JP7107043B2 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP7107043B2
JP7107043B2 JP2018131434A JP2018131434A JP7107043B2 JP 7107043 B2 JP7107043 B2 JP 7107043B2 JP 2018131434 A JP2018131434 A JP 2018131434A JP 2018131434 A JP2018131434 A JP 2018131434A JP 7107043 B2 JP7107043 B2 JP 7107043B2
Authority
JP
Japan
Prior art keywords
semiconductor
dummy
semiconductor module
modules
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018131434A
Other languages
English (en)
Other versions
JP2020010549A (ja
Inventor
慧 山浦
圭祐 水尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018131434A priority Critical patent/JP7107043B2/ja
Priority to CN201910618295.1A priority patent/CN110719042B/zh
Priority to US16/507,185 priority patent/US11056417B2/en
Publication of JP2020010549A publication Critical patent/JP2020010549A/ja
Application granted granted Critical
Publication of JP7107043B2 publication Critical patent/JP7107043B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/073Apertured devices mounted on one or more rods passed through the apertures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors

Description

本発明は、半導体素子を内蔵した複数の半導体モジュールと、該半導体モジュールを冷却する複数の冷却管とを積層した電力変換装置に関する。
従来から、半導体素子を内蔵した複数の半導体モジュールと、該半導体モジュールを冷却する複数の冷却管とを積層した積層体を備える電力変換装置が知られている(下記特許文献1参照)。この電力変換装置では、個々の半導体モジュールに直流バスバーを接続してある。この直流バスバーを介して、半導体モジュールを直流電源に電気接続してある。
上記電力変換装置は、半導体素子をスイッチング動作させ、これにより、上記直流電源から供給される直流電力を多相交流電力に変換するよう構成されている。
特開2011-135725号公報
しかしながら、上記電力変換装置は、スイッチング動作させたときに、半導体素子に大きなサージが加わる可能性が考えられる。すなわち、半導体素子をスイッチング動作させると、直流バスバーに寄生するインダクタンスが原因となって、個々の半導体素子に、当該半導体素子に加わるサージ(以下、自己サージとも記す)が発生する。また、この自己サージが、直流バスバーを伝搬して別の相の半導体素子に加わることもある(以下、重畳サージとも記す)。
上記電力変換装置では、複数の半導体素子をスイッチング動作させると、ある半導体素子に、上記自己サージと、他の半導体素子から伝わった重畳サージとが同時に加わることがある。そのため、これらのサージが同時に加わった場合でも耐えられるように、耐圧の高い半導体素子を用いる等の工夫をする必要があった。
本発明は、かかる課題に鑑みてなされたものであり、半導体素子に大きな重畳サージが加わることを抑制できる電力変換装置を提供しようとするものである。
本発明の一態様は、
半導体素子(20)を内蔵した複数の半導体モジュール(2)と、
該半導体モジュールを冷却する複数の冷却管(3)と、
上記半導体素子を内蔵していない複数のダミーモジュール(5)と、
直流電源(8)と個々の上記半導体モジュールとの間の電流経路をなす一対の直流バスバー(4)とを備え、
上記半導体モジュール又は上記ダミーモジュールと、上記冷却管とを交互に積層して積層体(10)を形成してあり、
上記複数の半導体モジュールによって、上記直流電源から供給される直流電力を、互いに位相が異なる複数系統の交流出力を組み合わせた多相交流電力に変換するインバータ回路(11)を構成してあり、
複数の上記半導体モジュールを同時にスイッチング動作させて一つの上記交流出力を発生するよう構成され、該一つの上記交流出力を発生する複数の上記半導体モジュールによって半導体モジュール群(29,29 U ,29 V と,29 W )を構成してあり、該半導体モジュール群に含まれる個々の上記半導体モジュールは、上記冷却管を介して互いに隣り合うよう配され、
上記ダミーモジュールは、上記積層体の積層方向(X)について互いに隣り合い且つ上記交流出力の位相が互いに異なる2つの上記半導体モジュール群の間に介在しており、
上記ダミーモジュールは、上記半導体モジュール群において互いに隣り合う2つの上記半導体モジュールの間に介在していない、電力変換装置(1)にある。
上記電力変換装置においては、交流出力の位相が互いに異なる2個の半導体モジュールの間に、上記ダミーモジュールを介在させてある。
そのため、半導体素子に加わる重畳サージを低減できる。すなわち、上記ダミーモジュールを介在させると、交流出力の位相が互いに異なる2個の半導体モジュールの間隔を広げることができる。そのため、上記重畳サージが直流バスバーを伝播する距離が長くなり、この直流バスバーに寄生するインダクタンスにより、重畳サージを低減させることができる。したがって、個々の半導体素子に、他の半導体素子から大きな重畳サージが加わることを抑制できる。
以上のごとく、上記態様によれば、半導体素子に大きな重畳サージが加わることを抑制できる電力変換装置を提供することができる。
なお、特許請求の範囲及び課題を解決する手段に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本発明の技術的範囲を限定するものではない。
実施形態1における、電力変換装置の断面図であって、図2のI-I断面図。 実施形態1における、電力変換装置の断面図であって、図3のII-II断面図。 図2のIII-III断面図。 図3から正極バスバー及び交流バスバーを取り除いた図。 実施形態1における、電力変換装置の回路図。 実施形態1における、スイッチング動作を行ったときに半導体素子に加わる電圧の波形図。 実施形態2における、電力変換装置の断面図。 図7に、直流バスバー及び交流バスバーを取り付けた図。 実施形態2における、スイッチング動作を行ったときの、中間半導体モジュール群に含まれる半導体素子の電圧波形図。 実施形態2における、スイッチング動作を行ったときの、最遠半導体モジュール群に含まれる半導体素子の電圧波形図。 実施形態3における、電力変換装置の断面図。 図11に、直流バスバー及び交流バスバーを取り付けた図。 実施形態4における、電力変換装置の断面図。 実施形態4における、電力変換装置の回路図。 参考形態における、電力変換装置の断面図。 比較形態における、電力変換装置の断面図。 図16に、直流バスバー及び交流バスバーを取り付けた図。 比較形態における、スイッチング動作を行ったときに半導体素子に加わる電圧の波形図。
(実施形態1)
上記電力変換装置に係る実施形態について、図1~図6を参照して説明する。図1、図2に示すごとく、本形態の電力変換装置1は、半導体素子20(図5参照)を内蔵した複数の半導体モジュール2と、複数の冷却管3と、半導体素子20を内蔵していない複数のダミーモジュール5と、一対の直流バスバー4(4P,4N)とを備える。冷却管3は、半導体モジュール2を冷却するために設けられている。直流バスバー4は、直流電源8と個々の半導体モジュール2との間の電流経路をなしている。
図1に示すごとく、半導体モジュール2又はダミーモジュール5と、冷却管3とを交互に積層して積層体10を構成してある。また、図5に示すごとく、本形態では、複数の半導体モジュール2によって、インバータ回路11を構成してある。インバータ回路11は、直流電源8から供給される直流電力を、互いに位相が異なる複数系統の交流出力(すなわち、単相交流電力)を組み合わせた多相交流電力に変換する回路である。
ダミーモジュール5は、交流出力の位相が互いに異なる2個の半導体モジュール2の間(2Uと2Vの間、及び2Vと2Wの間)に介在している。
本形態の電力変換装置1は、電気自動車やハイブリッド車等の車両に搭載するための、車載用電力変換装置である。本形態では図5に示すごとく、上述したように、複数の半導体モジュール2を用いて、インバータ回路11を構成してある。インバータ回路11は、直流電源8の直流電力を、三相交流電力に変換する。これにより、交流負荷81(三相交流モータ)を駆動し、上記車両を走行させている。
図5に示すごとく、本形態では、互いに並列に接続された3個の半導体モジュール2を同時にスイッチング動作させさせている。これら3個の半導体モジュール2によって、一つの交流出力を発生するよう構成してある。
一つの交流出力を発生する複数の半導体モジュール2によって、半導体モジュール群29が構成されている。本形態の電力変換装置1は、U相用半導体モジュール群29Uと、V相用半導体モジュール群29Vと、W相用半導体モジュール群29Wとの、3個の半導体モジュール群29を備える。U相用半導体モジュール群29Uによって、U相の交流出力を発生している。同様に、V相用半導体モジュール群29VによってV相の交流出力を発生し、W相用半導体モジュール群29WによってW相の交流出力を発生している。
図1に示すごとく、1つの半導体モジュール群29を構成する個々の半導体モジュール2は、冷却管3を介して互いに隣り合う位置に配されている。2個の半導体モジュール群29の間に、ダミーモジュール5が介在している。すなわち、U相用半導体モジュール群29UとV相用半導体モジュール群29Vとの間、及びV相用半導体モジュール群29VとW相用半導体モジュール群29Wとの間に、それぞれダミーモジュール5が介在している。これにより、積層体10の積層方向(X方向)における、2つの半導体モジュール群29の間隔を広げている。
図2に示すごとく、本形態の半導体モジュール2は、半導体素子20(図5参照)を内蔵した本体部21と、該本体部21から突出した一対の直流端子22(22P,22N)と、交流端子23と、制御端子24とを備える。直流端子22は、それぞれ直流バスバー4に接続している。制御端子24は、制御回路部19に接続している。この制御回路部19によって、半導体素子20のスイッチング動作を制御している。また、交流端子23には、交流バスバー6が接続している。この交流バスバー6を介して、多相交流電力を交流負荷81に供給している。
また、電力変換装置1のケース13内には、コンデンサ12が配されている。このコンデンサ12を用いて、直流電源8の直流電圧を平滑化している。上記直流バスバー4は、コンデンサ12に接続している。
直流バスバー4には、正極バスバー4Pと負極バスバー4Nとがある。正極バスバー4Pは、半導体モジュール2の正極端子22Pに接続している。また、負極バスバー4Nは、負極端子22Nに接続している。
図1に示すごとく、複数の冷却管3のうち、X方向における一端に位置する端部冷却管3aには、冷媒17を導入するための導入管14と、冷媒17を導出するための導出管15とが接続している。また、X方向に隣り合う2本の冷却管3の間には、連結管16が介在している。連結管16は、冷却管3の長手方向(Y方向)における、冷却管3の両端部に配されている。導入管14から冷媒17を導入すると、冷媒17は連結管16を通って全ての冷却管3内を流れ、導出管15から導出される。これにより、個々の半導体モジュール2を冷却している。
また、ケース13の壁部131と積層体10との間には、加圧部材18(板ばね)が配されている。この加圧部材18を用いて、積層体10をX方向に加圧している。これにより、冷却管3と半導体モジュール2との接触圧を確保すると共に、積層体10をケース13内に固定している。
なお、上記ダミーモジュール5は、アルミニウム等の金属からなる。ダミーモジュール5を、剛性の高い金属製とすることにより、加圧部材18の圧力が加わっても変形しないようにしてある。
また、図3に示すごとく、正極バスバー4Pには、正極端子22Pを挿通して接続するための端子用切欠部41(41P)を形成してある。本形態では、正極端子22Pを、端子用切欠部41Pに挿通した状態で、正極バスバー4Pに溶接してある。また、正極バスバー4Pには、直流端子22の突出方向(Z方向)から見たときにダミーモジュール5を視認可能なダミー用切欠部42(42P)を形成してある。ダミー用切欠部42は、X方向において2個の端子用切欠部41の間に形成されている。ダミー用切欠部42は、端子用切欠部41と同一形状に形成されている。
図4に示すごとく、負極バスバー4Nも、正極バスバー4Pと同様に、端子用切欠部41(41N)及びダミー用切欠部42(42N)を備える。
図3、図4に示すごとく、個々の直流バスバー4(4P,4N)は、コンデンサ12に接続するためのコンデンサ接続部49(49P,49N)を備える。個々のコンデンサ接続部49は、X方向における、直流バスバー4の中央部に形成されている。
図3に示すごとく、直流バスバー4の、コンデンサ接続部49から端子用切欠部41までの間に、主インダクタンスLAが寄生している。また、2つの半導体モジュール群29の間に相間インダクタンスLBが寄生している。本形態では、上記ダミーモジュール5を挿入してあるため、2つの半導体モジュール群29のX方向間隔が長くなっており、比較的大きな相間インダクタンスLBが寄生している。半導体素子20をスイッチング動作させると、図6に示すごとく、主インダクタンスLAが原因となって、当該半導体素子20に加わるサージ(すなわち、自己サージVS1)が生じる。また、直流バスバー4には相間インダクタンスLBが寄生しているため、自己サージVS1は、直流バスバー4を伝播して隣の半導体モジュール2に伝わる間に、減衰する。そのため、個々の半導体モジュール2には、隣の半導体モジュール2から大きなサージ(すなわち、重畳サージVS2)が加わりにくい。
本形態の作用効果について説明する。図1に示すごとく、本形態では、交流出力の位相が互いに異なる2個の半導体モジュール2の間(すなわち、半導体モジュール2U,2Vの間、および半導体モジュール2V,2Wの間)に、ダミーモジュール5を介在させてある。
そのため、個々の半導体素子20に、大きな重畳サージVS2が加わることを抑制できる。すなわち、ダミーモジュール5を介在させると、交流出力の位相が互いに異なる2個の半導体モジュール2の間隔を広げることができる。そのため、図3に示すごとく、重畳サージVS2が直流バスバー4を伝播する距離が長くなり、この直流バスバー4に寄生する相間インダクタンスLBによって、重畳サージVS2を低減させることができる。したがって、個々の半導体素子20に、他の半導体素子20から大きな重畳サージVS2が加わることを抑制できる。
従来の電力変換装置1は、図16に示すごとく、互いに位相が異なる2個の半導体モジュール2の間に、ダミーモジュール5を介在させていなかった。そのため、図17に示すごとく、互いに位相が異なる2個の半導体モジュール2の間隔が狭く、直流バスバー4に大きな相間インダクタンスLBが寄生しにくかった。そのため、重畳サージVS2が減衰しにくく、隣の半導体モジュール2から大きな重畳サージVS2が伝わりやすかった。したがって、図18に示すごとく、スイッチング動作を行ったときに、半導体素子20に、自己サージVS1と大きな重畳サージVS2とが同時に加わることがあった。そのため、耐圧が高い半導体素子20を用いたり、サージVS(自己サージVS1と重畳サージVS2の和)を低減できるように、スイッチング速度を低減したりする必要があった。
これに対して、本発明は、図1に示すごとく、互いに位相が異なる2個の半導体モジュール2の間にダミーモジュール5を介在させているため、これらの半導体モジュール2の間隔を長くすることができる。そのため、重畳サージVS2が直流バスバー4を伝播する距離が長くなり、直流バスバー4のインダクタンス(相間インダクタンスLB)によって、重畳サージVS2を減衰しやすい。したがって、図6に示すごとく、個々の半導体素子20に、他の半導体素子20から大きな重畳サージVS2が加わることを抑制できる。
また、本形態では図5に示すごとく、複数の半導体モジュール2によって半導体モジュール群29を構成してある。そして、半導体モジュール群29を構成する複数の半導体モジュール2を同時にスイッチング動作させて、一つの交流出力を発生するよう構成してある。また、図1に示すごとく、2個の半導体モジュール群29の間に、ダミーモジュール5を介在させてある。
このようにすると、複数の半導体モジュール2を同時にスイッチング動作させるため、個々の半導体モジュール2に流れる電流は小さくても、電力変換装置1全体として大きな電流を流すことができる。
また、大きな電流を流す場合は、スイッチング動作させたときに大きなサージが発生しやすいが、本形態ではダミーモジュール5を挿入してあるため、上述したように、個々の半導体素子20に大きな重畳サージVS2が加わることを抑制できる。そのため、サージVSを低減しつつ、大きな電流を流すことができる。
また、図3に示すごとく、直流バスバー4は、直流端子22を挿通して接続するための端子用切欠部41と、ダミー用切欠部42とを備える。ダミー用切欠部42は、X方向において、2個の端子用切欠部41の間に形成されている。
このようにすると、重畳サージVS2が他の半導体モジュール2へ伝播する際に、ダミー用切欠部42を迂回するため、重畳サージVS2の伝播距離を特に長くすることができる。そのため、相間インダクタンスLBを大きくすることができ、重畳サージVS2を低減しやすい。
また、本形態では、ダミーモジュール5と、半導体モジュール2の本体部21との、大きさ及び形状を実質的に等しくしてある。
そのため、ダミーモジュール5の挿入位置を容易に変更することができる。後述するように、交流負荷81の消費電力によっては、半導体モジュール2の数を変更し(図13参照)、これに伴ってダミーモジュール5の挿入位置を変更することがある。本形態では、ダミーモジュール5と、半導体モジュール2の本体部21との、大きさ及び形状を実質的に等しくしてあるため、これらの位置を容易に入れ替えることができる。
以上のごとく、本形態によれば、半導体素子に大きな重畳サージが加わることを抑制できる電力変換装置を提供することができる。
以下の実施形態においては、図面に用いた符号のうち、実施形態1において用いた符号と同一のものは、特に示さない限り、実施形態1と同様の構成要素等を表す。
(実施形態2)
本形態は、介在させるダミーモジュール5の数を変更した例である。図7に示すごとく、本形態では、2個の半導体モジュール群29(29F,29M)の間に、2個のダミーモジュール5を介在させてある。そのため、図8に示すごとく、重畳サージVS2が直流バスバー4を伝播する距離を、より長くすることができ、直流バスバー4に寄生する相間インダクタンスLBを大きくすることができる。そのため、これらの半導体モジュール群29(29F,29M)に加わる重畳サージVS2を、より低減できる。
より詳しくは、本形態では図7に示すごとく、複数の半導体モジュール群29のうち、X方向において端部冷却管3aから最も遠い位置に配された最遠半導体モジュール群29F(本形態ではW相用半導体モジュール群29W)と、これよりも端部冷却管3a側に配された中間半導体モジュール群29M(本形態ではV相用半導体モジュール群29V)との間に、2個のダミーモジュール5を介在させてある。
このようにすると、中間半導体モジュール群29Mと最遠半導体モジュール群29Fとの間隔を長くすることができる。したがって、図8に示すごとく、これらの半導体モジュール群29M,29Fの間を重畳サージVS2が伝播する距離が長くなり、重畳サージVS2をより低減できる。そのため、中間半導体モジュール群29Mおよび最遠半導体モジュール群29Fに含まれる半導体素子20に大きな重畳サージVS2が加わることを抑制できる。特に、最遠半導体モジュール群29Fは、中間半導体モジュール群29Mのみに隣接しているため、最遠半導体モジュール群29Fには、大きな重畳サージVS2が加わりにくい。
したがって、最遠半導体モジュール群29Fに含まれる半導体素子20のスイッチング速度(図10参照)を、中間半導体モジュール群29Mに含まれる半導体素子20のスイッチング速度(図9参照)よりも、速くすることができる。スイッチング速度を早くすると、最遠半導体モジュール群29Fに含まれる半導体素子20には、より大きな自己サージVS1が加わるが、この半導体モジュール2には重畳サージVS2が特に加わりにくいため、全体のサージVS(=VS1+VS2)が半導体素子20の耐圧を超える不具合は発生しにくい。また、最遠半導体モジュール群29Fは、端部冷却管3a(すなわち、導入管14及び導出管15を接続した冷却管3)から最も遠いため、冷媒17の圧損が大きく、冷媒17が流れにくい。そのため、最遠半導体モジュール群29Fは冷却効率が低いが、スイッチング速度を速くすることができるため、スイッチング損を低減できる。そのため、最遠半導体モジュール群29Fに含まれる個々の半導体モジュール2の温度が、過度に上昇することを抑制できる。
また、図8に示すごとく、本形態では、直流バスバー4のうち、Z方向から見たときに2つの半導体モジュール群29M,29Fの間に存在する部位に、2個のダミー用切欠部42を形成してある。
このようにすると、重畳サージVS2が2個のダミー用切欠部42を迂回するため、重畳サージVS2の伝播距離をさらに長くすることができる。したがって、重畳サージVS2をより減衰しやすい。
その他、実施形態1と同様の構成および作用効果を備える。
なお、本形態では、2つの半導体モジュール群29(29M,29F)の間に2個のダミーモジュール5を介在させたが、本発明はこれに限るものではなく、3個以上のダミーモジュール5を介在させてもよい。
(実施形態3)
本形態は、ダミーモジュール5の数を変更した例である。本形態では図11に示すごとく、端部冷却管3aに最も近い位置に配された最近半導体モジュール群29N(本形態ではU相用半導体モジュール群29U)と、中間半導体モジュール群29Mとの間に2個のダミーモジュール5を介在させてある。また、実施形態2と同様に、中間半導体モジュール群29Mと最遠半導体モジュール群29Fとの間にも2個のダミーモジュール5を介在させてある。
このようにすると、図12に示すごとく、最近半導体モジュール群29Nと中間半導体モジュール群29Mとの間隔を広げることができるため、重畳サージVS2が、これらの半導体モジュール群29N,29Mの間を伝播する距離を長くすることができる。そのため、これらの間の相間インダクタンスLBを大きくすることができ、重畳サージVS2をより低減させることができる。また、実施形態2と同様に、中間半導体モジュール群29Mと最遠半導体モジュール群29Fとの間でも、重畳サージVS2が伝わりにくくなる。したがって、全ての半導体モジュール2について、他の半導体モジュール2から加わる重畳サージVS2を低減することが可能になる。
また、図12に示すごとく、本形態では、直流バスバー4のうち、Z方向から見たときに最近半導体モジュール群29Nと中間半導体モジュール群29Mとの間に存在する部位に、2個のダミー用切欠部42を形成してある。
このようにすると、これら2つの半導体モジュール群29N,29Mの間において、重畳サージVS2が2個のダミー用切欠部42を迂回することになる。そのため、これらの半導体モジュール群29N,29M間における、重畳サージVS2の伝播距離をさらに長くすることができ、重畳サージVS2をより効果的に低減できる。
その他、実施形態1と同様の構成および作用効果を備える。
(実施形態4)
本形態は、半導体モジュール群29を構成する半導体モジュール2の数を変更した例である。図13、図14に示すごとく、本形態では、2個の半導体モジュール2を用いて、半導体モジュール群29(29U,29V,29W)を構成してある。交流負荷81の消費電力が低い場合は、このように、2個の半導体モジュール2を用いて、半導体モジュール群29を構成することができる。また、個々の半導体モジュール群29の間には、1個のダミーモジュール5が介在している。
また、本形態の電力変換装置1は、補助半導体モジュール2’(2U’,2V’,2W’)を備える。これらの補助半導体モジュール2’によって、補助交流負荷81’を駆動している。補助交流負荷81’は、例えば、車両のリアモータとすることができる。
その他、実施形態1と同様の構成および作用効果を備える。
参考形態
本形態は、半導体モジュール2の数を変更した例である。図15に示すごとく、本形態の電力変換装置1は、3個の半導体モジュール2を備える。個々の半導体モジュール2の間に、ダミーモジュール5が介在している。上記3個の半導体モジュール2によって、直流電力を三相交流電力に変換するインバータ回路11を構成してある。
その他、実施形態1と同様の構成および作用効果を備える。
本発明は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。
1 電力変換装置
10 積層体
11 インバータ回路
2 半導体モジュール
20 半導体素子
3 冷却管
4 直流バスバー
5 ダミーモジュール

Claims (3)

  1. 半導体素子(20)を内蔵した複数の半導体モジュール(2)と、
    該半導体モジュールを冷却する複数の冷却管(3)と、
    上記半導体素子を内蔵していない複数のダミーモジュール(5)と、
    直流電源(8)と個々の上記半導体モジュールとの間の電流経路をなす一対の直流バスバー(4)とを備え、
    上記半導体モジュール又は上記ダミーモジュールと、上記冷却管とを交互に積層して積層体(10)を形成してあり、
    上記複数の半導体モジュールによって、上記直流電源から供給される直流電力を、互いに位相が異なる複数系統の交流出力を組み合わせた多相交流電力に変換するインバータ回路(11)を構成してあり、
    複数の上記半導体モジュールを同時にスイッチング動作させて一つの上記交流出力を発生するよう構成され、該一つの上記交流出力を発生する複数の上記半導体モジュールによって半導体モジュール群(29,29 U ,29 V と,29 W )を構成してあり、該半導体モジュール群に含まれる個々の上記半導体モジュールは、上記冷却管を介して互いに隣り合うよう配され、
    上記ダミーモジュールは、上記積層体の積層方向(X)について互いに隣り合い且つ上記交流出力の位相が互いに異なる2つの上記半導体モジュール群の間に介在しており、
    上記ダミーモジュールは、上記半導体モジュール群において互いに隣り合う2つの上記半導体モジュールの間に介在していない、電力変換装置(1)。
  2. 上記2つの上記半導体モジュール群の間に、複数個の上記ダミーモジュールを介在させてある、請求項に記載の電力変換装置。
  3. 上記半導体モジュールは、上記半導体素子を内蔵した本体部(21)と、該本体部から突出しそれぞれ上記直流バスバーに接続した一対の直流端子(22)とを備え、上記直流バスバーには、上記直流端子を挿通して接続するための端子用切欠部(41)を形成してあると共に、上記直流端子の突出方向(Z)から見たときに上記ダミーモジュールを視認可能なダミー用切欠部(42)を形成してあり、該ダミー用切欠部は、上記積層体の積層方向において2個の上記端子用切欠部の間に形成されている、請求項1または2に記載の電力変換装置。
JP2018131434A 2018-07-11 2018-07-11 電力変換装置 Active JP7107043B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018131434A JP7107043B2 (ja) 2018-07-11 2018-07-11 電力変換装置
CN201910618295.1A CN110719042B (zh) 2018-07-11 2019-07-10 电力转换设备
US16/507,185 US11056417B2 (en) 2018-07-11 2019-07-10 Power conversion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018131434A JP7107043B2 (ja) 2018-07-11 2018-07-11 電力変換装置

Publications (2)

Publication Number Publication Date
JP2020010549A JP2020010549A (ja) 2020-01-16
JP7107043B2 true JP7107043B2 (ja) 2022-07-27

Family

ID=69139618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018131434A Active JP7107043B2 (ja) 2018-07-11 2018-07-11 電力変換装置

Country Status (3)

Country Link
US (1) US11056417B2 (ja)
JP (1) JP7107043B2 (ja)
CN (1) CN110719042B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11791237B2 (en) 2018-06-27 2023-10-17 Intel Corporation Microelectronic assemblies including a thermal interface material
JP6875604B2 (ja) * 2018-07-20 2021-05-26 東芝三菱電機産業システム株式会社 電力変換装置
US11670569B2 (en) 2019-06-11 2023-06-06 Intel Corporation Channeled lids for integrated circuit packages
JP7156319B2 (ja) * 2020-01-22 2022-10-19 株式会社デンソー 電力変換装置
JP7287300B2 (ja) * 2020-02-05 2023-06-06 株式会社デンソー 電力変換装置
DE102020111528A1 (de) 2020-04-28 2021-10-28 Semikron Elektronik Gmbh & Co. Kg Leistungselektronische Anordnung mit einem Mehrphasen-Leistungshalbleitermodul

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266634A (ja) 2007-07-06 2007-10-11 Denso Corp パワースタック
JP2011120358A (ja) 2009-12-02 2011-06-16 Denso Corp 電力変換装置
JP2017127095A (ja) 2016-01-13 2017-07-20 株式会社デンソー 電力変換装置
JP2018041769A (ja) 2016-09-05 2018-03-15 株式会社デンソー 半導体装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4751810B2 (ja) * 2006-11-02 2011-08-17 日立オートモティブシステムズ株式会社 電力変換装置
JP4436843B2 (ja) * 2007-02-07 2010-03-24 株式会社日立製作所 電力変換装置
US7965508B2 (en) * 2007-03-27 2011-06-21 Denso Corporation Cooling device for electronic component and power converter equipped with the same
JP4988665B2 (ja) * 2008-08-06 2012-08-01 日立オートモティブシステムズ株式会社 半導体装置および半導体装置を用いた電力変換装置
JP5531611B2 (ja) 2009-12-25 2014-06-25 株式会社デンソー 電力変換装置
US8493762B2 (en) * 2009-12-28 2013-07-23 Kabushiki Kaisha Toshiba Power semiconductor module and semiconductor power converter provided with the same
JP5422466B2 (ja) * 2010-04-01 2014-02-19 日立オートモティブシステムズ株式会社 電力変換装置
JP5879728B2 (ja) * 2010-09-17 2016-03-08 東芝ライテック株式会社 電源装置、照明装置および電源システム
JP2013074721A (ja) * 2011-09-28 2013-04-22 Denso Corp 電力変換装置
JP5505398B2 (ja) * 2011-11-11 2014-05-28 株式会社デンソー 電力変換装置
JP5664578B2 (ja) * 2012-03-13 2015-02-04 株式会社デンソー 電力変換装置
JP5747963B2 (ja) * 2012-10-02 2015-07-15 株式会社デンソー 電力変換装置
JP5655846B2 (ja) * 2012-12-04 2015-01-21 株式会社デンソー 電力変換装置
JP6365336B2 (ja) * 2015-02-13 2018-08-01 株式会社デンソー 電力変換装置
JP6432381B2 (ja) * 2015-02-13 2018-12-05 株式会社デンソー 電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266634A (ja) 2007-07-06 2007-10-11 Denso Corp パワースタック
JP2011120358A (ja) 2009-12-02 2011-06-16 Denso Corp 電力変換装置
JP2017127095A (ja) 2016-01-13 2017-07-20 株式会社デンソー 電力変換装置
JP2018041769A (ja) 2016-09-05 2018-03-15 株式会社デンソー 半導体装置

Also Published As

Publication number Publication date
JP2020010549A (ja) 2020-01-16
US20200020609A1 (en) 2020-01-16
CN110719042A (zh) 2020-01-21
US11056417B2 (en) 2021-07-06
CN110719042B (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
JP7107043B2 (ja) 電力変換装置
JP4920677B2 (ja) 電力変換装置およびその組み立て方法
JP5132175B2 (ja) 電力変換装置
JP2015139299A (ja) 電力変換器
CN103546015B (zh) 逆变器装置
JP6690478B2 (ja) 電力変換装置
JP2015035862A (ja) 電力変換装置
JP2015136224A (ja) 電力変換器
JP6458529B2 (ja) 電力変換装置
JP2011015455A (ja) 三相電力変換装置
CN113437908A (zh) 开关电路及其开关布局结构、电机控制器、变换器
JP2005176555A (ja) 電力変換装置
WO2019146179A1 (ja) 電力変換装置および電力変換装置を搭載する電気鉄道車両
JP5092654B2 (ja) 電力変換装置
JP2018042311A (ja) 電力変換装置
JP6098402B2 (ja) 電力変換装置
WO2018163606A1 (ja) 電力変換装置
JP6583137B2 (ja) 電力変換装置
JP6432381B2 (ja) 電力変換装置
JP6451379B2 (ja) 電力変換装置
JP7163778B2 (ja) 半導体装置
JP2005228529A (ja) 配線部材
JP2019187206A (ja) 電力変換器
JP6604097B2 (ja) スイッチング回路および電力変換装置
JP6365336B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220627

R151 Written notification of patent or utility model registration

Ref document number: 7107043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151