WO2014074003A1 - Способ контроля линейных размеров трехмерных объектов - Google Patents

Способ контроля линейных размеров трехмерных объектов Download PDF

Info

Publication number
WO2014074003A1
WO2014074003A1 PCT/RU2012/000909 RU2012000909W WO2014074003A1 WO 2014074003 A1 WO2014074003 A1 WO 2014074003A1 RU 2012000909 W RU2012000909 W RU 2012000909W WO 2014074003 A1 WO2014074003 A1 WO 2014074003A1
Authority
WO
WIPO (PCT)
Prior art keywords
projector
camera
image
cameras
coordinates
Prior art date
Application number
PCT/RU2012/000909
Other languages
English (en)
French (fr)
Inventor
Андрей Владимирович КЛИМОВ
Александр Георгиевич ЛОМАКИН
Сергей Владимирович СУХОВЕЙ
Глеб Александрович ГУСЕВ
Артем Леонидович ЮХИН
Original Assignee
Артек Европа С.А.Р.Л.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Артек Европа С.А.Р.Л. filed Critical Артек Европа С.А.Р.Л.
Priority to CN201280078106.2A priority Critical patent/CN104903680B/zh
Priority to ES12887908.7T priority patent/ES2683364T3/es
Priority to US14/441,499 priority patent/US10648789B2/en
Priority to JP2015541737A priority patent/JP6161714B2/ja
Priority to TR2018/11449T priority patent/TR201811449T4/tr
Priority to EP12887908.7A priority patent/EP2918967B1/en
Priority to PL12887908T priority patent/PL2918967T3/pl
Priority to PCT/RU2012/000909 priority patent/WO2014074003A1/ru
Publication of WO2014074003A1 publication Critical patent/WO2014074003A1/ru
Priority to HK16102982.8A priority patent/HK1215968A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2545Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with one projection direction and several detection directions, e.g. stereo

Definitions

  • the invention relates to measuring technique and can be used for 3D measurements with sufficient accuracy and visualization of the profiles of three-dimensional objects by observing a projected previously known pattern at different triangulation angles.
  • a known method of controlling the linear dimensions of three-dimensional objects in three coordinates which consists in forming a probing structured illumination on the surface of the controlled object by illuminating the surface of the controlled object with a beam of optical radiation spatially modulated in intensity, registering the image of the structure of the probing illumination distorted by the surface relief of the controlled object, and determining using digital electronic elevation calculator of the controlled object according to the magnitude of the distortion of the image of the structure of the probing backlight, and two other coordinates according to the position of the distortion of the structure of the backlight in the registered image (WO 99/58930).
  • the disadvantages of this method is the high error due to the fact that when directed to the surface of the controlled object, modulated along the same coordinate with a transparency with a constant periodic structure of the optical study, it is impossible to foresee or take into account picture distortions caused by various reflective properties of the surface and deep depressions that cannot be identified without a priori information about the macrostructure of the surface of the controlled object.
  • the method consists in the fact that a system of multi-colored stripes is projected onto the object, created by spatial modulation along one coordinate of the intensity of the probe optical radiation.
  • Multi-colored system bands is periodic in nature and creates a structured flare.
  • Controlled sizes are judged by the degree of image distortion of the multiple bands and the location of the bands in the Cartesian coordinate system (WO 00/70303).
  • a disadvantage of the known method and its implementing devices is the low accuracy associated with the inability to unambiguously interpret gaps in the image of the bands distorted by the surface topography of the controlled object, either through holes, or a low spectral reflection coefficient, depending on the color of any part of the surface of the controlled object. If the controlled object is an aggregate of local components, for example, a plurality of turbine blades, restoration of the topology of such an object and subsequent control of linear dimensions in this way is impossible.
  • a known method of optical measurement of the surface shape including placing the surface in the illumination field of the projection optical system and simultaneously in the field of view of the device for registering images of the said surface, projecting using the projection optical system onto the measured surface a set of images with a given light flux structure, registering a set of corresponding images surface when it is observed at an angle different from the angle of projection of the set of images, and determine shape of the measured surface from the recorded images.
  • an additional distribution of light intensity is projected onto said surface once, allowing for each point of said surface to determine the strip number from said set of strips, an additional image of said surface is recorded, and for each visible point of said surface, a resulting phase distribution based on said image of the object is obtained, illuminated by a preliminary phase distribution, and said image of an object illuminated additionally Yelnia illumination distribution. And from the said resulting phase distribution, the absolute coordinates of the points of the said surface are obtained using the preliminary calibration data.
  • a known method and device for contactless control and recognition of surfaces of three-dimensional objects by the method of structured illumination containing a source of optical radiation and a banner sequentially installed along the radiation, configured to form an aperiodic line structure of strips, an afocal optical system for projecting a banner image onto a controlled surface, a receiving lens forming an image of a line structure arising on top spine of the controlled object, the distorted surface relief controlled object photorecorder converting shaped receiving lens image into a digital, computing digital electronic unit that recalculates the digital images recorded by the photorecorder into the coordinates of the surface being monitored, and it is equipped with additional N-1 radiation sources, each of which is different in the spectral range of radiation from the rest, N-1 transparencies, each of which differs from the rest, at least one lane, N-1 lenses mounted behind banners, N-1 mirrors mounted at an angle of 45 angles.
  • two cameras are located to the right and left of the projector, so they form a stereo pair like human vision.
  • the projector projects onto striped image object.
  • An image is obtained from the right and left cameras, and then these two images are compared by correlation methods, i.e. for each strip from the right image, look for a similar pair in the left image by enumerating all the bands from the left image (US 6377700, prototype).
  • the disadvantage of this method is the large time required to sort through all possible pairs of bands and the large time of the work of correlation algorithms on a computer.
  • An object of the invention is to create an effective and convenient way to control the linear dimensions of three-dimensional objects, as well as expanding the arsenal of methods for controlling the linear dimensions of three-dimensional objects.
  • the technical result that provides the solution of the problem lies in the simplification and complete automation of control of the linear dimensions of three-dimensional objects, reducing the duration of the measurement process and the almost complete elimination of errors in the event of mechanical fluctuations in the position of the equipment - the projector and cameras relative to the measurement object, because the projector and cameras are made in the form of a portable hand-held device in a single housing.
  • the essence of the invention lies in the fact that the method of performing ZD measurements of an object using structured illumination provides that, using a projector, a predetermined image having at least two disjoint lines along one of the longitudinal axes is projected onto the object under study, the light reflected from the object is recorded the projector using at least two cameras placed at different distances from the projector with the formation of different triangulation angles between the central beam of the projector and the central camera beams, and then each line projected by the projector and formed by the reflected light received by each camera is identified by comparing the coordinates of the lines received by the cameras, while the triangulation angle between the central beam 9
  • the longitudinal coordinates of the line centers along their width are determined on the image of the first camera as the brightest pixels.
  • the distance between the camera and the projector is selected as the product of the distance from the projector to the intersection of the central rays of the projector and the camera with the tangent of the triangulation angle between the central beam of the projector and the central beam of the camera.
  • its value obtained using the third, fourth and subsequent cameras is used.
  • camera implementations are placed on one side or on both sides of the projector.
  • the measurements and determination of coordinates are carried out using a computer processor, and the construction of the image is formed on the monitor of the latter.
  • FIG. 1 shows a location diagram of a projector and a camera when projecting a single beam
  • FIG. 2 shows a projection diagram on a three-dimensional object of one line
  • FIG. 3 shows a diagram of projection on a three-dimensional object of two lines
  • FIG. 4 shows a diagram the location of the projector and camera when projection of two beams, in Fig. 5 - possible images of the bands projected by the projector and received by cameras (5a - image of the bands on the projector, 5c - profile image of the bands on the projector, 5b - image of the bands on the camera, 5d - image of the stripes on the camera), figb - lines corresponding to the strips coming out of the projector in the form of parallel lines, in fig.
  • FIG. 7 shows a diagram of a projection system (projector)
  • FIG. 10 is a variant of the device with cameras located on two sides of the projector and the corresponding overlapping of the camera fields
  • FIG. 11 is a variant of the location of three cameras on one side of the projector and the corresponding overlapping of the camera fields.
  • FIG. 1 shows a device consisting of a projector 1, which projects a previously known image onto an object and cameras 2, which registers and transmits to the computer (not shown) the light of the projector 1 reflected from the object at a certain triangulation angle a (angle between the central beam of the projector 3 and central beam 4 cameras 1.
  • the distance L between the camera and the projector is called the base.
  • the base can be selected as follows.
  • L s * tga, where s is the distance from the projector to the intersection of the central rays of the projector and the camera (m).
  • FIG. 2 is a view from the side of camera 2.
  • FIG. 2 it is possible to observe how, due to the curvature of the object depicted in the form of planes 5 and 6, strip 3 is bent, and in the image of camera 2 we see a trace 7 of the reflected strip 3.
  • FIG. 1 is a side view of the same scene as in FIG. 2 and lane 3 intersects plane 5 and plane 6 at different distances Z1 and Z2 from the camera and the intersection points 8 and 9 have different coordinates Y1 and Y2.
  • this strip is usually scanned along the supplementary Treatment axis in FIG. 2, in order to obtain as detailed as possible ZD measurements of an object that is in the camera’s field of view.
  • T is the period between the bands
  • is the measured volume, which is usually determined by the depth of field of the lenses used in the projector and camera 2.
  • the depth of field ⁇ is the distance along the supplementary Sprint axis, within which we can observe quite a contrast image of the bands projected by us, i.e. we can see where the strip begins and ends.
  • Depth of field ⁇ may be a reference value for the camera lens.
  • the projected strip usually has a width, i.e. Usually it occupies several pixels of the CCD of camera 2, due to the fact that the stripes can be defocused by the lens, or the object can scatter light when reflected, the stripes do not have a clear Y coordinate.
  • the subpixel refinement algorithm is as follows:
  • Projector 1 projects an image of parallel strips of Fig. 5 with minimum and maximum brightness 15.
  • On camera 2 we observe strips 17 with different pixel brightness which are slightly smeared due to lens defocusing, pixel noise of camera 2 and other distortions.
  • FIG. 6 and FIG. 7 shows the lines corresponding to the strips emerging from the projector 1 in the form of parallel lines that are parallel to the central beam 3 of the projector 1.
  • the camera With a minimum value of the triangulation angle, the camera clearly perceives the projected line and the longitudinal coordinate Y, but the accuracy of perception of the vertical coordinate Z is minimal. With the largest value of the triangulation angle of the strip in the image, they begin to merge and determining the longitudinal coordinate Y is difficult, but the accuracy of perception of the vertical coordinate Z is maximum. This is due to the use of at least two cameras installed at different triangulation angles.
  • the device of FIG. 9 consists of a projection system (projector) 1, which consists of a light source - a lamp 29 of the lens of the condenser 30, a slide 31, which shows a picture in the form of horizontal parallel stripes and a lens 32.
  • the device also consists of three cameras 22,23,33. To ensure the closest possible location of the cameras to the projector 1, the first camera 22 must be placed too close to the projector so that the overall dimensions of the camera can be larger than the base (base distance) L, which corresponds to the selected angle a.
  • FIG. 10 shows the basic distances L1 and L2 located on one side of the projector, which correspond to triangulation angles.
  • L1 and L2 located on one side of the projector, which correspond to triangulation angles.
  • FIG. I A third method is depicted in FIG. I.
  • the cameras are located on one side of the projector 1. This allows you to get a greater overlap of the fields of view of the cameras 35.
  • the method of performing ZD measurements of an object using structured illumination is implemented as follows.
  • a projector 1 Using a projector 1, a previously known image is projected onto the object under study, having at least two disjoint lines along one of the longitudinal axes.
  • the light of the projector 1 reflected from the object is recorded using at least two cameras located at different distances from the projector with the formation of different triangulation angles between the central beam of the projector and the central rays of the cameras.
  • the longitudinal coordinates of the line centers are determined as the brightest pixels
  • each line projected by the projector 1 and formed by the reflected light received by each camera is identified by comparing the coordinates of the lines received by the cameras.
  • the triangulation angle between the central beam of the projector 1 and the central beam of the first camera 22, located at a minimum distance from the projector 1 and the minimum angle ⁇ is selected and set equal to the arc tangent of the ratio of the distance between the projected stripes to the depth of field xx ⁇ of the sharpness of the lens of this camera.
  • the Z coordinates of all projected bands are calculated with a certain error ⁇ , which mainly depends on the triangulation angle al, on the number of pixels on the CCD matrix of the camera and depends on the pixel noise of the selected camera.
  • the error ⁇ (starting from the second camera) along the line image width should not exceed TV Cos (X2.
  • a second chamber 23 under a large triangulation angle to the projector - ⁇ ⁇ > and ⁇ The bands 20 and 21 projected by the projector 1 in the image of the second camera 23 look like 26 and 27. For clarity, the bands 26 and 27 are shown with a slight shift, in fact they merge in the image of the second camera and are difficult to identify.
  • each next chamber with a large angle of triangulation must satisfy the conditions set forth above with respect to the camera with a smaller angle of triangulation.
  • at least two cameras are located on opposite sides of the projector, but the images and triangulation angles of all cameras should lie on one side of the central beam of the projector, which can be achieved using a translucent mirror that intersects the central rays of the projector and, preferably, the first chamber of FIG. 9.
  • Measurements and determination of coordinates are carried out using a computer processor, and the construction of a 3D image is formed on the monitor of the latter.
  • the present invention is implemented using universal equipment widely used in industry.

Abstract

Изобретение относится к области измерительной техники и касается способа измерения профилей трехмерных объектов. С помощью проектора на объект проецируется заранее известное изображение, содержащее непересекающиеся линии. Отраженный сигнал регистрируется с помощью двух камер, размещенных от проектора на разных расстояниях и образующих разные триангуляционные углы между центральным лучом проектора и центральными лучами камер. Расстояние от проектора до ближайшей камеры выбирается таким образом, чтобы триангуляционный угол центрального луча этой камеры и центрального луча проектора был равен арктангенсу отношения расстояния между проецируемыми полосами к глубине резкости объектива камеры. С помощью изображения, полученного от первой камеры, определяют продольные и вертикальные координаты спроецированных линий, а затем уточняют вертикальные координаты линий с помощью изображения, полученного от второй камеры. Технический результат заключается в упрощении и ускорении процесса измерений.

Description

СПОСОБ КОНТРОЛЯ ЛИНЕЙНЫХ РАЗМЕРОВ ТРЕХМЕРНЫХ
ОБЪЕКТОВ
Область техники, к которой относится изобретение
Изобретение относится к измерительной технике и может быть использовано для ЗД измерений с достаточной точностью и визуализации профилей трехмерных объектов путем наблюдения спроецированного заранее известного рисунка под разными триангуляционными углами.
Предшествующий уровень техники
Известен способ контроля линейных размеров трехмерных объектов по трем координатам, который заключается в формировании на поверхности контролируемого объекта зондирующей структурированной подсветки путем освещения поверхности контролируемого объекта пучком оптического излучения, пространственно модулированного по интенсивности, регистрации изображения искаженной рельефом поверхности контролируемого объекта структуры зондирующей подсветки и определении с помощью цифрового электронного вычислителя высоты рельефа поверхности контролируемого объекта по величине искажений изображения структуры зондирующей подсветки, а двух других координат - по положению искажений структуры подсветки в зарегистрированном изображении (WO 99/58930).
Недостатками известного способа является высокая погрешность, обусловленная тем, что при направлении на поверхность контролируемого объекта, модулированного по одной координате транспарантом с неизменной периодической структурой оптического изучения, нельзя предусмотреть либо заранее учесть искажения картины, вызванные различными отражательными свойствами поверхности и глубокими впадинами, которые невозможно идентифицировать без априорной информации о макроструктуре поверхности контролируемого объекта.
Известен способ и устройство, его реализующее, для контроля линейных размеров трехмерных объектов по трем декартовым координатам. Способ заключается в том, что на объект проецируется система разноцветных полос, создаваемая путем пространственной модуляции вдоль одной координаты интенсивности зондирующего оптического излучения. Система разноцветных полос носит периодический характер и создает структурированную засветку. В результате в одном кадре регистрируется целиком вся попадающая в поле зрения фотоприемного устройства часть поверхности контролируемого объекта и "наложенное" на поверхность искаженное изображение структурированной засветки. О контролируемых размерах судят по степени искажений изображения множества полос и местоположению полос в декартовой системе координат (WO 00/ 70303).
Недостатком известного способа и реализующих его устройств является низкая точность, связанная с невозможностью однозначно интерпретировать разрывы в изображении полос, искаженных рельефом поверхности контролируемого объекта, либо сквозными отверстиями, либо низким значением спектрального коэффициента отражения, зависящего от цвета какого- либо участка поверхности контролируемого объекта. Если же контролируемый объект представляет собою совокупность локальных компонент, например множество лопаток турбины, восстановление топологии такого объекта и последующий контроль линейных размеров указанным способом невозможен.
Известен способ оптического измерения формы поверхности, включающий размещение поверхности в поле освещения проекционной оптической системы и одновременно в поле зрения устройства для регистрации изображений упомянутой поверхности, проецирование с помощью упомянутой проекционной оптической системы на измеряемую поверхность набора изображений с заданной структурой светового потока, регистрацию набора соответствующих изображений поверхности при ее наблюдении под углом, отличным от угла проецирования набора изображений, и определение формы измеряемой поверхности по зарегистрированным изображениям. При этом на упомянутую поверхность проецируют поочередно как минимум три периодические распределения интенсивности освещенности, представляющие собой набор полос, интенсивность которых в поперечном направлении меняется по синусоидальному закону, причем упомянутые периодические распределения интенсивности освещенности отличаются сдвигом этого набора полос в направлении, перпендикулярном полосам, на контролируемую величину в пределах полосы, обрабатывают зарегистрированные изображения для получения предварительного фазового распределения, содержащего фазы, соответствующие точкам поверхности. Кроме того, на упомянутую поверхность однократно проецируют дополнительное распределение интенсивности освещенности, позволяющее для каждой точки упомянутой поверхности определить номер полосы из упомянутого набора полос, регистрируют дополнительное изображение упомянутой поверхности, получают для каждой видимой точки упомянутой поверхности результирующее фазовое распределение, исходя из упомянутого изображения объекта, освещенного предварительным фазовым распределением, и упомянутого изображения объекта, освещенного дополнительным распределением освещенности. А из упомянутого результирующего фазового распределения получают абсолютные координаты точек упомянутой поверхности с использованием данных предварительной калибровки. При проведении измерений по вышеуказанным способам предполагается, что регистрация изображения каждой точки поверхности происходит в условиях, когда ее освещение происходит только прямым лучом проектора, и освещенность изображения данной точки объекта на регистраторе изображений считается пропорциональной яркости луча, падающего на эту точку непосредственно от проектора (RU Ν° 2148793).
Недостатками данного способа являются сложность реализации и длительность процесса, требующая значительного времени для проведения измерений и допускающая возникновение погрешностей, в случае механических колебаний положения аппаратуры - проектора и камеры.
Известны способ и устройство для бесконтактного контроля и распознавания поверхностей трехмерных объектов методом структурированной подсветки, содержащее источник оптического излучения и последовательно установленные по ходу излучения транспарант, выполненный с возможностью формирования апериодической линейчатой структуры полос, афокальную оптическую систему для проецирования изображения транспаранта на контролируемую поверхность, приемный объектив, формирующий изображение картины линейчатой структуры, возникающей на поверхности контролируемого объекта, искаженной рельефом поверхности контролируемого объекта, фоторегистратор, преобразующий сформированное приемным объективом изображение в цифровое, вычислительный цифровой электронный блок, пересчитывающий фиксируемые фоторегистратором цифровые изображения в величины координат контролируемой поверхности, причем оно снабжено дополнительными N-1 источниками излучения, каждый из которых отличен по спектральному диапазону излучения от остальных, N-1 транспарантами, каждый из которых отличается от остальных хотя бы на одну полосу, N-1 объективами, установленными за транспарантами, N-1 зеркалами, установленными под углом 45 угл. град, к оптической оси каждого из N-1 объектива перед второй компонентой афокальной оптической системы, вторыми N-1 зеркалами, установленными за приемным объективом под углом 45 угл. град, к оптической оси приемного объектива, N-1 вторичными приемными объективами, каждый из которых установлен за каждым из вторых N-1 зеркал и формирует совместно с приемным объективом изображение картин линейчатой структуры, возникающей на поверхности контролируемого объекта, искаженной рельефом поверхности контролируемого объекта, N-1 фоторегистраторами, каждый из которых имеет область спектральной чувствительности, совпадающую со спектральным диапазоном излучения одного из N-1 источников излучения, N-1 вычислительными цифровыми электронными блоками, электронный блок сложения изображений выполнен с числом входов, равным числу вычислительных цифровых электронных блоков, каждый из входов электронного блока сложения изображений соединен с выходом каждого вычислительного цифрового электронного блока, а число N определяется по формуле N=Log2(L), где L - число пар элементов пространственного разрешения фоторегистратора (RU N° 2199718).
Недостатками данного способа также являются сложность реализации и длительность процесса, требующая значительного времени для проведения измерений и допускающая возникновение погрешностей, в случае механических колебаний положения аппаратуры - проектора и камеры.
Известен способ и устройство, его реализующее, для контроля линейных размеров трехмерных объектов по трем декартовым координатам. В котором две камеры расположены справа и слева от проектора, таким образом, они образуют стерео пару наподобие человеческого зрения. Проектор проецирует на объект полосатое изображение. С правой и с левой камеры получают изображение, а затем сравнивают эти два изображения корреляционными методами, т.е. для каждой полосы с правого изображения ищут похожую пару на левом изображении методом перебора всех полос с левого изображения (US 6377700, прототип).
Недостатком данного метода является большое время, требуемое на перебор всех возможных пар полос и большое время работы корреляционных алгоритмов на ЭВМ.
Раскрытие сущности изобретения
Технической задачей изобретения является создание эффективного и удобного способа контроля линейных размеров трехмерных объектов, а также расширение арсенала способов контроля линейных размеров трехмерных объектов.
Технический результат, обеспечивающий решение поставленной задачи состоит в упрощении и полной автоматизации контроля линейных размеров трехмерных объектов, сокращении длительности процесса проведения измерений и практически полное исключение погрешностей, в случае возникновения механических колебаний положения аппаратуры - проектора и камер относительно объекта измерений, т.к. проектор и камеры выполняются в виде переносного ручного устройства в едином корпусе.
Сущность изобретения состоит в том, что способ выполнения ЗД измерений объекта при помощи структурированной подсветки предусматривает, что с помощью проектора проецируют на исследуемый объект заранее известное изображение, имеющее, по меньшей мере, две непересекающиеся линии вдоль одной из продольных осей, регистрируют отраженный от объекта свет проектора с помощью, по меньшей мере, двух камер, размещенных на разных расстояниях от проектора с образованием разных триангуляционных углов между центральным лучом проектора и центральными лучами камер, а затем производят идентификацию каждой линии, проецированной проектором и образованной отраженным светом, принятым каждой камерой, путем сравнения координат линий, принятых камерами, при этом триангуляционный угол между центральным лучом 9
6 проектора и центральными лучом первой камеры, расположенной на минимальном расстоянии от проектора, выбирают равным арктангенсу отношения расстояния между проецируемыми полосами к глубине резкости объектива этой камеры, определяют на изображении первой камеры продольные координаты центров линий и вертикальные координаты, как частное от деления продольной координаты на тангенс триангуляционного угла между центральным лучом проектора и центральными лучом первой камеры, а для уточнения вертикальной координаты используют ее значение, полученное с помощью второй камеры, расположенной под большим, чем первая, триангуляционным углом, для чего идентифицируют на изображении второй камеры местонахождение тех же линий как наиболее приближенных к продольным координатам, вычисленным в виде произведения упомянутой вертикальной координаты, определенной с помощью первой камеры, на тангенс триангуляционного угла второй камеры, а затем определяют для этих линий уточненные значение продольной и вертикальной координат.
Предпочтительно, определяют на изображении первой камеры продольные координаты центров линий по их ширине, как самые яркие пиксели. Расстояние между камерой и проектором выбирается как произведение расстояния от проектора до точки пересечения центральных лучей проектора и камеры на тангенс триангуляционного угла между центральным лучом проектора и центральным лучом камеры. Для дальнейшего уточнения вертикальной координаты используют ее значение, полученное с помощью третьей, четвертой и последующих камер.
В частных случаях реализации камере размещены с одной стороны или с двух сторон от проектора. Предпочтительно, измерения и определение координат производят с помощью процессора ЭВМ, а построение ЗД изображения формируют на мониторе последнего.
Перечень фигур чертежей
.На чертеже фиг.1 изображена схема расположения проектора и камеры при проецировании одного луча, на фиг.2 - схема проецирования на трехмерный объект одной линии, на фиг.З - схема проецирования на трехмерный объект двух линий, на фиг.4 - изображена схема расположения проектора и камеры при проецировании двух лучей, на фиг.5 - возможные изображения полос спроецированные проектором и принимаемые камерами (5а - изображение полос на проекторе, 5с - профиль изображения полос на проекторе, 5Ь - изображение полос на камере, 5d - профиль изображения полос на камере), на фиг.б - линии, соответствующие полосам, выходящие из проектора в виде параллельных прямых, на фиг. 7 - дополнительные линии, соответствующие полосам, выходящие из проектора, на фиг.8 - линии, соответствующие полосам, спроецированным на две камеры, на фиг. 9 изображена схема проекционной системы (проектора), на фиг. 10 - вариант устройства с расположением камер с двух сторон от проектора и соответствующее перекрытие полей камер, на фиг.11 - вариант расположения трех камер с одной стороны от проектора и соответствующее перекрытие полей камер.
Предпочтительный вариант осуществления изобретения
На фиг. 1 изображено устройство, состоящее из проектора 1, который проецирует заранее известное изображение на объект и камеры 2, которая регистрирует и передает на ЭВМ (не изображена) отраженный от объекта свет проектора 1, под некоторым триангуляционным углом а (угол между центральным лучом проектора 3 и центральным лучом 4 камеры 1.
Расстояние L между камерой и проектором называется база. База может выбираться следующим образом.
L = s*tga, где s - расстояние от проектора до точки пересечения центральных лучей проектора и камеры (м).
В самом простом случае проектор 1 проецирует одну горизонтальную полосу 3, которая совпадает с центральным лучом проектора на фиг. 1. Фиг. 2 - это вид со стороны камеры 2. На фиг. 2 можно наблюдать как из-за кривизны объекта изображенного в виде плоскостей 5 и 6 искривляется полоса 3, и на изображении камеры 2 мы видим след 7 отраженной полосы 3. На фиг. 1 представлен вид сбоку той же сцены что и на фиг. 2 и полоса 3 пересекает плоскость 5 и плоскость 6 на разном расстоянии Z1 и Z2 от камеры и точки пересечения 8 и 9 имеют разные координаты Y1 и Y2. Отсюда в общем случае следует соотношение Z=y/tga для получения координаты Z через координату Y. Затем этой полосой сканируют обычно вдоль оси Υ на фиг. 2, для того чтобы получить как можно более подробные ЗД измерения объекта, который находится в поле зрения камеры.
Если за один кадр камера 2 видит только одну проецируемую проектором 1 полосу, то для того чтобы получить подробные измерения, нужно было бы сдвигать эту полосу на как можно более малое расстояние и получать с камеры 2 как можно больше изображений. На это неизбежно требуется много времени. Обычная доступная по цене камера 2 имеет скорость 25 кадров в секунду и разрешение 1мега пиксель т.е. ЮООпикселей по координате Υ и 1000 по координате X. По координате X на полосе мы имеем 1000 пикселей т.е. 1000 измерений. Для того чтобы получить одинаковое кол-во измерений по обеим осям нужно 1000 раз спроецировать полосу со сдвигом в один пиксель по координате Υ для этого нужно собрать 1000 кадров с камеры 2, что занимает 40 секунд. Если желательно сократить количество изображений и получать больше измерений на одном изображении с камеры 2, то, согласно способу, следует проецировать не одну, а две полосы, как на фиг. 3, или больше, но возникают неоднозначности в определении (идентификации) полос. На фиг 3. для одной камеры 2 полоса 7 слилась с полосой И в точке 12. Эта неоднозначность приводит к ошибке в определении координаты Ζ . На две координаты Z1 и Ζ2 на изображении камеры может приходиться одна координата Υ на фиг. 4. из проектора 1 выходит два луча, которые изображают полосы. Точки 13 и 14 на фиг. 4 являются точками неоднозначностей.
Необходимо решение неоднозначности при проецировании нескольких полос. Для этого вводится термины и алгоритмы: Т - период между полосами, Τζ - измеряемый объем, который обычно определяется глубиной резкости объективов, используемых в проекторе и камере 2. Глубина резкости Τζ - это расстояние вдоль оси Ζ, в пределах которого мы можем наблюдать достаточно контрастное изображение спроецированных нами полос, т.е. мы можем видеть где начинается и заканчивается полоса. Глубина резкости Τζ может быть справочной величиной объектива камеры.
Глубина Τζ резкости объектива камеры для каждого конкретного случая может определяться, например, как: Tz = 2DC/(f/s)2 где: D - диафрагма объектива камеры (м ) , С - размер пикселя на камере (мкм), f - фокусное расстояние объектива камеры (м), s - расстояние от проектора до точки пересечения центральных лучей проектора и камеры (м).
На изображении камеры 2 спроецированная полоса обычно имеет ширину, т.е. занимает обычно несколько пикселей ПЗС матрицы камеры 2, из-за того, что полосы могут дефокусироваться объективом, или объект при отражении может рассеивать свет, полосы не имеют четкой координаты Y.
Для определения координаты Y используется алгоритм субпиксельного уточнения. Алгоритм субпиксельного уточнения состоит в следующем:
Проектор 1 проецирует изображение параллельных полос фиг 5 с минимальной и максимальной яркостью 15. На камере 2 мы наблюдаем полосы 17 с разной яркостью пикселей которые немного размазываются из-за расфокусировки объективов, шума пикселей камеры 2 и других искажений. За центр линии по ширине можно принять самый яркий пиксель, или аппроксимировать (программно) значения пикселей, например, параболой или синусоидой 18, и с точностью до долей пикселя определить координату Y центра линии на изображении камеры 2.
Возможные пути решения неоднозначностей при проецировании одновременно нескольких линий:
Из фиг. 3 и фиг. 4 можно сделать вывод, что область по координате Z между точками 13 и 14 является областью, где на изображении камеры 2 сохраняется однозначность в определении спроецированной полосы. Соответственно надо стремиться чтобы область измерений Tz была меньше либо равна этому расстоянию.
На фиг.6 и фиг. 7 изображены линии, соответствующие полосам, выходящие из проектора 1 в виде параллельных прямых, которые параллельны центральному лучу 3 проектора 1.
Из этих чертежей можно понять, что между углом а периодом Т и областью измерений Tz есть зависимость tg а = T/Tz, и между ΔΥ и углом а тоже есть зависимость tg α = ΔΥ/Ζ. Видно, что чем больше угол а, тем на изображение камеры 2 мы наблюдаем большее смещение полосы ΔΥ, которая проецируется на изображении камеры в виде линии 19, позволяет нам точнее определять координату Z, т.е. чувствительность нашей системы к измерениям по Z выше. При этом, чем больше угол, тем меньше область определенности Tz. Это видно если сравнивать величину Tz на фиг.6 с величиной Tz на фиг. 7.
При минимальном значении триангуляционного угла камера четко воспринимает проецируемую линию и продольную координату У, но точность восприятия вертикальной координаты Z минимальна. При наибольшем значении триангуляционного угла полосы на изображении начинают сливаться и определение продольной координаты У затруднено, но точность восприятия вертикальной координаты Z максимальна. Этим обусловлено использование, по меньшей мере, двух камер, установленных под разными триангуляционными углами.
Устройство на фиг. 9 состоит из проекционной системы (проектора) 1, которая состоит из источника света - лампы 29 линзы конденсора 30, слайда 31, на котором нанесен рисунок в виде горизонтальных параллельных полос и объектива 32. Также устройство состоит из трех камер 22,23,33. Чтобы обеспечить максимально близкого расположения камер к проектору 1, первую камеру 22 приходится располагать слишком близко к проектору так что габаритные размеры камеры могут быть больше чем база (базовое расстояние) L, которое соответствует выбранному углу а.
Для решения этой проблемы предлагается использовать полупрозрачное зеркало 34 либо призму на пути хода лучей камеры 22 и проекционной системы, это позволяет разнести в пространстве камеру и проектор.
Второй способ решить проблему максимально близкого расположения камер к проектору.
Расположить камеры 22 и 23 с права и слева от проектора 1. На Фиг. 10 указаны базовые расстояния L1 и L2, расположенные с одной стороны от проектора, которые соответствуют триангуляционными углам. В случае такого решения мы получим не полное перекрытие полей зрения камер 35, что уменьшит площадь измерений объекта, но такое решение технологически более простое при изготовлении по сравнению с установкой и юстировкой полупрозрачного зеркала либо призмы.
Третий способ изображен на Фиг. И. Камеры расположены с одной стороны от проектора 1. Это позволяет получить большее перекрытие полей зрения камер 35.
В целом способ выполнения ЗД измерений объекта при помощи структурированной подсветки, реализуется следующим образом. С помощью проектора 1 проецируют на исследуемый объект заранее известное изображение, имеющее, по меньшей мере, две непересекающиеся линии вдоль одной из продольных осей. Регистрируют отраженный от объекта свет проектора 1 с помощью, по меньшей мере, двух камер, размещенных на разных расстояниях от проектора с образованием разных триангуляционных углов между центральным лучом проектора и центральными лучами камер. Определяют на изображении первой камеры 2 продольные координаты центров линий как самые яркие пиксели
Затем производят идентификацию каждой линии, проецированной проектором 1 и образованной отраженным светом, принятым каждой камерой, путем сравнения координат линий, принятых камерами. Для этого триангуляционный угол между центральным лучом проектора 1 и центральными лучом первой камеры 22, располагаемой на минимальном расстоянии от проектора 1 и минимальным углом αΐ, выбирают и устанавливают равным арктангенсу отношения расстояния между проецируемыми полосами к глубине Τζ резкости объектива этой камеры.
Данные условия взаимного положения проектора 1 и камеры 22 обеспечивают максимальную однозначность в определении каждой спроецированной полосы. При этом выбирают период Т на фиг. 8 между проецируемыми полосами 20 и 21 и угол αΐ между первой камерой 22 и проектором 1 по соотношению al = arctg(T/Tz). Это позволяет на изображении первой камеры различать все спроецированные полосы, не путая их. Проекции полос на изображение камеры 22 изображены как 24 и 25. Определяют на изображении первой камеры продольные координаты центров линий и вертикальные координаты, как частное от деления продольной координаты Y1 на тангенс триангуляционного угла между центральным лучом проектора и центральными лучом первой камеры.
При этом с помощью алгоритма поиска центров линий - алгоритма субпиксельного уточнения и по соотношению Z=Yl/tgal (Y1 -координаты на изображении первой камеры) рассчитываются Z координаты всех спроецированных полос, с определенной погрешностью σ, которая в основном зависит от триангуляционного угла al, от количества пикселей на ПЗС матрице камеры и зависит от шума пикселя выбранной камеры.
Погрешность σ (начиная со второй камеры) по ширине изображения линии не должна превышать TV Cos (Х2 .
Для уточнения вертикальной координаты Z используют ее значение, полученное с помощью второй камеры, расположенной под большим, чем первая, триангуляционным углом аг, для чего идентифицируют на изображении второй камеры местонахождение тех же линий как наиболее приближенных к продольным координатам, вычисленным в виде произведения упомянутой вертикальной координаты Z, определенной с помощью первой камеры, на тангенс триангуляционного угла второй камеры, Таким образом, для уточнения Z координаты спроецированных полос используется вторая камера 23 под большим триангуляционным углом -ι к проектору αι > а\ . Полосы 20 и 21 спроецированные проектором 1 на изображении второй камеры 23 выглядят как 26 и 27. Для наглядности полосы 26 и 27 изображены с небольшим сдвигом, на самом деле они сливаются на изображении второй камеры и их трудно идентифицировать. Но если взять координату Z, полученную ранее по формуле Z=Yl/tgdi для полосы 20, и спроецировать по формуле Y2=Z*tg 012, на изображение камеры 23, то видна шумная кривая 28, которая поможет идентифицировать положение полосы 20 на изображении камеры 23. Далее то же следует проделать для каждой полосы, для того чтобы ее отличить от других. Центр каждой линии нужно найти заново с уточнением по изображению с камеры 23, а также вычислить новую более точную координату Z. Угол (X2 выбирается таким образом, чтобы σ не превышала Т/ Cos α,2·
Затем, аналогично описанному процессу определения координат с помощью первой камеры, с помощью второй камеры определяют для этих линий уточненные значение продольной и вертикальной координат.
Для дальнейшего уточнения вертикальной координаты используют ее значение, полученное с помощью третьей, четвертой и т.д. камер. При этом для последующего уточнения Ζ координат спроецированных полос можно использовать дополнительные камеры с большими углами триангуляции для достижения требуемой точности вычисления Ζ координаты полосы. Каждая следующая камера с большим углом триангуляции должна удовлетворять условиям, изложенным выше, по отношению к камере с меньшим углом триангуляции. В некоторых случаях, по меньшей мере, две камеры располагают с разных сторон от проектора, но изображения и углы триангуляции всех камер должны лежать с одной стороны от центрального луча проектора, что может обеспечиваться с помощью полупрозрачного зеркала, пересекающего центральные лучи проектора и, предпочтительно, первой камеры на фиг. 9.
Измерения и определение координат производят с помощью процессора ЭВМ, а построение ЗД изображения формируют на мониторе последнего.
В результате обеспечены упрощение и полная автоматизация контроля линейных размеров трехмерных объектов, сокращение длительности процесса проведения измерений и практически полное исключение погрешностей, в случае возникновения механических колебаний положения аппаратуры - проектора и камер относительно объекта измерений, т.к. проектор и камеры выполняются в виде переносного ручного устройства в едином корпусе.
Промышленная применимость
Настоящее изобретение реализуется с помощью универсального оборудования, широко распространенного в промышленности.

Claims

Формула изобретения
1. Способ выполнения ЗД измерений объекта при помощи структурированной подсветки, при котором с помощью проектора проецируют на исследуемый объект заранее известное изображение, имеющее, по меньшей мере, две непересекающиеся линии вдоль одной из продольных осей, регистрируют отраженный от объекта свет проектора с помощью, по меньшей мере, двух камер, размещенных на разных расстояниях от проектора с образованием разных триангуляционных углов между центральным лучом проектора и центральными лучами камер, а затем производят идентификацию каждой линии, проецированной проектором и образованной отраженным светом, принятым каждой камерой, путем сравнения координат линий, принятых камерами, при этом триангуляционный угол между центральным лучом проектора и центральными лучом первой камеры, расположенной на минимальном расстоянии от проектора, выбирают равным арктангенсу отношения расстояния между проецируемыми полосами к глубине резкости объектива этой камеры, определяют на изображении первой камеры продольные координаты центров линий и вертикальные координаты, как частное от деления продольной координаты на тангенс триангуляционного угла между центральным лучом проектора и центральными лучом первой камеры, а для уточнения вертикальной координаты используют ее значение, полученное с помощью второй камеры, расположенной под большим, чем первая, триангуляционным углом, для чего идентифицируют на изображении второй камеры местонахождение тех же линий как наиболее приближенных к продольным координатам, вычисленным в виде произведения упомянутой вертикальной координаты, определенной с помощью первой камеры, на тангенс триангуляционного угла второй камеры, а затем определяют для этих линий уточненные значение продольной и вертикальной координат.
2. Способ по п.1, отличающийся тем, что определяют на изображении первой камеры продольные координаты центров линий по их ширине, как самые яркие пиксели.
3. Способ по любому из п.п.1,2, отличающийся тем, что расстояние между камерой и проектором выбирается как произведение расстояния от проектора до 15 точки пересечения центральных лучей проектора и камеры на тангенс триангуляционного угла между центральным лучом проектора и центральным лучом камеры.
4. Способ по любому из п.п.1,2,4 отличающийся тем, что для дальнейшего уточнения вертикальной координаты используют ее значение, полученное с помощью третьей, четвертой и последующих камер.
5. Способ по любому из п.п.1,2,4 отличающийся тем, что камерэ размещены с одной стороны от проектора.
6. Способ по любому из п.п.1,2,4 отличающийся тем, что камере размещены с двух сторон от проектора.
7. Способ по любому из п.п.1,2,4 отличающийся тем, что измерения и определение координат производят с помощью процессора ЭВМ, а построение ЗД изображения формируют на мониторе последнего.
PCT/RU2012/000909 2012-11-07 2012-11-07 Способ контроля линейных размеров трехмерных объектов WO2014074003A1 (ru)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201280078106.2A CN104903680B (zh) 2012-11-07 2012-11-07 控制三维物体的线性尺寸的方法
ES12887908.7T ES2683364T3 (es) 2012-11-07 2012-11-07 Método para monitorizar dimensiones lineales de objetos tridimensionales
US14/441,499 US10648789B2 (en) 2012-11-07 2012-11-07 Method for monitoring linear dimensions of three-dimensional objects
JP2015541737A JP6161714B2 (ja) 2012-11-07 2012-11-07 3次元の物体の直線寸法を制御する方法
TR2018/11449T TR201811449T4 (tr) 2012-11-07 2012-11-07 Üç boyutlu nesnelerin doğrusal boyutlarını gözetlemek için yöntem.
EP12887908.7A EP2918967B1 (en) 2012-11-07 2012-11-07 Method for monitoring linear dimensions of three-dimensional objects
PL12887908T PL2918967T3 (pl) 2012-11-07 2012-11-07 Sposób monitorowania wymiarów liniowych obiektów trójwymiarowych
PCT/RU2012/000909 WO2014074003A1 (ru) 2012-11-07 2012-11-07 Способ контроля линейных размеров трехмерных объектов
HK16102982.8A HK1215968A1 (zh) 2012-11-07 2016-03-15 監測三維物件的直線二維

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2012/000909 WO2014074003A1 (ru) 2012-11-07 2012-11-07 Способ контроля линейных размеров трехмерных объектов

Publications (1)

Publication Number Publication Date
WO2014074003A1 true WO2014074003A1 (ru) 2014-05-15

Family

ID=50684964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2012/000909 WO2014074003A1 (ru) 2012-11-07 2012-11-07 Способ контроля линейных размеров трехмерных объектов

Country Status (9)

Country Link
US (1) US10648789B2 (ru)
EP (1) EP2918967B1 (ru)
JP (1) JP6161714B2 (ru)
CN (1) CN104903680B (ru)
ES (1) ES2683364T3 (ru)
HK (1) HK1215968A1 (ru)
PL (1) PL2918967T3 (ru)
TR (1) TR201811449T4 (ru)
WO (1) WO2014074003A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016099321A1 (ru) * 2014-12-19 2016-06-23 Андрей Владимирович КЛИМОВ Способ контроля линейных размеров трехмерных объектов
US10122997B1 (en) 2017-05-03 2018-11-06 Lowe's Companies, Inc. Automated matrix photo framing using range camera input

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6413026B2 (ja) * 2015-09-28 2018-10-24 富士フイルム株式会社 プロジェクションマッピング装置
CN106595519B (zh) * 2016-12-07 2019-09-20 西安知象光电科技有限公司 一种基于激光mems投影的柔性三维轮廓测量方法及装置
LU100021B1 (en) 2017-01-13 2018-07-30 Adapttech Ltd Socket fitting system
JP6308637B1 (ja) * 2017-05-08 2018-04-11 国立大学法人福井大学 特徴量を用いた3次元計測方法およびその装置
JP6999298B2 (ja) * 2017-06-26 2022-01-18 株式会社ミツトヨ 画像測定装置
JP6606234B1 (ja) * 2018-07-13 2019-11-13 Dmg森精機株式会社 測定装置
DE102018007797A1 (de) 2018-10-02 2019-04-11 Daimler Ag Vorrichtung und Verfahren zur Bestimmung einer Position eines Fahrzeugs relativ zu einem Lademodul
CN114080535A (zh) * 2019-06-28 2022-02-22 佳能株式会社 测量设备、摄像设备、测量系统、控制方法以及程序
US20240058106A1 (en) * 2020-12-31 2024-02-22 Shining 3D Tech Co., Ltd. Three-dimensional Scanning Device, Method and Apparatus, Storage Medium and Processor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058930A1 (en) 1998-05-14 1999-11-18 Metacreations Corporation Structured-light, triangulation-based three-dimensional digitizer
US6049625A (en) * 1996-10-15 2000-04-11 Nec Corporation Method of and an apparatus for 3-dimensional structure estimation
RU2148793C1 (ru) 1999-02-19 2000-05-10 Филиппов Евгений Иванович Способ измерения формы и пространственного положения поверхности объекта
WO2000070303A1 (en) 1999-05-14 2000-11-23 3Dmetrics, Incorporated Color structured light 3d-imaging system
US6377700B1 (en) 1998-06-30 2002-04-23 Intel Corporation Method and apparatus for capturing stereoscopic images using image sensors
RU2184933C1 (ru) * 2001-02-21 2002-07-10 Климов Андрей Владимирович Устройство для бесконтактного контроля линейных размеров трехмерных объектов
RU2199718C1 (ru) 2001-12-11 2003-02-27 А4 Визион С.А. Устройство для бесконтактного контроля и распознавания поверхностей трехмерных объектов
WO2009032641A1 (en) * 2007-08-28 2009-03-12 Artec Group, Inc. System and method for three-dimensional measurement of the shape of material objects

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2934263C3 (de) * 1979-08-24 1982-03-25 Fa. Carl Zeiss, 7920 Heidenheim Verfahren und Vorrichtung zur automatischen Messung der Scheitelbrechwerte in den Hauptschnitten torischer Brillengläser
US4547674A (en) * 1982-10-12 1985-10-15 Diffracto Ltd. Optical triangulation gear inspection
JPH01278019A (ja) * 1988-04-28 1989-11-08 Canon Inc リソグラフィ用マスクの構造体
US4948258A (en) * 1988-06-27 1990-08-14 Harbor Branch Oceanographic Institute, Inc. Structured illumination surface profiling and ranging systems and methods
DE4130237A1 (de) * 1991-09-11 1993-03-18 Zeiss Carl Fa Verfahren und vorrichtung zur dreidimensionalen optischen vermessung von objektoberflaechen
JP2767340B2 (ja) * 1991-12-26 1998-06-18 ファナック株式会社 物体の3次元位置・姿勢計測方式
JP3781438B2 (ja) * 1993-02-24 2006-05-31 與語 照明 3次元表面形状測定装置
US6028672A (en) * 1996-09-30 2000-02-22 Zheng J. Geng High speed three dimensional imaging method
US5548392A (en) * 1995-01-31 1996-08-20 Kabushikikaisha Wacom Optical position detector having scale pattern spot-illuminated to increase resolution
JP4267070B2 (ja) * 1996-01-10 2009-05-27 株式会社トプコン レイアウト判定装置とレイアウト判定システム
US6858826B2 (en) * 1996-10-25 2005-02-22 Waveworx Inc. Method and apparatus for scanning three-dimensional objects
US6175415B1 (en) * 1997-02-19 2001-01-16 United Technologies Corporation Optical profile sensor
BE1011076A3 (nl) * 1997-03-28 1999-04-06 Ruymen Marc Werkwijze en inrichting voor het detecteren van onregelmatigheden in een produkt.
JP3914638B2 (ja) * 1997-09-09 2007-05-16 シーケーディ株式会社 形状計測装置
US6393141B1 (en) * 1998-09-10 2002-05-21 Warner-Lambert Company Apparatus for surface image sensing and surface inspection of three-dimensional structures
CA2253085A1 (en) * 1998-11-06 2000-05-06 Industrial Metrics Inc. Methods and system for measuring three dimensional spatial coordinates and for external camera calibration necessary for that measurement
CA2267519A1 (en) * 1999-04-13 2000-10-13 Inspeck Inc. Optical full human body 3d digitizer
JP3553451B2 (ja) * 2000-02-18 2004-08-11 独立行政法人 科学技術振興機構 光干渉断層像観測装置
CA2306515A1 (en) * 2000-04-25 2001-10-25 Inspeck Inc. Internet stereo vision, 3d digitizing, and motion capture camera
JP3867512B2 (ja) * 2000-06-29 2007-01-10 富士ゼロックス株式会社 画像処理装置および画像処理方法、並びにプログラム
JP4298155B2 (ja) * 2000-11-17 2009-07-15 本田技研工業株式会社 距離測定装置、及び距離測定方法
US20030038933A1 (en) * 2001-04-19 2003-02-27 Dimensional Photonics Inc. Calibration apparatus, system and method
US6897966B2 (en) * 2001-05-25 2005-05-24 Poster-Miller, Inc. Non-contacting mensuration system
WO2003032252A2 (en) * 2001-10-09 2003-04-17 Dimensional Photonics, Inc. Device for imaging a three-dimensional object
JP2003269928A (ja) * 2002-03-12 2003-09-25 Nec Corp 3次元形状計測方法および装置ならびにプログラム
US7009717B2 (en) * 2002-08-14 2006-03-07 Metris N.V. Optical probe for scanning the features of an object and methods therefor
JP2003148936A (ja) * 2002-10-30 2003-05-21 Nippon Avionics Co Ltd 光切断法による対象物の三次元計測方法
US7146036B2 (en) * 2003-02-03 2006-12-05 Hewlett-Packard Development Company, L.P. Multiframe correspondence estimation
US20040222987A1 (en) * 2003-05-08 2004-11-11 Chang Nelson Liang An Multiframe image processing
US8224064B1 (en) * 2003-05-21 2012-07-17 University Of Kentucky Research Foundation, Inc. System and method for 3D imaging using structured light illumination
JP3738291B2 (ja) * 2003-06-09 2006-01-25 住友大阪セメント株式会社 三次元形状測定装置
CA2435935A1 (en) * 2003-07-24 2005-01-24 Guylain Lemelin Optical 3d digitizer with enlarged non-ambiguity zone
US7747067B2 (en) * 2003-10-08 2010-06-29 Purdue Research Foundation System and method for three dimensional modeling
WO2005096126A1 (ja) * 2004-03-31 2005-10-13 Brother Kogyo Kabushiki Kaisha 画像入出力装置
US7375826B1 (en) * 2004-09-23 2008-05-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) High speed three-dimensional laser scanner with real time processing
JP4734552B2 (ja) * 2005-03-15 2011-07-27 名古屋市 路面の3次元形状の計測方法及びその装置
US7724379B2 (en) * 2005-05-12 2010-05-25 Technodream21, Inc. 3-Dimensional shape measuring method and device thereof
JP2007093412A (ja) * 2005-09-29 2007-04-12 Fujinon Corp 3次元形状測定装置
US8197070B2 (en) * 2006-01-24 2012-06-12 Seiko Epson Corporation Color-based feature identification
EP2069713A4 (en) * 2006-05-26 2012-12-26 Corp Spg Data3D PHOTOGRAMMETRIC SYSTEM AND TECHNIQUES FOR 3D ACQUISITION
WO2008008575A2 (en) * 2006-06-01 2008-01-17 Czarnek & Orkin Laboratories, Inc. Portable optical wound scanner
JP5043013B2 (ja) * 2006-07-31 2012-10-10 Hoya株式会社 レンズ形状測定装置及び方法、並びに眼鏡レンズの製造方法
US8036452B2 (en) * 2007-08-10 2011-10-11 Leica Geosystems Ag Method and measurement system for contactless coordinate measurement on an object surface
US20090103783A1 (en) * 2007-10-19 2009-04-23 Artec Ventures System and Method for Biometric Behavior Context-Based Human Recognition
US8550444B2 (en) * 2007-10-23 2013-10-08 Gii Acquisition, Llc Method and system for centering and aligning manufactured parts of various sizes at an optical measurement station
DE102007058590B4 (de) * 2007-12-04 2010-09-16 Sirona Dental Systems Gmbh Aufnahmeverfahren für ein Bild eines Aufnahmeobjekts und Aufnahmevorrichtung
US7986321B2 (en) * 2008-01-02 2011-07-26 Spatial Integrated Systems, Inc. System and method for generating structured light for 3-dimensional image rendering
JP5317169B2 (ja) * 2008-06-13 2013-10-16 洋 川崎 画像処理装置、画像処理方法およびプログラム
CA2731680C (en) * 2008-08-06 2016-12-13 Creaform Inc. System for adaptive three-dimensional scanning of surface characteristics
JP4827939B2 (ja) * 2009-02-18 2011-11-30 シャープ株式会社 画像読取装置及び画像形成装置並びに画像処理装置
KR20120000071A (ko) * 2009-02-27 2012-01-03 보디 설피스 트랜스레이션 인크. 삼차원 표현들을 사용한 물리적 파라미터들의 추정
CN201707037U (zh) * 2009-04-23 2011-01-12 浙江师范大学 一种光学三维成像仪
US8243289B2 (en) * 2009-05-29 2012-08-14 Perceptron, Inc. System and method for dynamic windowing
US8031345B2 (en) * 2009-05-29 2011-10-04 Perceptron, Inc. Hybrid sensor
US7995218B2 (en) * 2009-05-29 2011-08-09 Perceptron, Inc. Sensor system and reverse clamping mechanism
EP2261597B1 (en) * 2009-06-11 2014-10-29 MICROTEC S.r.l. Method and apparatus for detecting the three-dimensional structure of a log
US9582889B2 (en) * 2009-07-30 2017-02-28 Apple Inc. Depth mapping based on pattern matching and stereoscopic information
GB0915904D0 (en) * 2009-09-11 2009-10-14 Renishaw Plc Non-contact object inspection
DE102009044983A1 (de) * 2009-09-24 2011-03-31 Carl Zeiss Microimaging Gmbh Mikroskop
CA2762637C (en) * 2009-11-04 2012-08-28 Technologies Numetrix Inc. Device and method for obtaining three-dimensional object surface data
CN101726264A (zh) * 2009-12-30 2010-06-09 深圳先进技术研究院 一种针对投射条纹图像的残差滤波方法
US8134719B2 (en) * 2010-03-19 2012-03-13 Carestream Health, Inc. 3-D imaging using telecentric defocus
US9714824B2 (en) * 2010-03-31 2017-07-25 Hoya Corporation Lens shape measurement device
EP2564156B1 (en) * 2010-04-26 2019-04-17 Nikon Corporation Profile measuring apparatus
WO2011134083A1 (en) * 2010-04-28 2011-11-03 Ryerson University System and methods for intraoperative guidance feedback
EP2400261A1 (de) * 2010-06-21 2011-12-28 Leica Geosystems AG Optisches Messverfahren und Messsystem zum Bestimmen von 3D-Koordinaten auf einer Messobjekt-Oberfläche
US8964189B2 (en) * 2010-08-19 2015-02-24 Canon Kabushiki Kaisha Three-dimensional measurement apparatus, method for three-dimensional measurement, and computer program
JP5671281B2 (ja) * 2010-08-20 2015-02-18 キヤノン株式会社 位置姿勢計測装置、位置姿勢計測装置の制御方法及びプログラム
EP3064895B1 (en) * 2010-09-07 2020-04-15 Dai Nippon Printing Co., Ltd. Linear illumination device
DE102010040386A1 (de) * 2010-09-08 2012-03-08 Sirona Dental Systems Gmbh Dentale Röntgeneinrichtung mit Bilderfassungseinheit zur Oberflächenerfassung und Verfahren zur Erzeugung einer Röntgenaufnahme eines Patienten
JP5267891B2 (ja) * 2010-09-30 2013-08-21 横河電機株式会社 シートに形成されたパターンの位置および形状測定装置および塗工パターン測定装置
US8849015B2 (en) * 2010-10-12 2014-09-30 3D Systems, Inc. System and apparatus for haptically enabled three-dimensional scanning
DE102011011360A1 (de) * 2011-02-16 2012-08-16 Steinbichler Optotechnik Gmbh Vorrichtung und Verfahren zur Bestimmung der 3-D-Koordinaten eines Objekts und zum Kalibrieren eines Industrieroboters
CN103649677A (zh) * 2011-07-13 2014-03-19 法罗技术股份有限公司 利用空间光调制器来查找物体的三维坐标的装置和方法
US8922647B2 (en) * 2011-08-03 2014-12-30 The Boeing Company Projection aided feature measurement using uncalibrated camera
SG11201400794QA (en) * 2011-10-18 2014-06-27 Univ Nanyang Tech Apparatus and method for 3d surface measurement
EP2728306A1 (en) * 2012-11-05 2014-05-07 Hexagon Technology Center GmbH Method and device for determining three-dimensional coordinates of an object
US10371507B2 (en) * 2013-07-19 2019-08-06 Nikon Corporation Shape measurement device, structural object production system, shape measurement method, structural object production method, shape measurement program, and recording medium
US10643343B2 (en) * 2014-02-05 2020-05-05 Creaform Inc. Structured light matching of a set of curves from three cameras

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049625A (en) * 1996-10-15 2000-04-11 Nec Corporation Method of and an apparatus for 3-dimensional structure estimation
WO1999058930A1 (en) 1998-05-14 1999-11-18 Metacreations Corporation Structured-light, triangulation-based three-dimensional digitizer
US6377700B1 (en) 1998-06-30 2002-04-23 Intel Corporation Method and apparatus for capturing stereoscopic images using image sensors
RU2148793C1 (ru) 1999-02-19 2000-05-10 Филиппов Евгений Иванович Способ измерения формы и пространственного положения поверхности объекта
WO2000070303A1 (en) 1999-05-14 2000-11-23 3Dmetrics, Incorporated Color structured light 3d-imaging system
RU2184933C1 (ru) * 2001-02-21 2002-07-10 Климов Андрей Владимирович Устройство для бесконтактного контроля линейных размеров трехмерных объектов
RU2199718C1 (ru) 2001-12-11 2003-02-27 А4 Визион С.А. Устройство для бесконтактного контроля и распознавания поверхностей трехмерных объектов
WO2009032641A1 (en) * 2007-08-28 2009-03-12 Artec Group, Inc. System and method for three-dimensional measurement of the shape of material objects

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2918967A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016099321A1 (ru) * 2014-12-19 2016-06-23 Андрей Владимирович КЛИМОВ Способ контроля линейных размеров трехмерных объектов
US20160349045A1 (en) * 2014-12-19 2016-12-01 Andrei Vladimirovich Klimov A method of measurement of linear dimensions of three-dimensional objects
US10122997B1 (en) 2017-05-03 2018-11-06 Lowe's Companies, Inc. Automated matrix photo framing using range camera input

Also Published As

Publication number Publication date
US20190234725A1 (en) 2019-08-01
EP2918967A4 (en) 2016-07-27
PL2918967T3 (pl) 2018-10-31
EP2918967B1 (en) 2018-05-16
JP6161714B2 (ja) 2017-07-12
JP2015534091A (ja) 2015-11-26
HK1215968A1 (zh) 2016-09-30
ES2683364T3 (es) 2018-09-26
US10648789B2 (en) 2020-05-12
CN104903680B (zh) 2019-01-08
CN104903680A (zh) 2015-09-09
TR201811449T4 (tr) 2018-09-21
EP2918967A1 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
WO2014074003A1 (ru) Способ контроля линейных размеров трехмерных объектов
US6611344B1 (en) Apparatus and method to measure three dimensional data
US6028672A (en) High speed three dimensional imaging method
KR101601331B1 (ko) 물체의 모양을 삼차원 측정하기 위한 시스템 및 방법
US7532333B2 (en) Method and apparatus for determining the shape and the local surface normals of specular surfaces
CN101308012B (zh) 双单目白光三维测量系统标定方法
EP2183546B1 (en) Non-contact probe
EP2568253B1 (en) Structured-light measuring method and system
EP3531066A1 (en) Three-dimensional scanning method including a plurality of lasers with different wavelengths, and scanner
US10782126B2 (en) Three-dimensional scanning method containing multiple lasers with different wavelengths and scanner
CN106595519B (zh) 一种基于激光mems投影的柔性三维轮廓测量方法及装置
JP2012058076A (ja) 3次元計測装置及び3次元計測方法
CN110057552B (zh) 虚像距离测量方法、装置、设备以及控制器和介质
CN112888913B (zh) 具有对列通道的三维传感器
RU125335U1 (ru) Устройство контроля линейных размеров трехмерных объектов
US20160349045A1 (en) A method of measurement of linear dimensions of three-dimensional objects
Langmann Wide area 2D/3D imaging: development, analysis and applications
KR20000053779A (ko) 2차원 격자무늬를 이용한 3차원 형상측정시스템
CN114111626B (zh) 一种基于同轴投影的光场相机三维测量装置及系统
RU153982U1 (ru) Устройство контроля линейных размеров трехмерных объектов
RU98596U1 (ru) Двухканальный цифровой автоколлиматор
JP2006308452A (ja) 3次元形状計測方法および装置
RU2384812C1 (ru) Автоколлиматор для измерения угла скручивания
CN107835931B (zh) 监测三维实体的线性尺寸的方法
RU164082U1 (ru) Устройство контроля линейных размеров трехмерных объектов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015541737

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012887908

Country of ref document: EP