WO2020017033A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2020017033A1
WO2020017033A1 PCT/JP2018/027311 JP2018027311W WO2020017033A1 WO 2020017033 A1 WO2020017033 A1 WO 2020017033A1 JP 2018027311 W JP2018027311 W JP 2018027311W WO 2020017033 A1 WO2020017033 A1 WO 2020017033A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
stage
base
power conversion
power converter
Prior art date
Application number
PCT/JP2018/027311
Other languages
English (en)
French (fr)
Inventor
重幸 中林
貞國 仁志
昇太郎 村上
育篤 宇田川
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2018/027311 priority Critical patent/WO2020017033A1/ja
Priority to US17/257,739 priority patent/US11901834B2/en
Priority to JP2020530849A priority patent/JP6875604B2/ja
Publication of WO2020017033A1 publication Critical patent/WO2020017033A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters

Definitions

  • the present invention relates to a power conversion device in which stages on which power conversion units are mounted are stacked.
  • Patent Document 1 discloses a semiconductor power conversion device in which a high-speed switching element stack and a stage on which a high-speed diode stack is mounted are stacked.
  • a support member having a brace structure for example, by fixing a support member having a brace structure between the stages, it is possible to improve the earthquake resistance of the power conversion device.
  • a support member having a brace structure often requires precise design in accordance with the distance between stages of the power converter.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to reduce a manufacturing cost and an assembly cost in a power conversion device in which a stage on which a power conversion unit is mounted is stacked. It is to improve the earthquake resistance of the power conversion device.
  • the power conversion device includes a base, a first stage, a first support, a first panel, and a second panel. At least one first power conversion unit is mounted on the first stage.
  • the first support extends in a direction normal to the base, and is fixed to the base and the first stage.
  • the first panel and the second panel are arranged on the base and support the first stage in a normal direction.
  • the first panel and the second panel are integrally formed so as to cross each other.
  • the first panel and the second panel integrally formed so as to intersect with each other can improve the earthquake resistance while reducing the manufacturing cost and the assembly cost.
  • FIG. 2 is a circuit block diagram illustrating a configuration of a power conversion device according to an embodiment.
  • FIG. 2 is an external perspective view of the arm of FIG. 1.
  • FIG. 3 is an external perspective view of a support member arranged on a base in FIG. 2.
  • FIG. 3 is a plan view of a support member arranged on a base in FIG. 2 when viewed from the Z-axis direction.
  • FIG. 3 is an external perspective view of a support member arranged on the stage in FIG. 2.
  • FIG. 3 is a plan view of a support member arranged on the stage in FIG. 2 viewed from the Z-axis direction. It is an external appearance perspective view of the power converter concerning a comparative example.
  • FIG. 1 is a circuit block diagram showing a configuration of a power conversion device 100 according to the embodiment.
  • the power conversion device 100 includes a modular multilevel converter (hereinafter referred to as MMC) 2 and a control device 3 that controls the MMC 2.
  • MMC modular multilevel converter
  • the control device 3 controls the MMC 2.
  • the power converter 100 including the MMC 2 capable of increasing the withstand voltage and the capacity, it is possible to perform, for example, ultra-high voltage direct current (UHVDC).
  • UHVDC ultra-high voltage direct current
  • MMC2 is connected to power system 1 via transformer 4.
  • MMC 2 includes a transformer 4 and three-phase (U-phase, V-phase, W-phase) AC lines UL, VL, WL.
  • Transformer 4 includes three primary windings and three secondary windings. The three primary windings are connected to three-phase transmission lines 1u, 1v, 1w of the power system 1, respectively. The three secondary windings are connected to one terminals of the AC lines UL, VL, WL, respectively.
  • MMC2 further includes arms A1 to A3.
  • the arm A1 is connected between the other terminal of the AC line UL and the other terminal of the AC line VL.
  • the arm A2 is connected between the other terminal of the AC line VL and the other terminal of the AC line WL.
  • the arm A3 is connected between the other terminal of the AC line WL and the other terminal of the AC line UL. That is, the arms A1 to A3 are connected in a delta connection.
  • Each of the arms A1 to A3 has a plurality of power conversion units U connected in series.
  • Each of the plurality of power conversion units U performs bidirectional power conversion according to a control signal from control device 3.
  • FIG. 2 is an external perspective view of the arm A1 in FIG.
  • the power conversion device 100 includes power conversion units U1 to U16, a stage ST1 (first stage), a stage ST2 (second stage), support members S1a, S1b, S2a, and S2b.
  • Base BS1 base supports P11 to P25 (first support), and stage supports P1 to P9 (second support).
  • Each of power conversion units U1 to U16 corresponds to power conversion unit U in FIG.
  • the power conversion units U1 to U16 are connected in series.
  • Each of the base pillars P11 to P25 extending in the normal direction (Z-axis direction) of the base BS1 is fixed to the base BS1 and the stage ST1.
  • Power conversion units U1 to U8 are mounted on stage ST1.
  • the base posts P11 to P25 include insulators G11 to G25 on the outer peripheral portion, respectively. That is, the outer peripheral surfaces of the base posts P11 to P25 are formed of an insulator. Since the outer peripheral surface of each of base supports P11 to P25 is formed of an insulator, even if a potential difference occurs between base BS1 and stage ST1 during operation of power conversion device 100, base supports P11 to P25 are in contact with each other. The electric shock caused by the operation can be suppressed.
  • Each of the support members S1a and S1b is arranged on the base BS1, and supports the stage ST1 in the Z-axis direction. Since the support members S1a and S1b suppress the swing of the stage ST1, the earthquake resistance of the power conversion device 100 can be improved.
  • FIG. 3 is an external perspective view of each of the support members S1a and S1b arranged on the base BS1 of FIG.
  • FIG. 4 is a plan view of each of the support members S1a and S1b arranged on the base BS1 of FIG. 2 when viewed from the Z-axis direction. 3 and 4, the support members S1a and S1b are referred to as S1.
  • the support member S1 includes a panel S11 (first panel) and a panel S12 (second panel).
  • the panels S11 and S12 are integrally formed so as to be orthogonal to each other.
  • Each of the panels S11 and S12 is formed of an insulator.
  • the stage ST1 is supported by the panels S11 and S12 in a well-balanced manner against vibrations in any direction, so that the earthquake resistance of the power converter 100 is further improved. Can be. Further, since each of panels S11 and S12 is formed of an insulator, a potential difference between base BS1 and stage ST1 generated during operation of power conversion device 100 is maintained. Can be prevented.
  • stages ST1 and ST2 are connected by stage supports P1 to P9 extending in the Z-axis direction.
  • Power conversion units U9 to U16 are mounted on stage ST2.
  • the stage supports P1 to P9 include insulators G1 to G9 on the outer peripheral portion, respectively. That is, the outer peripheral surfaces of the stage posts P1 to P9 are formed of an insulator. Since the outer peripheral surfaces of the stage supports P1 to P9 are formed of an insulator, even if a potential difference occurs between the stages ST1 and ST2 during the operation of the power converter 100, the stage supports P1 to P9 can be contacted. Electric shock due to the above can be suppressed.
  • Each of the support members S2a and S2b is arranged on the stage ST1, and supports the stage ST2 in the Z-axis direction.
  • the support members S2a and S2b can suppress the swing of the stage ST2, and thus can improve the earthquake resistance of the power conversion device 100.
  • FIG. 5 is an external perspective view of each of the support members S2a and S2b arranged on the stage ST1 of FIG.
  • FIG. 6 is a plan view of each of the support members S2a and S2b arranged on the stage ST1 of FIG. 2 viewed from the Z-axis direction. 5 and 6, the support members S2a and S2b are referred to as S2.
  • the support member S2 includes a panel S21 (third panel), a panel S22 (fourth panel), and a panel S23 (fourth panel).
  • the panel S21 and the panel S22 are integrally formed so as to be orthogonal to each other.
  • the panels S21 and S23 are integrally formed so as to be orthogonal to each other.
  • Each of the panels S21 to S23 is formed of an insulator.
  • the stage ST2 is supported by the panels S21 to S23 in a well-balanced manner in any direction of vibration.
  • the earthquake resistance of the device 100 can be further improved.
  • each of panels S21 to S23 is formed of an insulator, a potential difference between stages ST1 and ST2 generated during operation of power conversion device 100 is maintained, so that operation of power conversion device 100 is started. Can be prevented.
  • FIG. 7 is an external perspective view of a power converter 900 according to a comparative example.
  • the configuration of the power converter 900 is such that the support members S1a, S1b, S2a, and S2b are removed from the configuration of the power converter 100 of FIG. 2, and support members S9a to S9h are added.
  • the configuration other than these is the same, and thus the description will not be repeated.
  • each of the support members S9a to S9h has a brace structure in which two columnar members are integrally formed so as to cross each other.
  • Each of the support members S9a to S9d is fixed to the base BS1 and the stage ST1.
  • Each of the support members S9e to S9h is fixed to the stages ST1 and ST2.
  • each of the support members S9a to S9d in FIG. 7 it is necessary to form a brace structure by determining the intersection angle of the two columnar members and the length of the columnar members in accordance with the distance between the base BS1 and the stage ST1. .
  • each of the support members S1a and S1b in FIG. 2 it is necessary to determine the height of each panel in accordance with the distance between the base BS1 and the stage ST1, while the intersection angle between the two panels is independent of the distance. Can be determined.
  • each of the support members S2a and S2b it is necessary to determine the height of each panel according to the interval between the stages ST1 and ST2, while the intersection angle between the two panels is determined independently of the interval. can do.
  • the support members S9a to S9d require a more precise design than the support members S1a, S1b, S2a, and S2b. Therefore, the manufacturing cost of each of the support members S9a to S9d may be higher than the manufacturing cost of each of the support members S1a, S1b, S2a, and S2b. By using the support members S1a, S1b, S2a, and S2b, the manufacturing cost of the power conversion device 100 can be lower than the manufacturing cost of the power conversion device 900.
  • each of the support members S9a to S9d needs to be fixed to the base BS1 and the stage ST1.
  • each of the support members S9e to S9h needs to be fixed to the stages ST1 and ST2.
  • the support members S1a and S1b do not need to be fixed to the base BS1 and the stage ST1, and the support members S2a and S2b do not need to be fixed to the stages ST1 and ST2. Therefore, the assembly cost of the power conversion device 900 of FIG. 7 can be higher than the assembly cost of the power conversion device 100 of FIG.
  • the assembly cost of the power conversion device 100 can be lower than the assembly cost of the power conversion device 900.
  • the earthquake resistance can be improved while reducing the manufacturing cost and the assembly cost.
  • 1 power system 1u ⁇ 1w transmission line, 3 control device, 4 transformer, 100,900 power converter, A1 ⁇ A3 arm, BS1 base, G1 ⁇ G9, G11 ⁇ G25 insulator, P1 ⁇ P9 stage support, P11 ⁇ P25 base support, S1, S1b, S1a, S2b, S2a, S2, S9a to S9h support member, S11, S12, S21 to S23 panel, ST1, ST2 stage, U, U1 to U16 power conversion unit, UL, VL, WL AC line.

Abstract

電力変換装置(100)は、ベース(BS1)と、第1ステージ(ST1)と、第1支持部(P11~P25)と、サポート部材(S1a,S1b)とを備える。第1ステージ(ST1)には、少なくとも1つの第1電力変換ユニット(U1~U8)が積載されている。第1支持部(P11~P25)は、ベース(BS1)の法線方向(Z軸方向)に延在し、ベース(BS1)および第1ステージ(ST1)に固定されている。サポート部材(S1a,S1b)は、第1パネルおよび第2パネルを含む。第1パネルおよび第2パネルは、ベース(BS1)に配置され、Z軸方向に第1ステージ(ST1)を支持する。第1パネルおよび第2パネルは、互いに交差するように一体的に形成されている。

Description

電力変換装置
 本発明は、電力変換ユニットが積載されたステージが積み重ねられた電力変換装置に関する。
 従来から、電力変換ユニットが積載されたステージが積み重ねられた電力変換装置が知られている。たとえば、特開平10-323015号公報(特許文献1)には、高速スイッチング素子スタックおよび、高速ダイオードスタックが積載されたステージが積み重ねられた半導体電力変換装置が開示されている。
特開平10-323015号公報
 電力変換ユニットが積載されたステージの積み重ね数が増加するほど、電力変換装置の重心が高くなるため、電力変換ユニットの安定性が低下する。その結果、電力変換装置の耐震性が低下し得る。
 たとえばブレース構造を有するサポート部材をステージ間に固定することにより、電力変換装置の耐震性を向上させることができる。しかし、ブレース構造を有するサポート部材には、電力変換装置のステージ間の間隔等に合わせた精密な設計が必要となることが多い。
 本発明は上記のような課題を解決するためになされたものであり、その目的は、電力変換ユニットが積載されたステージが積み重ねられた電力変換装置において、製造コストおよび組立コストを低減しながら、当該電力変換装置の耐震性を向上させることである。
 本発明に係る電力変換装置は、ベースと、第1ステージと、第1支持部と、第1パネルと、第2パネルとを備える。第1ステージには、少なくとも1つの第1電力変換ユニットが積載されている。第1支持部は、ベースの法線方向に延在し、ベースおよび第1ステージに固定されている。第1パネルおよび第2パネルは、ベースに配置され、法線方向に第1ステージを支持する。第1パネルおよび第2パネルは、互いに交差するように一体的に形成されている。
 本発明に係る電力変換装置によれば、互いに交差するように一体的に形成された第1パネルおよび第2パネルにより、製造コストおよび組立コストを低減しながら、耐震性を向上させることができる。
実施の形態に係る電力変換装置の構成を示す回路ブロック図である。 図1のアームの外観斜視図である。 図2のベースに配置されたサポート部材の外観斜視図である。 図2のベースに配置されたサポート部材をZ軸方向から平面視した図である。 図2のステージに配置されたサポート部材の外観斜視図である。 図2のステージに配置されたサポート部材をZ軸方向から平面視した図である。 比較例に係る電力変換装置の外観斜視図である。
 図1は、実施の形態に係る電力変換装置100の構成を示す回路ブロック図である。図1に示されるように、電力変換装置100は、モジュラー・マルチレベル変換器(Modular Multilevel Converter:以下、MMCと称する)2と、MMC2を制御する制御装置3とを備える。高耐圧大容量化が可能なMMC2を備える電力変換装置100によれば、たとえば超高圧直流送電(UHVDC:UltraHigh-Voltage Direct Current)を行なうことができる。
 MMC2は、変圧器4を介して電力系統1に接続されている。MMC2は、変圧器4と、三相(U相,V相,W相)の交流ラインUL,VL,WLとを含む。変圧器4は、3つの一次巻線および3つの二次巻線を含む。3つの一次巻線は、電力系統1の三相の送電線1u,1v,1wにそれぞれ接続される。3つの二次巻線は、交流ラインUL,VL,WLの一方端子にそれぞれ接続される。
 MMC2は、アームA1~A3をさらに含む。アームA1は、交流ラインULの他方端子と交流ラインVLの他方端子との間に接続される。アームA2は、交流ラインVLの他方端子と交流ラインWLの他方端子との間に接続される。アームA3は交流ラインWLの他方端子と交流ラインULの他方端子との間に接続される。すなわち、アームA1~A3はデルタ結線で接続されている。
 アームA1~A3の各々は、直列に接続された複数の電力変換ユニットUを有する。複数の電力変換ユニットUの各々は、制御装置3からの制御信号に従って双方向の電力変換を行なう。
 図2は、図1のアームA1の外観斜視図である。図2に示されるように、電力変換装置100は、電力変換ユニットU1~U16と、ステージST1(第1ステージ)と、ステージST2(第2ステージ)と、サポート部材S1a,S1b,S2a,S2bと、ベースBS1と、ベース支柱P11~P25(第1支持部)と、ステージ支柱P1~P9と(第2支持部)とを備える。電力変換ユニットU1~U16の各々は、図1の電力変換ユニットUに対応する。電力変換ユニットU1~U16は、直列に接続されている。
 ベースBS1の法線方向(Z軸方向)に延在するベース支柱P11~P25の各々は、ベースBS1およびステージST1に固定されている。ステージST1には、電力変換ユニットU1~U8が積載されている。ベース支柱P11~P25は、外周部分に碍子G11~G25をそれぞれ含む。すなわち、ベース支柱P11~P25の各外周面は、絶縁体で形成されている。ベース支柱P11~P25の各外周面が、絶縁体で形成されていることにより、電力変換装置100の動作時にベースBS1とステージST1との間に電位差が生じても、ベース支柱P11~P25に接触することによる感電を抑制することができる。
 サポート部材S1a,S1bの各々は、ベースBS1に配置され、Z軸方向にステージST1を支持する。サポート部材S1a,S1bは、ステージST1の揺れを抑制するため、電力変換装置100の耐震性を向上させることができる。
 図3は、図2のベースBS1に配置されたサポート部材S1a,S1b各々の外観斜視図である。図4は、図2のベースBS1に配置されたサポート部材S1a,S1b各々をZ軸方向から平面視した図である。図3,図4においては、サポート部材S1a,S1bをS1として参照する。
 図3および図4に示されるように、サポート部材S1は、パネルS11(第1パネル)と、パネルS12(第2パネル)とを含む。パネルS11,S12は、互いに直交するように一体的に形成されている。パネルS11,S12の各々は、絶縁体で形成されている。
 パネルS11,S12が互いに直交していることにより、どのような方向の振動に対してもパネルS11,S12によってステージST1がバランスよく支持されるため、電力変換装置100の耐震性をより向上させることができる。また、パネルS11,S12の各々が絶縁体で形成されていることにより、電力変換装置100の動作時に生じたベースBS1とステージST1との間の電位差が維持されるため、電力変換装置100の動作への影響を防止することができる。
 再び図2を参照して、ステージST1とST2とは、Z軸方向に伸びるステージ支柱P1~P9によって接続されている。ステージST2には、電力変換ユニットU9~U16が積載されている。ステージ支柱P1~P9は、外周部分に碍子G1~G9をそれぞれ含む。すなわち、ステージ支柱P1~P9の各外周面は、絶縁体で形成されている。ステージ支柱P1~P9の各外周面が絶縁体で形成されていることにより、電力変換装置100の動作時にステージST1とST2との間に電位差が生じても、ステージ支柱P1~P9に接触することによる感電を抑制することができる。
 サポート部材S2a,S2bの各々は、ステージST1に配置され、Z軸方向にステージST2を支持する。サポート部材S2a,S2bは、ステージST2の揺れを抑制するため、電力変換装置100の耐震性を向上させることができる。
 図5は、図2のステージST1に配置されたサポート部材S2a,S2b各々の外観斜視図である。図6は、図2のステージST1に配置されたサポート部材S2a,S2b各々をZ軸方向から平面視した図である。図5,図6においては、サポート部材S2a,S2bをS2として参照する。
 図5および図6に示されるように、サポート部材S2は、パネルS21(第3パネル)と、パネルS22(第4パネル)と、パネルS23(第4パネル)とを含む。パネルS21,パネルS22は、互いに直交するように一体的に形成されている。パネルS21,S23は、互いに直交するように一体的に形成されている。パネルS21~S23の各々は、絶縁体で形成されている。
 パネルS21,S22が互いに直交するとともに、パネルS21,S23が互いに直交していることにより、どのような方向の振動に対してもパネルS21~S23によってステージST2がバランスよく支持されるため、電力変換装置100の耐震性をより向上させることができる。また、パネルS21~S23の各々が絶縁体で形成されていることにより、電力変換装置100の動作時に生じたステージST1とST2との間の電位差が維持されるため、電力変換装置100の動作への影響を防止することができる。
 図7は、比較例に係る電力変換装置900の外観斜視図である。電力変換装置900の構成は、図2の電力変換装置100の構成からサポート部材S1a,S1b,S2a,S2bが除かれて、サポート部材S9a~S9hが加えられた構成である。これら以外の構成は同様であるため説明を繰り返さない。
 図7に示されるように、サポート部材S9a~S9hの各々は、2つの柱状部材が互いに交差するように一体的に形成されたブレース構造を有する。サポート部材S9a~S9dの各々は、ベースBS1,ステージST1に固定されている。サポート部材S9e~S9hの各々は、ステージST1,ST2に固定されている。
 図7のサポート部材S9a~S9dの各々においては、ベースBS1とステージST1との間隔に合わせて2つの柱状部材の交差角度をおよび柱状部材の長さを決定してブレース構造を形成する必要がある。同様に、サポート部材S9e~S9hの各々においては、ステージST1とST2との間隔に合わせて2つの柱状部材の交差角度および長さを決定してブレース構造を形成する必要がある。
 図2のサポート部材S1a,S1bの各々においては、ベースBS1とステージST1との間隔に合わせて各パネルの高さを決定する必要がある一方、2つのパネルの交差角度は当該間隔とは無関係に決定することができる。同様に、サポート部材S2a,S2bの各々においては、ステージST1とST2との間隔に合わせて各パネルの高さを決定する必要がある一方、2つのパネルの交差角度は当該間隔とは無関係に決定することができる。
 サポート部材S9a~S9dにおいては、サポート部材S1a,S1b,S2a,S2bよりも精密な設計が必要とされる。そのため、サポート部材S9a~S9dの各々の製造コストは、サポート部材S1a,S1b,S2a,S2bの各々の製造コストよりも高くなり得る。サポート部材S1a,S1b,S2a,S2bを用いることにより、電力変換装置100の製造コストを電力変換装置900の製造コストよりも低減することができる。
 また、サポート部材S9a~S9dの各々は、ベースBS1,ステージST1に固定される必要がある。同様に、サポート部材S9e~S9hの各々は、ステージST1,ST2に固定される必要がある。一方、サポート部材S1a,S1bはベースBS1,ステージST1に固定される必要はなく、サポート部材S2a,S2bはステージST1,ST2に固定される必要はない。そのため、図7の電力変換装置900の組立コストは、図2の電力変換装置100の組立コストよりも高くなり得る。サポート部材S1a,S1b,S2a,S2bを用いることにより、電力変換装置100の組立コストを電力変換装置900の組立コストよりも低減することができる。
 以上、実施の形態に係る電力変換装置によれば、製造コストおよび組立コストを低減しながら、耐震性を向上させることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 電力系統、1u~1w 送電線、3 制御装置、4 変圧器、100,900 電力変換装置、A1~A3 アーム、BS1 ベース、G1~G9,G11~G25 碍子、P1~P9 ステージ支柱、P11~P25 ベース支柱、S1,S1b,S1a,S2b,S2a,S2,S9a~S9h サポート部材、S11,S12,S21~S23 パネル、ST1,ST2 ステージ、U,U1~U16 電力変換ユニット、UL,VL,WL 交流ライン。

Claims (8)

  1.  ベースと、
     少なくとも1つの第1電力変換ユニットが積載された第1ステージと、
     前記ベースの法線方向に延在し、前記ベースおよび前記第1ステージに固定された第1支持部と、
     前記ベースに配置され、前記法線方向に前記第1ステージを支持する第1パネルおよび第2パネルとを備え、
     前記第1パネルおよび前記第2パネルは、互いに交差するように一体的に形成されている、電力変換装置。
  2.  前記第1パネルは、前記第2パネルに直交している、請求項1に記載の電力変換装置。
  3.  前記第1パネルおよび前記第2パネルの各々は、絶縁体で形成されている、請求項1または2に記載の電力変換装置。
  4.  前記第1支持部は、前記法線方向に延在し、外周面が絶縁体で形成された複数のベース支柱を含む、請求項1~3のいずれか1項に記載の電力変換装置。
  5.  少なくとも1つの第2電力変換ユニットが積載された第2ステージと、
     前記法線方向に延在し、前記第1ステージおよび前記第2ステージに固定された第2支持部と、
     前記第1ステージに配置され、前記法線方向に前記第2ステージを支持する第3パネルおよび第4パネルとをさらに備え、
     前記第3パネルおよび前記第4パネルは、互いに交差するように一体的に形成されている、請求項1~4のいずれか1項に記載の電力変換装置。
  6.  前記第3パネルは、前記第4パネルに直交している、請求項5に記載の電力変換装置。
  7.  前記第3パネルおよび前記第4パネルの各々は、絶縁体で形成されている、請求項5または6に記載の電力変換装置。
  8.  前記第2支持部は、前記法線方向に延在し、外周面が絶縁体で形成された複数のステージ支柱を含む、請求項5~7のいずれか1項に記載の電力変換装置。
PCT/JP2018/027311 2018-07-20 2018-07-20 電力変換装置 WO2020017033A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/027311 WO2020017033A1 (ja) 2018-07-20 2018-07-20 電力変換装置
US17/257,739 US11901834B2 (en) 2018-07-20 2018-07-20 Power conversion device supported by intersecting panel
JP2020530849A JP6875604B2 (ja) 2018-07-20 2018-07-20 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027311 WO2020017033A1 (ja) 2018-07-20 2018-07-20 電力変換装置

Publications (1)

Publication Number Publication Date
WO2020017033A1 true WO2020017033A1 (ja) 2020-01-23

Family

ID=69163816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027311 WO2020017033A1 (ja) 2018-07-20 2018-07-20 電力変換装置

Country Status (3)

Country Link
US (1) US11901834B2 (ja)
JP (1) JP6875604B2 (ja)
WO (1) WO2020017033A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210273576A1 (en) * 2018-07-20 2021-09-02 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
JP7008895B1 (ja) * 2021-05-24 2022-01-25 三菱電機株式会社 電力変換装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6965461B1 (ja) * 2020-04-23 2021-11-10 東芝三菱電機産業システム株式会社 電力変換装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118533A (en) * 1978-03-08 1979-09-14 Hitachi Ltd Thyristor valve
JPS60174066A (ja) * 1984-02-20 1985-09-07 Toshiba Corp サイリスタバルブ
CN105071402A (zh) * 2015-07-24 2015-11-18 国家电网公司 一种用于静止无功补偿器的晶闸管阀
JP6345379B1 (ja) * 2017-08-09 2018-06-20 三菱電機株式会社 電力変換装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640663A (en) * 1979-09-10 1981-04-16 Mcneilab Inc Manufacture of pyrrolee22acetate
US4748539A (en) * 1986-01-22 1988-05-31 Mitsubishi Denki Kabushiki Kaisha Circuit board supporting arrangement for electronic equipment
US4703395A (en) * 1986-09-26 1987-10-27 Corra-Board Products Co., Inc. Breadboard panel construction for electronic circuitry
US4827372A (en) * 1988-06-10 1989-05-02 James L. Day Co., Inc. Mounting assembly
JP2745732B2 (ja) * 1989-10-27 1998-04-28 松下電器産業株式会社 ラックマウントケース
JP2809026B2 (ja) * 1992-09-30 1998-10-08 三菱電機株式会社 インバ−タ装置およびインバ−タ装置の使用方法
JP3420021B2 (ja) 1997-05-19 2003-06-23 株式会社東芝 半導体電力変換装置
DE19937671B4 (de) * 1999-08-10 2011-04-21 Siemens Ag Luftgekühlte Stromrichter-Brückenschaltung
US20030218057A1 (en) * 2000-11-07 2003-11-27 Craig Joseph Electrical bus with associated porous metal heat sink and method of manufacturing same
US20030033463A1 (en) * 2001-08-10 2003-02-13 Garnett Paul J. Computer system storage
US7113405B2 (en) * 2004-05-27 2006-09-26 Eaton Power Quality Corporation Integrated power modules with a cooling passageway and methods for forming the same
US7248483B2 (en) * 2004-08-19 2007-07-24 Xantrex Technology, Inc. High power density insulated metal substrate based power converter assembly with very low BUS impedance
US7411796B2 (en) * 2005-06-30 2008-08-12 Samsung Electronics Co., Ltd. Display apparatus having a display module that supports various functions
WO2008074274A1 (de) * 2006-12-21 2008-06-26 Siemens Aktiengesellschaft Mechanischer aufbau eines modularen multilevel-stromrichters, dessen stromrichtermodule an den energiespeichern tragend befestigt sind
KR101243515B1 (ko) * 2008-03-20 2013-03-20 에이비비 테크놀로지 아게 전압 소스 컨버터
JP5249365B2 (ja) * 2011-01-26 2013-07-31 三菱電機株式会社 電力変換装置
DE102011006987A1 (de) * 2011-04-07 2012-10-11 Siemens Aktiengesellschaft Modulares Stromrichterschranksystem
US9099914B2 (en) * 2011-06-29 2015-08-04 Siemens Aktiengesellschaft Packaging of power supply using modular electronic modules
EP2858230B1 (en) * 2012-05-31 2020-12-02 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion apparatus
DE202013004551U1 (de) * 2013-05-16 2013-07-11 Abb Technology Ag IGBT-Umrichtereinheit mit Kühlsystem und Schaltschrank für eine solche IGBT-Umrichtereinheit
JP2016208706A (ja) * 2015-04-24 2016-12-08 株式会社日立製作所 電力変換装置
DK3206468T3 (en) * 2016-02-15 2019-04-01 Siemens Ag DC converter with DC voltage
CN107623447B (zh) * 2016-07-15 2020-06-26 台达电子企业管理(上海)有限公司 功率转换装置
WO2019003432A1 (ja) * 2017-06-30 2019-01-03 東芝三菱電機産業システム株式会社 電力変換装置
EP3451523A1 (en) * 2017-08-31 2019-03-06 General Electric Technology GmbH Voltage source converters
CN108092526A (zh) * 2017-12-28 2018-05-29 特变电工西安电气科技有限公司 一种功率模块与电容模块配合的安装结构及安装方法
JP7107043B2 (ja) * 2018-07-11 2022-07-27 株式会社デンソー 電力変換装置
WO2020017033A1 (ja) * 2018-07-20 2020-01-23 東芝三菱電機産業システム株式会社 電力変換装置
CN109245563B (zh) * 2018-11-15 2020-06-23 北京金自天正智能控制股份有限公司 一种用于大容量同步机静止变频起动的功率柜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118533A (en) * 1978-03-08 1979-09-14 Hitachi Ltd Thyristor valve
JPS60174066A (ja) * 1984-02-20 1985-09-07 Toshiba Corp サイリスタバルブ
CN105071402A (zh) * 2015-07-24 2015-11-18 国家电网公司 一种用于静止无功补偿器的晶闸管阀
JP6345379B1 (ja) * 2017-08-09 2018-06-20 三菱電機株式会社 電力変換装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210273576A1 (en) * 2018-07-20 2021-09-02 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
US11901834B2 (en) * 2018-07-20 2024-02-13 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device supported by intersecting panel
JP7008895B1 (ja) * 2021-05-24 2022-01-25 三菱電機株式会社 電力変換装置
WO2022249248A1 (ja) * 2021-05-24 2022-12-01 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
JP6875604B2 (ja) 2021-05-26
JPWO2020017033A1 (ja) 2021-01-07
US11901834B2 (en) 2024-02-13
US20210273576A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
WO2020017033A1 (ja) 電力変換装置
JP6754008B2 (ja) 電力変換装置
US7132812B1 (en) Integrated DC link choke and method for suppressing common-mode voltage in a motor drive
JP5868561B1 (ja) 電力変換装置
JP4609075B2 (ja) 電力変換装置の配線構造
WO2019030859A1 (ja) 電力変換装置
JP2014533487A (ja) Hブリッジに基づく電力変換器
US20100254171A1 (en) Medium Voltage Inverter System
JP6293941B2 (ja) 3レベル電力変換装置
JP6526361B2 (ja) 電力変換装置
JP4968528B2 (ja) 3レベル電力変換装置
WO2020021655A1 (ja) 電力変換装置
JPS63299779A (ja) 単相インバータの並列接続回路
JP2008306867A (ja) 電力変換装置および電気部品の接続方法
JP6518186B2 (ja) 電力変換器用筐体および筐体付の電力変換器
JP2002044949A (ja) インバータの平滑コンデンサの配列方法
JPH07236281A (ja) 電力変換装置
TWI640858B (zh) 功率轉換裝置
JP3275132B2 (ja) 電力変換器
JP2016144333A (ja) 相ユニット及びこれを用いた3レベル電力変換装置
JP2007089293A (ja) 電力変換装置のスタック構造
WO2023021933A1 (ja) 電力変換器装置
JP4105126B2 (ja) 3相交流発電機
WO2023026859A1 (ja) 電力変換器装置
JP2018011400A (ja) 単相インバータユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926939

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530849

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926939

Country of ref document: EP

Kind code of ref document: A1