WO2019056869A1 - 阵列基板及其制作方法和触控显示面板 - Google Patents

阵列基板及其制作方法和触控显示面板 Download PDF

Info

Publication number
WO2019056869A1
WO2019056869A1 PCT/CN2018/098420 CN2018098420W WO2019056869A1 WO 2019056869 A1 WO2019056869 A1 WO 2019056869A1 CN 2018098420 W CN2018098420 W CN 2018098420W WO 2019056869 A1 WO2019056869 A1 WO 2019056869A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
touch
transparent
base substrate
Prior art date
Application number
PCT/CN2018/098420
Other languages
English (en)
French (fr)
Inventor
刘晓那
陈玉琼
王孟杰
袁帅
吴臣臣
李宁
郑子易
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18857729.0A priority Critical patent/EP3690617B1/en
Priority to US16/485,821 priority patent/US10969885B2/en
Publication of WO2019056869A1 publication Critical patent/WO2019056869A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/13606Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit having means for reducing parasitic capacitance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • Embodiments of the present disclosure relate to an array substrate, a method of fabricating the same, and a touch display panel.
  • Touch technology provides an efficient and convenient way to interact with humans.
  • touch technology has been widely used in electronic devices such as mobile phones and tablet computers.
  • the touch display in the panel (that is, the touch structure is disposed inside the display panel) has a large application space because of cost and productivity.
  • a liquid crystal touch screen is a commonly used touch screen, and mainly includes a touch portion for implementing a touch function and a display portion for realizing a liquid crystal display function.
  • the liquid crystal display panel includes an array substrate and an opposite substrate (for example, a color filter substrate) opposed to each other, and a liquid crystal layer disposed between the array substrate and the opposite substrate.
  • the liquid crystal display device controls the light by applying a voltage to the common electrode and the pixel electrode to control the deflection of the liquid crystal molecules.
  • the array substrate may be provided with a structure of a switching element array, a gate line, a data line, a common electrode, and a pixel electrode.
  • the embodiment of the present disclosure provides an array substrate, a manufacturing method thereof, and a touch display panel.
  • the embodiment of the present disclosure can avoid or reduce the difference between the coupling capacitance between the pixel electrode and the signal lines on both sides thereof.
  • At least one embodiment of the present disclosure provides an array substrate including: a base substrate; a touch electrode on the base substrate and extending in a first direction; and a pixel electrode located on the base substrate Up, insulated from the touch electrode and including opposing outer edges, the outer edges are sequentially arranged in a second direction, and the second direction intersects the first direction.
  • an orthographic projection of the touch electrode on the substrate is between an orthographic projection of an outer edge of the pixel electrode on the substrate.
  • the array substrate further includes a signal line disposed adjacent to the pixel electrode, the signal lines all extending along the first direction; and in the second direction, the pixel electrode is located at the signal line between.
  • the signal lines are all data lines or gate lines.
  • the pixel electrode includes a first portion and a second portion electrically connected to each other, an opening is disposed between the first portion and the second portion, and an orthographic projection of the touch electrode on the base substrate The orthographic projections of the openings on the substrate substrate overlap.
  • the touch electrode is located within the opening.
  • the first portion and the second portion of the pixel electrode are directly electrically connected.
  • the first portion and the second portion of the pixel electrode are electrically connected by a bridge wire, the bridge wire being in a different layer from the pixel electrode; or the first portion of the pixel electrode and the The second part is electrically connected by the same switching element.
  • the array substrate further includes a common electrode on the base substrate, and the common electrode and the pixel electrode are located in different layers.
  • a portion of the pixel electrode and the common electrode that is closer to the substrate substrate is referred to as a first transparent electrode
  • the first transparent electrode includes a first sub-electrode and a second sub-electrode that are electrically connected, a strip-shaped opening extending along the first direction is disposed between the first sub-electrode and the second sub-electrode; an orthographic projection of the touch electrode on the substrate substrate and the strip-shaped opening are The orthographic projections on the substrate are overlapped.
  • the touch electrode is located between the first sub-electrode and the second sub-electrode.
  • the touch electrode is located between the base substrate and the first transparent electrode.
  • the touch electrode is disposed in the same layer as the first transparent electrode and is formed of the same material.
  • the touch electrode includes a first connection portion, a transparent portion, and a second connection portion which are sequentially arranged in the first direction and are sequentially connected, and the transparent portion is disposed in the same layer as the first transparent electrode and forms a material.
  • the same, and the first connecting portion and the second connecting portion are both disposed in different layers from the transparent portion.
  • At least one embodiment of the present disclosure further provides a method of fabricating an array substrate, including: forming a touch electrode extending in a first direction on a base substrate; and forming a pixel electrode on the base substrate,
  • the pixel electrode is insulated from the touch electrode and includes opposing outer edges, the outer edges are sequentially arranged in a second direction, and the second direction intersects the first direction.
  • an orthographic projection of the touch electrode on the substrate is between an orthographic projection of an outer edge of the pixel electrode on the substrate.
  • the touch electrode and the adjacent signal lines are formed on the base substrate through the same film, so that the signal lines extend in the first direction; forming a first transparent on the base substrate An electrode such that the signal line and the touch electrode are located between the base substrate and the first transparent electrode in a direction perpendicular to the base substrate; and on the base substrate
  • the second transparent electrode is formed such that the first transparent electrode is located between the base substrate and the second transparent electrode in a direction perpendicular to the base substrate.
  • One of the first transparent electrode and the second transparent electrode is the pixel electrode; and in the second direction, the pixel electrode is located between the signal lines.
  • the first connection portion and the second connection portion of the touch electrode and the adjacent signal lines are formed on the base substrate through the same film, and the signal lines all extend along the first direction; Forming, by the same film, a transparent portion of the first transparent electrode and the touch electrode on the base substrate, the transparent portion being electrically connected to the first connection portion and the second connection portion; A second transparent electrode is formed on the substrate, wherein the first transparent electrode is located between the substrate substrate and the second transparent electrode in a direction perpendicular to the substrate.
  • One of the first transparent electrode and the second transparent electrode is the pixel electrode; and in the second direction, the pixel electrode is located between the signal lines.
  • a first transparent electrode and the touch electrode are formed on the base substrate through the same film; and a second transparent electrode is formed on the base substrate, wherein the substrate is perpendicular to the substrate In the direction, the first transparent electrode is located between the base substrate and the second transparent electrode.
  • One of the first transparent electrode and the second transparent electrode is the pixel electrode; and in the second direction, the pixel electrode is located between the signal lines.
  • At least one embodiment of the present disclosure provides a touch display panel comprising the array substrate of any of the above.
  • the touch display panel further includes a black matrix, and an orthographic projection of the touch electrodes on the substrate is outside an orthographic projection of the black matrix on the substrate.
  • 1A is a cross-sectional view of a touch display panel
  • Figure 1B is a plan view showing a portion of the structure of Figure 1A;
  • FIG. 2A is a schematic plan view of a touch display panel according to an embodiment of the present disclosure.
  • FIG. 2B is a schematic plan view 2 of a touch display panel according to an embodiment of the present disclosure.
  • 3A is a cross-sectional view of a touch display panel according to an embodiment of the present disclosure.
  • Figure 3B is a plan view showing a part of the structure of Figure 3A;
  • FIG. 4A is a cross-sectional view 2 of a touch display panel according to an embodiment of the present disclosure
  • FIG. 4B is a plan view showing a part of the structure of FIG. 4A;
  • FIG. 5 is a cross-sectional view of a touch display panel according to an embodiment of the present disclosure.
  • 6A is a schematic plan view of an array substrate included in a touch display panel according to an embodiment of the present disclosure
  • FIG. 6B is a schematic plan view 2 of an array substrate included in a touch display panel according to an embodiment of the present disclosure
  • FIG. 7 is a flowchart 1 of a method for fabricating a touch display panel according to an embodiment of the present disclosure
  • FIG. 8 is a second flowchart of a method for fabricating a touch display panel according to an embodiment of the present disclosure
  • FIG. 9 is a third flowchart of a method for fabricating a touch display panel according to an embodiment of the present disclosure.
  • FIG. 1A is a schematic cross-sectional view of a touch display panel, which can be used to implement a display function and a touch function;
  • FIG. 1B is a schematic plan view showing a part of the structure of the touch display panel shown in FIG. 1A.
  • the touch display panel includes an array substrate 30 and a counter substrate 20 .
  • the opposite substrate 20 includes a base substrate 21 and a black matrix BM located on a side of the substrate substrate 21 facing the array substrate 30 .
  • the array substrate 30 The base substrate 31 and the gate insulating layer GI on the side of the base substrate 31 facing the opposite substrate 20, the data line 33, the touch electrode 32, the resin layer RS covering the data line 33 and the touch electrode 32, and the resin layer are disposed on the resin layer.
  • the array substrate further includes a gate line 36 and a switching element 37, and the pixel electrode 34 is located in a region defined by the adjacent gate line 36 and the adjacent data line 33 and is electrically connected to the switching element 37, thereby switching The element 37 controls whether or not the data signal applied on the data line 33 is transmitted to the pixel electrode 34.
  • the inventor of the present application noticed that in the touch display panel shown in FIG. 1A and FIG. 1B, in order to prevent the touch electrode 32 made of the metal material from affecting the display effect, the touch electrode 32 is disposed on the data line. Next to the 33, and the touch electrode 32 is blocked by the black matrix BM; however, since the touch electrode 32 is disposed between one side of the pixel electrode 34 (for example, the pixel electrode on the right side in FIG.
  • the touch electrode 32 is not disposed between the other side of the pixel electrode 34 opposite to the side and the data line 33, which causes a difference in distance between the same pixel electrode 34 and the data lines 33 on opposite sides thereof, thereby causing The difference between the coupling capacitance Cpd between the pixel electrode 34 and the data lines 33 on both sides thereof is large, thereby causing a picture display failure.
  • Embodiments of the present disclosure provide an array substrate, a method of fabricating the same, and a touch display panel.
  • the touch electrodes are disposed between the opposite outer edges of the pixel electrodes, and are not disposed between the pixel electrodes and signal lines (eg, data lines or gate lines) extending along the extending direction of the touch electrodes. Therefore, the introduction of the touch electrode is prevented from causing or increasing the difference between the coupling capacitance between the pixel electrode and the signal lines on both sides thereof.
  • FIGS. 2A and 2B are schematic plan views of an array substrate according to an embodiment of the present disclosure.
  • the present disclosure provides an array substrate including a substrate substrate 31 and a touch electrode 32 and a pixel electrode 90 on the substrate substrate 31 .
  • the touch electrode 32 extends in a first direction, which is, for example, a linear structure extending in the first direction; or in other examples, the touch electrode may be included in the non-display area differently when extending in the first direction The extended portion in the direction of the first direction improves the touch detection accuracy without affecting the aperture ratio of the display panel.
  • the pixel electrode 90 is insulated from the touch electrode 32 and includes an opposite outer edge 90A, 90B.
  • the outer edges 90A, 90B extend substantially in the first direction and are sequentially arranged in the second direction, and the second direction intersects the first direction ( For example, the second direction is perpendicular to the first direction); in the second direction, the orthographic projection of the touch electrode 32 on the substrate substrate 31 is located on the base substrate 31 at the outer edges 90A, 90B of the pixel electrode 90. between.
  • outer edges 90A, 90B of the pixel electrode 90 are the edges of the pixel electrode 90 that are furthest apart in the second direction.
  • the pixel electrode 90 and the touch electrode 32 may be located in different layers or may be located in the same layer. That is, the pixel electrode 90 and the touch electrode 32 can be formed by different films or by the same film, respectively.
  • the pixel electrode 90 includes a first portion 91 and a second portion 92 that are electrically connected to each other, and an opening 93 is provided between the first portion 91 and the second portion 92, such as a strip opening extending in the first direction;
  • the orthographic projection of the control electrode 32 on the base substrate 31 overlaps with the orthographic projection of the opening 93 on the base substrate 31.
  • the orthographic projection of the touch electrode 32 on the base substrate 31 is between the front projection of the first portion 91 of the pixel electrode 90 and the second portion 92 on the base substrate 31 (ie, along the second direction, the touch electrode 32 is located within opening 93).
  • the overlapping area of the touch electrode 32 and the pixel electrode 90 can be reduced by providing the opening 93 to reduce the touch.
  • the parasitic capacitance between the electrode 32 and the pixel electrode 90 is controlled, thereby reducing power consumption.
  • the opening 93 is for accommodating the pixel electrode 90.
  • the first portion 91 and the second portion 92 of the pixel electrode 90 are electrically connected to each other means that the first portion 91 and the second portion 92 are applied with the same electrical signal (data signal), for example, by the same switching element 37, for the same sub-pixel.
  • the display operation (for example, red, green, or blue sub-pixels), that is, both belong to the same sub-pixel and not to different sub-pixels.
  • the first portion 91 and the second portion 92 of the pixel electrode 90 may be directly connected to achieve an electrical connection therebetween, for example, as shown in FIG. 2A, the ends of the first portion 91 and the second portion 92. Connect directly together.
  • the first portion 91 and the second portion 92 of the pixel electrode 90 can be connected by a bridge wire (eg, as shown by the bridge wire 344 in FIG. 3B) to achieve an electrical connection therebetween.
  • the wiring is in a different layer than the pixel electrode 90, for example, the bridge wire is a metal bridge wire to reduce the resistance of the bridge wire.
  • the first portion 91 and the second portion 92 of the pixel electrode 90 can also be electrically connected to each other by being electrically connected to the same switching element 37.
  • the array substrate further includes a switching element 37 (eg, a transistor), and both the first portion 91 and the second portion 92 of the pixel electrode 90 are electrically connected to the same electrode (eg, source or drain) of the switching element 37, so that both pass The switching element 37 is applied with the same operational signal.
  • a switching element 37 eg, a transistor
  • the array substrate provided by at least one embodiment of the present disclosure further includes a signal line 330 disposed adjacent to the pixel electrode 90, the signal line 330 extending substantially in the first direction;
  • the pixel electrode 90 is located between the signal lines 330, so that the outer edges 90A, 90B of the pixel electrode 90 are also located between the signal lines 330, and the outer edges 90A, 90B of the pixel electrodes 90 are the distances of the pixel electrodes 90, respectively.
  • the touch electrode 32 Since the touch electrode 32 is not disposed in the region between the pixel electrode 90 and each of the signal lines 330, the coupling capacitance between the pixel electrode 90 and the signal lines 330 on both sides is not generated by the introduction of the touch electrode 32. The difference may cause the difference to increase; on the other hand, since the touch electrode 32 is not disposed between the pixel electrode 90 and the signal line 330, the distance difference between the pixel electrode 90 and the signal line 330 may be smaller in the second direction.
  • the width of the touch electrode 32 for example, the distance difference is substantially zero, that is, the distance between the pixel electrode 90 and the signal line 330 is substantially equal.
  • the signal line 330 is applied with the same type of electrical signal during operation.
  • the signal line 330 is input to the gate scan signal or the data signal during operation, that is, the signal line 330 is either a gate line or both data lines.
  • the touch electrode 32 is disposed in the same layer as the signal line 330. Therefore, the touch electrode 32 and the signal line 330 can be formed by patterning the same film to reduce the manufacturing process and reduce the cost.
  • At least one embodiment of the present disclosure provides an array substrate further including another adjacent signal line 360 extending substantially in the second direction and sequentially arranged in the first direction, the signal Line 360 is input with a different type of electrical signal from signal line 330 during operation.
  • FIG. 2A and FIG. 2B illustrate the case where the signal line 360 is a gate line and the signal line 330 is a data line.
  • the signal line 360 is a data line
  • the signal line 330 is a gate line.
  • the positional relationship between the signal line 360 and the signal line 330 and the switching element 37 in FIGS. 2A and 2B also changes accordingly.
  • the signal line 360 is a gate line
  • the signal line 330 is a data line
  • the adjacent gate line 360 and the adjacent data line 330 cross define one sub-pixel, that is, one pixel. unit.
  • the touch electrode 32 is aligned with the extending direction of the data line and is not disposed between the pixel electrode 90 and the data line. Therefore, the introduction of the touch electrode 32 can be avoided to increase the coupling capacitance Cpd between the pixel electrode 90 and the data lines on both sides. difference between.
  • At least one embodiment of the present disclosure provides a touch display panel, which includes a black matrix BM and a touch electrode 32 in addition to any array substrate provided in the above embodiments.
  • the orthographic projection on the base substrate 31 is outside the orthographic projection of the black matrix BM on the base substrate 31. That is to say, the touch electrode 32 is located in the display area of the touch display panel (the area not blocked by the black matrix BM) rather than the non-display area blocked by the black matrix BM.
  • the signal line 330 is blocked by the black matrix BM, that is, the orthographic projection of the signal line 330 on the base substrate 31 is located within the orthographic projection of the black matrix BM on the base substrate 31.
  • the touch display panel provided by at least one embodiment of the present disclosure includes an opposite array substrate 30 and a counter substrate 20, for example, a liquid crystal layer is disposed therebetween. show).
  • the opposite substrate is, for example, a color film substrate.
  • the black matrix BM may be located in the opposite substrate 20, for example, the side of the substrate substrate 21 of the opposite substrate 20 facing the array substrate 30, see FIGS. 3A, 4A, 5; or the black matrix BM may also be located in the array substrate 30. .
  • the touch display panel provided by at least one embodiment of the present disclosure may adopt an FFS (Fringe Field Switching) mode.
  • the array substrate 30 of the touch display panel includes pixel electrodes and common electrodes disposed in different layers. electrode.
  • the touch electrode 32 is electrically connected to the touch detection chip during the touch operation, thereby applying a touch drive signal, and the touch detection chip can determine the touch position according to the signal collected from the touch electrode 32.
  • the touch electrode 32 may be suspended during the display operation time, or a common voltage (for example, ground or a low voltage) may be applied.
  • the array substrate 30 of the touch display panel includes a first transparent electrode 340, a second transparent electrode 350 on the base substrate 31, and a passivation insulating layer PVX therebetween.
  • the first transparent electrode 340 is located between the base substrate 31 and the second transparent electrode 350, and one of the first transparent electrode 340 and the second transparent electrode 350 is a pixel electrode (see FIG.
  • the first transparent electrode 340 of 3A, 5 and the second transparent electrode 350 of FIG. 4A and the other of the first transparent electrode 340 and the second transparent electrode 350 is a common electrode (see the second of FIGS. 3A, 5)
  • the second transparent electrode 350 may have a slit structure. After the electrical signal is applied, since the second transparent electrode 350 is located on the upper layer of the first transparent electrode 340, an FFS electric field is formed between the second transparent electrode 350 and the first transparent electrode 340. For example, as shown in FIGS. 3A, 4A and 5, the second transparent electrode 350 includes a plurality of sub-electrodes separated by slits, respectively.
  • the touch display panel adopts the FFS mode
  • at least a portion of the touch electrodes 32 may be disposed in the same layer as the first transparent electrodes 340 and formed in the same material (ie, formed by the same film), which makes the touch display panel larger. Opening ratio and transmittance and can reduce the manufacturing process; or, the touch electrode 32 can be disposed in a different layer from each of the first transparent electrode 340 and the second transparent electrode 350, in which case, for example, touch The control electrode 32 is made of metal to obtain a small resistance.
  • the touch electrode 32 in a direction perpendicular to the base substrate 31, the touch electrode 32 is located between the base substrate 31 and the first transparent electrode 340 (for example, the pixel electrode 90).
  • the touch electrode 32 can be fabricated by using the metal layer under the first transparent electrode 340 included in the array substrate 30.
  • the touch electrode 32 can be prepared relatively finely or function as a black matrix without affecting the display effect; and, since the black matrix BM does not need to block the touch
  • the width of the black matrix BM can be made narrower than that of the touch display panel shown in FIG. 1A. Therefore, the aperture ratio of the touch display panel shown in FIG. 3A is not generally reduced.
  • the touch electrode 32 can be formed by using the metal layer where the signal line 330 is located. That is, as shown in FIG. 3A, the touch electrode 32 is disposed in the same layer as the signal line 330 and has the same material.
  • the signal line 330 is a data line.
  • the gate insulating layer GI covering the gate line (not shown) is disposed on the base substrate 31,
  • the signal line 330 and the touch electrode 32 are located in the same layer (data metal layer) and are located on the gate insulating layer GI.
  • the substrate substrate 31 is further provided with an insulating layer covering the signal line 30 and the touch electrode 32, such as a resin layer.
  • RS, the first transparent electrode 340, the passivation insulating layer PVX, and the second transparent electrode 350 are sequentially disposed on the resin layer RS.
  • the signal line 330 can be a gate line, and both the touch electrode 32 and the signal line 330 are located in the gate metal layer.
  • the first transparent electrode 340 includes a first sub-electrode 341 and a second sub-electrode 342 that are electrically connected, for example, both of which are electrically connected or directly electrically connected through a bridge wire 344 (as shown in FIG. 3B).
  • a strip-shaped opening 343 extending along the first direction is disposed between the first sub-electrode 341 and the second sub-electrode 342; in the second direction, the touch electrode 32 is located at the first sub-electrode 341 and The orthogonal projection between the second sub-electrodes 342, that is, the touch electrodes 32 on the base substrate 31 is located between the orthographic projections of the first sub-electrode 341 and the second sub-electrode 342 on the base substrate 31.
  • the touch electrode 32 is located below the first transparent electrode 340, by providing the strip opening 343, the overlapping area between the touch electrode 32 and the first transparent electrode 340 can be reduced to reduce power consumption and avoid
  • the touch position is located on the upper side of the touch electrode 32 (the side away from the base substrate 31)
  • the strip opening 343 the touch signal can be prevented from being shielded by the first transparent electrode 340.
  • the first transparent electrode 340 in FIG. 3A is the pixel electrode 90
  • the first sub-electrode 341, the second sub-electrode 342, and the strip-shaped opening 343 included in the first transparent electrode 340 are respectively the pixel electrode 90 described above.
  • a portion of the touch electrode 32 may be disposed in the same layer as the first transparent electrode 340 (eg, a common electrode) and formed in the same material. Since the portion of the touch electrode 32 is transparent, the transmittance and aperture ratio of the touch display panel can be improved.
  • the signal line 330 is a data line.
  • the gate insulating layer GI covering the gate line (not shown) is disposed on the base substrate 31,
  • the signal line 330 is disposed on the gate insulating layer GI.
  • the substrate substrate 31 is further provided with an insulating layer covering the signal line 30, such as a resin layer RS.
  • the touch electrode 32 and the first transparent electrode 340 are located on the resin layer RS, and the passivation is insulated.
  • the layer PVX covers the touch electrode 32 and the first transparent electrode 340, and the second transparent electrode 350 is located on the passivation insulating layer PVX.
  • signal line 330 can be a gate line, and touch sensor 32 and signal line 330 are all located in the gate metal layer.
  • the touch electrode 32 includes a first connection portion 321 sequentially arranged in the first direction and sequentially connected, a transparent portion 323 (for example, located between the signal lines 360 in the first direction), and a second connection.
  • the transparent portion 323 is disposed in the same layer as the first transparent electrode 340 and is formed of the same material, and the first connecting portion 321 and the second connecting portion 322 are both disposed in different layers from the transparent portion 323.
  • the forming materials of the first connecting portion 321 and the second connecting portion 322 all include metal.
  • the first connecting portion 321 and the second connecting portion 322 are disposed in the same layer as the signal line 330 and are formed of the same material.
  • Electrode 350 is shown in FIG. 4B, and the second transparent as the pixel electrode electrically connected to the switching element 37 is not shown. Electrode 350.
  • the touch electrode 32 has a transparent portion 323 disposed in the same layer as the first transparent electrode 340.
  • the transparent portion 323 and the first transparent electrode 340 are formed by patterning the same film, thereby reducing fabrication.
  • the touch electrode 32 located in the display area can also be used as a common electrode during the display operation and formed with the second transparent electrode 350.
  • the FFS electric field is used to improve the transmittance and the display quality of the touch display panel. That is to say, the touch electrode 32 has the dual function of the common electrode and the touch electrode; the first connecting portion 321 and the second connecting portion 322 are made of metal. It is beneficial to reduce the resistance of the touch electrode 32 and improve the conductivity of the touch electrode 32.
  • both the first connection portion 321 and the second connection portion 322 are electrically connected to the transparent portion 323 through the via holes.
  • the first connection portion 321 and the second connection portion 322 are blocked by the black matrix BM.
  • the first transparent electrode 340 includes a first sub-electrode 341 and a second sub-electrode 342 that are electrically connected, for example, two are electrically connected through a bridge wire 344 (as shown in FIG. 4B) or two.
  • the first sub-electrode 341 and the second sub-electrode 342 are provided with a strip-shaped opening 343 extending along the first direction; in the second direction, the touch-electrode 32 is located at the first sub-electrode 341 and Between the second sub-electrodes 342.
  • the strip opening 343 is configured to receive the touch electrode 32 such that the touch electrode 32 and the first and second sub-electrodes 341, 342 are disposed in the same layer.
  • the entire touch electrode 32 is disposed in the same layer as the first transparent electrode 340 (for example, the pixel electrode 90) and is formed of the same material. Since the entire touch electrode 32 is transparent, the transmittance and aperture ratio of the touch display panel can be improved.
  • the entire touch electrode 32 is disposed in the same layer as the first transparent electrode 340, so that the two can be formed by patterning the same film to reduce the manufacturing process and reduce the cost; at the first transparent electrode 340
  • the touch electrode 32 can also be used as a common electrode during the display operation, and an IPS electric field is formed between the touch electrode 32 and the first transparent electrode 340, thereby improving the transmittance of the touch display panel. That is to say, the touch electrode 32 has a dual function of a common electrode and a touch electrode.
  • the signal line 330 is a data line.
  • the gate insulating layer GI covering the gate line (not shown) is disposed on the base substrate 31,
  • the signal line 330, the first transparent electrode 340 and the touch electrode 32 are disposed on the gate insulating layer GI.
  • the base substrate 31 is further provided with a passivation insulating layer PVX covering the signal line 330, the first transparent electrode 340 and the touch electrode 32.
  • the second transparent electrode 350 is located on the passivation insulating layer PVX.
  • the signal line 330 can be a gate line, and the touch electrode 32 and the signal line 330 are both located in the gate metal layer.
  • FIG. 3B a schematic plan view of the touch electrode 32, the signal line 330, and the first transparent electrode 340 in the touch display panel shown in FIG. 5 can be referred to FIG. 3B. The repetitions are not repeated here.
  • the first transparent electrode 340 in FIG. 5 is the pixel electrode 90
  • the first sub-electrode 341, the second sub-electrode 342, and the strip-shaped opening 343 included in the first transparent electrode 340 are respectively the pixel electrode 90 described above.
  • the array substrate includes adjacent pixel units (two pixel units are shown in the figure), and a signal is disposed between the adjacent pixel structures.
  • Line 330, and the touch electrode 32 is not disposed between the signal line 330 and the pixel electrode 90 of each pixel unit.
  • the touch display panel may adopt an FFS mode, that is, the array substrate 30 in the touch display panel includes a first transparent electrode 340 and a second transparent electrode 350 (as shown in FIG. 3A, FIG. 4A and FIG. 5), wherein One is a pixel electrode and the other is a common electrode.
  • FIG. 3A is an example in which the first transparent electrode 340 is a pixel electrode
  • FIG. 6B is an example in which the first transparent electrode 340 is a common electrode.
  • the touch display panel is an in-cell touch display panel, that is, the touch electrodes are located inside the touch display panel.
  • the display panel includes the same as shown in FIGS. 3A, 4A, and 5.
  • the array substrate 30 and the counter substrate 20 are disposed between the base substrate 31 of the array substrate 30 and the base substrate 21 of the counter substrate 20.
  • the touch display panel provided by the embodiments of the present disclosure can be used for any product or component having a touch and display function, such as a liquid crystal display device, an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like. .
  • the at least one embodiment of the present disclosure further provides an array substrate.
  • the schematic diagram of the array substrate can be referred to FIG. 2A, FIG. 2B, FIG. 3B, FIG. 6A and FIG. 6B, and a schematic cross-sectional view of the array substrate can refer to FIG. 3A.
  • an array substrate provided by at least one embodiment of the present disclosure includes a base substrate 31 and a touch electrode 32 and a pixel electrode 90 on the base substrate 31.
  • the touch electrode 32 extends in the first direction.
  • the pixel electrode 90 is insulated from the touch electrode 32 and includes opposing outer edges 90A, 90B, both of which extend in the first direction and are sequentially arranged in the second direction; in the second direction (arrangement of the outer edges 90A, 90B) In the direction), the orthographic projection of the touch electrode 32 on the base substrate 31 is located between the orthogonal projections of the outer edges 90A, 90B on the base substrate 31.
  • At least one embodiment of the present disclosure further provides a method for fabricating an array substrate.
  • the method includes: forming a touch extending along the first direction on the base substrate 31.
  • Electrode 32; forming a pixel electrode 90 on the base substrate 31, insulating the pixel electrode 90 from the touch electrode 32 and including opposing outer edges 90A, 90B, the outer edges 90A, 90B extending substantially in the first direction and along the second direction (which intersects the first direction) are sequentially arranged, and in the second direction, the orthographic projection of the touch electrodes 32 on the base substrate 31 is located between the orthographic projections of the outer edges 90A, 90B on the base substrate 31.
  • the touch electrodes 32 can be formed by using a metal layer and/or a transparent conductive layer in the array substrate, so that the mask plate for separately forming the touch electrodes 32 is not required to be added, thereby reducing the process and reducing the cost.
  • the entire touch electrode 32 may be formed by the same film as the signal line 330 included in the array substrate.
  • the method for fabricating the array substrate includes, for example, steps S61 to S63 as shown in FIG.
  • Step S61 forming the touch electrode 32 and the adjacent signal line 330 on the base substrate 31 through the same film, so that the signal lines 330 all extend in the first direction and are sequentially arranged in the second direction, and the touch electrodes 32 are located on the signal line. Between 330.
  • Step S62 The first transparent electrode 340 is formed on the base substrate 31 such that the signal line 330 and the touch electrode 32 are located between the base substrate 31 and the first transparent electrode 340 in a direction perpendicular to the base substrate 31.
  • Step S63 A second transparent electrode 350 is formed on the base substrate 31, wherein the first transparent electrode 340 is located between the base substrate 31 and the second transparent electrode 350 in a direction perpendicular to the base substrate 31.
  • one of the first transparent electrode 340 and the second transparent electrode 350 is a pixel electrode; and in the second direction, the pixel electrode is located between the signal lines 330.
  • the touch electrode 32 may include a portion formed by the same film as the signal line 330 and including a portion formed by the same film as the first transparent electrode 340, and thus, in this case, the array substrate
  • the manufacturing method includes, for example, steps S71 to S73 as shown in FIG. 8.
  • Step S71 forming the first connection portion 321 and the second connection portion 322 of the touch electrode 32 and the adjacent signal lines 330 on the base substrate 31 through the same film, so that the signal lines 330 extend in the first direction and along The second direction is sequentially arranged, and the first connection portion 321 and the second connection portion 322 are located between the signal lines 330.
  • Step S72 The first transparent electrode 340 and the transparent portion 323 of the touch electrode 32 are formed on the base substrate 31 by the same film, and the transparent portion 323 is electrically connected to the first connection portion 321 and the second connection portion 322.
  • Step S73 forming a second transparent electrode 350 on the base substrate 31, wherein the first transparent electrode 340 is located between the base substrate 31 and the second transparent electrode 350 in a direction perpendicular to the base substrate 31.
  • one of the first transparent electrode 340 and the second transparent electrode 350 is a pixel electrode; and, in the second direction, the pixel electrode is located between the signal lines 330.
  • the entire touch electrode 32 may be formed by the same film as the first transparent electrode 340 included in the array substrate.
  • the method for fabricating the array substrate includes, for example, step S81 to step shown in FIG. S82.
  • Step S81 The first transparent electrode 340 and the touch electrode 32 are formed on the base substrate 31 through the same film.
  • Step S82 forming a second transparent electrode 350 on the base substrate 31, wherein the first transparent electrode 340 is located between the base substrate 31 and the second transparent electrode 350 in a direction perpendicular to the base substrate 31, wherein One of the first transparent electrode 340 and the second transparent electrode 350 is the pixel electrode 90.
  • the above array substrate and its manufacturing method and the embodiment of the touch display panel can be referred to each other.
  • the embodiment of the present disclosure can avoid or reduce the difference between the coupling capacitance between the pixel electrode and the signal lines on both sides thereof by optimizing the array substrate structure, thereby avoiding the screen display problem and ensuring the yield;
  • some embodiments of the present disclosure can increase the aperture ratio and achieve an increase in transmittance.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Position Input By Displaying (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种阵列基板及其制作方法和触控显示面板。该阵列基板包括:触控电极(32),其位于衬底基板(31)上且沿第一方向延伸;像素电极(90),其位于衬底基板(31)上、与触控电极(32)绝缘并且包括相对的外边缘(90A;90B),外边缘(90A;90B)沿第二方向依次排列。在第二方向上,触控电极(32)在衬底基板(31)上的正投影位于像素电极(90)的外边缘(90A;90B)在衬底基板(31)上的正投影之间。该阵列基板可以避免或减小像素电极(90)与其两侧的信号线(330)之间的耦合电容之间的差异。

Description

阵列基板及其制作方法和触控显示面板
对相关申请的交叉参考
本申请要求于2017年9月25日递交的中国专利申请第201710872250.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开实施例涉及一种阵列基板及其制作方法和触控显示面板。
背景技术
触控技术提供了一种高效、便利的人机交互方式。目前,触控技术已广泛应用在手机、平板电脑等电子设备中。面板内触控显示(即将触控结构设置于显示面板的内部)技术因可以节约成本和产能而具有很大的应用空间。
液晶式触控屏是目前比较常用的一种触控屏,其主要包括用于实现触控功能的触控部分和用于实现液晶显示功能的显示部分。液晶显示面板包括相互对置的阵列基板和对向基板(例如彩膜基板),以及设置于阵列基板和对向基板之间的液晶层。液晶显示装置通过对公共电极和像素电极加载电压以控制液晶分子的偏转,进而控制光线。例如,阵列基板上可以设置有开关元件阵列、栅线、数据线、公共电极和像素电极等结构。
发明内容
本公开实施例提供一种阵列基板及其制作方法和触控显示面板,本公开实施例可以避免或减小像素电极与其两侧的信号线之间的耦合电容之间的差异。
本公开的至少一个实施例提供一种阵列基板,其包括:衬底基板;触控电极,其位于所述衬底基板上且沿第一方向延伸;以及像素电极,其位于所述衬底基板上、与所述触控电极绝缘并且包括相对的外边缘,所述外边缘沿第二方向依次排列,所述第二方向与所述第一方向相交。在所述第二方向上, 所述触控电极在所述衬底基板上的正投影位于所述像素电极的外边缘在所述衬底基板上的正投影之间。
例如,所述的阵列基板还包括与所述像素电极相邻设置的信号线,所述信号线都沿所述第一方向延伸;沿所述第二方向,所述像素电极位于所述信号线之间。
例如,所述信号线都为数据线或栅线。
例如,所述像素电极包括彼此电连接的第一部分和第二部分,所述第一部分和所述第二部分之间设置有开口,所述触控电极在所述衬底基板上的正投影与所述开口在所述衬底基板上的正投影交叠。
例如,沿所述第二方向,所述触控电极位于所述开口之内。
例如,所述像素电极的所述第一部分和所述第二部分直接电连接。
例如,所述像素电极的所述第一部分和所述第二部分通过桥接线电连接,所述桥接线与所述像素电极位于不同层中;或者所述像素电极的所述第一部分和所述第二部分通过同一开关元件电连接。
例如,所述的阵列基板还包括位于所述衬底基板上的公共电极,所述公共电极与所述像素电极位于不同的层中。
例如,所述像素电极和所述公共电极中更靠近所述衬底基板的被称为第一透明电极,所述第一透明电极包括电连接的第一子电极和第二子电极,所述第一子电极和所述第二子电极之间设置有沿所述第一方向延伸的条状开口;所述触控电极在所述衬底基板上的正投影与所述条状开口在所述衬底基板上的正投影交叠。
例如,沿所述第二方向,所述触控电极位于所述第一子电极和所述第二子电极之间。
例如,在垂直于所述衬底基板的方向上,所述触控电极位于所述衬底基板与所述第一透明电极之间。
例如,所述触控电极的至少部分与所述第一透明电极同层设置且形成材料相同。
例如,所述触控电极包括沿所述第一方向依次排列且依次连接的第一连接部、透明部和第二连接部,所述透明部与所述第一透明电极同层设置且形成材料相同,并且所述第一连接部和所述第二连接部都与所述透明部不同层 设置。
本公开的至少一个实施例还提供一种阵列基板的制作方法,其包括:在衬底基板上形成沿第一方向延伸的触控电极;以及在所述衬底基板上形成像素电极,所述像素电极与所述触控电极绝缘并且包括相对的外边缘,所述外边缘沿第二方向依次排列,所述第二方向与所述第一方向相交。在所述第二方向上,所述触控电极在所述衬底基板上的正投影位于所述像素电极的外边缘在所述衬底基板上的正投影之间。
例如,通过同一薄膜在所述衬底基板上形成所述触控电极和相邻的信号线,使所述信号线都沿所述第一方向延伸;在所述衬底基板上形成第一透明电极,使得在与所述衬底基板垂直的方向上,所述信号线和所述触控电极都位于所述衬底基板和所述第一透明电极之间;以及在所述衬底基板上形成第二透明电极,使得在垂直于所述衬底基板的方向上,所述第一透明电极位于所述衬底基板和所述第二透明电极之间。所述第一透明电极和所述第二透明电极之一为所述像素电极;沿所述第二方向,所述像素电极位于所述信号线之间。
例如,通过同一薄膜,在所述衬底基板上形成所述触控电极的第一连接部和第二连接部、以及相邻的信号线,所述信号线都沿所述第一方向延伸;通过同一薄膜,在所述衬底基板上形成第一透明电极和所述触控电极的透明部,所述透明部与所述第一连接部和第二连接部电连接;在所述衬底基板上形成第二透明电极,其中,在垂直于所述衬底基板的方向上,所述第一透明电极位于所述衬底基板和所述第二透明电极之间。所述第一透明电极和所述第二透明电极之一为所述像素电极;沿所述第二方向,所述像素电极位于所述信号线之间。
例如,通过同一薄膜,在所述衬底基板上形成第一透明电极和所述触控电极;以及在所述衬底基板上形成第二透明电极,其中,在垂直于所述衬底基板的方向上,所述第一透明电极位于所述衬底基板和所述第二透明电极之间。所述第一透明电极和所述第二透明电极之一为所述像素电极;沿所述第二方向,所述像素电极位于所述信号线之间。
本公开的至少一个实施例提供一种触控显示面板,其包括以上任一所述的阵列基板。
例如,所述的触控显示面板还包括黑矩阵,所述触控电极在所述衬底基板上的正投影位于所述黑矩阵在所述衬底基板上的正投影之外。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为一种触控显示面板的剖视图;
图1B为图1A中部分结构的平面示意图;
图2A为本公开实施例提供的触控显示面板的平面示意图一;
图2B为本公开实施例提供的触控显示面板的平面示意图二;
图3A为本公开实施例提供的触控显示面板的剖视示意图一;
图3B为图3A中部分结构的平面示意图;
图4A为本公开实施例提供的触控显示面板的剖视示意图二;
图4B为图4A中部分结构的平面示意图;
图5为本公开实施例提供的触控显示面板的剖视示意图三;
图6A为本公开实施例提供的触控显示面板包括的阵列基板的平面示意图一;
图6B为本公开实施例提供的触控显示面板包括的阵列基板的平面示意图二;
图7为本公开实施例提供的触控显示面板的制作方法的流程图一;
图8为本公开实施例提供的触控显示面板的制作方法的流程图二;
图9为本公开实施例提供的触控显示面板的制作方法的流程图三。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1A为一种触控显示面板的剖视示意图,该触控显示面板可以用于实现显示功能以及触控功能;图1B为图1A所示触控显示面板中的部分结构的平面示意图。如图1A所示,该触控显示面板包括阵列基板30和对向基板20,对向基板20包括衬底基板21和位于衬底基板21面向阵列基板30一侧的黑矩阵BM,阵列基板30包括衬底基板31以及位于衬底基板31面向对向基板20一侧的栅绝缘层GI、数据线33、触控电极32、覆盖数据线33和触控电极32的树脂层RS、位于树脂层RS上的像素电极34、覆盖像素电极34的钝化层PVX、位于钝化层PVX上的公共电极35。如图1B所示,阵列基板还包括栅线36和开关元件37,像素电极34位于相邻的栅线36和相邻的数据线33限定的区域中并且与开关元件37电连接,由此开关元件37控制是否将数据线33上施加的数据信号传输至像素电极34。
在研究中,本申请的发明人注意到,在图1A和图1B所示的触控显示面板中,为了避免金属材料制作的触控电极32影响显示效果,将触控电极32设置在数据线33的旁边,并且利用黑矩阵BM遮挡触控电极32;然而,由于像素电极34(例如图1B中的右侧的像素电极)的一侧与数据线33之间设置有触控电极32,而像素电极34的与该侧相对的另一侧与数据线33之间未设置触控电极32,这使得同一像素电极34与其相对的两侧的数据线33之间的距离相差较大,从而导致像素电极34与其两侧的数据线33之间的耦合电容Cpd之间的差异较大,由此产生画面显示不良。
本公开实施例提供一种阵列基板及其制作方法和触控显示面板。在本公开实施例中,触控电极被设置在像素电极的相对的外边缘之间,未设置在像 素电极与沿触控电极的延伸方向延伸的信号线(例如数据线或栅线)之间,从而避免触控电极的导入导致或增大像素电极与其两侧的信号线之间的耦合电容之间的差异。
图2A和图2B为本公开实施例提供的阵列基板的平面示意图。参见图2A和图2B,本公开的至少一个实施例提供一种阵列基板,该阵列基板包括衬底基板31和位于衬底基板31上的触控电极32和像素电极90。触控电极32沿第一方向延伸,其例如为沿第一方向延伸的线状结构;或者在其他示例中,触控电极在沿第一方向延伸情况下,可以在非显示区包括在不同于第一方向的方向上的延伸部分,在不影响显示面板的开口率的情况下,提高触控检测精度。像素电极90与触控电极32绝缘并且包括相对的一对外边缘90A、90B,例如外边缘90A、90B都大致沿第一方向延伸并且沿第二方向依次排列,第二方向与第一方向相交(例如第二方向与第一方向垂直);在第二方向上,触控电极32在衬底基板31上的正投影位于像素电极90的外边缘90A、90B在衬底基板31上的正投影之间。
需要说明的是,像素电极90的外边缘90A、90B为像素电极90在第二方向上相距最远的边缘。
像素电极90与触控电极32可以分别位于不同的层中或者可以位于同一层中。也就是说,可以分别通过不同的薄膜或者通过同一薄膜形成像素电极90和触控电极32。
例如,像素电极90包括彼此电连接的第一部分91和第二部分92,第一部分91和第二部分92之间设置有开口93,所述开口例如为沿第一方向延伸的条状开口;触控电极32在衬底基板31上的正投影与开口93在衬底基板31上的正投影交叠。例如,触控电极32在衬底基板31上的正投影位于像素电极90的第一部分91和第二部分92在衬底基板31上的正投影之间(即,沿第二方向,触控电极32位于开口93之内)。在本公开实施例中,在像素电极90和触控电极32分别位于不同的层中的情况下,通过设置开口93可以减小触控电极32与像素电极90的交叠面积,以减小触控电极32与像素电极90之间的寄生电容,从而减小功耗。在像素电极90和触控电极32位于同一层中的情况下,开口93用于容纳像素电极90。
像素电极90的第一部分91和第二部分92彼此电连接是指第一部分91 和第二部分92在工作时例如通过同一开关元件37被施加同一电信号(数据信号),从而用于同一个子像素(例如红、绿或蓝色子像素)的显示操作,即二者属于同一个子像素而非属于不同的子像素。在一个示例中,像素电极90的第一部分91和第二部分92之间可以直接连接以实现二者之间的电连接,例如,如图2A所示,第一部分91和第二部分92的末端直接连接在一起。在一个示例中,像素电极90的第一部分91和第二部分92之间可以通过桥接线(例如,如图3B中的桥接线344所示)连接以实现二者之间的电连接,该桥接线与像素电极90位于不同层中,例如,该桥接线为金属桥接线,以减小桥接线的电阻。在一个示例中,如图2B所示,像素电极90的第一部分91和第二部分92也可以通过与同一开关元件37电连接来实现二者之间的电连接。例如,阵列基板还包括开关元件37(例如晶体管),像素电极90的第一部分91和第二部分92都与该开关元件37的同一电极(例如源极或漏极)电连接,从而二者通过该开关元件37被施加同一工作信号。
例如,如图2A和图2B所示,本公开的至少一个实施例提供的阵列基板还包括与像素电极90相邻设置的信号线330,信号线330都大致沿第一方向延伸;在第二方向上,像素电极90位于信号线330之间,从而像素电极90的外边缘90A、90B也位于信号线330之间,并且像素电极90的外边缘90A、90B分别为像素电极90的距离其两侧的信号线330最近的边缘。由于触控电极32未设置在像素电极90与每个信号线330之间的区域内,因此像素电极90与两侧的信号线330之间的耦合电容不会因触控电极32的引入而产生差异或导致差异增大;另一方面,由于像素电极90与信号线330之间未设置触控电极32,因此,在第二方向上,像素电极90与信号线330之间的距离差可以小于触控电极32的宽度,例如,该距离差大致为0,也就是说,像素电极90与信号线330之间的距离大致相等。
信号线330在工作时被施加相同类型的电信号,例如,信号线330在工作时都被输入栅扫描信号或者数据信号,即信号线330都为栅线或者都为数据线。
例如,触控电极32与信号线330同层设置。从而触控电极32和信号线330可以通过对同一薄膜进行构图工艺形成,以减少制作工艺、降低成本。
例如,如图2A和图2B所示,本公开的至少一个实施例提供的阵列基板 还包括另一种相邻的信号线360,其大致沿第二方向延伸并且沿第一方向依次排列,信号线360在工作时与信号线330被施输入不同类型的电信号。例如,图2A和图2B以信号线360为栅线且信号线330为数据线为例进行说明;在其它实施例中,信号线360为数据线,信号线330为栅线,在这种情况下,图2A和图2B中信号线360和信号线330与开关元件37之间的位置关系也发生相应变化。在如图2A和图2B所示的实施例中,信号线360为栅线,信号线330为数据线,相邻的栅线360和相邻的数据线330交叉限定一个子像素,即一个像素单元。触控电极32与数据线的延伸方向一致并且未设置在像素电极90与数据线之间,因此可以避免触控电极32的引入增大像素电极90与两侧的数据线之间的耦合电容Cpd之间的差异。
例如,如图3A、4A、5所示,本公开的至少一个实施例提供一种触控显示面板,除包括以上实施例提供的任一阵列基板外,还包括黑矩阵BM,触控电极32在衬底基板31上的正投影位于黑矩阵BM在衬底基板31上的正投影之外。也就是说,触控电极32位于触控显示面板的显示区(未被黑矩阵BM遮挡的区域)而非位于被黑矩阵BM遮挡的非显示区。
为了避免影响显示,信号线330被黑矩阵BM遮挡,即信号线330在衬底基板31上的正投影位于黑矩阵BM在衬底基板31上的正投影之内。
例如,如图3A、4A、5所示,本公开的至少一个实施例提供的触控显示面板包括相对的阵列基板30和对向基板20,二者之间例如设置有液晶层(图中未示出)。该对向基板例如为彩膜基板。黑矩阵BM可以位于对向基板20中,例如位于对向基板20的衬底基板21面向阵列基板30的一侧,参见图3A、4A、5;或者,黑矩阵BM也可以位于阵列基板30中。
例如,本公开的至少一个实施例提供的触控显示面板可以采用FFS(Fringe Field Switching)模式,在这种情况下,触控显示面板的阵列基板30包括在不同层中设置的像素电极和公共电极。
例如,触控电极32在触摸工作时与触控检测芯片电连接由此被施加触控驱动信号,触控检测芯片可根据从触控电极32采集的信号来判断触摸位置。例如,在显示面板分时进行显示操作以及触控操作的示例中,在显示操作时间内,触控电极32可以被悬空,或者可以被施加公共电压(例如接地或一个低电压)。
例如,如图3A、4A和5所示,触控显示面板的阵列基板30包括位于衬底基板31上的第一透明电极340、第二透明电极350以及二者之间的钝化绝缘层PVX;在垂直于衬底基板31的方向上,第一透明电极340位于衬底基板31和第二透明电极350之间,第一透明电极340和第二透明电极350之一为像素电极(参见图3A、5中的第一透明电极340和图4A中的第二透明电极350)且第一透明电极340和第二透明电极350中的另一个为公共电极(参见图3A、5中的第二透明电极350和图4A中的第一透明电极340),即像素电极和公共电极中更靠近衬底基板31的被称为第一透明电极;像素电极与信号线330在衬底基板31上的正投影不交叠,公共电极与信号线330在衬底基板31上的正投影可以交叠或不交叠。第二透明电极350可以具有狭缝结构,则在施加电信号之后,由于第二透明电极350位于第一透明电极340的上层,第二透明电极350与第一透明电极340之间形成FFS电场,例如,如图3A、4A和5所示,第二透明电极350包括分别被狭缝隔开的多个子电极。
在触控显示面板采用FFS模式的情况下,触控电极32的至少一部分可以与第一透明电极340同层设置且形成材料相同(即通过同一薄膜形成),这使得触控显示面板具有更大的开口率和透过率并且可以减少制作工艺;或者,触控电极32可以与第一透明电极340和第二透明电极350中的每个都不同层设置,在这种情况下,例如,触控电极32采用金属制作,以获取较小的电阻。
例如,如图3A所示,在垂直于衬底基板31的方向上,触控电极32位于衬底基板31与第一透明电极340(例如像素电极90)之间。通过将触控电极32设置在第一透明电极340的下方,便于利用阵列基板30包括的位于第一透明电极340下方的金属层来制作触控电极32。在触控电极32的形成材料为金属的情况下,触控电极32可以制备得相对比较细小,或者起到黑矩阵的作用,不会影响显示效果;并且,由于黑矩阵BM不需要遮挡触控电极32,与图1A所示的触控显示面板相比,黑矩阵BM的宽度可以制作得更窄,因此,图3A所示的触控显示面板的开口率总体上并未减小。
例如,可以利用信号线330所在的金属层制作触控电极32,即,如图3A所示,触控电极32与信号线330同层设置且形成材料相同。
例如,在图3A所示的实施例中,信号线330为数据线,在这种情况下, 例如,衬底基板31上设置有覆盖栅线(图中未示出)的栅绝缘层GI,信号线330和触控电极32位于同一层(数据金属层)中且都位于栅绝缘层GI上,衬底基板31上还设置有覆盖信号线30和触控电极32的绝缘层,例如树脂层RS,第一透明电极340、钝化绝缘层PVX和第二透明电极350依次设置于树脂层RS上。在其它示例中,信号线330可以为栅线,那么触控电极32和信号线330都位于栅金属层中。
例如,如图3B所示,第一透明电极340包括电连接的第一子电极341和第二子电极342,例如二者通过桥接线344(如图3B所示)电连接或直接电连接或通过同一开关元件37电连接,第一子电极341和第二子电极342之间设置有沿第一方向延伸的条状开口343;沿第二方向,触控电极32位于第一子电极341和第二子电极342之间,即触控电极32在衬底基板31上的正投影位于第一子电极341和第二子电极342在衬底基板31上的正投影之间。
由于触控电极32位于第一透明电极340的下方,通过设置条状开口343,可以减小触控电极32与第一透明电极340之间的交叠面积,以减小功耗,且避免二者的干扰;另一方面,由于触摸位置位于触控电极32的上侧(远离衬底基板31的一侧),通过设置条状开口343,也可以避免触控信号被第一透明电极340屏蔽。
例如,在图3A中的第一透明电极340为像素电极90的情况下,第一透明电极340包括的第一子电极341、第二子电极342和条状开口343分别为上述像素电极90的第一部分91、第二部分92和开口93。
例如,如图4A所示,触控电极32的一部分可以与第一透明电极340(例如公共电极)同层设置且形成材料相同。由于触控电极32的该部分是透明的,因此可以提高触控显示面板的透过率和开口率。
例如,在图4A所示的实施例中,信号线330为数据线,在这种情况下,例如,衬底基板31上设置有覆盖栅线(图中未示出)的栅绝缘层GI,信号线330位于栅绝缘层GI上,衬底基板31上还设置有覆盖信号线30的绝缘层,例如树脂层RS,触控电极32和第一透明电极340位于树脂层RS上,钝化绝缘层PVX覆盖触控电极32和第一透明电极340,第二透明电极350位于钝化绝缘层PVX上。在其它示例中,信号线330可以为栅线,触控电 极32和信号线330都位于栅金属层中。
例如,如图4B所示,触控电极32包括沿第一方向依次排列且依次连接的第一连接部321、透明部323(例如在第一方向上位于信号线360之间)和第二连接部322,透明部323与第一透明电极340同层设置且形成材料相同,并且第一连接部321和第二连接部322都与透明部323不同层设置。例如,第一连接部321和第二连接部322的形成材料都包括金属,例如第一连接部321和第二连接部322与信号线330同层设置且形成材料相同。
需要说明的是,图4B中只示出了作为公共电极的第一透明电极340(例如,其覆盖开关元件37的一部分),未示出与开关元件37电连接的作为像素电极的第二透明电极350。
在本公开实施例中,触控电极32具有与第一透明电极340同层设置的透明部323,该透明部323与第一透明电极340通过对同一薄膜进行图案化处理形成,因此可以减少制作流程、降低成本;在第一透明电极340为公共电极的情况下,位于显示区的触控电极32也可以在显示操作过程中复用作为公共电极使用,并且与第二透明电极350之间形成FFS电场,从而提高触控显示面板的透过率以及显示品质,也就是说,触控电极32具有公共电极和触控电极的双重功能;第一连接部321和第二连接部322采用金属制作,有利于降低触控电极32的电阻、提高触控电极32的导电性。
例如,第一连接部321和第二连接部322都通过过孔与透明部323电连接。例如,第一连接部321和第二连接部322被黑矩阵BM遮挡。
例如,如图4A和图4B所示,第一透明电极340包括电连接的第一子电极341和第二子电极342,例如二者通过桥接线344(如图4B所示)电连接或者二者通过公共电极线电连接,第一子电极341和第二子电极342之间设置有沿第一方向延伸的条状开口343;沿第二方向,触控电极32位于第一子电极341和第二子电极342之间。在本公开实施例中,条状开口343用于容纳触控电极32,以使触控电极32和第一、二子电极341、342同层设置。
例如,如图5所示,整个触控电极32与第一透明电极340(例如像素电极90)同层设置且形成材料相同。由于整个触控电极32是透明的,因此可以提高触控显示面板的透过率和开口率。
在本公开实施例中,整个触控电极32与第一透明电极340同层设置,因 此二者可以通过对同一薄膜进行图案化处理形成,以减少制作流程、降低成本;在第一透明电极340为像素电极的情况下,触控电极32也可以在显示操作过程中复用作为公共电极使用,并且与第一透明电极340之间形成IPS电场,从而提高触控显示面板的透过率,也就是说,触控电极32具有公共电极和触控电极的双重功能。
例如,在图5所示的实施例中,信号线330为数据线,在这种情况下,例如,衬底基板31上设置有覆盖栅线(图中未示出)的栅绝缘层GI,信号线330、第一透明电极340和触控电极32位于栅绝缘层GI上,衬底基板31上还设置有覆盖信号线330、第一透明电极340和触控电极32的钝化绝缘层PVX,第二透明电极350位于钝化绝缘层PVX上。在其它示例中,信号线330可以为栅线,触控电极32和信号线330都位于栅金属层中。
例如,图5所示触控显示面板中的触控电极32、信号线330和第一透明电极340的平面示意图可以参照图3B。重复之处不再赘述。
例如,在图5中的第一透明电极340为像素电极90的情况下,第一透明电极340包括的第一子电极341、第二子电极342和条状开口343分别为上述像素电极90的第一部分91、第二部分92和开口93。
例如,如图6A和图6B所示,在触控显示面板中,阵列基板包括相邻的像素单元(图中示出了两个像素单元),该相邻的像素结构之间设置有一条信号线330,并且该信号线330与每个像素单元的像素电极90之间未设置触控电极32。
例如,该触控显示面板可以采用FFS模式,即触控显示面板中的阵列基板30包括第一透明电极340和第二透明电极350(如图3A、图4A和图5所示),其中的一个为像素电极且另一个为公共电极。图6A以第一透明电极340为像素电极为例,图6B以第一透明电极340为公共电极为例。
例如,该触控显示面板为内嵌式(In cell)触控显示面板,也就是说,触控电极位于触控显示面板的内部,例如,显示面板包括如图3A、4A和5所示的阵列基板30和对向基板20,触控电极32位于阵列基板30的衬底基板31和对向基板20的衬底基板21之间。
本公开实施例提供的触控显示面板可以用于液晶显示装置、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具 有触控和显示功能的产品或部件。
本公开的至少一个实施例还提供一种阵列基板,该阵列基板的平面示意图可以参考图2A、图2B、图3B、图6A和图6B,并且该阵列基板的剖视示意图可以参考图3A、图4A和图5中的阵列基板30的剖视图。如这些附图所示,本公开至少一个实施例提供的阵列基板包括衬底基板31和位于衬底基板31上的触控电极32和像素电极90。触控电极32沿第一方向延伸。像素电极90与触控电极32绝缘并且包括相对的外边缘90A、90B,外边缘90A、90B都沿第一方向延伸并且沿第二方向依次排列;在第二方向(外边缘90A、90B的排列方向)上,触控电极32在衬底基板31上的正投影位于外边缘90A、90B在衬底基板31上的正投影之间。
本公开实施例的阵列基板中各部件的设置可参考阵列基板的实施例中的相关描述,重复之处不再赘述。
本公开的至少一个实施例还提供一种阵列基板的制作方法,以图2A和图2B所示的阵列基板为例,该方法包括:在衬底基板31上形成沿第一方向延伸的触控电极32;在衬底基板31上形成像素电极90,使像素电极90与触控电极32绝缘并且包括相对的外边缘90A、90B,外边缘90A、90B大致沿第一方向延伸且沿第二方向(其与第一方向相交)依次排列,并且在第二方向上,触控电极32在衬底基板31上的正投影位于外边缘90A、90B在衬底基板31上的正投影之间。
例如,触控电极32可以利用阵列基板中的金属层和/或透明导电层形成,从而无需额外增加单独制作触控电极32的掩膜板,以减少工艺、降低成本。
例如,参见图3A,整个触控电极32可以与阵列基板包括的信号线330通过同一薄膜形成,在这种情况下,阵列基板的制作方法例如包括如图7所示的步骤S61至步骤S63。
步骤S61:通过同一薄膜在衬底基板31上形成触控电极32和相邻的信号线330,使信号线330都沿第一方向延伸并且沿第二方向依次排列,触控电极32位于信号线330之间。
步骤S62:在衬底基板31上形成第一透明电极340,使在与衬底基板31垂直的方向上,信号线330和触控电极32位于衬底基板31和第一透明电极340之间。
步骤S63:在衬底基板31上形成第二透明电极350,其中,在垂直于衬底基板31的方向上,第一透明电极340位于衬底基板31和第二透明电极350之间。
在以上步骤中,第一透明电极340和第二透明电极350之一为像素电极;沿第二方向,像素电极位于信号线330之间。
例如,参见图4A和图4B,触控电极32可以包括与信号线330通过同一薄膜形成的部分且包括与第一透明电极340通过同一薄膜形成的部分,从而在这种情况下,阵列基板的制作方法例如包括如图8所示的步骤S71至步骤S73。
步骤S71:通过同一薄膜,在衬底基板31上形成触控电极32的第一连接部321和第二连接部322、相邻的信号线330,使信号线330都沿第一方向延伸并且沿第二方向依次排列,第一连接部321和第二连接部322位于信号线330之间。
步骤S72:通过同一薄膜,在衬底基板31上形成第一透明电极340和触控电极32的透明部323,使透明部323与第一连接部321和第二连接部322电连接。
步骤S73:在衬底基板31上形成第二透明电极350,其中,在垂直于衬底基板31的方向上,第一透明电极340位于衬底基板31和第二透明电极350之间。
在以上步骤中,第一透明电极340和第二透明电极350之一为像素电极;并且,沿第二方向,像素电极位于信号线330之间。
例如,参见图5,整个触控电极32可以与阵列基板包括的第一透明电极340通过同一薄膜形成,在这种情况下,阵列基板的制作方法例如包括如图9所示的步骤S81至步骤S82。
步骤S81:通过同一薄膜,在衬底基板31上形成第一透明电极340和触控电极32。
步骤S82:在衬底基板31上形成第二透明电极350,其中,在垂直于衬底基板31的方向上,第一透明电极340位于衬底基板31和第二透明电极350之间,其中,第一透明电极340和第二透明电极350之一为像素电极90。
上述阵列基板及其制作方法和触控显示面板的实施例可以互相参照。
综上所述,本公开的实施例通过优化阵列基板结构,可以避免或减小像素电极与其两侧的信号线之间的耦合电容之间的差异,从而避免画面显示问题,确保良率;另一方面,本公开的一些实施例可以提升开口率,实现透过率提升。
有以下几点需要说明:(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计;(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (19)

  1. 一种阵列基板,包括:
    衬底基板;
    触控电极,位于所述衬底基板上且沿第一方向延伸;以及
    像素电极,位于所述衬底基板上、与所述触控电极绝缘并且包括相对的外边缘,其中,所述外边缘沿第二方向依次排列,所述第二方向与所述第一方向相交;
    其中,在所述第二方向上,所述触控电极在所述衬底基板上的正投影位于所述像素电极的外边缘在所述衬底基板上的正投影之间。
  2. 根据权利要求1所述的阵列基板,还包括与所述像素电极相邻设置的信号线,其中,
    所述信号线都沿所述第一方向延伸;
    沿所述第二方向,所述像素电极位于所述信号线之间。
  3. 根据权利要求2所述的阵列基板,其中,所述信号线都为数据线或栅线。
  4. 根据权利要求1-3中任一项所述的阵列基板,其中,所述像素电极包括彼此电连接的第一部分和第二部分,所述第一部分和所述第二部分之间设置有开口,所述触控电极在所述衬底基板上的正投影与所述开口在所述衬底基板上的正投影交叠。
  5. 根据权利要求4所述的阵列基板,其中,沿所述第二方向,所述触控电极位于所述开口之内。
  6. 根据权利要求4或5所述的阵列基板,其中,所述像素电极的所述第一部分和所述第二部分直接电连接。
  7. 根据权利要求4或5所述的阵列基板,其中,
    所述像素电极的所述第一部分和所述第二部分通过桥接线电连接,所述桥接线与所述像素电极位于不同层中;或者
    所述像素电极的所述第一部分和所述第二部分通过同一开关元件电连接。
  8. 根据权利要求1-3中任一项所述的阵列基板,还包括位于所述衬底基 板上的公共电极,其中,所述公共电极与所述像素电极位于不同的层中。
  9. 根据权利要求8所述的阵列基板,其中,
    所述像素电极和所述公共电极中更靠近所述衬底基板的被称为第一透明电极,所述第一透明电极包括电连接的第一子电极和第二子电极,所述第一子电极和所述第二子电极之间设置有沿所述第一方向延伸的条状开口;
    所述触控电极在所述衬底基板上的正投影与所述条状开口在所述衬底基板上的正投影交叠。
  10. 根据权利要求9所述的阵列基板,其中,沿所述第二方向,所述触控电极位于所述第一子电极和所述第二子电极之间。
  11. 根据权利要求9或10所述的阵列基板,其中,
    在垂直于所述衬底基板的方向上,所述触控电极位于所述衬底基板与所述第一透明电极之间。
  12. 根据权利要求9或10所述的阵列基板,其中,所述触控电极的至少部分与所述第一透明电极同层设置且形成材料相同。
  13. 根据权利要求12所述的阵列基板,其中,所述触控电极包括沿所述第一方向依次排列且依次连接的第一连接部、透明部和第二连接部,
    所述透明部与所述第一透明电极同层设置且形成材料相同,并且
    所述第一连接部和所述第二连接部都与所述透明部不同层设置。
  14. 一种阵列基板的制作方法,包括:
    在衬底基板上形成沿第一方向延伸的触控电极;以及
    在所述衬底基板上形成像素电极,其中,所述像素电极与所述触控电极绝缘并且包括相对的外边缘,所述外边缘沿第二方向依次排列,所述第二方向与所述第一方向相交;
    其中,在所述第二方向上,所述触控电极在所述衬底基板上的正投影位于所述像素电极的外边缘在所述衬底基板上的正投影之间。
  15. 根据权利要求14所述的方法,其中,
    通过同一薄膜在所述衬底基板上形成所述触控电极和相邻的信号线,其中,所述信号线都沿所述第一方向延伸;
    在所述衬底基板上形成第一透明电极,其中,在与所述衬底基板垂直的方向上,所述信号线和所述触控电极都位于所述衬底基板和所述第一透明电 极之间;以及
    在所述衬底基板上形成第二透明电极,其中,在垂直于所述衬底基板的方向上,所述第一透明电极位于所述衬底基板和所述第二透明电极之间,
    其中,所述第一透明电极和所述第二透明电极之一为所述像素电极;沿所述第二方向,所述像素电极位于所述信号线之间。
  16. 根据权利要求14所述的方法,其中,
    通过同一薄膜,在所述衬底基板上形成所述触控电极的第一连接部和第二连接部、以及相邻的信号线,其中,所述信号线都沿所述第一方向延伸;
    通过同一薄膜,在所述衬底基板上形成第一透明电极和所述触控电极的透明部,其中,所述透明部与所述第一连接部和第二连接部电连接;以及
    在所述衬底基板上形成第二透明电极,其中,在垂直于所述衬底基板的方向上,所述第一透明电极位于所述衬底基板和所述第二透明电极之间,
    其中,所述第一透明电极和所述第二透明电极之一为所述像素电极;沿所述第二方向,所述像素电极位于所述信号线之间。
  17. 根据权利要求14所述的方法,其中,
    通过同一薄膜,在所述衬底基板上形成第一透明电极和所述触控电极;以及
    在所述衬底基板上形成第二透明电极,其中,在垂直于所述衬底基板的方向上,所述第一透明电极位于所述衬底基板和所述第二透明电极之间,
    其中,所述第一透明电极和所述第二透明电极之一为所述像素电极;沿所述第二方向,所述像素电极位于所述信号线之间。
  18. 一种触控显示面板,包括根据权利要求1-13中任一所述的阵列基板。
  19. 根据权利要求18所述的触控显示面板,还包括黑矩阵,其中,所述触控电极在所述衬底基板上的正投影位于所述黑矩阵在所述衬底基板上的正投影之外。
PCT/CN2018/098420 2017-09-25 2018-08-03 阵列基板及其制作方法和触控显示面板 WO2019056869A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18857729.0A EP3690617B1 (en) 2017-09-25 2018-08-03 Array substrate, manufacturing method therefor, and touch display panel
US16/485,821 US10969885B2 (en) 2017-09-25 2018-08-03 Array substrate, manufacturing method therefor, and touch display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710872250.8 2017-09-25
CN201710872250.8A CN109557728B (zh) 2017-09-25 2017-09-25 像素结构及其制作方法、阵列基板和触控显示装置

Publications (1)

Publication Number Publication Date
WO2019056869A1 true WO2019056869A1 (zh) 2019-03-28

Family

ID=65810985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098420 WO2019056869A1 (zh) 2017-09-25 2018-08-03 阵列基板及其制作方法和触控显示面板

Country Status (4)

Country Link
US (1) US10969885B2 (zh)
EP (1) EP3690617B1 (zh)
CN (1) CN109557728B (zh)
WO (1) WO2019056869A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102618348B1 (ko) * 2018-08-08 2023-12-28 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조방법
JP7126162B2 (ja) * 2018-10-23 2022-08-26 株式会社ジャパンディスプレイ 表示装置
CN109582179A (zh) * 2018-12-26 2019-04-05 合肥京东方光电科技有限公司 一种阵列基板、触控显示面板及触控显示装置
CN110427931B (zh) * 2019-07-31 2022-04-12 厦门天马微电子有限公司 一种阵列基板及显示装置
WO2021022539A1 (zh) * 2019-08-08 2021-02-11 京东方科技集团股份有限公司 传感器基板和电子装置
CN113867056B (zh) * 2020-06-30 2023-01-10 京东方科技集团股份有限公司 显示基板、显示面板和显示装置
CN111679489B (zh) * 2020-06-30 2022-09-13 厦门天马微电子有限公司 一种曲面显示面板及其制备方法、显示装置
CN113934317A (zh) * 2020-07-14 2022-01-14 华为技术有限公司 触控面板及电子设备、触控识别方法
CN111965878B (zh) * 2020-08-31 2023-06-13 上海天马微电子有限公司 调光面板及其制作方法及智能窗玻璃
CN112130697A (zh) * 2020-09-29 2020-12-25 上海天马有机发光显示技术有限公司 一种触控显示面板和显示装置
CN113867564B (zh) * 2021-09-14 2023-10-13 Tcl华星光电技术有限公司 触控显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100315377A1 (en) * 2009-06-16 2010-12-16 Au Optronics Corp. Touch panel
CN105117088A (zh) * 2015-09-16 2015-12-02 京东方科技集团股份有限公司 一种触控显示面板及其制备方法、驱动方法
CN105511688A (zh) * 2016-01-29 2016-04-20 上海天马微电子有限公司 一种阵列基板、显示器以及电子设备
US20160370676A1 (en) * 2015-06-19 2016-12-22 Panasonic Liquid Crystal Display Co., Ltd. Liquid crystal display device and method of manufacturing liquid crystal display device
CN107085483A (zh) * 2017-05-16 2017-08-22 武汉华星光电技术有限公司 一种触控显示面板

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060001662A (ko) * 2004-06-30 2006-01-06 엘지.필립스 엘시디 주식회사 수평전계방식 액정표시소자 및 그 제조방법
US9588368B2 (en) * 2012-07-20 2017-03-07 Shanghai Tianma Micro-electronics Co., Ltd. Touch display panel
JP6121812B2 (ja) * 2013-06-25 2017-04-26 株式会社ジャパンディスプレイ タッチパネル付液晶表示装置
KR102200294B1 (ko) * 2014-01-22 2021-01-11 삼성디스플레이 주식회사 표시장치 및 그 제조방법
CN104865726B (zh) * 2015-06-04 2018-08-14 上海天马微电子有限公司 一种阵列基板、显示面板、显示装置以及制备方法
KR102554251B1 (ko) * 2015-12-07 2023-07-11 엘지디스플레이 주식회사 표시장치
CN105388655B (zh) * 2015-12-07 2020-04-03 上海天马微电子有限公司 一种集成触控显示面板及触控显示设备
CN105572935B (zh) * 2015-12-16 2019-01-15 上海天马微电子有限公司 一种触控显示面板和显示装置
CN106125989B (zh) * 2016-07-29 2023-08-25 厦门天马微电子有限公司 显示面板及包含其的显示装置
CN106353905A (zh) * 2016-10-10 2017-01-25 南京中电熊猫液晶显示科技有限公司 蓝相液晶阵列基板的制造方法
CN106597729A (zh) * 2016-12-20 2017-04-26 北京小米移动软件有限公司 彩膜基板及其制作方法、显示面板和电子设备
CN106873226B (zh) * 2017-04-28 2019-11-26 上海中航光电子有限公司 一种触控显示面板
US10423255B2 (en) * 2017-05-16 2019-09-24 Wuhan China Star Optoelectronics Technology Co., Ltd. Touch control display panel
CN109388265B (zh) * 2017-08-09 2023-02-28 京东方科技集团股份有限公司 一种阵列基板、触控显示面板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100315377A1 (en) * 2009-06-16 2010-12-16 Au Optronics Corp. Touch panel
US20160370676A1 (en) * 2015-06-19 2016-12-22 Panasonic Liquid Crystal Display Co., Ltd. Liquid crystal display device and method of manufacturing liquid crystal display device
CN105117088A (zh) * 2015-09-16 2015-12-02 京东方科技集团股份有限公司 一种触控显示面板及其制备方法、驱动方法
CN105511688A (zh) * 2016-01-29 2016-04-20 上海天马微电子有限公司 一种阵列基板、显示器以及电子设备
CN107085483A (zh) * 2017-05-16 2017-08-22 武汉华星光电技术有限公司 一种触控显示面板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3690617A4

Also Published As

Publication number Publication date
EP3690617B1 (en) 2023-11-22
EP3690617A4 (en) 2021-08-18
CN109557728B (zh) 2021-12-10
US20200110479A1 (en) 2020-04-09
US10969885B2 (en) 2021-04-06
EP3690617A1 (en) 2020-08-05
CN109557728A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
WO2019056869A1 (zh) 阵列基板及其制作方法和触控显示面板
US10712855B2 (en) Array substrate, display panel and display device
US20200159357A1 (en) Display device and liquid crystal display device with built-in touch panel
US10871861B2 (en) Array substrate, method of fabricating array substrate, touch display panel, and touch display device
US8792061B2 (en) Liquid crystal display device
US10871839B2 (en) Color filter substrate, array substrate and display device
US9946417B2 (en) Array substrate, in-cell touch screen and touch display device
US20170220158A1 (en) Touch Display Substrate, Touch Display Panel, Touch Display Screen and Electronic Device
KR101546049B1 (ko) 터치 디스플레이 패널 및 그 구동 방법
WO2017117966A1 (zh) 彩膜基板、内嵌式触控显示装置
US20180292693A1 (en) A display panel and an array substrate thereof
US10969887B2 (en) Touch display device
US11507234B2 (en) Touch substrate, manufacturing method thereof, and display device
US8976132B2 (en) Touch-sensing display apparatus
TWI569180B (zh) 觸控顯示面板結構
CN107678590B (zh) 一种触控显示面板及其驱动方法
JP7052966B2 (ja) タッチ制御表示パネル
WO2015180288A1 (zh) 内嵌式触控面板及显示装置
US10606388B2 (en) Array substrate, manufacturing method thereof and touch display panel
JP2019101095A (ja) 液晶パネル
US11194435B2 (en) Detection substrate and display device
US20150116605A1 (en) Display panel
KR101738570B1 (ko) 터치인식 액정표시장치
JP2014021865A (ja) タッチパネル付液晶表示装置及びタッチパネル付液晶表示装置の製造方法
TW202011161A (zh) 觸控面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018857729

Country of ref document: EP

Effective date: 20200428