WO2020012757A1 - 測定装置 - Google Patents

測定装置 Download PDF

Info

Publication number
WO2020012757A1
WO2020012757A1 PCT/JP2019/017338 JP2019017338W WO2020012757A1 WO 2020012757 A1 WO2020012757 A1 WO 2020012757A1 JP 2019017338 W JP2019017338 W JP 2019017338W WO 2020012757 A1 WO2020012757 A1 WO 2020012757A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
image
acquisition unit
image acquisition
photographing
Prior art date
Application number
PCT/JP2019/017338
Other languages
English (en)
French (fr)
Inventor
山田 智明
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Priority to US17/258,804 priority Critical patent/US11393104B2/en
Priority to DE112019003581.9T priority patent/DE112019003581T5/de
Priority to CN201980046016.7A priority patent/CN112384753B/zh
Publication of WO2020012757A1 publication Critical patent/WO2020012757A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • G01C3/085Use of electric radiation detectors with electronic parallax measurement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0014Image feed-back for automatic industrial control, e.g. robot with camera
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/2409Arrangements for indirect observation of the working space using image recording means, e.g. a camera
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30244Camera pose

Definitions

  • the present invention relates to a measuring device for measuring a distance to an object.
  • a contact probe for measuring a distance by contacting an object to be measured is widely used.
  • the present invention has been made in view of the above problems, and has as its object to provide a measuring device capable of measuring a distance in a short time without contacting a non-measurement object.
  • a measuring device includes: An image acquisition unit that acquires an image of a shooting target; A moving mechanism for relatively moving the imaging target and the image acquisition unit, A control unit; With By the moving mechanism, the photographing object and the image acquiring unit are relatively moved by a known distance in a photographing direction of the image acquiring unit or a direction substantially perpendicular to the photographing direction, and the image acquiring unit Acquiring images of the object before and after movement, The control unit calculates a distance between the image acquisition unit and the imaging target in the imaging direction based on a moving distance or a length on the image obtained by the obtained two images.
  • FIG. 2 is a diagram schematically illustrating a first distance measuring method for measuring a distance using the measuring device illustrated in FIG. 1.
  • FIG. 3 is a diagram schematically illustrating a second distance measuring method for measuring a distance using the measuring device illustrated in FIG. 1.
  • FIG. 1 is a schematic diagram showing an outline of a measuring device and a measuring method according to one embodiment of the present invention.
  • the measurement device 2 according to the present embodiment includes an image acquisition unit 10 that acquires an image of an imaging target, a moving mechanism 20 that relatively moves the imaging target and the image acquisition unit 10, and a control unit 30. .
  • the image acquisition unit 10 includes the imaging element 12 and the optical system 14.
  • the image sensor 12 is arranged at a focal position of the optical system 14.
  • the image formed by the optical system 14 is obtained as electronic data by the imaging device 12 and transmitted to the control unit 30.
  • any image sensor such as a CCD image sensor and a CMOS image sensor can be used.
  • the image acquisition unit 10 is attached to a main shaft of a machine tool. Therefore, the main shaft moving device that moves the image acquiring unit 10 corresponds to the moving mechanism 20 that relatively moves the imaging target and the image acquiring unit 10.
  • the present invention is not limited to this, and a moving mechanism for moving the photographing target and the image acquiring unit 10 relatively, in which the photographing target is placed on the processing table and the moving device of the processing table that moves the photographing target, is relatively moved. 20 may be applicable. Further, there is a case where both the object to be photographed and the image acquiring unit 10 are moved by the moving mechanism. Further, the measuring device 2 may have a unique moving mechanism instead of the moving mechanism of the machine tool.
  • the measurement device 2 may include a unique control device, or the control device of the machine tool may perform the function of the control unit.
  • the measuring device 2 according to the present embodiment may be configured as an individual device including the image acquisition unit 10, the moving mechanism 20, and the control unit 30, and may be configured as a moving machine mechanism of a machine tool.
  • a point P that is vertically away from the image acquisition unit 10 by a distance H and a point Q that is vertically away from the image acquisition unit 10 by a distance Y correspond to the shooting target.
  • the distance between the image acquisition unit 10 and the imaging objects (points) P and Q is, specifically, the center position C in the vertical direction of the optical system 14 of the image acquisition unit 10 and the imaging object ( Point) means the vertical distance between P and Q.
  • the image acquiring unit 10 is horizontally moved by the distance D by the moving mechanism 20 and the photographing objects (points) P and Q before and after the movement are photographed in the vertical direction.
  • the object to be photographed (points) P and Q is relatively fixed and viewed as if it has moved.
  • reference data is acquired so that the measuring device 2 can measure the distance.
  • the imaging target (point) P moves in the horizontal direction by a known distance D in a state where the image acquisition unit 10 and the imaging target (point) P are separated by a known distance H
  • Acquire images before and after movement By comparing the images before and after the movement, the image formation distance L corresponding to the known distance D on the image sensor 12 when the image acquisition unit 10 and the imaging target (point) P are separated by the known distance H.
  • the control unit 30 stores the known distance D, the known distance H, and the corresponding imaging distance L on the image sensor 12. This serves as reference data when measuring the unknown distance Y between the image acquisition unit 10 and the photographing object Q.
  • the photographing object (point) Q is horizontally moved by a known distance D in the same manner as described above. Acquire the images before and after the movement when moving to. By comparing the images before and after the movement, the image formation distance X corresponding to the known distance D on the image sensor 12 in a state where the image acquisition unit 10 and the imaging target (point) Q are separated by the unknown distance Y. Can be obtained.
  • the image formation distance L on the image sensor 12 corresponding to the distance D in a state separated by the distance H and the image formation distance L on the image sensor 12 corresponding to the distance D in a state separated by the unknown distance Y The relationship of the imaging distance X is expressed by the following equation.
  • the distance X of the image on the near side is twice the length L of the image on the far side.
  • the distance of the image corresponding to the distance D at the separation distance H is ⁇ ⁇ ⁇ ⁇ pixel (for example, 200 ⁇ m)
  • the image corresponding to the distance D at the separation distance Y is 1 pixel (eg, 400 ⁇ m).
  • the imaging distance L corresponding to the known distance D is acquired and stored in the control unit 30.
  • the unknown distance between the image acquisition unit 10 and the photographing object (point) Q can be obtained by a very simple calculation as described below. Can be calculated.
  • FIG. 2 is a diagram schematically showing a first distance measuring method for measuring a distance using the measuring device 2 shown in FIG.
  • the image acquisition unit 10 acquires an image of the imaging target (point) Q located at the upper end of the mountain of the cuttings 40. Specifically, the image acquisition unit 10 is moved in the horizontal direction by a known distance D to acquire images of the photographing target Q before and after the movement.
  • the imaging target (point) Q before moving, forms an image at the center position A of the imaging device 12, and after moving by the distance D, the imaging target (point) Q An image is formed at a position B on the right side of the center of No. 12.
  • the distance between the position A and the position B corresponds to the imaging distance X corresponding to the distance D.
  • the imaging distance X corresponding to the distance D is obtained, and the unknown distance Y between the image obtaining unit 10 and the imaging target (point) Q can be calculated by Expression 2 above. .
  • the chips 40 in the area where the main shaft and the like are to be moved are removed. You can get a mountain profile.
  • the distance can be measured without taking the idle time during the process from the preparation of the machine tool to the end of the machining. For example, in creating a measurement path before rough machining, a profile of a swarf pile can be quickly grasped and a movement route such as a spindle can be set.
  • the accuracy of the distance Y between the acquired image acquisition unit 10 and the imaging object (point) Q has sufficient accuracy in the use of creating a measurement path before rough processing.
  • the moving mechanism 20 moves the known distance D in a direction (horizontal direction in FIG. 1) substantially perpendicular to the shooting direction (vertical direction in FIG. 1) of the image acquisition unit 10.
  • the imaging object Q and the image acquisition unit 10 are relatively moved, the image acquisition unit 10 acquires images of the imaging object Q before and after the movement, and the control unit 30 obtains an image obtained from the acquired two images.
  • the distance Y between the image acquisition unit 10 and the photographing target in the photographing direction can be calculated.
  • the unknown distance Y is obtained by moving the image acquisition unit 10.
  • the object (point) Q is moved.
  • the distance can be obtained, or the distance can be obtained by moving both the image acquisition unit 10 and the imaging target (point) Q.
  • FIG. 3 is a diagram schematically illustrating a second distance measuring method for measuring a distance using the measuring device illustrated in FIG. 1.
  • the image acquisition unit 10 and the imaging target Q are moved relatively horizontally by a known distance D to acquire images of the imaging target Q before and after the movement.
  • the image acquisition unit 10 and the imaging target R are relatively moved in the vertical direction by a known distance E, and images of the imaging target R before and after the movement are acquired.
  • the imaging target R has an unknown dimension Z (for example, a width dimension).
  • the second distance measuring method aims at obtaining an unknown distance Y1 between the image acquisition unit 10 and the photographing target R.
  • the image acquisition unit 10 determines that the photographing target R that is separated by an unknown distance Y1. Get the image of Thereby, the length X1 corresponding to the dimension Z of the image of the imaging target R is acquired.
  • the image acquisition unit 10 and the photographing target R are moved relatively vertically by a known distance E.
  • the imaging target R is brought closer to the image acquisition unit 10 by a known distance E, and the distance between the image acquisition unit 10 and the imaging target R becomes an unknown distance Y2.
  • the image acquiring unit 10 acquires an image of the photographing target R separated by the unknown distance Y2.
  • the length X2 corresponding to the dimension Z of the image of the imaging target R is obtained.
  • Equation 1 When this is applied to Equation 1 above, it is shown as the following equation.
  • Equation 4 By substituting Equation 4 into Equation 3, the following equation is established.
  • the unknown distance Y1 can be calculated from the known vertical movement distance E and the lengths X1 and X2 obtained from the image.
  • the moving object 20 relatively moves the photographing target Q and the image acquiring unit 10 by the known distance E in the photographing direction (the vertical direction in FIG. 1) of the image acquiring unit 10. Then, the image acquisition unit 10 acquires images of the photographing target R before and after the movement, and the control unit 30 determines in the photographing direction based on the lengths X1 and X2 on the images obtained by the acquired two images. The distance Y1 between the image acquisition unit 10 and the photographing target can be calculated.
  • the distance measuring method it is necessary to previously store the image forming distance L corresponding to the known distance D and the known distance H as data, but in the second distance measuring method, If the object Q and the image acquisition unit 10 are relatively moved by a detectable distance E, the distance can be obtained without using data stored in advance.
  • the distance is obtained by moving the imaging target R.
  • the present invention is not limited to this, and the distance can be obtained by moving the image acquisition unit 10. Then, the distance can also be obtained by moving both the image acquisition unit 10 and the photographing target R.
  • the distance between the image acquisition unit 10 and the photographing object Q can be easily acquired with a simple configuration by the above-described first or second distance measurement method. Therefore, it is possible to provide the measuring device 2 capable of measuring a distance in a short time without contacting a non-measurement object (a photographing target object).
  • the moving object 20 relatively moves the photographing object and the image acquiring unit 10 by a distance smaller than the pixel of the image that the image acquiring unit 10 can acquire, and the image acquiring unit 10 causes the photographing object before and after the movement. Can be obtained.
  • the resolution of the image acquisition unit 10 can be substantially improved by using an image moved by a distance smaller than the pixel acquired by the image acquisition unit 10 and interpolating the image.
  • an image having substantially twice the resolution can be obtained.
  • the distance of the image acquisition unit 10 on the image sensor 12 can be reduced with respect to the actual relative movement distance. Therefore, it is easy for the image acquisition unit 10 to acquire an image moved by a distance smaller than a pixel of the image that can be acquired.
  • Measuring device 10 Image acquisition unit 12
  • Image sensor 14 Optical system 20
  • Moving mechanism 30 Control unit 40 Chips A, B, C Positions P, Q Photographing object (point) R Object to be photographed

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Robotics (AREA)
  • Geometry (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

撮影対象物の画像を取得する画像取得部と、撮影対象物及び画像取得部を相対的に移動させる移動機構と、制御部と、を備え、移動機構により、画像取得部の撮影方向または該撮影方向に対して略垂直な方向に既知の距離だけ、撮影対象物及び画像取得部を相対的に移動させ、画像取得部により、移動前後の撮影対象物の画像を取得し、制御部が、取得した該2つの画像により得られた画像上の移動距離または長さに基づいて、撮影方向における画像取得部と撮影対象物との間の距離を算出する測定装置を提供する。これにより、非測定物に接触することなく、少ない時間で距離の測定が可能となる。

Description

測定装置
 本発明は、対象物との距離を測定する測定装置に関する。
 工作機械では、測定対象物に接触させて距離を測定する接触式プローブが広く用いられている。しかし、接触式プローブでは、例えば、高温で油にまみれた切粉のような接触させることが困難な物体の距離を測定することは困難である。そこで、撮像装置で撮影された画像を用いて、非接触で距離を測定することが可能な工作機械が提案されている(例えば、特許文献1参照)。
特開2012-213840号
 特許文献1に記載の工作機械では、距離を測定する2つの部材を撮像装置で同時撮影して、同時撮影された画像の画像像処理を行って、2つの部材の間の距離を演算するようになっている。しかし、画像処理で距離を求めるには多くの演算時間を要するので、工作機械の加工準備から加工終了までの間の工程中に、アイドル時間を取らずに距離の測定するのは困難である。
 本発明は、上記問題に鑑みてなされたものであり、非測定物に接触することなく、少ない時間で距離の測定が可能な測定装置を提供することを目的とする。
 上記課題を解決するために、本発明の1つの実施態様に係る測定装置は、
 撮影対象物の画像を取得する画像取得部と、
 前記撮影対象物及び前記画像取得部を相対的に移動させる移動機構と、
 制御部と、
を備え、
 前記移動機構により、前記画像取得部の撮影方向または該撮影方向に対して略垂直な方向に既知の距離だけ、前記撮影対象物及び前記画像取得部を相対的に移動させ、前記画像取得部により、移動前後の前記撮影対象物の画像を取得し、
 前記制御部が、取得した該2つの画像により得られた画像上の移動距離または長さに基づいて、前記撮影方向における前記画像取得部と前記撮影対象物との間の距離を算出する。
 上記の実施態様によれば、非測定物に接触することなく、少ない時間で距離の測定が可能な測定装置を提供することができる。
本発明の1つの実施形態に係る測定装置及び測定方法の概要を示す模式図である。 図1に示す測定装置を用いて距離の測定を行う第1の距離の測定方法を模式的に示す図である。 図1に示す測定装置を用いて距離の測定を行う第2の距離の測定方法を模式的に示す図である。
 以下、図面を参照しながら、本発明を実施するための実施形態を説明する。以下に説明する実施形態は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張して示している場合もある。
(本発明の1つの実施形態に係る測定装置)
 はじめに、図1を参照しながら、本発明の1つの実施形態に係る測定装置の説明を行う。図1は、本発明の1つの実施形態に係る測定装置及び測定方法の概要を示す模式図である。
 本実施形態に係る測定装置2は、撮影対象物の画像を取得する画像取得部10と、撮影対象物及び画像取得部10を相対的に移動させる移動機構20と、制御部30と、を備える。
 画像取得部10は、撮像素子12及び光学系14を備える。光学系14の焦点位置に撮像素子12が配置されている。これにより、光学系14で結像された画像が、撮像素子12により電子データとして取得され、制御部30へ送信される。撮像素子12としては、CCDイメージセンサ、CMOSイメージセンサをはじめとする任意の撮像素子を用いることができる。
 本実施形態では、画像取得部10が工作機械の主軸に取り付けられている。よって、画像取得部10を移動させる主軸の移動装置が、撮影対象物及び画像取得部10を相対的に移動させる移動機構20に該当する。ただし、これに限られるものではなく、撮影対象物が加工テーブルに載置され、撮影対象物を移動させる加工テーブルの移動装置が、撮影対象物及び画像取得部10を相対的に移動させる移動機構20に該当する場合もあり得る。また、撮影対象物及び画像取得部10の両方を移動機構で移動させる場合もあり得る。
 更に、工作機械の移動機構ではなく、測定装置2が固有の移動機構を備える場合もあり得る。
 制御部30については、測定装置2が固有の制御装置を備える場合もあり得るし、工作機械の制御装置を用いて制御部の機能を果たす場合もあり得る。
 以上のように、本実施形態に係る測定装置2は、画像取得部10、移動機構20及び制御部30を備えた個別の装置として構成されている場合もあり得るし、工作機械の移動機機構や制御装置を用いた、一部が工作機械に組み込まれた装置の場合もあり得る。後者の場合には、測定装置2を備えた工作機械と称することもできる。
<距離の測定方法>
 図1に示す例では、画像取得部10から垂直方向で距離Hだけ離れたポイントP、及び画像取得部10から垂直方向で距離Yだけ離れたポイントQが撮影対象物に該当する。ここで、画像取得部10及び撮影対象物(ポイント)P、Qの間の距離とは、詳細に言えば、画像取得部10の光学系14の垂直方向における中心位置C、及び撮影対象物(ポイント)P、Qの間の垂直距離を意味する。
 実際には、移動機構20により画像取得部10側が距離Dだけ水平に移動し、移動前後の撮影対象物(ポイント)P、Qを垂直方向から撮影するが、図1では、画像取得部10を固定して、相対的に撮影対象物(ポイント)P、Qが移動したように図視している。
 まず、測定装置2による距離の測定を可能にするため、基準データを取得する。具体的には、画像取得部10及び撮影対象物(ポイント)Pの間が既知の距離Hだけ離れた状態において、撮影対象物(ポイント)Pが既知の距離Dだけ水平方向に移動したときの移動前後の画像を取得する。移動前後の画像の比較により、画像取得部10及び撮影対象物(ポイント)Pの間が既知の距離Hだけ離れた状態における、撮像素子12上の既知の距離Dに対応した結像の距離Lを取得することができる。制御部30は、既知の距離D、既知の距離H、及びこれに対応する撮像素子12上の結像の距離Lを記憶する。これが、画像取得部10及び撮影対象物Qの間の未知の距離Yを測定する場合の基準のデータとなる。
 実際の距離の測定においては、画像取得部10及び撮影対象物Qの間が未知の距離Yだけ離れた状態において、上記と同様に、撮影対象物(ポイント)Qが既知の距離Dだけ水平方向に移動したときの移動前後の画像を取得する。移動前後の画像の比較により、画像取得部10及び撮影対象物(ポイント)Qの間が未知の距離Yだけ離れた状態における、撮像素子12上の既知の距離Dに対応した結像の距離Xを取得することができる。
 図1から明らかなように、距離Hだけ離れた状態における距離Dに対応する撮像素子12上の結像の距離L、及び未知の距離Yだけ離れた状態における距離Dに対応する撮像素子12上の結像の距離Xの関係は、下式のように示される。
 Y/H=L/X (数式1)
 例えば、垂直方向の距離Hが距離Yの2倍である場合、近い側の結像の距離Xは、遠い方の結像の長さLの2倍になる。例えば、離間距離Hにおける距離Dに対応する結像の距離が1/2ピクセル(例えば、200μm)とすると、離間距離Yにおける距離Dに対応する結像が1ピクセル(例えば、400μm)となる。
 よって、一度、画像取得部10及び撮影対象物(ポイント)Pの間が既知の距離Hだけ離れた状態における、既知の距離Dに対応する結像の距離Lを取得して制御部30で記憶しておけば、既知の距離Dに対応する結像の距離Xを取得することにより、下記のような非常に簡単な演算で、画像取得部10及び撮影対象物(ポイント)Qの間の未知の距離Yを算出することができる。
 Y=(H×L)/X (数式2)
<実際の距離の測定>
 次に、工作機械において、上記の測定装置2を用いて実際に距離の測定を行うところを説明する。
[第1の距離の測定方法]
 はじめに、図2を参照しながら、上記の測定装置2を用いて実際に距離の測定を行う第1の距離の測定方法を説明する。図2は、図1に示す測定装置2を用いて距離の測定を行う第1の距離の測定方法を模式的に示す図である。
 工作機械の主軸等を移動させる場合、加工によって不規則に堆積した切粉と干渉すること無く移動させる必要がある。図2に示す例では、画像取得部10により切粉40の山の上端に位置する撮影対象物(ポイント)Qの画像を取得する場合を示す。具体的には、画像取得部10を既知の距離Dだけ水平方向に移動させて、移動前後の撮影対象物Qの画像を取得する。
 図2では、移動前には、撮影対象物(ポイント)Qが撮像素子12の中央の位置Aで結像しており、距離Dだけ移動した後は、撮影対象物(ポイント)Qが撮像素子12の中央より右側の位置Bで結像している。この場合、位置A及び位置Bの間の距離が、距離Dに対応する結像の距離Xに該当する。
 このようにして、距離Dに対応する結像の距離Xを取得し、上記の数式2により、画像取得部10及び撮影対象物(ポイント)Qの間の未知の距離Yを算出することができる。
 主軸等を移動させる予定の方向において、画像取得部10を水平方向に移動させながら、上記の未知の距離Yを取得する工程を繰り返すことにより、主軸等を移動させる予定の領域の切粉40の山のプロファイルを得ることができる。これにより、工作機械の加工準備から加工終了までの間の工程中に、アイドル時間を取らずに距離の測定を実現できる。例えば、粗加工前の測定パス作成において、迅速に切粉の山のプロファイルを把握して、主軸等の移動ルートの設定を行うことができる。取得した画像取得部10及び撮影対象物(ポイント)Qの間の距離Yの精度については、粗加工前の測定パス作成の用途において十分な精度を有する。
 以上のように、本実施形態では、移動機構20により、画像取得部10の撮影方向(図1における垂直方向)に対して略垂直な方向(図1の水平方向)に既知の距離Dだけ、撮影対象物Q及び画像取得部10を相対的に移動させ、画像取得部10により、移動前後の撮影対象物Qの画像を取得し、制御部30が、取得した2つの画像により得られた画像上の移動距離Xに基づいて、撮影方向における画像取得部10と撮影対象物との間の距離Yを算出することができる。
 上記の第1の距離の測定方法の説明では、画像取得部10を移動させて未知の距離Yを求めているが、これに限られるものではなく、撮影対象物(ポイント)Qを移動させて距離を求めることもできるし、画像取得部10及び撮影対象物(ポイント)Qの両方を移動させて距離を求めることもできる。
[第2の距離の測定方法]
 次に、図3を参照しながら、上記の測定装置2を用いて実際に距離の測定を行う第2の距離の測定方法を説明する。図3は、図1に示す測定装置を用いて距離の測定を行う第2の距離の測定方法を模式的に示す図である。
 上記の第1の距離の測定方法では、画像取得部10及び撮影対象物Qを相対的に既知の距離Dだけ水平方向に移動させて、移動前後の撮影対象物Qの画像を取得したが、第2の距離の測定方法では、画像取得部10及び撮影対象物Rを相対的に既知の距離Eだけ垂直方向に移動させて、移動前後の撮影対象物Rの画像を取得する。撮影対象物Rは、未知の寸法Z(例えば、幅寸法)を有している。
 第2の距離の測定方法では、画像取得部10及び撮影対象物Rの間の未知の距離Y1を求めることを目的とする。はじめに、画像取得部10が、未知の距離Y1だけ離れた撮影対象物R
の画像を取得する。これにより、撮影対象物Rの結像の寸法Zに対応する長さX1を取得する。
 次に、画像取得部10及び撮影対象物Rを相対的に既知の距離Eだけ垂直方向に移動させる。ここでは、撮影対象物Rを、画像取得部10に対して既知の距離Eだけ近づけて、画像取得部10及び撮影対象物Rの間の距離が未知の距離Y2となったところを示す。そして、画像取得部10が、未知の距離Y2だけ離れた撮影対象物Rの画像を取得する。これにより、撮影対象物Rの結像の寸法Zに対応した長さX2を取得する。
 これを上記の数式1の当てはめると、下式のように示される。
 Y2/Y1=X1/X2 (数式3)
 また、未知の距離Y1及びY2の間では、既知の距離Eを用いた下式が成り立つ。
 Y1-E=Y2 (数式4)
 数式4を数式3に代入すると、下式が成り立つ。
 Y1=(E×X2)/(X2-X1) (数式5)
 以上のように、既知の垂直移動距離E及び画像から取得された長さX1、X2により、未知の距離Y1を算出することができる。
 以上のように、本実施形態では、移動機構20により、画像取得部10の撮影方向(図1における垂直方向)に既知の距離Eだけ、撮影対象物Q及び画像取得部10を相対的に移動させ、画像取得部10により、移動前後の撮影対象物Rの画像を取得し、制御部30が、取得した2つの画像により得られた画像上の長さX1、X2に基づいて、撮影方向における画像取得部10と撮影対象物との間の距離Y1を算出することができる。
 上記の第1の距離の測定方法では、既知の距離D、既知の距離Hに対応する結像の距離Lを予めデータとして記憶しておく必要があったが、第2の距離の測定方法では、撮影対象物Q及び画像取得部10を検出可能な距離Eだけ相対的に移動させれば、予め記憶させたデータを用いることなく距離を求めることができる。
 上記の第2の距離の測定方法の説明では、撮影対象物Rを移動させて距離を求めているが、これに限られるものではなく、画像取得部10を移動させて距離を求めることもできるし、画像取得部10及び撮影対象物Rの両方を移動させて距離を求めることもできる。
 以上のように、上記の第1または第2の距離の測定方法により、シンプルな構成で容易に画像取得部10及び撮影対象物Qの間の距離を取得することができる。よって、非測定物(撮影対象物)に接触することなく、少ない時間で距離の測定が可能な測定装置2を提供することができる。
(分解能の向上)
 更に、移動機構20により、画像取得部10が取得可能な画像の画素より小さい距離だけ、撮影対象物及び画像取得部10を相対的に移動させ、画像取得部10により、移動前後の撮影対象物の画像を取得することが可能である。このとき、画像取得部10が取得した画素より小さい距離だけ移動させた画像を用いて、それを補間することにより、実質的に画像取得部10の分解能を向上させることができる。
 例えば、撮影対象物及び画像取得部10を相対的に1/2画素分だけ移動させて取得した画像を用いて補間することにより、実質的に2倍の解像度の画像を得ることができる。特に、撮影対象物及び画像取得部10の間の距離を大きくとることにより、実際の相対的な移動距離に対して、画像取得部10の撮像素子12上の距離を小さくすることができる。よって、画像取得部10が取得可能な画像の画素より小さい距離だけ移動した画像を取得し易くなる。
(その他の実施形態)
 上記の実施形態に係る測定装置2では、工作機械に適用した場合を例に取って説明したが、これに限られるものではなく、非接触で迅速に距離の測定が必要なその他の任意の分野に適用可能である。
 本発明の実施の形態、実施の態様を説明したが、開示内容は構成の細部において変化してもよく、実施の形態、実施の態様における要素の組合せや順序の変化等は請求された本発明の範囲および思想を逸脱することなく実現し得るものである。
2   測定装置
10  画像取得部
12  撮像素子
14  光学系
20  移動機構
30  制御部
40  切粉
A、B、C 位置
P、Q 撮影対象物(ポイント)
R   撮影対象物

Claims (2)

  1.  撮影対象物の画像を取得する画像取得部と、
     前記撮影対象物及び前記画像取得部を相対的に移動させる移動機構と、
     制御部と、
    を備え、
     前記移動機構により、前記画像取得部の撮影方向または該撮影方向に対して略垂直な方向に既知の距離だけ、前記撮影対象物及び前記画像取得部を相対的に移動させ、前記画像取得部により、移動前後の前記撮影対象物の画像を取得し、
     前記制御部が、取得した該2つの画像により得られた画像上の移動距離または長さに基づいて、前記撮影方向における前記画像取得部と前記撮影対象物との間の距離を算出することを特徴とする測定装置。
  2.  前記移動機構により、前記画像取得部が取得可能な画像の画素より小さい距離だけ、前記撮影対象物及び前記画像取得部を相対的に移動させ、前記画像取得部により、移動前後の前記撮影対象物の画像を取得することを特徴とする請求項1に記載の測定装置。
PCT/JP2019/017338 2018-07-13 2019-04-24 測定装置 WO2020012757A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/258,804 US11393104B2 (en) 2018-07-13 2019-04-24 Distance measuring device
DE112019003581.9T DE112019003581T5 (de) 2018-07-13 2019-04-24 Messvorrichtung
CN201980046016.7A CN112384753B (zh) 2018-07-13 2019-04-24 测量装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018133488A JP6606234B1 (ja) 2018-07-13 2018-07-13 測定装置
JP2018-133488 2018-07-13

Publications (1)

Publication Number Publication Date
WO2020012757A1 true WO2020012757A1 (ja) 2020-01-16

Family

ID=68532283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017338 WO2020012757A1 (ja) 2018-07-13 2019-04-24 測定装置

Country Status (5)

Country Link
US (1) US11393104B2 (ja)
JP (1) JP6606234B1 (ja)
CN (1) CN112384753B (ja)
DE (1) DE112019003581T5 (ja)
WO (1) WO2020012757A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254424A (ja) * 1995-03-15 1996-10-01 Canon Inc 三次元物体形状計測方法及び装置
JP2001012944A (ja) * 1999-06-29 2001-01-19 Fuji Photo Film Co Ltd 視差画像入力装置及び撮像装置
JP2015006721A (ja) * 2013-06-26 2015-01-15 Dmg森精機株式会社 測定装置を備えた工作機械
JP2017173032A (ja) * 2016-03-22 2017-09-28 株式会社日進製作所 骨部材用nc加工装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3990035B2 (ja) * 1998-06-24 2007-10-10 日立オムロンターミナルソリューションズ株式会社 イメージスキャナ
US7656428B2 (en) * 2005-05-05 2010-02-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Imaging device employing optical motion sensor as gyroscope
TW200717208A (en) * 2005-10-18 2007-05-01 Sheng-San Gu Defective connected piece of PCB reset method and system thereof
JP2008026802A (ja) * 2006-07-25 2008-02-07 Canon Inc 撮像装置
US20110169957A1 (en) * 2010-01-14 2011-07-14 Ford Global Technologies, Llc Vehicle Image Processing Method
JP2012213840A (ja) 2011-04-01 2012-11-08 Murata Machinery Ltd 工作機械
CN202158851U (zh) * 2011-07-29 2012-03-07 北京联合大学 一种单摄像头测距系统
JP2013101045A (ja) 2011-11-08 2013-05-23 Fanuc Ltd 物品の3次元位置姿勢の認識装置及び認識方法
CN104322046B (zh) * 2012-03-29 2017-02-22 安特利昂成像有限责任公司 用于捕获移动对象的图像的成像设备
WO2014074003A1 (ru) * 2012-11-07 2014-05-15 Артек Европа С.А.Р.Л. Способ контроля линейных размеров трехмерных объектов
CN103017730B (zh) 2012-11-30 2015-04-01 中兴通讯股份有限公司 一种单摄像头测距的方法和系统
DE102012111835A1 (de) * 2012-12-05 2014-06-05 Hseb Dresden Gmbh Inspektionsvorrichtung
US8866912B2 (en) * 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
EP3156763B1 (en) * 2014-06-13 2019-02-06 Nikon Corporation Shape measurement device
DE102014212104A1 (de) * 2014-06-24 2015-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und verfahren zur relativen positionierung einer multiaperturoptik mit mehreren optischen kanälen relativ zu einem bildsensor
DE102014214750B3 (de) * 2014-07-28 2015-06-11 Reimar Lenz Bildaufnahmesystem mit schnell vibrierendem Global-Shutter-CMOS-Sensor
JP6562724B2 (ja) * 2015-06-09 2019-08-21 東芝機械株式会社 刃位置測定方法および刃位置測定装置
CN108139211B (zh) * 2015-09-29 2021-01-15 索尼公司 用于测量的装置和方法以及程序
US10924670B2 (en) * 2017-04-14 2021-02-16 Yang Liu System and apparatus for co-registration and correlation between multi-modal imagery and method for same
US11367201B2 (en) * 2019-09-24 2022-06-21 The Boeing Company System and method for continual localization of scanner using non-destructive inspection data

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254424A (ja) * 1995-03-15 1996-10-01 Canon Inc 三次元物体形状計測方法及び装置
JP2001012944A (ja) * 1999-06-29 2001-01-19 Fuji Photo Film Co Ltd 視差画像入力装置及び撮像装置
JP2015006721A (ja) * 2013-06-26 2015-01-15 Dmg森精機株式会社 測定装置を備えた工作機械
JP2017173032A (ja) * 2016-03-22 2017-09-28 株式会社日進製作所 骨部材用nc加工装置

Also Published As

Publication number Publication date
CN112384753B (zh) 2022-09-20
DE112019003581T5 (de) 2021-06-24
US11393104B2 (en) 2022-07-19
JP6606234B1 (ja) 2019-11-13
US20210225010A1 (en) 2021-07-22
CN112384753A (zh) 2021-02-19
JP2020011310A (ja) 2020-01-23

Similar Documents

Publication Publication Date Title
JP6053119B2 (ja) マシンビジョン検査システムおよびその位置測定結果の決定方法
EP2183546A1 (en) Non-contact probe
JP2012058076A (ja) 3次元計測装置及び3次元計測方法
TWI672937B (zh) 三維影像處理之裝置及方法
US20170248768A1 (en) Auto-focus method for a coordinate-measuring apparatus
CN101476882B (zh) 基于单应性矩阵的结构光三维检测方法
CN112634376A (zh) 标定方法及装置、标定设备和存储介质
KR101545186B1 (ko) 사전 정의된 목표 영상을 이용한 웨이퍼 패턴 결함 위치 보정 방법
JP2016217944A (ja) 計測装置、および計測方法
WO2020012757A1 (ja) 測定装置
JP2016148569A (ja) 画像測定方法、及び画像測定装置
JP2018205011A (ja) ねじ形状測定装置および方法
JP5740649B2 (ja) 画像測定装置、オートフォーカス制御方法及びオートフォーカス制御プログラム
JP7083630B2 (ja) 測定装置及び測定システム
JP2020193820A5 (ja)
CN112805607A (zh) 计测装置、计测方法和显微镜系统
JP2008256483A (ja) 形状測定装置
CN111511501A (zh) 加工系统、测定探针、形状测定装置及程序
JP4274868B2 (ja) 高さ測定方法
JP4545580B2 (ja) 面内方向変位計
US20190113336A1 (en) Multi-Directional Triangulation Measuring System with Method
JP5098714B2 (ja) 測距装置および撮像装置
TWI626421B (zh) 直線度測定裝置及方法
TW201616092A (zh) 物體三維形貌之量測方法
JP4003274B2 (ja) 距離測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834250

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19834250

Country of ref document: EP

Kind code of ref document: A1