WO2020012679A1 - 三相回転電機の駆動装置及び三相回転電機ユニット - Google Patents

三相回転電機の駆動装置及び三相回転電機ユニット Download PDF

Info

Publication number
WO2020012679A1
WO2020012679A1 PCT/JP2019/001459 JP2019001459W WO2020012679A1 WO 2020012679 A1 WO2020012679 A1 WO 2020012679A1 JP 2019001459 W JP2019001459 W JP 2019001459W WO 2020012679 A1 WO2020012679 A1 WO 2020012679A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
control
electric machine
rotating electric
phase rotating
Prior art date
Application number
PCT/JP2019/001459
Other languages
English (en)
French (fr)
Inventor
典樹 森本
萩村 将巳
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Priority to CN201980036420.6A priority Critical patent/CN112204872A/zh
Priority to EP19833121.7A priority patent/EP3823155B1/en
Publication of WO2020012679A1 publication Critical patent/WO2020012679A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • F02P7/067Electromagnetic pick-up devices, e.g. providing induced current in a coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0896Inverters for electric machines, e.g. starter-generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • F02N2019/007Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation using inertial reverse rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • F02P7/067Electromagnetic pick-up devices, e.g. providing induced current in a coil
    • F02P7/07Hall-effect pick-up devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/07Trapezoidal waveform
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/13Different type of waveforms depending on the mode of operation

Definitions

  • the present invention relates to a drive device for a three-phase electric rotating machine and a three-phase electric rotating machine unit.
  • ACG starter motor used as a motor for starting an engine of a vehicle and a generator after starting the engine (see Patent Document 1 below).
  • Patent Document 1 three magnetic sensors are used to determine three-phase energizing timing for driving the ACG starter motor.
  • the magnetic sensor needs to be molded with a filler to support a waterproof structure. Therefore, when the number of magnetic sensors is large, the cost for the magnetic sensors and the filler is increased. Therefore, it is desired to reduce the number of magnetic sensors.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a drive device of a three-phase rotating electric machine and a three-phase rotating electric machine unit capable of reducing the number of magnetic sensors.
  • One embodiment of the present invention is a driving device of a three-phase rotating electric machine mounted on a vehicle, wherein a plurality of switching elements that conduct current to a three-phase winding of the three-phase rotating electric machine by performing a switching operation;
  • a control unit that controls a switching operation of the switching element, wherein the control unit performs a first control that controls the switching operation with four conduction patterns indicating an on state or an off state of the plurality of switching elements.
  • a driving device for a three-phase rotating electric machine wherein the driving device drives the three-phase rotating electric machine.
  • One embodiment of the present invention is the above-described driving device, wherein the control unit uses the four energization patterns in the first control to use a U-phase, a V-phase, and a W-phase in the three-phase winding. It is characterized in that the energization timing of each phase winding is controlled.
  • One embodiment of the present invention is the above-described driving device, wherein the four energization patterns include a first energization pattern for energizing U-phase, V-phase, and W-phase windings of the three-phase winding. , A second energization pattern that energizes the U-phase and V-phase windings and does not energize the W-phase winding.
  • One embodiment of the present invention is the above-described driving device, wherein the two magnetic sensors for detecting magnetic fluxes of a plurality of N-pole and S-pole magnets provided alternately in a circumferential direction of the rotor of the three-phase rotating electric machine are provided. Each of the four energization patterns is determined by a combination of outputs from the two magnetic sensors.
  • One embodiment of the present invention is the above-described driving device, wherein the control unit selects the first energization pattern when the logic of each output of the two magnetic sensors is the same. If the outputs of the two magnetic sensors have different logics, the second energization pattern is selected.
  • One embodiment of the present invention is the above-described driving device, wherein the control unit can switch between the first control and a second control different from the first control, as the control of the switching operation.
  • the second control determines the U-phase and V-phase energization timings and estimates the W-phase energization timings based on the outputs of the two magnetic sensors, so that the plurality of switching elements Is a control to perform a switching operation of the plurality of switching elements in six energization patterns indicating an on state or an off state.
  • One embodiment of the present invention is the above-described driving device, wherein the control unit performs the first control for a specified time at the time of starting the three-phase rotating electric machine to rotate the three-phase rotating electric machine forward, After the lapse of the prescribed time, the control is switched from the first control to the second control.
  • control unit includes a rotation speed detection unit that detects a rotation speed of the three-phase rotating electric machine after the first control is started, When the rotation speed detected by the rotation speed detection unit reaches a specified value, the control is switched from the first control to the second control.
  • control unit includes a rotation speed detection unit that detects a rotation speed of the three-phase rotating electric machine after the first control is started, When the rotation speed detected by the rotation speed detection unit reaches a specified value, the control is switched from the first control to the second control.
  • One embodiment of the present invention is the above-described drive device, wherein the control unit executes the first control when the three-phase rotating electric machine is reversed from a stopped state, and stops the three-phase rotating electric machine. In the case of normal rotation from the state, the second control is executed.
  • One embodiment of the present invention is the above-described drive device, wherein the control unit executes the first control when the three-phase rotating electric machine rotates in a reverse direction or a normal direction from a stopped state, and performs the three-phase rotation.
  • the first control is switched to the second control.
  • One embodiment of the present invention is a three-phase rotating electrical machine unit including a three-phase rotating electrical machine mounted on a vehicle and a driving device for driving the three-phase rotating electrical machine, wherein the three-phase rotating electrical machine includes a plurality of cores.
  • a stator having teeth, having a plurality of slots in which a three-phase winding is wound between adjacent core teeth, and a rotor having a plurality of magnets having N and S poles alternately magnetized; And a different pole portion having a different magnetic pole from its own magnetic pole provided in one of the plurality of magnets, wherein the driving device is provided in a first slot among the plurality of slots.
  • One embodiment of the present invention is the above-described three-phase electric rotating machine unit, wherein the third magnetic sensor is provided in a rotation axis direction of the rotor from a position of the first magnetic sensor or the second magnetic sensor. Have been.
  • the number of magnetic sensors can be reduced.
  • FIG. 1 is a perspective view of a three-phase rotating electric machine 1 according to one embodiment of the present invention.
  • 1 is a plan view of a three-phase rotating electric machine 1 according to one embodiment of the present invention.
  • FIG. 2 is an expanded view of an inner peripheral side of a rotor 12 according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating functional blocks according to an embodiment of the present invention.
  • FIG. 9 is a diagram showing an example of information of four energization patterns # 1 to # 4 stored in a storage unit 82 according to an embodiment of the present invention in a table format.
  • FIG. 4 is a timing chart of a start control according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an example of normal control according to an embodiment of the present invention. It is a figure explaining the modification of normal control concerning one embodiment of the present invention.
  • FIG. 5 is a diagram showing an example of information of energization patterns # ′ 1 to # ′ 6 of normal control according to an embodiment of the present invention in a table format.
  • FIG. 2 is a plan view of the three-phase rotating electric machine 1 when the rotating electric machine 1 according to one embodiment of the present invention has 14 poles and 12 slots. It is a figure showing the arrangement position of the magnetic sensor in case electric rotating machine 1 concerning one embodiment of the present invention has 14 poles and 12 slots. It is a figure showing an ignition position concerning one embodiment of the present invention. It is a figure showing the conventional energization pattern.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a three-phase rotating electrical machine unit A according to an embodiment of the present invention.
  • the three-phase rotating electrical machine unit A includes a three-phase rotating electrical machine (hereinafter, referred to as “three-phase rotating electrical machine”) 1 and a driving device 2.
  • the drive device 2 includes a first magnetic sensor 3, a second magnetic sensor 4, a third magnetic sensor 5, a power supply unit 6, an inverter 7, and a control unit 8.
  • the three-phase rotating electric machine 1 is mounted on a vehicle such as a motorcycle.
  • the three-phase rotating electric machine 1 is a so-called ACG starter motor in which a function of a generator having a permanent magnet and a starter motor function (engine start function) are integrated.
  • the three-phase rotating electric machine 1 includes a stator 11 fixed to an engine block (not shown) and a rotor 12 fixed to a crankshaft (not shown) of an engine (internal combustion engine).
  • the rotation axis direction of the rotor 12 is simply referred to as the axial direction
  • the radial direction of the stator 11 orthogonal to the rotation axis direction is simply referred to as the radial direction
  • the rotation direction of the rotor 12 is simply referred to as the rotation direction or the circumferential direction. Called direction.
  • FIG. 2 is a perspective view of the three-phase rotating electric machine 1 according to one embodiment of the present invention.
  • FIG. 3 is a plan view of the three-phase rotating electric machine 1 according to one embodiment of the present invention.
  • FIG. 4 is an expanded view of the inner peripheral side of the rotor 12 according to the embodiment of the present invention.
  • the stator 11 includes a stator core 111 formed by laminating electromagnetic steel sheets, and a three-phase winding 112 wound around the stator core 111.
  • the stator core 111 has a main body 111a formed in an annular shape, and a plurality of teeth 111b radially protruding radially outward from the outer peripheral surface of the main body 111a.
  • Each tooth portion 111b is formed in a substantially T-shape in plan view in the axial direction.
  • the teeth 111b are an example of the “core teeth” of the present invention.
  • slots 111c are formed between the adjacent teeth portions 111b.
  • Each tooth portion 111b is assigned to each of three phases (U phase, V phase, W phase).
  • the teeth 111b are circumferentially U-phase, V-phase, W-phase, U-phase, V, W, U, V, W, U, U, V, W, U, V, W, U, V, W, U, V, V, and W phases are assigned in this order.
  • the U-phase teeth 111b are referred to as U-phase teeth 111U
  • the V-phase teeth 111b are referred to as V-phase teeth 111V
  • the W-phase teeth 111b are referred to as W-phase teeth 111W. Name.
  • the three-phase winding 112 is wound around each of the teeth 111b. More specifically, a U-phase winding (hereinafter, referred to as “U-phase winding”) 112U is wound around the U-phase teeth 111U as the three-phase winding 112. A V-phase winding (hereinafter, referred to as “V-phase winding”) 112V is wound around the V-phase teeth 111V as the three-phase winding 112. A W-phase winding (hereinafter referred to as “W-phase winding”) 112W is wound around the W-phase teeth 111W as the three-phase winding 112.
  • the rotor 12 is coupled to an unillustrated engine crankshaft so as to be integrally rotatable.
  • a plurality of magnets 121 having N and S poles alternately magnetized are arranged at equal intervals in the circumferential direction.
  • N-pole magnets hereinafter, referred to as “N-pole magnets”) 121N and S-pole magnets (hereinafter, referred to as “S-pole magnets”) 121S are alternately provided on the inner peripheral surface of the rotor 12. Are mounted at equal intervals along the circumferential direction.
  • the entire surface of the N-pole magnet 121N on the radially inner side is magnetized to the N-pole, and the entire surface of the S-pole magnet 121S on the radially inner side is magnetized to the S-pole. Further, out of the plurality of magnets 121, only a part of one S-pole magnet 121S is provided with the different pole portion 122.
  • the different pole portion 122 is, for example, a magnet magnetized to the N pole, and is used as a target for detecting the ignition timing of the engine.
  • the different pole part 122 is provided as a part of one S pole magnet 121S at one axial end of the S pole magnet 121S.
  • the first magnetic sensor 3 is provided in the first slot 130 among the plurality of slots 111c, and detects the magnetic flux of the plurality of magnets 121.
  • the first magnetic sensor 3 outputs the detection result to the control unit 8 as a first output signal.
  • the first magnetic sensor 3 is a Hall IC.
  • the second magnetic sensor 4 is provided in a second slot 140 different from the first slot 130 among the plurality of slots 111c, and detects the magnetic flux of the plurality of magnets 121.
  • the second magnetic sensor 4 outputs the detection result to the control unit 8 as a second output signal.
  • the second magnetic sensor 4 is a Hall IC.
  • the third magnetic sensor 5 is provided in the first slot 130 or the second slot 140 and is provided at a position corresponding to the different pole part 122.
  • the third magnetic sensor 5 detects the magnetic flux of the different pole part 122 and outputs the detection result to the control unit 8 as a third output signal.
  • the first magnetic sensor 3 and the second magnetic sensor 4 are arranged on the same line in the rotation direction (circumferential direction) of the rotor 12.
  • the first magnetic sensor 3 and the second magnetic sensor 4 are arranged at a position M1 on the inner peripheral surface of the rotor 12 facing substantially the center in the axial direction.
  • the third magnetic sensor 5 is arranged at a position shifted from the line on which the first magnetic sensor 3 and the second magnetic sensor 4 are arranged.
  • the third magnetic sensor 5 is provided in the axial direction of the first magnetic sensor 3 or the second magnetic sensor. In the present embodiment, the third magnetic sensor 5 is provided directly above the second magnetic sensor 4.
  • the first magnetic sensor 3, the second magnetic sensor 4, and the third magnetic sensor 5 are housed inside a sensor case 20.
  • a secondary battery such as a nickel hydride battery or a lithium ion battery can be used as the power supply unit 6. Further, the power supply unit 6 may use an electric double layer capacitor (capacitor) instead of the secondary battery.
  • the power supply unit 6 of the present embodiment is a battery provided in the vehicle.
  • the inverter 7 has a plurality of switching elements SW UH to SW WL (SW UH , SW UL , SW VH , SW VL , SW WH , SW WL ), and performs a switching operation for switching the switching elements between an on state and an off state. Is executed, power is supplied to the three-phase winding 112 of the three-phase rotating electric machine 1. More specifically, the inverter 7 converts a DC current from the power supply unit 6 into an AC current by performing a switching operation of the plurality of switching elements SW UH to SW WL to convert the U-phase winding 112U and the V-phase winding 112W and the W-phase winding 112W. Thereby, the three-phase rotating electric machine 1 is driven.
  • the six switching elements SW UH to SW WL are n-channel FETs (Field Effective Transistors) will be described.
  • the present invention is not limited to this.
  • an IGBT Insulated gate bipolar transistor
  • BJT bipolar junction transistor
  • the switching elements SW UH and SW UL connected in series, the switching elements SW VH and SW VL connected in series, and the switching elements SW WH and SW WL connected in series include a power supply unit. 6 is connected in parallel between the high potential (output) side and the ground potential.
  • the drain terminal of the switching element SW UH is connected to the output terminal of the power supply unit 6.
  • the source terminal of the switching element SW UL is connected to GND (ground).
  • a connection point N1 between the source terminal of the switching element SW UH and the drain terminal of the switching element SW UL is connected to one end of the U-phase winding 112U.
  • the drain terminal of the switching element SW VH is connected to the drain terminal of the switching element SW UH .
  • the source terminal of the switching element SW VL is connected to GND (ground).
  • a connection point N2 between the drain terminal of the switching element SW VL is connected to one end of the V-phase winding 112V.
  • the drain terminal of the switching element SW WH is connected to the drain terminal of the switching element SW UH .
  • the source terminal of the switching element SW WL is connected to GND (ground).
  • connection point N3 between the drain terminal of the switching element SW WL is connected to one end of the W phase winding 112W.
  • the gate terminals of the switching elements SW UH to SW WL are connected to the control unit 8.
  • the control unit 8 obtains the U-phase winding 112U, the V-phase winding 112V, and the W-phase from the output signals (the first output signal and the second output signal) of the first magnetic sensor 3 and the second magnetic sensor 4. All energization timings for energizing each of the phase windings 112W are determined. Then, the control unit 8 performs switching of the plurality of switching elements SW UH to SW WL so that the U-phase winding 112U, the V-phase winding 112V, and the W-phase winding 112W are energized at the determined energization timings. Control behavior.
  • start control is mainly executed when the three-phase rotating electric machine 1 starts from a stopped state.
  • the case where the three-phase rotating electric machine 1 is started includes a case where the three-phase rotating electric machine is rotated forward after the swingback is performed or a case where the three-phase rotating electric machine is rotated forward after the swingback is performed.
  • start control according to the present embodiment is an example of the “first control” of the present invention.
  • control unit 8 obtains the output (first output signal, second output signal, and third output signal) of the first magnetic sensor 3, the second magnetic sensor 4, and the third magnetic sensor 5,
  • the absolute rotation position of the three-phase rotating electric machine 1 is identified. Note that identifying the absolute rotational position of the three-phase rotating electric machine 1 is synonymous with detecting the ignition timing (ignition position) of the engine.
  • the control unit 8 may be configured by a microprocessor such as a CPU or an MPU, a microcontroller such as an MCU, or the like.
  • FIG. 5 is a diagram showing functional blocks according to one embodiment of the present invention.
  • the control unit 8 includes a rotor state determination unit 81, a storage unit 82, an energization pattern determination unit 83, and a drive control unit 84.
  • the rotor state determination unit 81 determines whether the rotor 12 is in a low-speed rotation state or a normal rotation state. For example, when the number of rotations of the rotor 12 is equal to or less than a preset threshold, the rotor state determination unit 81 determines that the rotor 12 is in the low-speed rotation state. Therefore, the low-speed rotation state includes a state in which the rotor 12 is stopped. On the other hand, when the rotation speed of the rotor 12 exceeds the threshold, the rotor state determination unit 81 determines that the rotor 12 is in the normal rotation state. Note that the rotor state determination unit 81 calculates the rotation speed of the rotor 12 from at least one of the first output signal, the second output signal, and the third output signal, for example.
  • the storage unit 82 stores information on four energization patterns # 1 to # 4 indicating the ON state or the OFF state of the plurality of switching elements SW UH to SW WL .
  • the energization pattern is a switching pattern for turning on or off the switching elements SW UH to SW WL , and is a continuously ON state (“ON”) or a continuously OFF “OFF” state. (A period other than “ON” or “PWM (Pulse Width Modulation)”) or a state controlled on or off at a fixed cycle (a state controlled by PWM) (“PWM”).
  • FIG. 6 is a table showing an example of information of four energization patterns # 1 to # 4 stored in the storage unit 82 according to an embodiment of the present invention. These four energization patterns # 1 to # 4 are determined by combinations of the respective logical values of the first output signal and the second output signal. Note that the case where the logical value is “1” is the case where the signal level is the Hi level. On the other hand, the case where the logical value is “0” is the case where the signal level is the Low level.
  • the energization pattern # 1 is an energization pattern when the logical value of the first output signal is “1” and the logical value of the second output signal is “0”, and the switching element SW UH And the switching element SW VL is turned on, and the switching element SW UL , the switching element SW VH , the switching element SW WH , and the switching element SW WL are turned off.
  • the energization pattern # 2 is an energization pattern when the logical values of the first output signal and the second output signal are both “1”, and includes the switching element SW UH , the switching element SW VH, and the switching element SW.
  • This is an energization pattern that controls WH to an on state, and controls switching element SW UL , switching element SW VL , and switching element SW WH to an off state.
  • the energization pattern # 3 is an energization pattern when the logical value of the first output signal is “0” and the logical value of the second output signal is “1”, and the switching element SW UL And the switching element SW VH is turned on, and the switching element SW UH , the switching element SW VL , the switching element SW WH , and the switching element SW WL are turned off.
  • the energization pattern # 4 is an energization pattern when the logical values of the first output signal and the second output signal are both “0”, and includes the switching element SW UL , the switching element SW VL , and the switching element.
  • This is an energization pattern that controls SW WH to an on state and controls switching element SW UH , switching element SW VH, and switching element SW WH to an off state.
  • the energization patterns # 2 and # 4 having the same logical value of the first output signal and the logical value of the second output signal correspond to the U-phase winding 112U.
  • V-phase winding 112V, and W-phase winding 112W are energization patterns (hereinafter, referred to as “first energization patterns”).
  • the energization patterns # 1 and # 3 in which the logical value of the first output signal and the logical value of the second output signal are different, energize the U-phase winding 112U and the V-phase winding 112V,
  • This is an energization pattern (hereinafter, referred to as “second energization pattern”) in which no current is applied to 112W.
  • the energization pattern determination unit 83 acquires a first output signal from the first magnetic sensor 3. Further, the energization pattern determination unit 83 acquires a second output signal from the second magnetic sensor 4.
  • the energization pattern determination unit 83 compares the logical value of the first output signal acquired from the first magnetic sensor 3 with the logical value of the first output signal.
  • the energization pattern corresponding to the logical value of the second output signal acquired from the second magnetic sensor 4 is determined by selecting from the storage unit 82.
  • the drive control unit 84 controls the switching operation of the plurality of switching elements SW UH to SW WL based on the energization pattern determined by the energization pattern determination unit 83. Specifically, the drive control unit 84 controls the switching operation of the plurality of switching elements SW UH to SW WL according to the energization pattern determined by the energization pattern determination unit 83.
  • FIG. 7 is a timing chart of the start control according to the embodiment of the present invention.
  • the control unit 8 executes start control on the three-phase electric rotating machine 1.
  • the swingback control is intended to reduce the starting torque by, for example, driving the three-phase rotating electric machine 1 in the reverse direction immediately after the engine is stopped to secure a running distance to the compression top dead center.
  • the control unit 8 determines whether the rotor 12 is stopped by the rotor state determination unit 81.
  • the control unit 8 obtains a first output signal from the first magnetic sensor 3 and outputs the second output signal to the second magnetic sensor 4. From the second output signal.
  • the energization pattern determination unit 83 of the control unit 8 converts the logical value of the first output signal acquired from the first magnetic sensor 3 and the logical value of the second output signal acquired from the second magnetic sensor 4 into The corresponding energization pattern is determined by selecting from the storage unit 82.
  • the energization pattern determination unit 83 sets the energization pattern for executing the start control.
  • the power supply pattern # 1 is selected, and the information of the power supply pattern # 1 is read from the storage unit 82.
  • the drive control unit 84 controls the switching element SW UH and the switching element SW VL of the plurality of switching elements SW UH to SW WL to the on state based on the conduction pattern # 1 determined by the conduction pattern determination unit 83.
  • the switching element SW UL , the switching element SW VH , the switching element SW WH , and the switching element SW WL are controlled to be in the off state.
  • control unit 8 executes the starting control at predetermined time intervals until the crankshaft reaches the compression top dead center. Thereby, the three-phase rotating electric machine 1 swings back until the crankshaft reaches the compression top dead center.
  • the control unit 8 stops the start control. Then, at the time of starting the engine, for example, at the time of starting the engine from the idling stop state, the control unit 8 performs the start control for a specified time to rotate the rotor 12 forward. Then, the control unit 8 shifts to the normal control instead of the start control after a lapse of a predetermined time from the start of the forward rotation of the rotor 12.
  • the normal control is control for driving the rotor 12 in the normal rotation by estimating the W-phase energizing timing from the first output signal and the second output signal.
  • the normal control according to the present embodiment is an example of the “second control” of the present invention.
  • the control unit 8 performs the first output signal as shown in FIG.
  • the time T1 from the rising timing of the output signal to the rising timing of the second output signal is measured, and the energization timing of the W phase is estimated according to the time T1. That is, the controller 8 sets the timing at which the time T1 has elapsed from the rise of the second output signal as the W-phase energization timing.
  • the control unit 8 determines the time T2 from the timing at which the first output signal falls to the timing at which the second output signal falls, as described above.
  • the controller 8 sets the timing at which the time T2 has elapsed from the fall of the second output signal to the timing at which the energization of the W phase is stopped.
  • the method of estimating the energization timing of the W phase is not limited to the estimation method illustrated in FIG. 8, and may be, for example, the estimation method illustrated in FIG. 9.
  • the control unit 8 measures a time T3 from the timing of the rising of the second output signal to the timing of the falling of the first output signal. Is estimated. That is, the control unit 8 sets the timing at which the time T3 has elapsed from the fall of the first output signal as the W-phase energization timing.
  • the control unit 8 measures the time T4 from the falling timing of the second output signal to the rising timing of the first output signal.
  • the timing for stopping the energization of the W phase is estimated according to the time T4. That is, the controller 8 sets the timing at which the time T4 has elapsed from the rise of the first output signal to the timing at which the energization of the W phase is stopped.
  • control unit 8 can switch between the start control and the normal control different from the start control as the control of the switching operation of the plurality of switching elements SW UH to SW WL .
  • the normal control is to determine the U-phase and V-phase energization timings and to estimate the W-phase energization timings based on the output of the first magnetic sensor 3 and the output of the second magnetic sensor 4.
  • the control unit 8 starts the forward or reverse rotation start control from the stopped state of the rotor 12 and shifts to the normal control when a specified time has elapsed since the start of the start control.
  • the control unit 8 includes a rotation speed detection unit that detects the rotation speed of the rotor 12 after starting the start control, and when the rotation speed reaches a specified value, the control unit 8 may switch from the start control to the normal control. good.
  • the control unit 8 includes a rotation speed detection unit that detects the rotation speed of the rotor 12 after starting the start control, and when the rotation speed reaches a specified value, the control unit 8 may switch from the start control to the normal control. good.
  • the normal Control may be shifted to.
  • the count number of the edge may be the count number of the falling edge of the first output signal or the second output signal.
  • the control unit 8 starts the forward or reverse rotation start control from the stopped state of the rotor 12 and shifts to the normal control when a specified time has elapsed since the start of the start control.
  • the control unit 8 includes a rotation speed detection unit that detects the rotation speed of the rotor 12 after starting the start control, and when the rotation speed reaches a specified value, the control unit 8 may switch from the start control to the normal control. good.
  • the time between two rising edges of a predetermined first output signal or a second output signal after starting the start control is measured, and the measured time is equal to or less than a specified value, that is, the rotation speed. May be shifted to the normal control when becomes equal to or more than the specified value.
  • the count number of the edge may be the count number of the falling edge of the first output signal or the second output signal.
  • the control unit 8 starts the forward or reverse rotation start control from the stopped state of the rotor 12 and shifts to the normal control when a specified time has elapsed since the start of the start control.
  • the invention is not limited to this.
  • the control unit 8 may perform start control when rotating the rotor 12 in the reverse direction from the stopped state of the rotor 12, and may perform normal control when rotating the rotor 12 forward from the stopped state of the rotor 12.
  • the control unit 8 may rotate the rotor 12 in the reverse direction by the start control, and may rotate the rotor 12 by the normal control in the normal control when starting from the idling stop state.
  • the stop position of the rotor after the swingback control is stopped at a predetermined position in advance. That is, in the swingback control, the control unit 8 may rotate the rotor 12 to the predetermined position by the start control.
  • the control unit 8 starts the forward or reverse rotation start control from the stopped state of the rotor 12 and shifts to the normal control when a specified time has elapsed since the start of the start control.
  • the invention is not limited to this.
  • the control unit 8 executes the start control, and the crankshaft of the engine (internal combustion engine) connected to the three-phase rotating electric machine 1 May exceed the compression top dead center, the control may be switched from the start control to the normal control.
  • n is a natural number of 3 or more
  • the number of teeth 111b of the three-phase rotating electric machine 1 is T
  • the number of magnetic poles is P
  • the number T of teeth 111b and the number P of poles are as follows.
  • P: T 3n ⁇ 1: 3n (1) Is set to satisfy
  • each tooth portion 111b is assigned to each of three phases (U phase, V phase, W phase).
  • n is an even number
  • m is a natural number of 1 or more
  • N / 2 in-phase teeth 111b are arranged adjacent to each other in the circumferential direction (to be arranged side by side)
  • 2m in-phase teeth groups 200U, 200V, 200W are formed.
  • the in-phase teeth groups 200U, 200V, and 200W having the same phase are arranged to face each other around the rotation axis.
  • teeth portions 111b of three phases (U-phase, V-phase, and W-phase) are all arranged adjacently (in a line) in the circumferential direction. You.
  • n 4.
  • the teeth 111b are allocated in the circumferential direction in the order of U phase, U phase, V phase, V phase, W phase, W phase, U phase, U phase, V phase, V phase, W phase, and W phase. I have.
  • the twelve teeth portions 111b include two U-phase teeth groups 200U including two U-phase teeth portions 111U and two V-phase teeth groups 200V including two V-phase teeth portions 111V.
  • the current stored in the battery is supplied to the three-phase winding.
  • a current is selectively supplied to a winding of a predetermined phase wound around each tooth portion 111b.
  • a magnetic flux is sequentially formed in the tooth portion 111b of each phase.
  • a magnetic attractive force or a repulsive force is generated between the magnetic flux and the magnet 121 provided on the rotor 12, and the rotor 12 rotates.
  • a crankshaft (not shown) rotates via the rotor 12, and the engine starts.
  • the number P of the magnetic poles is set to “14”
  • the number T of the teeth 111b is set to “12”
  • n 4
  • the above equation (2) and [condition 1] are set.
  • the present invention is not limited to this, and the three-phase rotating electric machine 1 in Modification 5 satisfies either the above equation (1) or the above equation (2), and either [condition 1] or [condition 2] What is necessary is just to be set so that it may satisfy. That is, the teeth 111b may be arranged so as to be in phase with at least any one of the adjacent teeth 111b.
  • the three-phase rotating electric machine 1 includes the stator in which the plurality of teeth are arranged adjacent to each other in the circumferential direction, and the rotatable rotor is provided with respect to the stator, and the plurality of magnetic poles are provided along the circumferential direction.
  • the plurality of teeth portions include a plurality of first teeth (U-phase teeth portion) around which the first-phase coil is wound, and a plurality of second teeth (V-phase teeth) around which the second-phase coil is wound. ) And a plurality of third teeth (W-phase teeth) around which a third-phase coil is wound, and all of the plurality of teeth have the same phase as at least any one of the adjacent teeth. May be arranged.
  • all the teeth of the same phase may be arranged adjacent to each other in the circumferential direction.
  • n is an even number
  • m is a natural number of 1 or more
  • n / 2 in-phase 2m in-phase teeth groups in which the tooth portions are arranged adjacent to each other in the circumferential direction may be formed, and the 2m in-phase teeth groups may be arranged to face each other around the rotation axis.
  • the control unit 8 performs the first output when the third output signal is at the Hi level as shown in FIG.
  • the timing at which the signal rises may be the ignition position.
  • the different pole portion 122 is provided on the S pole magnet 121S, but the present invention is not limited to this, and may be provided on a magnet having a polarity different from its own magnetic pole. Further, as long as the different pole portion 122 is provided on a magnet having a polarity different from its own magnetic pole, a metal such as iron or a cavity may be formed.
  • the driving device 2 of the three-phase rotating electric machine 1 includes the outputs (the first output signal and the second output signal) of the first magnetic sensor 3 and the second magnetic sensor 4.
  • the control unit 8 determines all the energization timings for energizing the U-phase, V-phase, and W-phase windings based on the output signals of the power supply.
  • control unit 8 includes four energization patterns indicating the ON state or the OFF state of the plurality of switching elements SW UH to SW WL , and uses these four energization patterns to determine the U-phase, V-phase, And the energization timing of the W-phase windings may be controlled.
  • each of the four energization patterns is determined by a combination of the outputs of the two magnetic sensors (the first magnetic sensor 3 and the second magnetic sensor 4).
  • the control unit 8 selects the first energization pattern when the logic of each output of the two magnetic sensors is the same, and selects the second energization pattern when the logic of each output of the two magnetic sensors is different. Is selected, and the switching operation is performed with the selected energization pattern.
  • the rotor 12 when starting the rotor 12 from the stopped state, the rotor 12 can be rotated in a desired direction.
  • a driving device for a conventional three-phase rotating electric machine uses six U-phase, V-phase, and W-phase magnetic sensors to output six energization patterns # 1 'to # 6' as shown in FIG.
  • the rotating electric machine is rotating.
  • the number of W-phase magnetic sensors is reduced, it is impossible to discriminate between the energized pattern # 1 'and the energized pattern # 2' or between the energized pattern # 4 'and the energized pattern # 5'.
  • the phase rotating electric machine cannot be driven. Therefore, in such a case, when starting the rotor 12 from the stopped state, an arbitrary energizing pattern is selected from the six energizing patterns # 1 'to # 6' and energized.
  • the rotor 12 may not start in a desired direction because one suitable energization pattern is selected from a plurality of candidates.
  • the control for selecting from the other energization pattern candidates is performed when the start of the rotor 12 fails, it takes a long time to start.
  • the W-phase magnetic sensor is rotated in four energizing patterns that can be identified by a combination of the outputs of the two magnetic sensors (the first magnetic sensor 3 and the second magnetic sensor 4). Is reduced, the rotor 12 can be rotated in a desired direction without failing to rotate the rotor 12.
  • the magnetic sensor for the ignition signal (the third magnetic sensor 5) is used independently for control, the U-phase and the V-phase magnetic sensors (the first magnetic sensor) are used.
  • the third and second magnetic sensors 4) may be arranged at 120 ° intervals. Therefore, by arranging the magnetic sensor for the ignition signal and the U-phase or V-phase magnetic sensor in the axial direction, it is possible to use only two sensor bases (sensor feet). Thus, the sensor case can be downsized, which contributes to cost reduction.

Abstract

磁気センサを削減する。車両に搭載される三相回転電機の駆動装置であって、スイッチング動作することにより、前記三相回転電機の三相巻線に通電する複数のスイッチング素子と、前記複数のスイッチング素子のスイッチング動作を制御する制御部と、を備え、前記制御部は、前記複数のスイッチング素子のオン状態又はオフ状態を示す4つの通電パターンで前記スイッチング動作を制御する第1の制御を行うことで、前記三相回転電機を駆動する。

Description

三相回転電機の駆動装置及び三相回転電機ユニット
 本発明は、三相回転電機の駆動装置及び三相回転電機ユニットに関する。
 車両に搭載される三相回転電機として、例えば、車両のエンジン始動用のモータ及びエンジン始動後の発電機として用いられる、所謂ACGスタータモータがある(下記特許文献1参照)。
 上記特許文献1では、ACGスタータモータを駆動ための三相の通電タイミングを決定するために3つの磁気センサが使用されている。
特開2009-89588号公報
 しかしながら、磁気センサは、防水構造対応のために充填剤でモールドする必要がある。そのため、磁気センサの数が多いと磁気センサと充填剤分のコストが高くなる。したがって、磁気センサの数が削減することが望まれている。
 本発明は、このような事情に鑑みてなされたもので、その目的は、磁気センサを削減可能な三相回転電機の駆動装置及び三相回転電機ユニットを提供することである。
 本発明の一態様は、車両に搭載される三相回転電機の駆動装置であって、スイッチング動作することにより、前記三相回転電機の三相巻線に通電する複数のスイッチング素子と、前記複数のスイッチング素子のスイッチング動作を制御する制御部と、を備え、前記制御部は、前記複数のスイッチング素子のオン状態又はオフ状態を示す4つの通電パターンで前記スイッチング動作を制御する第1の制御を行うことで、前記三相回転電機を駆動することを特徴とする、三相回転電機の駆動装置である。
 本発明の一態様は、上述の駆動装置であって、前記制御部は、前記第1の制御において、前記4つの通電パターンを用いて、前記三相巻線におけるU相、V相、及びW相の各巻線の通電タイミングを制御することを特徴とする。
 本発明の一態様は、上述の駆動装置であって、前記4つの通電パターンは、前記三相巻線のうちU相、V相、及びW相の巻線に通電する第1の通電パターンと、前記U相、前記V相の巻線に通電して前記W相の巻線には通電しない第2の通電パターンを備える。
 本発明の一態様は、上述の駆動装置であって、前記三相回転電機のロータの周方向に交互に設けられたN極及びS極の複数のマグネットの磁束を検出する2つの磁気センサを備え、前記4つの通電パターンのそれぞれは、前記2つの磁気センサの各出力の組み合わせによって決定されている。
 本発明の一態様は、上述の駆動装置であって、前記制御部は、前記2つの磁気センサの各出力の論理が同一である場合には、前記第1の通電パターンを選択し、前記2つの磁気センサの各出力の論理が異なる場合には、前記第2の通電パターンを選択する。
 本発明の一態様は、上述の駆動装置であって、前記制御部は、前記スイッチング動作の制御として、前記第1の制御と、前記第1の制御とは異なる第2の制御とを切り替え可能であって、前記第2の制御は、前記2つの磁気センサの出力に基づいて、U相及びV相の通電タイミングを決定するとともにW相の通電タイミングを推測することで、前記複数のスイッチング素子のオン状態又はオフ状態を示す6つの通電パターンで前記複数のスイッチング素子をスイッチング動作させる制御である。
 本発明の一態様は、上述の駆動装置であって、前記制御部は、前記三相回転電機の始動時に規定時間だけ前記第1の制御を実行して前記三相回転電機を正回転させ、前記規定時間を経過した後においては前記第1の制御から前記第2の制御に切り替える。
 本発明の一態様は、上述の駆動装置であって、前記制御部は、前記第1の制御を開始してから、前記三相回転電機の回転数を検出する回転数検出部を備え、前記回転数検出部で検出された回転数が規定値に到達した場合には前記第1の制御から前記第2の制御に切り替える。
 本発明の一態様は、上述の駆動装置であって、前記制御部は、前記第1の制御を開始してから、前記三相回転電機の回転速度を検出する回転速度検出部を備え、前記回転速度検出部で検出された回転速度が規定値に到達した場合には前記第1の制御から前記第2の制御に切り替える。
 本発明の一態様は、上述の駆動装置であって、前記制御部は、前記三相回転電機を停止状態から逆転させる場合には前記第1の制御を実行し、前記三相回転電機を停止状態から正転させる場合には前記第2の制御を実行する。
 本発明の一態様は、上述の駆動装置であって、前記制御部は、前記三相回転電機を停止状態から逆転又は正転させる場合には前記第1の制御を実行し、前記三相回転電機に接続された内燃機関のクランクシャフトが圧縮上死点を超えた場合には、前記第1の制御から前記第2の制御に切り替える。
 本発明の一態様は、車両に搭載される三相回転電機と前記三相回転電機を駆動する駆動装置とを備えた三相回転電機ユニットであって、前記三相回転電機は、複数のコアティースを有し、隣接する前記コアティースの間に三相巻線が巻回される複数のスロットを有するステータと、N極及びS極を交互に着磁された複数のマグネットを有するロータと、前記複数のマグネットのうち、一のマグネットに設けられた自身の磁極と異なる磁極を有する異極部と、を備え、前記駆動装置は、前記複数のスロットのうち、第1のスロットに設けられる第1の磁気センサと、前記複数のスロットのうち、前記第1のスロットとは異なる第2のスロットに設けられる第2の磁気センサと、前記第1のスロット又は第2のスロットに設けられ、かつ、前記異極部に対応する位置に設けられる第3の磁気センサと、前記第1の磁気センサ及び前記第2の磁気センサの出力からU相、V相、及びW相の各巻線に通電する通電タイミングの全てを決定し、前記第1、第2、及び第3の磁気センサの出力から前記三相回転電機の絶対回転位置を識別する制御部と、を備えることを特徴とする、三相回転電機ユニットである。
 本発明の一態様は、上述の三相回転電機ユニットであって、前記第3の磁気センサは、前記第1の磁気センサ又は前記第2の磁気センサの位置から前記ロータの回転軸方向に設けられている。
 以上説明したように、本発明によれば、磁気センサを削減できる。
本発明の一実施形態に係る三相回転電機ユニットAの概略構成の一例を示す図である。 本発明の一実施形態に係る三相回転電機1の斜視図である。 本発明の一実施形態に係る三相回転電機1の平面図である。 本発明の一実施形態に係るロータ12の内周側を展開して示した図である。 本発明の一実施形態に係る機能ブロックを示す図である。 本発明の一実施形態に係る記憶部82に格納されている4つの通電パターン#1~#4の情報の一例をテーブル形式で示す図である。 本発明の一実施形態に係る始動制御のタイミングチャートである。 本発明の一実施形態に係る通常制御の一例を説明する図である。 本発明の一実施形態に係る通常制御の変形例を説明する図である。 本発明の一実施形態に係る通常制御の通電パターン#´1~#´6の情報の一例をテーブル形式で示す図である。 本発明の一実施形態に係る回転電機1が14極12スロットである場合における三相回転電機1の平面図である。 本発明の一実施形態に係る回転電機1が14極12スロットである場合における磁気センサの配置位置を示す図である。 本発明の一実施形態に係る点火位置を示す図である。 従来の通電パターンを示す図である。
 以下、本発明の一実施形態に係る三相回転電機ユニットを、図面を用いて説明する。
 図1は、本発明の一実施形態に係る三相回転電機ユニットAの概略構成の一例を示す図である。図1に示すように、三相回転電機ユニットAは、三相の回転電機(以下、「三相回転電機」という。)1、及び駆動装置2を備える。この駆動装置2は、第1の磁気センサ3、第2の磁気センサ4、第3の磁気センサ5、電源部6、インバータ7及び制御部8を備える。
 三相回転電機1は、例えば自動二輪車等の車両に搭載される。例えば、この三相回転電機1は、永久磁石を備えた発電機の機能と、スタータモータ機能(エンジン始動機能)とが一体化されている、所謂ACGスタータモータである。
 三相回転電機1は、不図示のエンジンブロックに固定されるステータ11と、エンジン(内燃機関)のクランクシャフト(不図示)に固定されるロータ12と、を備える。なお、以下の説明において、ロータ12の回転軸方向を単に軸方向と称し、回転軸方向に直交するステータ11の径方向を単に径方向と称し、ロータ12の回転方向を単に回転方向、または周方向と称す。
 以下、本発明の一実施形態に係る三相回転電機1の構成の一例を図2~図4を用いて説明する。図2は、本発明の一実施形態に係る三相回転電機1の斜視図である。図3は、本発明の一実施形態に係る三相回転電機1の平面図である。図4は、本発明の一実施形態に係るロータ12の内周側を展開して示した図である。
(ステータ)
 ステータ11は、電磁鋼板を積層して成るステータ鉄心111と、ステータ鉄心111に巻回される三相巻線112と、を備えている。
 ステータ鉄心111は、円環状に形成された本体部111aと、この本体部111aの外周面から径方向外側に向かって放射状に突出する複数のティース部111bと、を有している。各ティース部111bは、軸方向平面視で略T字状に形成されている。なお、ティース部111bは、本発明の「コアティース」の一例である。
 また、隣接するティース部111b間には、それぞれスロット111cが形成される。
 各ティース部111bは、それぞれ三相(U相、V相、W相)に割り当てられる。
 例えば、本実施形態のように三相回転電機1が12極18スロットの場合においては、図3に示すように、ティース部111bは、周方向にU相、V相、W相、U相、V相、W相、U相、V相、W相、U相、V相、W相、U相、V相、W相、U相、V相、W相の順に割り当てられている。なお、以下の説明において、U相のティース部111bをU相ティース部111Uと称し、V相のティース部111bをV相ティース部111Vと称し、W相のティース部111bをW相ティース部111Wと称する。
 三相巻線112は、各ティース部111bに巻回されている。より具体的には、U相ティース部111Uには、三相巻線112としてU相の巻線(以下、「U相巻線」という。)112Uが巻回されている。V相ティース部111Vには、三相巻線112としてV相の巻線(以下、「V相巻線」という。)112Vが巻回されている。W相ティース部111Wには、三相巻線112としてW相の巻線(以下、「W相巻線」という。)112Wが巻回されている。
(ロータ)
 ロータ12は、不図示のエンジンのクランクシャフトが一体回転可能に結合される。
 また、ロータ12の内周面には、N極及びS極を交互に着磁された複数のマグネット121が周方向に等間隔で配置されている。
 より具体的には、ロータ12の内周面には、N極のマグネット(以下、「N極マグネット」という。)121NとS極のマグネット(以下、「S極マグネット」という。)121Sが交互に周方向に沿って等間隔に並んで取り付けられている。
 ここで、N極マグネット121Nは、径方向内側の全体の面がN極に着磁されていると共に、S極マグネット121Sは、径方向内側の全体の面がS極に着磁されている。さらに、複数のマグネット121のうち、一つのS極マグネット121Sの一部にのみ、異極部122が設けられている。この異極部122は、例えば、N極に着磁されているマグネットであって、エンジンの点火タイミングを検出するためのターゲットとして用いられる。本実施形態では、異極部122は、一つのS極マグネット121Sの一部として、当該S極マグネット121Sの軸方向の一端側に設けられている。
(磁気センサ)
 第1の磁気センサ3は、複数のスロット111cのうち、第1のスロット130に設けられ、複数のマグネット121の磁束を検出する。第1の磁気センサ3は、その検出結果を第1の出力信号として制御部8に出力する。例えば、第1の磁気センサ3は、ホールICである。
 第2の磁気センサ4は、複数のスロット111cのうち、第1のスロット130とは異なる第2のスロット140に設けられ、複数のマグネット121の磁束を検出する。第2の磁気センサ4は、その検出結果を第2の出力信号として制御部8に出力する。例えば、第2の磁気センサ4は、ホールICである。
 第3の磁気センサ5は、第1のスロット130又は第2のスロット140に設けられ、かつ、異極部122に対応する位置に設けられる。第3の磁気センサ5は、異極部122の磁束を検出して、その検出結果を第3の出力信号として制御部8に出力する。
 ここで、第1の磁気センサ3及び第2の磁気センサ4は、ロータ12の回転方向(周方向)で同一線上に配置されている。例えば、第1の磁気センサ3及び第2の磁気センサ4は、ロータ12の内周面における軸方向略中央に対峙する位置M1に配置されている。
 一方、第3の磁気センサ5は、第1の磁気センサ3及び第2の磁気センサ4が配置されている線上からずれた位置に配置されている。例えば、第3の磁気センサ5は、第1の磁気センサ3又は第2の磁気センサの軸方向に設けられている。なお、本実施形態では、第3の磁気センサ5は、第2の磁気センサ4の直上に設けられている。
 第1の磁気センサ3、第2の磁気センサ4及び第3の磁気センサ5は、センサケース20の内部に収容されている。
(電源部)
 図1に戻り、電源部6は、ニッケル水素電池やリチウムイオン電池といった二次電池を用いることができる。また、電源部6は、二次電池の代わりに、電気二重層キャパシタ(コンデンサ)を用いることもできる。本実施形態の電源部6は、車両内に設けられたバッテリである。
(インバータ)
 インバータ7は、複数のスイッチング素子SWUH~SWWL(SWUH,SWUL,SWVH,SWVL,SWWH,SWWL)を有し、このスイッチング素子のオン状態とオフ状態とを切り替えるスイッチング動作が実行されることにより、三相回転電機1の三相巻線112に通電する。より具体的には、インバータ7は、複数のスイッチング素子SWUH~SWWLがスイッチング動作することにより、電源部6からの直流電流を交流電流に変換してU相巻線112U、V相巻線112V、及びW相巻線112Wのそれぞれに供給する。これにより、三相回転電機1が駆動する。なお、本実施形態では、6つのスイッチング素子SWUH~SWWLがn型チャネルのFET(Field Effective Transistor)である場合について説明するが、これに限定されず、例えば、IGBT(Insulated gate bipolar transistor)、及びBJT(bipolar junction transistor)であってもよい。
 具体的には、直列に接続されたスイッチング素子SWUH,SWULと、直列に接続されたスイッチング素子SWVH,SWVLと、直列に接続されたスイッチング素子SWWH,SWWLとは、電源部6の高電位(出力)側と、接地電位との間に並列に接続されている。
 スイッチング素子SWUHのドレイン端子は、電源部6の出力端子に接続されている。スイッチング素子SWULのソース端子は、GND(グランド)に接続されている。スイッチング素子SWUHのソース端子と、スイッチング素子SWULのドレイン端子との接続点N1は、U相巻線112Uの一端に接続されている。
 スイッチング素子SWVHのドレイン端子は、スイッチング素子SWUHのドレイン端子に接続されている。スイッチング素子SWVLのソース端子は、GND(グランド)に接続されている。スイッチング素子SWVHのソース端子と、スイッチング素子SWVLのドレイン端子との接続点N2は、V相巻線112Vの一端に接続されている。
 スイッチング素子SWWHのドレイン端子は、スイッチング素子SWUHのドレイン端子に接続されている。スイッチング素子SWWLのソース端子は、GND(グランド)に接続されている。スイッチング素子SWWHのソース端子と、スイッチング素子SWWLのドレイン端子との接続点N3は、W相巻線112Wの一端に接続されている。
 また、各スイッチング素子SWUH~SWWLは、ゲート端子が制御部8に接続されている。
(制御部)
 制御部8は、第1の磁気センサ3及び第2の磁気センサ4の出力信号(第1の出力信号と第2の出力信号)から、U相巻線112U、V相巻線112V、及びW相巻線112Wのそれぞれに通電する通電タイミングをすべて決定する。そして、制御部8は、その決定した各通電タイミングでU相巻線112U、V相巻線112V、及びW相巻線112Wのそれぞれに通電するように複数のスイッチング素子SWUH~SWWLのスイッチング動作を制御する。
 なお、上述した第1の出力信号と第2の出力信号から、U相巻線112U、V相巻線112V、及びW相巻線112Wの各通電タイミングをすべて決定して、その通電タイミングで通電する制御(以下、「始動制御」という。)は、主に、三相回転電機1が停止した状体から始動する場合に実行されるものである。例えば、三相回転電機1を始動する場合とは、スイングバックを行う場合やスイングバックを行った後に三相回転電機を正回転させる場合等である。なお、本実施形態に係る始動制御は、本発明の「第1の制御」の一例である。
 また、制御部8は、第1の磁気センサ3、第2の磁気センサ4及び第3の磁気センサ5の出力(第1の出力信号、第2の出力信号及び第3の出力信号)から、三相回転電機1の絶対回転位置を識別する。なお、この三相回転電機1の絶対回転位置を識別することは、エンジンの点火タイミング(点火位置)を検出することと同義である。
 なお、制御部8は、CPU又はMPUなどのマイクロプロセッサ、MCUなどのマイクロコントローラなどにより構成されてよい。
 以下に、本発明の一実施形態に係る制御部8の機能ブロックについて、図5を用いて説明する。図5は、本発明の一実施形態に係る機能ブロックを示す図である。
 制御部8は、ロータ状態判定部81、記憶部82、通電パターン決定部83、及び駆動制御部84を備える。
 ロータ状態判定部81は、ロータ12が低速回転状態か、通常回転状態かのいずれかであるかを判定する。例えば、ロータ状態判定部81は、ロータ12の回転数が予め設定された閾値以下である場合には、ロータ12が低速回転状態であると判定する。したがって、低速回転状態とは、ロータ12が停止している状態も含む。一方、ロータ状態判定部81は、ロータ12の回転数が上記閾値を超える場合には、ロータ12が通常回転状態であると判定する。なお、ロータ状態判定部81は、例えば、第1の出力信号、第2の出力信号及び第3の出力信号の少なくとも一以上の出力信号から、ロータ12の回転数を算出する。
 記憶部82には、複数のスイッチング素子SWUH~SWWLのオン状態又はオフ状態を示す4つの通電パターン#1~#4の情報が格納されている。この通電パターンとは、スイッチング素子SWUH~SWWLをオン状態又はオフ状態にするスイッチングパターンであって、継続的にオンされた状態(「ON」)もしくは継続的にオフ「OFF」された状態(「ON」または「PWM(Pulse Width Modulation)」以外の期間)または一定の周期でオンまたはオフに制御された状態(PWM制御された状態)(「PWM」)のいずれかの組み合わせである。
 図6は、本発明の一実施形態に係る記憶部82に格納されている4つの通電パターン#1~#4の情報の一例をテーブル形式で示す図である。
 この4つの通電パターン#1~#4は、第1の出力信号及び第2の出力信号のそれぞれの論理値の組み合わせによって決定されている。なお、論理値が「1」である場合とは、信号レベルがHiレベルである場合である。一方、論理値が「0」である場合とは、信号レベルがLowレベルである場合である。
 例えば、通電パターン#1は、第1の出力信号の論理値が「1」であり、かつ第2の出力信号の論理値が「0」である場合の通電パターンであって、スイッチング素子SWUH及びスイッチング素子SWVLをオン状態に制御し、スイッチング素子SWUL、スイッチング素子SWVH、スイッチング素子SWWH、及びスイッチング素子SWWLをオフ状態に制御する通電パターンである。
 例えば、通電パターン#2は、第1の出力信号及び第2の出力信号の論理値がともに「1」である場合の通電パターンであって、スイッチング素子SWUH、スイッチング素子SWVH及びスイッチング素子SWWHをオン状態に制御し、スイッチング素子SWUL、スイッチング素子SWVL、及びスイッチング素子SWWHをオフ状態に制御する通電パターンである。
 例えば、通電パターン#3は、第1の出力信号の論理値が「0」であり、かつ第2の出力信号の論理値が「1」である場合の通電パターンであって、スイッチング素子SWUL及びスイッチング素子SWVHをオン状態に制御し、スイッチング素子SWUH、スイッチング素子SWVL、スイッチング素子SWWH、及びスイッチング素子SWWLをオフ状態に制御する通電パターンである。
 例えば、通電パターン#4は、第1の出力信号及び第2の出力信号の論理値がともに「0」である場合の通電パターンであって、スイッチング素子SWUL、スイッチング素子SWVL、及びスイッチング素子SWWHをオン状態に制御し、スイッチング素子SWUH、スイッチング素子SWVH及びスイッチング素子SWWHをオフ状態に制御する通電パターンである。
 このように、通電パターン#1~#4のうち、第1の出力信号の論理値と第2の出力信号の論理値とが同一である通電パターン#2及び#4は、U相巻線112U、V相巻線112V、及びW相巻線112Wのすべての巻線に通電する通電パターン(以下、「第1の通電パターン」という。)である。一方、第1の出力信号の論理値と第2の出力信号の論理値とが異なる通電パターン#1及び#3は、U相巻線112U及びV相巻線112Vに通電し、W相巻線112Wには通電しない通電パターン(以下、「第2の通電パターン」という。)である。
 通電パターン決定部83は、第1の磁気センサ3から第1の出力信号を取得する。また、通電パターン決定部83は、第2の磁気センサ4から第2の出力信号を取得する。そして、通電パターン決定部83は、ロータ状態判定部81によりロータ12が低速回転状態であると判定された場合には、第1の磁気センサ3から取得した第1の出力信号の論理値と第2の磁気センサ4から取得した第2の出力信号の論理値とに応じた通電パターンを、記憶部82から選択することで決定する。
 駆動制御部84は、通電パターン決定部83で決定した通電パターンに基づいて、複数のスイッチング素子SWUH~SWWLのスイッチング動作を制御する。具体的には、駆動制御部84は、通電パターン決定部83で決定した通電パターンで複数のスイッチング素子SWUH~SWWLのスイッチング動作を制御する。
 以下に、本発明の実施形態に係る始動制御の動作の流れの一例について、図7を用いて説明する。図7は、本発明の一実施形態に係る始動制御のタイミングチャートである。
 例えば、制御部8は、三相回転電機1をスイングバック制御する場合には、三相回転電機1に対して始動制御を実行する。ここで、スイングバック制御とは、例えばエンジンの停止直後に三相回転電機1を逆転駆動させ、圧縮上死点までの助走距離を確保することで、始動トルクの低減を図るものである。
 まず、制御部8は、始動制御を開始する場合には、ロータ状態判定部81によりロータ12が停止しているか否かを判定する。そして、制御部8は、ロータ状態判定部81によりロータ12が停止していると判定された場合には、第1の磁気センサ3から第1の出力信号を取得し、第2の磁気センサ4から第2の出力信号を取得する。
 そして、制御部8の通電パターン決定部83は、第1の磁気センサ3から取得した第1の出力信号の論理値と第2の磁気センサ4から取得した第2の出力信号の論理値とに応じた通電パターンを、記憶部82から選択することで決定する。
 例えば、第1の出力信号の論理値が「1」、第2の出力信号の論理値が「0」である場合には、通電パターン決定部83は、始動制御を実行するための通電パターンとして通電パターン#1を選択し、記憶部82から通電パターン#1の情報を読み出す。そして、駆動制御部84は、通電パターン決定部83で決定した通電パターン#1に基づいて、複数のスイッチング素子SWUH~SWWLのうち、スイッチング素子SWUH及びスイッチング素子SWVLをオン状態に制御し、スイッチング素子SWUL、スイッチング素子SWVH、スイッチング素子SWWH、及びスイッチング素子SWWLをオフ状態に制御する。
 制御部8は、図7に示すように、クランクシャフトが圧縮上死点に到達するまで上記始動制御を所定時間ごとに実行する。これにより、三相回転電機1は、クランクシャフトが圧縮上死点に到達するまでスイングバックする。
 制御部8は、クランクシャフトが圧縮上死点に到達すると、始動制御を停止する。そして、制御部8は、エンジンの始動時、例えば、アイドリングストップ状態からのエンジン始動時には、規定時間だけ始動制御を実行することでロータ12を正回転させる。そして、制御部8は、ロータ12の正回転が開始してから規定時間経過後において、始動制御ではなく通常制御に移行する。ここで、通常制御とは、第1の出力信号と第2の出力信号とからW相の通電タイミングを推測することで、ロータ12を正転駆動する制御である。本実施形態に係る通常制御は、本発明の「第2の制御」の一例である。
 以下に、本発明の一実施形態に係る通常制御について、図8を用いて説明する。
 例えば、制御部8は、第1の出力信号がU相の通電タイミングを示し、第2の出力信号がV相の通電タイミングを示すものである場合において、図8に示すように、第1の出力信号の立ち上がりのタイミングから第2の出力信号が立ち上がるタイミングまでの時間T1を計測して、その時間T1に応じてW相の通電タイミングを推測する。すなわち、制御部8は、第2の出力信号の立ち上がりから時間T1が経過したタイミングを、W相の通電タイミングとする。なお、W相の通電を停止するタイミングを推測する場合には、制御部8は、上記と同様に、第1の出力信号の立ち下がるタイミングから第2の出力信号の立ち下がるタイミングまでの時間T2を計測して、その時間T2に応じてW相の通電を停止するタイミングを推定する。すなわち、制御部8は、第2の出力信号の立ち下がりから時間T2が経過したタイミングを、W相の通電を停止するタイミングとする。
 ただし、本発明の一実施形態に係る通電制御において、W相の通電タイミングを推測する方法は、図8に示す推定方法に限定されず、例えば、図9に示す推定方法であってもよい。
 例えば、制御部8は、図9に示すように、第2の出力信号の立ち上がりのタイミングから第1の出力信号が立ち下がるタイミングまでの時間T3を計測して、その時間T3に応じてW相の通電タイミングを推測する。すなわち、制御部8は、第1の出力信号の立ち下がりから時間T3が経過したタイミングを、W相の通電タイミングとする。なお、W相の通電を停止するタイミングを推測する場合には、制御部8は、第2の出力信号の立ち下がるタイミングから第1の出力信号の立ち上がるタイミングまでの時間T4を計測して、その時間T4に応じてW相の通電を停止するタイミングを推定する。すなわち、制御部8は、第1の出力信号の立ち上がりから時間T4が経過したタイミングを、W相の通電を停止するタイミングとする。
 このように、制御部8は、複数のスイッチング素子SWUH~SWWLのスイッチング動作の制御として、始動制御と、始動制御とは異なる通常制御とを切り替え可能である。そして、通常制御とは、第1の磁気センサ3の出力及び第2の磁気センサ4の出力に基づいて、U相及びV相の通電タイミングを決定するとともにW相の通電タイミングを推測することで、複数のスイッチング素子SWUH~SWWLのオン状態又はオフ状態を示す6つの通電パターン#´1~#´6(例えば、図10)で複数のスイッチング素子SWUH~SWWLをスイッチング動作させる制御である。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
(変形例1)
 上記実施形態では、制御部8は、ロータ12の停止状態から正転又は逆転の始動制御を開始し、その始動制御を開始してから規定時間が経過した場合に通常制御に移行したが、本発明はこれに限定されない。例えば、制御部8は、始動制御を開始してからロータ12の回転数を検出する回転数検出部を備え、その回転数が規定値に達した場合には始動制御から通常制御に切り替えても良い。具体例としては、始動制御を開始してから第1の出力信号又は第2の出力信号の立ち上がりのエッジのカウント数を計測し、その計測したエッジのカウント数が規定回数に到達した場合に通常制御に移行してもよい。なお、このエッジのカウント数は、第1の出力信号又は第2の出力信号の立ち下がりのエッジのカウント数であってもよい。
(変形例2)
 上記実施形態では、制御部8は、ロータ12の停止状態から正転又は逆転の始動制御を開始し、その始動制御を開始してから規定時間が経過した場合に通常制御に移行したが、本発明はこれに限定されない。例えば、制御部8は、始動制御を開始してからロータ12の回転速度を検出する回転速度検出部を備え、その回転速度が規定値に達した場合には始動制御から通常制御に切り替えても良い。具体例としては、始動制御を開始してから所定の第1の出力信号又は第2の出力信号の立ち上がりのエッジ2点間の時間を計測し、その計測した時間が規定値以下、すなわち回転速度が規定値以上となった場合に通常制御に移行してもよい。なお、このエッジのカウント数は、第1の出力信号又は第2の出力信号の立ち下がりのエッジのカウント数であってもよい。
(変形例3)
 上記実施形態では、制御部8は、ロータ12の停止状態から正転又は逆転の始動制御を開始し、その始動制御を開始してから規定時間が経過した場合に通常制御に移行したが、本発明はこれに限定されない。例えば、制御部8は、ロータ12の停止状態からロータ12を逆転させる場合には始動制御を行い、ロータ12の停止状態からロータ12を正転させる場合には通常制御を行ってもよい。例えば、制御部8は、スイングバック制御を行うときは始動制御でロータ12を逆転させ、アイドリングストップ状態から始動するときは通常制御でロータ12を正転させてもよい。なお、スイングバック制御後のロータの停止位置はあらかじめ所定の位置で停止するようにしておく。すなわち、制御部8は、スイングバック制御において、始動制御でロータ12を上記所定の位置まで逆転させてもよい。
(変形例4)
 上記実施形態では、制御部8は、ロータ12の停止状態から正転又は逆転の始動制御を開始し、その始動制御を開始してから規定時間が経過した場合に通常制御に移行したが、本発明はこれに限定されない。例えば、制御部8は、ロータ12の停止状態から正転又は逆転の始動制御を開始し、点火信号を受信した場合(=圧縮上死点を突破した場合=1回目の爆発が起きた場合)には、通常制御に移行してもよい。このように、制御部8は、三相回転電機1を停止状態から逆転又は正転させる場合には、始動制御を実行し、三相回転電機1に接続されたエンジン(内燃機関)のクランクシャフトが圧縮上死点を超えた場合には、始動制御から通常制御に切り替えてもよい。
(変形例5)
 上記実施形態では、三相回転電機1が12極18スロットの場合について説明したが、本発明はこれに限定されず、例えば、図11に示すように、14極12スロットであってもよい。これにより、三相回転電機1が14極12スロットである場合には、12極18スロットの場合と比べて、1つの磁気センサ(例えば、W相の磁気センサ)を削減することによるサイズダウンの効果が大きい。
 この場合には、図12に示すように、U相の磁気センサである第1の磁気センサ3を基準としてV相の磁気センサである第2の磁気センサ4を電気角60°の間隔で配置し、制御部8は、第2の出力信号を反転させてから始動制御を実行してもよい。
 ここで、三相回転電機1が14極12スロットである場合における三相回転電機1の概略構成について、説明する。
 例えば、nを3以上の自然数とし、三相回転電機1のティース部111bの数をTとし、磁極の極数をPとしたとき、ティース部111bの数T、および極数Pは、nが奇数の場合には、
 P:T=3n±1:3n   ・・・(1)
を満たすように設定される。
 また、nが偶数のとき、ティース部111bの数T、および極数Pは、
 P:T=3n±2:3n   ・・・(2)
を満たすように設定されている。
 本変形例に係る三相回転電機1(14極12スロット)は、ティース部111bの数Tが12個に設定され、極数Pが14極に設定されている。したがって、T=12、P=14を式(2)に代入し、さらに、n=4(偶数)に設定すると、
 14:12=3×4+2:3×4 となるので、式(2)を満たす。
 また、各ティース部111bは、それぞれ三相(U相、V相、W相)に割り当てられる。そして、
[条件1]nが偶数のとき、mを1以上の自然数とし、ティースの数Tと、極数Pとが共にm倍であるとき、三相(U相、V相、W相)のうち、n/2個の同相のティース部111bが周方向に隣接して(並ぶように)配置され、同相ティース群200U,200V,200Wを2m個形成する。そして、同相の同相ティース群200U,200V,200Wは、それぞれ回転軸を中心にして対向配置されている。
 より好ましくは、
[条件2]ティース部111bは、nが奇数のとき、三相(U相、V相、W相)のうち、同相のティース部111bが全て周方向に隣接して(並ぶように)配置される。
 本変形例では、n=4である。このため、以下に、nが偶数の場合についてのティース部111bの相の割り当て方法について詳述する。
 すなわち、ティース部111bは、周方向にU相、U相、V相、V相、W相、W相、U相、U相、V相、V相、W相、W相の順に割り当てられている。
 ここで、12個のティース部111bは、2個のU相ティース部111UからなるU相ティース群200Uが2個、2個のV相ティース部111VからなるV相ティース群200Vが2個、2個のW相ティース部111WからなるW相ティース群200Wが2個となる。つまり、周方向に並ぶ2個の同相ティース部111U,111V,111Wにより、それぞれ1個の相ティース群200U,200V,200Wを形成している。
 [条件1]によれば、n=4であるので、4/2=2個の同相のティース部111bが周方向に並ぶように配置される。このため、本変形例は、[条件1]を満たす。
 また、相ティース群200U,200V,200Wは、それぞれ2個形成されている。m=1とすると、2×1=2個となる。また、ティース部111bの数Tおよび極数Pは、それぞれm倍(1倍)となる。このため、本変形例は、[条件1]を満たす。
 さらに、各々2個の相ティース群200U,200V,200Wは、それぞれ回転軸を中心にして対向配置されている。このため、本変形例は、[条件1]を満たす。
 このような構成のもと、不図示のクランクシャフトを介してロータ12が回転すると、ティース部111bを通過する磁束量が変化する。この磁束量の変化が起電力となって三相巻線に電流が発生する。三相巻線に発生する電流は、不図示のバッテリに蓄電されたり、不図示の付属電機機器に電力供給を行ったりする用途に用いられる。
 一方、不図示のエンジンを始動する際は、バッテリに蓄電された電流を三相巻線に供給する。このとき、各ティース部111bに巻回された所定の相の巻線に、選択的に電流を供給する。すると、各相のティース部111bに順次磁束が形成される。そして、この磁束とロータ12に設けられているマグネット121との間で磁気的な吸引力や反発力が生じ、ロータ12が回転する。さらに、ロータ12を介して不図示のクランクシャフトが回転し、エンジンが始動する。
 なお、本変形例における三相回転電機1として、磁極の数Pが「14」、ティース部111bの数Tが「12」、n=4に設定され、上記式(2)、[条件1]を満たす場合について説明した。しかしながら、これに限られるものではなく、変形例5における三相回転電機1は、上記式(1)または上記式(2)の何れかを満たし、[条件1]または[条件2]の何れかを満たすように設定されていればよい。すなわち、ティース部111bにおいては、隣接する少なくともいずれかのティース部111bと同相となるように配置されていればよい。
 このように、三相回転電機1は、複数のティース部が周方向に隣接して配置されているステータと、そのステータに対して回転可能に設けられ、周方向に沿って複数の磁極が設けられているロータと、を備えた始動発電機用三相回転電機であってもよい。そして、nを3以上の自然数とし、ティース部の数をTとし、磁極の極数をPとしたとき、ティース部の数T、および極数Pは、nが奇数のとき、P:T=3n±1:3nを満たすように設定され、nが偶数のとき、P:T=3n±2:3nを満たすように設定されてもよい。また、複数のティース部は、第1相のコイルが巻回された複数の第1ティース(U相ティース部)と、第2相のコイルが巻回された複数の第2ティース(V相ティース部)と、第3相のコイルが巻回された複数の第3ティース(W相ティース部)と、からなり、複数のティース部は全て、隣接する少なくともいずれかのティース部と同相となるように配置されていてもよい。
 また、上述の三相回転電機1において、nを奇数としたとき、同相のティース部は、全て周方向に隣接して配置されてもよい。
 また、上述の三相回転電機1において、nを偶数とし、mを1以上の自然数とし、ティース部の数Tと、極数Pとが共にm倍であるとき、n/2個の同相のティース部が周方向に隣接して配置されてなる同相ティース群を2m個形成し、2m個の同相ティース群は、回転軸を中心にして対向配置されてもよい。
(変形例6)
 なお、本実施形態に係る点火位置(絶対回転位置)を検出する方法として、制御部8は、例えば、図13に示すように、第3の出力信号がHiレベルのときに、第1の出力信号が立ち上がるタイミングを点火位置としてもよい。
(変形例7)
 上記実施形態では、異極部122は、S極マグネット121Sに設けられているが、本発明はこれに限定されず、自身の磁極とは異なる極性を有するマグネットに設けられていればよい。また、異極部122は、自身の磁極とは異なる極性を有するマグネットに設けられていれば、例えば鉄などの金属や空洞が形成されていてもよい。
 以上、説明したように、本発明の一実施形態に係る三相回転電機1の駆動装置2は、第1の磁気センサ3及び第2の磁気センサ4の出力(第1の出力信号及び第2の出力信号)からU相、V相、及びW相の各巻線に通電する通電タイミングの全てを決定する制御部8を備える。
 このような構成によれば、2つの磁気センサで、U相、V相、及びW相の各巻線に通電する通電タイミングを決定することが可能となり、従来のように3つの磁気センサを用いる必要がない。すなわち、本実施形態では、従来と比較して1つの磁気センサ(例えば、W相の磁気センサ)を削減することができる。
 また、制御部8は、複数のスイッチング素子SWUH~SWWLのオン状態又はオフ状態を示す4つの通電パターンを備え、この4つの通電パターンを用いて三相巻線におけるU相、V相、及びW相の各巻線の通電タイミングを制御してもよい。
 ここで、4つの通電パターンのそれぞれは、2つの磁気センサ(第1の磁気センサ3及び第2の磁気センサ4)の各出力の組み合わせによって決定されている。そして、制御部8は、2つの磁気センサの各出力の論理が同一である場合には、第1の通電パターンを選択し、2つの磁気センサの各出力の論理が異なる場合には、第2の通電パターンを選択して、当該選択した通電パターンでスイッチング動作を行う。
 このような構成によれば、ロータ12を停止状態から始動する場合に、所望の方向にロータ12を回転させることができる。
 例えば、従来の三相回転電機の駆動装置は、図14に示すように、U相、V相、W相の3つの磁気センサの出力を用いて6つの通電パターン#1´~#6´で回転電機を回転駆動している。ただし、W相の磁気センサを削減してしまうと、通電パターン#1´と通電パターン#2´との判別や通電パターン#4´と通電パターン#5´との判別が不可能であり、三相回転電機を駆動することができない。したがって、このような場合には、ロータ12を停止状態から始動する場合には、6つの通電パターン#1´~#6´から任意の通電パターンを選択して通電し、駆動に失敗したら別の通電パターンを選択して通電し直すことが考えられる。ただし、この方法では、複数ある候補の中から適当な通電パターンを一つ選択するため、所望の方向にロータ12が始動しない場合がある。また、ロータ12の始動に失敗した場合他の通電パターンの候補から選択する制御を行う場合には、始動に時間がかかってしまう。
 本実施形態では、2つの磁気センサ(第1の磁気センサ3及び第2の磁気センサ4)の各出力の組み合わせによってそれぞれを識別可能な4つ通電パターンで回転駆動するため、W相の磁気センサを削減した場合であっても、ロータ12の回転駆動に失敗することがなく、所望の方向にロータ12を回転させることができる。
 また、従来の駆動装置では、ロータの周方向において、3つの磁気センサを電気角120°ずらして並べて配置する必要がある。一方、本実施形態の構成によれば、点火信号用の磁気センサ(第3の磁気センサ5)は独立して制御に用いているため、U相、V相の磁気センサ(第1の磁気センサ3及び第2の磁気センサ4)を120°間隔で配置すればよい。そのため、点火信号用の磁気センサと、U相又はV相の磁気センサとを軸方向に並べて配置することで、センサ基盤(センサ足)を2枚で済ませることができる。これによって、センサケースを小型化でき、低コスト化に寄与する。
A 三相回転電機ユニット
1 三相回転電機
2 駆動装置
3 第1の磁気センサ
4 第2の磁気センサ
5 第3の磁気センサ
6 電源部
7 インバータ
8 制御部
111c スロット
121 マグネット
122 異極部
SWUH~SWWL スイッチング素子

Claims (13)

  1.  車両に搭載される三相回転電機の駆動装置であって、
     スイッチング動作することにより、前記三相回転電機の三相巻線に通電する複数のスイッチング素子と、
     前記複数のスイッチング素子のスイッチング動作を制御する制御部と、
     を備え、
     前記制御部は、前記複数のスイッチング素子のオン状態又はオフ状態を示す4つの通電パターンで前記スイッチング動作を制御する第1の制御を行うことで、前記三相回転電機を駆動することを特徴とする、三相回転電機の駆動装置。
  2.  前記制御部は、前記第1の制御において、前記4つの通電パターンを用いて、前記三相巻線におけるU相、V相、及びW相の各巻線の通電タイミングを制御することを特徴とする、請求項1に記載の三相回転電機の駆動装置。
  3.  前記4つの通電パターンは、前記三相巻線のうちU相、V相、及びW相の巻線に通電する第1の通電パターンと、前記U相、前記V相の巻線に通電して前記W相の巻線には通電しない第2の通電パターンを備えることを特徴とする、請求項2に記載の三相回転電機の駆動装置。
  4.  前記三相回転電機のロータの周方向に交互に設けられたN極及びS極の複数のマグネットの磁束を検出する2つの磁気センサを備え、
     前記4つの通電パターンのそれぞれは、前記2つの磁気センサの各出力の組み合わせによって決定されていることを特徴とする、請求項3に記載の三相回転電機の駆動装置。
  5.  前記制御部は、前記2つの磁気センサの各出力の論理が同一である場合には、前記第1の通電パターンを選択し、前記2つの磁気センサの各出力の論理が異なる場合には、前記第2の通電パターンを選択することを特徴とする、請求項4に記載の三相回転電機の駆動装置。
  6.  前記制御部は、前記スイッチング動作の制御として、前記第1の制御と、前記第1の制御とは異なる第2の制御とを切り替え可能であって、
     前記第2の制御は、前記2つの磁気センサの出力に基づいて、U相及びV相の通電タイミングを決定するとともにW相の通電タイミングを推測することで、前記複数のスイッチング素子のオン状態又はオフ状態を示す6つの通電パターンで前記複数のスイッチング素子をスイッチング動作させる制御であることを特徴とする、請求項4又は5に記載の三相回転電機の駆動装置。
  7.  前記制御部は、前記三相回転電機の始動時に規定時間だけ前記第1の制御を実行して前記三相回転電機を正回転させ、前記規定時間を経過した後においては前記第1の制御から前記第2の制御に切り替えることを特徴とする、請求項6に記載の三相回転電機の駆動装置。
  8.  前記制御部は、前記第1の制御を開始してから、前記三相回転電機の回転数を検出する回転数検出部を備え、前記回転数検出部で検出された回転数が規定値に到達した場合には前記第1の制御から前記第2の制御に切り替えることを特徴とする、請求項6に記載の三相回転電機の駆動装置。
  9.  前記制御部は、前記第1の制御を開始してから、前記三相回転電機の回転速度を検出する回転速度検出部を備え、前記回転速度検出部で検出された回転速度が規定値に到達した場合には前記第1の制御から前記第2の制御に切り替えることを特徴とする、請求項6に記載の三相回転電機の駆動装置。
  10.  前記制御部は、前記三相回転電機を停止状態から逆転させる場合には前記第1の制御を実行し、前記三相回転電機を停止状態から正転させる場合には前記第2の制御を実行することを特徴とする、請求項6に記載の三相回転電機の駆動装置。
  11.  前記制御部は、前記三相回転電機を停止状態から逆転又は正転させる場合には前記第1の制御を実行し、前記三相回転電機に接続された内燃機関のクランクシャフトが圧縮上死点を超えた場合には、前記第1の制御から前記第2の制御に切り替えることを特徴とする、請求項6に記載の三相回転電機の駆動装置。
  12.  車両に搭載される三相回転電機と前記三相回転電機を駆動する駆動装置とを備えた三相回転電機ユニットであって、
     前記三相回転電機は、
     複数のコアティースを有し、隣接する前記コアティースの間に三相巻線が巻回される複数のスロットを有するステータと、
     N極及びS極を交互に着磁された複数のマグネットを有するロータと、
     前記複数のマグネットのうち、一のマグネットに設けられた自身の磁極と異なる磁極を有する異極部と、
     を備え、
     前記駆動装置は、
     前記複数のスロットのうち、第1のスロットに設けられる第1の磁気センサと、
     前記複数のスロットのうち、前記第1のスロットとは異なる第2のスロットに設けられる第2の磁気センサと、
     前記第1のスロット又は第2のスロットに設けられ、かつ、前記異極部に対応する位置に設けられる第3の磁気センサと、
     前記第1の磁気センサ及び前記第2の磁気センサの出力からU相、V相、及びW相の各巻線に通電する通電タイミングの全てを決定し、前記第1、第2、及び第3の磁気センサの出力から前記三相回転電機の絶対回転位置を識別する制御部と、
     を備えることを特徴とする、三相回転電機ユニット。
  13.  前記第3の磁気センサは、前記第1の磁気センサ又は前記第2の磁気センサの位置から前記ロータの回転軸方向に設けられていることを特徴とする、請求項12に記載の三相回転電機ユニット。
PCT/JP2019/001459 2018-07-11 2019-01-18 三相回転電機の駆動装置及び三相回転電機ユニット WO2020012679A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980036420.6A CN112204872A (zh) 2018-07-11 2019-01-18 三相旋转电机的驱动装置以及三相旋转电机单元
EP19833121.7A EP3823155B1 (en) 2018-07-11 2019-01-18 Drive device for three-phase rotating electric machine and three-phase rotating electric machine unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-131229 2018-07-11
JP2018131229A JP7202798B2 (ja) 2018-07-11 2018-07-11 三相回転電機の駆動装置及び三相回転電機ユニット

Publications (1)

Publication Number Publication Date
WO2020012679A1 true WO2020012679A1 (ja) 2020-01-16

Family

ID=69142302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001459 WO2020012679A1 (ja) 2018-07-11 2019-01-18 三相回転電機の駆動装置及び三相回転電機ユニット

Country Status (4)

Country Link
EP (1) EP3823155B1 (ja)
JP (1) JP7202798B2 (ja)
CN (1) CN112204872A (ja)
WO (1) WO2020012679A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115503683B (zh) * 2022-11-18 2023-02-28 华侨大学 混合动力摩托车及其停机方法、装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847285A (ja) * 1994-08-01 1996-02-16 Seiko Seiki Co Ltd ブラシレスモータの制御回路
JP2009089588A (ja) 2007-09-13 2009-04-23 Mitsuba Corp 始動発電機
JP2014152663A (ja) * 2013-02-06 2014-08-25 Honda Motor Co Ltd 内燃機関の始動制御装置
WO2014156865A1 (ja) * 2013-03-26 2014-10-02 株式会社ミツバ センサ、およびそれを用いた回転電機
WO2015083477A1 (ja) * 2013-12-03 2015-06-11 日立オートモティブシステムズ株式会社 電動機駆動装置
JP2016023559A (ja) * 2014-07-17 2016-02-08 スズキ株式会社 エンジン始動制御装置
JP2017521988A (ja) * 2014-07-11 2017-08-03 ソムフィ エスアーエスSomfy Sas 同期モーター、制御デバイス及びアクチュエーターの動作を管理するための制御信号を生成するための方法
WO2018047746A1 (ja) * 2016-09-09 2018-03-15 株式会社ミツバ 回転電機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4894312B2 (ja) * 2005-03-30 2012-03-14 パナソニック株式会社 インバータ装置
CN101034841A (zh) * 2006-03-10 2007-09-12 庄铭沛 各相绕组可单独激励的电子换向电动机
JP4404160B2 (ja) * 2008-01-21 2010-01-27 ダイキン工業株式会社 モータ駆動制御装置
US9287745B2 (en) * 2011-01-27 2016-03-15 Shibaura Institute Of Technology Stator teeth, stator, rotating electric machine, and method for controlling rotating electric machine
JP5811945B2 (ja) * 2011-06-06 2015-11-11 株式会社デンソー 内燃機関制御用信号出力機能付き回転機、及び内燃機関制御用信号出力機能付き始動モータ
JP6221676B2 (ja) * 2013-11-20 2017-11-01 株式会社デンソー エンジン制御用信号出力機能付き始動発電機
JP6108568B1 (ja) * 2015-09-28 2017-04-05 本田技研工業株式会社 鞍乗型車両のエンジン始動制御装置
CN108258950B (zh) * 2017-08-29 2021-06-01 苏州博牛电气有限公司 永磁无刷直流电机驱动起动的控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847285A (ja) * 1994-08-01 1996-02-16 Seiko Seiki Co Ltd ブラシレスモータの制御回路
JP2009089588A (ja) 2007-09-13 2009-04-23 Mitsuba Corp 始動発電機
JP2014152663A (ja) * 2013-02-06 2014-08-25 Honda Motor Co Ltd 内燃機関の始動制御装置
WO2014156865A1 (ja) * 2013-03-26 2014-10-02 株式会社ミツバ センサ、およびそれを用いた回転電機
WO2015083477A1 (ja) * 2013-12-03 2015-06-11 日立オートモティブシステムズ株式会社 電動機駆動装置
JP2017521988A (ja) * 2014-07-11 2017-08-03 ソムフィ エスアーエスSomfy Sas 同期モーター、制御デバイス及びアクチュエーターの動作を管理するための制御信号を生成するための方法
JP2016023559A (ja) * 2014-07-17 2016-02-08 スズキ株式会社 エンジン始動制御装置
WO2018047746A1 (ja) * 2016-09-09 2018-03-15 株式会社ミツバ 回転電機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3823155A4

Also Published As

Publication number Publication date
EP3823155A1 (en) 2021-05-19
EP3823155B1 (en) 2024-01-17
EP3823155A4 (en) 2021-12-22
CN112204872A (zh) 2021-01-08
JP2020010545A (ja) 2020-01-16
JP7202798B2 (ja) 2023-01-12

Similar Documents

Publication Publication Date Title
JP3456158B2 (ja) 内燃機関用スタータジェネレータ
WO2015093574A1 (ja) エンジンユニット、及び車両
TWI546447B (zh) 用於車輛之四衝程引擎單元及車輛
WO2015093576A1 (ja) エンジンユニット、及び車両
JP6468266B2 (ja) スイッチトリラクタンスモータの制御装置
JP3945696B2 (ja) 回転検出装置
TWI663327B (zh) Engine unit and straddle type vehicle
JP6519572B2 (ja) スイッチトリラクタンスモータの制御装置
US9777605B2 (en) Motor control apparatus
WO2020012679A1 (ja) 三相回転電機の駆動装置及び三相回転電機ユニット
JP6577145B1 (ja) 駆動制御システム、モータ、および、駆動制御システムの制御方法
US20230204006A1 (en) An integrated starter generator system
JP4547022B2 (ja) 界磁巻線式同期発電電動機装置
EP2704308A1 (en) Brushless motor control device and brushless motor control method
JP2007170857A (ja) 回転電機装置及びそれを用いたエンジン駆動装置
JP2002186293A (ja) 内燃機関用回転電機の制御装置
JP7168787B2 (ja) 内燃機関用発電電動機
WO2018037830A1 (ja) モータ制御装置
WO2018074122A1 (ja) Srモータ制御システム及びsrモータ制御方法
JP3596459B2 (ja) 内燃機関用スタータジェネレータ
WO2016125456A1 (ja) モータ制御装置
JP3711859B2 (ja) ブラシレス直流電動機
JP7331545B2 (ja) エンジン始動装置
JP2020156166A (ja) スイッチトリラクタンスモータ制御装置及びスイッチトリラクタンスモータ制御方法
JP2004129450A (ja) モータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE