JP5868561B1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP5868561B1
JP5868561B1 JP2015545558A JP2015545558A JP5868561B1 JP 5868561 B1 JP5868561 B1 JP 5868561B1 JP 2015545558 A JP2015545558 A JP 2015545558A JP 2015545558 A JP2015545558 A JP 2015545558A JP 5868561 B1 JP5868561 B1 JP 5868561B1
Authority
JP
Japan
Prior art keywords
unit cells
terminal
rack
stage
stages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015545558A
Other languages
English (en)
Other versions
JPWO2016162915A1 (ja
Inventor
亮太 大西
亮太 大西
成男 林
成男 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5868561B1 publication Critical patent/JP5868561B1/ja
Publication of JPWO2016162915A1 publication Critical patent/JPWO2016162915A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/041Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L31/00
    • H01L25/043Stacked arrangements of devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2176Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only comprising a passive stage to generate a rectified sinusoidal voltage and a controlled switching element in series between such stage and the output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/25Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in series, e.g. for multiplication of voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/497Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode sinusoidal output voltages being obtained by combination of several voltages being out of phase
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

マルチレベル変換器は、正電圧端子(3a)と交流端子(3c)の間に接続された第1のアーム(A1)と、交流端子(3c)と負電圧端子(3b)の間に接続された第2のアーム(A4)とを備え、第1および第2のアーム(A1,A2)の各々は、カスケード接続された複数の単位セル(10)を含む。各単位セル(10)は、直流電圧に充電されるコンデンサ(C)を有し、コンデンサ(C)の端子間電圧または0Vを出力する。複数の単位セル(10)は、螺旋状にカスケード接続されてリアクトル(11)を構成する。

Description

この発明は電力変換装置に関し、特に、交流回路と直流回路の間で電力の授受を行なう電力変換装置に関する。
従来の電力変換装置であるモジュラー・マルチレベル変換器(Modular Multilevel Converter)は、複数のアームと、各アームに直列接続されたリアクトルとを備える。各アームは、カスケード接続された複数の単位セルを含む。各単位セルは、直流電圧に充電されるコンデンサを有し、スイッチング素子によりコンデンサの端子間電圧または0Vを出力する。各アームの各単位セルのスイッチング素子を制御することにより、直流電力および交流電力のうちのいずれか一方の電力を他方の電力に変換することができる(たとえば、特許文献1(特表2009−506736号公報)、特許文献2(特開2010−233411号公報)、特許文献3(特開2013−115837号公報)参照)。
特表2009−506736号公報 特開2010−233411号公報 特開2013−115837号公報
しかし、従来のマルチレベル変換器では、大型で高価格のリアクトルを設ける必要があったので、装置が大型化しコスト高になるという問題があった。
それゆえに、この発明の主たる目的は、小型で低価格の電力変換装置を提供することである。
この発明に係る電力変換装置は、直流電力を授受するための第1および第2の直流接続部と、交流電力を授受するための交流接続部と、第1の直流接続部および交流接続部間に接続された第1のアームと、交流接続部および第2の直流接続部間に接続された第2のアームとを備えたものである。第1および第2のアームの各々はカスケード接続された複数の単位セルを含む。各単位セルは、スイッチング素子とコンデンサを有する。第1および第2のアームのうちの少なくとも一方のアームの複数の単位セルのうちの少なくとも一部の単位セルは螺旋状にカスケード接続されてる。
この発明に係る電力変換装置では、第1および第2のアームに含まれる複数の単位セルのうちの少なくとも一部の単位セルが螺旋状にカスケード接続されてリアクトルを構成している。したがって、別途リアクトルを設ける必要が無い、または別途に追加のリアクトルを設けるとしてもそのリアクトルを小型化できるので、装置の小型化、低コスト化を図ることができる。
この発明の実施の形態1による電力変換システムの構成を示す回路ブロック図である。 図1に示したマルチレベル変換器の要部を示す回路ブロック図である。 図2に示した単位セルの構成を示す回路図である。 図2に示したマルチレベル変換器の動作を説明するための回路図である。 図2に示したアームの構成を示す斜視図である。 図5に示したステージの構成を示す平面図である。 図5に示したラックの構成を示す図である。 図5に示したアームの構成を示す正面図である。 図8に示したアームの構成を示す背面図である。 図5に示したアームの要部を模式的に示す図である。 実施の形態1の変更例を示す図である。 実施の形態1の他の変更例を示す図である。 この発明の実施の形態2によるマルチレベル変換器に含まれるアームの構成を示す正面図である。 図13に示したアームの構成を示す背面図である。 図13に示したアームの構成を示す平面図である。 図13に示した配線基板の構成を示す平面図である。 図13に示したアームの要部を模式的に示す図である。 実施の形態2の変更例を示す図である。 この発明の実施の形態3によるマルチレベル変換器に含まれるアームの構成を示す正面図である。 図19に示したアームの構成を示す背面図である。 実施の形態3の変更例を示す平面図である。 実施の形態3の他の変更例を示す正面図である。 図22に示したアームの構成を示す背面図である。 実施の形態3のさらに他の変更例を示す平面図である。 この発明の実施の形態4によるマルチレベル変換器に含まれるアームの構成を示す正面図である。 図25に示したアームの構成を示す背面図である。 図25に示したアームの構成を示す平面図である。
[実施の形態1]
図1は、この発明の実施の形態1による電力変換システムの構成を示す回路ブロック図である。図1において、この電力変換システムは、交流電力系統1、遮断器B1〜B3、三相変圧器2、モジュラー・マルチレベル変換器(MMC)3、インピーダンス回路4、および直流電源5を備える。
マルチレベル変換器3は、正電圧端子3a(第1の直流接続部)、負電圧端子3b(第2の直流接続部)、および3つの交流端子(交流接続部)3c〜3eを含み、直流電力と三相交流電力のうちのいずれか一方の電力を他方の電力に変換する双方向電力変換装置である。正電圧端子3aおよび負電圧端子3bは直流電力を授受するために用いられ、3つの交流端子3c〜3eは三相交流電力を授受するために用いられる。変圧器の2次巻線を交流接続部とし、交流接続部が当該変圧器の1次巻線を介して交流電力を授受するようにしてもよい。
正電圧端子3aおよび負電圧端子3bは、インピーダンス回路4を介して直流電源5に接続される。インピーダンス回路4は、マルチレベル変換器3で発生するスイッチング周波数の信号が直流電源5に流れることを抑制する。直流電源5は、インピーダンス回路4を介してマルチレベル変換器3と直流電力の授受を行なう。直流電源5の代わりに直流負荷が接続されていてもよいし、他のマルチレベル変換器が接続されていても構わない。
マルチレベル変換器3の3つの交流端子3c〜3eは、三相変圧器2の3つの2次側端子にそれぞれ接続される。三相変圧器2の3つの1次側端子は、それぞれ遮断器B1〜B3を介して交流電力系統1の三相送電線に接続される。三相変圧器2は、マルチレベル変換器3と交流電力系統1の間で三相交流電力を授受する。遮断器B1〜B3は、通常動作時は導通状態にされ、たとえば、端子3a,3b間で短絡事故が発生した場合に非導通状態にされ、電力変換システムを保護する。
次に、この電力変換システムの動作について説明する。交流電力系統1から直流電源5に電力を供給する場合は、交流電力系統1の三相交流電力が遮断器B1〜B3および三相変圧器2を介してマルチレベル変換器3に供給され、マルチレベル変換器3で直流電力に変換される。マルチレベル変換器3で生成された直流電力はインピーダンス回路4を介して直流電源5に供給される。このとき、マルチレベル変換器3は、交流電力を直流電力に変換する交流−直流変換装置として動作する。
逆に、直流電源5から交流電力系統1に電力を供給する場合は、直流電源5で生成された直流電力がインピーダンス回路4を介してマルチレベル変換器3に供給され、マルチレベル変換器3で三相交流電力に変換される。マルチレベル変換器3で生成された三相交流電力は、三相変圧器2および遮断器B1〜B3を介して交流電力系統1に供給される。このとき、マルチレベル変換器3は、直流電源5からの直流電力を交流電力に変換する直流−交流変換装置として動作する。
図2は、マルチレベル変換器3の要部を示す回路ブロック図である。図2において、マルチレベル変換器3は、正電圧端子3a、負電圧端子3b、交流端子3c〜3e、およびアームA1〜A6を備える。
正電圧端子3aには、マルチレベル変換器3および直流電源5から正の直流電圧VPが供給される。負電圧端子3bには、マルチレベル変換器3および直流電源5から負の直流電圧VNが供給される。交流端子3cには、三相変圧器2およびマルチレベル変換器3からU相の交流電圧VUが供給される。交流端子3dには、三相変圧器2およびマルチレベル変換器3からV相の交流電圧VVが供給される。交流端子3eには、三相変圧器5およびマルチレベル変換器3からW相の交流電圧VWが供給される。三相交流電圧VU,VV,VWの位相は120度ずつずれている。
アームA1〜A3の一方端子はともに正電圧端子3aに接続され、それらの他方端子はそれぞれ交流端子3c〜3eに接続される。アームA4〜A6の一方端子はそれぞれ交流端子3c〜3eに接続され、それらの他方端子はともに負電圧端子3bに接続される。
アームA1,A4は、U相の交流電圧VUと直流電圧VP,VNとの間で交流−直流変換および直流−交流変換を行なうU相モジュール(第1の相モジュール)を構成する。アームA2,A5は、V相の交流電圧VVと直流電圧VP,VNとの間で交流−直流変換および直流−交流変換を行なうV相モジュール(第2の相モジュール)を構成する。アームA3,A6は、W相の交流電圧VWと直流電圧VP,VNとの間で交流−直流変換および直流−交流変換を行なうW相モジュール(第3の相モジュール)を構成する。
アームA1〜A6の各々は、カスケード接続された複数の単位セル10を含む。後で詳細に説明するが、複数の単位セル10は螺旋状(コイル状)にカスケード接続されてリアクトルを構成している。リアクトルのインダクタンスは、各アームAに流れる電流を制御するとともに、交流電圧VU,VV,VWの振幅が異なる場合に3つの相モジュール間に流れる循環電流を抑制するために必要な値に設定されている。このように、複数の単位セル10を螺旋状にカスケード接続してリアクトルを構成しているので、リアクトルを別途設ける場合に比べ、装置の小型化、低コスト化を図ることができる。
なお、螺旋状にカスケード接続された複数の単位セル10によって構成されるリアクトルのみによって循環電流を抑制してもよいが、複数の単位セル10によって構成されるリアクトルと通常のリアクトルとを直列接続して循環電流を抑制しても構わない。この場合は、複数の単位セル10によって構成されるリアクトルのインダクタンスと通常のリアクトルのインダクタンスとの和が、3つの相モジュール間に流れる循環電流を抑制するために必要な値に設定される。
各単位セル10は、図3に示すように、第1端子T1、第2端子T2、スイッチング素子S1,S2、ダイオードD1,D2、およびコンデンサCを含む。スイッチング素子S1,S2の各々は、たとえばIGBT(Insulated Gate Bipolar Transistor)で構成されている。スイッチング素子S1,S2は、コンデンサCの正極と負極の間に直列接続されている。すなわち、スイッチング素子S1のコレクタはコンデンサCの正極に接続され、スイッチング素子S1のエミッタは第1端子T1およびスイッチング素子S2のコレクタに接続され、スイッチング素子S2のエミッタは第2端子T2およびコンデンサCの負極に接続されている。
ダイオードD1,D2は、それぞれスイッチング素子S1,S2に逆並列に接続されている。すなわち、ダイオードD1,D2のアノードはそれぞれスイッチング素子S1,S2のエミッタに接続され、それらのカソードはそれぞれスイッチング素子S1,S2のコレクタに接続されている。ダイオードD1,D2の各々は、フリーホイールダイオードである。
図2に示すように、アームA1〜A3の一方端の単位セル10の第1端子T1は、ともに正電圧端子3aに接続されている。アームA1〜A3において、各単位セル10の第2端子T2は交流端子3c〜3e側に隣接する単位セル10の第1端子T1に接続されている。アームA1〜A3の他方端の単位セル10の第2端子T2は、それぞれ交流端子3c〜3eに接続されている。
アームA4〜A6の一方端の単位セル10の第1端子T1は、それぞれ交流端子3c〜3eに接続されている。アームA4〜A6において、各単位セル10の第2端子T2は負電圧端子3b側に隣接する単位セル10の第1端子T1に接続されている。アームA4〜A5の他方端の単位セル10の第2端子T2は、ともに負電圧端子3bに接続されている。
各単位セル10はオン状態かオフ状態にされる。オン状態の単位セル10では、スイッチング素子S1が導通状態にされるとともにスイッチング素子S2が非導通状態にされ、端子T1,T2がそれぞれコンデンサCの正極および負極に接続される。コンデンサCが直流電圧VCに充電されている場合は、その直流電圧VCが端子T1,T2間に出力される。
オフ状態の単位セル10では、スイッチング素子S1が非導通状態にされるとともにスイッチング素子S2が導通状態にされ、端子T1,T2が互いに接続され、端子T1,T2間には0Vが出力される。コンデンサCが直流電圧VCに充電されている場合は、その状態が維持される。
マルチレベル変換器3の制御装置(図示せず)は、三相変圧器2からの三相交流電圧VU,VV,VWに同期して動作し、アームA1〜A6の各単位セル10のスイッチング素子S1,S2を制御し、三相変圧器2からの三相交流電力を直流電力に変換して直流電源5に供給するか、直流電源5からの直流電力を三相交流電力に変換して三相変圧器2に供給する。このとき制御装置は、各単位セル10のコンデンサCの端子間電圧に基づいてスイッチング素子S1,S2を制御し、各単位セル10のコンデンサCを予め定められた直流電圧に充電する。
たとえば、アームA1,A4の各単位セル10のスイッチング素子S1,S2を制御し、直流電圧を交流電圧に変換する場合について説明する。各アームの単位セル10の数をK個(ただし、Kは2以上の整数である)とし、各単位セル10のコンデンサCは予め定められた直流電圧VC/Kに充電済みであり、正電圧端子3aには正の直流電圧VP=+VC×K/2が印加され、負電圧端子3bには負の直流電圧VN=−VC×K/2が印加されているものとする。直列接続された2つのアームA1,A4に含まれる合計2K個の単位セル10のうちのK個の単位セル10をオン状態にさせるとともに残りのK個の単位セル10をオフ状態にさせる。
図4(a)に示すように、アームA1の全単位セル10をオフ状態にするとともに、アームA4の全単位セル10をオン状態にすると、交流端子3cの電圧VUはVP=+VC×K/2となる。すなわち、VU=VN+VC×K=+VC×K/2=VPとなる。この状態からアームA1においてオン状態の単位セル10の数を徐々に増加させるとともにアームA4においてオン状態の単位セル10の数を徐々に減少させると、交流端子3cの電圧VUは徐々に下降する。
図4(b)に示すように、アームA1のK/2個の単位セル10をオン状態とするとともに、アームA4のK/2個の単位セル10をオン状態にすると、交流端子3cの電圧VUは0Vとなる。すなわち、VU=VN+VC×K/2=VP−VC×K/2=0となる。この状態からアームA1においてオン状態の単位セル10の数を徐々に増加させるとともにアームA4においてオン状態の単位セル10の数を徐々に減少させると、交流端子3cの電圧VUは徐々に下降する。
図4(c)に示すように、アームA1の全単位セル10をオン状態とするとともに、アームA4の全単位セル10をオフ状態にすると、交流端子3cの電圧VUはVN=−VC×K/2となる。すなわち、VU=VP−VC×K=−VC×K/2=VNとなる。このように、アームA1,A4の各単位セル10を制御することにより、直流電圧VP,VNを正弦波状の交流電圧VUに変換することができる。
同様に、アームA2,A5の各単位セル10を制御することにより、直流電圧VP,VNを正弦波状の交流電圧VVに変換することができる。さらに、アームA3,A6の各単位セル10を制御することにより、直流電圧VP,VNを正弦波状の交流電圧VWに変換することができる。さらに、アームA1,A4とアームA2,A5とアームA3,A4を制御するタイミングの位相を120度ずつずらすことにより、直流電圧VP,VNを三相交流電圧VU,VV,VWに変換することができる。
各アームAのK個の単位セル10は螺旋状にカスケード接続されているので、各アームAはインダクタンスを有する。各アームAのインダクタンスは図4(a)〜(c)ではリアクトル11として記されている。
マルチレベル変換器3で生成される三相交流電圧VU,VV,VWの位相を三相変圧器2から出力される三相交流電圧の位相よりも進ませれば、位相差に応じた値の交流電力がマルチレベル変換器3から三相変圧器2に流れる。この場合、マルチレベル変換器3は、直流電源5からの直流電力を交流電力に変換して三相変圧器2に供給する直流−交流変換装置として動作する。
逆に、マルチレベル変換器3で生成される三相交流電圧VU,VV,VWの位相を三相変圧器2から出力される三相交流電圧の位相よりも遅らせれば、位相差に応じた値の交流電力が三相変圧器2からマルチレベル変換器3に流れる。この場合、マルチレベル変換器3は、三相変圧器2からの交流電力を直流電力に変換して直流電源5に供給する交流−直流変換装置として動作する。
たとえば、制御装置(図示せず)は、U相モジュールA1,A4、V相モジュールA2,A5、およびW相モジュールA3,A6に流れる電流IU,IV,UWの大きさが一致するように、アームA1〜A6の各単位セル10を制御する。電流IU,IV,UWの大きさが一致しない場合は、3つの相モジュールのうちの少なくとも2つの相モジュール間に循環電流が流れる。循環電流は、たとえば、アームA1,A4,A5,A2の経路で流れる。アームA1〜A6の各々のリアクトル11のインダクタンスは、そのような循環電流を抑制するために必要な値に設定されている。
図5は、アームA1の構成を示す斜視図である。図5において、アームA1は、Q個(ただし、Qは2以上の整数であり、図5ではQ=2である)のラックLK1,LK2を備える。ラックLK1,LK2は、図中のX方向に隣接して配置されている。
ラックLK1は、N段(ただし、Nは2以上の整数であり、図5ではN=5である)のステージST1〜ST5を含む。ステージST1〜ST5は、図中のZ方向(高さ方向)に順次配列され、互いに平行に配置されている。1段目のステージST1は、6本の支柱15によって床の上に支持されている。ステージST2〜ST5は、それぞれステージST1〜ST4の上に6本の支柱16によって支持されている。
ラックLK2は、N段(ただし、Nは2以上の整数であり、図5ではN=5である)のステージST11〜ST15を含む。ステージST11〜ST15は、図中のZ方向(高さ方向)に順次配列され、互いに平行に配置されている。1段目のステージST11は、6本の支柱15によって床の上に支持されている。ステージST12〜ST15は、それぞれステージST11〜ST14の上に6本の支柱16によって支持されている。ラックLK2のステージST11〜ST15は、それぞれラックLK1のステージST1〜ST5と同じ高さに配置されている。
図6は、ステージST1の構成を示す平面図である。図6において、ステージST1は、長方形の基板21と、6個の碍子22と、絶縁シールド23と、正側端子T11と、負側端子T12とを含む。基板21の短辺は図中のX方向に向けられ、その長辺は図中のY方向に向けられている。基板21の周縁部の6箇所に孔(図示せず)が開けられており、6つの碍子22はそれぞれ6つの孔に嵌め込まれ、各碍子22の中央部は基板21に固定されている。
各碍子22の上端部および下端部には、支柱15または16を嵌め込むための穴が開けられている。基板21の周囲は絶縁シールド23で覆われている。絶縁シールド23は、基板21の4辺に対応する4つの部分に分割されており、各部分は固定部材(図示せず)によって基板21に固定されている。
基板21の表面には、M個(ただし、Mは2以上の整数であり、図6ではM=8である)の単位セル10と、正側端子T11(第1の端子)と、負側端子T12(第2の端子)とが搭載されている。正側端子T11と、8個の単位セル10と、負側端子T12とは、図中のY方向に配列されている。正側端子T11は、絶縁シールド23を貫通してステージST1の正面側に突出している。負側端子T12は、絶縁シールド23を貫通してステージST1の背面側に突出している。8個の単位セル10は、端子T11,T12間にカスケード接続されている。ラックLK1の他のステージST2〜ST5の各々はステージST1と同じ構成である。
ラックLK2のステージST11〜ST15の各々では、正側端子T11と、8個の単位セル10と、負側端子T12とは、図中のY方向と逆方向に配列されている。正側端子T11は、絶縁シールド23を貫通してステージST11の背面側に突出している。負側端子T12は、絶縁シールド23を貫通してステージST11の正面側に突出している。8個の単位セル10は、端子T11,T12間にカスケード接続されている。
図7(a)はラックLK1の側面図であり、図7(b)はラックLK1の正面図であり、図7(c)はラックLK1の背面図である。図7(a)〜(c)に示すように、ステージST1〜ST5の各々の正面側に正側端子T11が突出し、平面側に負側端子T12が突出している。ラックLK2では、ステージST11〜ST15の各々の正面側に負側端子T12が突出し、背面側に正側端子T11が突出している。
図8は、アームA1の構成を示す正面図である。図8に示すように、ラックLK2のステージST11〜ST14の負側端子T12は、4本の配線24を介して、それぞれラックLK1のステージST2〜ST5の正側端子T11に接続されている。ラックLK1のステージST1の正側端子T11は、図2に示した正電圧端子3aに接続される。ラックLK2のステージST15の負側端子T12は、図2に示した交流端子3cに接続される。
図9は、アームA1の構成を示す背面図である。図9に示すように、ラックLK1のステージST11〜ST15の負側端子T12は、5本の配線25を介して、それぞれラックLK2のステージST11〜ST15の正側端子T11に接続されている。なお、図面の簡単化のため、図8では配線25の図示は省略され、図9では配線24の図示は省略されている。
図10は、アームA1の要部を模式的に示す図である。図10では、ラックLK1(第1のラック)のステージST1,ST2(第nおよび第(n+1)のステージであり、nは1以上の整数であり、図10ではn=1である)と、ラックLK2(第2のラック)のステージST11,ST12(第nおよび第(n+1)のステージであり、nは1以上の整数であり、図10ではn=1である)とが示されている。ステージST11,ST12は、それぞれステージST1,ST2と同じ高さに配置され、それぞれステージST1,ST2のX方向に隣接して配置されている。
ステージST1,ST2の各々では、正側端子T11(第1の端子)、8個の単位セル10、および負側端子T12(第2の端子)が図中のY方向(第1の方向)に配列され、8個の単位セル10が端子T11,T12間にカスケード接続されている。ステージST11,ST12の各々では、正側端子T11、8個の単位セル10、および負側端子T12が図中のY方向と逆方向(第2の方向)に配列され、8個の単位セル10が端子T11,T12間にカスケード接続されている。
ステージST1の負側端子T12は、配線25を介してステージST11の正側端子T11に接続される。ステージST1の8個の単位セル10と、配線25と、ステージST11の8個の単位セル10とは、ループの一部を構成するように接続される。ステージST11の負側端子T12が配線24を介して斜め上方のステージS1の正側端子T11に接続される。
ステージST2の負側端子T12は、配線25を介してステージST12の正側端子T11に接続される。ステージST2の8個の単位セル10と、配線25と、ステージST12の8個の単位セル10とは、ループの一部を構成するように接続されている。つまり、ステージST1の8個の単位セル10と、ステージST11の8個の単位セル10と、ステージST2の8個の単位セル10と、ステージST12の8個の単位セル10とは螺旋状にカスケード接続されている。
このようにして、ラックLK1,LK2(第1〜第Qのラックであり、Q=2である)のステージST1〜ST5,ST11〜ST15(2組の第1〜第Nのステージであり、N=5)である)に搭載された8×10個の単位セル10は、螺旋状にカスケード接続されて図4(a)〜(c)で示したリアクトル11を構成している。
一般にリアクトルのインダクタンスLは、L=(4×π×10−7×S×P2)/■となる。ここで、Sはループの面積であり、Pはループの数であり、■はリアクトルの長さである。たとえば、ラックLK1の正側端子T11とラックLK2の負側端子T12との間の距離を7mとし、ラックLK1の端子T11,T12間の距離を8mとすると、S=7×8=56m2となる。ラックLK1のステージST1の正側端子T11とステージST5の正側端子T11との間の距離を8mとすると、■=8mとなる。ループの数Pは5である。S=8×7=56m2、P=5、■=8mを上式に代入すると、Lは約0.2mHとなる。他のアームA2〜A6もアームA1と同じ構成である。
この実施の形態1では、アームA1〜A6の各々に含まれる複数の単位セル10を螺旋状にカスケード接続してリアクトル11を構成する。したがって、別途リアクトルを設ける必要がない、または別途に追加のリアクトルを設けるとしてもそのリアクトルを小型化できるので、装置の小型化、低コスト化を図ることができる。
また、モジュラー・マルチレベル変換器で三相の電力変換装置を構成する場合に、上述の螺旋構造により得られるリアクトル11を用いて、相モジュール間に流れる循環電流を抑制することができる。たとえば、制御装置(図示せず)が、循環電流の検出値および当該螺旋構造により得られるリアクトル11のインダクタンスの大きさに基づいて、相間に流れる循環電流を抑制するように各単位セル10のスイッチング素子S1,S2のオン/オフを制御するようにしてもよい。また、当該螺旋構造により得られるリアクトル11とは別のリアクトルも追加して、それらリアクトルの大きさに基づいて当該制御回路が循環電流を抑制するように各単位セル10のスイッチング素子S1,S2を制御してもよい。当該螺旋状接続の構成で、例えば0.1mH以上、さらに大きくは1mH以上のインダクタンスを得るようにしてもよい。
なお、この実施の形態1では、1つのアームAに含まれる全単位セル10を螺旋状に接続して1つのリアクトル11を構成したが、これに限るものではない。1つのアームAに含まれる複数の単位セル10のうちの一部の単位セルを螺旋状に接続して1つのリアクトル11を構成してもよい。1つのアームAに含まれる複数の単位セル10を複数のグループに分割し、各グループの単位セル10を螺旋状に接続し、直列接続された複数のリアクトルを構成しても構わない。さらに、2つのアームA1とA4(またはA2とA5、またはA3とA6)に含まれる全単位セル10を螺旋状に接続して1つのリアクトルを構成しても構わない。直列接続された2つのアーム(A1とA4、A2とA5、またはA3とA6)のうちのいずれか一方のアーム(たとえば、A1、A2、またはA3)に含まれる複数の単位セル10のみを螺旋状にカスケード接続してリアクトル11を構成しても構わない。
また、この実施の形態1では、2つのラックLK1,LK2を配置し、同じ高さの2つのステージSTに含まれる複数の単位セル10をループの一部を構成するようにカスケード接続したが、これに限るものではない。3つ以上のラックLKを配置し、同じ高さの3つ以上のステージSTに含まれる複数の単位セル10をループの一部を構成するようにカスケード接続してもよい。たとえば、3つのラックLKを上方から見て三角形に配置し、同じ高さの3つのステージSTに含まれる複数の単位セル10をループの一部を構成するようにカスケード接続してもよい。4つのラックLKを上方から見て四角形に配置し、同じ高さの4つのステージSTに含まれる複数の単位セル10をループの一部を構成するようにカスケード接続してもよい。
図11は、実施の形態1の変更例を示す回路図であって、図3と対比される図である。図11を参照して、この変更例では、単位セル10の代わりに単位セル10Aが使用される。この単位セル10Aでは、端子T1,T2がそれぞれスイッチング素子S1,S2のコレクタに接続される。スイッチング素子S1がオフされるとともにスイッチング素子S2がオンされると、端子T1,T2間にコンデンサCの端子間電圧が出力される。スイッチング素子S1がオンされるとともにスイッチング素子S2がオフされると、端子T1,T2間に0Vが出力される。この変更例でも、実施の形態1と同じ効果が得られる。
図12は、実施の形態1の他の変更例を示す回路図であって、図3と対比される図である。図12を参照して、この変更例では、単位セル10の代わりに単位セル10Bが使用される。この単位セル10Bは、単位セル10にスイッチング素子S3,S4およびダイオードD3,D4を追加したものである。スイッチング素子S3,S4は、コンデンサCの正極および負極間に直列接続される。ダイオードD3,D4は、それぞれスイッチング素子S3,S4に逆並列に接続される。端子T1,T2は、それぞれスイッチング素子S1,S3のエミッタに接続される。
スイッチング素子S1,S4がオンされるとともにスイッチング素子S2,S3がオフされると、端子T1,T2間にコンデンサCの端子間電圧が出力される。スイッチング素子S1,S3がオンされるとともにスイッチング素子S2,S4がオフされると、端子T1,T2間に0Vが出力される。スイッチング素子S2,S3がオンされるとともにスイッチング素子S1,S4がオフされると、端子T2,T1間にコンデンサCの端子間電圧が出力される。スイッチング素子S1,S3がオフされるとともにスイッチング素子S2,S4がオンされると、端子T1,T2間に0Vが出力される。この変更例でも、実施の形態1と同じ効果が得られる。
[実施の形態2]
図13は、この発明の実施の形態2によるマルチレベル変換器に含まれるアームA1の構成を示す正面図であって、図8と対比される図である。図14は、図13に示したアームA1の構成を示す背面図であって、図9と対比される図である。図15は、図13に示したアームA1の構成を示す平面図である。図16は、図11に示した配線基板SB1,SB11の構成を示す平面図である。
図13〜図15において、アームA1はラックLK1A,LK2Aを備える。ラックLK1Aは、ラックLK1に配線基板SB1〜SB4を追加したものである。ラックLK2Aは、ラックLK2に配線基板SB11〜SB14を追加したものである。配線基板SB1〜SB4は、それぞれステージST1〜ST5の間に挿入され、ステージST1〜ST5と平行に配置されている。配線基板SB11〜SB14は、それぞれステージST11〜ST15の間に挿入され、ステージST11〜ST15と平行に配置されている。配線基板SB1〜SB4は、それぞれ配線基板SB11〜SB14と同じ高さに配置されている。
配線基板SB1,SB11は、図16に示すように、図中のX方向に配列される。配線基板SB1は、長方形の基板30を含む。基板30の長辺は図中のY方向に向けられ、その短辺は図中のX方向に向けられる。基板30の表面のうちのラックLK1Aの正面側の短辺の近傍に端子T21が形成される。基板30の表面のうちのラックLK2A側の長辺の後端部の近傍に端子T22が形成される。端子T21と端子T22の間にL字型の配線W1が形成される。基板30の周縁部には6つの孔31が開けられている。6つの孔31には、上下のステージST1,ST2の間の6本の支柱16が挿入される。配線基板SB2〜SB4も、配線基板SB1と同じ構成である。
配線基板SB11は、長方形の基板32を含む。基板32の長辺は図中のY方向に向けられ、その短辺は図中のX方向に向けられる。基板32の表面のうちのラックLK2Aの正面側の短辺の近傍に端子T31が形成される。基板32の表面のうちのラックLK1A側の長辺の後端部の近傍に端子T32が形成される。端子T31と端子T32の間にL字型の配線W2が形成される。基板30の周縁部には6つの孔33が開けられている。6つの孔33には、上下のステージST11,ST12の間の6本の支柱16が挿入される。配線基板SB12〜SB14も、配線基板SB11と同じ構成である。
図13および図15に示すように、ラックLK2AのステージST11〜ST14の負側端子T12は、4本の配線24を介して、それぞれラックLK1Aの配線基板SB1〜SB4の端子T21に接続される。ラックLK2Aの配線基板SB11〜SB14の端子T31は、4本の配線24を介して、ラックLK1AのステージST2〜ST5の正側端子T11に接続される。
図14および図15に示すように、ラックLK1AのステージST11〜ST15の負側端子T12は、5本の配線25を介して、それぞれラックLK2AのステージST11〜ST15の正側端子T11に接続される。ラックLK1Aの配線基板SB1〜SB4の端子T22は、4本の配線26を介して、ラックLK2Aの配線基板SB11〜SB14の端子T32に接続される。なお、図面の簡単化のため、図13では配線25,26の図示は省略され、図14では配線24の図示は省略されている。
図17は、アームA1の要部を模式的に示す図である。図17では、ラックLK1A(第1のラック)のステージST1,ST2(第nおよび第(n+1)のステージであり、nは1以上の整数であり、図17ではn=1である)および配線基板SB1と、ラックLK2A(第2のラック)のステージST11,ST12(第nおよび第(n+1)のステージであり、nは1以上の整数であり、図17ではn=1である)および配線基板SB11とが示されている。ステージST11、配線基板SB11、およびステージST12は、それぞれステージST1、配線基板SB1、およびステージST2と同じ高さに配置され、それぞれステージST1、配線基板SB1、およびステージST2のX方向に配置されている。
ステージST1,ST2の各々では、正側端子T11(第1の端子)、8個の単位セル10、および負側端子T12(第2の端子)が図中のY方向に配列され、8個の単位セル10が端子T11,T12間にカスケード接続されている。配線基板SB1では、配線W1の正面側の端部に端子T21(第3の端子)が接続され、配線W1の背面側の端部に端子T22(第4の端子)が接続されている。配線基板SB11では、配線W2の正面側の端部に端子T31(第3の端子)が接続され、配線W2の背面側の端部に端子T32(第4の端子)が接続されている。ステージST11,ST12の各々では、正側端子T11、8個の単位セル10、および負側端子T12が図中のY方向と逆方向に配列され、8個の単位セル10が端子T11,T12間にカスケード接続されている。
ステージST1の負側端子T12は、配線25を介してステージST11の正側端子T11に接続される。ステージST1の8個の単位セル10と、配線25と、ステージST11の8個の単位セル10とは、ループの一部を構成するように接続される。ステージST11の負側端子T12が配線24を介して斜め上方の配線基板SB1の端子T21に接続される。
配線基板SB1の端子T22は、配線26を介して配線基板SB11の端子T32に接続される。配線基板SB1の配線W1と、配線26と、配線基板SB11の配線W2とは、ループの一部を構成するように接続される。配線基板SB11の端子T31は、配線24を介して斜め上方のステージST2の正側端子T11に接続される。
ステージST2の負側端子T12は、配線25を介してステージST12の正側端子T11に接続される。ステージST2の8個の単位セル10と、配線25と、ステージST12の8個の単位セル10とは、ループの一部を構成するように接続されている。つまり、ステージST1の8個の単位セル10と、ステージST11の8個の単位セル10と、配線基板SB1の配線W1と、配線基板SB11の配線W2と、ステージST2の8個の単位セル10と、ステージST12の8個の単位セル10とは螺旋状にカスケード接続されている。
このようにして、ラックLK1A,LK2A(第1〜第Qのラックであり、Q=2である)のステージST1〜ST5,ST11〜ST15(2組の第1〜第Nのステージであり、N=5)である)に搭載された8×10個の単位セル10と、配線基板SB1〜SB4,SB11〜SB14に搭載された8本の配線W1,W2とは、螺旋状にカスケード接続されて図4(a)〜(c)で示したリアクトル11を構成している。他のアームA2〜A6の各々もアームA1と同じ構成である。
この実施の形態2では、実施の形態1と同じ効果が得られる他、ステージST間に配線基板SBを設けたので、リアクトル11のループ数Pを増やすことができ、リアクトル11のインダクタンスLを大きくすることができる。すなわち、リアクトル11を構成するループの数Pが5個から9個に増えるので、リアクトル11のインダクタンスLは実施の形態1の(9/5)2=3.24倍になる。
図18は、実施の形態2の変更例を示す図であって、図17と対比される図である。図18を参照して、この変更例では、2つのステージST間にJ枚(ただし、Jは2以上の整数であり、図18ではJ=2である)の配線基板SBが設けられる。図18では、ステージST1,ST2間に設けられた2枚の配線基板SB1a,SB1b(第jおよび第(j+1)の配線基板であり、jは1以上の整数であり、図18ではj=1である)と、ステージST11,ST12間に設けられた2枚の配線基板SB11a,SB11b(第jおよび第(j+1)の配線基板であり、jは1以上の整数であり、図18ではj=1である)とが示されている。配線基板SB1a,SB1bは、高さ方向に順次配列され、互いに平行に配置されている。配線基板SB11a,SB11b、高さ方向に順次配列され、互いに平行に配置されている。配線基板SB1a,SB1bの各々は、端子T21,T22間に接続された配線W1を含む。配線基板SB11a,SB11bの各々は、端子T31,T32間に接続された配線W2を含む。
配線基板SB1aの端子T21(第3の端子)は、斜め下のステージST11の負側端子T12(第2の端子)に接続される。配線基板SB1aの端子T22(第4の端子)は、配線26を介して配線基板SB11aの端子T32(第4の端子)に接続される。配線基板SB1aの配線W1と、配線26と、配線基板SB11aの配線W2とは、ループの一部を構成するように接続される。配線基板SB11aの端子T31(第3の端子)は、配線24を介して斜め上方の配線基板SB1bの端子T21(第3の端子)に接続される。
配線基板SB1bの端子T22(第4の端子)は、配線26を介して配線基板SB11bの端子T32(第4の端子)に接続される。配線基板SB1bの配線W1と、配線26と、配線基板SB11bの配線W2とは、ループの一部を構成するように接続される。配線基板SB11bの端子T31(第3の端子)は、配線24を介して斜め上方のステージST2の正側端子T11(第1の端子)に接続される。すなわち、配線基板SB1a,SB11a,SB1b,SB11bの配線W1,W2,W1,W2は螺旋状に接続されてリアクトルの一部を構成する。
この変更例では、2つのステージST間に2枚の配線基板SBを設けたので、リアクトル11のループ数Pを増やすことができ、リアクトル11のインダクタンスLを大きくすることができる。すなわち、リアクトル11を構成するループの数Pが5個から13個に増えるので、リアクトル11のインダクタンスLは実施の形態1の(13/5)2=6.76倍になる。
なお、この変更例では、2つのステージST間に2枚の配線基板SBを設け、2×2枚の配線基板SBの配線Wを螺旋状に接続したが、これに限るものではなく、2つのステージST間に3枚以上の配線基板SBを設け、2×3枚以上の配線基板SBの配線Wを螺旋状に接続してもよい。
[実施の形態3]
図19は、この発明の実施の形態3によるマルチレベル変換器に含まれるアームA1の構成を示す正面図であって、図8と対比される図である。図20は、図19に示したアームA1の構成を示す背面図であって、図9と対比される図である。
図19および図20を参照して、このアームA1は図8および図9のアームA1に鉄心40を追加したものである。鉄心40は、たとえば四角柱状に形成され、2つのラックLK1,LK2と、4本の配線24と、5本の配線25とで囲まれる領域に設けられる。
鉄心40は、たとえば純鉄で形成される。純鉄の透磁率は真空の透磁率の約5000倍である。空気の透磁率は、真空の透磁率と略同じである。鉄心40の断面積は、2つのラックLK1,LK2と、4本の配線24と、5本の配線25とで構成されるリアクトル11に含まれるループの面積の10%であるものとする。実施の形態1のリアクトル11のインダクタンスLを0.2mHとする。本実施の形態3のアームA1によって構成されるリアクトル11のインダクタンスLは、0.2mH×0.9+0.2mH×5000×0.1≒100mHとなる。リアクトル11のインダクタンスLは実施の形態1の100/0.2=500倍になる。他のアームA2〜A6もアームA1と同じ構成である。
この実施の形態3では、リアクトル11内に鉄心40を設けたので、リアクトル11のインダクタンスを大きくすることができる。
図21は、実施の形態3の変更例を示す図であって、図15と対比される図である。この変更例は、図15で示したアームA1に鉄心41を追加したものである。鉄心41は、たとえば四角柱状に形成され、2つのラックLK1A,LK2Aと、4本の配線24と、4本の配線26とで囲まれる領域に設けられる。鉄心40は、たとえば純鉄で形成される。この変更例でも、リアクトル11のインダクタンスを大きくすることができる。
図22は、実施の形態3の他の変更例を示す正面図であって、図19と対比される図である。図23は、図22に示したアームA1の構成を示す背面図であって、図20と対比される図である。図22および図23を参照して、このアームA1が実施の形態3のアームA1と異なる点は、鉄心40がアームA1〜A6を収容する建物の支柱45で置換されている点である。換言すると、支柱45が鉄心40を兼ねている。この変更例では、建物の支柱45を鉄心40として使用するので、別途鉄心40を設ける必要がない。したがって、装置の小型化、低コスト化を図ることができる。
図24は、実施の形態3のさらに他の変更例を示す平面図であって、図21と対比される図である。図24を参照して、このアームA1が図21のアームA1と異なる点は、鉄心41がアームA1〜A6を収容する建物の支柱45で置換されている点である。換言すると、支柱45が鉄心41を兼ねている。この変更例では、建物の支柱45を鉄心41として使用するので、別途鉄心41を設ける必要がない。したがって、装置の小型化、低コスト化を図ることができる。
[実施の形態4]
図25は、この発明の実施の形態4によるマルチレベル変換器に含まれるアームA1の構成を示す正面図であって、図19と対比される図である。図26は、図25に示したアームA1の構成を示す背面図であって、図20と対比される図である。図27は、図25に示したアームA1の構成を示す平面図である。
図25〜図27において、このアームA1は、3組のラックLK1,LK2を備え、アームA1を収容する建物の3本の支柱45の各々を鉄心として使用する。3本の支柱45は、図中のX方向に配列されている。3組のラックLK1,LK2は図中のX方向に配置され、各組のラックLK1,LK2の間に1本の支柱45が配置される。図25中の3組のラックLK1,LK2を左側から第1組、第2組、第3組と称す。図26では、右側から第1組、第2組、第3組となる。
図25において、第1組のラックLK1のステージST1の正側端子T11は、たとえば図2の正電圧端子3aに接続される。図26において、各組のラックLK1のステージST1〜ST5の負側端子T12はそれぞれ当該組のラックLK2のステージST11〜ST15の正側端子T11に接続される。
図25において、第1組のラックLK2のステージST11〜ST14の負側端子T12はそれぞれ第1組のラックLK1のステージST2〜ST5の正側端子T11に接続される。第1組のラックLK2のステージST15の負側端子T12は第2組のラックLK1のステージST5の正側端子T11に接続される。
第2組のラックLK2のステージST15〜ST12の負側端子T12はそれぞれ第2組のラックLK1のステージST4〜ST1の正側端子T11に接続される。第2組のラックLK2のステージST11の負側端子T12は第3組のラックLK1のステージST5の正側端子T11に接続される。
第3組のラックLK2のステージST11〜ST14の負側端子T12はそれぞれ第3組のラックLK1のステージST2〜ST5の正側端子T11に接続される。第3組のラックLK2のステージST15の負側端子T12は、たとえば図3の交流端子3cに接続される。
この実施の形態4では、3組のラックLK1,LK2を直列接続したので、実施の形態3の3倍のインダクタンスを得ることができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明でなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 交流電力系統、B1〜B3 遮断器、2 三相変圧器、3 モジュラー・マルチレベル変換器、3a 正電圧端子、3b 負電圧端子、3c〜3e 交流端子、4 インピーダンス回路、5 直流電源、A1〜A6 アーム、10,10A,10B 単位セル、T1 第1端子、T2 第2端子、S1〜S4 スイッチング素子、D1〜D4 ダイオード、C コンデンサ、11 リアクトル、LK1,LK2,LK1A,LK2A ラック、ST1〜ST5,ST11〜ST15 ステージ、15,16,45 支柱、T11 正側端子、T12 負側端子、21,30,32 基板、22 碍子、23 絶縁シールド、24〜26 配線、SB1〜SB4,SB11〜SB14,SB1a,SB1b,SB11a,SB11b 配線基板、T21,T22,T31,T32 端子、31,33 孔、40,41 鉄心。

Claims (15)

  1. 直流電力を授受するための第1および第2の直流接続部と、
    交流電力を授受するための交流接続部と、
    前記第1の直流接続部および前記交流接続部間に接続された第1のアームと、
    前記交流接続部および前記第2の直流接続部間に接続された第2のアームとを備え、
    前記第1および第2のアームの各々はカスケード接続された複数の単位セルを含み、
    各単位セルはスイッチング素子とコンデンサを有し、
    前記第1および第2のアームのうちの少なくとも一方のアームの前記複数の単位セルのうちの少なくとも一部の単位セルは螺旋状にカスケード接続されてる、電力変換装置。
  2. 前記第1および第2のアームのうちの少なくとも一方のアームは複数のラックを含み、
    各ラックは高さ方向に順次配列された複数のステージを有し、
    前記複数の単位セルは、前記複数のラックの前記複数のステージに分散配置されている、請求項1に記載の電力変換装置。
  3. 前記第1および第2のアームのうちの少なくとも一方のアームは第1〜第Qのラックを含み、
    各ラックは高さ方向に順次配列された第1〜第Nのステージを有し、
    各ステージにはカスケード接続されたM個の単位セルが搭載され、
    前記第1〜第Qのラックの第nのステージに搭載されたQ×M個の単位セルはループの一部を構成するようにカスケード接続され、
    前記第1〜第Qのラックの前記第1〜第Nのステージに搭載されたQ×N×M個の単位セルは螺旋状にカスケード接続され、
    Q,N,Mの各々は2以上の整数であり、nは1以上の整数である、請求項1に記載の電力変換装置。
  4. 各ラックは、さらに、前記第1〜第Nのステージの(N−1)個の間にそれぞれ配置された(N−1)組の第1〜第Jの配線基板を有し、
    前記第1〜第Jの配線基板は高さ方向に順次配列され、
    各配線基板には配線が形成され、
    前記第1〜第Qのラックの第nおよび第(n+1)のステージ間に配置された第jの配線基板に形成されたQ本の配線はループの一部を構成するように直列接続され、
    前記第1〜第Qのラックの第nおよび第(n+1)のステージ間に配置された第1〜第Jの配線基板に形成されたQ×J本の配線は螺旋状に直列接続され、
    前記第1〜第Qのラックに搭載されたQ×N×M個の単位セルおよびQ×(N−1)×J本の配線は螺旋状に直列接続され、
    Jは2以上の整数であり、jは1以上の整数である、請求項に記載の電力変換装置。
  5. Qは2であって前記第1および第2のアームのうちの少なくとも一方のアームは第1および第2のラックを含み、
    前記第1のラックの各ステージのM個の単位セルは第1の方向に配列され、
    前記第2のラックの各ステージのM個の単位セルは前記第1の方向と逆方向の第2の方向に配列され、
    前記第1および第2のラックの第nのステージに搭載された2×M個の単位セルはループの一部を構成するようにカスケード接続され、
    前記第1および第2のラックの前記第1〜第Nのステージに搭載された2×N×M個の単位セルは螺旋状にカスケード接続されている、請求項に記載の電力変換装置。
  6. 各ステージには第1および第2の端子が搭載され、
    各ステージにおいて前記M個の単位セルは前記第1および第2の端子間にカスケード接続され、
    前記第1のラックの第nのステージの前記第2の端子と前記第2のラックの第nのステージの前記第1の端子とは互いに接続され、
    前記第2のラックの第nのステージの前記第2の端子と前記第1のラックの第(n+1)のステージの前記第1の端子とは互いに接続され、
    2×N×M個の単位セルは、前記第1のラックの第1のステージの前記第1の端子と前記第2のラックの第Nのステージの前記第2の端子との間に螺旋状にカスケード接続されている、請求項に記載の電力変換装置。
  7. Qは2であって前記第1および第2のアームのうちの少なくとも一方のアームは第1および第2のラックを含み、
    前記第1のラックの各ステージのM個の単位セルは第1の方向に配列され、
    前記第2のラックの各ステージのM個の単位セルは前記第1の方向と逆方向の第2の方向に配列され、
    前記第1および第2のラックの第nのステージに搭載された2×M個の単位セルはループの一部を構成するようにカスケード接続され、
    各ラックは、さらに、前記第1〜第Nのステージの(N−1)個の間にそれぞれ配置された(N−1)枚の配線基板を有し、
    各配線基板には配線が形成され、
    前記第1および第2のラックの第nおよび第(n+1)のステージ間に配置された前記配線基板に形成された2本の配線はループの一部を構成するように直列接続され、
    前記第1および第2のラックに搭載された2×N×M個の単位セルおよび2×(N−1)本の配線は螺旋状に直列接続されている、請求項に記載の電力変換装置。
  8. 各ステージには第1および第2の端子が搭載され、
    各ステージにおいて前記M個の単位セルは前記第1および第2の端子間にカスケード接続され、
    前記第1のラックの第nのステージの前記第2の端子と前記第2のラックの第nのステージの前記第1の端子とは互いに接続され、
    各配線基板には第3および第4の端子が搭載され、
    各配線基板において前記配線は前記第3および第4の端子間に接続され、
    前記第1および第2のラックの第nおよび第(n+1)のステージ間に配置された前記配線基板の前記第4の端子は互いに接続され、
    前記第2のラックの第nのステージの前記第2の端子と前記第1のラックの第nおよび第(n+1)のステージ間の前記配線基板の前記第3の端子とは互いに接続され、
    前記第2のラックの第nおよび第(n+1)のステージ間の前記配線基板の前記第3の端子と前記第1のラックの第(n+1)のステージの前記第1の端子とは互いに接続され、
    2×N×M個の単位セルおよび2×(N−1)本の配線は、前記第1のラックの第1のステージの前記第1の端子と前記第2のラックの第Nのステージの前記第2の端子との間に螺旋状に直列接続されている、請求項に記載の電力変換装置。
  9. 各単位セルは、さらに、前記コンデンサの電極間に直列接続された第1および第2のスイッチング素子と、それぞれ前記第1および第2のスイッチング素子に逆並列に接続された第1および第2のダイオードとを有し、
    前記第1および第2のアームの各々において前記複数の単位セルの前記第1または第2のスイッチング素子は直列接続されている、請求項1に記載の電力変換装置。
  10. 各単位セルは、さらに、前記コンデンサの電極間に直列接続された第1および第2のスイッチング素子と、前記コンデンサの電極間に直列接続された第3および第4のスイッチング素子と、それぞれ前記第1〜第4のスイッチング素子に逆並列に接続された第1〜第4のダイオードとを有し、
    前記第1および第2のアームの各々において前記複数の単位セルの前記第1および第3のスイッチング素子は直列接続されている、請求項1に記載の電力変換装置。
  11. さらに、鉄心を備え、
    前記複数の単位セルのうちの少なくとも一部の単位セルは前記鉄心の周りに螺旋状にカスケード接続されている、請求項1に記載の電力変換装置。
  12. 前記鉄心は、前記第1および第2のアームを収容する建物の支柱を兼ねている、請求項1に記載の電力変換装置。
  13. 直流電力を授受するための第1および第2の直流接続部と、
    前記第1の直流接続部および前記第2の直流接続部間に並列接続された複数の相モジュールとを備え、
    前記複数の相モジュールの各々は、
    交流電力を授受するための交流接続部と、
    前記第1の直流接続部および前記交流接続部間に接続された第1のアームと、
    前記交流接続部および前記第2の直流接続部間に接続された第2のアームとを備え、
    前記第1および第2のアームの各々はカスケード接続された複数の単位セルを含み、
    各単位セルはスイッチング素子とコンデンサを有し、
    前記複数の相モジュールのうちの少なくとも1つの相モジュールの第1および第2のアームのうちの少なくとも1つのアームは、前記複数の単位セルのうちの少なくとも一部の単位セルおよびそれらの間の接続配線を含んで構成されるリアクトルを含み、
    前記リアクトルのインダクタンスに基づき、前記複数の相モジュール間に流れる循環電流を抑制する制御を行う制御装置を備える、電力変換装置。
  14. 前記第1および第2のアームのうちの少なくとも一方のアームは複数のラックを含み、
    各ラックは高さ方向に順次配列された複数のステージを有し、
    前記複数の単位セルは、前記複数のラックの前記複数のステージに分散配置されている、請求項13に記載の電力変換装置。
  15. 前記リアクトルのインダクタンスは0.1mH以上である、請求項13または請求項14に記載の電力変換装置。
JP2015545558A 2015-04-06 2015-04-06 電力変換装置 Active JP5868561B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060721 WO2016162915A1 (ja) 2015-04-06 2015-04-06 電力変換装置

Publications (2)

Publication Number Publication Date
JP5868561B1 true JP5868561B1 (ja) 2016-02-24
JPWO2016162915A1 JPWO2016162915A1 (ja) 2017-04-27

Family

ID=55360898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015545558A Active JP5868561B1 (ja) 2015-04-06 2015-04-06 電力変換装置

Country Status (4)

Country Link
US (1) US10389268B2 (ja)
EP (1) EP3282573B1 (ja)
JP (1) JP5868561B1 (ja)
WO (1) WO2016162915A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258891A (zh) * 2016-12-28 2018-07-06 中国电力科学研究院 一种抑制端对端mmc-hvdc直流侧站间谐振的方法和装置
JP2021125524A (ja) * 2020-02-04 2021-08-30 三菱電機株式会社 電磁遮蔽式空心リアクトル
US11159092B2 (en) * 2017-08-09 2021-10-26 Mitsubishi Electric Corporation Power conversion device
JP7008895B1 (ja) * 2021-05-24 2022-01-25 三菱電機株式会社 電力変換装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168518A1 (ja) * 2016-03-28 2017-10-05 三菱電機株式会社 電力変換装置
DE102016106359A1 (de) * 2016-04-07 2017-10-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Modul für einen Multilevelkonverter
US10959359B2 (en) * 2017-06-30 2021-03-23 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
CN110320392A (zh) * 2019-07-29 2019-10-11 西安工程大学 一种电力监测检测系统
CN110380624A (zh) * 2019-09-04 2019-10-25 常州博瑞电力自动化设备有限公司 一种换流阀阀塔
CN111697611B (zh) * 2020-06-05 2022-02-18 西安交通大学 一种应用于多端柔性输电系统的直流侧电压间接控制方法
EP4258531A4 (en) * 2020-12-02 2024-01-03 Mitsubishi Electric Corporation POWER CONVERTER
JP2023031588A (ja) * 2021-08-25 2023-03-09 株式会社日立製作所 電力変換器装置
EP4439960A4 (en) * 2021-11-22 2024-10-23 Mitsubishi Electric Corp POWER CONVERTER SYSTEM
CN118264125A (zh) * 2022-12-19 2024-06-28 日立能源有限公司 换流阀组件
CN118264124A (zh) * 2022-12-19 2024-06-28 日立能源有限公司 换流阀组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124262A (ja) * 2003-10-14 2005-05-12 Sumitomo Electric Ind Ltd リアクトルユニット及び電力変換装置
JP2010233411A (ja) * 2009-03-30 2010-10-14 Hitachi Ltd 電力変換装置
JP2011176955A (ja) * 2010-02-25 2011-09-08 Hitachi Ltd 電力変換装置
JP2013115837A (ja) * 2011-11-24 2013-06-10 Toshiba Corp 電力変換装置
WO2014010474A1 (ja) * 2012-07-11 2014-01-16 三菱電機株式会社 電力変換装置
JP2014116995A (ja) * 2012-12-06 2014-06-26 Hitachi Ltd 3レベル電力変換装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0880044A (ja) 1994-09-08 1996-03-22 Kansai Electric Power Co Inc:The 高電圧用整流装置
DE102005040543A1 (de) 2005-08-26 2007-03-01 Siemens Ag Stromrichterschaltung mit verteilten Energiespeichern
JP5189105B2 (ja) * 2006-12-08 2013-04-24 シーメンス アクチエンゲゼルシヤフト 電流変換装置
EP2416486B1 (en) 2009-03-30 2018-05-30 Hitachi, Ltd. Power conversion device
DE102009031574A1 (de) * 2009-06-30 2011-01-05 Siemens Aktiengesellschaft Aufbau eines mehrstufigen Umrichters der Elektroenergieversorgung
DE102011006987A1 (de) * 2011-04-07 2012-10-11 Siemens Aktiengesellschaft Modulares Stromrichterschranksystem
US9099914B2 (en) * 2011-06-29 2015-08-04 Siemens Aktiengesellschaft Packaging of power supply using modular electronic modules
DE102011108920B4 (de) * 2011-07-29 2013-04-11 Technische Universität München Elektrisches Umrichtersystem
CN102882356B (zh) 2012-09-19 2015-03-04 许继电气股份有限公司 一种换流阀悬吊阀塔
KR101758417B1 (ko) 2013-04-30 2017-07-17 엘에스산전 주식회사 Hvdc 밸브 타워

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124262A (ja) * 2003-10-14 2005-05-12 Sumitomo Electric Ind Ltd リアクトルユニット及び電力変換装置
JP2010233411A (ja) * 2009-03-30 2010-10-14 Hitachi Ltd 電力変換装置
JP2011176955A (ja) * 2010-02-25 2011-09-08 Hitachi Ltd 電力変換装置
JP2013115837A (ja) * 2011-11-24 2013-06-10 Toshiba Corp 電力変換装置
WO2014010474A1 (ja) * 2012-07-11 2014-01-16 三菱電機株式会社 電力変換装置
JP2014116995A (ja) * 2012-12-06 2014-06-26 Hitachi Ltd 3レベル電力変換装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258891A (zh) * 2016-12-28 2018-07-06 中国电力科学研究院 一种抑制端对端mmc-hvdc直流侧站间谐振的方法和装置
CN108258891B (zh) * 2016-12-28 2021-10-01 中国电力科学研究院 一种抑制端对端mmc-hvdc直流侧站间谐振的方法和装置
US11159092B2 (en) * 2017-08-09 2021-10-26 Mitsubishi Electric Corporation Power conversion device
JP2021125524A (ja) * 2020-02-04 2021-08-30 三菱電機株式会社 電磁遮蔽式空心リアクトル
JP7008895B1 (ja) * 2021-05-24 2022-01-25 三菱電機株式会社 電力変換装置
WO2022249248A1 (ja) * 2021-05-24 2022-12-01 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
US10389268B2 (en) 2019-08-20
JPWO2016162915A1 (ja) 2017-04-27
EP3282573A4 (en) 2018-11-21
EP3282573B1 (en) 2021-12-01
EP3282573A1 (en) 2018-02-14
WO2016162915A1 (ja) 2016-10-13
US20180041135A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
JP5868561B1 (ja) 電力変換装置
EP3667893B1 (en) Power conversion device
US8958210B2 (en) Modular converter cabinet system
US20200044555A1 (en) Modular power supply system
US10673352B2 (en) Power conversion apparatus comprising cell blocks each including cascaded converter cells and a bypass circuit connected thereto
US9369056B2 (en) Power converter
JP2006203974A (ja) 電力変換装置の配線構造
WO2013051476A1 (ja) 電力変換装置
US20210119551A1 (en) Semiconductor switching arrangement
CN105593989B (zh) 具有缓冲器-电容器的用于变换器的半导体堆叠
KR20160040378A (ko) 다상 구조의 dab 컨버터
JP2011188584A (ja) 電力変換装置
US10541625B2 (en) Power conversion device
EP2858230A1 (en) Power conversion apparatus
JP2007006571A (ja) 電力変換装置
JP2015089185A (ja) 3レベル電力変換装置
US20240283371A1 (en) Power converter device
JP7134306B2 (ja) 電力変換システムおよびその制御装置
WO2023026859A1 (ja) 電力変換器装置
EP3796539B1 (en) Modular switching cell
JP2018207563A (ja) 電力変換装置
KR20170041221A (ko) 전압 소스 서브모듈을 위한 전기 조립체에서의 또는 전기 조립체에 관한 향상
JP2017042008A (ja) 電力変換装置
JP2024029687A (ja) 電力変換装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160105

R150 Certificate of patent or registration of utility model

Ref document number: 5868561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250