WO2020012752A1 - 放射線撮影装置、放射線撮影システム、放射線撮影方法及びプログラム - Google Patents

放射線撮影装置、放射線撮影システム、放射線撮影方法及びプログラム Download PDF

Info

Publication number
WO2020012752A1
WO2020012752A1 PCT/JP2019/017057 JP2019017057W WO2020012752A1 WO 2020012752 A1 WO2020012752 A1 WO 2020012752A1 JP 2019017057 W JP2019017057 W JP 2019017057W WO 2020012752 A1 WO2020012752 A1 WO 2020012752A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
offset
image
difference
radiation imaging
Prior art date
Application number
PCT/JP2019/017057
Other languages
English (en)
French (fr)
Inventor
渡辺 実
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2020012752A1 publication Critical patent/WO2020012752A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment

Definitions

  • the present invention relates to a radiation imaging apparatus, a radiation imaging system, a radiation imaging method, and a program.
  • a radiation imaging apparatus used for medical image diagnosis using radiation a radiation imaging apparatus in which a conversion element for converting radiation into electric charges, a switching element such as a thin film transistor, a pixel array provided with wiring, a driving circuit, and a readout circuit are combined. Widely used.
  • an image in a state where radiation is irradiated (radiation image) is corrected by an offset image acquired in advance in a state where radiation is not irradiated to reduce dark charge components. Has been done.
  • Patent Document 1 discloses a configuration in which a dark current increase amount is calculated from dark current image data stored in a dark current image storage unit, and dark current information for each pixel is updated based on the increase amount.
  • the offset image changes when the use environment and use conditions of the radiation imaging apparatus change, and when acquiring the offset image in advance, the time required for the change of the offset image to stabilize (hereinafter, warming up). Machine time) is required.
  • one radiation imaging apparatus may be used as a radiography apparatus for moving images, or a radiation imaging apparatus used outside the apparatus may be stored in a table and used as a fluoroscope. Or when using one radiation imaging device under multiple use environments and conditions, the timing of completion of the warm-up time differs, so that the output signal converges to acquire the offset image. In some cases, time cannot be secured.
  • the present invention provides a radiographic technique capable of acquiring an offset image by determining completion of a warm-up time based on convergence of a time change value.
  • a radiation imaging apparatus has the following configuration. That is, the radiation imaging apparatus is a radiation imaging apparatus having a detection unit in which a plurality of pixels that detect radiation and accumulate electric charges are two-dimensionally arranged, Signal acquisition means for acquiring at a different timing a plurality of offset signals based on the charge in a state where radiation is not irradiated from the detection means, Image acquisition means for acquiring an offset image based on a signal from each pixel of the detection means when the time change value of the offset signal becomes equal to or less than a preset reference value. .
  • a radiation imaging apparatus has the following configuration. That is, the radiation imaging apparatus is a radiation imaging apparatus having a detection unit in which a plurality of pixels that detect radiation and accumulate electric charges are two-dimensionally arranged, Signal acquisition means for acquiring a signal difference based on a difference between a plurality of offset signals based on a charge in a state where radiation is not irradiated from a plurality of the detection means at different timings, Image acquisition means for acquiring an offset image based on a signal from each pixel of the detection means when the time change value of the signal difference becomes equal to or less than a preset reference value. .
  • a radiation imaging technique capable of acquiring an offset image by determining completion of a warm-up time based on convergence of a time change value.
  • FIG. 2 is a diagram illustrating an internal configuration of the radiation imaging apparatus according to the first and second embodiments. The figure which illustrates the functional structure of a control processing part.
  • FIG. 6 is a diagram showing a flow of an offset image acquisition determining process according to the first embodiment.
  • FIG. 2 is a diagram illustrating a cross-sectional structure of a housing of the radiation imaging apparatus according to the first embodiment. The figure which illustrates the relationship between the warm-up time and the substrate temperature of the sensor substrate.
  • FIG. 9 is a diagram for explaining a flow of a determination process of acquiring an offset image according to the second embodiment.
  • FIG. 2 is a diagram illustrating a schematic internal configuration of the radiation imaging apparatus. The figure which shows the relationship between the warm-up time and the offset signal in a partial area. The figure which shows the relationship between the warm-up time and the signal difference of an offset signal. The figure which shows the relationship between the warm-up time and the time derivative (time change value) of a signal difference. The figure which shows the example of a structure of a radiation imaging system.
  • the term “radiation” may include, for example, ⁇ -rays, ⁇ -rays, ⁇ -ray particle beams, cosmic rays, etc., in addition to X-rays.
  • FIG. 1A is a diagram exemplifying the internal configuration of a radiation imaging apparatus 1001 (Flat Panel Detector; FPD) functioning as an imaging unit for imaging a radiation image of a subject.
  • the radiation imaging apparatus 1001 includes a detection unit 100 in which a plurality of pixels 101 that detect radiation and accumulate electric charges are two-dimensionally arranged.
  • the detection unit 100 is provided with pixels 101 arranged in 5 rows and 5 columns, and this is an equivalent circuit diagram showing a partial area in the radiation imaging apparatus 1001.
  • the two-dimensional layout is not limited to this embodiment, and the number of pixels and the readout circuit can be freely changed.
  • the pixel 101 includes a conversion element 102 that converts radiation into an electric signal, and a switch 103 arranged between the signal line 106 and the conversion element 102.
  • the pixels arranged in the detection unit 100 may include pixels having the conversion element 102 having no sensitivity to radiation.
  • the conversion element 102 includes a scintillator that converts radiation into light and a photoelectric conversion element that converts light into an electric signal.
  • the scintillator is generally formed in a sheet shape so as to cover the detection unit 100, and can be shared by a plurality of pixels.
  • the conversion element 102 can be configured by a conversion element that directly converts radiation into light.
  • the switch 103 can include, for example, a thin film transistor (TFT) having an active region formed of a semiconductor such as amorphous silicon or polycrystalline silicon (preferably, polycrystalline silicon).
  • TFT thin film transistor
  • the radiation imaging apparatus 1001 has a plurality of signal lines 106 and a plurality of drive lines 104.
  • Each signal line 106 corresponds to one of a plurality of columns in the detection unit 100.
  • Each drive line 104 corresponds to one of a plurality of rows in the detection unit 100.
  • Each drive line 104 is driven by a drive circuit 221.
  • the first electrode of the conversion element 102 is connected to the first main electrode of the switch 103, and the second electrode of the conversion element 102 is connected to the bias line 108.
  • one bias line 108 extends in the column direction, and is commonly connected to the second electrodes of the plurality of conversion elements 102 arranged in the column direction.
  • the bias line 108 receives the bias voltage Vs from the power supply circuit 226.
  • the second main electrode of the switch 103 of each of the pixels 101 forming one column is connected to one signal line 106.
  • the control electrodes of the switches 103 of the plurality of pixels 101 constituting one row are connected to one drive line 104.
  • the plurality of signal lines 106 are connected to the read circuit 222.
  • the readout circuit 222 may include a plurality of signal processing units 132 (signal processing ICs), a multiplexer 134 (MUX), and an analog-to-digital converter (hereinafter, an AD converter (ADC)) 136.
  • Each of the plurality of signal lines 106 is connected to a corresponding one of the plurality of signal processing units 132 of the readout circuit 222.
  • one signal line 106 corresponds to one signal processing unit 132.
  • the signal processing unit 132 includes, for example, a differential amplifier.
  • the multiplexer 134 selects the plurality of signal processing units 132 in a predetermined order, and supplies a signal from the selected signal processing unit 132 to the AD converter 136.
  • the AD converter 136 converts the supplied signal into a digital signal and outputs the digital signal.
  • the output of the reading circuit 222 (AD converter 136) is supplied to the information processing circuit 224, and is processed by the control processing unit 230 of the information processing circuit 224.
  • the control processing unit 230 of the information processing circuit 224 can perform offset correction for correcting an offset component appearing in a radiographic image based on the output of the reading circuit 222 (AD converter 136).
  • the control processing unit 230 uses, for example, image data (hereinafter, referred to as an offset image) acquired without irradiation with radiation before capturing a radiation image of the subject as a correction image, .
  • An offset correction process is performed.
  • offset correction processing fixed dark correction
  • the frame rate is increased, and high-speed continuous imaging such as moving image imaging is possible. Since the dark current charge accumulated during imaging changes due to the influence of the temperature of the radiation imaging apparatus, imaging conditions, and the like, when acquiring offset correction data before capturing a radiation image of a subject, the accuracy of offset correction is accumulated. Dark current charge.
  • the warm-up operation of the radiation imaging apparatus is completed (warm-up completion) based on the convergence of the time change value of the offset signal acquired in a state where radiation is not irradiated in a specific area in the radiation imaging apparatus.
  • an offset image is acquired and an offset correction process is performed.
  • the control processing unit 230 can control the driving circuit 221 and the reading circuit 222 based on information from the reading circuit 222 (AD converter 136), and the control processing unit 230 emits light from the pixel 101. Controls the start and end of accumulation of charge corresponding to radiation.
  • the storage unit 236 of the information processing circuit 224 can store the result of the arithmetic processing performed by the control processing unit 230 and the image signal obtained from the readout circuit 222 (AD converter 136).
  • the 230 can also perform an arithmetic process for obtaining an offset image for correcting an offset component appearing in a radiation image, using the image signal stored in the storage unit 236.
  • the communication unit 237 of the information processing circuit 224 includes, for example, a wired communication unit and a wireless communication unit, and can control communication with the control device 1006 (FIG. 6) included in the radiation imaging system. It is possible.
  • the communication unit 237 determines the offset based on the determination of the communication load (for example, the number of times of transferring the image, the data size of the transferred image, and the like) when the captured image is communicated to the control device (external device) 1006. It is possible to switch between performing the determination process of acquiring an image (FIG. 2) and offset correction using the acquired offset image in the control processing unit 230 inside the radiation imaging apparatus 1001 or in the external control apparatus 1006. It is.
  • FIG. 1B is a block diagram illustrating a functional configuration of the control processing unit 230.
  • Each functional unit of the control processing unit 230 may be realized by a CPU (not shown) of the control processing unit 230 executing a program, may be realized by dedicated hardware, or may be realized by software and hardware. It may be realized by cooperation of wear.
  • Each functional unit of the control processing unit 230 shown in FIG. 1B is realized by a CPU (not shown) executing a program stored in the storage unit 236, by dedicated hardware, or by cooperation thereof. You.
  • the signal acquiring unit 231 acquires a plurality of offset signals based on the electric charge in a state where the radiation is not irradiated from the detecting unit 100 at different timings.
  • the image acquisition unit 234 acquires an offset image based on a signal from each pixel of the detection unit 100 when the time change value of the offset signal becomes equal to or less than a preset reference value.
  • the signal acquisition unit 231 acquires a plurality of offset signals in the plurality of partial regions of the detection unit 100, and the image acquisition unit 234 determines that all of the time change values of the plurality of offset signals have become equal to or less than the reference value. , It is possible to obtain an offset image.
  • the signal acquisition unit 231 includes information indicating a maximum output difference based on a difference between an offset signal indicating a maximum value and an offset signal indicating a minimum value among a plurality of offset signals in a plurality of partial regions of the detection unit 100 ( The absolute value) is acquired, and the image acquisition unit 234 can acquire the offset image when the time change value obtained by differentiating the information (absolute value) indicating the maximum output difference with respect to time becomes equal to or less than the reference value. is there.
  • the partial area from which the signal acquisition unit 231 acquires the offset signal can be set arbitrarily, and an area with a large output distribution of the offset signal can be set.
  • a region for example, P1 in FIG. 3A
  • a circuit readout circuit 222 having a signal processing unit 132 that processes a signal of the detection unit 100, and a position distant from the circuit (for example, P1).
  • the region of P2 and P3 in FIG. 3A is included.
  • the image acquisition unit 234 sets in advance a time change value obtained by differentiating the information (absolute value) indicating the maximum output difference with time, and a time change value of the signal difference based on a difference between the plurality of offset signals. At the stage when the value becomes equal to or less than the reference value, an offset image is acquired.
  • the calculation unit 232 calculates, as a time change value, a time change rate obtained by differentiating a difference between a plurality of offset signals acquired at different timings by the signal acquisition unit 231 with time.
  • the determination unit 233 compares the time change value calculated by the calculation unit 232 with the reference value to determine whether the time change value is equal to or less than the reference value.
  • the image obtaining unit 234 obtains an offset image.
  • the information processing circuit 224 is provided with a timer 238 functioning as a timer, and the signal acquiring unit 231 and the image acquiring unit 234 can acquire time information from the timer 238. After acquiring the offset image, the image acquiring unit 234 can acquire a new offset image at predetermined time intervals and update the offset image used for offset correction.
  • the signal obtaining unit 231 obtains a new offset signal at every preset time, and when a time change value based on the newly obtained offset signal exceeds a reference value, The acquisition of the offset signal is repeated at the set timing (for example, S11 and S12 in FIG. 2). In this case, the image acquisition unit 234 ends acquiring a new offset image and updating the offset image.
  • the information processing circuit 224 is provided with a sensor 239 for detecting information (temperature, humidity, etc.) of the use environment of the radiation imaging apparatus 1001.
  • the signal acquisition unit 231 determines the offset signal at the set timing (for example, S11 and S12 in FIG. 2). Repeat acquisition. In this case, the image acquisition unit 234 ends acquiring a new offset image and updating the offset image.
  • the display control unit 235 causes the display unit 228 to display a notification indicating that the time change value has become equal to or less than the reference value based on the determination result of the determination unit 233.
  • the display unit 228 can be configured as, for example, a display unit that can display an indicator, a message, or the like using an LED or the like.
  • the display control unit 235 can, for example, turn on the display unit 228 or display a message as a notification display for notifying completion of the warm-up operation.
  • FIG. 2 is a view for explaining the flow of the offset image acquisition determining process in the first embodiment.
  • the control processing unit 230 inside the radiation imaging apparatus 1001 determines that the warm-up operation is completed when the time change value of the offset signal satisfies the criterion after the warm-up operation is started. A configuration for acquiring an offset image will be described.
  • the offset signal refers to a signal output from a partial area (partial area) of the detection unit 100 and based on the charge in a state where radiation is not applied. That is, in the offset signal, in the image forming one frame output from the detection unit 100, an average value or an added value of signals output from partial pixels of one line or a plurality of pixels is used as a representative value of the image. Refers to the output signal.
  • the offset signal or the offset image increases or decreases as the temperature changes.
  • the required time varies depending on conditions such as the use environment and use conditions. Therefore, if a warm-up time that is satisfactory in all situations is to be ensured, a longer warm-up time than necessary is required.
  • the required warm-up time is grasped, the warm-up time is optimized, and the offset image is acquired after the temperature change is stabilized.
  • the signal acquisition unit 231 of the control processing unit 230 controls the readout circuit 222 to output an offset signal (past signal) at the first acquisition timing in a state where irradiation is not performed. get.
  • the signal acquisition unit 231 processes the acquired information as necessary, and stores the processed information in the storage unit 236.
  • the signal acquisition unit 231 performs, for example, an offset signal (past signal) as a representative value by averaging or adding signals output from the pixels 101 for one line obtained from a plurality of acquired pixels, as signal processing. It is stored in the storage unit 236.
  • an offset signal as a representative value obtained by averaging or adding signals of a plurality of pixels (n pixels ⁇ n pixels (n is an integer)) is stored in the storage unit 236.
  • step S12 the signal acquisition unit 231 acquires the offset signal (current signal) again at a second acquisition timing after a lapse of a fixed time from the first acquisition timing in a state where irradiation is not performed.
  • the signal acquisition unit 231 processes the offset signal (current signal) acquired again as needed.
  • the signal acquisition unit 231 averages or adds signals output from the pixels 101 for one line obtained from a plurality of acquired pixels, as in the case of an offset signal (past signal), and performs representative value addition. It is possible to obtain an offset signal as a representative value by averaging or adding signals of a plurality of pixels (n pixels ⁇ n pixels (n is an integer)).
  • step S13 the calculation unit 232 of the control processing unit 230 determines whether the offset signal (past signal) initially obtained in step S11 and the offset signal (current signal) newly obtained in step S12 have a time change of the offset signal. Get the value (time change rate).
  • step S14 the determination unit 233 of the control processing unit 230 determines whether the time change value satisfies the reference value.
  • the determination unit 233 compares the time change value with the reference value, and if the time change value is equal to or less than the reference value (time change value ⁇ reference value), the determination unit 233 determines that the time change value satisfies the reference value. It is determined that there is. If the time change value satisfies the reference value (S14-Yes), the determining unit 233 advances the processing to step S15.
  • step S15 the image acquisition unit 234 of the control processing unit 230 completes the warm-up operation because the time change amount of the offset signal is small and the offset image for offset correction can be used for a long period of time. And an offset image is obtained. Then, the image acquisition unit 234 performs the offset correction process by subtracting the acquired offset image from the radiation image of the subject as a correction image.
  • the determination unit 233 determines that the time change value satisfies the reference value. It is determined that there is not. If the criterion is not satisfied, the determining unit 233 returns the process to step S11, acquires an offset signal again, and thereafter repeats the same process.
  • FIG. 3A is a diagram illustrating a cross-sectional structure of the housing of the radiation imaging apparatus 1001 according to the first embodiment.
  • a sensor substrate 300 glass substrate
  • a phosphor layer 322 is formed on the sensor substrate 300.
  • a readout circuit 222 and an information processing circuit 224 are connected to read out signals from the plurality of pixels 101 formed on the sensor substrate 300.
  • the readout circuit 222 consumes high power because it performs signal processing, and easily generates heat. For this reason, among the three positions P1 to P3 shown in FIG. 3A, the position P1 which is the closest position to the readout circuit 222 tends to increase the substrate temperature of the sensor substrate 300 due to the heat generated by the readout circuit 222.
  • the position P3 is the position farthest from the read circuit 222 among the three positions P1 to P3. Further, since the thermal conductivity of the sensor substrate 300 (glass substrate) is small, the substrate temperature of the sensor substrate 300 is less likely to be higher at the position P3 than at the position P1 or the position P2 which is the center of the sensor substrate 300.
  • the relationship (large or small) between the substrate temperatures of the sensor substrate 300 is based on the distance from the readout circuit 222 that is a heat source, and the substrate temperature (T1) of the sensor substrate 300 at the position P1 is The temperature becomes higher than the substrate temperature (T2) of the sensor substrate 300 at the position P2 which is the center.
  • the substrate temperature (T2) of the sensor substrate 300 at the position P2 is higher than the substrate temperature (T3) of the sensor substrate 300 at the position P3 farthest from the readout circuit 222.
  • the offset signal output from each pixel 101 on the sensor substrate 300 is A different in-plane distribution occurs in the sensor substrate 300 (in the detection unit 100 in FIG. 1A) according to the substrate temperature. This in-plane distribution changes with the warm-up time, and the time change decreases after a certain time elapses.
  • FIG. 3B is a diagram illustrating the relationship between the warm-up time and the substrate temperature of the sensor substrate 300, and it can be seen that the substrate temperature converges at different times at the positions P1 to P3.
  • FIG. 3C is a diagram illustrating the relationship between the warm-up time and the offset signal (output) output from the pixel 101 corresponding to each position on the sensor substrate 300.
  • the offset signal (output) is designed to decrease as the substrate temperature increases. Therefore, the offset signal output from the pixel 101 tends to decrease as the warm-up time elapses.
  • the offset signal (output) at the position P1 where the substrate temperature (T1) is the highest is the offset signal (output) at the position P2 or the position P3 where the substrate temperature is lower than the position P1. It can be seen that the convergence is lower than that of
  • FIG. 3D is a diagram illustrating the relationship between the warm-up time and the maximum output difference (absolute value) of the offset signal.
  • the maximum output difference (absolute value) is difference information (maximum value ⁇ minimum value) obtained based on the difference between the maximum value and the minimum value of the offset signal among the offset signals at the positions P1, P2, and P3. ).
  • the maximum output difference (absolute value) in FIG. It is a value obtained by subtracting the offset signal (output) at the position P1 from the offset signal (output).
  • FIG. 3E is a diagram showing the relationship between the elapse of the warm-up time and the output time derivative, and is a diagram showing the time derivative of FIG. 3C.
  • the time derivative of the offset signal at the position P3 where the output change of the offset signal is small tends to be relatively small, and the time derivative of the offset signal at the position P1 where the output change is large tends to be relatively large.
  • step S14 in FIG. 2 when the time change values (time change rates) of the offset signals at all of the monitored positions P1 to P3 become equal to or less than the reference value, the warm-up is completed.
  • An offset image may be obtained. That is, the control processing unit 230 compares the time change value of the offset signal at each position with the reference value, and if the time change value is equal to or less than the reference value, the determination unit 233 of the control processing unit 230 The value satisfies the reference value, and it is determined that the warm-up is completed.
  • the image acquisition unit 234 controls the reading circuit 222 (AD converter 136) to acquire an offset image.
  • the calculating unit 232 calculates the time derivative of the maximum output difference (absolute value) shown in FIG. 3D, and the determining unit 233 determines that the warm-up is completed when the difference becomes equal to or less than the reference value.
  • the image acquisition unit 234 may acquire an offset image.
  • the difference between the offset signal (output) at the position P1 near the readout circuit 222 and the positions P2 and P3 distant from the readout circuit 222 is determined, and the warm-up completion is determined by comparing with the reference.
  • the position near the heat generating member in the housing may be designed and monitored, and conversely, if there is an area where the housing is in contact with the device to be connected and is likely to be cooled, design it.
  • the change of the offset signal may be monitored.
  • the preset area may be set to an area where the output distribution confirmed in the design stage is large.
  • a plurality of regions may be set arbitrarily and the change in the offset signal may be monitored.
  • the pixel 101 monitoring the change of the offset signal may be a pixel having no sensitivity to light so as not to be affected by an afterimage or the like. If there is a possibility that noise will occur and affect the output of the monitored pixels, it is possible to eliminate the effects of noise by applying a recursive filter or increasing the number of monitor pixels and performing averaging processing. good. Also, any number of upper and lower pixels to be monitored may be excluded from the monitor pixels.
  • the determination unit 233 monitors a change in the offset signal, and when the time change value becomes larger than the reference value, transitions to a warm-up operation, and reacquires the offset signal in a state where radiation is not irradiated. May be. Even after obtaining the offset image, the signal obtaining unit 231 obtains a new offset signal at predetermined time intervals, and sets the time offset value based on the newly obtained offset signal when the time change value exceeds the reference value. The acquisition of the offset signal is repeated at the timing (for example, S11 and S12 in FIG. 2).
  • the first embodiment it is possible to acquire an offset image by determining the completion of the warm-up time based on the convergence of the time change value. That is, it is possible to complete the warming-up operation at the earliest possible timing and make it possible to take an image when it is desired to perform imaging with the radiation imaging apparatus without providing an unnecessarily long warm-up time. Shortening is possible. It is also possible to suppress the occurrence of artifacts due to insufficient warm-up operation.
  • the completion of the warm-up operation of the radiation imaging apparatus is determined based on the time change value of the offset signal acquired in a state where the radiation is not irradiated in the area within the radiation imaging apparatus.
  • a description is given of an example of processing for determining the completion of the warm-up operation of the radiation imaging apparatus based on a time change value of a signal difference of an offset signal acquired in a state where radiation is not irradiated between a plurality of regions. I do.
  • the second embodiment for example, attention is paid not to the temperature distribution of the sensor substrate 300 (FIG. 3A) but to the temperature of a plurality of signal processing units (ICs) arranged around the sensor substrate 300.
  • ICs signal processing units
  • a boundary between the plurality of signal processing units is set in advance as a monitor area, and It is an object of the present invention to prevent a signal difference (output step) of the offset signal from occurring between the signal processing units.
  • the configuration of the radiation imaging apparatus according to the second embodiment is the same as that of the first embodiment (FIGS. 1A and 1B), and a description of a configuration that is the same as that of the first embodiment will be omitted to avoid redundant description.
  • the signal acquisition unit 231 acquires a signal difference based on a difference between a plurality of offset signals based on charges in a state where radiation is not irradiated from the detection unit 100 at different timings. I do.
  • the image acquisition unit 234 acquires an offset image based on a signal from each pixel of the detection unit 100 when the time change value of the signal difference becomes equal to or less than a preset reference value.
  • the signal acquisition unit 231 acquires a plurality of signal differences based on a difference between a plurality of offset signals in a plurality of partial regions of the detection unit 100, and the image acquisition unit 234 acquires all of the time change values of the plurality of signal differences.
  • an offset image is acquired.
  • the signal acquisition unit 231 performs the offset of a plurality of partial regions (for example, 1R, 1L, 2R, 2L, 3R, 3L in FIG. 5A) corresponding to the plurality of signal processing units 132 that process the signals of the detection unit 100.
  • a signal is obtained, and a signal difference (for example, 1L-2R, 2L-3R, etc.) based on a difference between offset signals of a plurality of partial areas is obtained at different timings.
  • the information indicating the maximum output difference (absolute value) described in the first embodiment and the time change value of the signal difference can be combined.
  • the signal acquisition unit 231 outputs the information indicating the maximum output difference based on the difference between the offset signal indicating the maximum value and the offset signal indicating the minimum value among the plurality of offset signals in the plurality of partial regions of the detection unit 100.
  • the absolute value of the maximum output difference and the image obtaining unit 234 sets the time change value obtained by differentiating the information indicating the maximum output difference with time and the time change value of the signal difference to be equal to or less than a preset reference value. At this point, an offset image is acquired.
  • the calculation unit 232 includes a time change rate obtained by differentiating a signal difference based on a difference between a plurality of offset signals acquired at different timings by the signal acquisition unit 231 with time. Is calculated as a time change value.
  • the determining unit 233 determines whether the time change value is equal to or less than the reference value by comparing the time change value with the reference value. Then, when the determining unit 233 determines that the time change value has become equal to or less than the reference value, the image obtaining unit 234 obtains an offset image.
  • the image acquiring unit 234 can acquire a new offset image at predetermined time intervals and update the offset image used for offset correction.
  • the signal acquiring unit 231 acquires a signal difference based on a difference between a plurality of new offset signals at preset time intervals, and a time change value based on the newly acquired signal difference is used as a reference. When the value exceeds the value, acquisition of a signal difference based on a difference between a plurality of offset signals is repeated at a set timing (for example, S22 and S24 in FIG. 4). In this case, the image acquisition unit 234 ends acquiring a new offset image and updating the offset image.
  • the signal acquisition unit 231 performs a plurality of offsets at the set timing (for example, S22 and S24 in FIG. 4). The acquisition of the signal difference based on the signal difference is repeated. In this case, the image acquisition unit 234 ends acquiring a new offset image and updating the offset image.
  • FIG. 4 is a view for explaining the flow of the offset image acquisition determining process in the second embodiment.
  • the difference from the first embodiment is that a signal difference (output step difference) based on a difference between a plurality of offset signals is monitored for a plurality of predetermined specific regions, and whether a time change value of the signal difference satisfies a reference value. The point is to judge whether or not it is.
  • step S21 the signal acquisition unit 231 of the control processing unit 230 outputs an offset signal (past signal) at a first acquisition timing in a plurality of partial regions of the detection unit 100 in a state where irradiation is not performed. get.
  • the signal acquisition unit 231 calculates a signal difference between offset signals (past signals) acquired in a plurality of regions. For example, the signal acquisition unit 231 calculates the signal difference between the offset signal (past signal) based on the difference between the offset signal (past signal) in the first area and the offset signal (past signal) in the second area. The signal acquisition unit 231 acquires a signal difference between an offset signal (past signal) in the first area and an offset signal (past signal) in the second area as an absolute value. Note that the above-described calculation of the signal difference between the offset signals (past signals) is an example, and when more partial areas are set, the control processing unit 230 obtains each of the plurality of partial areas. It is possible to calculate the signal difference of the offset signal (past signal).
  • step S23 the signal acquisition unit 231 offsets a plurality of partial regions in the detection unit 100 at a second acquisition timing after a lapse of a predetermined time from the first acquisition timing in a state where irradiation is not performed. Each signal (current signal) is acquired again.
  • the signal acquisition unit 231 calculates a signal difference between the offset signals (current signals) acquired in the plurality of partial regions. For example, the signal acquisition unit 231 calculates a signal difference between the offset signal (current signal) based on the difference between the offset signal (current signal) in the first area and the offset signal (current signal) in the second area. Note that, as in the case of the offset signal (past signal), the calculation of the signal difference between the offset signal (current signal) described above is an example, and when more partial areas are set, the signal acquisition unit 231 is capable of calculating a signal difference between offset signals (current signals) obtained in a plurality of partial areas.
  • step S25 the calculation unit 232 calculates the time change of the signal difference of the offset signal from the signal difference of the offset signal (past signal) acquired in step S22 and the signal difference of the offset signal (current signal) acquired in step S24. Get the value (time change rate).
  • step S26 the determination unit 233 determines whether or not the time change value of the signal difference between the offset signals satisfies the reference value.
  • the determination unit 233 compares the time change value with the reference value, and if the time change value is equal to or less than the reference value (time change value ⁇ reference value), the determination unit 233 determines that the time change value satisfies the reference value. It is determined that there is. If the time change value satisfies the reference value (S26-Yes), the determining unit 233 advances the process to step S27.
  • step S27 the image acquisition unit 234 warms up because the time variation of the time variation of the signal difference between the offset signals is small and can be used for a long time even if the offset image for offset correction is acquired. It is determined that the operation is completed, and an offset image is obtained. Then, the control processing unit 230 performs the offset correction process by subtracting the acquired offset image as a correction image from the radiation image of the subject.
  • the determination unit 233 determines that the time change value satisfies the reference value. It is determined that there is not. If the criterion is not satisfied, the determining unit 233 returns the process to step S21, acquires an offset signal again, and thereafter repeats the same process.
  • FIG. 5A is a diagram showing a schematic internal configuration of the radiation imaging apparatus 1001.
  • Three signal processing units 132 are connected to the sensor substrate 300 as a configuration example of the plurality of signal processing units 132 (FIG. 1A) of the readout circuit 222. Further, three control ICs 531 and a control board 532 are connected to the sensor substrate 300 as a configuration of the drive circuit 221 (FIG. 1A).
  • the temperature in the housing may change due to the warm-up operation. If the output of the offset signal corresponding to the plurality of signal processing units 132 fluctuates due to a temperature change in the housing, a signal difference (step) of the offset signal occurs between the plurality of signal processing units 132, which causes an artifact. Can be viewed.
  • a region for monitoring the signal difference of the offset signal among the plurality of signal processing units 132 is set in advance, the time change value of the signal difference is obtained, and the time change value of the signal difference is set to the reference value. It is determined whether or not the condition is satisfied.
  • the determination unit 233 determines that an offset image can be obtained when the time change value of the signal difference between the offset signals satisfies the reference value. That is, when the time change value of the signal difference of the offset signal among the plurality of signal processing units 132 is equal to or smaller than the reference value, the determination unit 233 determines that the signal difference of the offset signal has converged, and Is determined to be available. On the other hand, when the time change value of the signal difference between the offset signals does not satisfy the reference value, the determination unit 233 determines that acquisition of the offset image is not possible.
  • partial regions (1R), partial regions (1L), partial regions (2R), partial regions (2L), and partial regions (3R) are provided as partial regions for monitoring output signals between a plurality of signal processing units 132. ), And set a partial area (3L).
  • the change rate of the output signal is acquired as the time change value of the signal difference of the offset signal, for example, the difference of the output signal between the partial area (1L) and the partial area (2R), and the difference between the partial area (2L) and The difference of the output signal from the partial area (3R) is monitored, and a value obtained by time-differentiating the difference is compared with a reference value to determine whether or not the change of the output signal of each signal processing unit 132 has converged. It is possible to do.
  • FIG. 5B is a diagram showing a relationship between the warm-up time and offset signals in the partial regions (1R) to (3L).
  • the offset signal decreases as the warm-up time elapses due to the rise in the temperature of each signal processing unit 132.
  • the temperature of the signal processing unit 132 also varies, a plurality of signals are generated.
  • a signal difference (step) occurs in the offset signal corresponding to the processing unit 132.
  • FIG. 5C is a diagram illustrating a relationship between a warm-up time and a signal difference between offset signals corresponding to the plurality of signal processing units 132.
  • the signal difference exemplarily shows the difference between the offset signals in the partial region (1L) and the partial region (2R) and the difference between the offset signals in the partial region (2L) and the partial region (3R).
  • the change in the signal difference is large, but the signal difference tends to converge as the warm-up time elapses.
  • FIG. 5D is a diagram showing the relationship between the warm-up time and the time change value based on the time derivative of the signal difference, and the time derivative (time change value) of the signal difference decreases as the warm-up time elapses. For example, it is determined that the warming-up operation is completed when the temperature becomes equal to or less than a predetermined reference value, and an offset image is acquired, so that an output difference (step) between the plurality of signal processing units 132 does not easily occur.
  • a radiation imaging apparatus can be provided.
  • an area in which the output signal can be managed due to the component variation is set and monitored in advance, so that an artifact can be generated in a shorter warm-up time. It is possible to grasp the offset image acquisition timing that is unlikely to occur.
  • an artefact in the part can be prevented by setting and monitoring a plurality of regions in advance.
  • the second embodiment it is possible to acquire an offset image by determining completion of the warm-up time based on the convergence of the time change value. That is, it is possible to complete the warming-up operation at the earliest possible timing and make it possible to take an image when it is desired to perform imaging with the radiation imaging apparatus without providing an unnecessarily long warm-up time. Shortening is possible. It is also possible to suppress the occurrence of artifacts due to insufficient warm-up operation.
  • FIG. 6 is a diagram illustrating a configuration example of the radiation imaging system 1000.
  • the radiation imaging system 1000 is used, for example, at the time of capturing a radiation image in a hospital.
  • the radiation 1003 generated by the radiation generator 1002 penetrates through the chest 1005 of the subject 1004 and has a scintillator mounted on the upper part. Incident on.
  • the radiation imaging apparatus 1001 detects radiation transmitted through the subject 1004 and forms a radiation image.
  • the radiation incident on the radiation imaging apparatus 1001 includes information on the inside of the body of the subject 1004.
  • the scintillator emits light in response to the incidence of radiation, and photoelectrically converts the light to obtain electrical information. This information is converted into digital data, image-processed by the control device 1006, and can be observed on the display unit 1007 of the control room.
  • this information can be transferred to a remote place via the network 1008, displayed on a display unit 1009 such as a doctor room in another place, or stored in a recording unit such as an optical disk, and can be diagnosed by a doctor in a remote place. It is. Further, the information can be recorded on a film processor 1010 serving as a recording unit or a film 1011 serving as a recording medium.
  • the control device 1006 can control the operation of the radiation imaging apparatus 1001 and performs, for example, setting of imaging conditions and operation control on the radiation imaging apparatus 1001.
  • the radiation imaging apparatus 1001 performs, for example, image transfer, transmission of an arrival dose, transmission of an automatic exposure control signal, and the like to the control apparatus 1006.
  • the control device 1006 has, for example, a mouse and a keyboard as input devices (input units) for inputting information such as setting of imaging conditions, operation control, and image information.
  • the control device 1006 controls the irradiation of the radiation generator 1002 with radiation.
  • the communication unit 237 (FIG. 1B) of the radiation imaging apparatus 1001 performs a determination process (FIG. 2) of acquiring an offset image based on a determination of a communication load when communicating a captured image to the control device 1006 and the acquired offset. It is possible to switch so that the offset correction based on the image is performed by the control processing unit 230 inside the radiation imaging apparatus 1001 or performed by the control apparatus 1006 of the radiation imaging system 1000.
  • the control device 1006 has, as a functional configuration, a communication control unit that controls communication with the radiation imaging device 1001 and a control processing unit that performs arithmetic processing related to operation control of the radiation imaging device 1001, setting of imaging conditions, and offset correction. .
  • the control processing unit of the control device 1006 has the same functional configuration as the control processing unit 230 of the radiation imaging apparatus 1001. That is, the control processing unit of the control device 1006 includes a signal acquisition unit 231, a calculation unit 232, a determination unit 233, an image acquisition unit 234, and a display control unit 235 as functional configurations, and the control processing unit 230 of the radiation imaging apparatus 1001. Can be executed.
  • the present invention supplies a program for realizing one or more functions of the above-described embodiments to a system or an apparatus via a network or a storage medium, and one or more processors in a computer of the system or the apparatus read and execute the program. It can also be realized by the following processing. Further, it can be realized by a circuit (for example, an ASIC) that realizes one or more functions.
  • a circuit for example, an ASIC
  • 1000 radiation imaging system
  • 1001 radiation imaging apparatus (FPD): 222: readout circuit
  • 224 information processing circuit
  • 230 control processing unit
  • 231 signal acquisition unit
  • 232 calculation unit
  • 233 determination unit
  • 234 Image acquisition unit
  • 236 storage unit
  • 237 communication unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

放射線を検出して電荷を蓄積する画素が2次元的に複数配置された検出手段を有する放射線撮影装置は、検出部から放射線が照射されない状態の電荷に基づいた複数のオフセット信号を異なるタイミングで取得する信号取得部と、オフセット信号の時間変化値が予め設定された基準値以下になった段階で、検出部の各画素からの信号に基づいたオフセット画像を取得する画像取得部と、を備える。

Description

放射線撮影装置、放射線撮影システム、放射線撮影方法及びプログラム
 本発明は、放射線撮影装置、放射線撮影システム、放射線撮影方法及びプログラムに関するものである。
 放射線による医療画像診断等に用いる放射線撮影装置として、放射線を電荷に変換する変換素子や薄膜トランジスタ等のスイッチ素子、配線が設けられた画素アレイと、駆動回路や読出回路とを組み合わせた放射線撮影装置が広く利用されている。
 こうした放射線撮影装置では低ノイズ化のために、放射線が照射された状態の画像(放射線画像)を、放射線が照射されない状態で事前に取得したオフセット画像により補正して暗電荷の成分を低減することが行われている。
 特許文献1には、暗電流画像記憶部に記憶された暗電流画像データから暗電流増加量を算出し、増加量に基づいて画素毎の暗電流情報を更新する構成が開示されている。
特開2004-201784号公報
 放射線撮影装置の使用環境や使用条件等が変化するとオフセット画像は変化することが知られており、事前にオフセット画像を取得する場合は、オフセット画像の変化が安定するまでに要する時間(以下、暖機時間)を十分に確保することが必要とされる。
 しかしながら、一つの放射線撮影装置を、動画撮影用に用いられている放射線撮影装置を静止画撮影用として使用したり、装置外で使用していた放射線撮影装置をテーブルに格納し透視装置として使用したり、一つの放射線撮影装置を複数の使用環境や使用条件の下で使用するような場合、暖機時間の完了のタイミングは異なるため、オフセット画像を取得するために、出力信号が収束する暖機時間を確保できない場合が生じ得る。
 本発明は、暖機時間の完了を時間変化値の収束に基づいて判断することによってオフセット画像の取得が可能な放射線撮影技術を提供する。
 本発明の一態様による放射線撮影装置は以下の構成を備える。すなわち、放射線撮影装置は、放射線を検出して電荷を蓄積する画素が2次元的に複数配置された検出手段を有する放射線撮影装置であって、
 前記検出手段から放射線が照射されない状態の電荷に基づいた複数のオフセット信号を異なるタイミングで取得する信号取得手段と、
 前記オフセット信号の時間変化値が予め設定された基準値以下になった段階で、前記検出手段の各画素からの信号に基づいたオフセット画像を取得する画像取得手段と、を備えることを特徴とする。
 また、本発明の他の態様による放射線撮影装置は以下の構成を備える。すなわち、放射線撮影装置は、放射線を検出して電荷を蓄積する画素が2次元的に複数配置された検出手段を有する放射線撮影装置であって、
 前記検出手段の複数から放射線が照射されない状態の電荷に基づいた複数のオフセット信号の差分に基づいた信号差を異なるタイミングで取得する信号取得手段と、
 前記信号差の時間変化値が予め設定された基準値以下になった段階で、前記検出手段の各画素からの信号に基づいたオフセット画像を取得する画像取得手段と、を備えることを特徴とする。
 本発明によれば、暖機時間の完了を時間変化値の収束に基づいて判断することによってオフセット画像の取得が可能な放射線撮影技術を提供することが可能となる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
実施形態1、2における放射線撮影装置の内部構成を例示する図。 制御処理部の機能構成を例示する図。 実施形態1のオフセット画像取得の判定処理の流れを示す図。 実施形態1の放射線撮影装置の筐体の断面構造を例示する図。 暖機時間とセンサ基板の基板温度の関係を例示する図。 暖機時間と基板上の各位置でのオフセット信号の関係を例示する図。 暖機時間とオフセット信号の最大出力差との関係を例示する図。 暖機時間とオフセット信号の時間微分との関係を示す図。 実施形態2のオフセット画像取得の判定処理の流れを説明する図。 放射線撮影装置の概略的な内部構成を示す図。 暖機時間と、部分領域におけるオフセット信号の関係を示す図。 暖機時間とオフセット信号の信号差の関係を示す図。 暖機時間と信号差の時間微分(時間変化値)の関係を示す図。 放射線撮影システムの構成例を示す図。
 以下、添付の図面を参照して本発明の実施形態を説明する。なお、以下の実施形態において、放射線という用語は、X線の他、例えば、α線、β線、γ線粒子線、宇宙線などを含み得る。
 (実施形態1)
 実施形態1では、放射線撮影装置内の特定の領域において、放射線を照射していない状態で取得したオフセット信号の時間変化値に基づいて、放射線撮影装置の暖機運転の完了を判定する処理例を説明する。
 図1Aは、被写体の放射線画像を撮影する撮影部として機能する放射線撮影装置1001(Flat Panel Detector;FPD)の内部構成を例示する図である。放射線撮影装置1001は、放射線を検出して電荷を蓄積する画素101が2次元的に複数配置された検出部100を有する。検出部100には5行5列に配置された画素101が設けられているが、これは放射線撮影装置1001内の一部の領域を表した等価回路図である。二次元的なレイアウトについては、本実施形態に制限するものではなく、画素数を変更したり読出し回路を変更したりすることは自由である。画素101は、放射線を電気信号に変換する変換素子102と、信号線106と変換素子102との間に配置されたスイッチ103とを含む。尚、検出部100に配置されている画素には、放射線に対して感度を有さない変換素子102を有する画素が含まれてもよい。
 変換素子102は、放射線を光に変換するシンチレータおよび光を電気信号に変換する光電変換素子とで構成される。シンチレータは、一般的には、検出部100を覆うようにシート状に形成され、複数の画素によって共有されうる。あるいは、変換素子102は、放射線を直接光に変換する変換素子で構成されうる。
 スイッチ103は、例えば、非晶質シリコンまたは多結晶シリコン(好ましくは多結晶シリコン)などの半導体で活性領域が構成された薄膜トランジスタ(TFT)を含みうる。
 放射線撮影装置1001は、複数の信号線106および複数の駆動線104を有する。各信号線106は、検出部100における複数の列のうちの1つに対応する。各駆動線104は、検出部100における複数の行のうちの1つに対応する。各駆動線104は、駆動回路221によって駆動される。
 変換素子102の第1電極は、スイッチ103の第1主電極に接続され、変換素子102の第2電極は、バイアス線108に接続される。ここで、1つのバイアス線108は、列方向に延びていて、列方向に配列された複数の変換素子102の第2電極に共通に接続される。バイアス線108は、電源回路226からバイアス電圧Vsを受ける。1つの列を構成する複数の画素101のスイッチ103の第2主電極は、1つの信号線106に接続される。1つの行を構成する複数の画素101のスイッチ103の制御電極は、1つの駆動線104に接続される。
 複数の信号線106は、読出し回路222に接続される。ここで、読出し回路222は、複数の信号処理部132(信号処理IC)と、マルチプレクサ134(MUX)と、アナログデジタル変換器(以下、AD変換器(ADC))136とを含みうる。複数の信号線106のそれぞれは、読出し回路222の複数の信号処理部132のうち対応する信号処理部132に接続される。ここで、1つの信号線106は、1つの信号処理部132に対応する。信号処理部132は、例えば、差動増幅器を含む。マルチプレクサ134(MUX)は、複数の信号処理部132を所定の順番で選択し、選択した信号処理部132からの信号をAD変換器136に供給する。AD変換器136は、供給された信号をデジタル信号に変換して出力する。
 読出し回路222(AD変換器136)の出力は、情報処理回路224に供給され、情報処理回路224の制御処理部230によって処理される。情報処理回路224の制御処理部230は、読出し回路222(AD変換器136)の出力に基づいて、放射線画像に現れるオフセット成分を補正するオフセット補正を行うことが可能である。
 制御処理部230は、オフセット補正の方法として、例えば、被写体の放射線画像の撮影前に、放射線を照射しない状態で取得された画像データ(以下、オフセット画像)を補正用画像として、被写体の放射線画像から減算することで、オフセット補正処理を行う。かかるオフセット補正処理(固定ダーク補正)では、被写体の放射線画像の撮影前にオフセット画像データを取得するため、フレームレートが高くなり、動画像撮影などの高速連続撮影が可能となる。撮影中に蓄積される暗電流電荷は、放射線撮影装置の温度や撮影条件などの影響で変化するため、被写体の放射線画像の撮影前にオフセット補正データを取得する場合、オフセット補正の精度は蓄積される暗電流電荷の影響を受け得る。
 本実施形態では、放射線撮影装置内の特定の領域において、放射線を照射していない状態で取得したオフセット信号の時間変化値の収束に基づいて、放射線撮影装置の暖機運転の完了(暖機完了時間)を判定し、暖機運転の完了後、オフセット画像を取得して、オフセット補正処理を行う。
 制御処理部230は、読出し回路222(AD変換器136)からの情報に基づいて、駆動回路221および読出し回路222を制御することが可能であり、制御処理部230は、画素101による照射された放射線に対応する電荷の蓄積の開始および終了を制御する。
 情報処理回路224の記憶部236は、制御処理部230で処理された演算処理の結果や、読出し回路222(AD変換器136)から取得した画像信号を記憶することが可能であり、制御処理部230は、記憶部236に記憶されている画像信号を用いて、放射線画像に現れるオフセット成分を補正するオフセット画像を取得するための演算処理を行うことも可能である。
 情報処理回路224の通信部237は、例えば、有線通信部と無線通信部とを有しており、放射線撮影システムを構成する制御装置1006(図6)との間での通信を制御することが可能である。通信部237は、撮影された画像を制御装置(外部の装置)1006に通信するときの通信負荷(例えば、画像を転送する転送回数や転送する画像のデータサイズ等)の判定に基づいて、オフセット画像を取得する判定処理(図2)や取得したオフセット画像によるオフセット補正を、放射線撮影装置1001内部の制御処理部230で実行するか、または、外部の制御装置1006で行うように切り換えることが可能である。
 次に、情報処理回路224の記憶部236に記憶されている制御プログラムの処理について図1Bを用いて説明する。図1Bは、制御処理部230の機能構成を示すブロック図である。制御処理部230の各機能部は、制御処理部230のCPU(不図示)がプログラムを実行することにより実現されてもよいし、専用のハードウエアにより実現されてもよいし、ソフトウエアとハードウエアの協働により実現されてもよい。不図示のCPUが記憶部236に格納されたプログラムを実行することにより、あるいは、専用のハードウエアにより、あるいはそれらの協働により、図1Bに示される制御処理部230の各機能部が実現される。
 信号取得部231は、検出部100から放射線が照射されない状態の電荷に基づいた複数のオフセット信号を異なるタイミングで取得する。画像取得部234は、オフセット信号の時間変化値が予め設定された基準値以下になった段階で、検出部100の各画素からの信号に基づいたオフセット画像を取得する。
 また、信号取得部231は、検出部100の複数の部分領域における複数のオフセット信号を取得し、画像取得部234は、複数のオフセット信号の時間変化値の全てが基準値以下になった段階で、オフセット画像を取得することが可能である。
 また、信号取得部231は、検出部100の複数の部分領域における複数のオフセット信号のうち、最大値を示すオフセット信号と最小値を示すオフセット信号との差分に基づいた最大出力差を示す情報(絶対値)を取得し、画像取得部234は、最大出力差を示す情報(絶対値)を時間で微分した時間変化値が基準値以下になった段階で、オフセット画像を取得することが可能である。
 信号取得部231がオフセット信号を取得する対象となる部分領域が任意に設定することが可能であり、オフセット信号の出力分布の大きい領域を設定することが可能である。例えば、複数の部分領域には、検出部100の信号を処理する信号処理部132を有する回路(読出し回路222)に近い位置(例えば、図3AのP1)の領域と、回路から離れた位置(例えば、図3AのP2、P3)の領域とが含まれる。
 オフセット画像を取得する条件として、実施形態1で説明した最大出力差を示す情報(絶対値)と、実施形態2で説明する信号差の時間変化値とを組わせることも可能である。この場合、画像取得部234は、最大出力差を示す情報(絶対値)を時間で微分した時間変化値、及び、複数のオフセット信号の差分に基づいた信号差の時間変化値が予め設定された基準値以下になった段階で、オフセット画像を取得する。
 算出部232は、信号取得部231により異なるタイミングで取得された複数のオフセット信号の差分を時間で微分した時間変化率を時間変化値として算出する。
 また、判定部233は、算出部232で算出された時間変化値と基準値とを比較して、時間変化値が基準値以下になったか判定する。判定部233により、時間変化値が基準値以下になったと判定された場合に、画像取得部234は、オフセット画像を取得する。
 情報処理回路224にはタイマーとして機能する計時部238が設けられており、信号取得部231および画像取得部234は計時部238から時間情報を取得することが可能である。画像取得部234は、オフセット画像を取得した後、予め設定した時間ごとに新たなオフセット画像を取得し、オフセット補正に用いるオフセット画像を更新することが可能である。
 また、信号取得部231は、オフセット画像が取得された後、予め設定した時間ごとに新たなオフセット信号を取得し、新たに取得したオフセット信号に基づく時間変化値が基準値を超えている場合、設定したタイミング(例えば、図2のS11、S12)でオフセット信号の取得を繰り返す。この場合、画像取得部234は、新たなオフセット画像の取得およびオフセット画像の更新を終了する。
 また、情報処理回路224には放射線撮影装置1001の使用環境の情報(温度や湿度など)を検出するセンサ239が設けられている。信号取得部231は、オフセット画像が取得された後、使用環境の情報を検出するセンサ239の検出情報が閾値を超えた場合、設定したタイミング(例えば、図2のS11、S12)でオフセット信号の取得を繰り返す。この場合、画像取得部234は、新たなオフセット画像の取得およびオフセット画像の更新を終了する。
 表示制御部235は、判定部233の判定結果に基づいて、時間変化値が基準値以下になったことを示す報知表示を表示部228に表示させる。表示部228は、例えば、LEDなどによるインジケータやメッセージなどを表示可能な表示部として構成することが可能である。表示制御部235は、暖機運転の完了を報知するための報知表示として、例えば、表示部228を点灯させたり、メッセージを表示させることが可能である。
 図2は実施形態1におけるオフセット画像取得の判定処理の流れを説明する図である。低ノイズの放射線撮影装置を提供するために、事前にオフセット画像を準備する必要がある。本実施形態では、放射線撮影装置1001内部の制御処理部230が、暖機運転をスタートさせてからオフセット信号の時間変化値が基準を満たした段階で暖機運転完了と判定し、補正用画像としてオフセット画像を取得する構成を説明する。
 ここで、オフセット信号は、検出部100のうち一部の領域(部分領域)から出力される、放射線が照射されない状態の電荷に基づいた信号をいう。すなわち、オフセット信号は、検出部100から出力される1フレームを構成する画像において、部分的な1ライン分の画素または複数画素から出力される信号の平均値または加算値を、画像の代表値として出力される信号をいう。
 オフセット信号またはオフセット画像は、温度の変化とともに増減することが知られている。これは放射線撮影装置の検出部100における面内の信号出力の分布においても同様で、温度分布が時間的に変化すれば、検出部100における面内の信号出力の分布にも変化が生じる。放射線が照射された状態の画像(放射線画像)を、出力が変化したオフセット画像により補正しても暗電荷の成分が残りアーチファクトの原因になり得る。
 ポータブル型の放射線撮影装置と透視撮影用の放射線撮影装置とを兼ねた放射線撮影装置を提供する場合には、使用する環境温度や内部の発熱温度の状態により、オフセット画像の変化が安定するまでに要する時間(暖機時間)は、使用環境や使用条件等の状況によって変わるため、全ての状況で満足できる暖機時間を確保しようとすると、必要以上に長い暖機時間が必要となる。本実施形態では、放射線撮影装置1001を使用する際に、必要とされる暖機時間を把握し、暖機時間を最適化し、温度変化が安定してからオフセット画像を取得する。
 まず、図2のステップS11において、制御処理部230の信号取得部231は、読出し回路222を制御して、放射線を照射していない状態で、第1の取得タイミングでオフセット信号(過去信号)を取得する。信号取得部231は、取得した情報から必要に応じて加工を施し、記憶部236に保存する。信号取得部231は、信号の加工として、例えば、取得した複数の画素から得た1ライン分の画素101から出力された信号を平均化または加算して代表値としたオフセット信号(過去信号)を記憶部236に保存する。あるいは、複数画素分(n画素×n画素(nは整数))の信号を平均化または加算して代表値としたオフセット信号を記憶部236に保存する。
 次に、ステップS12において、信号取得部231は、放射線を照射していない状態で、第1の取得タイミングから一定時間経過後の第2の取得タイミングでオフセット信号(現在信号)を再度取得する。信号取得部231は、再度取得したオフセット信号(現在信号)を必要に応じて加工を施す。信号取得部231は、信号の加工の例としてオフセット信号(過去信号)と同様に、取得した複数の画素から得た1ライン分の画素101から出力された信号を平均化または加算して代表値としたオフセット信号、または、複数画素分(n画素×n画素(nは整数))の信号を平均化または加算して代表値としたオフセット信号を取得することが可能である。
 その後、ステップS13において、制御処理部230の算出部232は、最初にステップS11で取得したオフセット信号(過去信号)と、新たにステップS12で取得したオフセット信号(現在信号)からオフセット信号の時間変化値(時間変化率)を取得する。
 ステップS14において、制御処理部230の判定部233は、時間変化値が基準値を満たしているか否かを判定する。判定部233は、時間変化値と基準値とを比較して、時間変化値が基準値以下であれば(時間変化値≦基準値)、判定部233は、時間変化値が基準値を満たしていると判定する。時間変化値が基準値を満たしていれば(S14-Yes)、判定部233は処理をステップS15に進める。
 ステップS15において、制御処理部230の画像取得部234は、オフセット信号の時間変化量が小さく、オフセット補正用のオフセット画像を取得しても長時間にわたって使用することが可能なため、暖機運転完了と判定しオフセット画像を取得する。そして、画像取得部234は、取得したオフセット画像を補正用画像として、被写体の放射線画像から減算することで、オフセット補正処理を行う。
 一方、ステップS14の判定で、時間変化値(時間変化率)が基準値より大きい場合(時間変化値>基準値)(S14-No)、判定部233は、時間変化値が基準値を満たしていないと判定する。判定部233は、基準を満たしていない場合、処理をステップS11に戻し、再度オフセット信号を取得し、以降同様の処理を繰り返す。
 図3Aは、実施形態1における放射線撮影装置1001の筐体の断面構造を例示する図である。センサ基板300(ガラス基板)上には、光電変換素子等により構成される変換素子102や薄膜トランジスタ(TFT)等により構成されるスイッチ103を有する複数の画素101が二次元的な配置構造を有するアレイ状に形成されている。また、センサ基板300の上部には蛍光体層322が形成されている。また、センサ基板300上に形成されている複数の画素101から信号を読み出すために、読出し回路222と情報処理回路224が接続されている。
 読出し回路222は信号処理を行うため消費電力が高く、発熱しやすい。このため、図3Aに示した位置P1~P3の3つの位置のうち、読出し回路222に最も近い位置である位置P1は読出し回路222の発熱によりセンサ基板300の基板温度は高くなりやすい。
 一方、位置P3は、位置P1~P3の3つの位置のうち、読出し回路222から最も離れた位置である。また、センサ基板300(ガラス基板)は熱伝導率が小さいため、位置P3は、位置P1やセンサ基板300の中央部である位置P2と比較して、センサ基板300の基板温度は高くなりにくい。
 このため、センサ基板300の基板温度の関係(大小関係)は、発熱源となる読出し回路222との距離に基づいて、位置P1でのセンサ基板300の基板温度(T1)は、センサ基板300の中央部である位置P2でのセンサ基板300の基板温度(T2)より高くなる。また、位置P2でのセンサ基板300の基板温度(T2)は、読出し回路222から最も離れた位置P3でのセンサ基板300の基板温度(T3)より高くなる。
 すなわち、位置P1での基板温度(T1)>位置P2での基板温度(T2)>位置P3での基板温度(T3)となる。センサ基板300上に形成された各画素101における光電変換素子や薄膜トランジスタ(TFT)等の出力は温度依存性を有するため、センサ基板300上の各画素101から出力されるオフセット信号はセンサ基板300の基板温度に応じて、センサ基板300内(図1Aの検出部100内)で異なる面内分布を生じる。この面内分布は、暖機時間とともに変化し、ある一定の時間が経過すると時間変化は低減していく。
 図3Bは、暖機時間とセンサ基板300の基板温度の関係を例示する図であり、位置P1~位置P3の各位置で、基板温度が異なる時間で収束することが分かる。図3Cは、暖機時間とセンサ基板300上の各位置に対応した画素101から出力されるオフセット信号(出力)の関係を例示する図である。本実施形態の場合、基板温度が増加するとオフセット信号(出力)が低くなる設計となっているため、暖機時間の経過とともに画素101から出力されるオフセット信号は低下する傾向を示す。特に、位置P1~位置P3のうち、基板温度(T1)が最も高い位置P1でのオフセット信号(出力)は、位置P1に比べて基板温度が低い位置P2や位置P3でのオフセット信号(出力)に比べて低くなり収束することが分かる。
 図3Dは、暖機時間と、オフセット信号の最大出力差(絶対値)との関係を例示する図である。ここで、最大出力差(絶対値)とは、位置P1、P2、P3におけるオフセット信号のうち、オフセット信号の最大値と最小値との差分に基づいて取得される差分情報(最大値-最小値)の絶対値である。
 図3Cでは、位置P1でのオフセット信号(出力)が最小値となり、位置P3でのオフセット信号(出力)が最大値となるため、図3Dにおける最大出力差(絶対値)は、位置P3でのオフセット信号(出力)から位置P1でのオフセット信号(出力)を減算した値となる。この最大出力差の絶対値が時間的に安定した状態で、オフセット画像の取得を行うと、各画素101の出力は収束した状態となるためにオフセット画像の有効期間は長くなり、アーチファクトが出にくい画像を提供することが可能となる。
 図3Eは、暖機時間の経過と出力時間微分との関係を示す図であり、図3Cの時間微分を表した図である。オフセット信号の出力変化が小さい位置P3でのオフセット信号の時間微分が比較的小さくなりやすく、出力変化が大きい位置P1でのオフセット信号の時間微分が比較的大きくなりやすい。
 例えば、図2のステップS14の判定処理で、モニタしている位置P1~P3の全ての位置でのオフセット信号の時間変化値(時間変化率)が基準値以下になった段階で暖機完了とし、オフセット画像を取得してもよい。すなわち、制御処理部230は、各位置でのオフセット信号の時間変化値と基準値とを比較して、時間変化値が基準値以下であれば、制御処理部230の判定部233は、時間変化値が基準値を満たし、暖機完了と判定する。判定部233により暖機完了と判定された段階で、画像取得部234は、読出し回路222(AD変換器136)を制御して、オフセット画像を取得するように制御する。
 また、算出部232は、図3Dで示した最大出力差(絶対値)の時間微分を算出し、判定部233は基準値以下となった段階で暖機完了と判定し、判定部233により暖機完了と判定された段階で、画像取得部234は、オフセット画像を取得しても良い。
 図3B~図3Eでは、読出し回路222の近傍の位置P1と、読出し回路222から離れた位置P2や位置P3でオフセット信号(出力)の差分を求め、基準と照らし合して暖機完了を判定しているが、筐体内の発熱部材近傍の位置を設計的に定めモニタしても良く、逆に、筐体が接続される装置と接触し冷却されやすい領域があるのであれば、そこを設計的に定め、オフセット信号の変化をモニタしても良い。
 実施形態1では、予め設定した領域の時間変化量をモニタする構成ついて説明したが、予め設定する領域は、設計段階で確認した出力分布が大きい領域に設定しても良い。また、使用方法によって出力分布が変わるようなことが想定される場合は、複数の領域を任意に設定し、オフセット信号の変化をモニタしても良い。
 また、オフセット信号の変化をモニタする画素101は、光に対して感度を有さない画素とし残像などの影響を受けないようにしても構わない。ノイズが発生しモニタする画素の出力に影響を与える可能性が考えられる場合、リカーシブフィルターをかけたりモニタ画素数を増やし平均化処理をしたりすることで、ノイズの影響を除外できるようにしても良い。また、モニタする画素の上位と下位の任意の数はモニタ画素から除外しても良い。
 オフセット画像を取得した後も、判定部233はオフセット信号の変化をモニタし、時間変化値が基準値より大きくなったら、暖機運転に遷移し、放射線が照射されない状態でオフセット信号を再取得しても良い。オフセット画像を取得した後も、信号取得部231は、予め設定した時間ごとに新たなオフセット信号を取得し、新たに取得したオフセット信号に基づく時間変化値が基準値を超えている場合、設定したタイミング(例えば、図2のS11、S12)でオフセット信号の取得を繰り返す。
 実施形態1によれば、暖機時間の完了を時間変化値の収束に基づいて判断することによってオフセット画像の取得が可能になる。すなわち、必要以上に長い暖機時間を設けず、放射線撮影装置で撮影を行いたいときに、なるべく早いタイミングで暖機運転を完了させ撮影できる状態にすることが可能となり、操作者の待ち時間の短縮が可能となる。また、暖機運転不足によるアーチファクトの発生を抑制することも可能となる。
 (実施形態2)
 実施形態1では、放射線撮影装置内の領域において、放射線を照射していない状態で取得したオフセット信号の時間変化値に基づいて、放射線撮影装置の暖機運転の完了を判定した。実施形態2では、複数の領域間に関して、放射線を照射していない状態で取得したオフセット信号の信号差の時間変化値に基づいて、放射線撮影装置の暖機運転の完了を判定する処理例を説明する。
 実施形態2では、例えばセンサ基板300(図3A)の温度分布ではなく、センサ基板300の周辺に配置されている複数の信号処理部(IC)の温度に着目する。複数の信号処理部間の温度差が、各信号処理部に対応するオフセット信号の出力差に影響することを管理するために、複数の信号処理部の境界部を予めモニタ領域として設定し、複数の信号処理部間でオフセット信号の信号差(出力段差)が発生しないようにすることを目的としている。尚、実施形態2の放射線撮影装置の構成は実施形態1(図1A、図1B)と同様であり、実施形態1と重複する構成については、説明の重複を避けるため省略する。
 実施形態2において、制御処理部230の機能構成として、信号取得部231は、検出部100から放射線が照射されない状態の電荷に基づいた複数のオフセット信号の差分に基づいた信号差を異なるタイミングで取得する。画像取得部234は、信号差の時間変化値が予め設定された基準値以下になった段階で、検出部100の各画素からの信号に基づいたオフセット画像を取得する。
 また、信号取得部231は、検出部100の複数の部分領域における複数のオフセット信号の差分に基づいた複数の信号差を取得し、画像取得部234は、複数の信号差の時間変化値の全てが基準値以下になった段階で、オフセット画像を取得する。ここで、信号取得部231は、検出部100の信号を処理する複数の信号処理部132に対応する複数の部分領域(例えば、図5Aの1R、1L、2R、2L、3R、3L)のオフセット信号を取得し、複数の部分領域のオフセット信号の差分に基づいた信号差(例えば、1L-2R、2L-3R等)を異なるタイミングで取得する。
 オフセット画像を取得する条件として、実施形態1で説明した最大出力差を示す情報(絶対値)と、信号差の時間変化値とを組わせることも可能である。この場合、信号取得部231は、検出部100の複数の部分領域における複数のオフセット信号のうち、最大値を示すオフセット信号と最小値を示すオフセット信号との差分に基づいた最大出力差を示す情報(最大出力差の絶対値)を取得し、画像取得部234は、最大出力差を示す情報を時間で微分した時間変化値、及び信号差の時間変化値が、予め設定された基準値以下になった段階で、オフセット画像を取得する。
 また、実施形態2における制御処理部230の機能構成として、算出部232は、信号取得部231により異なるタイミングで取得された複数のオフセット信号の差分に基づいた信号差を時間で微分した時間変化率を時間変化値として算出する。
 また、判定部233は、時間変化値と基準値とを比較して、時間変化値が基準値以下になったか判定する。そして、判定部233により、時間変化値が基準値以下になったと判定された場合に、画像取得部234は、オフセット画像を取得する。
 また、画像取得部234は、オフセット画像を取得した後、予め設定した時間ごとに新たなオフセット画像を取得し、オフセット補正に用いるオフセット画像を更新することが可能である。信号取得部231は、オフセット画像が取得された後、予め設定した時間ごとに新たな複数のオフセット信号の差分に基づいた信号差を取得し、新たに取得した信号差に基づく時間変化値が基準値を超えている場合、設定したタイミング(例えば、図4のS22、S24)で複数のオフセット信号の差分に基づいた信号差の取得を繰り返す。この場合、画像取得部234は、新たなオフセット画像の取得およびオフセット画像の更新を終了する。
 信号取得部231は、オフセット画像が取得された後、使用環境の情報を検出するセンサ239の検出情報が閾値を超えた場合、設定したタイミング(例えば、図4のS22、S24)で複数のオフセット信号の差分に基づいた信号差の取得を繰り返す。この場合、画像取得部234は、新たなオフセット画像の取得およびオフセット画像の更新を終了する。
 図4は実施形態2におけるオフセット画像取得の判定処理の流れを説明する図である。実施形態1との差は、予め定められた複数の特定の領域に関して、複数のオフセット信号の差分に基づいた信号差(出力段差)をモニタし、信号差の時間変化値が基準値を満たすか否かを判定する点である。
 まず、ステップS21において、制御処理部230の信号取得部231は、検出部100における複数の部分領域において、放射線を照射していない状態で、第1の取得タイミングでオフセット信号(過去信号)をそれぞれ取得する。
 そして、ステップS22において、信号取得部231は、複数の領域でそれぞれ取得されたオフセット信号(過去信号)の信号差を算出する。例えば、信号取得部231は、第1領域のオフセット信号(過去信号)と第2領域のオフセット信号(過去信号)との差分に基づいて、オフセット信号(過去信号)の信号差を算出する。信号取得部231は、第1領域のオフセット信号(過去信号)と第2領域のオフセット信号(過去信号)との信号差を絶対値として取得する。尚、上記のオフセット信号(過去信号)の信号差の算出は例示的なものであり、更に多くの部分領域が設定されている場合、制御処理部230は、複数の部分領域でそれぞれ取得されたオフセット信号(過去信号)の信号差を算出することが可能である。
 次に、ステップS23において、信号取得部231は、検出部100における複数の部分領域において、放射線を照射していない状態で、第1の取得タイミングから一定時間経過後の第2の取得タイミングでオフセット信号(現在信号)をそれぞれ再度取得する。
 また、ステップS24において、信号取得部231は、複数の部分領域でそれぞれ取得されたオフセット信号(現在信号)の信号差を算出する。例えば、信号取得部231は、第1領域のオフセット信号(現在信号)と第2領域のオフセット信号(現在信号)との差分に基づいて、オフセット信号(現在信号)の信号差を算出する。尚、オフセット信号(過去信号)の場合と同様に、上記のオフセット信号(現在信号)の信号差の算出は例示的なものであり、更に多くの部分領域が設定されている場合、信号取得部231は、複数の部分領域でそれぞれ取得されたオフセット信号(現在信号)の信号差を算出することが可能である。
 ステップS25において、算出部232は、最初にステップS22で取得したオフセット信号(過去信号)の信号差と、ステップS24で取得したオフセット信号(現在信号)の信号差からオフセット信号の信号差の時間変化値(時間変化率)を取得する。
 ステップS26において、判定部233は、オフセット信号の信号差の時間変化値が基準値を満たしているか否かを判定する。判定部233は、時間変化値と基準値とを比較して、時間変化値が基準値以下であれば(時間変化値≦基準値)、判定部233は、時間変化値が基準値を満たしていると判定する。時間変化値が基準値を満たしていれば(S26-Yes)、判定部233は処理をステップS27に進める。
 ステップS27において、画像取得部234は、オフセット信号の信号差の時間変化値の時間変化量が小さく、オフセット補正用のオフセット画像を取得しても長時間にわたって使用することが可能なため、暖機運転完了と判定しオフセット画像を取得する。そして、制御処理部230は、取得したオフセット画像を補正用画像として、被写体の放射線画像から減算することで、オフセット補正処理を行う。
 一方、ステップS26の判定で、時間変化値(時間変化率)が基準値より大きい場合(時間変化量>基準値)(S26-No)、判定部233は、時間変化値が基準値を満たしていないと判定する。判定部233は、基準を満たしていない場合、処理をステップS21に戻し、再度オフセット信号を取得し、以降同様の処理を繰り返す。
 図5Aは、放射線撮影装置1001の概略的な内部構成を示す図である。センサ基板300には、読出し回路222の複数の信号処理部132(図1A)の構成例として、3個の信号処理部132が接続されている。また、センサ基板300には、駆動回路221(図1A)の構成として、3個の制御IC531と制御ボード532が接続されている。
 図5Aに示すような部品が放射線撮影装置1001の筐体に配置されると、暖機運転により筐体内の温度が変化し得る。筐体内の温度変化により、複数の信号処理部132に対応するオフセット信号の出力がばらつくと、これにより複数の信号処理部132の間でオフセット信号の信号差(段差)が生じてしまい、アーチファクトとして視認され得る。アーチファクトの発生を防ぐためには、複数の信号処理部132の間でオフセット信号の信号差をモニタする領域を予め設定し、信号差の時間変化値を求め、信号差の時間変化値が基準値を満たしたか否かを判定する。
 判定部233は、オフセット信号の信号差の時間変化値が基準値を満たした場合はオフセット画像の取得が可能と判定する。すなわち、複数の信号処理部132の間でのオフセット信号の信号差の時間変化値が基準値以下となった場合に、判定部233は、オフセット信号の信号差が収束したと判定し、オフセット画像の取得が可能と判定する。一方、オフセット信号の信号差の時間変化値が基準値を満たしていない場合に、判定部233は、オフセット画像の取得は不可と判定する。
 図5Aにおいて、複数の信号処理部132の間に出力信号をモニタする部分領域として、部分領域(1R)、部分領域(1L)、部分領域(2R)、部分領域(2L)、部分領域(3R)、部分領域(3L)を設定する。オフセット信号の信号差の時間変化値として、出力信号の変化率を取得する場合、例えば、部分領域(1L)と部分領域(2R)との間での出力信号の差分,部分領域(2L)と部分領域(3R)との間での出力信号の差分をモニタし、差分を時間微分した値と基準値と比較して、各信号処理部132の出力信号の変化が収束したか否かを判定することが可能である。
 図5Bは、暖機時間と、部分領域(1R)~部分領域(3L)におけるオフセット信号との関係を示す図である。暖機運転の時間が長くなると、各信号処理部132の温度が上昇することにより、オフセット信号は暖機時間の経過とともに低下するが、信号処理部132の温度もバラつきが生じるため、複数の信号処理部132に対応するオフセット信号に信号差(段差)が生じる。
 図5Cは、暖機時間と、複数の信号処理部132に対応するオフセット信号の信号差の関係を示す図である。ここで、信号差は、部分領域(1L)と部分領域(2R)におけるオフセット信号の差分と、部分領域(2L)と部分領域(3R)におけるオフセット信号の差分を例示的に示している。暖機運転の初期の段階では信号差の変化は大きくなるが、暖機時間の経過とともに信号差は収束する傾向が見られる。
 図5Dは、暖機時間と信号差の時間微分に基づいた時間変化値の関係を示す図であり、暖機時間の経過とともに信号差の時間微分(時間変化値)は小さくなる。例えば、予め定めた基準値以下となった段階で暖機運転完了と判定し、オフセット画像を取得することで、複数の信号処理部132の間で出力信号の出力差(段差)が発生しにくい放射線撮影装置を提供することが可能となる。
 このように、実施形態2によれば、温度により出力信号が変化しやすい部品においては、その部品ばらつきによる出力信号を管理できる領域を予め設定しモニタすることで、より短い暖機時間でアーチファクトが発生しにくいオフセット画像取得タイミングを把握することが可能となる。
 また、同一部品内であっても、内部の回路のインピーダンスの差などにより温度特性を持つものについて、予め複数の領域を設定しモニタすることで部品内のアーチファクトを防止することが可能となる。
 実施形態2によれば、暖機時間の完了を時間変化値の収束に基づいて判断することによってオフセット画像の取得が可能になる。すなわち、必要以上に長い暖機時間を設けず、放射線撮影装置で撮影を行いたいときに、なるべく早いタイミングで暖機運転を完了させ撮影できる状態にすることが可能となり、操作者の待ち時間の短縮が可能となる。また、暖機運転不足によるアーチファクトの発生を抑制することも可能となる。
 (実施形態3)
 次に本発明の実施形態3として、放射線撮影装置1001を放射線撮影システムに適用した場合の構成を説明する。図6は放射線撮影システム1000の構成例を示す図である。放射線撮影システム1000は、例えば、病院内での放射線画像の撮影時において使用され、放射線発生装置1002で発生した放射線1003は被写体1004の胸部1005を透過し、シンチレータを上部に実装した放射線撮影装置1001に入射する。放射線撮影装置1001は、被写体1004を透過した放射線を検出し放射線画像を形成する。放射線撮影装置1001に入射した放射線には被写体1004の体内部の情報が含まれている。放射線の入射に対応してシンチレータは発光し、これを光電変換して、電気的情報を得る。この情報はデジタルに変換され制御装置1006により画像処理されコントルールルームの表示部1007で観察することができる。
 また、この情報はネットワーク1008により遠隔地へ転送でき、別の場所のドクタールームなどの表示部1009に表示もしくは光ディスク等の記録部に保存することができ、遠隔地の医師が診断することも可能である。また記録部となるフィルムプロセッサ1010や記録媒体となるフィルム1011に記録することもできる。
 制御装置1006は、放射線撮影装置1001の動作を制御することが可能であり、放射線撮影装置1001に対して、例えば、撮影条件の設定、動作制御などを行う。放射線撮影装置1001は、制御装置1006に対して、例えば、画像転送、到達線量の送信、自動露出制御信号の送信などを行う。制御装置1006は撮影条件の設定、動作制御、画像情報などの情報を入力するための入力デバイス(入力部)として、例えば、マウス、キーボードを有する。また制御装置1006は、放射線発生装置1002に対して放射線の照射制御などを行う。
 放射線撮影装置1001の通信部237(図1B)は、撮影された画像を制御装置1006に通信するときの通信負荷の判定に基づいて、オフセット画像を取得する判定処理(図2)や取得したオフセット画像によるオフセット補正を、放射線撮影装置1001内部の制御処理部230で実行するか、または、放射線撮影システム1000の制御装置1006で行うように切り換えることが可能である。
 制御装置1006は、機能構成として、放射線撮影装置1001との通信を制御する通信制御部と、放射線撮影装置1001の動作制御、撮影条件の設定、オフセット補正に関する演算処理を行う制御処理部とを有する。制御装置1006の制御処理部は、放射線撮影装置1001の制御処理部230と同様の機能構成を有する。すなわち、制御装置1006の制御処理部は、機能構成として、信号取得部231、算出部232、判定部233、画像取得部234、表示制御部235を有し、放射線撮影装置1001の制御処理部230と同様の処理を実行することが可能である。
 (その他の実施形態)
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
 本願は、2018年7月10日提出の日本国特許出願特願2018-130889を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。
 1000:放射線撮影システム、1001:放射線撮影装置(FPD):222:読出し回路、224:情報処理回路、230:制御処理部、231:信号取得部、232:算出部、233:判定部、234:画像取得部、236:記憶部、237:通信部

Claims (24)

  1.  放射線を検出して電荷を蓄積する画素が2次元的に複数配置された検出手段を有する放射線撮影装置であって、
     前記検出手段から放射線が照射されない状態の電荷に基づいた複数のオフセット信号を異なるタイミングで取得する信号取得手段と、
     前記オフセット信号の時間変化値が予め設定された基準値以下になった段階で、前記検出手段の各画素からの信号に基づいたオフセット画像を取得する画像取得手段と、
     を備えることを特徴とする放射線撮影装置。
  2.  前記信号取得手段は、前記検出手段の複数の部分領域における複数のオフセット信号を取得し、
     前記画像取得手段は、前記複数のオフセット信号の時間変化値の全てが前記基準値以下になった段階で、前記オフセット画像を取得することを特徴とする請求項1に記載の放射線撮影装置。
  3.  前記信号取得手段は、前記検出手段の複数の部分領域における複数のオフセット信号のうち、最大値を示すオフセット信号と最小値を示すオフセット信号との差分に基づいた最大出力差を示す情報を取得し、
     前記画像取得手段は、前記最大出力差を示す情報を時間で微分した時間変化値が前記基準値以下になった段階で、前記オフセット画像を取得することを特徴とする請求項1に記載の放射線撮影装置。
  4.  前記複数の部分領域には、前記検出手段の信号を処理する信号処理部を有する回路に近い位置の領域と、前記回路から離れた位置の領域とが含まれることを特徴とする請求項2または3に記載の放射線撮影装置。
  5.  前記信号取得手段により異なるタイミングで取得された前記複数のオフセット信号の差分を時間で微分した時間変化率を前記時間変化値として算出する算出手段と、
     前記時間変化値と前記基準値とを比較して、前記時間変化値が前記基準値以下になったか判定する判定手段と、
     を更に備えることをと特徴とする請求項1に記載の放射線撮影装置。
  6.  前記判定手段により、前記時間変化値が前記基準値以下になったと判定された場合に、前記画像取得手段は、前記オフセット画像を取得することを特徴とする請求項5に記載の放射線撮影装置。
  7.  前記画像取得手段は、前記最大出力差を示す情報を時間で微分した時間変化値、及び、複数のオフセット信号の差分に基づいた信号差の時間変化値が予め設定された基準値以下になった段階で、前記オフセット画像を取得することを特徴とする請求項3に記載の放射線撮影装置。
  8.  前記信号取得手段は、前記オフセット画像が取得された後、予め設定した時間ごとに新たなオフセット信号を取得し、新たに取得したオフセット信号に基づく時間変化値が基準値を超えている場合、設定したタイミングでオフセット信号の取得を繰り返すことを特徴とする請求項1乃至7のいずれか1項に記載の放射線撮影装置。
  9.  前記信号取得手段は、前記オフセット画像が取得された後、使用環境の情報を検出するセンサの検出情報が閾値を超えた場合、設定したタイミングでオフセット信号の取得を繰り返すことを特徴とする請求項1乃至8のいずれか1項に記載の放射線撮影装置。
  10.  放射線を検出して電荷を蓄積する画素が2次元的に複数配置された検出手段を有する放射線撮影装置であって、
     前記検出手段から放射線が照射されない状態の電荷に基づいた複数のオフセット信号の差分に基づいた信号差を異なるタイミングで取得する信号取得手段と、
     前記信号差の時間変化値が予め設定された基準値以下になった段階で、前記検出手段の各画素からの信号に基づいたオフセット画像を取得する画像取得手段と、
     を備えることを特徴とする放射線撮影装置。
  11.  前記信号取得手段は、前記検出手段の複数の部分領域における複数のオフセット信号の差分に基づいた複数の信号差を取得し、
     前記画像取得手段は、前記複数の信号差の時間変化値の全てが前記基準値以下になった段階で、前記オフセット画像を取得することを特徴とする請求項10に記載の放射線撮影装置。
  12.  前記信号取得手段は、前記検出手段の信号を処理する複数の信号処理部に対応する複数の部分領域のオフセット信号を取得し、前記複数の部分領域のオフセット信号の差分に基づいた信号差を異なるタイミングで取得することを特徴とする請求項10または11に記載の放射線撮影装置。
  13.  前記信号取得手段は、前記検出手段の複数の部分領域における複数のオフセット信号のうち、最大値を示すオフセット信号と最小値を示すオフセット信号との差分に基づいた最大出力差を示す情報を取得し、
     前記画像取得手段は、前記最大出力差を示す情報を時間で微分した時間変化値、及び前記信号差の時間変化値が、予め設定された基準値以下になった段階で、前記オフセット画像を取得することを特徴とする請求項10乃至12のいずれか1項に記載の放射線撮影装置。
  14.  前記信号取得手段により異なるタイミングで取得された前記複数のオフセット信号の差分に基づいた信号差を時間で微分した時間変化率を前記時間変化値として算出する算出手段と、
     前記時間変化値と前記基準値とを比較して、前記時間変化値が前記基準値以下になったか判定する判定手段と、
     を更に備えることをと特徴とする請求項10に記載の放射線撮影装置。
  15.  前記判定手段により、前記時間変化値が前記基準値以下になったと判定された場合に、前記画像取得手段は、前記オフセット画像を取得することを特徴とする請求項14に記載の放射線撮影装置。
  16.  前記信号取得手段は、前記オフセット画像が取得された後、予め設定した時間ごとに新たな複数のオフセット信号の差分に基づいた信号差を取得し、前記新たに取得した信号差に基づく時間変化値が基準値を超えている場合、設定したタイミングで複数のオフセット信号の差分に基づいた信号差の取得を繰り返すことを特徴とする請求項10乃至15のいずれか1項に記載の放射線撮影装置。
  17.  前記信号取得手段は、前記オフセット画像が取得された後、使用環境の情報を検出するセンサの検出情報が閾値を超えた場合、設定したタイミングで複数のオフセット信号の差分に基づいた信号差の取得を繰り返すことを特徴とする請求項10乃至16のいずれか1項に記載の放射線撮影装置。
  18.  前記画像取得手段は、前記オフセット画像を取得した後、予め設定した時間ごとに新たなオフセット画像を取得し、オフセット補正に用いるオフセット画像を更新することを特徴とする請求項1乃至15のいずれか1項に記載の放射線撮影装置。
  19.  前記時間変化値が前記基準値以下になったことを示す報知表示を表示手段に表示させる表示制御手段を更に備えることを特徴とする請求項1乃至14のいずれか1項に記載の放射線撮影装置。
  20.  放射線を検出して電荷を蓄積する画素が2次元的に複数配置された検出手段を有する放射線撮影装置と、前記放射線撮影装置を制御する制御装置とを有する放射線撮影システムであって、前記制御装置が、
     前記検出手段から放射線が照射されない状態の電荷に基づいた複数のオフセット信号を異なるタイミングで取得する信号取得手段と、
     前記オフセット信号の時間変化値が予め設定された基準値以下になった段階で、前記検出手段の各画素からの信号に基づいたオフセット画像を取得する画像取得手段と、
     を備えることを特徴とする放射線撮影システム。
  21.  放射線を検出して電荷を蓄積する画素が2次元的に複数配置された検出手段を有する放射線撮影装置と、前記放射線撮影装置を制御する制御装置とを有する放射線撮影システムであって、前記制御装置が、
     前記検出手段から放射線が照射されない状態の電荷に基づいた複数のオフセット信号の差分に基づいた信号差を異なるタイミングで取得する信号取得手段と、
     前記信号差の時間変化値が予め設定された基準値以下になった段階で、前記検出手段の各画素からの信号に基づいたオフセット画像を取得する画像取得手段と、
     を備えることを特徴とする放射線撮影システム。
  22.  放射線を検出して電荷を蓄積する画素が2次元的に複数配置された検出手段を有する放射線撮影装置の放射線撮影方法であって、
     前記検出手段から放射線が照射されない状態の電荷に基づいた複数のオフセット信号を異なるタイミングで取得する信号取得工程と、
     前記オフセット信号の時間変化値が予め設定された基準値以下になった段階で、前記検出手段の各画素からの信号に基づいたオフセット画像を取得する画像取得工程と、
     を有することを特徴とする放射線撮影方法。
  23.  放射線を検出して電荷を蓄積する画素が2次元的に複数配置された検出手段を有する放射線撮影装置の放射線撮影方法であって、
     前記検出手段から放射線が照射されない状態の電荷に基づいた複数のオフセット信号の差分に基づいた信号差を異なるタイミングで取得する信号取得工程と、
     前記信号差の時間変化値が予め設定された基準値以下になった段階で、前記検出手段の各画素からの信号に基づいたオフセット画像を取得する画像取得工程と、
     を有することを特徴とする放射線撮影方法。
  24.  コンピュータに、請求項22または23に記載の放射線撮影方法の各工程を実行させるためのプログラム。
PCT/JP2019/017057 2018-07-10 2019-04-22 放射線撮影装置、放射線撮影システム、放射線撮影方法及びプログラム WO2020012752A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-130889 2018-07-10
JP2018130889A JP2020005987A (ja) 2018-07-10 2018-07-10 放射線撮影装置、放射線撮影システム、放射線撮影方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2020012752A1 true WO2020012752A1 (ja) 2020-01-16

Family

ID=69141546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017057 WO2020012752A1 (ja) 2018-07-10 2019-04-22 放射線撮影装置、放射線撮影システム、放射線撮影方法及びプログラム

Country Status (2)

Country Link
JP (1) JP2020005987A (ja)
WO (1) WO2020012752A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121718A (ja) * 2002-10-07 2004-04-22 Hitachi Medical Corp X線撮影装置
JP2006158728A (ja) * 2004-12-08 2006-06-22 Canon Inc 放射線撮像装置及びその制御方法
JP2007082729A (ja) * 2005-09-22 2007-04-05 Hitachi Medical Corp X線画像診断装置
JP2010167117A (ja) * 2009-01-23 2010-08-05 Shimadzu Corp 放射線撮像装置
WO2010125609A1 (ja) * 2009-04-30 2010-11-04 株式会社島津製作所 光または放射線撮像装置
JP2010284374A (ja) * 2009-06-12 2010-12-24 Toshiba Corp X線ct装置及びコンピュータプログラム
JP2012120652A (ja) * 2010-12-07 2012-06-28 Fujifilm Corp 放射線撮影システム
JP2012183241A (ja) * 2011-03-07 2012-09-27 Canon Inc 放射線撮像装置及びその制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121718A (ja) * 2002-10-07 2004-04-22 Hitachi Medical Corp X線撮影装置
JP2006158728A (ja) * 2004-12-08 2006-06-22 Canon Inc 放射線撮像装置及びその制御方法
JP2007082729A (ja) * 2005-09-22 2007-04-05 Hitachi Medical Corp X線画像診断装置
JP2010167117A (ja) * 2009-01-23 2010-08-05 Shimadzu Corp 放射線撮像装置
WO2010125609A1 (ja) * 2009-04-30 2010-11-04 株式会社島津製作所 光または放射線撮像装置
JP2010284374A (ja) * 2009-06-12 2010-12-24 Toshiba Corp X線ct装置及びコンピュータプログラム
JP2012120652A (ja) * 2010-12-07 2012-06-28 Fujifilm Corp 放射線撮影システム
JP2012183241A (ja) * 2011-03-07 2012-09-27 Canon Inc 放射線撮像装置及びその制御方法

Also Published As

Publication number Publication date
JP2020005987A (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
JP5159161B2 (ja) 放射線撮像装置、放射線撮像システム及びその制御方法
JP5105940B2 (ja) 撮像装置、撮像システム、その制御方法及びプログラム
JP5038101B2 (ja) 放射線撮像装置、その駆動方法及びプログラム
US7832928B2 (en) Dark correction for digital X-ray detector
US8894280B2 (en) Calibration and correction procedures for digital radiography detectors supporting multiple capture modes, methods and systems for same
US10271813B2 (en) Radiography system, control method, and storage medium
JP6188355B2 (ja) 放射線撮影装置、補正方法及びプログラム
JP2010112866A (ja) 可搬型放射線画像撮影装置および放射線画像撮影システム
US20130341525A1 (en) Radiation image capturing apparatus and radiation image capturing system
JP7373338B2 (ja) 放射線撮像装置及び放射線撮像システム
JP2012024231A (ja) 放射線撮像装置、放射線撮像システム、及び放射線撮像方法
WO2020012752A1 (ja) 放射線撮影装置、放射線撮影システム、放射線撮影方法及びプログラム
WO2019244456A1 (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法、および、プログラム
JP7449260B2 (ja) 放射線撮像装置及び放射線撮像システム
JP6455337B2 (ja) 放射線画像撮影システムおよび放射線画像撮影装置
JP7438720B2 (ja) 放射線撮像装置及び放射線撮像システム
JP2019136388A (ja) 放射線撮像装置及びその駆動方法、並びに、プログラム
JP2011160816A (ja) 放射線画像検出器を用いた画像生成方法、放射線画像検出器、および放射線画像生成システム
JP6059534B2 (ja) 放射線量に基づく撮像検出器タイルのパラメタの補償
JP6858061B2 (ja) 放射線撮影システム、放射線撮影装置、放射線撮影方法およびプログラム
WO2014050532A1 (ja) 放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影プログラム
JP2021010653A (ja) 放射線撮像装置および放射線撮像システム
US11828888B2 (en) Radiation imaging apparatus
JP6701392B2 (ja) 放射線撮像装置および放射線撮像システム
JP2014090863A (ja) 放射線画像撮影システムおよび自動露出制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833687

Country of ref document: EP

Kind code of ref document: A1