)上且沿所述第一区域(101、201、301、401、501)和所述第二区域(102、202、302、402、502)的排列方向(X)延伸,所述多根引出线包括多根第一引出线(130、230、330、430、530)、多根第二引出线(140、240、340、440、540)和多根第三引出线(150、250、350、450、550),
    所述多根第一引出线(130、230、330、430、530)位于所述第一区域(101、201、301、401、501)内且与所述第一触摸电极(110、210、310、410、510)一一对应连接,所述多根第二引出线(140、240、340、440、540)位于所述第二区域(102、202、302、402、502)内且与所述第二触摸电极(120、220、320、420、520)一一对应连接,所述多根第一引出线(130、230、330、430、530)和所述多根第二引出线(140、240、340、440、540)均朝向所述第一区域(101、201、301、401、501)所在侧延伸,
    所述多根第三引出线(150、250、350、450、550)位于所述第一区域(101、201、301、401、501)内且与所述第一触摸电极(110、210、310、410、510)绝缘,所述多根第三引出线(150、250、350、450、550)与所述多根第二引出线(140、240、340、440、540)一一对应连接,单位长度的所述第三引出线(150、250、350、450、550)的电阻小于单位长度的所述第二引出线(140、240、340、440、540)的电阻。
  2. 根据权利要求1所述的触控基板,其中,所述多根第三引出线(150、 250、350、450、550)与所述多个第一触摸电极(110、210、310、410、510)不同层。
  3. 根据权利要求2所述的触控基板,其中,所述第三引出线(150、250、350、450、550)的宽度大于所述第二引出线(140、240、340、440、540)的宽度,所述第三引出线(150、250、350、450、550)与所述第二引出线采用同种材料(140、240、340、440、540)制成。
  4. 根据权利要求3所述的触控基板,其中,每个所述触摸电极(110、210、310、410、510、120、220、320、420、520)呈矩形,所述第三引出线(150、250、350、450、550)的宽度大于所述触摸电极(110、210、310、410、510、120、220、320、420、520)的宽度的20%。
  5. 根据权利要求1~4任一项所述的触控基板,其中,所述第三引出线(150、250、350、450、550)的厚度与所述第二引出线(240、340、440、540)的厚度相同。
  6. 根据权利要求2~5任一项所述的触控基板,其中,所述第三引出线(150、250、350、450、550)与所述第一触摸电极(110、210、310、410、510)在所述基板(100、200、300、400、500)上的投影部分重叠。
  7. 根据权利要求1~5任一项所述的触控基板,其中,所述多根第三引出线(250、350、450、550)与所述多根第二引出线(240、340、440、540)同层;
    或者,所述第三引出线(450)与所述第二引出线(440)不同层,所述第三引出线(450)与所述第二引出线(440)通过过孔(441)连接。
  8. 根据权利要求1~7任一项所述的触控基板,其中,所述第二触摸电极(220)包括两层子电极(221、222),所述两层子电极(221、222)在所述基板(200)上的正投影重合,所述两层子电极(221、222)通过过孔(223)连接。
  9. 根据权利要求8所述的触控基板,其中,所述两层子电极(221、222)中的一层子电极(221)与所述第一触摸电极(210)同层,所述两层子电极(221、222)中的另一层子电极(222)与所述第三引出线(250)同层。
  10. 根据权利要求1~7任一项所述的触控基板,其中,所述第二触摸电极(320、420、520)为单层电极。
  11. 根据权利要求8或10所述的触控基板,其中,所述第二触摸电极(220、320、520)与所述第一触摸电极(210、310、510)不同层。
  12. 根据权利要求10所述的触控基板,其中,所述第二触摸电极(420)与所述第一触摸电极(410)同层。
  13. 根据权利要求8~12任一项所述的触控基板,其中,所述第二触摸电极(320、420、520)的厚度大于所述第一触摸电极(310、410、510)的厚度。
  14. 根据权利要求1~13任一项所述的触控基板,其中,所述多根第一引出线(230、330、430、530)与所述多个第一触摸电极(210、310、410、510)同层。
  15. 根据权利要求1~14任一项所述的触控基板,其中,所述多根第二引出线(440)与所述多个第一触摸电极(410)同层。
  16. 根据权利要求1~15任一项所述的触控基板,其中,所述触控基板还包括与所述第二引出线(240)位于不同层的第四引出线(260),所述第四引出线(260)在所述基板(200)上的正投影与所述第二引出线(240)在所述基板(200)上的正投影重合,所述第四引出线(260)与所述第二引出线(240)通过过孔(224)连接。
  17. 根据权利要求1~16任一项所述的触控基板,其中,所述多个触摸电极 (110、210、310、410、510、120、220、320、420、520)和所述多根引出线(130、230、330、430、530、140、240、340、440、540、150、250、350、450、550)均采用透明导电材料制成。
  18. 一种触控装置,包括权利要求1~17任一项所述的触控基板。
  19. 一种触控基板的制作方法,包括:
    提供基板;
    在所述基板上形成多个触摸电极和多根引出线,
    所述多个触摸电极阵列布置在所述基板上,所述多个触摸电极包括位于第一区域内的多个第一触摸电极和位于第二区域内的第二触摸电极,所述第一区域和所述第二区域并排布置在所述基板上,
    所述多根引出线沿所述第一区域和所述第二区域的排列方向延伸,所述多根引出线包括多根第一引出线、多根第二引出线和多根第三引出线,所述多根第一引出线位于所述第一区域内且与所述第一触摸电极一一对应连接,所述多根第二引出线位于所述第二区域内且与所述第二触摸电极一一对应连接,所述多根第一引出线和所述多根第二引出线均朝向所述第一区域所在侧延伸,所述多根第三引出线位于所述第一区域内且与所述第一触摸电极绝缘,所述多根第三引出线与所述多根第二引出线一一对应连接,单位长度的所述第三引出线的电阻小于单位长度的所述第二引出线的电阻。
  20. 根据权利要求19所述的制作方法,其中,在所述基板上形成多个触摸电极和多根引出线,包括:
    在所述基板上形成第一图案层;
    在所述基板上形成绝缘层;
    在所述绝缘层中形成过孔;
    在所述绝缘层上形成第二图案层;
    所述第一图案层和所述第二图案层中的一个包括所述多个第一触摸电极、所述多根第一引出线和多个第一子电极,所述第一图案层和所述第二图案层中的另一个包括所述多根第二引出线、所述多根第三引出线和多个第二子电极, 所述多根第二引出线与所述多个第二子电极一一对应连接,所述多个第二子电极与所述多个第一子电极在所述基板上的正投影重合,所述多个第二子电极与所述多个第一子电极通过过孔一一对应连接构成多个所述第二触摸电极。
  21. 根据权利要求19所述的制作方法,其中,在所述基板上形成多个触摸电极和多根引出线,包括:
    在所述基板上形成第一图案层,所述第一图案层包括所述多个第一触摸电极、所述多个第二触摸电极和所述多根第一引出线,所述第二触摸电极的厚度大于所述第一触摸电极的厚度;
    在所述基板上形成绝缘层,所述绝缘层的厚度小于所述第二触摸电极的厚度,且大于所述第一触摸电极的厚度;
    在所述绝缘层上形成第二图案层,所述第二图案层包括所述多根第二引出线和所述多根第三引出线。
  22. 根据权利要求19所述的制作方法,其中,在所述基板上形成多个触摸电极和多根引出线,包括:
    在所述基板上形成第一图案层,所述第一图案层包括所述多个第一触摸电极、所述多根第一引出线和多个第一子电极;
    在所述基板上形成覆盖所述第一图案层的绝缘层;
    在所述绝缘层中形成露出所述多个第一子电极的多个开口,所述多个开口与所述多个第一子电极一一对应布置;
    在所述绝缘层上形成第二图案层,所述第二图案层包括所述多根第二引出线、所述多根第三引出线和与所述多个第一子电极一一对应的多个第二子电极,所述多个第二子电极位于所述多个开口中,所述第二子电极叠置在对应的所述第一子电极上,得到所述多个第二触摸电极。
  23. 根据权利要求19所述的制作方法,其中,在所述基板上形成多个触摸电极和多根引出线,包括:
    在所述基板上形成第一图案层;
    在形成有所述第一图案层的所述基板上形成绝缘层;
    在所述绝缘层上形成第二图案层;
    所述第一图案层和所述第二图案层中的一个包括所述多个第一触摸电极和所述多根第一引出线,所述第一图案层和所述第二图案层中的另一个包括所述多个第二触摸电极、所述多根第二引出线和所述多根第三引出线。
  24. 根据权利要求20~23任一项所述的制作方法,其中,所述第一图案层和所述第二图案层中包括所述多根第一引出线的图案层还包括多根第四引出线,所述多根第四引出线与所述多根第二引出线在所述基板上的正投影重合,所述多根第四引出线与所述多根第二引出线通过过孔一一对应连接。
  25. 根据权利要求19所述的制作方法,其中,在所述基板上形成多个触摸电极和多根引出线,包括:
    在所述基板上形成第一图案层;
    在所述基板上形成绝缘层;
    在所述绝缘层中形成过孔;
    在所述绝缘层上形成第二图案层;
    所述第一图案层和所述第二图案层中的一个包括所述多个第一触摸电极、所述多根第一引出线、所述多个第二触摸电极、所述多根第二引出线,所述第一图案层和所述第二图案层中的另一个包括所述多根第三引出线,所述多根第三引出线与所述多根第二引出线通过过孔一一对应连接。
PCT/CN2019/097931 2018-07-26 2019-07-26 触控基板及其制备方法、触控装置 WO2020020353A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/644,653 US11086460B2 (en) 2018-07-26 2019-07-26 Touch substrate, method for manufacturing same, and touch device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810833729.5A CN109976569B (zh) 2018-07-26 2018-07-26 触控面板及其制备方法、触控装置
CN201810833729.5 2018-07-26

Publications (1)

Publication Number Publication Date
WO2020020353A1 true WO2020020353A1 (zh) 2020-01-30

Family

ID=67075952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097931 WO2020020353A1 (zh) 2018-07-26 2019-07-26 触控基板及其制备方法、触控装置

Country Status (3)

Country Link
US (1) US11086460B2 (zh)
CN (1) CN109976569B (zh)
WO (1) WO2020020353A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109976569B (zh) 2018-07-26 2020-12-08 京东方科技集团股份有限公司 触控面板及其制备方法、触控装置
KR20210058528A (ko) * 2019-11-14 2021-05-24 엘지디스플레이 주식회사 디스플레이 장치
CN114327163B (zh) * 2021-12-30 2024-02-02 武汉天马微电子有限公司 一种触控显示面板和触控显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110248938A1 (en) * 2010-04-12 2011-10-13 Samsung Mobile Display Co., Ltd. Touch screen panel
CN103246420A (zh) * 2013-05-13 2013-08-14 苏州欧菲光科技有限公司 单层多点电容触摸屏
CN104615323A (zh) * 2015-02-06 2015-05-13 京东方科技集团股份有限公司 一种3d模组、3d显示装置和3d模组的驱动方法
CN206639202U (zh) * 2017-03-28 2017-11-14 深圳欧菲光科技股份有限公司 触控面板及显示设备
CN109976569A (zh) * 2018-07-26 2019-07-05 京东方科技集团股份有限公司 触控面板及其制备方法、触控装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8576193B2 (en) * 2008-04-25 2013-11-05 Apple Inc. Brick layout and stackup for a touch screen
JP2013225266A (ja) * 2012-04-23 2013-10-31 Fujitsu Component Ltd タッチパネル
WO2014156489A1 (ja) * 2013-03-26 2014-10-02 株式会社カネカ 導電性フィルム基板、透明導電性フィルムおよびその製造方法、ならびにタッチパネル
CN104793820A (zh) * 2015-03-31 2015-07-22 深圳市华星光电技术有限公司 自电容式触摸屏结构、内嵌式触摸屏以及液晶显示器
CN107783698B (zh) 2015-04-01 2021-01-05 上海天马微电子有限公司 一种阵列基板、显示面板
JP6588852B2 (ja) * 2016-03-28 2019-10-09 株式会社ジャパンディスプレイ センサ及びセンサ付き表示装置
CN107422903A (zh) * 2017-05-12 2017-12-01 京东方科技集团股份有限公司 一种触控基板、触控显示面板和触控显示装置
KR102367724B1 (ko) * 2017-06-21 2022-03-02 삼성디스플레이 주식회사 터치 스크린 및 이를 구비한 표시 장치
CN107704143B (zh) * 2017-09-14 2021-02-09 京东方科技集团股份有限公司 一种基板及显示装置
CN108490708B (zh) * 2018-03-28 2020-11-03 武汉华星光电技术有限公司 阵列基板及显示面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110248938A1 (en) * 2010-04-12 2011-10-13 Samsung Mobile Display Co., Ltd. Touch screen panel
CN103246420A (zh) * 2013-05-13 2013-08-14 苏州欧菲光科技有限公司 单层多点电容触摸屏
CN104615323A (zh) * 2015-02-06 2015-05-13 京东方科技集团股份有限公司 一种3d模组、3d显示装置和3d模组的驱动方法
CN206639202U (zh) * 2017-03-28 2017-11-14 深圳欧菲光科技股份有限公司 触控面板及显示设备
CN109976569A (zh) * 2018-07-26 2019-07-05 京东方科技集团股份有限公司 触控面板及其制备方法、触控装置

Also Published As

Publication number Publication date
US20210064185A1 (en) 2021-03-04
CN109976569A (zh) 2019-07-05
US11086460B2 (en) 2021-08-10
CN109976569B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
US9740344B2 (en) Touch screen and manufacturing method thereof, display device
CN107634086B (zh) 一种柔性阵列基板及制备方法、显示装置
US10466846B2 (en) Touch substrate and manufacturing method thereof, and display device
US20170277292A1 (en) Touch screen panel and fabricating method thereof
TWI652607B (zh) 觸控面板及應用其的觸控顯示裝置
CN106468972B (zh) 一种触控基板及其制造方法、触控装置
US9529460B2 (en) Panel structure
WO2020029371A1 (zh) 一种触摸屏及oled显示面板
JP2018503847A (ja) アレイ基板及びその作成方法と駆動方法、表示装置
WO2018126873A1 (zh) 一种触控基板及其制作方法、触控显示装置
WO2020029372A1 (zh) 一种触摸屏及oled显示面板
WO2020020353A1 (zh) 触控基板及其制备方法、触控装置
WO2018099404A1 (zh) 触控基板及其制备方法、触控显示装置
WO2019061874A1 (zh) 阵列基板及其制作方法、触控显示面板
CN105159515A (zh) 触控结构及其制作方法、触控基板和显示装置
TWI566153B (zh) 觸控面板及其製作方法與觸控顯示面板
WO2019056869A1 (zh) 阵列基板及其制作方法和触控显示面板
TWI512582B (zh) 觸控面板與觸控顯示面板
WO2019080758A1 (zh) 触控基板及其制备方法和触控装置
TWI588688B (zh) 觸控面板及觸控顯示面板
KR20150094808A (ko) 터치 패널 및 터치 패널의 제조 방법
US20200150804A1 (en) Touch substrate and method of fabracating the same, touch display device
WO2019218837A1 (zh) 触控面板及其制作方法、触控装置
US10768764B2 (en) Touch structure and manufacturing method thereof, and touch device
US20190094639A1 (en) Array substrate, manufacturing method thereof and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19839820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19839820

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19839820

Country of ref document: EP

Kind code of ref document: A1