WO2020017288A1 - 繊維強化樹脂基材 - Google Patents
繊維強化樹脂基材 Download PDFInfo
- Publication number
- WO2020017288A1 WO2020017288A1 PCT/JP2019/026058 JP2019026058W WO2020017288A1 WO 2020017288 A1 WO2020017288 A1 WO 2020017288A1 JP 2019026058 W JP2019026058 W JP 2019026058W WO 2020017288 A1 WO2020017288 A1 WO 2020017288A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- polyarylene sulfide
- thermoplastic resin
- weight
- temperature
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
Definitions
- the present invention relates to a fiber reinforced resin base material.
- Fiber reinforced resin base material made by impregnating a thermoplastic resin into a continuous reinforcing fiber or a reinforcing fiber base material in which discontinuous reinforcing fibers are dispersed is not only excellent in light weight effect, but also uses a thermosetting resin. Since it has better toughness, weldability and recyclability than fiber-reinforced resin substrates, it is widely used in various applications such as transportation equipment such as aircraft and automobiles, and sports, electric and electronic parts. In recent years, in addition to mechanical strength and weight reduction, which are the added values of CFRTP (carbon fiber reinforced thermoplastic resin) intermediate substrates, high added values such as high heat resistance, low water absorption, high toughness, and moldability are required in recent years. Therefore, there is a strong demand for technical development of a high-performance CFRTP intermediate substrate mainly for use in aircraft and automobiles.
- CFRTP carbon fiber reinforced thermoplastic resin
- thermoplastic resin prepregs described in Patent Documents 1 to 4 below are known as structural composite materials excellent in mechanical strength, heat resistance, and moldability.
- Patent Document 1 discloses a continuous reinforcing fiber bundle, a polyphenylene sulfide prepolymer containing at least 50% by weight or more of cyclic polyarylene sulfide and having a weight average molecular weight of less than 10,000, a weight average molecular weight of 10,000 or more, A molding material comprising a polyarylene sulfide having a degree of dispersion of 2.5 or less and a thermoplastic resin is disclosed.
- Patent Document 2 discloses a prepreg base material in which a matrix resin is impregnated into reinforcing fibers aligned in one direction and a cut is formed so as to intersect the fiber axis of the reinforcing fibers.
- Patent Document 3 discloses a tape-shaped prepreg including a plurality of fibers oriented in one direction and a binder impregnated in the plurality of fibers, and having an average thickness of 50 ⁇ m or more and 150 ⁇ m or less. ing.
- Patent Document 4 discloses a thermoplastic resin having a linear or branched polymer structure, a thermoplastic resin having a melting point lower than that of the thermoplastic resin, and a thermoplastic resin prepreg composed of reinforcing fibers. ing. International Publication No. 2008/114573 WO 2017/022835 International Publication No. 2016/190194 International Publication 2013/008720
- the fiber-reinforced resin substrate of the present invention has the following configuration: A fiber-reinforced thermoplastic resin base material obtained by impregnating a thermoplastic resin into a continuous reinforcing fiber or a reinforcing fiber material in which discontinuous fibers are dispersed, wherein the thermoplastic resin is (A) a glass transition temperature of 100 ° C. A resin composition containing (B) 1 to 67 parts by weight of a polyarylene sulfide prepolymer with respect to 100 parts by weight of the thermoplastic resin, wherein the (B) polyarylene sulfide prepolymer has a weight average molecular weight of less than 5,000.
- A a fiber reinforced resin base material which is a mixture of (a) a cyclic polyarylene sulfide and (b) a linear polyarylene sulfide having a weight average molecular weight of 1,000 or more and less than 15,000.
- the linear polyarylene sulfide preferably has a weight average molecular weight of 5,000 or more and less than 15,000.
- the (B) polyarylene sulfide prepolymer is preferably composed of: (a) a weight ratio of (a) cyclic polyarylene sulfide to (b) linear polyarylene sulfide (cyclic polyarylene sulfide / linear polyarylene sulfide); ) Is preferably 0.05 or more and 19 or less.
- the fiber-reinforced resin substrate of the present invention is the above resin composition, wherein (A) the thermoplastic resin having a glass transition temperature of 100 ° C. or higher is polyimide, polyether ether ketone, polyether ketone ketone, polysulfone, polyarylate, polyphenylene At least one selected from ether, polycarbonate, polyetherimide, polyethersulfone, polyphenylsulfone, polyamideimide, and liquid crystal polymer is preferable.
- the thermoplastic resin having a glass transition temperature of 100 ° C. or higher is polyimide, polyether ether ketone, polyether ketone ketone, polysulfone, polyarylate, polyphenylene
- At least one selected from ether, polycarbonate, polyetherimide, polyethersulfone, polyphenylsulfone, polyamideimide, and liquid crystal polymer is preferable.
- the fiber reinforced resin substrate of the embodiment of the present invention includes one of the following two aspects.
- the first aspect is a fiber-reinforced resin base material using continuous reinforcing fibers as reinforcing fibers
- the second aspect is a fiber-reinforced resin base material using a reinforcing fiber material in which reinforcing fibers of discontinuous fibers are dispersed as reinforcing fibers. It is.
- the continuous reinforcing fiber in the first aspect refers to a fiber-reinforced resin base material in which the reinforcing fiber is not interrupted.
- the form and arrangement of the continuous reinforcing fibers in the embodiment of the present invention include, for example, ones aligned in one direction, fabrics (cloths), knits, braids, tows, and the like. Above all, it is preferable that the reinforcing fibers are arranged in one direction because the mechanical properties in a specific direction can be efficiently enhanced.
- the reinforcing fiber material in which the discontinuous fibers are dispersed in the second embodiment refers to a mat-like material in which the reinforcing fibers are cut and dispersed in a fiber-reinforced resin base material.
- the reinforcing fiber material according to the second embodiment of the present invention is obtained by dispersing the fibers in a solution, and then by a wet method for manufacturing a sheet, or any method such as a dry method using a carding device or an air laid device. be able to. From the viewpoint of productivity, a dry method using a carding device or an air laid device is preferable.
- the number average fiber length of the discontinuous fibers constituting the reinforcing fiber material of the second embodiment of the present invention is preferably 3 to 100 mm.
- the number average fiber length of the discontinuous fibers is 3 mm or more, the reinforcing effect of the discontinuous fibers is sufficiently exhibited, and the mechanical strength of the obtained fiber-reinforced resin base material can be further improved. 5 mm or more is more preferable.
- the number average fiber length of the discontinuous fibers is 100 mm or less, the fluidity during molding can be further improved.
- the number average fiber length of the discontinuous fibers is more preferably 50 mm or less, and still more preferably 30 mm or less.
- the number average fiber length of the discontinuous fibers constituting the fiber reinforced resin substrate of the second embodiment of the present invention can be determined by the following method. First, a 100 mm ⁇ 100 mm sample is cut out from the fiber reinforced resin base material, and the cut sample is heated in an electric furnace at 600 ° C. for 1.5 hours to burn off the matrix resin. 400 discontinuous reinforcing fiber bundles are randomly sampled from the fiber-reinforced resin base material thus obtained. For the removed discontinuous reinforcing fiber bundle, the fiber length is measured in 1 mm units using calipers, and the number average fiber length (Ln) can be calculated by the following equation.
- the number average fiber length of the discontinuous fibers can be adjusted to the above range by cutting the fibers to a desired length during the production of the reinforcing fiber material.
- the orientation of the discontinuous fiber mat is not particularly limited, but is preferably dispersed isotropically from the viewpoint of moldability.
- Specific raw materials of the reinforcing fibers or the reinforcing fiber materials in the first and second embodiments are not particularly limited, and examples thereof include carbon fibers, metal fibers, organic fibers, and inorganic fibers. Two or more of these may be used.
- the carbon fiber examples include PAN-based carbon fiber made from polyacrylonitrile (PAN) fiber, pitch-based carbon fiber made from petroleum tar and oil pitch, and cellulosic carbon made from viscose rayon and cellulose acetate. Vapor-grown carbon fibers made from fibers, hydrocarbons and the like, and graphitized fibers thereof. Among these carbon fibers, PAN-based carbon fibers are preferably used because they have an excellent balance between strength and elastic modulus.
- PAN-based carbon fibers are preferably used because they have an excellent balance between strength and elastic modulus.
- metal fibers examples include fibers made of metal such as iron, gold, silver, copper, aluminum, brass, and stainless steel.
- Examples of the organic fibers include fibers made of organic materials such as aramid, polybenzoxazole (PBO), polyphenylene sulfide, polyester, polyamide, and polyethylene.
- Examples of the aramid fiber include a para-aramid fiber excellent in strength and elastic modulus and a meta-aramid fiber excellent in flame retardancy and long-term heat resistance.
- Examples of the para-aramid fiber include polyparaphenylene terephthalamide fiber and copolyparaphenylene-3,4'-oxydiphenylene terephthalamide fiber, and examples of the meta-aramid fiber include polymetaphenylene isophthalamide fiber. Is mentioned.
- As the aramid fiber a para-aramid fiber having a higher elastic modulus than a meta-aramid fiber is preferably used.
- the inorganic fibers include fibers made of inorganic materials such as glass, basalt, silicon carbide, and silicon nitride.
- the glass fiber include E glass fiber (for electric use), C glass fiber (for corrosion resistance), S glass fiber, and T glass fiber (high strength and high elastic modulus).
- Basalt fiber is a fiber made of basalt, which is a mineral, and has extremely high heat resistance.
- Basalt generally the FeO or FeO 2 is a compound of iron 9-25% by weight, but containing TiO or TiO 2 which is a compound of titanium 1-6% by weight, increase of these components in the molten state It is also possible to make the fibers.
- the fiber-reinforced resin base material in the first and second embodiments of the present invention is often used as a reinforcing material, it is desirable to exhibit high mechanical properties.
- the fibers comprise carbon fibers.
- the raw fiber material of the reinforcing fiber or the reinforcing fiber material usually includes one or a plurality of reinforcing fiber bundles obtained by bundling a large number of single fibers. It is configured side by side.
- the total number of reinforcing fiber filaments is preferably 1,000 to 2,000,000.
- the total number of reinforcing fibers is preferably 1,000 to 1,000,000, more preferably 1,000 to 600,000, and 1,000 to 300,000. Particularly preferred.
- the upper limit of the total number of filaments of the reinforcing fiber may be any value as long as the productivity, the dispersibility, and the handleability can be kept good in consideration of the balance between the dispersibility and the handleability.
- one reinforcing fiber bundle used as a raw fiber material is preferably a bundle of 1,000 to 50,000 single reinforcing fiber fibers having an average diameter of 5 to 10 ⁇ m. It is composed.
- thermoplastic resin impregnated into a reinforcing fiber material in which continuous reinforcing fibers or discontinuous fiber reinforcing fibers are dispersed will be described later
- a resin composition comprising a thermoplastic resin having a glass transition temperature of 100 ° C. or higher and
- B a polyarylene sulfide prepolymer.
- thermoplastic resin having a glass transition temperature of 100 ° C. or higher and (B) a resin composition comprising a polyarylene sulfide prepolymer are referred to as (A) a thermoplastic resin having a glass transition temperature of 100 ° C. or higher, which is 100% by weight.
- thermoplastic resin having a glass transition temperature of 100 ° C. or higher which is 100% by weight.
- a resin composition containing (B) 1 to 67 parts by weight of a polyarylene sulfide prepolymer It refers to a mixture of sulfide and (b) a linear polyarylene sulfide having a weight average molecular weight of 1,000 or more and less than 15,000.
- melt viscosity of the resin composition can be significantly increased without greatly impairing mechanical strength and heat resistance. Can be reduced. Therefore, even when the processing temperature is low, the impregnation property can be improved, and the generation of voids in the fiber-reinforced resin base material can be significantly suppressed.
- the reason for this is that cyclic polyarylene sulfide having a specific molecular weight has both heat resistance and low gas property, while linear polyarylene sulfide has excellent melt retention stability. It is considered that fluidity, low gas property, heat resistance and mechanical properties could be balanced at a high level.
- the (A) thermoplastic resin having a glass transition temperature of 100 ° C. or higher in the present invention is not particularly limited in kind, but may be polyimide, polyarylketone, polysulfone, polyarylate, polyphenylene ether, polycarbonate, polyetherimide, polyethersulfone, or the like.
- Polyphenyl sulfone, polyamide imide, and liquid crystal polymer are preferably used, and among them, polyether ether ketone, polyether ketone ketone, polyether imide, and polyphenyl sulfone are particularly preferably used.
- the glass transition temperature can be determined by a melting temperature pseudo-isothermal method and a solid viscoelasticity measurement (DMA method).
- a glass transition temperature was calculated by the following equation using a temperature-modulated DSC (TA: manufactured by Instrument Company) in accordance with JIS K 7121.
- Glass transition temperature (extrapolated glass transition start temperature + extrapolated glass transition end temperature)
- the storage elastic modulus and the loss elastic modulus are measured using a dynamic viscoelasticity measuring device (DMS6100) manufactured by Seiko Instruments Inc., and then the loss tangent (loss elastic modulus / storage elastic modulus) is measured. Is calculated, a graph of the temperature and the loss tangent is created, and the temperature at which a peak is shown in this graph is calculated as the glass transition temperature.
- DMS6100 dynamic viscoelasticity measuring device manufactured by Seiko Instruments Inc.
- the reaction for producing a particularly preferred polyaryl ketone among the thermoplastic resins (A) having a glass transition temperature of 100 ° C. or higher used in the present invention is not particularly limited, but desalting polycondensation is preferably used. it can.
- an aromatic dihalide is polymerized with a hydroquinone to give a polyether, whereby a polyaryl ketone can be suitably produced.
- the polyaryl ketones mentioned here include, in addition to general polyethers, polyether ether ketone, polyether ketone, polyether ketone ketone, polyether ether ketone ketone, and the like.
- it is a polymer containing the repeating unit shown below alone or in combination.
- Ar represents a substituted or unsubstituted p-phenylene group, which may be the same or different.
- the substituent on the phenylene group is not particularly limited, and examples thereof include an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, and a halogen atom.
- Ars contained in one unit may be all the same or different, but it is preferable that all Ars represent an unsubstituted p-phenylene group.
- A represents a direct bond, an oxygen atom, a sulfur atom, —SO 2 —, —CO—, or a divalent hydrocarbon group.
- polyetheretherketone represented by the following formula and the following formula at a temperature of 100 ° C. or more and less than 300 ° C. in the presence of a base and a solvent in which sulfolane alone or a mixture of sulfolane and another water-soluble solvent is used.
- a hydroquinone represented by the formula:
- Ar represents a substituted or unsubstituted p-phenylene group, which may be the same or different.
- X represents a halogen atom.
- R ′ represents an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms, which may be the same or different.
- the 4,4′-dihalobenzophenones represented by the above formula include, for example, 4,4′-difluorobenzophenone, 4,4′-dichlorobenzophenone, etc., wherein Ar is an unsubstituted p-phenylene group. And 4,4'-difluorobenzophenone wherein X is a fluorine atom is preferred.
- As the hydroquinones represented by the above formula an unsubstituted p-phenylene group in Ar and a p-hydroquinone in which R is a hydrogen atom are preferable.
- bisphenols represented by the following formula can also be copolymerized.
- Ar represents a substituted or unsubstituted p-phenylene group, which may be the same or different.
- X represents a halogen atom.
- R ′ represents an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms, which may be the same or different.
- A represents a direct bond, an oxygen atom, a sulfur atom, —SO 2 —, —CO—, or a divalent hydrocarbon atom.
- the above polymerization reaction is achieved by polycondensation based on a nucleophilic substitution reaction with a base.
- a base include alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate and cesium carbonate, and alkali metals such as lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, rubidium hydrogen carbonate and cesium carbonate.
- Alkali metal hydroxides such as metal bicarbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, lithium alkylated, lithium aluminum halide, lithium diisopropylamide, lithium bis (trimethylsilyl) amide , Sodium hydride, sodium alkoxide, potassium alkoxide, phosphazene base, Verkade base and the like. One of these may be used alone, or two or more thereof may be used in combination.
- the base is usually used in a larger amount than the hydroquinone on a molar basis, but the excess amount is preferably in the range of 100 mol% or less, more preferably 80 mol% or less, and more preferably 1 mol% or less based on the hydroquinone. A range of ⁇ 50% is particularly preferred.
- the polymerization reaction proceeds by heating the system.
- the specific reaction temperature (meaning the final holding temperature) is usually less than 300 ° C., preferably in the range of 200 ° C. to 280 ° C., more preferably in the range of 230 ° C. to 270 ° C., and still more preferably in the range of 240 ° C. to 260 ° C. It is.
- the temperature of the reaction solution is maintained at the final holding temperature after gradually heating the reaction solution. When the temperature is held at the final holding temperature, the temperature may fluctuate as long as it is about 10 ° C. above and below the set temperature.
- an azeotropic solvent such as benzene, toluene, xylene, and chlorobenzene is added to the reaction system. It doesn't matter.
- the holding time of the reaction solution at the final holding temperature is not particularly limited, and may be appropriately set in consideration of a desired viscosity or molecular weight, but is usually 24 hours or less, preferably 12 hours or less, and more preferably Is 10 hours or less, particularly preferably 6 hours or less.
- the rate of temperature rise up to 180 ° C. is not particularly limited.
- the rate of temperature rise from 180 ° C. to the final holding temperature is preferably 0.5 ° C./min or more, more preferably 0.7 ° C./min or more. preferable. When the rate of temperature rise is in this preferred range, the degree of polymerization tends to increase.
- the heating rate is 5.0 ° C./min or less.
- the heating rate of the present invention means the average of the heating rates from 180 ° C. to the final holding temperature. When the temperature is raised from 180 ° C. to the final holding temperature, it is desirable that the variation of the temperature increase width per minute be within ⁇ 50% of the average temperature increase rate.
- the reaction scale may be affected by a trace amount of water or oxygen mixed into the reaction system.
- a plurality of monomers used is used in an amount of 0.4 mol or more. It is more preferably at least 0.5 mol, further preferably at least 0.8 mol, particularly preferably at least 1 mol, most preferably at least 2 mol. This reaction behavior is particularly often seen when the polymerization reaction is a desalination polycondensation reaction using an alkali metal salt.
- the concentration of the reaction solution there is no particular limitation on the concentration of the reaction solution, but the generated active species is reacted with the monomer or the generated polymer terminal with high selectivity, undesired side reactions are suppressed, or the cyclic oligomer is formed by an intramolecular cyclization reaction.
- the ratio of the charged monomers to the total charged amount (hereinafter referred to as a solution concentration) is preferably 10% by weight or more.
- the concentration of the reaction solution is preferably 30% by weight or less.
- the preferable range of the solution concentration is 10 to 30% by weight, the more preferable range is 12 to 28% by weight, and the particularly preferable range is 14 to 26% by weight. This is particularly true when the polymerization reaction is a desalination polycondensation reaction using an alkali metal salt.
- the mixed solvent of sulfolane or sulfolane and another water-soluble solvent used in the present invention is water-soluble, by mixing a solvent containing water into the reaction mixture after the reaction, a polymerization solvent and a polymerization solvent were formed from the polymer of the product. Salts can be easily separated. Furthermore, by repeating washing with a solvent containing water, by-product alkali metal salts (for example, sodium fluoride and potassium fluoride) due to the base can be removed, so that the product polyetheretherketone can be easily removed. It can be purified.
- alkali metal salts for example, sodium fluoride and potassium fluoride
- the separation of the polymerization solvent and the purification of the polymer can be performed using a solvent containing water.
- a solvent containing water may contain not only water but also water containing a water-soluble solvent such as methanol or ethanol.
- the polyimide (A) which is particularly preferably used among the thermoplastic resins having a glass transition temperature of 100 ° C. or higher is a polymer having an imide bond in the repeating unit, and an ether bond in addition to the imide bond in the repeating unit.
- polyamideimide having an amide bond are also included in the polyimide.
- the polyimide include, but are not particularly limited to, “Ultem” (registered trademark) 1000, “Ultem” (registered trademark) 1010, “Ultem” (registered trademark) 1040, and “Ultem” (registered trademark) 1040 manufactured by SABIC Innovative Plastics.
- the polyphenylene ether particularly preferably used in the thermoplastic resin having a glass transition temperature of 100 ° C. or higher includes, for example, poly (2,6-dimethyl-1,4-phenylene ether) and poly (2 -Methyl-6-ethyl-1,4-phenylene ether), poly (2,6-diphenyl-1,4-phenylene ether), poly (2-methyl-6-phenyl-1,4-phenylene ether), poly (2,6-dichloro-1,4-phenylene ether) and the like.
- a polyphenylene ether copolymer such as a copolymer of 2,6-dimethylphenol and other phenols (for example, 2,3,6-trimethylphenol or 2-methyl-6-butylphenol) is also included.
- poly (2,6-dimethyl-1,4-phenylene ether) and a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol are preferable, and poly (2,6-dimethyl-dimethylphenol) is preferable.
- 1,4-phenylene ether) is more preferred.
- polysulfone (A) which is particularly preferably used among thermoplastic resins having a glass transition temperature of 100 ° C. or higher, is a polymer having a sulfonyl group in the repeating unit, and an ether bond in addition to the sulfonyl group in the repeating unit.
- a polyphenyl sulfone having a phenyl group linked by an ether chain are also included in the polysulfone.
- polysulfone examples include, but are not particularly limited to, "Udel” (registered trademark), “Veladel” (registered trademark), “Radel” (registered trademark), and BASF Japan (manufactured by Solvay Specialty Polymers Japan KK). Marketed as “Ultrazone” (registered trademark) S, “Ultrazone” @ (registered trademark) E, “Ultrazone” @ (registered trademark) P, “Sumika Excel” (registered trademark) manufactured by Sumitomo Chemical Co., Ltd. It is also possible to obtain what is used.
- the (B) polyarylene sulfide prepolymer used in the present invention is a mixture of (a) a cyclic polyarylene sulfide and (b) a linear polyarylene sulfide, which will be described in detail below.
- Cyclic polyarylene sulfide (hereinafter sometimes abbreviated as cyclic PAS) can be used, and m is not limited to a single integer among integers of 4 to 20, and may be a plurality of integers.
- the melting and melting temperature of the cyclic polyarylene sulfide is appropriate regardless of the type of Ar, and the resin is excellent in handleability.
- the number m of repetitions in the above general formula can be determined by performing structural analysis by NMR and mass spectrometry.
- the cyclic polyarylene sulfide may be either a single compound having a single repetition number or a mixture of cyclic polyarylene sulfides having different repetition numbers, but may be a mixture of cyclic polyarylene sulfides having different repetition numbers.
- the (B) polyarylene sulfide prepolymer used in the present invention preferably contains (a) 50% by weight or more of cyclic polyarylene sulfide, more preferably 70% by weight or more, further preferably 80% by weight or more, and particularly preferably. 90% by weight or more. Further, the upper limit of (a) the cyclic polyarylene sulfide contained in (B) the polyarylene sulfide prepolymer is not particularly limited, but a preferred range is 98% by weight or less.
- the component other than (a) the cyclic polyarylene sulfide in the (B) polyarylene sulfide prepolymer used in the present invention is preferably (b) a linear polyarylene sulfide.
- the linear polyarylene sulfide is a homo-oligomer or a co-oligomer containing a repeating unit of the formula — (Ar—S) — as a main constituent unit, preferably containing at least 80 mol% of the repeating unit. is there.
- Ar include units represented by the following formulas (c) to (m), and among them, formula (c) is particularly preferred.
- the linear polyarylene sulfide can include a small amount of a branch unit or a crosslinking unit represented by the following formulas (n) to (p) as long as these repeating units are the main constituent units.
- the copolymerization amount of these branching units or crosslinking units is preferably in the range of 0 to 1 mol% based on 1 mol of-(Ar-S)-unit.
- the linear polyarylene sulfide may be any of a random copolymer, a block copolymer and a mixture thereof containing the above-mentioned repeating unit.
- Typical examples thereof include polyphenylene sulfide oligomers, polyphenylene sulfide sulfone oligomers, polyphenylene sulfide ketone oligomers, random copolymers, block copolymers thereof, and mixtures thereof.
- Particularly preferred linear polyarylene sulfides include linear polyphenylene sulfides containing 80 mol% or more, especially 90 mol% or more of p-phenylene sulfide units as main constituent units of the polymer.
- the weight ratio of (a) cyclic polyarylene sulfide to (b) linear polyarylene sulfide (cyclic polyarylene sulfide / linear polyarylene sulfide) contained in (B) the polyarylene sulfide prepolymer used in the present invention is 0.05. It is preferably from 19 to 19, more preferably from 1.0 to 17, still more preferably from 2 to 15, and the use of such a polyarylene sulfide prepolymer (B) significantly improves the melt retention stability.
- the (b) linear polyarylene sulfide in the preferred method for producing the (B) polyarylene sulfide prepolymer used in the present invention is defined as having a repeating unit of the formula-(Ar-S)-as a main constituent unit, preferably the repeating unit.
- Ar include units represented by the above formulas (c) to (m), and among them, the formula (c) is particularly preferable.
- this repeating unit is the main constituent unit, it may contain a small amount of a branching unit or a crosslinking unit represented by the above formula (I) or formulas (n) to (p).
- the copolymerization amount of these branching units or crosslinking units is preferably in the range of 0 to 1 mol% based on 1 mol of-(Ar-S)-unit.
- the linear polyarylene sulfide in the present invention may be any of a random copolymer containing the above repeating unit, a block copolymer, and a mixture thereof.
- Typical examples thereof include polyphenylene sulfide, polyphenylene sulfide sulfone, polyphenylene sulfide ketone, a random copolymer thereof, a block copolymer thereof, and a mixture thereof.
- linear polyarylene sulfide polyphenylene sulfide containing at least 80 mol%, particularly at least 90 mol%, of a p-arylene sulfide unit as a main structural unit of the polymer (hereinafter sometimes abbreviated as PPS) And polyphenylene sulfide sulfone and polyphenylene sulfide ketone.
- the upper limit of the weight average molecular weight of the cyclic polyarylene sulfide in the (B) polyarylene sulfide prepolymer used in the present invention is 5,000 or less, preferably 3,000 or less, more preferably 2,500 or less, and the weight average The lower limit of the molecular weight is not particularly limited, but is preferably 300 or more, more preferably 400 or more, and still more preferably 500 or more from the viewpoint of pyrolysis gas.
- the weight average molecular weight of the linear polyarylene sulfide is from 1,000 to 15,000, preferably from 3,000 to 12,000, more preferably from 5,000 to 10,000.
- the weight average molecular weight can be determined, for example, using SEC (size exclusion chromatography) equipped with a differential refractive index detector.
- the linear polyarylene sulfide oligomer is a homo-oligomer or a co-oligomer having a repeating unit of the formula — (Ar—S) — as a main constituent unit, preferably containing at least 80 mol% of the repeating unit.
- Ar includes units represented by the above formulas (c) to (m) and the like, and among them, the formula (c) is particularly preferable.
- the linear polyarylene sulfide oligomer may contain a small amount of a branching unit or a crosslinking unit represented by the formula (I) or the formulas (n) to (p) as long as these repeating units are the main constituent units. it can.
- the copolymerization amount of these branching units or crosslinking units is preferably in the range of 0 to 1 mol% based on 1 mol of-(Ar-S)-unit.
- the linear polyarylene sulfide oligomer may be any of a random copolymer, a block copolymer and a mixture thereof containing the above repeating unit. Typical examples thereof include polyphenylene sulfide oligomers, polyphenylene sulfide sulfone oligomers, polyphenylene sulfide ketone oligomers, random copolymers, block copolymers thereof, and mixtures thereof.
- linear polyarylene sulfide oligomers include linear polyphenylene sulfide oligomers containing at least 80 mol%, particularly at least 90 mol%, of p-phenylene sulfide units as the main constituent unit of the polymer.
- the content of components other than (a) cyclic polyarylene sulfide and (b) linear polyarylene sulfide contained in (B) polyarylene sulfide is 50% by weight based on 100% by weight of (a) cyclic polyarylene sulfide. Is preferably not more than 25% by weight, more preferably not more than 20% by weight.
- the higher the purity of (a) the cyclic polyarylene sulfide the higher the degree of polymerization of the polyarylene sulfide obtained after heating, which is preferable from the viewpoint of improving mechanical properties.
- the weight average molecular weight of the linear polyarylene sulfide oligomer contained in the cyclic polyarylene sulfide is preferably from 300 to 5,000, more preferably from 300 to 3,000, even more preferably from 300 to 2,000.
- Examples of the method for obtaining the (B) polyarylene sulfide prepolymer include the following methods.
- Granules separated by an 80 mesh sieve opening of 0.125 mm by heating a mixture containing at least a polyhalogenated aromatic compound, a sulfidizing agent and an organic polar solvent to polymerize a polyarylene sulfide resin.
- PAS resin Polyarylene sulfide (hereinafter abbreviated as PAS) resin, a PAS component produced by polymerization and a PAS component other than the granular PAS resin (referred to as a polyarylene sulfide oligomer), an organic polar solvent, water, and an alkali halide
- ⁇ Circle around (2) ⁇ A method obtained by heating and reacting a reaction mixture containing at least a sulfidizing agent (sulfur component), a dihalogenated aromatic compound (arylene component) and an organic polar solvent.
- Examples of the sulfidizing agent include sulfides of alkali metals such as sodium sulfide.
- Examples of the dihalogenated aromatic compound include dichlorobenzene.
- Examples of the organic polar solvent include N-methylpyrrolidone.
- the reaction temperature is preferably from 180 to 320 ° C, more preferably from 225 to 300 ° C. Further, any one of a one-stage reaction in which the reaction is performed at a constant temperature, a multi-stage reaction in which the temperature is raised stepwise, and a reaction in which the temperature is continuously changed may be used.
- the reaction time is preferably at least 0.1 hour, more preferably at least 0.5 hour. On the other hand, the reaction time has no particular upper limit, and the reaction sufficiently proceeds even within 40 hours, and preferably within 6 hours.
- the pressure during the reaction is not particularly limited, and is preferably 0.05 MPa or more, more preferably 0.3 MPa or more in terms of gauge pressure.
- the pressure at such a reaction temperature is preferably 0.25 MPa or more, more preferably 0.3 MPa or more in gauge pressure.
- the pressure during the reaction is preferably 10 MPa or less, more preferably 5 MPa or less.
- the gauge pressure is a relative pressure based on the atmospheric pressure, and is equivalent to a pressure difference obtained by subtracting the atmospheric pressure from the absolute pressure.
- the organic carboxylic acid metal salt may be present throughout the entire process of reacting the reaction mixture, or the organic carboxylic acid metal salt may be present only in a part of the process.
- the above-mentioned (B) polyarylene sulfide prepolymer can also be produced by heating to convert it into a high polymer.
- the heating temperature is preferably equal to or higher than the temperature at which the polyarylene sulfide prepolymer melts, and there is no particular limitation as long as it is under such temperature conditions.
- the lower limit of the heating temperature is the above preferable temperature, PAS can be obtained in a short time.
- the temperature at which the polyarylene sulfide prepolymer melts cannot be uniquely indicated because it varies depending on the composition and molecular weight of the polyarylene sulfide prepolymer and the environment at the time of heating. Is analyzed by a differential scanning calorimeter to determine the melting solution temperature. Specific examples of the heating temperature are preferably 180 to 400 ° C., more preferably 200 to 380 ° C., and further preferably 250 to 360 ° C. When the temperature is in the above preferable temperature range, undesirable side reactions typified by a crosslinking reaction and a decomposition reaction are unlikely to occur, and the characteristics of the obtained PAS do not deteriorate.
- the heating time is not uniformly defined because it varies depending on conditions such as the content and m number of the cyclic polyarylene sulfide in the polyarylene sulfide prepolymer used, the number of m, and the molecular weight, and the temperature of the heating. Specific examples of the heating time are preferably 0.05 to 100 hours, more preferably 0.1 to 20 hours, and even more preferably 0.1 to 10 hours. When the heating time is within the above-mentioned preferable range, the conversion of the polyarylene sulfide prepolymer to PAS is sufficient, but there is no possibility that an adverse side reaction adversely affects the properties of the obtained PAS.
- the conversion of the polyarylene sulfide prepolymer to a high polymer by heating is usually carried out in the absence of a solvent, but can be carried out in the presence of a solvent.
- the solvent include nitrogen-containing polar solvents such as N-methyl-2-pyrrolidone, dimethylformamide, and dimethylacetamide; sulfoxide-sulfone solvents such as dimethylsulfoxide and dimethylsulfone; and ketone solvents such as acetone, methylethylketone, diethylketone, and acetophenone.
- Solvents such as dimethyl ether, dipropyl ether and tetrahydrofuran; halogen solvents such as chloroform, methylene chloride, trichloroethylene, ethylene chloride, dichloroethane, tetrachloroethane, chlorobenzene, methanol, ethanol, propanol, butanol, pentanol And phenolic solvents such as water, ethylene glycol, propylene glycol, phenol, cresol, polyethylene glycol Benzene, toluene, and aromatic hydrocarbon solvents such as xylene and the preferred exemplified.
- inorganic compounds such as carbon dioxide, nitrogen, and water can be used as a solvent in a supercritical fluid state. These solvents can be used as one kind or as a mixture of two or more kinds.
- the conversion of the polyarylene sulfide prepolymer to a high degree of polymerization by heating may be performed not only by a method using a normal polymerization reaction apparatus but also in a mold for producing a molded article, or an extruder.
- the method can be performed without any particular limitation as long as the apparatus has a heating mechanism, such as a method using a melt kneader or a known method such as a batch method or a continuous method.
- the atmosphere for the conversion of the polyarylene sulfide prepolymer to a polymer having a high degree of polymerization by heating is preferably performed in a non-oxidizing atmosphere, and is also preferably performed under reduced pressure.
- the atmosphere in the reaction system is once changed to a non-oxidizing atmosphere and then reduced. This tends to suppress the occurrence of undesired side reactions such as a crosslinking reaction and a decomposition reaction between polyarylene sulfide prepolymers, between PAS generated by heating, and between PAS and polyarylene sulfide prepolymer.
- the non-oxidizing atmosphere is an atmosphere in which the oxygen concentration in the gas phase in contact with the polyarylene sulfide prepolymer is 5% by volume or less, preferably 2% by volume or less, and more preferably an atmosphere containing substantially no oxygen, ie, nitrogen, helium,
- under reduced pressure means that the inside of the reaction system is lower than the atmospheric pressure, and the upper limit is preferably 50 kPa or less, more preferably 20 kPa or less, even more preferably 10 kPa or less.
- the lower limit is, for example, 0.1 kPa or more.
- the resin composition used in the present invention is usually obtained by melt kneading.
- the melt kneader is supplied to a generally known melt kneader such as a single-screw or twin-screw extruder, a Banbury mixer, a kneader, and a mixing roll, and is fed at a temperature of a melting peak temperature of the resin composition + a processing temperature of 5 to 100 ° C.
- a typical example is kneading.
- the order of mixing the raw materials is not particularly limited, and a method in which all the raw materials are blended and then melt-kneaded by the above-described method, a part of the raw materials are melt-kneaded by the above method, and then the remaining raw materials are further blended.
- a method of melt-kneading, or a method of mixing some of the raw materials and then mixing the remaining raw materials using a side feeder during melt-kneading by a single-screw or twin-screw extruder may be used.
- the small amount of additive component it is of course possible to knead other components into pellets by the above-mentioned method or the like, add them before molding, and provide them for molding.
- composition of the present invention may employ a method in which the compound is compressed into a tablet form in a solid state and solidified, and then subjected to molding such as injection molding.
- the above-mentioned component (A), component (B) and (C) anionic polymerization initiator having a sulfide group (hereinafter simply referred to as “(C) anionic polymerization Initiator) may be dry-blended, and heated in a device having a heating mechanism at a temperature of 240 ° C. to 450 ° C. for 0.01 hour to 10 hours, whereby the component (B) is cyclic.
- polyarylene sulfide a method of converting the polyarylene sulfide into a polyarylene sulfide having a weight average molecular weight of 15,000 or more and 60,000 or less is exemplified. According to this method, the resin composition of the present invention having the above-described characteristics can be obtained. .
- thermoplastic resin having a glass transition temperature of 100 ° C. or higher preferably has an electron-withdrawing group.
- the electron-withdrawing group is a substituent that reduces the electron density of an atom adjacent to the electron-withdrawing group, and an anion of (C) an anionic polymerization initiator is added to the adjacent atom having reduced electron density. .
- Examples of the electron-withdrawing group include an aldehyde group, a ketone group, an imide group, a sulfonyl group, an ether group, a sulfide group, a nitro group, a carboxyl group, a cyano group, a phenyl group, a halogen group, an ester group, and a phosphono group.
- an aldehyde group a ketone group
- an imide group a sulfonyl group
- an ether group e.g., a ether group
- a sulfide group e.g., a nitro group
- a carboxyl group e.g., a cyano group
- a phenyl group e.g., a halogen group
- an ester group e.g., 2-a halogen group
- a phosphono group e.g., 2-a phosphono group
- an ionic compound represented by the following general formula is preferable.
- R ′ is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an arylene group having 6 to 24 carbon atoms, a primary, secondary, or tertiary amino group, a nitro group, A carboxyl group and its ester, a cyano group, a sulfonic acid group, or a halogen group, R represents an organic group, S ⁇ represents a sulfur anion species, and M + represents a monovalent metal ion or a divalent monohalogen. M represents an integer of 0 to 15, and n represents an integer of 1 to 15.
- Examples of the organic group in the above general formula include an arylene group, a naphthalene ring, a pyridine ring, a pyrimidine ring, an imidazole ring, a benzimidazole ring, a benzoxazole ring, and a benzothiazole ring, among which phenylene having excellent heat resistance at high temperatures , A biphenylene, a naphthalene ring, a benzimidazole ring, a benzoxazole ring, a benzothiazole ring, a benzotriazole ring, a phthalimide ring and the like are preferable, and a phenylene, a benzimidazole ring, a benzoxazole ring and a benzothiazole ring are more preferable.
- an alkali metal salt such as a lithium salt, a sodium salt or a potassium salt of a compound shown below is preferable.
- the compound include thiophenol, 1,2-benzenedithiol, 1,3-benzenedithiol, 1,4-benzenedithiol, 2-thiocresol, 3-thiocresol, 4-thiocresol, 2-aminothiophenol, -Aminothiophenol, 4-aminothiophenol, 2-methoxybenzenethiol, 3-methoxybenzenethiol, 4-methoxybenzenethiol, 4-nitrothiophenol, 4-tert-butylthiophenol, 3-dimethylaminothiophenol, 4-dimethylaminothiophenol, 2-chlorothiophenol, 3-chlorothiophenol, 4-chlorothiophenol, 2-bromothiophenol, 3-bromothiophenol, 4-bromo
- thermoplastic resin composition obtained by blending (A) a thermoplastic resin having a glass transition temperature of 100 ° C. or higher, (B) a polyarylene sulfide prepolymer, and (C) an anionic polymerization initiator has heat resistance and mechanical properties. Excellent properties and shapeability. The reason for this effect is not clear, but is presumed as follows.
- the anion of (C) the anion polymerization initiator having a sulfide group is added to (A) the atom adjacent to the electron-withdrawing group of the thermoplastic resin having a glass transition temperature of 100 ° C. or more. Some plastic resins are formed. Since the thermoplastic resin having a sulfide group undergoes a sulfide exchange reaction with the sulfide group of the cyclic polyarylene sulfide in the polyarylene sulfide polymer (B), the cyclic polyarylene sulfide and the component (A) are reacted via an anionic polymerization initiator. As a result, the compatibility between the obtained polyarylene sulfide and the component (A) is increased, and the heat resistance and mechanical properties are excellent.
- the cyclic polyarylene sulfide in the (B) polyarylene sulfide prepolymer reacts with the component (A) via an anionic polymerization initiator, whereby the ring-opening polymerization and ring expansion reaction of the cyclic polyarylene sulfide are appropriately controlled. can do. Since the obtained polyarylene sulfide and (A) a thermoplastic resin composition having a glass transition temperature of 100 ° C. or higher can suppress a decrease in compatibility and obtain a thermoplastic resin composition having a single glass transition temperature, the melt retention Excellent heat resistance can be maintained afterwards.
- the amount of the anionic polymerization initiator (C) is preferably from 0.01 to 10 parts by weight based on 100 parts by weight of the thermoplastic resin (A) having a glass transition temperature of 100 ° C. or higher. More preferably, it is 0.05 to 5 parts by weight, and still more preferably 0.1 to 1 part by weight.
- PPIt is not an essential component in the PPS resin composition of the present invention, but it is also possible to mix and use an inorganic filler as long as the effects of the present invention are not impaired.
- an inorganic filler include glass fiber, carbon fiber, carbon nanotube, carbon nanohorn, potassium titanate whisker, zinc oxide whisker, calcium carbonate whisker, wallastenite whisker, aluminum borate whisker, aramid fiber, alumina fiber, and silicon carbide fiber.
- Non-fibrous fillers such as glass fiber, silica, and calcium carbonate are preferable, and calcium carbonate and silica are particularly preferable in terms of the effect of the anticorrosive and the lubricant.
- These inorganic fillers may be hollow, and two or more of them may be used in combination. Further, these inorganic fillers may be used after being pre-treated with a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound and an epoxy compound. Among them, calcium carbonate, silica, and carbon black are preferable from the viewpoint of an anticorrosive material, a lubricant, and an effect of imparting conductivity.
- a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound and an epoxy compound.
- calcium carbonate, silica, and carbon black are preferable from the viewpoint of an anticorrosive material, a lubricant, and an effect of imparting conductivity.
- the compounding amount of the inorganic filler is preferably selected in a range of 100 parts by weight or less, more preferably in a range of 80 parts by weight or less, and more preferably in a range of 60 parts by weight or less, based on 100 parts by weight of the resin composition of the present invention in total. More preferably, the range is at most 40 parts by weight. There is no particular lower limit, but 0.0001 parts by weight or more is preferable.
- the blending amount of the inorganic filler is within the above preferred range, the melt fluidity is not hindered.
- the blending amount of the inorganic filler can be appropriately changed depending on the use from the balance between fluidity and rigidity.
- the following resins can be added to the PAS resin composition of the present invention as long as the effects of the present invention are not impaired.
- Specific examples thereof include polybutylene terephthalate resin, polyethylene terephthalate resin, modified polyphenylene ether resin, polyethylene tetrafluoride resin, olefin-based polymers containing no epoxy group such as ethylene / 1-butene copolymer, copolymers, etc. Is mentioned.
- Plasticizers such as polyalkylene oxide oligomer compounds, thioether compounds, ester compounds, and organic phosphorus compounds, crystal nucleating agents such as organic phosphorus compounds and polyetheretherketone, montanic acid waxes, lithium stearate, and aluminum stearate
- Metal soaps such as ethylenediamine / stearic acid / sebacic acid polycondensates
- release agents such as silicone compounds, coloring inhibitors such as hypophosphite, (3,9-bis [2- (3- (3 Phenolic compounds such as -t-butyl-4-hydroxy-5-methylphenyl) propionyloxy) -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane)
- Antioxidants such as (bis (2,4-di-cumylphenyl) pentaerythritol-di-phosphite) Phosphor
- the fiber-reinforced resin base material of the embodiment of the present invention can be obtained by impregnating continuous reinforcing fibers with a thermoplastic resin (first mode). Alternatively, it can be obtained by impregnating a reinforcing fiber material in which reinforcing fibers of discontinuous fibers are dispersed with a thermoplastic resin (second embodiment).
- thermoplastic resin for example, a film method of impregnating the reinforcing fiber bundle with the thermoplastic resin by melting a film-shaped thermoplastic resin and applying pressure, After blending the fibrous thermoplastic resin and the reinforcing fiber bundle, the fibrous thermoplastic resin is melted, and the commingle method in which the reinforcing fiber bundle is impregnated with the thermoplastic resin by applying pressure, a powdery thermoplastic resin is used.
- the powdered thermoplastic resin is dispersed in the interstices of the fibers in the reinforcing fiber bundle, the powdered thermoplastic resin is melted and pressed to impregnate the reinforcing fiber bundle with the thermoplastic resin. Immersion and pressurization to impregnate the reinforcing fiber bundle with a thermoplastic resin.
- the drawing method is preferable because various types of fiber-reinforced resin base materials having various thicknesses and fiber volume contents can be produced.
- the thickness of the fiber-reinforced resin substrate in the first embodiment of the present invention is preferably 0.1 to 10 mm.
- the thickness is 0.1 mm or more, the strength of a molded product obtained using the fiber-reinforced polyamide resin base material can be improved.
- 0.2 mm or more is more preferable.
- the thickness is 1.5 mm or less, it is easier to impregnate the reinforcing fibers with the thermoplastic resin. 1 mm or less is more preferable, 0.7 mm or less is further preferable, and 0.6 mm or less is further preferable.
- the volume content of the fiber-reinforced resin substrate is preferably from 20 to 70% by volume.
- the reinforcing fiber is contained in an amount of 20 to 70% by volume (20 to 70% by volume) based on the entire fiber-reinforced resin base material (100% by volume).
- the strength of a molded product obtained by using the fiber-reinforced resin base material can be further improved.
- 30 volume% or more is more preferable, and 40 volume% or more is still more preferable.
- the reinforcing fibers are contained at 70% by volume or less, the reinforcing fibers can be more easily impregnated with the thermoplastic resin. 60 volume% or less is more preferable, and 55 volume% or less is still more preferable.
- the volume content can be adjusted to a desired range by adjusting the input amounts of the reinforcing fibers and the thermoplastic resin.
- the volume content (Vf) of the reinforcing fibers in the fiber reinforced resin base material is measured by measuring the mass W0 of the fiber reinforced resin base material, and then heating the fiber reinforced resin base material in air at 500 ° C. for 30 minutes to obtain a thermoplastic resin.
- the components can be burned off, and the mass W1 of the remaining reinforcing fibers can be measured and calculated by the following equation.
- the fiber-reinforced resin substrate according to the embodiment of the present invention can select a desired impregnating property according to its usage and purpose. For example, a prepreg having a higher impregnation, a semi-impregnated semi-preg, a fabric having a lower impregnation, and the like can be given. In general, a molding material having a higher impregnation property is preferable because a molding having excellent mechanical properties can be obtained in a short period of time.
- thermoplastic resin into a reinforcing fiber material in which discontinuous fibers are dispersed
- a method of impregnating the reinforcing fiber material by supplying a thermoplastic resin by an extruder, powder A method of dispersing and melting the thermoplastic resin in the fiber layer of the reinforcing fiber material, a method of forming the thermoplastic resin into a film and laminating it with the reinforcing fiber material, dissolving the thermoplastic resin in a solvent and impregnating the reinforcing fiber material in a solution state
- a method of volatilizing a solvent after the method a method of fibrillating a thermoplastic resin to form a mixed yarn with discontinuous fibers, a method of impregnating a reinforcing fiber material with a precursor of a thermoplastic resin and then polymerizing to a thermoplastic resin.
- the method of supplying a thermoplastic resin by an extruder and impregnating the reinforcing fiber material has an advantage that it is not necessary to perform a secondary processing of the thermoplastic resin, and the thermoplastic resin powder is used.
- the method of dispersing and melting in a fiber layer of a reinforcing fiber material has an advantage that it is easily impregnated, and the method of laminating a thermoplastic resin into a film and laminating it with a reinforcing fiber material has a relatively high quality.
- the thickness of the fiber-reinforced resin substrate in the second embodiment of the present invention is preferably 0.1 to 10 mm.
- the thickness is 0.1 mm or more, the strength of a molded product obtained by using the fiber-reinforced resin substrate can be improved. 1 mm or more is more preferable.
- the thickness is 10 mm or less, it is easier to impregnate the reinforcing fiber material with the thermoplastic resin. 7 mm or less is more preferable, and 5 mm or less is further preferable.
- the volume content of the fiber-reinforced resin substrate in the second embodiment of the present invention is preferably 20 to 70% by volume.
- the discontinuous fiber be contained in an amount of 20% by volume or more and 70% by volume or less in the entire fiber reinforced resin substrate (100% by volume).
- the strength of a molded product obtained by using the fiber reinforced resin base material can be further improved.
- 30 vol% or more is more preferable.
- the discontinuous fibers when the discontinuous fibers are contained at 70% by volume or less, the discontinuous fibers can be more easily impregnated with the thermoplastic resin. 60 volume% or less is more preferable, and 50 volume% or less is still more preferable.
- the volume content can be calculated by the above-described formula.
- the fiber-reinforced resin substrate according to the second aspect of the present invention can select a desired impregnating property according to its usage and purpose.
- a molding material having a higher impregnation property is preferable because a molding having excellent mechanical properties can be obtained in a short period of time.
- the press machine is not particularly limited as long as it can realize the temperature and pressure required for the impregnation of the thermoplastic resin.
- a normal press machine having a flat platen that moves up and down, and a pair of endless steel belts run.
- a so-called double belt press having a mechanism for performing the operation can be used.
- a molded article can be obtained by laminating one or more fiber-reinforced resin substrates in the first and second embodiments of the present invention in an arbitrary configuration and then molding while applying heat and / or pressure as necessary. .
- a method of applying heat and / or pressure for example, after a fiber-reinforced thermoplastic resin laminated in an arbitrary configuration is installed in a mold or on a press plate, a press molding method in which the mold or the press plate is closed and pressurized, An autoclave molding method in which the molding material laminated in an arbitrary configuration is put into an autoclave and pressurized and heated, the molding material laminated in an arbitrary configuration is wrapped in a film, etc.
- the bag forming method of heating in the inside the wrapping tape method of winding the tape while applying tension to the fiber reinforced thermoplastic resin laminated in any configuration, and heating in the oven, the fiber reinforced terminal modified polyamide resin laminated in any configuration
- An internal pressure forming method in which a gas or a liquid is injected into a core, which is installed in a mold, and the core is also installed in the mold, and is pressurized.
- a molding method in which pressing is performed using a mold is preferably used, since a molded article obtained is small in voids and a molded article having excellent appearance quality can be obtained.
- a fiber-reinforced resin base material is placed in a mold in advance, pressurized and heated together with the mold clamping, and then, with the mold clamped, the mold is cooled to cool the fiber-reinforced resin base material.
- stamping molding which is a method of disposing the resin on the mold serving as the lower surface of the mold, closing the mold, performing mold clamping, and then cooling under pressure, can be adopted.
- stamping molding is desirable from the viewpoint of accelerating the molding cycle and increasing productivity.
- the fiber-reinforced resin base material and the molded article according to the first and second embodiments of the present invention are integrated molding such as insert molding and outsert molding, and correction treatment by heating, heat welding, vibration welding, ultrasonic welding, and the like. Integration using an adhesive method or an adhesive excellent in productivity can be performed, and a composite can be obtained.
- a composite molded article in which the fiber-reinforced resin base material according to the first and second embodiments of the present invention and a molded article containing a thermoplastic resin are joined at least in part is preferable.
- thermoplastic resin integrated with the fiber-reinforced resin substrate there is no particular limitation on the molded article (molding substrate and molded article) containing the thermoplastic resin integrated with the fiber-reinforced resin substrate in the first and second embodiments of the present invention.
- the molded article molding substrate and molded article
- thermoplastic resin integrated with the fiber-reinforced resin substrate there is no particular limitation.
- resin materials and molded articles are preferable in terms of adhesive strength with the fiber-reinforced thermoplastic resin in the present invention.
- the matrix resin of the molding material and the molded article integrated with the fiber-reinforced resin substrate in the first and second embodiments of the present invention may be the same kind of resin as the fiber-reinforced resin substrate and the molded article. Or different kinds of resins. In order to further increase the adhesive strength, it is preferable that the resins are of the same type. In the case of different kinds of resins, it is more preferable to provide a resin layer at the interface.
- Vf (% by volume) (W1 / ⁇ f) / ⁇ W1 / ⁇ f + (W0 ⁇ W1) / ⁇ 1 ⁇ ⁇ 100 ⁇ f: density of reinforcing fiber (g / cm 3 ) ⁇ r: density of resin composition (g / cm 3 ) (Polyarylene sulfide prepolymer molecular weight)
- the molecular weight of the polyarylene sulfide prepolymer was calculated in terms of polystyrene by gel permeation chromatography (GPC), which is a type of size exclusion chromatography (SEC). GPC measurement conditions are shown below. ⁇ Equipment: Senshu Science Co., Ltd.
- melt viscosity The resin compositions obtained in each of the examples and comparative examples were dried in a vacuum dryer at 100 ° C. for 12 hours or more.
- a capillary flow meter manufactured by Toyo Seiki Seisaku-sho, Ltd., Capillograph 1C type
- an orifice having a diameter of 0.5 mm and a length of 5 mm has a melting point of + 60 ° C. and a shear rate of 9,728 sec ⁇
- the melt viscosity (melt viscosity before residence) was measured.
- the measurement was performed after allowing the resin composition to stay for 5 minutes. The smaller the value of the melt viscosity, the higher the fluidity.
- the cross section in the thickness direction of the fiber reinforced resin base material obtained in each of the examples and the comparative examples was observed as follows.
- a sample in which a fiber-reinforced resin substrate was embedded with an epoxy resin was prepared, and the sample was polished until a cross section in the thickness direction of the fiber-reinforced resin substrate could be observed well.
- the polished sample was photographed at a magnification of 400 times using an ultra-depth color 3D shape measuring microscope VHX-9500 (controller unit) / VHZ-100R (measuring unit) (manufactured by Keyence Corporation).
- the photographing range was a range of thickness of fiber reinforced resin base material ⁇ width of 500 ⁇ m.
- the area of the portion occupied by the resin and the area of the portion forming voids (voids) were determined, and the impregnation ratio was calculated by the following equation.
- Impregnation ratio (%) 100 ⁇ (total area of resin occupied area) / ⁇ (total area of resin occupied area) + (total area of voided area) ⁇
- the impregnation rate was used as a criterion and evaluated in the following two grades, and a pass was evaluated as good.
- the fiber reinforced resin substrate in the first embodiment was manufactured at a melting point of + 60 ° C and a processing temperature of 100 ° C.
- the fiber-reinforced resin substrate in the second embodiment was manufactured at a melting point of + 60 ° C and a processing temperature of 100 ° C.
- the fiber-reinforced polyamide resin base material in the first embodiment has a melting point of + 60 ° C., 100 Manufactured at a processing temperature of ° C.
- the fiber-reinforced resin substrate in the second embodiment was manufactured at a melting point of + 60 ° C and a processing temperature of 100 ° C.
- reaction raw material (0.5 mol) to prepare a reaction raw material.
- the amount of water contained in the raw material was 25.6 g (1.42 mol), and the amount of solvent per mol of sulfur component in the reaction mixture (per mol of sulfur atoms contained in sodium hydrosulfide charged as a sulfidizing agent) was about 2.43 L.
- the amount of the arylene units (corresponding to the charged p-DCB) per mole of the sulfur component (per mole of the sulfur atoms contained in the charged sodium bisulfide) in the reaction mixture was 1.00 mole.
- the reaction was continued by further heating at 250 ° C. for 1 hour. After cooling to 230 ° C. over about 15 minutes, the high-pressure valve installed at the top of the autoclave was gradually opened to discharge steam mainly composed of NMP, and the steam component was coagulated by a water-cooled cooling pipe, After about 391 g of liquid components were collected, the high-pressure valve was closed and sealed. Then, the mixture was rapidly cooled to around room temperature, and the reaction mixture was recovered.
- Step 2 (B-2) Recovery of linear polyarylene sulfide
- the reaction mixture was subjected to solid-liquid separation by the above-mentioned solid separation operation to obtain a solid (B-2) linear polyarylene sulfide.
- About 10 times the amount of ion-exchanged water is added to the obtained wet solid to disperse it into a slurry, and then the mixture is stirred at 80 ° C.
- Step 3 (B-1) Recovery of cyclic polyarylene sulfide
- a 300 mL flask was charged with 100 g of the filtrate (2% by weight in terms of cyclic polyarylene sulfide) obtained by the solid-liquid separation operation in the above step 2, and the inside of the flask was replaced with nitrogen. Then, the mixture was heated to 100 ° C with stirring, and then cooled to 80 ° C.
- the obtained solid content (including mother liquor) was dispersed in about 500 g of water, stirred at 80 ° C. for 15 minutes, and then suction-filtered with a glass filter in the same manner as described above, a total of 10 times.
- the obtained solid was treated at 70 ° C. for 3 hours in a vacuum drier to obtain a dried solid (B-1) as a cyclic polyarylene sulfide.
- the amount of residual water in the system per mol of the charged alkali metal sulfide was 1.06 mol including the water consumed for the hydrolysis of NMP.
- the amount of hydrogen sulfide scattered was 0.02 mol per mol of the charged alkali metal sulfide.
- the amount of residual water in the system per mol of the charged alkali metal sulfide was 1.06 mol including the water consumed for the hydrolysis of NMP.
- the amount of hydrogen sulfide scattered was 0.02 mol per mol of the charged alkali metal sulfide.
- the content was diluted with about 35 L of NMP, stirred as a slurry at 85 ° C. for 30 minutes, and filtered through an 80 mesh wire mesh (opening 0.175 mm) to obtain a solid.
- the obtained solid was similarly washed and filtered with about 35 L of NMP.
- the operation of diluting the obtained solid with 70 L of ion-exchanged water, stirring the mixture at 70 ° C. for 30 minutes, and filtering the solid through an 80 mesh wire net to collect the solid was repeated three times in total.
- the obtained solid and 32 g of acetic acid were diluted with 70 L of ion-exchanged water, stirred at 70 ° C.
- ⁇ Production of PAS-3> 1,169 kg (10 kmol) of a 48% aqueous sodium hydrosulfide solution, 841 kg (10.1 kmol) of a 48% aqueous sodium hydroxide solution, and N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) are placed in a stainless steel reactor 1 equipped with a stirrer. 1,983 kg (20 kmol) and 322 kg (1.96 kmol) of a 50% aqueous sodium acetate solution were charged, gradually heated to about 240 ° C. over about 3 hours while passing nitrogen at normal pressure, and passed through a rectification column. Then, 280 kg of water and 26 kg of NMP were distilled off.
- NMP N-methyl-2-pyrrolidone
- 1,000 kg of the slurry (C) is charged into a stainless steel reactor, and the inside of the reactor is purged with nitrogen. Then, the mixture is treated under reduced pressure at 100 to 150 ° C. for about 1.5 hours to remove most of the solvent. did.
- 1200 kg of ion-exchanged water (1.2 times the amount of the slurry (C)) was added, and the mixture was stirred at about 70 ° C. for 30 minutes to form a slurry.
- the slurry was filtered to give a white solid.
- 1,200 kg of ion-exchanged water was added, and the mixture was stirred again at 70 ° C. for 30 minutes to form a slurry again, similarly filtered, dried at 120 ° C.
- this white powder was a compound composed of polyphenylene sulfide units.
- Mass spectral analysis of components separated by high performance liquid chromatography (apparatus: LC-10, manufactured by Shimadzu Corporation, column: C18, detector: photodiode array) (apparatus: M-Made, manufactured by Hitachi, Ltd.) 1200H), and from the molecular weight information by MALDI-TOF-MS, this white powder is a mixture containing cyclic polyphenylene sulfide having 4 to 12 repeating units as a main component, and the weight fraction of cyclic polyphenylene sulfide is 94%. I understood. GPC measurement of this mixture showed a weight average molecular weight of 900.
- the obtained cyclic polyphenylene sulfide mixture was charged into a 5 L autoclave equipped with a stirrer, and after the atmosphere was replaced with nitrogen, the temperature was raised to 320 ° C. over about 1 hour while reducing the pressure of the system to about 2 kPa with a vacuum pump. During this time, stirring was performed at 10 rpm until the internal temperature reached about 250 ° C, and stirring was performed at 50 rpm at 250 ° C or higher. After reaching 320 ° C., stirring was continued at 320 ° C. for 60 minutes while reducing the pressure.
- the inside of the reactor was pressurized by introducing nitrogen from the upper part of the autoclave, the contents were taken out in a gut shape from the discharge port, and the guts were pelletized to obtain pellets.
- the resulting pellets were a slightly blackish resin.
- This product was found to have a polyphenylene sulfide structure from an absorption spectrum by infrared spectroscopy. It was completely dissolved in 1-chloronaphthalene at 210 ° C. As a result of GPC measurement, it was found that the obtained polyphenylene sulfide resin had a weight average molecular weight of 55,400 and a dispersity of 2.20.
- Examples 1 to 7, Comparative Examples 1 to 3 (fiber reinforced resin base material manufacturing method)
- Sixteen bobbins around which the carbon fiber bundle (CF-1) was wound were prepared, and the carbon fiber bundle was continuously sent out from each bobbin through a yarn path guide.
- the continuously fed carbon fiber bundle was impregnated with the resin composition obtained by the above-described method, which was supplied in a constant amount from the filled feeder in the impregnation die.
- the carbon fiber impregnated with the resin composition in the impregnation die was continuously pulled out from the nozzle of the impregnation die at a drawing speed of 1 m / min using a take-off roll.
- the temperature at which the carbon fiber is drawn is called the processing temperature.
- the drawn-out carbon fiber bundle passed through a cooling roll to cool and solidify the resin composition, and was taken up by a winder as a continuous fiber-reinforced resin base material.
- the thickness of the obtained fiber-reinforced resin base material was 0.08 mm, the width was 50 mm, the reinforcing fiber directions were arranged in one direction, and a fiber-reinforced resin base material having a volume content of 60% was obtained.
- the obtained fiber-reinforced resin base material was subjected to the evaluation. The evaluation results are also shown in Table 1.
- Comparison between Examples 1 to 7 and Comparative Examples 1 to 3 shows that (A) a mixture of a cyclic polyarylene sulfide and a linear polyarylene sulfide in a thermoplastic resin having a glass transition temperature of 100 ° C. or higher (B) A fiber-reinforced resin substrate using a resin composition containing a polyarylene sulfide prepolymer can achieve a high level of balance between impregnation (polymer fluidity) and heat resistance, and can also reduce voids and improve surface quality. I understand.
- the fiber-reinforced resin base material and the molded product thereof according to the first and second embodiments of the present invention make use of their excellent properties, and are used for aircraft parts, automobile parts, electric / electronic parts, building members, various containers, daily necessities, household goods. And it can be used for various uses such as sanitary goods.
- the fiber-reinforced polyamide resin base material of the embodiment of the present invention and the molded product thereof are, inter alia, impregnating properties, heat aging resistance, surface appearance-required aircraft engine peripheral parts, aircraft parts exterior parts, automobile body parts vehicle frame, It is particularly preferably used for automobile engine peripheral parts, automobile underhood parts, automobile gear parts, automobile interior parts, automobile exterior parts, intake / exhaust system parts, engine cooling water system parts, automobile electric parts, and electric / electronic parts.
- the fiber-reinforced terminal-modified polyamide resin and the molded product of the embodiment of the present invention are aircraft engine peripheral parts such as fan blades, landing gear pods, winglets, spoilers, edges, ladders, elevators, failings, Aircraft related parts such as ribs, various seats, front body, underbody, various pillars, various members, various frames, various beams, various supports, various vehicle body parts such as various rails and various hinges, engine covers, air intake pipes, timing Belt covers, intake manifolds, filler caps, throttle bodies, cooling engine and other automotive engine peripheral parts, cooling fans, radiator tank tops and bases, cylinder head covers, oil pans Automotive underhood parts such as brake piping, fuel piping tubes, exhaust gas system parts, etc., automotive gear parts such as gears, actuators, bearing retainers, bearing cages, chain guides, chain tensioners, shift lever brackets, steering lock brackets, key cylinders , Door inner handle, door handle cowl, interior mirror bracket, air conditioner switch, instrument panel, console box, glove box
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
連続した強化繊維に、または不連続の繊維が分散した強化繊維基材に熱可塑性樹脂を含浸させてなる繊維強化熱可塑性樹脂基材であって、前記熱可塑性樹脂が(A)ガラス転移温度100℃以上の熱可塑性樹脂100重量部に対して、(B)ポリアリーレンスルフィドプレポリマーを1重量部以上67重量部以下含む樹脂組成物で、(B)ポリアリーレンスルフィドプレポリマーが(a)重量平均分子量5,000以下の環状ポリアリーレンスルフィドと(b)重量平均分子量が1,000以上15,000未満の線状ポリアリーレンスルフィドの混合物である繊維強化樹脂基材。 含浸性と熱安定性に優れた、ボイドが少なく表面品位、高耐熱性、の繊維強化樹脂基材を提供する。
Description
本発明は、繊維強化樹脂基材に関するものである。
連続した強化繊維に、または不連続の強化繊維が分散した強化繊維基材に熱可塑性樹脂を含浸させてなる繊維強化樹脂基材は、軽量効果に優れるだけでなく、熱硬化性樹脂を用いた繊維強化樹脂基材よりも靭性、溶着加工性およびリサイクル性に優れるため航空機や自動車などの輸送機器や、スポーツ・電気・電子部品などの各種用途へ幅広く展開されている。近年、従来CFRTP(炭素繊維強化熱可塑性樹脂)中間基材の付加価値であった機械強度、軽量化以外に高耐熱、低吸水、高靭性および成形加工性などの高付加価値も要求されるようになり、航空機、自動車用途を中心に高機能CFRTP中間基材の技術開発が強く求められている。
例えば、機械強度、耐熱性、成形加工性に優れた構造用複合材料として、下記の特許文献1~4記載の炭素繊維強化熱可塑性樹脂プリプレグが知られている。
特許文献1には、連続した強化繊維束、環式ポリアリーレンスルフィドを少なくとも50重量%以上含み、重量平均分子量10,000未満であるポリフェニレンスルフィドプレポリマー、重量平均分子量が10,000以上であり、且つ分散度が2.5以下であるポリアリーレンスルフィドおよび熱可塑性樹脂からなる成形材料が開示されている。
特許文献2には、一方向に引き揃えられた強化繊維にマトリックス樹脂が含浸され、強化繊維の繊維軸に交差するように切込みが形成されたプリプレグ基材が開示されている。
特許文献3には、一方向に配向する複数の繊維と、これらの複数の繊維に含浸されたバインダーとを備えるテープ状プリプレグであって、平均厚さが50μm以上150μm以下であることが開示されている。
特許文献4には、直鎖状または分岐状の高分子構造を有する熱可塑性樹脂、前記熱可塑性樹脂よりも低い融点を有する熱可塑性樹脂、強化繊維より構成されている熱可塑性樹脂プリプレグが開示されている。
国際公開2008/114573号公報
国際公開2017/022835号公報
国際公開2016/190194号公報
国際公開2013/008720号公報
しかしながら特許文献1に記載されている技術では、流動性向上により成形加工性は向上するものの、環式と線状のポリアリーレンスルフィドプレポリマーの分子量を制御していないことから、熱可塑性樹脂とポリアリーレンスルフィド樹脂との相溶性低下により、溶融滞留時に増粘しやすくなり炭素繊維束への含浸性が低下および毛羽発生や樹脂リッチ部の増加により、表面品位、耐熱性の低下などの課題があった。
特許文献2に記載されている技術では、熱可塑性樹脂とポリアリーレンスルフィド樹脂をポリマーアロイ化しても、炭素繊維束への溶融樹脂の含浸性が低下する課題は解消できていない。
特許文献3に記載されている技術では、特許文献2同様に2種類の熱可塑性樹脂をアロイしても炭素繊維束への含浸性低下による毛羽発生や未含浸によるボイド発生などの課題があった。
特許文献4に記載されている技術では、直鎖状または分岐状の高分子構造を有する熱可塑性樹脂に環状PPSや環状PEEKを配合することで、流動性が向上し炭素繊維束への含浸性が改善できるが、溶融滞留時のポリマー相溶性低下に伴う増粘により含浸性悪化や未含浸部増加などの課題があった。
そこで、本発明は含浸性と熱安定性に優れた、ボイドが少なく表面品位、高耐熱性、の繊維強化樹脂基材を提供することを課題とする。
上記課題を解決するため、本発明の繊維強化樹脂基材は次の構成を有する、すなわち、
連続した強化繊維に、または不連続の繊維が分散した強化繊維材に熱可塑性樹脂を含浸させてなる繊維強化熱可塑性樹脂基材であって、前記熱可塑性樹脂が(A)ガラス転移温度100℃以上の熱可塑性樹脂100重量部に対して、(B)ポリアリーレンスルフィドプレポリマー1重量部以上67重量部以下含む樹脂組成物で、(B)ポリアリーレンスルフィドプレポリマーが重量平均分子量5,000未満の(a)環状ポリアリーレンスルフィドと重量平均分子量が1,000以上15,000未満の(b)線状ポリアリーレンスルフィドの混合物である繊維強化樹脂基材、である。
連続した強化繊維に、または不連続の繊維が分散した強化繊維材に熱可塑性樹脂を含浸させてなる繊維強化熱可塑性樹脂基材であって、前記熱可塑性樹脂が(A)ガラス転移温度100℃以上の熱可塑性樹脂100重量部に対して、(B)ポリアリーレンスルフィドプレポリマー1重量部以上67重量部以下含む樹脂組成物で、(B)ポリアリーレンスルフィドプレポリマーが重量平均分子量5,000未満の(a)環状ポリアリーレンスルフィドと重量平均分子量が1,000以上15,000未満の(b)線状ポリアリーレンスルフィドの混合物である繊維強化樹脂基材、である。
本発明の繊維強化樹脂基材は、線状ポリアリーレンスルフィドの重量平均分子量が5,000以上15,000未満であることが好ましい。
本発明の繊維強化樹脂基材は、(B)ポリアリーレンスルフィドプレポリマーが、 (a)環状ポリアリーレンスルフィドと(b)線状ポリアリーレンスルフィドの重量比(環状ポリアリーレンスルフィド/線状ポリアリーレンスルフィド)が0.05以上19以下であることが好ましい。
本発明の繊維強化樹脂基材は、上記樹脂組成物であって、(A)ガラス転移温度100℃以上の熱可塑性樹脂がポリイミド、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリスルホン、ポリアリレート、ポリフェニレンエーテル、ポリカーボネート、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニルスルホン、ポリアミドイミド、液晶ポリマーから選ばれる少なくとも1種ことが好ましい。
本発明によれば、含浸性、熱安定に優れ、ボイドが少なく表面品位が向上し、且つ高耐熱性の繊維強化樹脂基材を得ることができる。
以下、本発明の実施形態を詳細に説明する。本発明の実施形態の繊維強化樹脂基材は、以下2つの態様のいずれかを含む。第一の態様は、強化繊維として連続した強化繊維を用いる繊維強化樹脂基材であり、第二の態様は強化繊維として不連続繊維の強化繊維が分散した強化繊維材を用いる繊維強化樹脂基材である。
本発明の実施形態において、第一の態様における連続した強化繊維とは、繊維強化樹脂基材で当該強化繊維が途切れのないものをいう。本発明の実施形態における連続した強化繊維の形態および配列としては、例えば、一方向に引き揃えられたもの、織物(クロス)、編み物、組み紐、トウ等が挙げられる。中でも特定方向の機械特性を効率よく高められることから、強化繊維が一方向に配列してなることが好ましい。
第二の態様における不連続繊維が分散した強化繊維材とは、繊維強化樹脂基材中で当該強化繊維が切断され分散されたマット状のものをいう。本発明の第二の実施形態における強化繊維材は、繊維を溶液に分散させた後、シート状に製造する湿式法や、カーディング装置やエアレイド装置を用いた乾式法などの任意の方法により得ることができる。生産性の観点から、カーディング装置やエアレイド装置を用いた乾式法が好ましい。
本発明の第二の実施形態の強化繊維材を構成する不連続繊維の数平均繊維長は、3~100mmが好ましい。不連続繊維の数平均繊維長が3mm以上であれば、不連続繊維による補強効果が十分に奏され、得られる繊維強化樹脂基材の機械強度をより向上させることができる。5mm以上がより好ましい。一方、不連続繊維の数平均繊維長が100mm以下であれば、成形時の流動性をより向上させることができる。不連続繊維の数平均繊維長は50mm以下がより好ましく、30mm以下がさらに好ましい。
本発明の第二の実施形態の繊維強化樹脂基材を構成する不連続繊維の数平均繊維長は、以下の方法により求めることができる。まず、繊維強化樹脂基材から100mm×100mmのサンプルを切り出し、切り出したサンプルを600℃の電気炉中で1.5時間加熱し、マトリックス樹脂を焼き飛ばす。こうして得られた繊維強化樹脂基材中から、不連続強化繊維束を無作為に400本採取する。取り出した不連続強化繊維束について、ノギスを用いて1mm単位で繊維長を測定し、次式により数平均繊維長(Ln)を算出することができる。
Ln=ΣLi/400
(Li:測定した繊維長(i=1,2,3,・・・400)(単位:mm))。
(Li:測定した繊維長(i=1,2,3,・・・400)(単位:mm))。
不連続繊維の数平均繊維長は、強化繊維材製造時に繊維を所望の長さに切断することにより、上記範囲に調整することができる。不連続繊維マットの配向性については特に制限は無いが、成形性の観点からは等方的に分散されている方が好ましい。
第一および第二の形態における強化繊維または強化繊維材の具体的原料素材としては特に限定されず、炭素繊維、金属繊維、有機繊維、無機繊維が例示される。これらを2種以上用いてもよい。
炭素繊維としては、例えば、ポリアクリロニトリル(PAN)繊維を原料とするPAN系炭素繊維、石油タールや石油ピッチを原料とするピッチ系炭素繊維、ビスコースレーヨンや酢酸セルロースなどを原料とするセルロース系炭素繊維、炭化水素などを原料とする気相成長系炭素繊維、これらの黒鉛化繊維などが挙げられる。これら炭素繊維のうち、強度と弾性率のバランスに優れる点で、PAN系炭素繊維が好ましく用いられる。
金属繊維としては、例えば、鉄、金、銀、銅、アルミニウム、黄銅、ステンレスなどの金属からなる繊維が挙げられる。
有機繊維としては、例えば、アラミド、ポリベンゾオキサゾール(PBO)、ポリフェニレンスルフィド、ポリエステル、ポリアミド、ポリエチレンなどの有機材料からなる繊維が挙げられる。アラミド繊維としては、例えば、強度や弾性率に優れるパラ系アラミド繊維と、難燃性、長期耐熱性に優れるメタ系アラミド繊維が挙げられる。パラ系アラミド繊維としては、例えば、ポリパラフェニレンテレフタルアミド繊維、コポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミド繊維などが挙げられ、メタ系アラミド繊維としては、ポリメタフェニレンイソフタルアミド繊維などが挙げられる。アラミド繊維としては、メタ系アラミド繊維に比べて弾性率の高いパラ系アラミド繊維が好ましく用いられる。
無機繊維としては、例えば、ガラス、バサルト、シリコンカーバイト、シリコンナイトライドなどの無機材料からなる繊維が挙げられる。ガラス繊維としては、例えば、Eガラス繊維(電気用)、Cガラス繊維(耐食用)、Sガラス繊維、Tガラス繊維(高強度、高弾性率)などが挙げられる。バサルト繊維は、鉱物である玄武岩を繊維化した物で、耐熱性の非常に高い繊維である。玄武岩は、一般的に、鉄の化合物であるFeOまたはFeO2を9~25重量%、チタンの化合物であるTiOまたはTiO2を1~6重量%含有するが、溶融状態でこれらの成分を増量して繊維化することも可能である。
本発明の第一および第二の実施形態における繊維強化樹脂基材は、補強材として用いられることが多いため、高い機械特性を発現することが望ましく、高い機械特性を発現するためには、強化繊維が炭素繊維を含むことが好ましい。
本発明の第一および第二の実施形態における繊維強化樹脂基材において、強化繊維または強化繊維材の原料繊維素材は、通常、多数本の単繊維を束ねた強化繊維束を1本または複数本並べて構成される。1本または複数本の強化繊維束を並べたときの強化繊維の総フィラメント数(単繊維の本数)は、1,000~2,000,000本が好ましい。
生産性の観点からは、強化繊維の総フィラメント数は、1,000~1,000,000本がより好ましく、1,000~600,000本がさらに好ましく、1,000~300,000本が特に好ましい。強化繊維の総フィラメント数の上限は、分散性や取り扱い性とのバランスも考慮して、生産性と分散性、取り扱い性を良好に保てるようであれば良い。
本発明の第一および第二の実施形態において原料繊維素材として用いられる1本の強化繊維束は、好ましくは平均直径5~10μmである強化繊維の単繊維を1,000~50,000本束ねて構成される。
本発明の第一の実施形態および第二の実施形態における繊維強化樹脂基材は、連続した強化繊維または不連続繊維の強化繊維が分散した強化繊維材に含浸させる熱可塑性樹脂が後述する(A)ガラス転移温度100℃以上の熱可塑性樹脂と(B)ポリアリーレンスルフィドプレポリマーからなる樹脂組成物であることを特徴とする。
ここで本発明における(A)ガラス転移温度100℃以上の熱可塑性樹脂と(B)ポリアリーレンスルフィドプレポリマーからなる樹脂組成物とは、(A)ガラス転移温度100℃以上の熱可塑性樹脂100重量部に対して、(B)ポリアリーレンスルフィドプレポリマー1重量部以上67重量部以下含む樹脂組成物で、(B)ポリアリーレンスルフィドプレポリマーが重量平均分子量5,000未満の(a)環状ポリアリーレンスルフィドと重量平均分子量が1,000以上15,000未満の(b)線状ポリアリーレンスルフィドの混合物であることを指す。
特定分子量の環状ポリアリーレンスルフィドと線状ポリアリーレンスルフィドの混合物である(B)ポリアリーレンスルフィドプレポリマーを配合することで、機械強度や耐熱性を大きく損なうことなく、樹脂組成物の溶融粘度を大幅に低減することができる。そのため、加工温度が低い場合でも含浸性を向上させることができ、繊維強化樹脂基材におけるボイド発生も大幅に抑制可能である。この理由としては、特定分子量の環状ポリアリーレンスルフィドは耐熱性と低ガス性を兼備する特徴があり、一方で線状ポリアリーレンスルフィドは溶融滞留安定性に優れることから、両者の混合物を用いることで流動性、低ガス性、耐熱性および機械物性を高位でバランス化できたためと考えられる。
本発明における(A)ガラス転移温度100℃以上の熱可塑性樹脂は、特に種類に制限はないが、ポリイミド、ポリアリールケトン、ポリスルホン、ポリアリレート、ポリフェニレンエーテル、ポリカーボネート、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニルスルホン、ポリアミドイミド、液晶ポリマーが好ましく用いられ、その中でもポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルイミド、ポリフェニルスルホンが特に好ましく用いられる。
ガラス転移温度は、融解温度擬似等温法、固体粘弾性測定(DMA法)にて求めることができる。
融解温度擬似等温法では温度変調DSC(TA:インスツールメント社製)を用いて、JIS K 7121に準拠してガラス転移温度を下記式により算出した。
ガラス転移温度=(補外ガラス転移開始温度+補外ガラス転移終了温度)
また、固体粘弾性測定法では、セイコーインスツル社製動的粘弾性測定装置(DMS6100)を用いて、貯蔵弾性率と損失弾性率を測定した後、損失正接(損失弾性率/貯蔵弾性率)を求め、温度と損失正接のグラフを作成し、このグラフにおいてピークを示す温度をガラス転移温度として算出する。
また、固体粘弾性測定法では、セイコーインスツル社製動的粘弾性測定装置(DMS6100)を用いて、貯蔵弾性率と損失弾性率を測定した後、損失正接(損失弾性率/貯蔵弾性率)を求め、温度と損失正接のグラフを作成し、このグラフにおいてピークを示す温度をガラス転移温度として算出する。
本発明に用いる(A)ガラス転移温度100℃以上の熱可塑性樹脂の中で特に好ましいポリアリールケトンを製造するための反応については特に制限はないが、脱塩重縮合反応を好適に用いることができる。具体的には塩基の存在下で、芳香族ジハロゲン化物とヒドロキノン類とを重合させて、ポリエーテル類を与える反応によりポリアリールケトンを好適に製造できる。ここでいうポリアリールケトン類としては、一般的なポリエーテルのほか、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエーテルケトンケトン、ポリエテルエーテルケトンケトン等が含まれる。例えば、以下に示した繰り返し単位を、単独又は組み合わせで含む重合体である。
式中、Arは、置換又は無置換のp-フェニレン基を表すし、同一でも異なっても良い。フェニレン基上の置換基としては特に限定されないが、例えば、炭素数1~10のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、ハロゲン原子等が挙げられる。一単位中に含まれるArはすべて同一であってもよいし、異なるものであってもよいが、すべてのArが無置換のp-フェニレン基を表すことが好ましい。
Aは、直接結合、酸素原子、硫黄原子、-SO2-、-CO-、又は2価の炭化水素基を表す。以下ではポリエーテルエーテルケトンを製造する場合について具体的に説明する。すなわちスルホラン単独またはスルホランと他の水溶性溶剤とを併用した溶剤と塩基の存在下、100℃以上300℃未満の温度で、下記式で表される4,4’-ジハロベンゾフェノン類と下記式で表されるヒドロキノン類とを重合させてポリエーテルエーテルケトンを製造する。
式中、Arは、置換又は無置換p-フェニレン基を表し、同一でも異なっても良い。Xはハロゲン原子を表す。Rは、水素原子、R’-基、R’(C=O)-基、R’3Si-基、又はR’2NC(O)-基を表し、同一でも異なっても良い。ここでR’は、炭素数1~12のアルキル基、炭素数6~12のアリール基、又は炭素数7~12のアラルキル基を表し、同一でも異なっても良い。
上記式で表される4,4'-ジハロベンゾフェノン類としては、例えば、4,4'-ジフルオロベンゾフェノン、4,4'-ジクロロベンゾフェノン等が挙げられるが、Arが無置換のp-フェニレン基、Xがフッ素原子である4,4'-ジフルオロベンゾフェノンが好ましい。上記式で表されるヒドロキノン類としては、Arが無置換のp-フェニレン基、Rが水素原子であるp-ヒドロキノンが好ましい。
また、上記式で表される4,4'-ジハロベンゾフェノン類とともに、下記式で表される4,4'-ジハロジフェニルスルホン類や、下記式中2番目のX-Ar-C(=O)-Ar-C(=O)-Ar-Xで表される化合物のうち例えばビス-1,4-(4-ハロベンゾイル)ベンゼンを共重合させることもできる。上記式で表されるヒドロキノン類とともに、下記式で表されるビスフェノール類を共重合させることもできる。
式中、Arは、置換又は無置換p-フェニレン基を表し、同一でも異なっても良い。Xはハロゲン原子を表す。Rは、水素原子、R’-基、R’(C=O)-基、R’3Si-基、又はR’2NC(O)-基を表し、同一でも異なっても良い。ここでR’は、炭素数1~12のアルキル基、炭素数6~12のアリール基、又は炭素数7~12のアラルキル基を表し、同一でも異なっても良い。Aは、直接結合、酸素原子、硫黄原子、-SO2-、-CO-、又は2価の炭化水素原子を表す。
以上の重合反応は、塩基による求核置換反応に基づいた重縮合によって達成されるものである。前記塩基の具体例としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム等のアルカリ金属炭酸塩、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、炭酸セシウム等のアルカリ金属炭酸水素塩、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等のアルカリ金属水酸化物、アルキル化リチウム、リチウムアルミニウムハライド、リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド、ナトリウムハイドライド、ナトリウムアルコキサイド、カリウムアルコキサイド、フォスファゼン塩基、Verkade塩基等が挙げられる。これらのうち1種類を単独で用いてもよいし、2種類以上を併用してもよい。
塩基は、通常、モル基準でヒドロキノン類よりも多く使用されるが、その過剰量はヒドロキノン類に対して100モル%以下の範囲で多いことが好ましく、80モル%以下の範囲がより好ましく、1~50%の範囲が特に好ましい。
上記重合反応は系を加熱することによって進行する。具体的な反応温度(最終保持温度を意味する)としては、通常300℃未満、好ましくは200℃~280℃の範囲、より好ましくは230℃~270℃、さらに好ましくは240℃~260℃の範囲である。本発明で用いるポリアリールケトン類の製造方法は、反応溶液を徐々に加熱した後、最終保持温度にて反応溶液の温度を保持するものである。なお、最終保持温度に保持する際には、設定温度の上下10℃程度なら、ばらついてもかまわない。
また、系中に予め存在している水や重縮合反応によって生成してくる水を共沸によって効率よく除去するために、ベンゼン、トルエン、キシレン、クロロベンゼン等の共沸溶媒を反応系に補充してもかまわない。
最終保持温度での反応液の保持時間は特に限定されず、所望の粘度又は分子量を考慮して適宜設定すればよいが、通常、24時間以下であり、好ましくは12時間以下であり、より好ましくは10時間以下、特に好ましくは6時間以下である。本発明では、180℃までの昇温速度には特に制限はない。目的のポリエーテル類の重合度を得るためには180℃~最終保持温度までの昇温速度が0.5℃/min以上であることが好ましく、0.7℃/min以上であることがより好ましい。昇温速度がこの好ましい範囲の場合は重合度が上がり易くなる。これは180℃以上の高温領域では、速やかに反応系を昇温すると、重合反応に関与する活性種が不活性化され難く、所定の重合反応を高選択的に進行させることができるためと推定される。特に重合反応がアルカリ金属塩を用いる脱塩重縮合反応の場合に多く見られる。また、昇温速度は5.0℃/min以下とするのが好ましい。昇温速度がこの好ましい範囲の場合、環状化合物等を生成するなどの副反応が進行し難い。なお本発明の昇温速度は、180℃から最終保持温度までの昇温速度の平均値を意味するものである。180℃から最終保持温度まで昇温させる際には、1分間あたりの昇温幅の変動のばらつきが、平均昇温速度と比べてプラスマイナス50%以内であることが望ましい。
反応のスケールは、生成する活性種が反応系に反応系に混入する微量の水分や酸素の影響を受ける可能性があるため、製造されるポリエーテル類の品質を安定的に保持するためには、使用する複数のモノマー類を0.4mol以上用いることが好ましい。より好ましくは0.5mol以上、さらに好ましくは0.8mol以上、特に好ましくは1mol以上、最も好ましくは2mol以上である。この反応挙動は特に重合反応がアルカリ金属塩を用いる脱塩重縮合反応の場合に多く見られる。
反応溶液の濃度については特に制限はないが、生成した活性種をモノマーあるいは生成したポリマー末端と高選択的に反応させる、好ましくない副反応を抑制する、または、分子内環化反応による環状オリゴマーの生成を抑制するなどの観点から、仕込みモノマーの全体仕込み量に対する割合(以下、溶液濃度という)は10重量%以上であることが好ましい。一方、所望の重合度のポリエーテル類を得るためには、重合終了まで生成するポリエーテル類の溶解性を保持する必要があるため、反応溶液の濃度は30重量%以下であることが好ましい。したがって好ましい溶液濃度の範囲は10~30重量%、さらに好ましい範囲は12~28重量%、特に好ましい範囲は14~26重量%である。これは特に重合反応がアルカリ金属塩を用いる脱塩重縮合反応の場合に当てはまる。
本発明で使用するスルホランまたはスルホランと他の水溶性溶剤との混合溶剤は水溶性なので、反応後の反応混合物に水を含む溶剤を混合することによって、生成物の重合体から重合溶剤及び生成した塩を容易に分離することができる。さらに、水を含む溶剤での洗浄を繰り返すことによって、塩基に起因する副生物たるアルカリ金属塩(例えばフッ化ナトリウムや、フッ化カリウム)を除去できるので、生成物たるポリエーテルエーテルケトンを簡単に精製することができる。すなわち本発明で使用するスルホランと他の水溶性溶剤との混合溶剤を使用すると、重合溶剤の分離及び重合体の精製を、水を含む溶剤を用いて実施することができる。例えば水だけではなく、メタノールや、エタノール等の水溶性溶剤等を含む水を含むものであってもよい。
本発明において、(A)ガラス転移温度100℃以上の熱可塑性樹脂の中で特に好ましく用いられるポリイミドは、繰り返し単位にイミド結合を有する重合体であり、繰り返し単位にイミド結合の他に、エーテル結合を有するポリエーテルイミドやアミド結合を有するポリアミドイミドもポリイミドに含まれる。また、ポリイミドとして、特に限定されるものではないが、例えば、SABICイノベーティブプラスチックス社製“Ultem”(登録商標)1000、“Ultem” (登録商標)1010、“Ultem” (登録商標)1040、“Ultem” (登録商標)5000、“Ultem” (登録商標)6000、“Ultem” (登録商標)XH6050、“Extem” (登録商標)XHおよび“Extem” (登録商標)UH、三井化学(株)製“オーラム”(登録商標)PD450M、ソルベイスペシャルティポリマーズジャパン(株)製“トーロン”(登録商標)などとして上市されているものを入手して用いることもできる。
本発明において、(A)ガラス転移温度100℃以上の熱可塑性樹脂の中で特に好ましく用いられるポリフェニレンエーテルとしては、例えば、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2、6-ジフェニル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)などが挙げられる。また、2,6-ジメチルフェノールと他のフェノール類(例えば2,3,6-トリメチルフェノールや2-メチル-6-ブチルフェノール)との共重合体などのポリフェニレンエーテル共重合体も挙げられる。なかでも、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)および2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体が好ましく、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)がより好ましい。
本発明において、(A)ガラス転移温度100℃以上の熱可塑性樹脂の中で特に好ましく用いられるポリスルホンは、繰り返し単位にスルホニル基を有する重合体であり、繰り返し単位にスルホニル基の他に、エーテル結合を有するポリエーテルスルホンやエーテル鎖で結合したフェニル基を有するポリフェニルスルホンもポリスルホンに含まれる。ポリスルホンとしては、特に限定されるものではないが、例えば、ソルベイスペシャルティポリマーズジャパン(株)製“ユーデル”(登録商標)、“ベラデル”(登録商標)、“レーデル”(登録商標)、BASFジャパン(株)製“ウルトラゾーン”(登録商標)S、“ウルトラゾーン” (登録商標)E、“ウルトラゾーン” (登録商標)P、住友化学(株)製“スミカエクセル”(登録商標)などとして上市されているものを入手して用いることもできる。
本発明において用いる(B)ポリアリーレンスルフィドプレポリマーは(a)環状ポリアリーレンスルフィドと(b)線状ポリアリーレンスルフィドの混合物であるが、以下に詳細を説明する。
<(a)環状ポリアリーレンスルフィド>
本発明で用いる(B)ポリアリーレンスルフィドプレポリマーの好ましい製造方法において用いる(a)環状ポリアリーレンスルフィドとしては、下記一般式(I)で表される、m=4~20の整数で表される環状ポリアリーレンスルフィド(以下、環状PASと略すこともある)を使用することができ、mは4~20の整数のうち単一の整数値に限らず複数の整数値であっても良い。
本発明で用いる(B)ポリアリーレンスルフィドプレポリマーの好ましい製造方法において用いる(a)環状ポリアリーレンスルフィドとしては、下記一般式(I)で表される、m=4~20の整数で表される環状ポリアリーレンスルフィド(以下、環状PASと略すこともある)を使用することができ、mは4~20の整数のうち単一の整数値に限らず複数の整数値であっても良い。
mが上記好ましい範囲であると、Arの種類によらず環状ポリアリーレンスルフィドの溶融解温度が適度で、樹脂の取り扱い性に優れる。ここで、前記一般式における繰り返し数mは、NMRおよび質量分析により構造解析を行うことで求めることができる。
また、(a)環状ポリアリーレンスルフィドは、単一の繰り返し数を有する単独化合物、異なる繰り返し数を有する環状ポリアリーレンスルフィドの混合物のいずれでも良いが、異なる繰り返し数を有する環状ポリアリーレンスルフィドの混合物の方が単一の繰り返し数を有する単独化合物よりも溶融解温度が低い傾向があり、異なる繰り返し数を有する環状ポリアリーレンスルフィドの混合物の使用は後述する高重合度体への転化を行う際の温度をより低くできるため好ましい。本発明で用いる(B)ポリアリーレンスルフィドプレポリマーは、(a)環状ポリアリーレンスルフィドを50重量%以上含むことが好ましく、より好ましくは70重量%以上、さらに好ましくは80重量%以上、特に好ましくは90重量%以上である。また、(B)ポリアリーレンスルフィドプレポリマーに含まれる(a)環状ポリアリーレンスルフィドの上限値に特に制限は無いが98重量%以下が好ましい範囲として例示できる。
本発明に用いる(B)ポリアリーレンスルフィドプレポリマーにおける(a)環状ポリアリーレンスルフィド以外の成分は(b)線状のポリアリーレンスルフィドであることが好ましい。ここで(b)線状ポリアリーレンスルフィドとは、式、-(Ar-S)-の繰り返し単位を主要構成単位とする、好ましくは当該繰り返し単位を80モル%以上含有するホモオリゴマーまたはコオリゴマーである。Arとしては次に示す式(c)~式(m)などで表される単位などがあるが、なかでも式(c)が特に好ましい。
(b)線状ポリアリーレンスルフィドはこれら繰り返し単位を主要構成単位とする限り、次に示す式(n)~式(p)などで表される少量の分岐単位または架橋単位を含むことができる。
これら分岐単位または架橋単位の共重合量は、-(Ar-S)-の単位1モルに対して0~1モル%の範囲であることが好ましい。また、線状ポリアリーレンスルフィドは上記繰り返し単位を含むランダム共重合体、ブロック共重合体及びそれらの混合物のいずれかであってもよい。
これらの代表的なものとして、ポリフェニレンスルフィドオリゴマー、ポリフェニレンスルフィドスルホンオリゴマー、ポリフェニレンスルフィドケトンオリゴマー、これらのランダム共重合体、ブロック共重合体及びそれらの混合物などが挙げられる。特に好ましい線状ポリアリーレンスルフィドとしては、ポリマーの主要構成単位としてp-フェニレンスルフィド単位を80モル%以上、特に90モル%以上含有する線状のポリフェニレンスルフィドが挙げられる。
本発明に用いる(B)ポリアリーレンスルフィドプレポリマーが含有する(a)環状ポリアリーレンスルフィドと(b)線状ポリアリーレンスルフィドの重量比(環状ポリアリーレンスルフィド/線状ポリアリーレンスルフィド)は0.05以上19以下であることが好ましく、1.0以上17以下がより好ましく、2以上15以下が更に好ましく、このような(B)ポリアリーレンスルフィドプレポリマーを用いることで溶融滞留安定性を大幅に改善することが可能である。
<(b)線状ポリアリーレンスルフィド>
本発明で用いる(B)ポリアリーレンスルフィドプレポリマーの好ましい製造方法における(b)線状ポリアリーレンスルフィドとは、式-(Ar-S)-の繰り返し単位を主要構成単位とする、好ましくは当該繰り返し単位を80モル%以上含有するホモポリマーまたはコポリマーである。Arとしては前記の式(c)~式(m)などで表される単位などがあるが、なかでも式(c)が特に好ましい。
<(b)線状ポリアリーレンスルフィド>
本発明で用いる(B)ポリアリーレンスルフィドプレポリマーの好ましい製造方法における(b)線状ポリアリーレンスルフィドとは、式-(Ar-S)-の繰り返し単位を主要構成単位とする、好ましくは当該繰り返し単位を80モル%以上含有するホモポリマーまたはコポリマーである。Arとしては前記の式(c)~式(m)などで表される単位などがあるが、なかでも式(c)が特に好ましい。
この繰り返し単位を主要構成単位とする限り、前記の式(I)や式(n)~式(p)などで表される少量の分岐単位または架橋単位を含むことができる。これら分岐単位または架橋単位の共重合量は、-(Ar-S)-の単位1モルに対して0~1モル%の範囲であることが好ましい。また、本発明における(b)線状ポリアリーレンスルフィドは上記繰り返し単位を含むランダム共重合体、ブロック共重合及びそれらの混合物のいずれかであってもよい。これらの代表的なものとして、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルフィドケトン、これらのランダム共重合体、ブロック共重合体、及びそれらの混合物などが挙げられる。特に好ましい(b)線状ポリアリーレンスルフィドとしては、ポリマーの主要構成単位としてp-アリーレンスルフィド単位を80モル%以上、特に90モル%以上含有するポリフェニレンスルフィド(以下、PPSと略することもある)の他、ポリフェニレンスルフィドスルホン、ポリフェニレンスルフィドケトンが挙げられる。
本発明で用いる(B)ポリアリーレンスルフィドプレポリマー中における環状ポリアリーレンスルフィドの重量平均分子量の上限値は5,000以下であり、3,000以下が好ましく、2,500以下がより好ましく、重量平均分子量の下限値は特に制限はないが熱分解ガスの観点より300以上が好ましく、400以上がより好ましく、500以上が更に好ましい。一方で線状ポリアリーレンスルフィドの重量平均分子量は1,000以上15,000以下であり、3,000以上12,000以下が好ましく、5,000以上10,000以下がより好ましい。尚、前記重量平均分子量は例えば示差屈折率検出器を具備したSEC(サイズ排除クロマトグラフィー)を使用して求めることができる。
<(B)ポリアリーレンスルフィドプレポリマー中の(a)環状ポリアリーレンスルフィドと(b)線状ポリアリーレンスルフィド以外の成分>
本発明において、(B)ポリアリーレンスルフィドに含まれる(a)環状ポリアリーレンスルフィドおよび(b)線状ポリアリーレンスルフィド以外の成分としては、線状のポリアリーレンスルフィドオリゴマーが挙げられる。
本発明において、(B)ポリアリーレンスルフィドに含まれる(a)環状ポリアリーレンスルフィドおよび(b)線状ポリアリーレンスルフィド以外の成分としては、線状のポリアリーレンスルフィドオリゴマーが挙げられる。
ここで線状ポリアリーレンスルフィドオリゴマーとは、式-(Ar-S)-の繰り返し単位を主要構成単位とする、好ましくは当該繰り返し単位を80モル%以上含有するホモオリゴマーまたはコオリゴマーである。Arとしては前記した式(c)~式(m)などであらわされる単位などがあるが、なかでも式(c)が特に好ましい。線状ポリアリーレンスルフィドオリゴマーはこれら繰り返し単位を主要構成単位とする限り、前記した式(I)や式(n)~式(p)などで表される少量の分岐単位または架橋単位を含むことができる。これら分岐単位または架橋単位の共重合量は、-(Ar-S)-の単位1モルに対して0~1モル%の範囲であることが好ましい。また、線状ポリアリーレンスルフィドオリゴマーは上記繰り返し単位を含むランダム共重合体、ブロック共重合体及びそれらの混合物のいずれかであってもよい。これらの代表的なものとして、ポリフェニレンスルフィドオリゴマー、ポリフェニレンスルフィドスルホンオリゴマー、ポリフェニレンスルフィドケトンオリゴマー、これらのランダム共重合体、ブロック共重合体及びそれらの混合物などが挙げられる。特に好ましい線状ポリアリーレンスルフィドオリゴマーとしては、ポリマーの主要構成単位としてp-フェニレンスルフィド単位を80モル%以上、特に90モル%以上含有する線状のポリフェニレンスルフィドオリゴマーが挙げられる。
(B)ポリアリーレンスルフィドに含まれる(a)環状ポリアリーレンスルフィドおよび(b)線状ポリアリーレンスルフィド以外の成分の含有量は、(a)環状ポリアリーレンスルフィド100重量%に対して、50重量%以下が好ましく、25重量%以下がより好ましく、更に好ましくは20重量%以下である。通常、(a)環状ポリアリーレンスルフィドの純度が高いほど、加熱後に得られるポリアリーレンスルフィドの重合度が高くなる傾向にあるため、機械特性向上の観点から好ましい。
(a)環状ポリアリーレンスルフィドに含まれる線状ポリアリーレンスルフィドオリゴマーの重量平均分子量は300以上5,000以下が好ましく、300以上3,000以下がより好ましく、300以上2,000以下が更に好ましい。
(a)環状ポリアリーレンスルフィドに含まれる線状ポリアリーレンスルフィドオリゴマーの重量平均分子量は300以上5,000以下が好ましく、300以上3,000以下がより好ましく、300以上2,000以下が更に好ましい。
<(B)ポリアリーレンスルフィドプレポリマーの製造方法>
前記(B)ポリアリーレンスルフィドプレポリマーを得る方法としては例えば以下の方法が挙げられる。
前記(B)ポリアリーレンスルフィドプレポリマーを得る方法としては例えば以下の方法が挙げられる。
(1)少なくともポリハロゲン化芳香族化合物、スルフィド化剤および有機極性溶媒を含有する混合物を加熱してポリアリーレンスルフィド樹脂を重合することで、80meshふるい(目開き0.125mm)で分離される顆粒状ポリアリーレンスルフィド(以下、PASと略す)樹脂、重合で生成したPAS成分であって前記顆粒状PAS樹脂以外のPAS成分(ポリアリーレンスルフィドオリゴマーと称する)、有機極性溶媒、水、およびハロゲン化アルカリ金属塩を含む混合物を調製し、ここに含まれるポリアリーレンスルフィドオリゴマーを分離回収し、これを精製操作に処すことで(B)を得る方法。
(2)少なくともスルフィド化剤(イオウ成分)、ジハロゲン化芳香族化合物(アリーレン成分)および有機極性溶媒を含む反応混合物を加熱して反応させることにより得る方法。
スルフィド化剤としては、例えば、硫化ナトリウムなどのアルカリ金属の硫化物が挙げられる。ジハロゲン化芳香族化合物としては、例えば、ジクロロベンゼンなどが挙げられる。有機極性溶媒としては、例えば、N-メチルピロリドンなどが挙げられる。
(a)環状ポリアリーレンスルフィドを効率よく製造する観点から、反応混合物の常圧下における還流温度を超えて加熱することが好ましい。具体的には、反応温度は180~320℃が好ましく、225~300℃がより好ましい。また、一定温度で反応させる1段階反応、段階的に温度を上げて反応させる多段反応、連続的に温度を変化させて反応させる形式のいずれでもかまわない。
反応時間は0.1時間以上が好ましく、0.5時間以上がより好ましい。一方、反応時間に特に上限はなく、40時間以内でも十分に反応が進行し、6時間以内が好ましい。
また、反応時の圧力に特に制限はなく、ゲージ圧で0.05MPa以上が好ましく、0.3MPa以上がより好ましい。前記好ましい反応温度においては反応混合物の自圧による圧力上昇が発生するため、この様な反応温度における圧力は、ゲージ圧で0.25MPa以上が好ましく、0.3MPa以上がより好ましい。一方、反応時の圧力は10MPa以下が好ましく、5MPa以下がより好ましい。反応時の圧力を前記好ましい範囲とするために、反応を開始する前や反応中など任意の段階で、好ましくは反応を開始する前に、不活性ガスにより反応系内を加圧することも好ましい方法である。なお、ここでゲージ圧とは大気圧を基準とした相対圧力のことであり、絶対圧から大気圧を差し引いた圧力差と同意である。本発明においては、反応混合物を反応させる過程の全過程に渡って有機カルボン酸金属塩を存在させてもよいし、一部の過程においてのみ有機カルボン酸金属塩を存在させてもよい。
<ポリアリーレンスルフィドプレポリマーの高重合度体への転化>
前記した(B)ポリアリーレンスルフィドプレポリマーは加熱して高重合度体に転化させて製造することも可能である。この加熱の温度は前記ポリアリーレンスルフィドプレポリマーが溶融解する温度以上であることが好ましく、このような温度条件であれば特に制限は無い。加熱温度下限が上記好ましい温度であると、短時間でPASを得ることができる。なお、ポリアリーレンスルフィドプレポリマーが溶融解する温度は、ポリアリーレンスルフィドプレポリマーの組成や分子量、また、加熱時の環境により変化するため、一意的に示すことはできないが、例えばポリアリーレンスルフィドプレポリマーを示差走査型熱量計で分析することで溶融解温度を把握することが可能である。具体的な加熱温度としては180~400℃が好ましく例示でき、より好ましくは200~380℃、さらに好ましくは250~360℃である。上記好ましい温度範囲であると、架橋反応や分解反応に代表される好ましくない副反応が生じ難く、得られるPASの特性が低下することがない。
前記した(B)ポリアリーレンスルフィドプレポリマーは加熱して高重合度体に転化させて製造することも可能である。この加熱の温度は前記ポリアリーレンスルフィドプレポリマーが溶融解する温度以上であることが好ましく、このような温度条件であれば特に制限は無い。加熱温度下限が上記好ましい温度であると、短時間でPASを得ることができる。なお、ポリアリーレンスルフィドプレポリマーが溶融解する温度は、ポリアリーレンスルフィドプレポリマーの組成や分子量、また、加熱時の環境により変化するため、一意的に示すことはできないが、例えばポリアリーレンスルフィドプレポリマーを示差走査型熱量計で分析することで溶融解温度を把握することが可能である。具体的な加熱温度としては180~400℃が好ましく例示でき、より好ましくは200~380℃、さらに好ましくは250~360℃である。上記好ましい温度範囲であると、架橋反応や分解反応に代表される好ましくない副反応が生じ難く、得られるPASの特性が低下することがない。
前記加熱を行う時間は使用するポリアリーレンスルフィドプレポリマーにおける環状ポリアリーレンスルフィドの含有率やm数、及び分子量などの各種特性、また、加熱の温度等の条件によって異なるため一様には規定できないが、具体的な加熱時間としては0.05~100時間が好ましく例示でき、0.1~20時間がより好ましく、0.1~10時間がさらに好ましい。上記好ましい加熱時間の範囲であると、ポリアリーレンスルフィドプレポリマーのPASへの転化が十分である一方、好ましくない副反応による得られるPASの特性への悪影響が顕在化する可能性もない。
ポリアリーレンスルフィドプレポリマーの加熱による高重合度体への転化は、通常溶媒の非存在下で行うが、溶媒の存在下で行うことも可能である。溶媒としては、例えばN-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミドなどの含窒素極性溶媒、ジメチルスルホキシド、ジメチルスルホンなどのスルホキシド・スルホン系溶媒、アセトン、メチルエチルケトン、ジエチルケトン、アセトフェノンなどのケトン系溶媒、ジメチルエーテル、ジプロピルエーテル、テトラヒドロフランなどのエーテル系溶媒、クロロホルム、塩化メチレン、トリクロロエチレン、2塩化エチレン、ジクロルエタン、テトラクロルエタン、クロルベンゼンなどのハロゲン系溶媒、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、フェノール、クレゾール、ポリエチレングリコールなどのアルコール・フェノール系溶媒、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒などが好ましくあげられる。また、二酸化炭素、窒素、水等の無機化合物を超臨界流体状態として溶媒に用いることも可能である。これらの溶媒は1種類または2種類以上の混合物として使用することができる。
前記、ポリアリーレンスルフィドプレポリマーの加熱による高重合度体への転化は、通常重合反応装置を用いる方法で行うのはもちろんのこと、成形品を製造する型内で行っても良いし、押出機や溶融混練機を用いて行うなど、加熱機構を具備した装置であれば特に制限無く行うことが可能であり、バッチ方式、連続方式など公知の方法が採用できる。ポリアリーレンスルフィドプレポリマーの加熱による高重合度体への転化の際の雰囲気は非酸化性雰囲気で行うことが好ましく、減圧条件下で行うことも好ましい。また、減圧条件下で行う場合、反応系内の雰囲気を一度非酸化性雰囲気としてから減圧条件にすることが好ましい。これによりポリアリーレンスルフィドプレポリマー間、加熱により生成したPAS間、及びPASとポリリーレンスルフィドプレポリマー間などで架橋反応や分解反応等の好ましくない副反応の発生を抑制できる傾向にある。なお、非酸化性雰囲気とはポリアリーレンスルフィドプレポリマーが接する気相における酸素濃度が5体積%以下、好ましくは2体積%以下、更に好ましくは酸素を実質的に含有しない雰囲気、即ち窒素、ヘリウム、アルゴン等の不活性ガス雰囲気であることを指し、この中でも特に経済性及び取扱いの容易さの面からは窒素雰囲気が好ましい。また、減圧条件下とは反応を行う系内が大気圧よりも低いことを指し、上限として50kPa以下が好ましく、20kPa以下がより好ましく、10kPa以下が更に好ましい。下限としては0.1kPa以上が例示できる。減圧条件が好ましい上限以下の場合は、架橋反応など好ましくない副反応が起こり難くなる傾向にあり、一方好ましい下限以上の場合には、反応温度によらずポリアリーレンスルフィドプレポリマーに含まれる分子量の低い環状ポリアリーレンスルフィドが揮散し難くなる傾向にある。
本発明で用いられる樹脂組成物は通常溶融混練によって得られる。溶融混練機は、単軸、2軸の押出機、バンバリーミキサー、ニーダー、及びミキシングロールなど通常公知の溶融混練機に供給して樹脂組成物の融解ピーク温度+5~100℃の加工温度の温度で混練する方法などを代表例として挙げることができる。この際、原料の混合順序には特に制限はなく、全ての原材料を配合後上記の方法により溶融混練する方法、一部の原材料を配合後上記の方法により溶融混練し更に残りの原材料を配合し溶融混練する方法、あるいは一部の原材料を配合後単軸あるいは2軸の押出機により溶融混練中にサイドフィーダーを用いて残りの原材料を混合する方法など、いずれの方法を用いてもよい。また、少量添加剤成分については、他の成分を上記の方法などで混練しペレット化した後、成形前に添加して成形に供することも勿論可能である。
また本発明の組成物は、配合物を固体状態で錠剤形に圧縮して固め、これを射出成形などの成形に供する方法も採用することができる。
本発明の樹脂組成物を製造するための別の製造方法としては、前記(A)成分、(B)成分と(C)スルフィド基を有するアニオン重合開始剤(以下、単に「(C)アニオン重合開始剤」と記載する場合がある)をそれぞれドライブレンドし、加熱機構を具備した装置で240℃~450℃の温度範囲で0.01時間~10時間加熱することにより、(B)成分が環状ポリアリーレンスルフィドの場合、重量平均分子量15,000以上60,000以下のポリアリーレンスルフィドに転化する方法が例示され、この方法によれば前述した特性の有する本発明の樹脂組成物を得ることができる。
本発明の樹脂組成物を製造するための別の製造方法としては、前記(A)成分、(B)成分と(C)スルフィド基を有するアニオン重合開始剤(以下、単に「(C)アニオン重合開始剤」と記載する場合がある)をそれぞれドライブレンドし、加熱機構を具備した装置で240℃~450℃の温度範囲で0.01時間~10時間加熱することにより、(B)成分が環状ポリアリーレンスルフィドの場合、重量平均分子量15,000以上60,000以下のポリアリーレンスルフィドに転化する方法が例示され、この方法によれば前述した特性の有する本発明の樹脂組成物を得ることができる。
(C)アニオン重合開始剤を用いる製造方法の場合、(A)ガラス転移温度100℃以上の熱可塑性樹脂は電子吸引性基を有することが好ましい。
電子吸引性基とは、電子吸引性基と隣り合う原子の電子密度を減弱させる置換基のことであり、電子密度が減弱した隣り合う原子に、(C)アニオン重合開始剤のアニオンが付加する。
電子吸引性基としては、例えば、アルデヒド基、ケトン基、イミド基、スルホニル基、エーテル基、スルフィド基、ニトロ基、カルボキシル基、シアノ基、フェニル基、ハロゲン基、エステル基、ホスホノ基などが挙げられる。これらを2種以上含有してもよい。
前記(C)アニオン重合開始剤としては、下記一般式で表されるイオン性化合物が好ましい。
ここでR’は水素原子、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数6~24のアリーレン基、1級、2級、または3級アミノ基、ニトロ基、カルボキシル基およびそのエステル、シアノ基、スルホン酸基、またはハロゲン基を表し、Rは有機基を表し、S-は硫黄のアニオン種を表し、M+は1価の金属イオン、2価のモノハロゲン化物イオンを表し、mは0~15の整数、nは1~15の整数である。
上記一般式中の有機基としては、アリーレン基、ナフタレン環、ピリジン環、ピリミジン環、イミダゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環が挙げられ、中でも、高温での耐熱性に優れるフェニレン、ビフェニレン、ナフタレン環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾトリアゾール環、フタルイミド環等が好ましく、フェニレン、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環がさらに好ましい。
本発明において、(C)アニオン重合開始剤としては、下記に示す化合物のリチウム塩、ナトリウム塩またはカリウム塩等のようなアルカリ金属塩が好ましい。化合物として例えば、チオフェノール、1,2-ベンゼンジチオール、1,3-ベンゼンジチオール、1,4-ベンゼンジチオール、2-チオクレゾール、3-チオクレゾール、4-チオクレゾール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノール、2-メトキシベンゼンチオール、3-メトキシベンゼンチオール、4-メトキシベンゼンチオール、4-ニトロチオフェノール、4-tert-ブチルチオフェノール、3-ジメチルアミノチオフェノール、4-ジメチルアミノチオフェノール、2-クロロチオフェノール、3-クロロチオフェノール、4-クロロチオフェノール、2-ブロモチオフェノール、3-ブロモチオフェノール、4-ブロモチオフェノール、4-tert-ブチル-1,2-ベンゼンジチオール、メルカプトイミダゾール、メルカプトベンゾイミダゾール、メルカプトベンゾオキサゾール、メルカプトベンゾチアゾール、メルカプトピリミジン等のリチウム塩、ナトリウム塩またはカリウム塩等のようなアルカリ金属塩が挙げられる。チオフェノール、メルカプトベンゾイミダゾール、メルカプトベンゾオキサゾール、メルカプトベンゾチアゾールのアルカリ金属塩が特に好ましい。
(A)ガラス転移温度が100℃以上の熱可塑性樹脂、(B)ポリアリーレンスルフィドプレポリマーおよび(C)アニオン重合開始剤を配合することにより、得られる熱可塑性樹脂組成物は、耐熱性、機械特性および賦形性に優れる。かかる効果を奏する理由は定かではないが、以下のように推測する。
まず、(C)スルフィド基を有するアニオン重合開始剤のアニオンは、(A)ガラス転移温度が100℃以上の熱可塑性樹脂の電子吸引性基と隣合う原子に付加するため、スルフィド基を有する熱可塑性樹脂が一部生成する。このスルフィド基を有する熱可塑性樹脂は、(B)ポリアリーレンスルフィドポリマー中の環状ポリアリーレンスルフィドのスルフィド基とスルフィド交換反応するため、環状ポリアリーレンスルフィドと(A)成分がアニオン重合開始剤を介して反応することとなり、得られるポリアリーレンスルフィドと(A)成分の相溶性を高め、耐熱性、機械特性に優れる。
また、(B)ポリアリーレンスルフィドプレポリマー中の環状ポリアリーレンスルフィドと(A)成分がアニオン重合開始剤を介して反応することで、環状ポリアリーレンスルフィドの開環重合および環拡大反応を適度に制御することができる。得られるポリアリーレンスルフィドと(A)ガラス転移温度が100℃以上の熱可塑性樹脂の相溶性低下を抑制し、単一のガラス転移温度を有する熱可塑性樹脂組成物を得ることができるため、溶融滞留後も優れた耐熱性を維持できる。
耐熱性、機械特性の観点から、(A)ガラス転移温度100℃以上の熱可塑性樹脂100重量部に対して、(C)アニオン重合開始剤は0.01重量部以上10重量部以下が好ましい。より好ましくは、0.05重量部以上5重量部以下であり、さらに好ましくは0.1重量部以上1重量部以下である。
本発明のPPS樹脂組成物には必須成分ではないが、本発明の効果を損なわない範囲で無機フィラーを配合して使用することも可能である。かかる無機フィラーの具体例としてはガラス繊維、炭素繊維、カーボンナノチューブ、カーボンナノホーン、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、炭酸カルシウムウィスカー、ワラステナイトウィスカー、硼酸アルミニウムウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状充填材、あるいはフラーレン、タルク、ワラステナイト、ゼオライト、セリサイト、マイカ、カオリン、クレー、パイロフィライト、シリカ、ベントナイト、アスベスト、アルミナシリケートなどの珪酸塩、酸化珪素、酸化マグネシウム、アルミナ、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウムなどの水酸化物、ガラスビーズ、ガラスフレーク、ガラス粉、セラミックビーズ、窒化ホウ素、炭化珪素、カーボンブラックおよびシリカ、黒鉛などの非繊維状充填材が用いられ、なかでもガラス繊維、シリカ、炭酸カルシウムが好ましく、さらに炭酸カルシウムやシリカが、防食材、滑材の効果の点から特に好ましい。またこれらの無機フィラーは中空であってもよく、さらに2種類以上併用することも可能である。また、これらの無機フィラーをイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物およびエポキシ化合物などのカップリング剤で予備処理して使用してもよい。中でも炭酸カルシウムやシリカ、カーボンブラックが、防食材、滑材、導電性付与の効果の点から好ましい。
かかる無機フィラーの配合量は、本発明の樹脂組成物の合計100重量部に対し、100重量部以下の範囲が好ましく選択され、80重量部以下の範囲がより好ましく、60重量部以下の範囲がさらに好ましく、40重量部以下の範囲が特に好ましい。下限は特にないが、0.0001重量部以上が好ましい。無機フィラーの配合量が上記好ましい範囲であると溶融流動性が阻害されることはない。無機フィラーの配合量は、流動性と剛性のバランスから用途により適宜変えることが可能である。
さらに、本発明のPAS樹脂組成物には本発明の効果を損なわない範囲において、以下に示すような樹脂を添加配合することが可能である。その具体例としては、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、変性ポリフェニレンエーテル樹脂、四フッ化ポリエチレン樹脂、エチレン・1-ブテン共重合体などのエポキシ基を含有しないオレフィン系重合体、共重合体などが挙げられる。
また、改質を目的として、以下のような化合物の添加が可能である。ポリアルキレンオキサイドオリゴマ系化合物、チオエーテル系化合物、エステル系化合物、有機リン系化合物などの可塑剤、有機リン化合物、ポリエーテルエーテルケトンなどの結晶核剤、モンタン酸ワックス類、ステアリン酸リチウム、ステアリン酸アルミ等の金属石鹸、エチレンジアミン・ステアリン酸・セバシン酸重縮合物、シリコーン系化合物などの離型剤、次亜リン酸塩などの着色防止剤、(3,9-ビス[2-(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ)-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン)などの様なフェノール系酸化防止剤、(ビス(2,4-ジ-クミルフェニル)ペンタエリスリトール-ジ-ホスファイト)などのようなリン系酸化防止剤、その他、水、滑剤、紫外線防止剤、着色剤、発泡剤などの通常の添加剤を配合することができる。上記化合物の添加量は10重量%以下が好ましく、1重量%以下がより好ましい。上記化合物の添加量がこの好ましい範囲であると、樹脂本来の特性が損なわれることがない。
本発明の実施形態の繊維強化樹脂基材は、連続した強化繊維に熱可塑性樹脂を含浸させることにより得ることができる(第一の態様)。または不連続繊維の強化繊維が分散した強化繊維材に熱可塑性樹脂を含浸させることにより得ることができる(第二の態様)。
第一の態様における、連続した強化繊維に熱可塑性樹脂を含浸させる方法としては、例えば、フィルム状の熱可塑性樹脂を溶融し、加圧することで強化繊維束に熱可塑性樹脂を含浸させるフィルム法、繊維状の熱可塑性樹脂と強化繊維束とを混紡した後、繊維状の熱可塑性樹脂を溶融し、加圧することで強化繊維束に熱可塑性樹脂を含浸させるコミングル法、粉末状の熱可塑性樹脂を強化繊維束における繊維の隙間に分散させた後、粉末状の熱可塑性樹脂を溶融し、加圧することで強化繊維束に熱可塑性樹脂を含浸させる粉末法、溶融した熱可塑性樹脂中に強化繊維束を浸し、加圧することで強化繊維束に熱可塑性樹脂を含浸させる引き抜き法が挙げられる。様々な厚み、繊維体積含有率など多品種の繊維強化樹脂基材を作製できることから、引き抜き法が好ましい。
本発明の第一の態様における繊維強化樹脂基材の厚さは、0.1~10mmが好ましい。厚さが0.1mm以上であれば、繊維強化ポリアミド樹脂基材を用いて得られる成形品の強度を向上させることができる。0.2mm以上がより好ましい。一方、厚さが1.5mm以下であれば、強化繊維に熱可塑性樹脂をより含浸させやすい。1mm以下がより好ましく、0.7mm以下がさらに好ましく、0.6mm以下がさらに好ましい。
また、本発明の第一の態様における、繊維強化樹脂基材の体積含有率は20~70体積%が好ましい。言い換えると、繊維強化樹脂基材全体(100体積%)に対して、強化繊維を20~70体積%(20体積%以上70体積%以下)含有することが好ましい。強化繊維を20体積%以上含有することにより、繊維強化樹脂基材を用いて得られる成形品の強度をより向上させることができる。30体積%以上がより好ましく、40体積%以上がさらに好ましい。一方、強化繊維を70体積%以下含有することにより、強化繊維に熱可塑性樹脂をより含浸させやすい。60体積%以下がより好ましく、55体積%以下がさらに好ましい。体積含有率は強化繊維と熱可塑性樹脂の投入量を調整することにより、所望の範囲に調整することが可能である。
繊維強化樹脂基材における強化繊維の体積含有率(Vf)は、繊維強化樹脂基材の質量W0を測定したのち、該繊維強化樹脂基材を空気中500℃で30分間加熱して熱可塑樹脂成分を焼き飛ばし、残った強化繊維の質量W1を測定し、次式により算出することができる。
Vf(体積%)=(W1/ρf)/{W1/ρf+(W0-W1)/ρ1}×100
ρf:強化繊維の密度(g/cm3)
ρr:熱可塑性樹脂の密度(g/cm3)
また、本発明の実施形態の繊維強化樹脂基材は、その用法や目的に応じて、所望の含浸性を選択することができる。例えば、より含浸性を高めたプリプレグや、半含浸のセミプレグ、含浸性の低いファブリックなどが挙げられる。一般的に、含浸性の高い成形材料ほど、短時間の成形で力学特性に優れる成形品が得られるため好ましい。
ρf:強化繊維の密度(g/cm3)
ρr:熱可塑性樹脂の密度(g/cm3)
また、本発明の実施形態の繊維強化樹脂基材は、その用法や目的に応じて、所望の含浸性を選択することができる。例えば、より含浸性を高めたプリプレグや、半含浸のセミプレグ、含浸性の低いファブリックなどが挙げられる。一般的に、含浸性の高い成形材料ほど、短時間の成形で力学特性に優れる成形品が得られるため好ましい。
本発明の第二の態様における、不連続繊維が分散した強化繊維材に熱可塑性樹脂を含浸させる方法としては、例えば、熱可塑性樹脂を押出機により供給して強化繊維材に含浸させる方法、粉末の熱可塑性樹脂を強化繊維材の繊維層に分散し溶融させる方法、熱可塑性樹脂をフィルム化して強化繊維材とラミネートする方法、熱可塑性樹脂を溶剤に溶かし溶液の状態で強化繊維材に含浸させた後に溶剤を揮発させる方法、熱可塑性樹脂を繊維化して不連続繊維との混合糸にする方法、熱可塑性樹脂の前駆体を強化繊維材に含浸させた後に重合させて熱可塑性樹脂にする方法、メルトブロー不織布を用いてラミネートする方法などが挙げられる。いずれの方法を用いてもよいが、熱可塑性樹脂を押出機により供給して強化繊維材に含浸させる方法は、熱可塑性樹脂を2次加工する必要がないという利点があり、粉末の熱可塑性樹脂を強化繊維材の繊維層に分散し溶融させる方法は、含浸がしやすいという利点があり、熱可塑性樹脂をフィルム化して強化繊維材とラミネートする方法は、比較的品質の良いものが得られるという利点がある。
本発明の第二の態様における繊維強化樹脂基材の厚さは、0.1~10mmが好ましい。厚さが0.1mm以上であれば、繊維強化樹脂基材を用いて得られる成形品の強度を向上させることができる。1mm以上がより好ましい。一方、厚さが10mm以下であれば、強化繊維材に熱可塑性樹脂をより含浸させやすい。7mm以下がより好ましく、5mm以下がさらに好ましい。
また、本発明の第二の態様における繊維強化樹脂基材の体積含有率は20~70体積%が好ましい。言い換えると、繊維強化樹脂基材全体(100体積%)中、不連続繊維を20体積%以上70体積%以下含有することが好ましい。不連続繊維を20体積%以上含有することにより、繊維強化樹脂基材を用いて得られる成形品の強度をより向上させることができる。30体積%以上がより好ましい。一方、不連続繊維を70体積%以下含有することにより、不連続繊維に熱可塑性樹脂をより含浸させやすい。60体積%以下がより好ましく、50体積%以下がさらに好ましい。前記体積含有率は、前記した式により算出することができる。
また、本発明の第二の態様における繊維強化樹脂基材は、その用法や目的に応じて、所望の含浸性を選択することができる。一般的に、含浸性の高い成形材料ほど、短時間の成形で力学特性に優れる成形品が得られるため好ましい。
本発明の第二の態様における繊維強化樹脂基材を製造するに際し、前記基材を所望の厚みや体積含有率に調整する方法としてはプレス機を用いて加熱加圧する方法が挙げられる。プレス機としては、熱可塑性樹脂の含浸に必要な温度、圧力を実現できるものであれば特に制限はなく、上下する平面状のプラテンを有する通常のプレス機や、1対のエンドレススチールベルトが走行する機構を有するいわゆるダブルベルトプレス機を用いることができる。
本発明の第一および第二の形態における繊維強化樹脂基材を、任意の構成で1枚以上積層後、必要に応じて熱および/または圧力を付与しながら成形することにより成形品が得られる。
熱および/または圧力を付与する方法としては、例えば、任意の構成で積層した繊維強化熱可塑性樹脂を型内もしくはプレス板上に設置した後、型もしくはプレス板を閉じて加圧するプレス成形法、任意の構成で積層した成形材料をオートクレーブ内に投入して加圧・加熱するオートクレーブ成形法、任意の構成で積層した成形材料をフィルムなどで包み込み、内部を減圧にして大気圧で加圧しながらオーブン中で加熱するバッギング成形法、任意の構成で積層した繊維強化熱可塑性樹脂に張力をかけながらテープを巻き付け、オーブン内で加熱するラッピングテープ法、任意の構成で積層した繊維強化末端変性ポリアミド樹脂を型内に設置し、同じく型内に設置した中子内に気体や液体などを注入して加圧する内圧成形法等が挙げられる。とりわけ、得られる成形品内のボイドが少なく、外観品位にも優れる成形品が得られることから、金型を用いてプレスする成形方法が好ましく用いられる。
プレス成形法としては、繊維強化樹脂基材を型内に予め配置しておき、型締めとともに加圧、加熱を行い、次いで型締めを行ったまま、金型の冷却により繊維強化樹脂基材を冷却して成形品を得るホットプレス法や、予め繊維強化樹脂基材を熱可塑性樹脂の溶融温度以上に、遠赤外線ヒーター、加熱板、高温オーブン、誘電加熱などの加熱装置で加熱し、熱可塑性樹脂を溶融・軟化させた状態で、前記成形型の下面となる型の上に配置し、次いで型を閉じて型締めを行い、その後加圧冷却する方法であるスタンピング成形を採用することができる。プレス成形方法については特に制限はないが、成形サイクルを早めて生産性を高める観点からは、スタンピング成形であることが望ましい。
本発明の第一および第二の形態における繊維強化樹脂基材および成形品は、インサート成形、アウトサート成形などの一体化成形や、加熱による矯正処置、熱溶着、振動溶着、超音波溶着などの生産性に優れた接着工法や接着剤を用いた一体化を行うことができ、複合体を得ることができる。
本発明の第一および第二の形態における繊維強化樹脂基材と、熱可塑性樹脂を含む成形品とが少なくとも一部で接合された複合成形品が好ましい。
本発明の第一および第二の形態における繊維強化樹脂基材と一体化される熱可塑性樹脂を含む成形品(成形用基材および成形品)には特に制限はなく、例えば、樹脂材料および成形品、金属材料および成形品、無機材料および成形品などが挙げられる。なかでも、樹脂材料および成形品が、本発明における繊維強化熱可塑性樹脂との接着強度の点で好ましい。
本発明の第一および第二の形態における繊維強化樹脂基材と一体化される成形材料および成形品のマトリックス樹脂は、繊維強化樹脂基材およびその成形品と同種の樹脂であってもよいし、異種の樹脂であってもよい。接着強度をより高めるためには、同種の樹脂であることが好ましい。異種の樹脂である場合は、界面に樹脂層を設けるとより好適である。
以下に実施例を示し、本発明を更に具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。各実施例および比較例における物性評価は下記の方法に準拠して実施した。
[体積含有率(Vf)]
各実施例および比較例により得られた繊維強化樹脂基材の質量W0を測定したのち、該繊維強化樹脂基材を空気中550℃で240分加熱して、樹脂成分を焼き飛ばし、残った強化繊維の質量W1を測定し、下記式により繊維強化樹脂基材の体積含有率(Vf)を算出した。
各実施例および比較例により得られた繊維強化樹脂基材の質量W0を測定したのち、該繊維強化樹脂基材を空気中550℃で240分加熱して、樹脂成分を焼き飛ばし、残った強化繊維の質量W1を測定し、下記式により繊維強化樹脂基材の体積含有率(Vf)を算出した。
Vf(体積%)=(W1/ρf)/{W1/ρf+(W0-W1)/ρ1}×100
ρf:強化繊維の密度(g/cm3)
ρr:樹脂組成物の密度(g/cm3)
〔ポリアリーレンスルフィドプレポリマー分子量〕
ポリアリーレンスルフィドプレポリマーの分子量はサイズ排除クロマトグラフィー(SEC)の一種であるゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレン換算で算出した。GPCの測定条件を以下に示す。
・装置:(株)センシュー科学 SSC-7100
・カラム名:(株)センシュー科学 GPC3506
・溶離液:1-クロロナフタレン
・検出器:示差屈折率検出器
・カラム温度:210℃
・プレ恒温槽温度:250℃
・ポンプ恒温槽温度:50℃
・検出器温度:210℃
・流量:1.0mL/min
・試料注入量:300μL (サンプル濃度:約0.2重量%)
<環状ポリアリーレンスルフィドの含有量の測定>
(a)環状ポリアリーレンスルフィド、(b)線状ポリアリーレンスルフィド、ポリアリーレンスルフィドプレポリマーの環状ポリアリーレンスルフィド含有量の算出は、高速液体クロマトグラフィー(HPLC)を用いて下記手法で行った。
・装置:(株)島津製作所製 LC-10Avpシリーズ
・カラム:Mightysil RP-18 GP150-4.6(5μm)
・検出器:フォトダイオードアレイ検出器(UV=270nm)。
ρf:強化繊維の密度(g/cm3)
ρr:樹脂組成物の密度(g/cm3)
〔ポリアリーレンスルフィドプレポリマー分子量〕
ポリアリーレンスルフィドプレポリマーの分子量はサイズ排除クロマトグラフィー(SEC)の一種であるゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレン換算で算出した。GPCの測定条件を以下に示す。
・装置:(株)センシュー科学 SSC-7100
・カラム名:(株)センシュー科学 GPC3506
・溶離液:1-クロロナフタレン
・検出器:示差屈折率検出器
・カラム温度:210℃
・プレ恒温槽温度:250℃
・ポンプ恒温槽温度:50℃
・検出器温度:210℃
・流量:1.0mL/min
・試料注入量:300μL (サンプル濃度:約0.2重量%)
<環状ポリアリーレンスルフィドの含有量の測定>
(a)環状ポリアリーレンスルフィド、(b)線状ポリアリーレンスルフィド、ポリアリーレンスルフィドプレポリマーの環状ポリアリーレンスルフィド含有量の算出は、高速液体クロマトグラフィー(HPLC)を用いて下記手法で行った。
・装置:(株)島津製作所製 LC-10Avpシリーズ
・カラム:Mightysil RP-18 GP150-4.6(5μm)
・検出器:フォトダイオードアレイ検出器(UV=270nm)。
[融点]
TAインスツルメント社製示差走査熱量計(DSC Q20)を用いて、各実施例および比較例により得られた樹脂組成物5~7mgを秤量し、窒素雰囲気下、20℃から昇温速度20℃/minで250℃まで昇温した。昇温したときに現れる吸熱ピークの頂点をTm(融点)とした。
TAインスツルメント社製示差走査熱量計(DSC Q20)を用いて、各実施例および比較例により得られた樹脂組成物5~7mgを秤量し、窒素雰囲気下、20℃から昇温速度20℃/minで250℃まで昇温した。昇温したときに現れる吸熱ピークの頂点をTm(融点)とした。
〔ポリマー耐熱性(DMA法)〕
各実施例および比較例より得られた樹脂組成物ペレットを融点+60℃の加工温度にて幅8mm×長さ40mm×厚み0.1mmのプレスフィルムを作成し、セイコーインスツル(株)製動的粘弾性測定装置(DMS6100)を用いて、下記測定条件にて貯蔵弾性率と損失弾性率を測定した後、損失正接tanδ(損失弾性率/貯蔵弾性率)を求めた。次いで、各測定温度と損失正接のグラフを作成し、このグラフにおいてピークを示す温度をガラス転移温度として算出した。尚、このピークの本数が少なく、且つガラス転移温度が高いほどポリマー耐熱性に優れるといえる。
・測定モード:曲げモード
・温度条件:第1ステップ50℃×2分保持、第2ステップ50℃→270℃まで昇温
・昇温速度:2℃/min
・測定周波数:1Hz
・最小張力:200mN
・歪振幅:10μm
・張力ゲイン:1.5
・力振幅初期値:2,000mN
〔繊維強化樹脂基材/耐熱性(DMA法)〕
各実施例および比較例により得られた繊維強化樹脂基材(厚み0.09mm、幅50mm)を2枚積層させ融点+60℃加工温度にてプレス加工し、幅8mm×長さ40mm×厚み0.18mmに切削加工した測定試験片を得た。この得られた試験片を用いて、セイコーインスツル(株)製動的粘弾性測定装置(DMS6100)により、下記測定条件にて測定温度110℃、120℃における貯蔵弾性率を測定した。尚、この数値が大きいほど、耐熱性に優れた繊維強化樹脂基材であるといえる。
各実施例および比較例より得られた樹脂組成物ペレットを融点+60℃の加工温度にて幅8mm×長さ40mm×厚み0.1mmのプレスフィルムを作成し、セイコーインスツル(株)製動的粘弾性測定装置(DMS6100)を用いて、下記測定条件にて貯蔵弾性率と損失弾性率を測定した後、損失正接tanδ(損失弾性率/貯蔵弾性率)を求めた。次いで、各測定温度と損失正接のグラフを作成し、このグラフにおいてピークを示す温度をガラス転移温度として算出した。尚、このピークの本数が少なく、且つガラス転移温度が高いほどポリマー耐熱性に優れるといえる。
・測定モード:曲げモード
・温度条件:第1ステップ50℃×2分保持、第2ステップ50℃→270℃まで昇温
・昇温速度:2℃/min
・測定周波数:1Hz
・最小張力:200mN
・歪振幅:10μm
・張力ゲイン:1.5
・力振幅初期値:2,000mN
〔繊維強化樹脂基材/耐熱性(DMA法)〕
各実施例および比較例により得られた繊維強化樹脂基材(厚み0.09mm、幅50mm)を2枚積層させ融点+60℃加工温度にてプレス加工し、幅8mm×長さ40mm×厚み0.18mmに切削加工した測定試験片を得た。この得られた試験片を用いて、セイコーインスツル(株)製動的粘弾性測定装置(DMS6100)により、下記測定条件にて測定温度110℃、120℃における貯蔵弾性率を測定した。尚、この数値が大きいほど、耐熱性に優れた繊維強化樹脂基材であるといえる。
〔溶融粘度〕
各実施例および比較例により得られた樹脂組成物を、100℃真空乾燥器中で12時間以上乾燥した。溶融粘度の測定装置として、キャピラリーフローメーター((株)東洋精機製作所製、キャピログラフ1C型)を用いて、径0.5mm、長さ5mmのオリフィスにて、融点+60℃、せん断速度9,728sec-1の条件で溶融粘度(滞留前溶融粘度)を測定した。ただし、該樹脂組成物を溶融させるため、5分間滞留させた後に測定を行った。この溶融粘度の値が小さいほど、高い流動性を有することを示す。
各実施例および比較例により得られた樹脂組成物を、100℃真空乾燥器中で12時間以上乾燥した。溶融粘度の測定装置として、キャピラリーフローメーター((株)東洋精機製作所製、キャピログラフ1C型)を用いて、径0.5mm、長さ5mmのオリフィスにて、融点+60℃、せん断速度9,728sec-1の条件で溶融粘度(滞留前溶融粘度)を測定した。ただし、該樹脂組成物を溶融させるため、5分間滞留させた後に測定を行った。この溶融粘度の値が小さいほど、高い流動性を有することを示す。
[含浸性および熱安定性]
各実施例および比較例により得られた繊維強化樹脂基材の厚み方向断面を以下のように観察した。繊維強化樹脂基材をエポキシ樹脂で包埋したサンプルを用意し、繊維強化樹脂基材の厚み方向断面が良好に観察できるようになるまで、前記サンプルを研磨した。研磨したサンプルを、超深度カラー3D形状測定顕微鏡VHX-9500(コントローラー部)/VHZ-100R(測定部)((株)キーエンス製)を使用して、拡大倍率400倍で撮影した。撮影範囲は、繊維強化樹脂基材の厚み×幅500μmの範囲とした。撮影画像において、樹脂が占める部位の面積および空隙(ボイド)となっている部位の面積を求め、次式により含浸率を算出した。
各実施例および比較例により得られた繊維強化樹脂基材の厚み方向断面を以下のように観察した。繊維強化樹脂基材をエポキシ樹脂で包埋したサンプルを用意し、繊維強化樹脂基材の厚み方向断面が良好に観察できるようになるまで、前記サンプルを研磨した。研磨したサンプルを、超深度カラー3D形状測定顕微鏡VHX-9500(コントローラー部)/VHZ-100R(測定部)((株)キーエンス製)を使用して、拡大倍率400倍で撮影した。撮影範囲は、繊維強化樹脂基材の厚み×幅500μmの範囲とした。撮影画像において、樹脂が占める部位の面積および空隙(ボイド)となっている部位の面積を求め、次式により含浸率を算出した。
含浸率(%)=100×(樹脂が占める部位の総面積)/{(樹脂が占める部位の総面積)+(空隙となっている部位の総面積)}
含浸性および熱安定性が高い場合はボイドが低減され、含浸性または熱安定性の少なくとも一方が低い場合はボイドが増加することから、繊維強化樹脂基材の含浸性および熱安定性は、この含浸率を判断基準とし、以下の2段階で評価し、良を合格とした。第一の態様における繊維強化樹脂基材は、融点+60℃、100℃の加工温度にて製造した。第二の態様における繊維強化樹脂基材は、融点+60℃、100℃の加工温度にて製造した。
含浸性および熱安定性が高い場合はボイドが低減され、含浸性または熱安定性の少なくとも一方が低い場合はボイドが増加することから、繊維強化樹脂基材の含浸性および熱安定性は、この含浸率を判断基準とし、以下の2段階で評価し、良を合格とした。第一の態様における繊維強化樹脂基材は、融点+60℃、100℃の加工温度にて製造した。第二の態様における繊維強化樹脂基材は、融点+60℃、100℃の加工温度にて製造した。
良 :含浸率が98%以上である。
不良:含浸率が98%未満である。
[表面品位]
各実施例および比較例により得られた繊維強化樹脂基材の表面品位を目視により観察した。表面品位は、以下の2段階で評価し、良を合格とした。
各実施例および比較例により得られた繊維強化樹脂基材の表面品位を目視により観察した。表面品位は、以下の2段階で評価し、良を合格とした。
良 :表面に割れ、マトリックス樹脂の変色、強化繊維の露出なし
不良:表面に割れ、マトリックス樹脂の変色、強化繊維の露出有り
第一の態様における繊維強化ポリアミド樹脂基材は、融点+60℃、100℃の加工温度にて製造した。第二の態様における繊維強化樹脂基材は、融点+60℃、100℃の加工温度にて製造した。
不良:表面に割れ、マトリックス樹脂の変色、強化繊維の露出有り
第一の態様における繊維強化ポリアミド樹脂基材は、融点+60℃、100℃の加工温度にて製造した。第二の態様における繊維強化樹脂基材は、融点+60℃、100℃の加工温度にて製造した。
〔原料〕
実施例及び比較例において、原料は以下に示すものを用いた。
実施例及び比較例において、原料は以下に示すものを用いた。
<参考例1>(A)ガラス転移温度100℃以上の熱可塑性樹脂
(A-1):ポリエーテルエーテルケトン樹脂(Victrex社製、品名PEEK90G、ガラス転移温度143℃)
(A-2):ポリエーテルエーテルケトン樹脂(Victrex社製、品名PEEK150PF、ガラス転移温度145℃)
(A-3):ポリエーテルケトンケトン樹脂(Arkema社製、品名PEKK7002、ガラス転移温度163℃)
(A-4):ポリエーテルイミド樹脂(Sabic社製、品名UTM1010、ガラス転移温度220℃)
<参考例2>(B)ポリアリーレンスルフィドプレポリマー
<ポリアリーレンスルフィドプレポリマー(B-1)および(B-2)の製造>
〔工程1:反応混合物の合成〕
攪拌機を具備したステンレス製オートクレーブにスルフィド化剤として48重量%の水硫化ナトリウム水溶液28.1g(水硫化ナトリウムとして0.241モル)、48重量%の水酸化ナトリウム水溶液21.1g(水酸化ナトリウムとして0.253モル)、ジハロゲン化芳香族化合物としてp-ジクロロベンゼン(p-DCB)35.4g(0.241モル)、及び有機極性溶媒としてN-メチル-2-ピロリドン(NMP)600g(6.05モル)を仕込むことで反応原料を調製した。原料に含まれる水分量は25.6g(1.42モル)であり、反応混合物中のイオウ成分1モル当たり(スルフィド化剤として仕込んだ水硫化ナトリウムに含まれるイオウ原子1モル当たり)の溶媒量は約2.43Lであった。また、反応混合物中のイオウ成分1モル当たり(仕込んだ水硫化ナトリウムに含まれるイオウ原子1モル当たり)の、アリーレン単位(仕込んだp-DCBに相当)の量は1.00モルであった。
(A-1):ポリエーテルエーテルケトン樹脂(Victrex社製、品名PEEK90G、ガラス転移温度143℃)
(A-2):ポリエーテルエーテルケトン樹脂(Victrex社製、品名PEEK150PF、ガラス転移温度145℃)
(A-3):ポリエーテルケトンケトン樹脂(Arkema社製、品名PEKK7002、ガラス転移温度163℃)
(A-4):ポリエーテルイミド樹脂(Sabic社製、品名UTM1010、ガラス転移温度220℃)
<参考例2>(B)ポリアリーレンスルフィドプレポリマー
<ポリアリーレンスルフィドプレポリマー(B-1)および(B-2)の製造>
〔工程1:反応混合物の合成〕
攪拌機を具備したステンレス製オートクレーブにスルフィド化剤として48重量%の水硫化ナトリウム水溶液28.1g(水硫化ナトリウムとして0.241モル)、48重量%の水酸化ナトリウム水溶液21.1g(水酸化ナトリウムとして0.253モル)、ジハロゲン化芳香族化合物としてp-ジクロロベンゼン(p-DCB)35.4g(0.241モル)、及び有機極性溶媒としてN-メチル-2-ピロリドン(NMP)600g(6.05モル)を仕込むことで反応原料を調製した。原料に含まれる水分量は25.6g(1.42モル)であり、反応混合物中のイオウ成分1モル当たり(スルフィド化剤として仕込んだ水硫化ナトリウムに含まれるイオウ原子1モル当たり)の溶媒量は約2.43Lであった。また、反応混合物中のイオウ成分1モル当たり(仕込んだ水硫化ナトリウムに含まれるイオウ原子1モル当たり)の、アリーレン単位(仕込んだp-DCBに相当)の量は1.00モルであった。
オートクレーブ内を窒素ガスで置換後に密封し、400rpmで撹拌しながら約1時間かけて室温から200℃まで昇温した。次いで200℃から250℃まで約0.5時間かけて昇温した。この段階の反応器内の圧力はゲージ圧で1.05MPaであった。その後250℃で2時間保持することで反応混合物を加熱し反応させた。
高圧バルブを介してオートクレーブ上部に設置した100mL容の小型タンクにp-DCBのNMP溶液(p-DCB3.54gをNMP10gに溶解)を仕込んだ。小型タンク内を約1.5MPaに加圧後タンク下部のバルブを開き、p-DCBのNMP溶液をオートクレーブ内に仕込んだ。小型タンクの壁面をNMP5gで洗浄後、このNMPもオートクレーブ内に仕込んだ。本操作により、反応混合物中のイオウ成分1モル当たりのアリーレン単位(仕込んだp-DCBの合計量に相当)は1.10モルとなった。この追加の仕込み終了後、250℃にてさらに1時間加熱を継続して反応を進行させた。その後約15分かけて230℃まで冷却した後、オートクレーブ上部に設置した高圧バルブを徐々に開放することで主としてNMPからなる蒸気を排出し、この蒸気成分を水冷冷却管にて凝集させることで、約391gの液成分を回収した後に高圧バルブを閉じて密閉した。次いで室温近傍まで急冷して、反応混合物を回収した。
得られた反応混合物の一部を大過剰の水に分散させることで水に不溶な成分を回収し、回収した水に不溶な成分を乾燥させることで固形分を得た。赤外分光分析による構造解析の結果、この固形分はアリーレンスルフィド単位からなる化合物であることが確認できた。
得られた反応混合物および反応後の脱液操作で回収した液成分をガスクロマトグラフィー、高速液体クロマトグラフィー及びイオンクロマトグラフィーにより分析した結果、スルフィド化剤として用いた水硫化ナトリウムの反応消費率は97%であった。
〔工程2:(B-2)線状ポリアリーレンスルフィドの回収〕
上記固体分離操作により反応混合物を固液分離して固形分の(B-2)線状ポリアリーレンスルフィドを得た。得られた湿潤状態の固形分に対して、約10倍量のイオン交換水を加えて分散させスラリー状とした後、80℃で30分攪拌して得られたスラリーを目開き10~16μmのガラスフィルターで吸引濾過する操作を計4回繰り返した。得られた固形分を真空乾燥機70℃で3時間処理して、(B-2)線状ポリアリーレンスルフィドとしての乾燥固体を得た。
〔工程2:(B-2)線状ポリアリーレンスルフィドの回収〕
上記固体分離操作により反応混合物を固液分離して固形分の(B-2)線状ポリアリーレンスルフィドを得た。得られた湿潤状態の固形分に対して、約10倍量のイオン交換水を加えて分散させスラリー状とした後、80℃で30分攪拌して得られたスラリーを目開き10~16μmのガラスフィルターで吸引濾過する操作を計4回繰り返した。得られた固形分を真空乾燥機70℃で3時間処理して、(B-2)線状ポリアリーレンスルフィドとしての乾燥固体を得た。
この単離した乾燥固体の分析の結果、赤外分光分析における吸収スペクトルより、これはポリアリーレンスルフィドであり、また、重量平均分子量は9,000、環状ポリアリーレンスルフィド含有量は1重量%であった。
〔工程3:(B-1)環状ポリアリーレンスルフィドの回収〕
上記工程2の固液分離操作で得られた濾液100g(環状ポリアリーレンスルフィドの濃度で2重量%)を300mL容フラスコに仕込み、フラスコ内を窒素で置換した。ついで撹拌しながら100℃に加温した後80℃に冷却した。ついで系内温度80℃にて撹拌したまま、ポンプを用いて水33gを約15分かけてゆっくりと滴下した。ここで、水の滴下終了後の濾液混合物におけるNMPと水の重量比率は75:25であった。この濾液への水の添加において、水の滴下に伴い混合物の温度は約75℃まで低下し、また、混合物中に徐々に固形分が生成し、水の滴下が終了した段階では固形分が分散したスラリー状となった。このスラリーを撹拌したまま約1時間かけて約30℃まで冷却し、次いで室温近傍で約30分間撹拌を継続した後、得られたスラリーを目開き10~16μmのガラスフィルターで吸引濾過した。得られた固形分(母液を含む)を約500gの水に分散させ80℃で15分撹拌した後、前述同様にガラスフィルターで吸引濾過する操作を計10回繰り返した。得られた固形分を真空乾燥機70℃で3時間処理して、(B-1)環状ポリアリーレンスルフィドとしての乾燥固体を得た。
〔工程3:(B-1)環状ポリアリーレンスルフィドの回収〕
上記工程2の固液分離操作で得られた濾液100g(環状ポリアリーレンスルフィドの濃度で2重量%)を300mL容フラスコに仕込み、フラスコ内を窒素で置換した。ついで撹拌しながら100℃に加温した後80℃に冷却した。ついで系内温度80℃にて撹拌したまま、ポンプを用いて水33gを約15分かけてゆっくりと滴下した。ここで、水の滴下終了後の濾液混合物におけるNMPと水の重量比率は75:25であった。この濾液への水の添加において、水の滴下に伴い混合物の温度は約75℃まで低下し、また、混合物中に徐々に固形分が生成し、水の滴下が終了した段階では固形分が分散したスラリー状となった。このスラリーを撹拌したまま約1時間かけて約30℃まで冷却し、次いで室温近傍で約30分間撹拌を継続した後、得られたスラリーを目開き10~16μmのガラスフィルターで吸引濾過した。得られた固形分(母液を含む)を約500gの水に分散させ80℃で15分撹拌した後、前述同様にガラスフィルターで吸引濾過する操作を計10回繰り返した。得られた固形分を真空乾燥機70℃で3時間処理して、(B-1)環状ポリアリーレンスルフィドとしての乾燥固体を得た。
乾燥固体をHPLCで分析した結果、単位数4~15の環状ポリアリーレンスルフィドが検出された。また、乾燥固体中の環状ポリアリーレンスルフィドの含有率は、98重量%であり、得られた乾燥固体は純度の高い環状ポリアリーレンスルフィドであることがわかった。またGPC測定の結果、この(A)環状ポリアリーレンスルフィドの重量平均分子量は1,000であった。
<参考例3>(B’)ポリアリーレンスルフィド
<PAS-1の製造>
撹拌機および底栓弁付きの70L容オートクレーブに、47.5%水硫化ナトリウム8.27kg(70.00モル)、96%水酸化ナトリウム2.91kg(69.80モル)、N-メチル-2-ピロリドン(NMP)11.45kg(115.50モル)、及びイオン交換水10.5kgを仕込み、常圧で窒素を通じながら245℃まで約3時間かけて徐々に加熱し、水14.78kgおよびNMP0.28kgを留出した後、反応容器を200℃に冷却した。仕込みアルカリ金属硫化物1モル当たりの系内残存水分量は、NMPの加水分解に消費された水分を含めて1.06モルであった。また、硫化水素の飛散量は、仕込みアルカリ金属硫化物1モル当たり0.02モルであった。
<参考例3>(B’)ポリアリーレンスルフィド
<PAS-1の製造>
撹拌機および底栓弁付きの70L容オートクレーブに、47.5%水硫化ナトリウム8.27kg(70.00モル)、96%水酸化ナトリウム2.91kg(69.80モル)、N-メチル-2-ピロリドン(NMP)11.45kg(115.50モル)、及びイオン交換水10.5kgを仕込み、常圧で窒素を通じながら245℃まで約3時間かけて徐々に加熱し、水14.78kgおよびNMP0.28kgを留出した後、反応容器を200℃に冷却した。仕込みアルカリ金属硫化物1モル当たりの系内残存水分量は、NMPの加水分解に消費された水分を含めて1.06モルであった。また、硫化水素の飛散量は、仕込みアルカリ金属硫化物1モル当たり0.02モルであった。
その後200℃まで冷却し、p-ジクロロベンゼン10.48kg(71.27モル)、NMP9.37kg(94.50モル)を加え、反応容器を窒素ガス下に密封し、240rpmで撹拌しながら0.6℃/分の速度で200℃から270℃まで昇温した。270℃で100分反応した後、オートクレーブの底栓弁を開放し、窒素で加圧しながら内容物を攪拌機付き容器に15分かけてフラッシュし、250℃でしばらく撹拌して大半のNMPを除去した。
得られた固形物およびイオン交換水76Lを撹拌機付きオートクレーブに入れ、70℃で30分洗浄した後、ガラスフィルターで吸引濾過した。次いで70℃に加熱した76Lのイオン交換水をガラスフィルターに注ぎ込み、吸引濾過してケークを得た。
得られたケークおよびイオン交換水90Lを撹拌機付きオートクレーブに仕込み、pHが7になるよう酢酸を添加した。オートクレーブ内部を窒素で置換した後、192℃まで昇温し、30分保持した。その後オートクレーブを冷却して内容物を取り出した。
内容物をガラスフィルターで吸引濾過した後、これに70℃のイオン交換水76Lを注ぎ込み吸引濾過してケークを得た。得られたケークを窒素気流下、120℃で乾燥することにより、乾燥PPSを得た。得られた乾燥PAS樹脂は1-クロロナフタレンに210℃で全溶であり、GPC測定を行った結果、重量平均分子量は20,000であり、分散度は3.10であった。
<PAS-2の製造>
撹拌機および底栓弁付きの70L容オートクレーブに、47.5%水硫化ナトリウム8.27kg(70.00モル)、96%水酸化ナトリウム2.94kg(70.63モル)、N-メチル-2-ピロリドン(NMP)11.45kg(115.50モル)、酢酸ナトリウム1.89kg(23.1モル)、及びイオン交換水5.50kgを仕込み、常圧で窒素を通じながら245℃まで約3時間かけて徐々に加熱し、水9.77kgおよびNMP0.28kgを留出した後、反応容器を200℃に冷却した。仕込みアルカリ金属硫化物1モル当たりの系内残存水分量は、NMPの加水分解に消費された水分を含めて1.06モルであった。また、硫化水素の飛散量は、仕込みアルカリ金属硫化物1モル当たり0.02モルであった。
撹拌機および底栓弁付きの70L容オートクレーブに、47.5%水硫化ナトリウム8.27kg(70.00モル)、96%水酸化ナトリウム2.94kg(70.63モル)、N-メチル-2-ピロリドン(NMP)11.45kg(115.50モル)、酢酸ナトリウム1.89kg(23.1モル)、及びイオン交換水5.50kgを仕込み、常圧で窒素を通じながら245℃まで約3時間かけて徐々に加熱し、水9.77kgおよびNMP0.28kgを留出した後、反応容器を200℃に冷却した。仕込みアルカリ金属硫化物1モル当たりの系内残存水分量は、NMPの加水分解に消費された水分を含めて1.06モルであった。また、硫化水素の飛散量は、仕込みアルカリ金属硫化物1モル当たり0.02モルであった。
その後200℃まで冷却し、p-ジクロロベンゼン10.42kg(70.86モル)、NMP9.37kg(94.50モル)を加え、反応容器を窒素ガス下に密封し、240rpmで撹拌しながら0.6℃/分の速度で200℃から270℃まで昇温し、270℃で140分反応した。その後、270℃から250℃まで15分かけて冷却しながら水2.40kg(133モル)を圧入した。ついで250℃から220℃まで75分かけて徐々に冷却した後、室温近傍まで急冷し内容物を取り出した。
内容物を約35LのNMPで希釈しスラリーとして85℃で30分撹拌後、80メッシュ金網(目開き0.175mm)で濾別して固形物を得た。得られた固形物を同様にNMP約35Lで洗浄濾別した。得られた固形物を70Lのイオン交換水で希釈し、70℃で30分撹拌後、80メッシュ金網で濾過して固形物を回収する操作を合計3回繰り返した。得られた固形物および酢酸32gを70Lのイオン交換水で希釈し、70℃で30分撹拌後、80メッシュ金網で濾過し、更に得られた固形物を70Lのイオン交換水で希釈し、70℃で30分撹拌後、80メッシュ金網で濾過して固形物を回収した。このようにして得られた固形物を窒素気流下、120℃で乾燥することにより、乾燥PASを得た。得られた乾燥PAS樹脂は1-クロロナフタレンに210℃で全溶であり、GPC測定を行った結果、重量平均分子量は48,600であり、分散度は2.66であった。
<PAS-3の製造>
撹拌機付きのステンレス製反応器1に48%水硫化ナトリウム水溶液1,169kg(10kmol)、48%水酸化ナトリウム水溶液841kg(10.1kmol)、N-メチル-2-ピロリドン(以下NMPと略する場合もある)を1,983kg(20kmol)、50%酢酸ナトリウム水溶液322kg(1.96kmol)を仕込み、常圧で窒素を通じながら約240℃まで約3時間かけて徐々に加熱し、精留塔を介して水1,280kgおよびNMP26kgを留出した。なお、この脱液操作の間に仕込んだイオウ成分1モル当たり0.02モルの硫化水素が系外に飛散した。次いで、約200℃まで冷却した後、内容物を別の攪拌機付きのステンレス製反応器2に移送した。反応器1にNMP932kgを仕込み内部を洗浄し、洗浄液を反応器2に移した。次に、p-ジクロロベンゼン1477kg(10.0kmol)を反応器2に加え、窒素ガス下に密封し、撹拌しながら200℃まで昇温した。次いで200℃から270℃まで0.6℃/分の速度で昇温し、この温度で140分保持した。水353kg(19.6kmol)を15分かけて圧入しながら250℃まで1.3℃/分の速度で冷却した。その後220℃まで0.4℃/分の速度で冷却してから、約80℃まで急冷し、スラリー(A)を得た。このスラリー(A)を2,623kgのNMPで希釈しスラリー(B)を得た。80℃に加熱したスラリー(B)をふるい(80mesh、目開き0.175mm)で濾別し、メッシュオン成分としてスラリーを含んだ顆粒状ポリフェニレンスルフィド樹脂を、濾液成分としてスラリー(C)を得た。
撹拌機付きのステンレス製反応器1に48%水硫化ナトリウム水溶液1,169kg(10kmol)、48%水酸化ナトリウム水溶液841kg(10.1kmol)、N-メチル-2-ピロリドン(以下NMPと略する場合もある)を1,983kg(20kmol)、50%酢酸ナトリウム水溶液322kg(1.96kmol)を仕込み、常圧で窒素を通じながら約240℃まで約3時間かけて徐々に加熱し、精留塔を介して水1,280kgおよびNMP26kgを留出した。なお、この脱液操作の間に仕込んだイオウ成分1モル当たり0.02モルの硫化水素が系外に飛散した。次いで、約200℃まで冷却した後、内容物を別の攪拌機付きのステンレス製反応器2に移送した。反応器1にNMP932kgを仕込み内部を洗浄し、洗浄液を反応器2に移した。次に、p-ジクロロベンゼン1477kg(10.0kmol)を反応器2に加え、窒素ガス下に密封し、撹拌しながら200℃まで昇温した。次いで200℃から270℃まで0.6℃/分の速度で昇温し、この温度で140分保持した。水353kg(19.6kmol)を15分かけて圧入しながら250℃まで1.3℃/分の速度で冷却した。その後220℃まで0.4℃/分の速度で冷却してから、約80℃まで急冷し、スラリー(A)を得た。このスラリー(A)を2,623kgのNMPで希釈しスラリー(B)を得た。80℃に加熱したスラリー(B)をふるい(80mesh、目開き0.175mm)で濾別し、メッシュオン成分としてスラリーを含んだ顆粒状ポリフェニレンスルフィド樹脂を、濾液成分としてスラリー(C)を得た。
スラリー(C)1,000kgをステンレス製反応器に仕込み、反応器内を窒素で置換してから、撹拌しながら減圧下100~150℃で約1.5時間処理して大部分の溶媒を除去した。次いでイオン交換水1,200kg(スラリー(C)の1.2倍量)を加えた後、約70℃で30分撹拌してスラリー化した。このスラリーを濾過して白色の固形物を得た。得られた固形物にイオン交換水1,200kgを加えて70℃で30分撹拌して再度スラリー化し、同様に濾過後、窒素雰囲気下120℃で乾燥したのち、80℃で減圧乾燥を行い、乾燥固形物を11.6kg得た。この固形物の赤外分光分析における吸収スペクトルより、この固形物はポリフェニレンスルフィド単位からなるポリフェニレンスルフィド混合物であることがわかった。このポリフェニレンスルフィド混合物のGPC測定を行い、クロマトグラムを解析した結果、分子量5,000以下の成分の重量分率は39%、分子量2,500以下の成分の重量分率は32%であった。
ポリフェニレンスルフィド混合物を10kg分取し、溶剤としてクロロホルム150kgを用いて、常圧還流下で1時間攪拌することでポリフェニレンスルフィド混合物と溶剤を接触させた。ついで熱時濾過により固液分離して抽出液を得た。ここで分離した固形物にクロロホルム150kgを加え、常圧還流下で1時間攪拌した後、同様に熱時濾過により固液分離して、抽出液を得て、先に得た抽出液と混合した。得られた抽出液は室温で一部固形状成分を含むスラリー状であった。
この抽出液スラリーを減圧下で処理する事で、抽出液重量が約40kgになるまでクロロホルムの一部を留去してスラリーを得た。次いでこのスラリー状混合液をメタノール600kgに撹拌しながら滴下した。これにより生じた沈殿物を濾過して固形分を回収し、次いで80℃で減圧乾燥することで白色粉末3.0kgを得た。白色粉末の収率は、用いたポリフェニレンスルフィド混合物に対して30%であった。
この白色粉末の赤外分光分析における吸収スペクトルより、白色粉末はポリフェニレンスルフィド単位からなる化合物であることを確認した。また、高速液体クロマトグラフィー(装置:(株)島津製作所製LC-10、カラム:C18、検出器:フォトダイオードアレイ)より成分分割した成分のマススペクトル分析(装置:(株)日立製作所製M-1200H)、更にMALDI-TOF-MSによる分子量情報より、この白色粉末は繰り返し単位数4~12の環状ポリフェニレンスルフィドを主要成分とする混合物であり、環状ポリフェニレンスルフィドの重量分率は94%であることがわかった。また、この混合物のGPC測定を行った結果、重量平均分子量は900であった。
得られた環状ポリフェニレンスルフィド混合物を攪拌機付5L容オートクレーブに仕込み、窒素で置換した後、真空ポンプにて約2kPaに系内を減圧しながら約1時間かけて320℃まで昇温した。この間、内温が約250℃になるまでは10rpmで攪拌し、250℃以上では50rpmで攪拌を行った。320℃到達後、減圧しながら320℃で60分間攪拌を継続した。その後、オートクレーブ上部から窒素を導入することで反応器内部を加圧し、内容物を吐出口よりガット状に取り出し、ガットをペレタイズしてペレットを得た。得られたペレットは若干黒みを帯びた樹脂であった。この生成物は赤外分光分析による吸収スペクトルよりポリフェニレンスルフィド構造を有することがわかった。また、1-クロロナフタレンに210℃で全溶であった。GPC測定の結果、得られたポリフェニレンスルフィド樹脂の重量平均分子量は55,400、分散度は2.20であることがわかった。
<参考例4>炭素繊維束
(CF-1):炭素繊維束(東レ(株)製、品名T700S-12K)
<参考例5>(C)アニオン重合開始剤
(C-1)2-メルカプトベンゾイミダゾールのナトリウム塩(東京化成工業(株)製)
〔実施例1~7、比較例1~3(樹脂組成物ペレット製造方法)〕
表1に示す炭素繊維束以外の各原料を、表1に示す割合でドライブレンドした後、真空ベントを具備した(株)日本製鋼所社製TEX30α型二軸押出機(スクリュー径30mm、L/D=45、ニーディング部5箇所、同方向回転完全噛み合い型スクリュー)を用い、スクリュー回転数300rpm、吐出量20Kg/hrにて、ダイス出樹脂温度が樹脂組成物融点+20℃となるようにシリンダー温度を設定して溶融混練し、ストランドカッターによりペレット化し、前記評価に供した。評価結果を表1に示す。
<参考例4>炭素繊維束
(CF-1):炭素繊維束(東レ(株)製、品名T700S-12K)
<参考例5>(C)アニオン重合開始剤
(C-1)2-メルカプトベンゾイミダゾールのナトリウム塩(東京化成工業(株)製)
〔実施例1~7、比較例1~3(樹脂組成物ペレット製造方法)〕
表1に示す炭素繊維束以外の各原料を、表1に示す割合でドライブレンドした後、真空ベントを具備した(株)日本製鋼所社製TEX30α型二軸押出機(スクリュー径30mm、L/D=45、ニーディング部5箇所、同方向回転完全噛み合い型スクリュー)を用い、スクリュー回転数300rpm、吐出量20Kg/hrにて、ダイス出樹脂温度が樹脂組成物融点+20℃となるようにシリンダー温度を設定して溶融混練し、ストランドカッターによりペレット化し、前記評価に供した。評価結果を表1に示す。
〔実施例1~7、比較例1~3(繊維強化樹脂基材製造方法)〕
炭素繊維束(CF-1)が巻かれたボビンを16本準備し、それぞれボビンから連続的に糸道ガイドを通じて炭素繊維束を送り出した。連続的に送り出された炭素繊維束に、含浸ダイ内において、充填したフィーダーから定量供給された、前述の方法により得られた樹脂組成物を含浸させた。含浸ダイ内で樹脂組成物を含浸した炭素繊維を、引取ロールを用いて含浸ダイのノズルから1m/minの引き抜き速度で連続的に引き抜いた。炭素繊維を引き抜く際の温度を加工温度という。引き抜かれた炭素繊維束は、冷却ロールを通過して樹脂組成物が冷却固化され、連続した繊維強化樹脂基材として巻取機に巻き取られた。得られた繊維強化樹脂基材の厚さは0.08mm、幅は50mmであり、強化繊維方向は一方向に配列し、体積含有率が60%の繊維強化樹脂基材を得た。得られた繊維強化樹脂基材を前記評価に供した。評価結果を表1に併せて示す。
炭素繊維束(CF-1)が巻かれたボビンを16本準備し、それぞれボビンから連続的に糸道ガイドを通じて炭素繊維束を送り出した。連続的に送り出された炭素繊維束に、含浸ダイ内において、充填したフィーダーから定量供給された、前述の方法により得られた樹脂組成物を含浸させた。含浸ダイ内で樹脂組成物を含浸した炭素繊維を、引取ロールを用いて含浸ダイのノズルから1m/minの引き抜き速度で連続的に引き抜いた。炭素繊維を引き抜く際の温度を加工温度という。引き抜かれた炭素繊維束は、冷却ロールを通過して樹脂組成物が冷却固化され、連続した繊維強化樹脂基材として巻取機に巻き取られた。得られた繊維強化樹脂基材の厚さは0.08mm、幅は50mmであり、強化繊維方向は一方向に配列し、体積含有率が60%の繊維強化樹脂基材を得た。得られた繊維強化樹脂基材を前記評価に供した。評価結果を表1に併せて示す。
上記、実施例1~7と比較例1~3との比較により、(A)ガラス転移温度100℃以上の熱可塑性樹脂に環状ポリアリーレンスルフィドと線状ポリアリーレンスルフィドとの混合物である(B)ポリアリーレンスルフィドプレポリマーを配合した樹脂組成物を用いた繊維強化樹脂基材は、含浸性(ポリマー流動性)と耐熱性を高位でバランス化でき、且つボイドの低減と表面品位の向上を達成できることがわかる。
本発明の第一および第二の形態における繊維強化樹脂基材およびその成形品は、その優れた特性を活かし、航空機部品、自動車部品、電気・電子部品、建築部材、各種容器、日用品、生活雑貨および衛生用品など各種用途に利用することができる。本発明の実施形態の繊維強化ポリアミド樹脂基材およびその成形品は、とりわけ、含浸性、耐熱老化性、表面外観が要求される航空機エンジン周辺部品、航空機用部品外装部品、自動車ボディー部品車両骨格、自動車エンジン周辺部品、自動車アンダーフード部品、自動車ギア部品、自動車内装部品、自動車外装部品、吸排気系部品、エンジン冷却水系部品や、自動車電装部品、電気・電子部品用途に特に好ましく用いられる。具体的には、本発明の実施形態の繊維強化末端変性ポリアミド樹脂およびその成形品は、ファンブレードなどの航空機エンジン周辺部品、ランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェイリング、リブなどの航空機関連部品、各種シート、フロントボディー、アンダーボディー、各種ピラー、各種メンバ、各種フレーム、各種ビーム、各種サポート、各種レール、各種ヒンジなどの自動車ボディー部品、エンジンカバー、エアインテークパイプ、タイミングベルトカバー、インテークマニホールド、フィラーキャップ、スロットルボディ、クーリングファンなどの自動車エンジン周辺部品、クーリングファン、ラジエータータンクのトップおよびベース、シリンダーヘッドカバー、オイルパン、ブレーキ配管、燃料配管用チューブ、廃ガス系統部品などの自動車アンダーフード部品、ギア、アクチュエーター、ベアリングリテーナー、ベアリングケージ、チェーンガイド、チェーンテンショナなどの自動車ギア部品、シフトレバーブラケット、ステアリングロックブラケット、キーシリンダー、ドアインナーハンドル、ドアハンドルカウル、室内ミラーブラケット、エアコンスイッチ、インストルメンタルパネル、コンソールボックス、グローブボックス、ステアリングホイール、トリムなどの自動車内装部品、フロントフェンダー、リアフェンダー、フューエルリッド、ドアパネル、シリンダーヘッドカバー、ドアミラーステイ、テールゲートパネル、ライセンスガーニッシュ、ルーフレール、エンジンマウントブラケット、リアガーニッシュ、リアスポイラー、トランクリッド、ロッカーモール、モール、ランプハウジング、フロントグリル、マッドガード、サイドバンパーなどの自動車外装部品、エアインテークマニホールド、インタークーラーインレット、ターボチャージャ、エキゾーストパイプカバー、インナーブッシュ、ベアリングリテーナー、エンジンマウント、エンジンヘッドカバー、リゾネーター、及びスロットルボディなどの吸排気系部品、チェーンカバー、サーモスタットハウジング、アウトレットパイプ、ラジエータータンク、オイルネーター、及びデリバリーパイプなどのエンジン冷却水系部品、コネクタやワイヤーハーネスコネクタ、モーター部品、ランプソケット、センサー車載スイッチ、コンビネーションスイッチなどの自動車電装部品、電気・電子部品としては、例えば、発電機、電動機、変圧器、変流器、電圧調整器、整流器、抵抗器、インバーター、継電器、電力用接点、開閉器、遮断機、スイッチ、ナイフスイッチ、他極ロッド、モーターケース、テレビハウジング、ノートパソコンハウジングおよび内部部品、CRTディスプレーハウジングおよび内部部品、プリンターハウジングおよび内部部品、携帯電話、モバイルパソコン、ハンドヘルド型モバイルなどの携帯端末ハウジングおよび内部部品、ICやLED対応ハウジング、コンデンサー座板、ヒューズホルダー、各種ギヤー、各種ケース、キャビネットなどの電気部品、コネクタ、SMT対応のコネクタ、カードコネクタ、ジャック、コイル、コイルボビン、センサー、LEDランプ、ソケット、抵抗器、リレー、リレーケース、リフレクタ、小型スイッチ、電源部品、コイルボビン、コンデンサー、バリコンケース、光ピックアップシャーシ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、SiパワーモジュールやSiCパワーモジュール、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、トランス部材、パラボラアンテナ、コンピューター関連部品などの電子部品などに好ましく用いられる。
Claims (4)
- 連続した強化繊維に、または不連続の繊維が分散した強化繊維材に熱可塑性樹脂を含浸させてなる繊維強化熱可塑性樹脂基材であって、前記熱可塑性樹脂が(A)ガラス転移温度100℃以上の熱可塑性樹脂100重量部に対して、(B)ポリアリーレンスルフィドプレポリマーを1重量部以上67重量部以下含む樹脂組成物で、(B)ポリアリーレンスルフィドプレポリマーが重量平均分子量5,000以下の(a)環状ポリアリーレンスルフィドと重量平均分子量が1,000以上15,000未満の(b)線状ポリアリーレンスルフィドの混合物である繊維強化樹脂基材。
- (b)線状ポリアリーレンスルフィドの重量平均分子量が5,000以上15,000未満である請求項1記載の繊維強化樹脂基材。
- (B)ポリアリーレンスルフィドプレポリマーの、 (a)環状ポリアリーレンスルフィドと(b)線状ポリアリーレンスルフィドの重量比(環状ポリアリーレンスルフィド/線状ポリアリーレンスルフィド)が0.05以上19以下である請求項1または2に記載の繊維強化樹脂基材。
- (A)ガラス転移温度100℃以上の熱可塑性樹脂がポリイミド、ポリアリールケトン、ポリスルホン、ポリアリレート、ポリフェニレンエーテル、ポリカーボネート、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニルスルホン、ポリアミドイミド、液晶ポリマーから選ばれる少なくとも1種である請求項1~3のいずれかに記載の繊維強化樹脂基材。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019537314A JPWO2020017288A1 (ja) | 2018-07-17 | 2019-07-01 | 繊維強化樹脂基材 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-134283 | 2018-07-17 | ||
JP2018134283 | 2018-07-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020017288A1 true WO2020017288A1 (ja) | 2020-01-23 |
Family
ID=69164718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/026058 WO2020017288A1 (ja) | 2018-07-17 | 2019-07-01 | 繊維強化樹脂基材 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2020017288A1 (ja) |
WO (1) | WO2020017288A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020196109A1 (ja) * | 2019-03-26 | 2020-10-01 | 東レ株式会社 | 繊維強化樹脂基材 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63178165A (ja) * | 1986-11-07 | 1988-07-22 | フィリップス・ペトロリウム・カンパニー | 成形品用ポリ(アリーレンスルフィド)組成物 |
JPH07316428A (ja) * | 1994-05-30 | 1995-12-05 | Dainippon Ink & Chem Inc | 熱可塑性樹脂組成物 |
JP2008231237A (ja) * | 2007-03-20 | 2008-10-02 | Toray Ind Inc | プリプレグおよび繊維強化複合材料 |
JP2015193812A (ja) * | 2014-03-27 | 2015-11-05 | 東レ株式会社 | 成形材料ならびにそれを用いた成形品の製造方法および成形品 |
JP2018076492A (ja) * | 2016-10-31 | 2018-05-17 | 東レ株式会社 | ポリアリーレンスルフィドプレポリマーおよびその製造方法 |
-
2019
- 2019-07-01 WO PCT/JP2019/026058 patent/WO2020017288A1/ja active Application Filing
- 2019-07-01 JP JP2019537314A patent/JPWO2020017288A1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63178165A (ja) * | 1986-11-07 | 1988-07-22 | フィリップス・ペトロリウム・カンパニー | 成形品用ポリ(アリーレンスルフィド)組成物 |
JPH07316428A (ja) * | 1994-05-30 | 1995-12-05 | Dainippon Ink & Chem Inc | 熱可塑性樹脂組成物 |
JP2008231237A (ja) * | 2007-03-20 | 2008-10-02 | Toray Ind Inc | プリプレグおよび繊維強化複合材料 |
JP2015193812A (ja) * | 2014-03-27 | 2015-11-05 | 東レ株式会社 | 成形材料ならびにそれを用いた成形品の製造方法および成形品 |
JP2018076492A (ja) * | 2016-10-31 | 2018-05-17 | 東レ株式会社 | ポリアリーレンスルフィドプレポリマーおよびその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020196109A1 (ja) * | 2019-03-26 | 2020-10-01 | 東レ株式会社 | 繊維強化樹脂基材 |
US20220162408A1 (en) * | 2019-03-26 | 2022-05-26 | Toray Industries, Inc. | Fiber-reinforced resin base material |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020017288A1 (ja) | 2021-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020017287A1 (ja) | 繊維強化樹脂基材 | |
JP4432971B2 (ja) | ポリアリーレンスルフィドの製造方法 | |
KR102011539B1 (ko) | 폴리아릴렌 설파이드 수지 조성물, 상기 수지 조성물의 제조 방법, 및 상기 수지 조성물의 성형품 | |
JP6497110B2 (ja) | ポリフェニレンスルフィド樹脂組成物 | |
KR102279432B1 (ko) | 폴리페닐렌술피드 블록 공중합체 및 그의 제조 방법 | |
JP6561507B2 (ja) | 成形材料ならびにそれを用いた成形品の製造方法および成形品 | |
JP4905417B2 (ja) | 環式ポリアリーレンスルフィドの製造方法 | |
WO2020017288A1 (ja) | 繊維強化樹脂基材 | |
WO2019151288A1 (ja) | ポリアリーレンスルフィド共重合体およびその製造方法 | |
JP7276429B2 (ja) | 繊維強化樹脂基材 | |
WO2021100758A1 (ja) | 自動車冷却部品用ポリフェニレンスルフィド樹脂組成物および自動車冷却部品 | |
WO2021100757A1 (ja) | 自動車冷却部品用ポリフェニレンスルフィド樹脂組成物および自動車冷却部品 | |
JP2018053195A (ja) | ポリアリーレンスルフィドの製造方法 | |
JP2022010455A (ja) | ポリフェニレンスルフィド樹脂組成物、および成形品 | |
JP6613582B2 (ja) | 樹脂組成物およびその製造方法 | |
EP4410895A1 (en) | Polyarylene sulfide resin composition and molded article | |
JP2023056224A (ja) | 繊維強化樹脂基材 | |
EP4122976A1 (en) | Fiber-reinforced thermoplastic resin substrate | |
EP4006086A1 (en) | Fiber-reinforced polyarylene sulfide copolymer composite substrate, method for manufacturing same, and molded article including same | |
JP5516312B2 (ja) | 環式ポリアリーレンスルフィドの回収方法 | |
CN118043401A (zh) | 聚芳撑硫醚树脂组合物和成型品 | |
JP2017057367A (ja) | 熱可塑性樹脂組成物およびその製造方法 | |
JP2020012037A (ja) | 熱可塑性樹脂組成物およびそれを含む成形品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019537314 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19838548 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19838548 Country of ref document: EP Kind code of ref document: A1 |