WO2020013630A1 - 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법 및 장치 - Google Patents

플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법 및 장치 Download PDF

Info

Publication number
WO2020013630A1
WO2020013630A1 PCT/KR2019/008569 KR2019008569W WO2020013630A1 WO 2020013630 A1 WO2020013630 A1 WO 2020013630A1 KR 2019008569 W KR2019008569 W KR 2019008569W WO 2020013630 A1 WO2020013630 A1 WO 2020013630A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion
target gas
gas
plasma
agent
Prior art date
Application number
PCT/KR2019/008569
Other languages
English (en)
French (fr)
Inventor
백광현
주원태
장윤상
Original Assignee
(주)플라즈닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)플라즈닉스 filed Critical (주)플라즈닉스
Priority to CN201980059619.0A priority Critical patent/CN112672810A/zh
Priority to EP19833894.9A priority patent/EP3821969A4/en
Priority to US17/259,660 priority patent/US20210394117A1/en
Priority to JP2021524953A priority patent/JP7217056B2/ja
Publication of WO2020013630A1 publication Critical patent/WO2020013630A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/343Heat recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/70Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • H01J37/32844Treating effluent gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/3288Maintenance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • H05H1/482Arrangements to provide gliding arc discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/102Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/202Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2066Fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/80Burners or furnaces for heat generation, for fuel combustion or for incineration of wastes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Definitions

  • the present invention relates to a method and apparatus for treating a target gas-containing exhaust gas on a plasma, and related to increasing the conversion rate of the target gas contained in the exhaust gas and reducing the energy consumption required in the process.
  • gases harmful to the human body and environment such as global warming gas, ozone depleting gas, toxic gas, explosive gas, and pyrophoric gas
  • gas perfluorocompounds such as CF4, C2F6 and C3F8 and SF6 and NF3 are used for etching, chemical vapor deposition, or chemical vapor deposition processes in industries such as semiconductors and flat panel displays.
  • the method of using an electric heater has the advantage of relatively simple treatment of the exhaust gas containing the target gas, but the energy consumption is excessive and high temperatures of about 1300 ° C. or more are difficult to achieve. If it contains a disadvantage that is not easy to apply.
  • Combustion method using high temperature flame generated by chemical reaction between fuel such as LNG and LPG and oxidant such as oxygen is advantageous because it can get higher temperature than electrothermal heater method, but it uses more fuel and installs and operates fuel related utility. There is a problem in that a lot of cost and hassle and a large amount of nitrogen oxide is generated.
  • there is a problem such that the temperature of the processing atmosphere changes or the flame is lost in severe cases according to the change in the flow rate, type, composition, etc. of the target gas-containing exhaust gas.
  • the target gas-containing exhaust gas treatment method using a thermal plasma high temperature plasma generation is required to obtain a high conversion rate of the target gas, and thus a lot of power is consumed.
  • the target gas is discharged in a mixed state with a large amount of nitrogen, air, etc., for example, in a semiconductor manufacturing process, the target gas is discharged with a mixture of hundreds of standard liters per minute (slpm), especially in a flat panel display.
  • the amount of gas to be mixed is increased up to several thousand slpm in some cases, and a lot of power is indispensably required for the treatment of the target gas-containing exhaust gas.
  • the thermal plasma is operated at high power, the life of components (eg, electrodes) of the plasma generating apparatus is shortened in addition to power consumption, and thus, frequent replacement is required, which increases the number of stop operations and increases maintenance costs.
  • the present invention is to overcome the problems of the conventional method as described above to increase the conversion rate of the target gas and to reduce the energy consumption required in this process. In addition, this reduces the maintenance cost of the processing device, improves the lifespan, and makes it easier to implement a large-capacity processing device.
  • Electrons interact with gas molecules in a variety of ways, and the dissociation of gas molecules by electron collisions is one of these interactions.
  • the initial stage of gas transformation is the dissociation process, which breaks the bond of gas molecules into smaller particles such as atoms, ions, and active species, and electrons can play an important role in this dissociation process.
  • the electron density in the air at room temperature is 10 compared to the neutral particle density on Saha equation is generated when the neutral particles of atomic or molecular state be ionized-e according to Sikkim very low as approximately 122 to increase the temperature of the substrate Density increases.
  • Plasma which is defined as "a quasi-neutral gas composed of charged particles and neutral particles, which collectively behaves" contains such electrons in abundance.
  • Plasma can be classified into non-equilibrium plasma and local equilibrium plasma according to the temperature and thermal equilibrium of these constituent particles, and non-equilibrium plasma whose electron temperature is very high compared to the temperature of heavy particles such as ions and neutral particles can be classified as low temperature plasma.
  • Plasma generated by glow discharge, dielectric barrier discharge, corona discharge, and the like is an example of an unbalanced plasma.
  • Local equilibrium plasmas which have almost the same temperature as electrons and heavy particles, are also called thermal plasmas.
  • Plasma generated by arc discharge, thermal high frequency discharge, etc. is an example of local equilibrium plasma.
  • the plasma generated by the gliding arc discharge or the microwave discharge is located in the middle region thereof.
  • the plasma generated by the effect of the electromagnetic field it can be said to be a broad plasma when it contains a considerable amount of charged particles such as a combustion flame or a heated gas.
  • the energy needed to ionize neutral particles in the atomic or molecular state is called ionization energy, and the primary ionization energy is the energy needed to separate the first electron from the neutral particle.
  • the ionization energy is determined by the size of the atom or molecule, the electron arrangement, and the like. The lower the ionization energy, the easier the electron is generated.
  • plasma is mostly generated from inert gases such as argon and helium, or materials that exist in the gaseous state at atmospheric pressure and ambient temperature such as nitrogen, oxygen, hydrogen, and water vapor, but their primary ionization energy is higher than 10 eV. to be.
  • Elements having low primary ionization energy include alkali metals such as lithium, sodium, potassium, rubidium and cesium, alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium, transition metals such as iron, nickel and copper, and aluminum. have.
  • the present invention addresses two of the above facts: 1) electrons can play an important role in the early stages of gas transformation, and 2) the density of electrons (or electrons) by adding elements with low primary ionization energy to the plasma. It was designed with the idea that the temperature can be increased).
  • a substance hereinafter, a converting agent, water, hydrogen, oxygen, hydrocarbon, etc.
  • a converting agent water, hydrogen, oxygen, hydrocarbon, etc.
  • the element hereinafter, conversion promoting element
  • they were repeatedly and continuously acted in a small amount to dramatically increase the conversion rate of the target gas.
  • the increase in the conversion rate in the present invention is not because the conversion accelerator is directly chemically bonded to the target gas to convert it, but the conversion accelerator increases the electron density or electron temperature to accelerate the dissociation of the molecules of the target gas to promote the overall conversion.
  • Catalysis is an increase in the rate of a particular reaction due to the involvement of an additional substance called a catalyst.
  • the catalyst acts repeatedly and continuously because it does not directly participate in the reaction and is not converted or consumed. Even small amounts have a great effect. It was confirmed that the conversion promoter in the present invention plays the role of such a catalyst.
  • the conversion promoter As a result, it was found that the lower the primary ionization energy of the conversion promoter, the higher the conversion rate synergistic effect was obtained. In particular, when the alkali metal and the alkaline earth metal were used as the conversion promoter, the effect was higher. It is of course also possible to use several types of conversion promoters together. It was confirmed that the effect of the conversion promoter is greatly influenced by the mole fraction of the conversion accelerator in the region where the target gas is converted (hereinafter referred to as the conversion region) in addition to the primary ionization energy of the conversion accelerator, and preferably 0.1 to 10,000 ppm.
  • the mole fraction of the conversion promoting element is more preferably 1 to 1,000 ppm.
  • the converting agent it is desirable to supply the amount more than determined by the stoichiometry of the reaction because it has to play a role of chemically combining with the target gas to convert it into a conversion product. If a smaller amount of the conversion agent is supplied, if the conversion accelerator can chemically bond with the target gas, a part of the conversion accelerator plays a role of the conversion agent, and thus the role of the catalyst is lowered and the conversion agent is not chemically bonded. It is not preferable because the amount of is insufficient.
  • the conversion rate of the target gas is drastically lowered. It is possible to maintain a high conversion rate of the target gas even at low temperatures. That is, the temperature required for the conversion can be lowered due to the catalytic action of the conversion accelerator.
  • the effects of the present invention have been confirmed to work equally well in the plasma generated by the electromagnetic field as well as in the gas heated by the combustion flame and the electrothermal heater, or in a mixed atmosphere thereof.
  • the plasma described in the present invention refers to such a broad plasma. do.
  • the present invention can increase the conversion rate of the target gas in treating the target gas-containing exhaust gas and reduce the amount of energy required in the treatment process. In addition, this can reduce the maintenance cost of the processing device and improve the lifetime, and it is possible to implement a large-capacity processing device more easily.
  • the present invention can be applied not only to the removal of harmful substances but also to the synthesis of useful substances such as reforming, gasification, gas to liquid (GTL), and polymerization.
  • FIG. 1 is a conceptual diagram of an apparatus for treating a target gas-containing exhaust gas on a plasma according to an embodiment of the present invention.
  • Figure 1a is a conceptual diagram of the (a) conventional atomizer and (b) the atomizer according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of an apparatus for treating a target gas-containing exhaust gas on a plasma according to an embodiment of the present invention.
  • FIG. 3 is a conceptual diagram of an apparatus for treating a target gas-containing exhaust gas on a plasma according to an embodiment of the present invention.
  • FIG. 4 is a conceptual diagram of an apparatus for treating a target gas-containing exhaust gas on a plasma according to an embodiment of the present invention.
  • 5 is a conversion rate of CF 4 according to the primary ionization energy of the conversion accelerator.
  • T MIX conversion accelerator and preheating
  • CF 4 binding dissociation energy
  • the fact that electrons can play an important role in the early stages of gas conversion and that the density of electrons (or even the temperature of the electrons) can be increased by adding elements with low primary ionization energy to the plasma is the type of target gas. Regardless of whether it is commonly applied, the operation of the present invention is not limited to CF 4 and may be equally applied to other target gases. The examples describe the effect of the invention on a variety of target gases other than CF 4 .
  • CF 4 dissociation, recombination, and some examples of the conversion reaction and the water of the dissociation product of the conversion agent entire transformation reaction in the case of changing the CF 4 is as follows.
  • Electrons are expected to play a key role in the dissociation of active species and fluorine atoms, molecules, or ions.
  • the conversion promoter is expected to play a role in promoting the overall conversion reaction by increasing the density of electrons to accelerate the dissociation of CF 4 molecules.
  • the dissociation product, CF i active species, and fluorine atoms, molecules, or ions may recombine to form CF 4 again.
  • conversion agents such as water, hydrogen, oxygen, and hydrocarbons
  • these or their constituents bind to the dissociation product.
  • Effective conversion can be achieved by inhibiting recombination into CF 4 and by converting it into stable conversion products such as HF, COF 2 , CO 2, and the like.
  • various types of conversion agents may be used.
  • a material containing elements such as hydrogen, oxygen, nitrogen, and carbon as a constituent element may be used. Can be.
  • Table 1 shows the supply rate, mole fraction, various temperatures, conversion rate and power consumption of each component supplied to the conversion area as examples of conversion conditions and results claimed in the present invention.
  • the conversion promoting element which exists in the metal state has many explosive or expensive things, and thus it is difficult to use it directly.
  • a conversion accelerator such as a compound, an alloy, an intermetallic compound, or a mineral
  • the characteristics of the present invention can be realized. It is expected because it can be decomposed into conversion promoting elements and other substances in the region.
  • Examples of compounds that can be used as conversion promoters include Hydroxide, Nitrate, Nitrite, Carbonate, Hydrogen carbonate, Percarbonate, Acetate, Formate, Fluoride, Chloride, Chlorate, Chlorite, Hypochlorite, Bromide, Borohydride, Phosphate, Phosphite, Hypophosphite, Phthalate, Sulfate , Sulfide, Dithionite, Sulfamate, Oxalate, Oxide, Isopropoxide.
  • Examples of minerals include, but are not limited to, Feldspar, Mica, Muscovite, and Cryolite.
  • the conversion accelerator contains H, O, etc., which can be combined with the dissociation product of the target gas in addition to the conversion accelerator. However, when a small amount of the conversion promoter is used, the amount is very small compared to the conversion agent supplied separately.
  • the molar fraction is supplied to the conversion zone to form the atmosphere of the conversion zone, e.g., the molar fraction of the corresponding component among the total moles of the target gas, diluent gas, plasma forming gas, converter, and conversion promoter. ).
  • the former components can be dissociated in the conversion zone and the number of moles can be increased. If the state after dissociation is applied to the calculation of mole fraction, it is troublesome to measure the dissociation degree.
  • the molar fraction is calculated by applying the state at the time of supply of each component. For example, 1 mole of CF4 can be increased up to 5 moles by dissociation, but 1 mole is used to calculate the mole fraction.
  • the mole fraction of the conversion promoter is calculated by multiplying the mole fraction of the conversion promoter by the number of conversion promoter elements contained in the conversion promoter molecule. For example, if the mole fraction of the conversion promoter and K 2 CO 3 is 100 ppm, the mole fraction of the conversion promoter and potassium is 200 ppm.
  • the molar fraction of potassium, the conversion promoter is very low at 100 ppm, but according to the Saha equation, the electron density in nitrogen at 1500 ° C is 6.1 x 10 4 m -3 before potassium addition and 1.9 x 10 17 m -3 after addition of 100 ppm potassium. This is expected to increase sharply, accelerating dissociation and accelerating the transformation.
  • Conversion accelerating element and converter excess ratio is the number of conversion accelerating elements and conversion moles required by stoichiometry in the reaction of conversion accelerating element and converting agent to chemically bond with dissociation product of target gas to convert target gas. In contrast, it was defined as the ratio of the number of moles supplied to the actual conversion zone. Potassium may act as a converting agent as shown in Equation (2) below to directly bond with the dissociation product of CF 4 to convert it, but in this case, 4 moles of K are required to convert 1 mole of CF 4 . In addition, the role of the catalyst is reduced and a large amount of solid state conversion products are formed, which leads to difficulties in stable operation of the converter and disposal of the conversion products.
  • the conversion accelerating element charge ratio of 0.008 in Table 1 means that only about 1/130 is supplied compared to the number of moles of potassium required by the stoichiometry of Equation (2).
  • the converter charging ratio 1.2 means that 20% more water is supplied than required by the stoichiometry of equation (1).
  • a separate conversion agent In order for the conversion promoter to act as a catalyst, a separate conversion agent must be present and chemically bonded to the dissociation product of the target gas. Therefore, it is preferable to supply such an additional conversion agent by the stoichiometry of the reaction.
  • T A is the actual measured value of the preheating temperature of the target gas-containing exhaust gas before it is supplied to the conversion zone.
  • T MIX is a value designed to approximate the average temperature of the conversion range. In Table 1, it was assumed that CF 4 diluted with nitrogen was pre-heated and uniformly mixed with the nitrogen plasma generated by the thermal plasma torch in an adiabatic state. The higher the T A , the higher the T MIX under the same power consumption. As a result, the higher the T MIX , the greater the effect of increasing the conversion rate of the target gas on the target gas.
  • the energy consumption can be reduced in the treatment of the target gas-containing exhaust gas by the action of the conversion promoting element, in order to further reduce this, waste heat remaining in the material after passing through the conversion zone is recovered through a heat exchanger, and the exhaust gas containing the target gas is used. It is preferable to preheat before supplying to the conversion zone, and the preheating effect can be enhanced by adding a material such as hydrogen or helium, which has high thermal conductivity. In addition, it is desirable to reduce the heat consumption to the outside by insulating the treatment device to reduce the energy consumption.
  • the conversion rate is defined as the ratio of the number of moles converted to the number of moles of the target gas before conversion and measured by gas chromatography or Fourier transform infrared spectroscopy.
  • the power required is the power supplied to the thermal plasma torch.
  • Equation (2) exemplifies KOH as a conversion promoter, but when KF is used instead, the same conversion rate synergistic effect can be obtained.
  • potassium a conversion promoter
  • Equation (2) shows the role of a conversion agent as shown in Equation (2). It can be seen that once again serves as a catalyst. If only the conversion promoter is added without conversion agent in the conversion of the target gas, if the conversion promoter does not chemically bond with the dissociation product, the recombination of the dissociation product cannot be suppressed and the conversion to the conversion product is difficult. If the conversion is very difficult and the chemical conversion element can be chemically bonded to the dissociation product, it is difficult to obtain a high conversion rate as in the present invention and the requirements are very high because the role of the conversion agent instead of the catalyst is required.
  • a solution in which a solid phase conversion promoter is dissolved in a liquid material may be used as a feedstock. If the liquid material is a conversion agent, the conversion accelerator and the conversion agent may be supplied together. Many solid-state conversion accelerators have high solubility in liquid substances that can be used as converters such as water and alcohols. Therefore, by adjusting the concentration of the solution properly and supplying them to the liquid metering pump, it is possible to easily control the conversion rate of the conversion promoters and the converters. .
  • the conversion promoter may cause loss due to wall attachment during the transfer process. Therefore, it is preferable to supply the gas to the conversion area after being sufficiently vaporized as close as possible to the conversion area.
  • Water (H2O), hydrogen (H2), oxygen (O2), hydrocarbons, etc. which can be used as converting agents, may react with dissociation products of the target gas by themselves, but hydrogen (H), oxygen (O), and hydroxyl groups Since it is more advantageous to react in the form of (OH) or ions thereof, if the converter is passed through the high temperature region inside the plasma generating means and then supplied to the conversion zone, vaporization of the converter is possible as well as such activation.
  • the conversion promoter is also advantageous because it can increase the ionization of the conversion promoter element when supplied to the conversion zone through this method.
  • a conversion agent or a conversion accelerator may be used as a raw material of the plasma generating means, or may be partially mixed with an existing raw material (a plasma forming gas such as nitrogen or argon in the case of a thermal plasma torch or a fuel or an oxidant in the combustion burner). Steam plasma torches, LPG / LNG burners, etc. are good examples of using this method to activate the converter.
  • the specific surface area is increased to facilitate vaporization and activation, and thus an atomizer or a powder dispersing device can be used.
  • the converting agent is preferably present uniformly around the target gas.
  • the converting agent may be uniformly mixed with the target gas-containing exhaust gas in advance and then transferred to the conversion region.
  • the feed rate of the conversion accelerator and the conversion agent can be controlled by separate quantitative supply mechanisms such as mass flow meters, liquid pumps, and powder feeders. However, when these substances are in the liquid or solid phase, they may be adjusted by changing their temperature and the flow rate of the transfer gas. . Due to the characteristics of the present invention, since the conversion accelerator consumes very little, the amount that can be used for a long time is pre-loaded in a predetermined space inside or outside the converter, and can be easily supplied without a separate quantitative supply mechanism. When it is charged to the high temperature part inside the converter, it does not need a separate heat source, which is more convenient.
  • the target gas-containing exhaust gas treatment device 10 is largely composed of a main body 20, a heat exchanger 30 and a guide 35, a plasma generating means 40, a water tank 50, a wet scrubber 60, and an atomizer M10. It is composed of The outside of the main body 20 is insulated.
  • the target gas-containing exhaust gas A is introduced through the target gas-containing exhaust gas inlet 21.
  • the converting agent (N) whose feed rate is controlled by the fixed-quantity supply mechanism (N2) is injected through the converting agent supply port (22) installed in the target gas-containing exhaust gas inlet (21), and thereafter,
  • the mixture is mixed and preheated by recovering the waste heat remaining in the material 45 after passing through the conversion zone in the four-stage series heat exchanger 30. Thereafter, the mixture is uniformly rotated in the circumferential direction by the swirl flow generating mechanism 32 and further preheated through the guide 35, and then supplied to the conversion region R.
  • a thermocouple 36 for measuring the preheating temperature, T A of the mixture is provided.
  • the DC thermal plasma torch installed above the conversion region R as the plasma generating means 40 generates a high-temperature arc discharge between the cathode and the anode inside the torch using a DC power supply to plasmatize nitrogen, the plasma forming gas 43. After that, it serves to jet to the conversion region (R) in the form of a jet (P).
  • Atomizer (M10) installed on the outlet side of the plasma generating means (40) by dissolving the conversion promoter (M1), which is a compound, in water, which is a conversion agent (N), through a fixed-quantity supply mechanism (M2) such as a syringe pump or a peristaltic pump. Supplies).
  • the conversion promoter M1 in the aqueous state is aerosolized into a fine droplet by a trace amount of nitrogen, which is the atomizing gas M11, in the fine gap M12 at the outlet of the atomizer M10, and then vaporized by heat in the conversion region. If a conventional atomizer is used (FIG. 1A, FIG.
  • the supply rate of the conversion accelerator M1 and the mole fraction of the conversion accelerator element M in the conversion zone R can be varied by controlling the supply rate of the aqueous solution controlled by the quantitative supply mechanism M2 and the concentration of the conversion promoter M1 in the aqueous solution. Can be.
  • the feed rate of the converter N is determined by the sum of the feed rates of the converter N supplied to the converter supply port 22 and the converter N contained in the aqueous solution.
  • the target gas in the target gas-containing exhaust gas A supplied to the conversion region R is converted by the action of the plasma jet P, the conversion promoting element M, and the conversion agent N, and then passes through the conversion region.
  • FIG. 2 is a conceptual diagram of an apparatus for treating a target gas-containing exhaust gas on a plasma according to an embodiment of the present invention.
  • An external vaporization heat source (M24) which charges potassium metal as a conversion accelerator (M1) to a vaporization unit (M20) located outside the main body (20) and controls the temperature of potassium dissolved in the vaporization unit (M20) by a thermocouple (M22).
  • M24 an external vaporization heat source
  • M1 which charges potassium metal as a conversion accelerator (M1) to a vaporization unit (M20) located outside the main body (20) and controls the temperature of potassium dissolved in the vaporization unit (M20) by a thermocouple (M22).
  • M24 which charges potassium metal as a conversion accelerator (M1) to a vaporization unit (M20) located outside the main body (20) and controls the temperature of potassium dissolved in the vaporization unit (M20) by a thermocouple (M22).
  • M21 an external vaporization heat source
  • FIG. 3 is a conceptual diagram of an apparatus for treating a target gas-containing exhaust gas on a plasma according to an embodiment of the present invention.
  • Aqueous solution obtained by dissolving KNO3, which is a conversion promoter (M1), in water, which is a conversion agent (N) is supplied to a vaporization unit (M20) located near the conversion region (R) through a quantitative supply mechanism (M2) to surround the conversion region (R). It is the same as FIG. 1 except that it vaporizes with the heat of and supplies it to the conversion area
  • FIG. 4 is a conceptual diagram of an apparatus for treating a target gas-containing exhaust gas on a plasma according to an embodiment of the present invention.
  • KNO3 is sufficiently charged in advance so as to operate for a long time with the conversion promoter M1, and then melted and vaporized with heat around the conversion zone R and vaporized by the thermocouple M22. It is the same as FIG. 1 except for monitoring the temperature of the molten KNO 3 in the part M20 and transferring it to the conversion region R through the conversion promotion element supply port M23 using nitrogen as the transfer gas M21. .
  • Tables 2 to 6 show the conversion conditions and the conversion results in the processing apparatus using the DC thermal plasma torch of FIGS. 1 to 4 and the processing apparatus using the combustion burner, the gliding arc, and the electrothermal heater.
  • the conversion promoter has an effect from a very low mole fraction of 0.1 ppm.
  • the conversion rate of CF 4 also increases. .
  • Increasing the molar fraction of CF 4 As the electrons generated by the conversion promoting molar fraction of the element is also to be increased, which promotes the fluorine in the CF 4 conversion strong tendency to become the negative ions by the electron affinity larger capture an electronic element to achieve the same conversion factor It is expected to play a role. Even in this case, the conversion accelerating element supercharge ratio is much smaller than one. 6 is a trend of increasing the conversion rate of CF 4 as the mole fraction of the conversion accelerator increases. 6 is a result of fixing the power supply, so if the mole fraction of CF 4 is high, the power supply to the thermal plasma torch may be slightly increased to further increase the conversion rate.
  • a converter charging ratio may be one or more.
  • 7 and 8 are conversion ratios of CF 4 according to the presence or absence of a converter and a converter charge ratio.
  • Examples 40 to 48 are hydroxide, Nitrate, Carbonate, Hydrogen Carbonate, Fluoride, Chloride, Bromide, Acetate, Phosphate compounds containing conversion promoting element K, almost the same no matter which compound is used It can be seen that the decomposition rate synergistic effect can be obtained.
  • Comparative Examples 15 to 20 and Examples 50 to 55 It can be seen from Comparative Examples 15 to 20 and Examples 50 to 55 that the temperature required for the conversion of the target gas can be lowered due to the action of the conversion accelerator, and the effect of the conversion accelerator is greater when the exhaust gas containing the target gas is preheated.
  • Can be. 9 is a conversion rate of CF 4 according to the presence or absence of a conversion accelerator and preheating.
  • Example 56 to 58 it can be seen that the present invention shows an excellent effect in treating a large amount of target gas-containing exhaust gas, and from Example 59, it is also possible to simply supply a conversion promoting element without a quantitative supply mechanism or a separate vaporization heat source. Comparative Examples 21, 22, and 26 Examples 60, 61, and 66 show that the present invention can be applied to various target gases other than CF 4 .
  • Comparative Example 1 and Example 33 It can be seen from Comparative Example 1 and Example 33 that the present invention can significantly reduce the power consumption.
  • the present invention is summarized as follows.
  • a method of treating a target gas-containing exhaust gas on a plasma comprising: generating a plasma in a conversion region in which a target gas is converted; Supplying a conversion promoter to the conversion region, the conversion promoter containing a conversion accelerator element for promoting conversion of the target gas as an element having a primary ionization energy of 10 eV or less; Supplying a conversion agent to the conversion region that combines with the dissociation product of the target gas to inhibit recombination into the target gas and converts the conversion product into a conversion product; And supplying the target gas-containing exhaust gas to the conversion zone.
  • the charging ratio of the conversion promoting element may be 1 or less.
  • the charge ratio of the conversion agent may be one or more.
  • the mole fraction of the conversion promoting element in the conversion region may be 0.1 to 10,000 ppm.
  • the mole fraction of the conversion promoting element in the conversion region may be 1 ⁇ 1,000ppm.
  • the conversion promoting element may be at least one selected from the group consisting of alkali metals and alkaline earth metals.
  • the conversion promoting element may be at least one of lithium, sodium, potassium, and cesium.
  • the conversion promoter may be at least one selected from the group consisting of metals, compounds, alloys, intermetallic compounds, and minerals.
  • Compounds are Hydroxide, Nitrate, Nitrite, Carbonate, Hydrogen carbonate, Percarbonate, Acetate, Formate, Fluoride, Chloride, Chlorate, Chlorite, Hypochlorite, Bromide, Borohydride, Phosphate, Phosphite, Hypophosphite, Phthalate, Sulfate, Sulfide, Dithional, Sulfamate, Oxfamate , Oxide, Isopropoxide may be.
  • the conversion agent may include at least one of hydrogen, oxygen, nitrogen, and carbon as a member of the conversion agent.
  • the converting agent may be at least one selected from the group consisting of water, hydrogen, oxygen, and hydrocarbons.
  • a solution in which a conversion accelerator is dissolved in a liquid conversion agent may be used as a feedstock.
  • the liquid phase converting agent may be water.
  • the method may further include preheating the target gas-containing exhaust gas before supplying it to the conversion zone.
  • the waste heat remaining in the material may be recovered by heat exchange.
  • the target gas may be at least one selected from the group consisting of halides.
  • the target gas is at least selected from the group consisting of perfluorocompounds (PFCs), hydrofluorocarbons (HFCs), chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), SF6 and NF3 It can be either.
  • PFCs perfluorocompounds
  • HFCs hydrofluorocarbons
  • CFCs chlorofluorocarbons
  • HCFCs hydrochlorofluorocarbons
  • SF6 NF3
  • the target gas may be at least one of CF4, C2F6, CHF3, C3F8, C4F6, C4F8, NF3, and SF6.
  • the plasma may be any one of thermal plasma, combustion flame, non-equilibrium plasma, heated gas, or a mixture thereof.
  • An apparatus for treating a target gas-containing exhaust gas on a plasma comprising: a main body including a conversion region in which the target gas is converted; Plasma generating means for generating a plasma in the conversion region; Conversion accelerator supplying means for supplying a conversion accelerator including a conversion accelerator element for promoting conversion of the target gas as an element having a primary ionization energy of 10 eV or less to the conversion region; Conversion agent supplying means for supplying a conversion agent to the conversion region to combine with the dissociation product of the target gas to suppress recombination into the target gas and convert the conversion product into a conversion product; It may be composed of a target gas-containing exhaust gas supply means for supplying the target gas-containing exhaust gas to the conversion zone.
  • the mole fraction of the conversion promoting element in the conversion region may be 0.1 to 10,000 ppm.
  • It may further include a heat exchanger for recovering the waste heat remaining in the material after passing through the conversion zone and using the same to preheat the exhaust gas containing the target gas before supplying it to the conversion zone.
  • a solution in which a conversion accelerator is dissolved in a liquid conversion agent may be used as a feedstock.
  • At least one of the conversion accelerator and the conversion agent may be directly vaporized with heat in the conversion region.
  • It may be further provided with a means for evaporating at least one of the conversion promoter and the conversion agent to the conversion zone.
  • At least one of the conversion promoter and the conversion agent may be passed through the high temperature region inside the plasma generating means and then supplied to the conversion region.
  • the means for making an aerosol may be that of an atomizer.
  • the atomizer may be provided with an isolation having an inclined surface at the exit.
  • the outside of the atomizer may be cooled by a coolant.
  • the conversion promoter may be charged in advance in the vaporization unit, and the supply rate to the conversion zone may be controlled by the temperature of the conversion accelerator and the flow rate of the transfer gas.
  • the plasma generating means may be at least one selected from the group consisting of thermal plasma generating means, combustion burners, non-equilibrium plasma generating means, and electrothermal heaters.
  • the thermal plasma generating means may be a direct current thermal plasma torch.
  • target gas-containing exhaust gas treatment device 20 main body
  • thermocouple 40 plasma generating means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Plasma Technology (AREA)

Abstract

본 발명은 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법 및 장치에 관한 것이다. 종래 방법은 난변환성 대상기체를 함유하는 배출기체를 처리함에 있어 높은 대상기체의 변환율이 요구되거나 대량의 대상기체 함유 배출기체 처리시 과도한 에너지의 소모와 이에 따른 구성 부품의 수명단축으로 인해 어려움이 있다. 본 발명은 대상기체의 변환이 이루어지는 변환영역에 플라즈마를 생성시키는 단계; 1차 이온화 에너지가 10eV 이하인 원소로서 대상기체의 변환을 촉진시키는 변환촉진원소를 함유하는 변환촉진제를 변환영역에 공급하는 단계; 대상기체의 해리생성물과 결합하여 대상기체로의 재결합을 억제하고 변환생성물로 변환시키는 변환제를 변환영역에 공급하는 단계; 대상기체 함유 배출기체를 변환영역에 공급하는 단계를 포함하는 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법과 이를 구현하는 장치를 제공한다. 본 발명으로 인해 대상기체 함유 배출기체를 처리함에 있어 대상기체의 변환율을 높이고 처리 과정에서 필요한 에너지의 소모량을 줄일 수 있다. 또한 이로 인해 처리 장치의 유지 비용을 줄이고 수명을 향상시킬 수 있으며 보다 용이하게 대용량의 처리장치를 구현하는 것이 가능하다. 본 발명은 유해한 물질의 제거 공정 뿐만 아니라 개질, 가스화, GTL(Gas to Liquid), 중합 등 유용한 물질의 합성 공정에도 적용될 수 있다.

Description

플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법 및 장치
본 발명은 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법 및 장치에 관한 것으로 배출기체에 함유된 대상기체의 변환율을 높이고 이러한 과정에서 필요한 에너지의 소모를 줄이는 것에 관한 것이다.
현재 다양한 종류의 유해 기체가 여러 산업 분야의 제조 공정에서 배출되고 있다. 특히 반도체, 평판디스플레이, 발광다이오드, 태양전지 등의 제조 공정에서는 공정 후 배출기체에 지구 온난화 기체, 오존층 파괴 기체, 독성 기체, 폭발성 기체, 발화성 기체 등 인체 및 환경에 유해한 다량의 기체가 함유되어 있는데 이러한 유해한 기체는 다른 물질로 적절히 변환시켜 처리함으로서 배출량을 저감하여야 한다. 변환의 대상이 되는 기체(이하 대상기체) 중 특히 CF4, C2F6, C3F8 등의 과불화화합물(Perfluorocompounds)과 SF6, NF3 등은 반도체, 평판디스플레이 등의 산업 분야에서 에칭, 화학적기상증착 공정이나 이러한 공정에 사용된 챔버의 세정에 많이 사용되는 대표적인 지구 온난화 기체이며 이 중 특히 과불화화합물이나 SF6 등은 구성 원자 간의 높은 결합력으로 인해 변환이 어렵다. 현재 이러한 공정에서 대상기체 함유 배출기체 처리를 위해 전열히터, 연소, 촉매, 열플라즈마 등의 방법이 상용화 되어 있다.
전열히터를 사용하는 방법은 비교적 간단하게 대상기체 함유 배출기체를 처리할 수 있는 장점은 있지만 에너지 소모가 과다하고 대략 1300℃ 이상의 고온은 달성이 어려워 배출기체 중에 과불화화합물 등의 난변환성 대상기체가 함유되어 있는 경우에는 적용이 용이하지 않은 단점이 있다. LNG, LPG 등의 연료와 산소 등의 산화제와의 화학 반응에 의해 발생되는 고온의 화염을 이용하는 연소 방법은 전열히터 방법에 비해 높은 온도를 얻을 수 있어 유리하지만 연료 사용량이 많고 연료 관련 유틸리티 설치 및 운영에 많은 비용 및 번거로움이 따르고 다량의 질소산화물이 발생하는 문제점이 있다. 또한 대상기체 함유 배출기체의 유량, 종류, 성분 등의 변화에 따라 처리 분위기의 온도가 변화하거나 심한 경우 화염이 소실되는 등의 문제점이 있다. 고체 상의 촉매를 이용하는 방법의 경우 비교적 낮은 온도에서 대상기체 함유 배출기체의 처리가 가능하여 에너지 사용량을 줄일 수 있지만 촉매의 피독 혹은 열화 등의 현상에 의해 빈번히 교체해 주어야 하므로 연속 운전을 저해하고 유지비를 상승시키는 단점이 있다. 열플라즈마를 이용하는 방법의 경우 최대 10,000℃ 가량의 플라즈마를 형성시켜 대상기체 함유 배출기체를 처리하는 방법이므로 난변환성 대상기체가 함유되어 있어도 쉽게 변환 처리가 가능하고 외부 전력에 의해 처리 환경을 조절하므로 대상기체 함유 배출기체의 공급 조건이 변화하여도 안정적인 운전이 가능한 장점이 있어 근래에 CF4 등의 난변환성 대상기체를 함유하는 배출기체의 처리에 많이 이용되고 있다. 그러나 종래의 열플라즈마를 이용한 대상기체 함유 배출기체 처리 방법에서 대상기체의 높은 변환율을 얻기 위해 높은 온도의 플라즈마 생성이 필요하고 이에 따라 많은 전력이 소모된다. 많은 경우에 있어 대상기체는 다량의 질소, 공기 등과 혼합된 상태로 배출되는데, 예를 들어 반도체 제조 공정에서의 경우 대상기체가 수백 slpm(standard liter per minute)의 질소와 혼합되어 배출되고 특히 평판디스플레이 제조 공정에서는 경우에 따라 수천 slpm에 이르기까지 혼합되는 기체의 양이 증가하게 되어 대상기체 함유 배출기체의 처리에 많은 전력이 필수 불가결하게 요구되는 상황이다. 또한 열플라즈마를 고전력으로 동작함에 따라 전력 소모 이외에도 플라즈마 발생 장치의 구성 부품(예, 전극)의 수명이 짧아지게 되어 자주 교체해 주어야 하므로 운전 중지 횟수가 증가하고 유지 비용이 상승하는 단점이 있다.
본 발명은 상기와 같은 종래 방법의 문제점을 극복하여 대상기체의 변환율을 높이고 이러한 과정에서 필요한 에너지의 소모를 줄이는 것에 관한 것이다. 또한 이로 인해 처리 장치의 유지 비용을 줄이고 수명을 향상시키며 보다 용이하게 대용량의 처리장치를 구현할 수 있도록 하는 것이다.
전자는 기체 분자와 다양한 방식으로 상호작용하는데 전자 충돌에 의한 기체 분자의 해리는 이러한 상호작용 중의 하나이다. 기체의 변환에 있어 초기 단계는 기체 분자의 결합을 끊어 원자, 이온, 활성종 등 더 작은 입자로 분리시키는 해리 과정이며 이러한 해리 과정에 있어서 전자가 중요한 역할을 담당할 수 있다. 전자는 원자 혹은 분자 상태의 중성입자가 이온화될 때 생성되는데 Saha 방정식에 의하면 대기압, 상온의 공기에서 전자 밀도는 중성입자 밀도에 비해 10- 122 가량으로 매우 낮으며 기체의 온도를 증가시킴에 따라 전자 밀도는 증가한다. "하전입자와 중성입자로 구성되어 집합적으로 거동하는 준중성의 기체"로 정의되는 플라즈마는 이러한 전자를 풍부하게 포함한다. 하전입자는 중성입자의 이온화 및 전자부착에 의해 생성되며 전자, 양이온, 음이온이 여기에 해당하고 중성입자는 기저상태, 여기상태로 존재할 수 있다. 플라즈마는 이러한 구성 입자들의 온도 및 열적 평형상태에 따라 크게 비평형 플라즈마와 국소평형 플라즈마로 구분할 수 있으며 전자의 온도가 이온, 중성입자 등 무거운 입자의 온도에 비해 매우 높은 비평형 플라즈마는 저온 플라즈마로도 불리우며 글로우 방전, 유전체 장벽 방전, 코로나 방전 등에 의해 생성된 플라즈마가 비평형 플라즈마의 예이다. 전자와 무거운 입자의 온도가 거의 비슷한 국소평형 플라즈마는 열플라즈마로도 불리우며 아크 방전, 열 고주파 방전 등에 의해 생성된 플라즈마가 국소평형 플라즈마의 예이다. 글라이딩 아크 방전, 마이크로웨이브 방전에 의해 생성된 플라즈마는 이들의 중간 영역에 위치하고 있다고 볼 수 있다. 이러한 전자기장의 효과에 의해 생성되는 플라즈마 이외에 연소 화염이나 가열된 기체 등 상당량의 하전입자를 포함하고 있는 경우도 광의의 플라즈마라고 할 수 있다.
원자 혹은 분자 상태의 중성입자를 이온화시켜 전자를 생성시키기 위해 필요한 에너지를 이온화 에너지라고 하며 1차 이온화 에너지는 중성입자로부터 첫번째 전자를 떼어내기 위해 필요한 에너지이다. 이온화 에너지는 원자 혹은 분자의 크기, 전자배치 등에 의해 결정되며 이온화 에너지가 낮은 물질일수록 전자를 쉽게 생성시킬 수 있다. 편리성으로 인해 플라즈마는 대부분 아르곤, 헬륨 등의 불활성 기체나 질소, 산소, 수소, 수증기 등 대기압, 상온의 조건에서 기체 상태로 존재하는 물질로부터 생성되지만 이들의 1차 이온화 에너지는 10eV 이상으로 높은 편이다. 이와 같은 플라즈마에 이온화 에너지가 낮은 물질을 첨가하면 전자 밀도가 증가되고 전자 온도를 변화시킬 수 있다고 알려져 있으나 자기유체발전 등 극히 일부분의 연구에만 활용되고 있다. 1차 이온화 에너지가 낮은 원소로는 리튬, 나트륨, 칼륨, 루비듐, 세슘 등의 알칼리 금속, 베릴륨, 마그네슘, 칼슘, 스트론튬, 바륨 등의 알칼리 토금속, 철, 니켈, 구리 등의 전이금속, 알루미늄 등이 있다.
본 발명은 상기의 두 가지 사실, 즉 1) 기체 변환의 초기에 전자가 중요한 역할을 담당할 수 있다는 점과 2) 플라즈마에 1차 이온화 에너지가 낮은 원소를 첨가시킴에 따라 전자의 밀도(혹은 전자의 온도까지)를 높일 수 있다는 점에 착안하여 고안되었다.
연구 결과 플라즈마 상에서의 대상기체 변환시 대상기체의 해리생성물과 결합하여 대상기체로의 재결합을 억제하고 변환생성물로 변환시키는 작용을 하는 물질(이하 변환제, 물, 수소, 산소, 탄화수소 등)이 플라즈마에 포함되어 있는 경우 1차 이온화 에너지가 10eV 이하인 원소(이하 변환촉진원소)를 플라즈마에 첨가하면 이들은 미량으로도 반복적, 연속적으로 작용하여 대상기체의 변환율을 획기적으로 상승시키는 역할을 함을 확인하였다.
본 발명에서의 변환율 상승은 변환촉진원소가 대상기체와 직접적으로 화학결합하여 이를 변환시키기 때문이 아니라 변환촉진원소가 전자 밀도 혹은 전자 온도를 증가시켜 대상기체 분자의 해리를 가속화하여 전체 변환이 촉진되기 때문으로 예상된다. 촉매작용은 촉매라고 하는 부가적인 물질의 참여로 인해 특정 반응의 속도를 증가시키는 것으로서 원리적으로 촉매는 반응에 직접 참여하여 변환, 소모되지 않기 때문에 반복적, 연속적으로 작용하며 이로 인해 화학양론에 비해 아주 작은 양으로도 큰 효과를 나타낸다. 본 발명에서의 변환촉진원소는 이와 같은 촉매의 역할을 수행함이 확인되었다.
연구 결과 변환촉진원소의 1차 이온화 에너지가 낮을수록 높은 변환율 상승 효과를 얻을 수 있고 특히 알칼리금속, 알칼리토금속을 변환촉진원소로 사용하는 경우 더욱 높은 효과를 나타냄을 확인하였다. 여러 종류의 변환촉진원소를 함께 사용하는 것도 물론 가능하다. 변환촉진원소의 효과는 변환촉진원소의 1차 이온화 에너지 이외에 대상기체의 변환이 이루어지는 영역(이하 변환영역)에서의 변환촉진원소의 몰분율에 크게 영향을 받으며 0.1~10,000ppm이 바람직함을 확인하였다. 0.1ppm 미만에서는 변환촉진원소를 첨가하지 않은 경우에 비해 대상기체의 변환율 상승 효과가 미미하고 10,000ppm을 초과하는 경우에는 그보다 낮은 몰분율에서의 경우에 비해 변환율 상승 효과는 크지 않지만 다량의 변환촉진원소가 필요하여 큰 장점이 없다. 변환촉진원소의 몰분율은 더욱 바람직하게는 1~1,000ppm이다.
변환제의 경우 대상기체와 화학결합하여 이를 변환생성물로 변환시키는 역할을 해야 하므로 해당 반응의 화학양론에 의해 결정되는 양 이상을 공급하는 것이 바람직하다. 이보다 적은 양의 변환제가 공급되면 변환촉진원소가 대상기체와 화학결합을 할 수 있는 경우 변환촉진원소의 일부가 변환제의 역할을 담당하게 되어 촉매의 역할이 저하되고 화학결합을 하지 않는 경우 변환제의 양이 불충분하여 바람직하지 않다.
종래의 대상기체 함유 배출기체 처리 방법에서는 전력 혹은 연소를 위한 연료의 공급률을 낮추는 등 에너지 공급량을 줄일 경우 대상기체의 변환율이 급격이 저하하게 되지만 본 발명에서의 방법을 적용하면 낮은 에너지 공급 및 이로 인한 낮은 온도에서도 높은 대상기체의 변환율을 유지할 수 있다. 즉 변환촉진원소의 촉매 작용으로 인하여 변환에 필요한 온도를 낮출 수 있는 것이다.
본 발명의 효과는 전자기장에 의해 생성되는 플라즈마에서 뿐만 아니라 연소 화염 및 전열히터에 의해 가열된 기체 혹은 이들의 혼합 분위기에서도 동일하게 작용함을 확인하였으며 본 발명에서 기술하는 플라즈마는 이러한 광의의 플라즈마를 지칭한다.
본 발명으로 인해 대상기체 함유 배출기체를 처리함에 있어 대상기체의 변환율을 높이고 처리 과정에서 필요한 에너지의 소모량을 줄일 수 있다. 또한 이로 인해 처리 장치의 유지 비용을 줄이고 수명을 향상시킬 수 있으며 보다 용이하게 대용량의 처리장치를 구현하는 것이 가능하다. 본 발명은 유해한 물질의 제거 공정 뿐만 아니라 개질, 가스화, GTL(Gas to Liquid), 중합 등 유용한 물질의 합성 공정에도 적용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치의 개념도이다.
도 1a는 (a) 기존의 아토마이저 및 (b) 본 발명의 일 실시예에 따른 아토마이저의 개념도이다.
도 2는 본 발명의 일 실시예에 따른 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치의 개념도이다.
도 3은 본 발명의 일 실시예에 따른 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치의 개념도이다.
도 4는 본 발명의 일 실시예에 따른 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치의 개념도이다.
도 5는 변환촉진원소의 1차이온화 에너지에 따른 CF4의 변환율이다.
도 6은 변환촉진원소(K)의 몰분율에 따른 CF4의 변환율이다.
도 7은 변환제(물)의 유무에 따른 CF4의 변환율이다.
도 8은 변환제(물)의 과급비에 따른 CF4의 변환율이다.
도 9는 변환촉진원소의 유무 및 예열(TMIX)에 따른 CF4의 변환율이다.
가장 높은 수준의 결합 해리 에너지(CF3-F, 5.7eV)로 인해 대표적인 난변환성 대상기체인 CF4를 예로 들어 본 발명의 작용에 대해 상세히 설명한다. 기체 변환의 초기에 전자가 중요한 역할을 담당할 수 있다는 점과 플라즈마에 1차 이온화 에너지가 낮은 원소를 첨가시킴에 따라 전자의 밀도(혹은 전자의 온도까지)를 높일 수 있다는 점은 대상기체의 종류에 상관없이 공통적으로 적용될 수 있으므로 본 발명의 작용은 CF4에 국한되는 것은 아니며 다른 대상기체에도 동일하게 적용될 수 있다. 실시예에 CF4 이외의 여러 대상기체를 대상으로 한 본 발명의 효과를 기술하였다.
CF4에 있어서의 해리, 재결합 및 해리생성물의 변환 반응의 몇 가지 예와 물을 변환제로 사용하여 CF4를 변환시키는 경우의 전체 변환 반응은 아래와 같다. CF4 변환의 초기 단계는 해리 과정이며 CF4 분자를 CFi (i=1,2,3) 활성종 및 불소 원자, 분자 혹은 이온 등으로 해리시키는 과정에서 전자가 핵심적 역할을 담당할 것으로 예상한다. 변환촉진원소는 전자의 밀도를 증가시켜 CF4 분자의 해리를 가속화시킴으로 인해 전체 변환 반응을 촉진시키는 역할을 수행하는 것으로 예상된다. 해리생성물인 CFi 활성종 및 불소 원자, 분자 혹은 이온들은 재결합하여 다시 CF4를 생성하기도 하는데 물, 수소, 산소, 탄화수소 등의 변환제를 첨가하면 이들 혹은 이들의 구성성분이 해리생성물과 결합하여 CF4로의 재결합을 억제하고 HF, COF2, CO2 등의 안정한 변환생성물로 변환되도록 함으로써 효과적인 변환이 이루어질 수 있다. 변환시키고자하는 대상기체의 종류 및 이러한 변환으로부터 얻고자 하는 변환생성물에 따라 여러 종류의 변환제를 사용할 수 있으며 대표적으로 수소, 산소, 질소, 탄소 등의 원소를 구성원소로 포함하는 물질이 변환제로 사용될 수 있다.
해리
CF4 + e → CF3 + F + e
CF3 + e → CF2 + F + e
CF2 + e → CF + F + e
CF4 + e → CF2 + 2F + e
CF4 + e → CF + F + F2 + e
CF4 + e → CF3 + F-
CF4 + e → CF3 + + F + 2e
재결합
CF3 + F → CF4
CF3 + F- → CF4 + e
CF3 + F2 → CF4 + F
해리생성물의 변환
CF3 + H → CF2 + HF
CF3 + O → COF2 + F
CF3 + OH → COF2 + HF
CF2 + H → CF + HF
CF2 + O → CO + 2F
CF2 + O → COF + F
CF2 + O2 → COF2 + O → CO2 + F2
CF2 + OH → COF + HF
CF + H → C + HF
CF + O → CO + F
F + H2 → HF + H
C + O2 → CO2
전체 변환 반응
CF4 + 2H2O = 4HF + CO2 (1)
표 1은 본 발명에서 주장하는 변환 조건 및 결과의 예로서 변환영역으로 공급되는 각 구성물의 공급률, 몰분율, 여러 온도, 변환율 및 소모전력을 나타내고 있다.
금속 상태로 존재하는 변환촉진원소는 폭발성이 있거나 고가인 것들이 많아 이를 직접 사용하기에 어려운 점이 있다. 연구 결과 화합물, 합금, 금속간 화합물, 광물 등 변환촉진원소를 함유하는 어떠한 물질을 변환촉진원소의 원료(이하 변환촉진제)로 사용하더라도 본 발명의 특징을 구현할 수 있음이 확인되었으며 이는 변환촉진제가 변환영역 내에서 변환촉진원소와 이외의 물질로 분해될 수 있기 때문으로 예상된다. 변환촉진제로 사용될 수 있는 화합물의 예로는 Hydroxide, Nitrate, Nitrite, Carbonate, Hydrogen carbonate, Percarbonate, Acetate, Formate, Fluoride, Chloride, Chlorate, Chlorite, Hypochlorite, Bromide, Borohydride, Phosphate, Phosphite, Hypophosphite, Phthalate, Sulfate, Sulfide, Dithionite, Sulfamate, Oxalate, Oxide, Isopropoxide 등이 있으며 광물의 예로는 Feldspar, Mica, Muscovite, Cryolite 등이 있으나 이에 국한되는 것은 아니다. 변환촉진제에는 변환촉진원소 이외에 대상기체의 해리생성물과 결합할 수 있는 H, O 등도 함유되어 있는데 소량의 변환촉진제를 사용하는 경우 별도로 공급되는 변환제에 비해 그 양이 매우 적어 영향은 크지 않다.
몰분율은 변환영역으로 공급되어 변환영역의 분위기를 형성하는 전체 구성물, 예를 들어 대상기체, 희석기체, 플라즈마 형성기체, 변환제, 변환촉진제의 전체 몰 수 중 해당 구성물의 몰 수를 백만분율(ppm)로 나타낸 것이다. 앞의 구성물들은 변환영역에서 해리되어 몰 수가 증가할 수 있으며 이러한 해리 이후의 상태를 몰분율 산정에 적용하면 해리 정도를 실측하여야 하는 등 번거로움이 있다. 편의성과 명확성을 위해 본 발명에서는 각 구성물의 공급시의 상태를 적용하여 몰분율을 산정한다. 예를 들어 1몰의 CF4는 해리에 의해 최대 5몰까지 증가할 수 있으나 몰분율 산정시에는 1몰을 적용한다. 변환촉진원소의 몰분율은 변환촉진제의 몰분율에 변환촉진제 분자가 함유하는 변환촉진원소의 수를 곱하여 산정한다. 예를 들어 변환촉진제, K2CO3의 몰분율이 100ppm이면 변환촉진원소, 칼륨의 몰분율은 200ppm이다.
표 1에서 변환촉진원소인 칼륨의 몰분율은 100ppm으로 매우 낮지만 Saha 방정식에 의하면 1500℃의 질소에서 전자 밀도는 칼륨 첨가 전 6.1 x 104 m-3에서 100ppm 칼륨 첨가 후 1.9 x 1017 m-3으로 급격히 증가하여 해리가 가속화되고 변환이 촉진되는 것으로 예상된다.
변환촉진원소 및 변환제 과급비(excess ratio)는 변환촉진원소 및 변환제가 대상기체의 해리생성물과 화학결합을 하여 대상기체를 변환시키는 반응에 있어 화학양론에 의해 필요한 변환촉진원소 및 변환제 몰 수에 대비하여 실제 변환영역에 공급된 몰 수의 비로 정의하였다. 칼륨은 아래의 식(2)에서와 같이 변환제로 작용하여 CF4의 해리생성물과 직접 결합하여 이를 변환시키는 역할을 할 수도 있으나 이러한 경우 CF4 1몰을 변환시키는데 있어 4몰의 K가 필요하여 경제적이지 않을 뿐만 아니라 촉매의 역할이 저하되고 다량의 고상 변환생성물이 형성되어 변환장치의 안정적인 운전 및 변환생성물의 처분에도 어려움이 따른다. 표 1에서의 변환촉진원소 과급비 0.008은 식(2)의 화학양론에 의해 필요한 칼륨의 몰 수에 비해 약 1/130 만이 공급됨을 의미한다.
CF4 + 4K = 4KF + C (2)
변환제 과급비 1.2는 식(1)의 화학양론에 의해 필요한 양보다 20% 많은 물이 공급된다는 의미이다. 변환촉진원소가 촉매의 역할을 담당하기 위해서는 별도의 변환제가 존재하여 대상기체의 해리생성물과 화학결합 해야 하므로 이러한 별도의 변환제는 해당 반응의 화학양론에 의해 필요한 양 이상을 공급하는 것이 바람직하다.
TA는 변환영역에 공급되기 전 대상기체 함유 배출기체의 예열온도로서 실제 측정값이다. TMIX는 변환영역의 평균적인 온도를 대략적으로 유추하기 위해 고안한 값이다. 표 1에서는 질소로 희석된 CF4가 예열된 후 열플라즈마 토치에 의해 생성된 질소 플라즈마와 단열 상태로 균일하게 혼합되었다고 가정하여 산정하였다. TA가 높을수록 동일한 전력 소모 하에서도 TMIX를 높일 수 있으며 연구 결과 TMIX가 높을수록 변환촉진원소에 의한 대상기체의 변환율 상승효과도 커짐을 확인하였다.
변환촉진원소의 작용만으로도 대상기체 함유 배출기체의 처리에 있어 에너지 소모를 절감시킬 수 있으나 이를 더욱더 줄이기 위해서는 변환영역 통과 후 물질에 남아 있는 폐열을 열교환기를 통해 회수하고 이를 이용하여 대상기체 함유 배출기체를 변환영역에 공급하기 전에 예열하는 것이 바람직하며 열전도도가 높은 수소, 헬륨 등의 물질을 첨가하면 예열효과를 높일 수 있다. 이 외에 처리장치를 단열하여 외부로의 열손실을 줄이는 것도 에너지 소모량 절감에 있어 바람직하다.
변환율은 변환 전 대상기체의 몰 수 대비 변환된 몰 수의 비율로 정의하며 가스 크로마토그래피 혹은 푸리에변환적외선분광법으로 측정한다. 소요전력은 열플라즈마 토치에 공급된 전력이다.
표 1에서는 변환촉진제로 KOH를 예시하고 있지만 이를 대신하여 KF를 사용하는 경우에도 거의 동일한 변환율 상승효과를 얻을 수 있는데 이로부터 변환촉진원소인 칼륨이 식(2)에서와 같은 변환제의 역할을 수행함이 아니라 촉매의 역할을 수행함을 다시 한번 확인할 수 있다. 대상기체의 변환에 있어 변환제 없이 변환촉진원소만을 첨가하면 변환촉진원소가 해리생성물과 화학결합을 하지 않는 경우 해리생성물의 재결합을 억제할 수 없고 변환생성물로의 변환이 어려우므로 대상기체의 변환이 매우 어렵고 변환촉진원소가 해리생성물과 화학결합을 할 수 있는 경우 촉매의 역할 대신 변환제의 역할을 담당해야 하므로 본 발명에서와 같은 높은 변환율을 얻기 어렵고 소요량이 매우 많아지게 된다.
(표 1)
Figure PCTKR2019008569-appb-I000001
고상의 변환촉진제를 액상의 물질에 용해시킨 용액을 공급원료로 사용할 수도 있으며 액상의 물질이 변환제라면 변환촉진원소와 변환제를 함께 공급할 수 있어 편리하다. 많은 고상의 변환촉진제가 물, 알코올 등 변환제로 사용 가능한 액상의 물질에 대해 용해도가 높으므로 용액의 농도를 적절히 조절하여 액체정량펌프 등으로 공급하면 변환촉진원소와 변환제의 공급률을 간편하게 조절할 수 있다.
변환촉진제나 변환제가 고상 혹은 액상인 경우 이들이 변환영역 내에서 원활히 작용하게 하기 위해서는 이들을 먼저 기화시키는 과정이 필요하다. 이들을 변환영역에 직접 공급하여 이 영역의 열로 직접 기화시키는 방법, 처리장치 내 변환영역 이외 영역의 열로 기화시킨 후 변환영역으로 이송시키는 방법, 외부의 별도 열원을 이용하여 기화시킨 후 변환영역으로 이송시키는 방법 등이 있다. 변환영역에 직접 공급하는 것이 가장 간편하지만 기화가 불충분하거나 변환영역의 온도를 낮출 수 있다. 변환영역으로부터 이격된 곳에서 기화시키고 변환영역으로 이송시키는 경우 변환효과 면에서는 우수하지만 변환촉진제의 경우 이송 과정에서 벽면 부착에 의한 손실이 발생할 수 있다. 그러므로 가급적 변환영역 가까운 곳에서 충분히 기화될 수 있도록 한 후 변환영역에 공급하는 것이 바람직하다. 변환제로 사용될 수 있는 물(H2O), 수소(H2), 산소(O2), 탄화수소 등은 자체로 대상기체의 해리생성물과 반응할 수도 있지만 수소원자(H), 산소원자(O), 하이드록시기(OH) 혹은 이들의 이온 형태로 반응하는 것이 더 유리하므로 변환제를 플라즈마 생성수단 내부의 고온 영역을 통과시킨 후 변환영역으로 공급하면 변환제의 기화는 물론 이러한 활성화까지 가능하여 유리하다. 변환촉진제 역시 이러한 방법을 통해 변환영역에 공급할 경우 변환촉진원소의 이온화를 보다 증가시킬 수 있어 유리하다. 이를 위해 변환제나 변환촉진제를 플라즈마 생성수단의 원료 자체로 사용하거나 기존원료(열플라즈마 토치의 경우 질소, 아르곤 등의 플라즈마 형성기체, 연소버너의 경우 연료 혹은 산화제)에 일부 혼합시켜 사용할 수 있다. 스팀 플라즈마 토치, LPG/LNG 버너 등은 이러한 방식을 이용하여 변환제를 활성화시키는 좋은 예이다.
변환촉진제나 변환제를 에어로졸화하여 미세한 액적이나 입경이 작은 분말로 만들면 비표면적이 증가하여 기화 및 활성화가 용이해지므로 이를 위해 아토마이저 혹은 분말 분산기구 등을 이용할 수 있다. 변환제는 대상기체 주변에 균일하게 존재하는 것이 바람직하며 이를 위해서 이들을 대상기체 함유 배출기체에 미리 균일하게 혼합시킨 후 변환영역으로 이송시킬 수도 있다.
변환촉진제 및 변환제의 공급률은 질량 유량계, 액체 펌프, 분말공급기 등 별도의 정량 공급기구로 조절할 수 있으나 이러한 물질이 액상 혹은 고상인 경우 이들의 온도와 이송기체의 유량을 변화시킴에 따라 조절할 수도 있다. 본 발명의 특성상 변환촉진제는 소모량이 매우 적으므로 장시간 사용할 수 있는 양을 변환장치의 외부 혹은 내부의 일정 공간에 미리 장입해 두고 후자의 방법으로 공급하면 별도의 정량 공급기구 없이 간편하게 공급할 수 있다. 변환장치 내부의 고온부에 장입하면 별도의 열원이 필요 없어 더욱 간편하다.
이하 실시예에 근거하여 본 발명을 보다 구체적으로 설명하지만 본 발명은 이들에 한정되는 것은 아니다.
실시예
도 1은 본 발명의 일 실시예에 따른 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치의 개념도이다. 대상기체 함유 배출기체 처리장치(10)는 크게 본체(20), 열교환기(30) 및 가이드(35), 플라즈마 생성수단(40), 수조(50), 습식 스크러버(60), 아토마이저(M10)로 구성된다. 본체(20)의 외부는 단열되어 있다.
대상기체 함유 배출기체(A)는 대상기체 함유 배출기체 도입구(21)를 통해 유입된다. 정량 공급기구(N2)로 공급률이 조절되는 변환제(N)는 대상기체 함유 배출기체 도입구(21)에 설치된 변환제 공급구(22)를 통하여 주입된 후 대상기체 함유 배출기체(A)와 혼합되고 이러한 혼합물은 4단의 직렬 열교환기(30)에서 변환영역 통과 후 물질(45)에 남아 있는 폐열을 회수하여 예열된다. 이후 상기 혼합물은 선회류 발생기구(32)에 의해 원주방향으로 균일하게 선회하며 가이드(35)를 통과하여 더욱 예열된 후 변환영역(R)으로 공급된다. 가이드 끝부분에는 상기 혼합물의 예열온도, TA 측정을 위한 열전대(36)가 설치되어 있다.
플라즈마 생성수단(40)으로서 변환영역(R) 상부에 설치된 직류 열플라즈마 토치는 직류 전원을 이용하여 토치 내부의 음극과 양극 사이에 고온의 아크 방전을 일으켜 플라즈마 형성기체(43)인 질소를 플라즈마화한 후 제트(P) 형태로 변환영역(R)으로 분출시키는 역할을 한다.
화합물인 변환촉진제(M1)를 변환제(N)인 물에 용해시킨 후 이를 주사기 펌프 혹은 연동펌프 등의 정량 공급기구(M2)를 통해 플라즈마 생성수단(40)의 출구 측면에 설치된 아토마이저(M10)에 공급한다. 수용액 상태의 변환촉진제(M1)는 아토마이저(M10) 출구의 미세 간극(M12)에서 아토마이징 기체(M11)인 미량의 질소에 의해 미세한 액적으로 에어로졸화 된 후 변환영역의 열로 기화된다. 종래 방식의 아토마이저를 사용하면(도 1a의 (a)) 장시간 운전시 간극(M12)에 고상의 물질로 인한 막힘이 발생하는 경우가 많지만 아토마이저 출구에 경사면을 갖는 격리부(M13)를 두어 외부 기체 흐름과 간극(M12)을 격리시켜 간극 주변에서의 흐름을 일정하게 유지시키고 아토마이저 외부를 냉각제(M14)인 물로 냉각하면 (도 1a의 (b)) 이러한 막힘 현상이 현저히 줄어들게 된다.
변환촉진제(M1)의 공급률 및 변환영역(R) 내 변환촉진원소(M)의 몰분율은 정량 공급기구(M2)에 의해 조절되는 수용액 공급률과 수용액 중 변환촉진제(M1)의 농도를 조절함으로서 가변시킬 수 있다.
변환제(N)의 공급률은 변환제 공급구(22)에 공급된 변환제(N)와 수용액에 포함된 변환제(N)의 공급률의 합으로 결정된다.
변환영역(R)에 공급된 대상기체 함유 배출기체(A) 중의 대상기체는 플라즈마 제트(P), 변환촉진원소(M) 및 변환제(N)의 작용으로 변환되고 변환영역 통과 후 물질(45)은 열교환기(30)를 통해 대상기체 함유 배출기체(A)와 변환제(N) 혼합물을 예열시킨 후 냉각되고 이후 수조(50) 및 습식 스크러버(60)를 통과하여 HF, KF 등의 변환생성물이 제거된 후 배기구(63)를 통해 배기된다.
도 2는 본 발명의 일 실시예에 따른 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치의 개념도이다. 본체(20) 외부에 위치한 기화부(M20)에 변환촉진제(M1)로 칼륨 금속을 장입하고 열전대(M22)에 의해 기화부(M20) 내 용융된 칼륨의 온도를 제어하는 외부 기화열원(M24)으로 기화시킨 후 이송기체(M21)로 질소를 이용하여 변환촉진원소 공급구(M23)를 통해 변환영역(R)으로 이송시키는 점을 제외하면 도 1과 동일하다.
도 3은 본 발명의 일 실시예에 따른 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치의 개념도이다. 변환촉진제(M1)인 KNO3를 변환제(N)인 물에 용해시킨 수용액을 정량 공급기구(M2)를 통해 변환영역(R) 주변에 위치한 기화부(M20)에 공급하여 변환영역(R) 주변의 열로 기화시킨 후 변환촉진원소 공급구(M23)를 통해 변환영역(R)에 공급하는 점을 제외하면 도 1과 동일하다.
도 4는 본 발명의 일 실시예에 따른 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치의 개념도이다. 변환영역(R) 주변에 위치한 기화부(M20) 내에 변환촉진제(M1)로 KNO3를 장시간 운전 가능하도록 미리 충분히 장입한 후 변환영역(R) 주변의 열로 용융, 기화시키고 열전대(M22)에 의해 기화부(M20) 내 용융된 KNO3의 온도를 모니터링하며 이송기체(M21)로 질소를 이용하여 변환촉진원소 공급구(M23)를 통해 변환영역(R)으로 이송시키는 점을 제외하면 도 1과 동일하다.
표 2 내지 6은 도 1 내지 도 4의 직류 열플라즈마 토치를 이용한 처리장치와 연소버너, 글라이딩 아크, 전열히터를 이용한 처리장치에서의 변환 조건과 변환 결과이다.
(표 2)
Figure PCTKR2019008569-appb-I000002
(표 3)
Figure PCTKR2019008569-appb-I000003
(표 4)
Figure PCTKR2019008569-appb-I000004
(표 5)
Figure PCTKR2019008569-appb-I000005
(표 6)
Figure PCTKR2019008569-appb-I000006
비교예 2 및 실시예 1~8로부터 변환촉진원소가 첨가됨에 따라 CF4 변환율이 상승하며 첨가되는 변환촉진원소의 1차 이온화 에너지가 낮을수록 변환율 상승효과는 더욱 커지는 것을 알 수 있다. 변환촉진원소의 몰분율은 100ppm으로 매우 낮으며 변환촉진원소 과급비가 1보다 매우 낮아 촉매와 같은 역할을 수행하고 있음이 확인되며 변환제 과급비 2는 변환에 필요한 양에 비해 2배의 변환제가 충분히 공급됨을 의미한다. 변환촉진원소가 첨가되지 않은 경우에는 질소의 1차 이온화 에너지를 표시하였다. 변환촉진원소의 1차 이온화 에너지 감소에 따른 변환율 상승 경향은 도 5와 같다.
비교예 3~5 및 실시예 9~26으로부터 변환촉진원소는 0.1ppm의 매우 낮은 몰분율에서부터 효과를 발휘함을 알 수 있으며 변환촉진원소의 몰분율이 증가함에 따라 CF4의 변환율도 높아짐을 알 수 있다. CF4의 몰분율이 증가할수록 동일한 변환율을 얻기 위해 변환촉진원소의 몰분율도 증가해야 하는데 이는 CF4 내의 불소가 전자친화력이 커 전자를 포획하여 음이온이 되려는 경향이 강하여 변환촉진원소에 의해 생성된 전자를 소모하는 역할을 하기 때문으로 예상된다. 이 경우에도 변환촉진원소 과급비는 1보다 매우 작다. 도 6은 변환촉진원소의 몰분율 증가에 따른 CF4의 변환율 상승 경향이다. 도 6은 공급 전력을 고정시킨 상태에서의 결과이므로 CF4의 몰분율이 높은 경우 변환율을 더욱 높이기 위해서는 열플라즈마 토치로의 공급전력을 약간 증가시키면 된다.
실시예 27~39, 비교예 6~11로부터 변환촉진원소를 첨가하더라도 변환제가 없으면 변환촉진원소가 촉매의 역할을 담당하지 못하고 변환제의 역할을 담당하여 높은 변환율을 얻기 어려우며 변환제를 첨가하는 경우 변환제 과급비가 1 이상이 되도록 공급하는 것이 바람직함을 알 수 있다. 도 7,8은 변환제의 유무 및 변환제 과급비에 따른 CF4의 변환율이다.
비교예 12, 실시예 40~48은 변환촉진원소 K를 함유하는 Hydroxide, Nitrate, Carbonate, Hydrogen Carbonate, Fluoride, Chloride, Bromide, Acetate, Phosphate 화합물을 변환촉진제로 사용한 경우로 어떠한 화합물을 사용하더라도 거의 동일한 분해율 상승효과를 얻을 수 있음을 알 수 있다.
비교예 13~14, 실시예 49로부터 변환제로 물 대신 수소를 사용하는 경우에 있어서도 우수한 변환율을 얻을 수 있음을 알 수 있다(변환촉진원소의 원료로 수용액을 사용하여 미량의 물이 첨가되었다).
비교예 15~20, 실시예 50~55로부터 변환촉진원소의 작용으로 인해 대상기체의 변환에 필요한 온도를 낮출 수 있으며 대상기체를 함유하는 배출기체를 예열하면 변환촉진원소의 효과가 더 커짐을 알 수 있다. 도 9는 변환촉진원소의 유무 및 예열에 따른 CF4의 변환율이다.
실시예 56~58로부터 본 발명은 대량의 대상기체 함유 배출기체 처리에 있어서도 우수한 효과를 보임을 알 수 있고 실시예 59로부터 정량 공급기구나 별도의 기화 열원 없이 간편하게 변환촉진원소를 공급하는 것도 가능함을 알 수 있으며 비교예 21,22,26 실시예 60,61, 66 으로부터 본 발명은 CF4 이외의 여러 대상기체에도 적용 가능함을 알 수 있다
비교예 1, 실시예 33으로부터 본 발명으로 인해 획기적인 전력 소모량 절감이 가능함을 알 수 있다.
비교예 23~26, 실시예 62~66으로부터 열플라즈마 이외의 여러 플라즈마에 대해서도 본 발명의 효과를 달성할 수 있음을 알 수 있다. 연소버너를 사용한 실시예에 있어 연료로 LPG 2.0slpm, 산화제로 산소 12.4slpm을 사용하였고 글라이딩 아크를 사용한 실시예에 있어 주파수 50kHz, 유지시간 5us, 7.2kV의 전압을 인가하였다.
본 발명을 정리하면 다음과 같다.
플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법으로서 대상기체의 변환이 이루어지는 변환영역에 플라즈마를 생성시키는 단계; 1차 이온화 에너지가 10eV 이하인 원소로서 대상기체의 변환을 촉진시키는 변환촉진원소를 함유하는 변환촉진제를 변환영역에 공급하는 단계; 대상기체의 해리생성물과 결합하여 대상기체로의 재결합을 억제하고 변환생성물로 변환시키는 변환제를 변환영역에 공급하는 단계; 대상기체 함유 배출기체를 변환영역에 공급하는 단계를 포함할 수 있다.
변환촉진원소의 과급비가 1 이하인 것일 수 있다.
변환제의 과급비가 1 이상일 수 있다.
변환영역 내에서 변환촉진원소의 몰분율이 0.1~10,000ppm인 것일 수 있다.
변환영역 내에서 변환촉진원소의 몰분율이 1~1,000ppm인 것일 수 있다.
변환촉진원소는 알칼리금속과 알칼리토금속으로 이루어진 군으로부터 선택되는 적어도 어느 하나일 수 있다.
변환촉진원소는 리튬, 나트륨, 칼륨, 세슘 중 적어도 어느 하나일 수 있다.
변환촉진제는 금속, 화합물, 합금, 금속간 화합물, 광물로 구성되는 군으로부터 선택되는 적어도 어느 하나일 수 있다.
화합물은 Hydroxide, Nitrate, Nitrite, Carbonate, Hydrogen carbonate, Percarbonate, Acetate, Formate, Fluoride, Chloride, Chlorate, Chlorite, Hypochlorite, Bromide, Borohydride, Phosphate, Phosphite, Hypophosphite, Phthalate, Sulfate, Sulfide, Dithionite, Sulfamate, Oxalate, Oxide, Isopropoxide인 것일 수 있다.
변환제는 수소, 산소, 질소, 탄소 중 적어도 어느 하나를 변환제의 구성원소로 포함하는 것일 수 있다.
변환제는 물, 수소, 산소, 탄화수소로 이루어진 군으로부터 선택되는 적어도 어느 하나인 것일 수 있다.
변환촉진제를 액상의 변환제에 용해시킨 용액을 공급원료로 사용하는 것일 수 있다.
액상의 변환제는 물일 수 있다.
대상기체 함유 배출기체를 변환영역에 공급하기 이전에 예열하는 단계를 더 포함하는 것일 수 있다.
변환영역 통과 후 물질에 남아 있는 폐열을 열교환 방식으로 회수하여 예열하는 것일 수 있다.
대상기체는 할로겐화물로 이루어진 군으로부터 선택되는 적어도 어느 하나인 것일 수 있다.
대상기체는 과불화화합물 (Perfluorocompounds, PFC), 수소불화탄소 (Hydrofluorocarbon, HFC), 염화불화탄소 (Chlorofluorocarbon, CFC), 수소염화불화탄소 (Hydrochlorofluorocarbons, HCFC), SF6 및 NF3로 이루어진 군으로부터 선택되는 적어도 어느 하나일 수 있다.
대상기체는 CF4, C2F6, CHF3, C3F8, C4F6, C4F8, NF3 및 SF6 중 적어도 어느 하나일 수 있다.
플라즈마는 열플라즈마, 연소화염, 비평형플라즈마, 가열된 기체 중 어느 하나 혹은 그들의 혼합인 것일 수 있다.
플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치에 있어서, 대상기체의 변환이 이루어지는 변환영역을 포함하는 본체; 변환영역에 플라즈마를 생성시키는 플라즈마 생성수단; 1차 이온화 에너지가 10eV 이하인 원소로서 대상기체의 변환을 촉진시키는 변환촉진원소를 함유하는 변환촉진제를 변환영역에 공급하는 변환촉진제 공급수단; 대상기체의 해리생성물과 결합하여 대상기체로의 재결합을 억제하고 변환생성물로 변환시키는 변환제를 변환영역에 공급하는 변환제 공급수단; 대상기체 함유 배출기체를 변환영역에 공급하는 대상기체 함유 배출기체 공급수단으로 구성되는 것일 수 있다.
변환영역 내에서 변환촉진원소의 몰분율이 0.1~10,000ppm인 것일 수 있다.
변환영역 통과 후 물질에 남아 있는 폐열을 회수하고 이를 이용하여 대상기체 함유 배출기체를 변환영역에 공급하기 전에 예열하기 위한 열교환기를 더 포함하는 것일 수 있다.
변환촉진제를 액상의 변환제에 용해시킨 용액을 공급원료로 사용하는 것일 수 있다.
변환촉진제, 변환제 중 적어도 어느 하나를 변환영역의 열로 직접 기화시키는 것일 수 있다.
변환촉진제, 변환제 중 적어도 어느 하나를 변환영역에 공급하기 전에 기화시키는 수단을 더 구비하는 것일 수 있다.
변환촉진제, 변환제 중 적어도 어느 하나를 플라즈마 생성수단 내부의 고온 영역을 통과시킨 후 변환영역으로 공급하는 것일 수 있다.
기화 혹은 활성화를 돕기 위해 변환촉진제, 변환제 중 적어도 어느 하나를 에어로졸로 만드는 수단을 더 구비하는 것일 수 있다.
에어로졸로 만드는 수단은 아토마이저인 것일 수 있다.
아토마이저는 출구에 경사면을 갖는 격리부를 구비하는 것일 수 있다.
아토마이저의 외부가 냉각제에 의해 냉각되는 것일 수 있다.
변환촉진제를 기화부에 미리 장입하고 변환촉진제의 온도와 이송기체의 유량으로 변환영역으로의 공급률을 조절하는 것일 수 있다.
플라즈마 생성수단은 열플라즈마 생성수단, 연소버너, 비평형플라즈마 생성수단, 전열히터로 구성되는 군으로부터 선택되는 적어도 어느 하나인 것일 수 있다.
열플라즈마 생성수단은 직류 열플라즈마 토치인 것일 수 있다.
(부호의 설명)
A : 대상기체 함유 배출기체 M : 변환촉진원소
M1 : 변환촉진제 M2 : 정량 공급기구
M10 : 아토마이저 M11 : 아토마이징 기체
M12 : 간극 M13 : 격리부
M14 : 냉각제 M20 : 기화부
M21 : 이송기체 M22 : 열전대
M23 : 변환촉진원소 공급구 M24 : 외부 기화열원
N : 변환제 N2 : 정량 공급기구
P : 플라즈마 제트 R : 변환영역
10 : 대상기체 함유 배출기체 처리장치 20 : 본체
21 : 대상기체 함유 배출기체 도입구 22 : 변환제 공급구
30 : 열교환기 31 : 격벽
32 : 선회류 발생기구 35 : 가이드
36 : 열전대 40 : 플라즈마 생성수단
43 : 플라즈마 형성기체 45 : 변환영역 통과 후 물질
50 : 수조 60 : 습식 스크러버
61 : 스프레이 노즐 62 : 충진재
63 : 배기구

Claims (33)

  1. 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법에 있어서,
    대상기체의 변환이 이루어지는 변환영역에 플라즈마를 생성시키는 단계;
    1차 이온화 에너지가 10eV 이하인 원소로서 대상기체의 변환을 촉진시키는 변환촉진원소를 함유하는 변환촉진제를 변환영역에 공급하는 단계;
    대상기체의 해리생성물과 결합하여 대상기체로의 재결합을 억제하고 변환생성물로 변환시키는 변환제를 변환영역에 공급하는 단계;
    대상기체 함유 배출기체를 변환영역에 공급하는 단계를 포함하는 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법.
  2. 제1항에 있어서 변환촉진원소의 과급비가 1 이하인 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법.
  3. 제1항에 있어서 변환제의 과급비가 1 이상인 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법.
  4. 제1항에 있어서 변환영역 내에서 변환촉진원소의 몰분율이 0.1~10,000ppm인 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법.
  5. 제1항에 있어서 변환영역 내에서 변환촉진원소의 몰분율이 1~1,000ppm인 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법.
  6. 제1항에 있어서 변환촉진원소는 알칼리금속과 알칼리토금속으로 이루어진 군으로부터 선택되는 적어도 어느 하나인 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법.
  7. 제1항에 있어서 변환촉진원소는 리튬, 나트륨, 칼륨, 세슘 중 적어도 어느 하나인 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법.
  8. 제1항에 있어서 변환촉진제는 금속, 화합물, 합금, 금속간 화합물, 광물로 구성되는 군으로부터 선택되는 적어도 어느 하나인 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법.
  9. 제8항에 있어서 화합물은 Hydroxide, Nitrate, Nitrite, Carbonate, Hydrogen carbonate, Percarbonate, Acetate, Formate, Fluoride, Chloride, Chlorate, Chlorite, Hypochlorite, Bromide, Borohydride, Phosphate, Phosphite, Hypophosphite, Phthalate, Sulfate, Sulfide, Dithionite, Sulfamate, Oxalate, Oxide, Isopropoxide 로 구성되는 군으로부터 선택되는 적어도 어느 하나인 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법..
  10. 제1항에 있어서 변환제는 수소, 산소, 질소, 탄소 중 적어도 어느 하나를 변환제의 구성원소로 포함하는 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법.
  11. 제1항에 있어서 변환제는 물, 수소, 산소, 탄화수소로 이루어진 군으로부터 선택되는 적어도 어느 하나인 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법.
  12. 제1항에 있어서 변환촉진제를 액상의 변환제에 용해시킨 용액을 공급원료로 사용하는 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법.
  13. 제12항에 있어서 액상의 변환제는 물인 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법.
  14. 제1항에 있어서 대상기체 함유 배출기체를 변환영역에 공급하기 이전에 예열하는 단계를 더 포함하는 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법.
  15. 제14항에 있어서 변환영역 통과 후 물질에 남아 있는 폐열을 열교환 방식으로 회수하여 예열하는 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법.
  16. 제1항에 있어서 대상기체는 할로겐화물로 이루어진 군으로부터 선택되는 적어도 어느 하나인 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법.
  17. 제 1항에 있어서 대상기체는 과불화화합물(Perfluorocompounds, PFC),
    수소불화탄소(Hydrofluorocarbon, HFC), 염화불화탄소 (Chlorofluorocarbon, CFC), 수소염화불화탄소(Hydrochlorofluorocarbons, HCFC), SF6 및 NF3로 이루어진 군으로부터 선택되는 적어도 어느 하나인 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법.
  18. 제1항에 있어서 대상기체는 CF4, C2F6, CHF3, C3F8, C4F6, C4F8, NF3 및 SF6 중 적어도 어느 하나인 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법.
  19. 제1항에 있어서 플라즈마는 열플라즈마, 연소화염, 비평형플라즈마, 가열된 기체 중 어느 하나 혹은 그들의 혼합인 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법.
  20. 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치에 있어서,
    대상기체의 변환이 이루어지는 변환영역을 포함하는 본체;
    변환영역에 플라즈마를 생성시키는 플라즈마 생성수단;
    1차 이온화 에너지가 10eV 이하인 원소로서 대상기체의 변환을 촉진시키는 변환촉진원소를 함유하는 변환촉진제를 변환영역에 공급하는 변환촉진제 공급수단;
    대상기체의 해리생성물과 결합하여 대상기체로의 재결합을 억제하고 변환생성물로 변환시키는 변환제를 변환영역에 공급하는 변환제 공급수단;
    대상기체 함유 배출기체를 변환영역에 공급하는 대상기체 함유 배출기체 공급수단 으로 구성되는 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치.
  21. 제20항에 있어서 변환영역 내에서 변환촉진원소의 몰분율이 0.1~10,000ppm인 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치.
  22. 제20항에 있어서 변환영역 통과 후 물질에 남아 있는 폐열을 회수하고 이를 이용하여 대상기체 함유 배출기체를 변환영역에 공급하기 전에 예열하기 위한 열교환기를 더 포함하는 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치.
  23. 제20항에 있어서 변환촉진제를 액상의 변환제에 용해시킨 용액을 공급원료로 사용하는 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치.
  24. 제20항에 있어서 변환촉진제, 변환제 중 적어도 어느 하나를 변환영역의 열로 직접 기화시키는 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치
  25. 제20항에 있어서 변환촉진제, 변환제 중 적어도 어느 하나를 변환영역에 공급하기 전에 기화시키는 수단을 더 구비하는 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치.
  26. 제20항에 있어서 변환촉진제, 변환제 중 적어도 어느 하나를 플라즈마 생성수단 내부의 고온 영역을 통과시킨 후 변환영역으로 공급하는 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치.
  27. 제24항 내지 제26항 중 어느 하나의 항에 있어서 기화 혹은 활성화를 돕기 위해 변환촉진제, 변환제 중 적어도 어느 하나를 에어로졸로 만드는 수단을 더 구비하는 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치.
  28. 제27항에 있어서 에어로졸로 만드는 수단은 아토마이저인 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치.
  29. 제28항에 있어서 아토마이저는 출구에 경사면을 갖는 격리부를 구비하는 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치.
  30. 제28항에 있어서 아토마이저의 외부가 냉각제에 의해 냉각되는 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치.
  31. 제20항에 있어서 변환촉진제를 기화부에 미리 장입하고 변환촉진제의 온도와 이송기체의 유량으로 변환영역으로의 공급률을 조절하는 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치.
  32. 제20항에 있어서 플라즈마 생성수단은 열플라즈마 생성수단, 연소버너, 비평형플라즈마 생성수단, 전열히터로 구성되는 군으로부터 선택되는 적어도 어느 하나인 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치.
  33. 제20항에 있어서 열플라즈마 생성수단은 직류 열플라즈마 토치인 것을 특징으로 하는, 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 장치.
PCT/KR2019/008569 2018-07-13 2019-07-11 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법 및 장치 WO2020013630A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980059619.0A CN112672810A (zh) 2018-07-13 2019-07-11 在等离子体相处理含有目标气体的排放气体的方法及装置
EP19833894.9A EP3821969A4 (en) 2018-07-13 2019-07-11 METHOD AND APPARATUS FOR TREATING FLASH GAS CONTAINING TARGET GAS IN A PLASMA STATE
US17/259,660 US20210394117A1 (en) 2018-07-13 2019-07-11 Method and apparatus for treating discharge gas containing target gas in plasma state
JP2021524953A JP7217056B2 (ja) 2018-07-13 2019-07-11 プラズマ相で対象ガス含有排出ガスを処理する方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0081616 2018-07-13
KR1020180081616A KR102031984B1 (ko) 2018-07-13 2018-07-13 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2020013630A1 true WO2020013630A1 (ko) 2020-01-16

Family

ID=68171932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008569 WO2020013630A1 (ko) 2018-07-13 2019-07-11 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법 및 장치

Country Status (6)

Country Link
US (1) US20210394117A1 (ko)
EP (1) EP3821969A4 (ko)
JP (1) JP7217056B2 (ko)
KR (1) KR102031984B1 (ko)
CN (1) CN112672810A (ko)
WO (1) WO2020013630A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2600691A (en) * 2020-11-02 2022-05-11 Edwards Ltd Plasma abatement

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114288961A (zh) * 2021-12-08 2022-04-08 核工业西南物理研究院 一种热等离子体还原氟化物的装置及方法
CN115554823B (zh) * 2022-06-16 2023-08-04 西安交通大学 基于热等离子体的六氟化硫降解装置
CN115475499B (zh) * 2022-06-16 2023-08-04 西安交通大学 用于六氟化硫降解的热等离子体处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07213859A (ja) * 1994-02-09 1995-08-15 Mitsubishi Heavy Ind Ltd 排ガス処理装置
KR20030059102A (ko) * 2000-08-17 2003-07-07 액센투스 피엘씨 엔진 배기 가스로부터 질소 산화물을 제거하는 장치 및 방법
KR101003731B1 (ko) * 2008-01-07 2011-01-13 (주) 플라즈닉스 아크 플라즈마 불꽃을 이용한 기체상 물질의 전환 및처리기
KR101134197B1 (ko) * 2003-04-15 2012-04-09 블랙라이트 파워 인코포레이티드 저에너지 수소종 생성 방법 및 플라즈마 반응기
KR20160090658A (ko) * 2015-01-22 2016-08-01 주식회사 글로벌스탠다드테크놀로지 난분해성 유해가스의 처리공정 시스템

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265113A (ja) * 1991-02-20 1992-09-21 Mitsui Toatsu Chem Inc フッ素系ガスの処理法
JPH07110985B2 (ja) * 1991-05-27 1995-11-29 秩父小野田株式会社 プラズマ溶射方法及びその装置
JPH0866758A (ja) * 1994-08-29 1996-03-12 Kobe Steel Ltd 噴霧堆積法
JP3713333B2 (ja) * 1996-07-04 2005-11-09 同和鉱業株式会社 弗化炭素類の分解法
FR2751565B1 (fr) * 1996-07-26 1998-09-04 Air Liquide Procede et installation de traitement de gaz perfluores et hydrofluorocarbones en vue de leur destruction
JPH1176740A (ja) * 1997-09-05 1999-03-23 Mitsui Chem Inc 有機フッ素系排ガスの分解処理方法及び分解処理装置
JP3491276B2 (ja) * 1999-09-02 2004-01-26 独立行政法人放射線医学総合研究所 希ガス回収方法
US20060022641A1 (en) * 2004-05-24 2006-02-02 Scalpel Drive Innovation, Llc System, apparatus, and method for increasing particle density and energy by creating a controlled plasma environment into a gaseous media
FR2872506B1 (fr) * 2004-06-30 2007-02-02 Air Liquide Procede de preparation d'un gaz ou melange de gaz contenant du fluor moleculaire
KR100822048B1 (ko) 2006-06-07 2008-04-15 주식회사 글로벌스탠다드테크놀로지 플라즈마 토치를 이용한 폐가스 처리장치
TW200829325A (en) * 2007-01-15 2008-07-16 Kanken Techno Co Ltd Apparatus and method for processing gas
JP2010142749A (ja) 2008-12-19 2010-07-01 Kanken Techno Co Ltd ガス処理装置
WO2011147085A1 (en) * 2010-05-26 2011-12-01 Ecospec Global Technology Pte Ltd. Methods and system for removing gas components from flue gas
WO2016056036A1 (ja) 2014-10-06 2016-04-14 カンケンテクノ株式会社 排ガス処理装置
KR20170094439A (ko) * 2014-12-16 2017-08-17 어플라이드 머티어리얼스, 인코포레이티드 수소 또는 수소 함유 가스들과 함께 수증기를 사용하는 플라즈마 저감
KR102286586B1 (ko) 2015-11-05 2021-08-05 한국기계연구원 플라즈마-촉매 방식의 스크러버

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07213859A (ja) * 1994-02-09 1995-08-15 Mitsubishi Heavy Ind Ltd 排ガス処理装置
KR20030059102A (ko) * 2000-08-17 2003-07-07 액센투스 피엘씨 엔진 배기 가스로부터 질소 산화물을 제거하는 장치 및 방법
KR101134197B1 (ko) * 2003-04-15 2012-04-09 블랙라이트 파워 인코포레이티드 저에너지 수소종 생성 방법 및 플라즈마 반응기
KR101003731B1 (ko) * 2008-01-07 2011-01-13 (주) 플라즈닉스 아크 플라즈마 불꽃을 이용한 기체상 물질의 전환 및처리기
KR20160090658A (ko) * 2015-01-22 2016-08-01 주식회사 글로벌스탠다드테크놀로지 난분해성 유해가스의 처리공정 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3821969A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2600691A (en) * 2020-11-02 2022-05-11 Edwards Ltd Plasma abatement

Also Published As

Publication number Publication date
US20210394117A1 (en) 2021-12-23
JP7217056B2 (ja) 2023-02-02
EP3821969A1 (en) 2021-05-19
CN112672810A (zh) 2021-04-16
KR102031984B1 (ko) 2019-10-14
EP3821969A4 (en) 2022-07-06
JP2021529664A (ja) 2021-11-04

Similar Documents

Publication Publication Date Title
WO2020013630A1 (ko) 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법 및 장치
JP5347183B2 (ja) ガス流からフッ素を除去するための方法及び装置
US5026464A (en) Method and apparatus for decomposing halogenated organic compound
CN1917932B (zh) 包含氟化合物的气流的处理方法和装置
Chen et al. Abatement of fluorinated compounds in thermal plasma flow
JP2008194674A (ja) ガス処理装置およびガス処理方法
Sakano et al. Application of radio-frequency thermal plasmas to treatment of fly ash
KR101869447B1 (ko) 열 플라즈마 시스템을 구비한 비이산화탄소(non-CO2) 온실가스 처리 시멘트 소성설비 및 그를 이용한 비이산화탄소(non-CO2) 온실가스 처리방법
KR20080066927A (ko) 가스 스트림 처리용 장치 및 가스 스트림 처리 방법
KR101456258B1 (ko) 플라즈마 열분해를 이용한 폐기물 처리방법
TW202021657A (zh) 有害氣體分解用反應器
KR20210041416A (ko) 플라즈마 상에서 대상기체 함유 배출기체를 처리하는 방법 및 장치
JP2004216231A (ja) 高周波プラズマによる化合物分解方法および化合物分解装置
Ichimura et al. Development of a continuous generation/supply system of highly concentrated ozone gas for low-temperature oxidation process
KR101915467B1 (ko) 열 플라즈마 시스템을 구비한 비이산화탄소(non-CO2) 온실가스 처리 시멘트 소성설비 및 그를 이용한 비이산화탄소(non-CO2) 온실가스 처리방법
Tsai et al. Effects of additives on the selectivity of byproducts and dry removal of fluorine for abating tetrafluoromethane in a discharge reactor
WO2022191632A1 (ko) 디젤을 전자파 플라스마 토치로 개질 하여 합성가스를 생산하는 장치와 방법
JP2010142749A (ja) ガス処理装置
KR20150002396A (ko) 폐 가스 처리장치의 폐열을 이용하는 열전발전장치 및 그에 따른 전력 수요 장치의 무정지 운전방법
JPH0780286A (ja) 高周波誘導熱プラズマ装置を用いた有機ハロゲン化合物の分解装置
JP4570847B2 (ja) プラズマ反応法による含ハロゲン化合物分解の方法及び装置
Venkatramani Thermal plasmas in material processing
JP3958789B2 (ja) テトラフルオロエチレンの製造法
TW202311208A (zh) 氟化烴的製造方法
Rutberg et al. Waste treatment by high energy arcs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524953

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019833894

Country of ref document: EP

Effective date: 20210215