WO2020011186A1 - 一种装配式建筑的预制墙体和装配结构及其施工方法 - Google Patents

一种装配式建筑的预制墙体和装配结构及其施工方法 Download PDF

Info

Publication number
WO2020011186A1
WO2020011186A1 PCT/CN2019/095384 CN2019095384W WO2020011186A1 WO 2020011186 A1 WO2020011186 A1 WO 2020011186A1 CN 2019095384 W CN2019095384 W CN 2019095384W WO 2020011186 A1 WO2020011186 A1 WO 2020011186A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
prefabricated
lower wall
connection
upper wall
Prior art date
Application number
PCT/CN2019/095384
Other languages
English (en)
French (fr)
Inventor
周兆弟
Original Assignee
周兆弟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 周兆弟 filed Critical 周兆弟
Priority to AU2019303060A priority Critical patent/AU2019303060B2/en
Priority to JP2021524091A priority patent/JP7127910B2/ja
Priority to CA3106047A priority patent/CA3106047C/en
Priority to EA202190107A priority patent/EA202190107A1/ru
Priority to US17/259,069 priority patent/US11401707B2/en
Priority to EP19835153.8A priority patent/EP3822422A4/en
Publication of WO2020011186A1 publication Critical patent/WO2020011186A1/zh
Priority to ZA2021/00222A priority patent/ZA202100222B/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/04Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of concrete, e.g. reinforced concrete, or other stone-like material
    • E04B1/043Connections specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/41Connecting devices specially adapted for embedding in concrete or masonry
    • E04B1/4114Elements with sockets
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/41Connecting devices specially adapted for embedding in concrete or masonry
    • E04B1/4114Elements with sockets
    • E04B1/4142Elements with sockets with transverse hook- or loop-receiving parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/41Connecting devices specially adapted for embedding in concrete or masonry
    • E04B1/4157Longitudinally-externally threaded elements extending from the concrete or masonry, e.g. anchoring bolt with embedded head
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/56Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members
    • E04B2/562Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members with fillings between the load-bearing elongated members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/06Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
    • E04C5/0627Three-dimensional reinforcements composed of a prefabricated reinforcing mat combined with reinforcing elements protruding out of the plane of the mat
    • E04C5/0631Reinforcing mats combined with separate prefabricated reinforcement cages or girders
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/06Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
    • E04C5/0636Three-dimensional reinforcing mats composed of reinforcing elements laying in two or more parallel planes and connected by separate reinforcing parts
    • E04C5/064Three-dimensional reinforcing mats composed of reinforcing elements laying in two or more parallel planes and connected by separate reinforcing parts the reinforcing elements in each plane being formed by, or forming a, mat of longitunal and transverse bars
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/16Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
    • E04C5/162Connectors or means for connecting parts for reinforcements
    • E04C5/163Connectors or means for connecting parts for reinforcements the reinforcements running in one single direction
    • E04C5/165Coaxial connection by means of sleeves
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/24Safety or protective measures preventing damage to building parts or finishing work during construction
    • E04G21/26Strutting means for wall parts; Supports or the like, e.g. for holding in position prefabricated walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/16Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
    • E04B1/164Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material with vertical and horizontal slabs, only the horizontal slabs being partially cast in situ
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/02Material constitution of slabs, sheets or the like of ceramics, concrete or other stone-like material

Definitions

  • the invention relates to the field of building structures, in particular to a prefabricated prefabricated wall and an assembly structure and a construction method of the structure.
  • the "common connection” and “reserved hole indirect lap grout anchor connection” technology, the “sleeve slurry anchor anchor connection” and “reserved hole indirect lap grout anchor connection” technology have the common point of pre-buried grouting sleeve in concrete, After the concrete has reached the required strength, the reinforcing steel penetrates into the grouting sleeve, and then the high-strength non-shrinking grout is poured into the grouting sleeve for curing to play the role of anchoring the reinforcing steel.
  • the reinforced sleeve grouting technology enables the building to be assembled, which is affirmed by engineering users.
  • the force transmission method between the steel bars of the two connection technologies above is indirect force transmission, which needs to be transmitted through the grout in the reserved hole.
  • the force transmission is not direct.
  • the two are relatively far apart.
  • the far reinforcing steel bars need to transmit forces to each other.
  • Such a way of transmitting forces will generate additional bending moments and shear forces on the surrounding concrete, which makes the wall complex in this case.
  • the top of the grout will appear. Locally compressed cracks.
  • the two connection processes have high requirements for grouting and grouting processes. If there are bubbles or other incompactness in the grouting sleeve in the grouting sleeve, this type of connection will be greatly affected.
  • grouting holes and air vents protruding from the grouting sleeve need to be left on the grouting sleeve.
  • the grouting holes and air vents occupy a larger bottom of the wall.
  • the bottom area of the wall is often subjected to large forces, which is a part that provides a large contribution to the ductility of the wall.
  • the above setting method makes the bottom area of the wall instead become a relatively weak part of the wall.
  • cracks often diffuse from the grouting holes or air vents to the surroundings, and there is a phenomenon that the entire piece of concrete falls off here.
  • the outer diameter of the grouting sleeve is large, in the range of 4 to 5 cm, and the outer surface of the grouting sleeve is currently generally made relatively smooth, which cannot effectively form effective constraints with the surrounding concrete. Therefore, in the later stage of the project, Large concrete blocks at the bottom often fall out, and the effective compression area at the bottom is reduced. Therefore, the assembly structure itself will affect the bearing capacity of the wall and reduce the ductility of the wall.
  • the field of prefabricated building urgently needs a prefabricated wall with direct force transmission and stable structure, as well as an assembly structure and construction method with controllable assembly quality and small impact on the wall.
  • One of the objectives of the present invention is to solve the technical problem that the prefabricated wall has a large number of complicated structural parts and has seriously affected the bearing capacity of the wall on the basis of the existing technology. Prefabricated prefabricated wall.
  • a prefabricated prefabricated wall includes a concrete main body and a rigid skeleton cast in the concrete main body.
  • the rigid skeleton includes n longitudinally extending vertical ribs, where n is an integer greater than or equal to 3, wherein the upper end surface of the precast wall and the A total of m mechanical connection portions are formed on the lower end surface at the same axis position of the vertical ribs, m is an integer less than or equal to 2n, and the mechanical connection portions are all formed at the ends of the vertical ribs.
  • the structure is beneficial to the positioning and fixing of the skeleton during the prefabrication of the wall, effectively avoids the problem of the misalignment of the mechanical connection portion caused during the pouring process, and further facilitates the compaction and stability of vibration.
  • the mechanical connection part is designed at the end of the vertical ribs, which facilitates the direct transmission of force after connection.
  • the connection points are exposed outside the concrete body, making the connection's firmness visible and controllable, which effectively guarantees the connection quality.
  • the mechanical connection portion includes a receiving end and / or a receiving cavity on the upper end and / or the lower end of the prefabricated wall, wherein the end of the vertical rib protrudes from the surface of the concrete body and is formed on the end of the end.
  • the receiving portion is a receiving end; the end portion of the vertical rib forms an open receiving portion that is recessed inward along the axis direction thereof as a receiving cavity.
  • the mechanical connection portion can extend out of the concrete body, and the mechanical connection portion is no longer embedded in the concrete body, so that the connection is visualized, convenient to check and intuitively understand the firmness of the connection, and to ensure the quality of the connection;
  • the wall structure of the embedded sleeve in the concrete body in the prior art is changed.
  • the mechanical connection part does not need to be provided with grouting holes and air vents, so as to overcome the existing technology, the wall foot structure of the wall has many and complicated components. Technical problems leading to reduced ductility of the wall.
  • the outer diameter of the receiving end is 0.7 to 2 times the outer diameter of the vertical rib, and the outer diameter of the receiving cavity is 1.2-3 times the outer diameter of the vertical rib.
  • the purpose of this arrangement is to reduce the volume of the mechanical connection part greatly compared with the existing sleeve, so as to overcome the grouting holes and air outlet holes of the sleeve in the prior art when the sleeve is connected or overlapped. Occupying the bottom volume is too large, making the bottom area of the wall a relatively weak part of the wall, avoiding the formation of diffusion cracks due to the relatively weak surrounding grouting holes or air vents when the force is applied, and the phenomenon of the concrete falling off in one piece.
  • the receiving end is provided with external threads, and the receiving cavity is provided with internal threads.
  • the purpose of such a setting is to connect multiple components through threads, to facilitate the processing and installation of mechanical connections and other components, and to clearly define the force transmission, reliable connection, and convenient installation through threaded connections, which can significantly increase the construction speed.
  • the receiving cavity is formed based on a sleeve rigidly connected to the end of the vertical rib.
  • the end of the sleeve away from the vertical rib forms an open receiving cavity.
  • the purpose of this arrangement is that, because the receiving cavity is formed by combining vertical ribs and a sleeve connected to its end, the processing cost is lower than that of the vertical ribs integrally forming the receiving cavity, which is also convenient.
  • the vertical ribs and the sleeve are relatively independent, and the sleeve can be rotated alone, which is beneficial to the positioning and fixing of the vertical ribs and the sleeve in the mold. .
  • the prefabricated prefabricated wall not only includes a straight shaped wall, but also L-shaped, rectangular, U-shaped and other shaped walls.
  • the prefabricated walls are adjacent to each other.
  • the wall surface is ⁇ in the horizontal direction, 0 ° ⁇ ⁇ 360 °, and the forming of the special-shaped prefabricated wall can be a plurality of walls fixedly connected together or integrally formed.
  • the purpose of such a setting is that when a single prefabricated wall cannot meet the needs of the building, it is necessary to combine or deform the prefabricated wall to form the non-linear integral wall in the transverse direction.
  • the vertical wall of the prefabricated wall is formed with a structure similar to the vertical ribs and mechanical connection parts of the wall described above.
  • the embedded parts in the prefabricated wall and the prefabricated wall are greatly simplified.
  • the rigid frame structure provides great convenience and practical basis for precasting complex walls in molds. At the same time, it also greatly facilitates the longitudinal connection between the walls.
  • Another object of the present invention is to solve the technical problems of indirect force transmission, high sealing requirements, and difficult to ensure connection quality in the existing connection methods of prefabricated prefabricated walls. Way or assembly structure and its construction method.
  • An assembly structure of a prefabricated building including the prefabricated wall, comprising an upper wall, a lower wall, and a fastening component.
  • the upper wall and the lower wall are the prefabricated walls described above; wherein the upper wall is located at Above the lower wall, the vertical ribs in the upper wall and the vertical ribs in the lower wall are mechanically connected by a fastening component.
  • It also includes a concrete cast-in-place area between the upper wall and the lower wall, which is covered with a fastening component.
  • the fastening component includes an insert rod, a locking member, a buckle tube, and an adapter sleeve.
  • the mechanical connection part of the upper wall or the lower wall body respectively connects the adapter sleeve and the insert rod, and the buckle tube is fixed in the adapter sleeve.
  • the plunger is inserted into the buckle tube, and the locking member is sleeved on the outer edge of the plunger, so that the plunger and the buckle tube are connected without a gap. Therefore, the longitudinal direction of the upper wall and the lower wall is firmly connected in the cast-in-situ area.
  • This connection structure makes the connected parts no longer hidden in the wall, and it can be clearly observed whether the connection is in place, so as to ensure the wall connection.
  • connection structure is to directly connect the longitudinal (vertical) ribs in the wall or wall body, and the force transmission is more direct, and a through rib is formed inside the wall connection structure. , Which improves the overall ductility of the wall and the buildings made of it.
  • the assembly gap is filled. Due to the fluidity of the cast-in-situ concrete, all assembly gaps can be completely filled at once, which further ensures the integrity of the assembled connection structure and ensures that there is no gap in the connection structure as a whole. To further improve its stability.
  • the assembly gap filled by the cast-in-situ layer includes an overhead area between the lower end surface of the upper wall and the upper end surface of the lower wall, and the space between the upper surface of the precast floor and the plane where the lower end surface of the upper wall is located. . Because the formation of cast-in-situ layer requires a certain time, the cast-in-situ layer is filled in the precast floor. In this way, it is convenient to further construct the cast-in-situ layer in the precast floor and add other attachments, such as floor tiles and floor keels. , Patch panel, etc.
  • the upper surface of the prefabricated floor slab is exposed with a rigid truss, and the cast-in-place layer covers the rigid truss.
  • the rigid trusses are exposed on the prefabricated floor, and then filled with cast-in-situ coating to facilitate the fixation of the embedded objects in the prefabricated floor and further construction of the internal structure of the prefabricated floor.
  • these embedded objects will be fixed in the floor after the cast-in-place layer is filled.
  • the embedded objects include the transverse or longitudinal ribs of the precast floor, electrical wiring, air-conditioning pipelines, and floor heating Pipes, water pipes, etc.
  • a construction method for a prefabricated building includes the following steps:
  • Steps for fixing the lower wall Fix the lower wall on the foundation or platform or on the completed floor;
  • Support setting steps according to the design requirements, assemble support frames supporting the prefabricated floor slabs around the lower wall;
  • Prefabricated floor slab laying step laying the prefabricated floor on the support and making the end of the prefabricated floor overlap the top of the lower wall;
  • Wall docking steps hoist the upper wall to the designated position, so that the vertical bars of the upper wall and the vertical bars of the lower wall are mechanically connected by the fastening component;
  • Fastener adjustment steps adjust the fastening components to meet the requirements of the upper wall and lower wall connection and pullout resistance
  • Cast-in-place step pouring concrete filler into the prefabricated floor slab and the assembly gap between the upper wall and the lower wall to form a cast-in-situ layer, so that the floor, the upper wall and the lower wall form an overall structure without gaps;
  • the supporting bracket and the upper end surface of the lower wall are assembled and fixed flush, so that the supporting frame supports the prefabricated floor in the horizontal direction to avoid the accident of the prefabricated floor falling.
  • the method further includes adjusting positioning, providing an adjusting pad between the upper wall and the lower wall, and providing a diagonal brace between the prefabricated floor and the upper wall.
  • the level and height of the long side of the wall can be adjusted by adjusting the number of cushions, and the vertical and horizontal sides and inclination of the short side can be adjusted by the diagonal brace, which can not only liberate the hanger but also further Realize accurate docking and improve connection accuracy.
  • the present invention has the following features and beneficial effects:
  • the method of the invention adopts a connection method in which a fastening component and a mechanical connection part directly butt a vertical rib, which can quickly install and locate an assembled wall, increase the connection rigidity of a node, and realize the design principle of strong nodes and weak members.
  • This joint structure has good seismic performance, and at the same time, it guarantees good stability of the wall connection.
  • the design of the prefabricated wall considers the integrity of the wall's forces.
  • the vertical ribs are used to strengthen the strength of some concrete walls, improve the ductility at the foot of the wall, strengthen the overall stability of the components, and ensure the safety and reliability of the wall. After the vertical ribs are connected to each other, a through rib is formed in the assembled connection structure, which better guarantees the integrity of the connection structure and effectively ensures that the wall is stressed, so that the bearing capacity is not reduced.
  • FIG. 1 is a schematic structural diagram of a sleeve grouting wall in the background art
  • FIG. 2 is a schematic structural diagram of a prefabricated wall of the present invention
  • FIG. 3 is a schematic diagram of the internal structure of the prefabricated wall of the present invention.
  • FIG. 4 is a schematic structural diagram of a mechanical connection part of a prefabricated wall body according to the present invention.
  • FIG. 5 is a schematic structural diagram of a receiving end of the present invention.
  • FIG. 6 is a schematic structural diagram of a receiving cavity of the present invention.
  • FIG. 7 is a schematic structural diagram of a specific position of a receiving end and a receiving cavity according to the present invention.
  • FIG. 8 is a schematic structural diagram of a specific location of another receiving end and a receiving cavity according to the present invention.
  • FIG. 9 is a detailed structural diagram of a receiving end and a receiving cavity of the present invention.
  • FIG. 10 is a detailed structural diagram of another receiving end and a receiving cavity according to the present invention.
  • FIG. 11 is a schematic structural diagram of a prefabricated wall of the present invention.
  • FIG. 12 is a schematic structural diagram of another prefabricated wall of the present invention.
  • FIG. 13 is a schematic structural diagram of another prefabricated wall of the present invention.
  • connection structure of a prefabricated wall of the present invention is a schematic structural diagram before connection of a connection structure of a prefabricated wall of the present invention.
  • connection structure of a prefabricated wall of the present invention is a schematic structural diagram of a connection structure of a prefabricated wall of the present invention.
  • 16 is a schematic structural diagram before connection of another connection structure of a prefabricated wall
  • 17 is a structural schematic diagram of another prefabricated wall connection structure
  • connection structure 18 is a schematic structural diagram before connection of another connection structure of a prefabricated wall
  • connection structure of a prefabricated wall is a schematic structural diagram of another connection structure of a prefabricated wall
  • FIG. 20 is a schematic structural diagram of a connection structure of a prefabricated wall in Embodiment 4.
  • FIG. 21 is an enlarged structural diagram of A in FIG. 20; FIG.
  • FIG. 22 is a structural schematic diagram of a connection structure of a prefabricated wall in Embodiment 5;
  • FIG. 23 is an enlarged structural diagram of the B bit in FIG. 22; FIG.
  • Figure 24 is a schematic diagram of the construction method flow
  • prefabricated wall 1 concrete body 2, rigid frame 3, vertical ribs 4, mechanical connection part 5, receiving end 6, receiving cavity 7, sleeve 8, shaped prefabricated wall 9, upper wall 10, lower floor Wall 11, Fastening assembly 12, Insertion rod 13, Locking piece 14, Buckle 15, Adapter sleeve 16, Cast-in-situ layer 17, Overhead area 18, Precast floor 19, Rigid truss 20, Grouting sleeve 21, Grouting hole 22, air outlet hole 23, support frame 24, adjusting cushion block 25, diagonal brace 26.
  • a prefabricated prefabricated wall includes a concrete main body 2 and a rigid skeleton 3 cast in the concrete main body 2.
  • the rigid skeleton is composed of vertical bars, transverse bars and hoop bars connected to each other. It refers to the ability to resist deformation under the action of static load.
  • Rigid skeleton 3 refers to a support structure that does not use shrinkable materials or structures and deforms or displaces very little under pressure, including steel bars, composite metals and rigidity.
  • a skeleton composed of fibers and other materials fixed by weaving or interspersing, as shown in FIG. 3.
  • the rigid skeleton 3 includes a set of vertical ribs 4 arranged at regular intervals along the length of the wall, of which there are at least 3 vertical ribs 4 When there are less than 3, even if the vertical ribs 4 are all connected, the connection between the precast wall and the prefabricated wall is not stable enough, so in order to enhance the stability, at least 3 vertical ribs 4 are required, of which vertical ribs 4 4 When connection is required according to the architectural design requirements, a mechanical connection portion 5 is formed at the end of the vertical rib 4 to be connected, so the mechanical connection portion 5 is exposed or exposed on the concrete body, that is, connection is required , Therewith fastening assembly by direct connection, or at least directly with a member connected fastener assembly is completed, thus requiring a mechanical connection portion 5 is formed in the vertical end of the head 4 of the ribs.
  • the mechanical connection portion 5 includes a receiving end 6 or a receiving cavity 7.
  • the receiving end 6 is generally higher than the surface of the concrete body 2, and the receiving cavity 7 is generally disposed flush with the surface of the concrete body 2.
  • the 6 or the receiving cavity 7 is provided as a connection port for connecting the upper and lower walls when the prefabricated wall 1 is assembled.
  • the receiving end 6 and the receiving cavity 7 are provided with corresponding interface structures for connection according to the specific connection mode. For example, according to the design requirements, the corresponding fastening component is engaged with it, and then the receiving end 6 and the receiving cavity 7 are provided with a clamping groove or a blocking stop. It can also be set as screw connection or pin key connection, etc.
  • the screw connection is preferred, that is, at the receiving end.
  • the head 6 is provided with external threads
  • the receiving cavity 7 is provided with internal threads.
  • the volume at the bottom is too large.
  • the disadvantages of the present invention are to reduce and reduce the outer dimensions of the mechanical connection part by the same proportion. The present invention has been obtained through a large number of experiments. The specific size is the best when the following dimensions are defined, which can be achieved without breaking easily and at the same time.
  • the outer diameter of the receiving end 6 is 0.7 to 2 times the outer diameter of the vertical rib 4 and the outer diameter of the receiving cavity 7 is 1.2 to 3 times the outer diameter of the vertical rib 4.
  • the outer diameter of the straight rib 4 is d
  • the outer diameter of the receiving end 6 is d1
  • the outer diameter of the receiving cavity 7 is d2
  • 2d ⁇ d1 ⁇ 0.7d, 3d ⁇ d2 ⁇ 1.2d so that the setting avoids stress Due to the large volume occupied by the embedded parts, cracks and concrete fall off are formed.
  • the specific positions of the receiving end 6 and the receiving cavity 7 on the end face of the prefabricated wall can be flexibly set. As shown in FIG. 7, the receiving end 6 is located at the upper end of the prefabricated wall 1, and the receiving cavity 7 is located at the prefabricated wall 1. The lower end of this is set to unify the direction of the receiving end 6 and the receiving cavity 7 on the prefabricated wall 1.
  • the prefabricated wall 1 When the prefabricated wall 1 is prefabricated in the factory, it can facilitate the reinforcement of the ingredients and the skeleton; In the case of a wall, it is not necessary to consider the connection direction of the mechanical connection portion 5 due to the consistency of the ends, which is convenient for installation and assembly.
  • the receiving ends 6 and the receiving cavities 7 are randomly distributed at the upper and lower ends of the prefabricated wall 1. Although this arrangement is laborious during prefabrication, in the assembly of the wall, the receiving ends 6 and The receiving cavity 7 has a gap with respect to the prefabricated wall 1 itself. After the connection is completed, the connecting point also naturally forms a gap, that is, the height of each connecting point also forms a connection with a gap as the receiving end 6 and the receiving cavity 7 are set. In this way, when the connected concrete structures are subjected to shear forces, since the connection points are not on the same horizontal plane, they can withstand greater shear forces, thereby improving the stability of the building structure.
  • the receiving end 6 is formed by processing the end of the vertical rib 4 protruding from one end of the concrete body 2, and the receiving cavity 7 is formed by upsetting the rear end of the vertical head 4 Its axial direction is processed into an open cavity recessed inward.
  • the through-bars better ensure the integrity of its structure and improve the stability and safety of the wall.
  • the formation of the receiving end 6 is processed by the end of the vertical main body 4 extending out of one end of the concrete body 2, and the formation of the receiving cavity 7 is based on the rigid connection of the end of the vertical end 4.
  • the tube 8 is formed, and an end of the sleeve 8 away from the vertical rib 4 forms an open receiving cavity.
  • the rigid connection here refers to the relationship between two objects. When one object is displaced or subjected to a force, the other object connected to it will not be displaced or deformed relative to the first object, that is, the two are connected as one. overall. It can be a threaded connection, pin and key connection, welding, heat treatment or cold rolled connection and so on. In this way, although the integration of the receiving cavity and the vertical ribs is slightly lost, the convenience of installation and processing is greatly improved, and flexible processing and assembly can be made, and the processing cost is also lower.
  • the special-shaped prefabricated wall 9 is composed of a single piece of prefabricated wall 1, that is, a plurality of prefabricated walls 1 adjacent to each other are assembled at a certain angle in the transverse direction. Therefore, since the splicing method or the horizontal connection is not within the protection scope of the present invention, and the person skilled in the art can obtain multiple splicing methods according to the existing technology, of course, the connection of the transverse ribs between the prefabricated walls can also adopt the above. The structural structure of the vertical ribs and the connection method described later in this case are not repeated here.
  • the feature of the present invention is that, because the special-shaped prefabricated wall 9 is a combination of the above-mentioned prefabricated wall 1, the special-shaped prefabricated wall
  • the mechanical connection 5 in the longitudinal direction 9 and the embedded skeleton structure in the special-shaped prefabricated wall 9 both originate from the prefabricated wall 1. Therefore, the special-shaped prefabricated wall 9 combines the advantages of the prefabricated wall 1 itself.
  • the special-shaped prefabricated wall 9 provides a feasible practical basis for the realization of the prefabricated complex wall. That is, when the special-shaped prefabricated wall 9 is integrally prefabricated, the simple internal skeleton greatly facilitates the skeleton in the mold. It is fixed, and the internal embedded parts are basically ignored.
  • the prefabricated wall 1 and the special-shaped prefabricated wall 9 only have different shapes, and the key vertical ribs and mechanical connections are the same, the special-shaped prefabricated wall 9 can be regarded as a deformation of the prefabricated wall, so
  • the prefabricated wall 1 in this case includes a straight wall and a shaped wall.
  • the prefabricated wall 1 is an “L” shaped prefabricated wall, and the included angle ⁇ a of the inner wall surface between the walls is 90 °, and a mechanical connection portion is provided in the longitudinal direction of the wall. 5 to facilitate the connection between the walls.
  • the prefabricated wall 1 is a “V” shaped prefabricated wall, and the included angle ⁇ b of the inner wall surface between the walls is less than 90 °, and a mechanical connection portion is provided in the longitudinal direction of the wall. 5 to facilitate the connection between the walls.
  • the prefabricated wall 1 is an open-type isosceles trapezoidal prefabricated wall, wherein the included angle ⁇ c of the inner wall surface between adjacent walls is 91 ° to 179 °, in the longitudinal direction of the wall.
  • a mechanical connection portion 5 is provided in the direction to facilitate the connection between the walls.
  • the upper wall 10 is a prefabricated wall 1 in Embodiment 1 or a profiled prefabricated wall in Embodiment 2 which is set to match the end surface on the upper floor.
  • Body 9 (hereinafter referred to as the upper wall), and the lower wall 11 is the prefabricated wall 1 in Embodiment 1 or the special-shaped prefabricated wall 9 in the second embodiment (hereinafter referred to as the lower wall) Body
  • end face matching refers to the design of the wall or the mechanical connecting parts on the end face of the wall corresponding to each other, specifically, when the upper and lower end faces of the two walls are on the same axis and are used for connection between the walls
  • the mechanical connection portion 5 meets the requirements of the reinforced connection between the walls.
  • the common feature of the upper wall 10 and the lower wall 11 is that the ends of the vertical ribs 4 provided in the longitudinal direction are formed with corresponding mechanical connections 5 on the wall according to the design requirements.
  • the upper wall 10 and the lower wall 11 The mechanical connecting portion 5 is communicated with each other through the fastening component 12 and is locked and fixed to form an assembly structure of an assembled building.
  • the fastening component 12 corresponds to the assembly connection of the overhead area 18 left between the walls.
  • connection structure of the wall also includes a cast-in-situ layer 17. After the fastening component 12 is assembled in the connecting overhead area 18 formed between the upper-layer wall 10 and the lower-layer wall 11, the cast-in layer 17 will The overhead area 18 is filled and compacted, so that the upper wall 10 and the lower wall 11 become a whole.
  • connection between the upper wall 10 and the lower wall 11 is the assembly of the fastening component 12 corresponding to the overhead area 18 left between the walls through the fastening component 5, that is, the connection between the upper wall 10 and the lower wall 11 is formed.
  • connection mode of the main bars in the rigid skeleton and the fastening components between the main bars should be here. Be applicable.
  • the fastening component 12 includes an insert rod 13, a locking member 14, a button barrel 15, an adapter sleeve 16, and an upper layer.
  • the mechanical connecting portion 5 of the wall 10 corresponds to the connecting sleeve 16, and the mechanical connecting portion 5 of the lower wall 11 corresponds to the connecting rod 13; or the mechanical connecting portion 5 of the upper wall 10 corresponds to the connecting rod 13 and the lower wall
  • the mechanical connecting portion 5 of the body 11 is correspondingly connected to the adapter sleeve 16, the button barrel 15 is fixed in the adapter sleeve 16, the plug rod 13 is inserted into the button barrel 15, and the locking member 14 is sleeved on the outer edge of the plug rod 13, so that the plug The rod 13 is engaged with the buckle tube 15 without a gap.
  • connection structure makes the connected parts no longer hidden in the wall, and it can be clearly observed whether the connection is in place to ensure the stability of the wall connection.
  • this connection structure directly connects the longitudinal (vertical) ribs in the wall, and the force transmission is more direct, which improves the overall ductility of the wall and the building composed of the wall.
  • the An adapter sleeve 16 is installed at the end 6 and then an insert rod 13 is installed in the adapter sleeve 16.
  • the connection cavity of the adapter sleeve 16 needs to be shaped as the internal shape of the receiving cavity 7, in the lower wall 11
  • an adapter sleeve 16 is installed at the receiving end 6 and the buckle tube 15 is housed and fixed in the adapter sleeve 16.
  • the upper layer is adjusted
  • the height of the wall 10 inserts the plug 13 into the buckle barrel 15, the plug connector on the plug 13 is opened and passes through the spring piece on the buckle barrel 15, and the spring piece naturally returns to the contracted state, thereby forming a butt plug.
  • the role of the rod 13 is to limit and back, and then the locking member 14 on the rod 13 is inserted tightly, so that the insertion rod 13 and the buckle cylinder 15 are locked without a gap, so that the vertical ribs are firmly connected together.
  • the receiving cavity 7 of the lower wall 11 is shaped as a rotation Connect the inner cavity of the sleeve 16 so that after the prefabrication of the upper wall 10 is completed, an insert rod 13 is installed at the receiving cavity 7; after the prefabrication of the lower wall 11 is completed, the buckle tube 15 is directly housed and fixed at the receiving cavity 7.
  • the receiving cavity 7 when the upper wall 10 and the lower wall 11 are connected, adjust the height of the upper wall 10, insert the plug 13 into the buckle barrel 15, and the plug connector on the plug 13 is opened and penetrated.
  • an assembly structure of a prefabricated building includes the assembly structure of the wall in Embodiment 4, and further includes a prefabricated floor 19 and a cast-in-situ layer 17.
  • the lower edge of the prefabricated floor 19 overlaps the two Above two adjacent lower wall bodies 11, the cast-in-situ layer 17 fills the assembly gap between the prefabricated floor 19, the upper wall body 10 and the lower wall body 11, and at least flush with the lower end face of the upper wall body 10.
  • the overhead area 18 formed on the prefabricated floor 19 and the upper wall 10 and the lower wall 11, that is, the height of the cast-in-situ layer in the vertical direction is at least flush with the lower end surface of the upper wall 10.
  • the cast-in-situ layer 17 is a liquid concrete filler or a modified filler, which can meet the mechanical requirements of the building filler. Specifically, it can also be accurately measured from sand, stone, cement, water, additives and admixtures. Freshly mixed concrete with low slump made by mixer.
  • the assembly structure of the upper and lower wall bodies adopts the assembly structure shown in FIG. 14, that is, the mechanical connection portion 5 of the upper wall body 10 is the receiving cavity 7, and the mechanical connection portion 5 of the lower wall body 11 is To accept the end 6, the vertical ribs 4 are connected as a whole by the fastening component 12.
  • the prefabricated floor 19 can only be horizontally overlapped with the lower wall 11 And the transverse ribs between the prefabricated floor slabs 19 also need to be overlapped.
  • the assembly gap includes the upper wall 10
  • the invention uses the cast-in-situ layer 17 to fill the assembly gap after all the reinforcing bars that need to be connected between the walls are firmly connected, on the one hand, the mechanical connection part is visible and controllable, and the connection quality is ensured; on the other hand, the building component connection structure is made. It is integrated into a whole, and a plurality of through ribs are formed in the structure, which effectively improves the earthquake resistance, tensile resistance and pull-out capability of the building structure, making the overall building structure safer and more reliable.
  • this embodiment is basically the same as Embodiment 4, except that the upper surface of the prefabricated floor slab 19 is exposed with a rigid truss 20 to facilitate the fixation or embedding of the prefabricated floor 19.
  • the attachments or embedded objects are fixed in the gap of the rigid truss 20 or the rigid truss 20 laid on the prefabricated floor slab 19.
  • the attachments or embedded objects include the transverse or longitudinal ribs of the prefabricated floor 19, electrical wiring, and air conditioning ducts. Floor heating pipes, water pipes, etc.
  • the cast-in-situ layer 17 fills the rigid truss 20, and these attachments or embedded objects are fixed in the floor, which makes the surface of the building fresh and clean, and avoids opening during later decoration. Damage to the building structure caused by the behavior of grooves, etc., also has good economic effects, saving resources and reducing costs.
  • a method for constructing an assembly structure of a prefabricated building is further described, in particular, the method for constructing an assembly structure in Embodiments 4 and 5, including the prefabricated floor slab 19, the upper wall 10, and The lower wall 11 and the prefabricated floor 19 are supported on the upper ends of two adjacent lower walls 11 through the support frame 24.
  • the upper wall 10 is suspended above the lower wall 11 above the thickness of the prefabricated floor 19, and the upper wall
  • the end faces of the body 10 and the lower wall 11 are opposite.
  • the as-cast layer 17 is used to fill the assembly gap, At least flush with the lower end surface of the upper wall 10 to fill the overhead area 18 formed on the prefabricated floor 19 and the upper wall 10 and the lower wall 11.
  • Prefabrication steps of components prefabricated fabricated prefabricated wall 1 and prefabricated floor 19;
  • Steps for transporting components transport the fabricated prefabricated wall 1 and prefabricated floor 19 to the construction site, and assemble the fastening component 12 to the parts to be connected on the prefabricated wall 1 and prefabricated floor 19;
  • Lower wall fixing steps install the lower wall 11 or the completed floor
  • the support setting step can be performed first: according to the design requirements, the support frame 24 supporting the prefabricated floor is assembled around the lower wall Assemble and fix the supporting bracket with the upper end face of the lower wall 11 so that the support frame 24 supports the prefabricated floor 19 in the horizontal direction.
  • the support frame 24 can be a horizontal and vertical support rod, or it can be Triangular top bracket.
  • Wall docking steps hoist the upper wall 10 to the designated position; in order to better position the upper wall 10, adjust the adjustment block 25 between the upper wall 10 and the lower wall 11, and increase or decrease the adjustment block 25 to change the height, to adjust the level and height of the long side of the upper wall 10, set the diagonal brace 26 between the prefabricated floor 19 and the upper wall 10, and adjust the vertical and short sides of the upper wall 10 by the diagonal brace 26 Level and tilt.
  • Fastener adjustment steps Between the upper wall 10 and the lower wall 11, the fastening components 12 are respectively fixedly connected to the mechanical connection portion 5, and the fastening components 12 are adjusted to meet the upper wall 10 and the lower wall. 11 requirements for connection and pull-out resistance.
  • On-site pouring steps at the construction site, the concrete filler is poured into the prefabricated floor slab 19 and the assembly gap between the upper wall 10 and the lower wall 11 so that the prefabricated floor 19, the upper wall 10 and the lower wall 11 form a gap-free whole structure.
  • the cast-in-situ layer 17 is formed on the site.
  • the cast-in layer 17 is a liquid concrete filler. It is a low slump made of sand, stone, cement, water, additives and admixtures and accurately measured with a concrete mixer. Degrees of fresh concrete.
  • this construction method uses a cast steel or profile cutting molding grouting sleeve, which has a higher processing cost, a longer overlap length, and requires more steel bars and grouting.
  • the cost of the precast wall is almost twice that of the cast-in-place wall, and the grouting workload on site is large.
  • the construction period depends on the construction speed of the grouting by the on-site workers, and the workers are limited by factors such as skill and seriousness.
  • grouting is often not dense, and the quality is not easy to guarantee. And this case overcomes the shortcomings of the existing assembly structure, such as slow installation speed and difficult to guarantee efficiency and quality, and optimizes the connection node structure between the wall and the floor, so that the assembly structure has reliable connection, simple structure, convenient construction and easy installation.

Abstract

一种装配式建筑的预制墙体(1),包括混凝土主体(2)和浇筑在混凝土主体(2)中的刚性骨架(3),刚性骨架(3)包括n根纵向延伸的竖直筋(4),n是大于等于3的整数,预制墙体(1)的上端面和下端面在竖直筋(4)的同一轴线的位置形成由m个机械连接部(5),m取小于等于2n的整数,机械连接部(5)均形成于竖直筋(4)的端头部。还包括一种装配式建筑的装配结构,通过紧固组件(12)将上层墙体(10)、下层墙体(11)和楼板之间的架空区(18)将配筋牢固连接后,采用现浇层(17)填充装配间隙形成。还包括一种装配式建筑的施工方法。该结构连接可靠、结构简单、施工方便。

Description

一种装配式建筑的预制墙体和装配结构及其施工方法
本申请要求2018年07月10日提交中国专利局、申请号为201810753058.1、发明名称为“一种装配式建筑的预制墙体和装配结构及其施工方法”的中国专利申请的优先权,其中,该专利所记载的全部内容通过引用结合在本申请中。
技术领域
本发明涉及建筑结构领域,尤其涉及一种装配式预制墙体和装配结构及结构的施工方法。
背景技术
现阶段,随着我国大力推行住宅产业化,各地纷纷进行了若干装配式住宅项目,现有的装配式建筑技术多引自国外,采用了在美国和日本等国家普遍应用的“套筒浆锚连接”和“预留孔洞间接搭接浆锚连接”技术,“套筒浆锚连接”和“预留孔洞间接搭接浆锚连接”技术的共同点是在混凝土中预埋注浆套筒,待混凝土达到要求强度后,钢筋穿入注浆套筒,再将高强度无收缩灌浆料灌入注浆套筒养护,以起到锚固钢筋的作用。参见图1,钢筋套筒灌浆技术使得建筑物实现了可装配化,受到工程应用者的肯定。
但是,受限于以上两种连接方式所需要的构造或结构,存在以下不足:
首先,以上两种连接技术的墙体之间的钢筋传力方式均为间接传力,需要通过预留孔洞内的灌浆料传递,传力不直接,在正常受力的时候,两根相距较远的钢筋需要相互传力,这样的传力方式会对周围混凝土产生附加弯矩和剪力,使得墙体在此处受力复杂,同时在轴压比较高的情况下,会出现灌浆料顶部的局部受压裂缝。并且,两种连接工艺对灌浆料和灌浆工艺有很高的要求,如果灌浆料在注浆套筒中存在气泡或其它不密实等因素,则会对此类连接方式产生很大的影响。
其次,这种连接方式隐蔽在墙体内部,如果在施工过程中出现灌浆不密实,或事后出现轻微渗漏造成灌浆长度不足等现象难以被施工人员或质检人员检查到,存在装配质量无法保证的隐患。
再次,为了达到灌浆工艺要求,注浆套筒上需要留有突出注浆套筒的灌浆孔和出气孔,在纵向钢筋较多的墙体内,灌浆孔和出气孔会占用墙体底部较大的体积,实际工程中,墙体底部区域往往受力较大,是为墙体延性提供较大贡献的部位,而以上设置方式,使得墙体底部区域反而成为墙体的相对薄弱的部分,在实践中裂缝往往由灌浆孔或出气孔向周围扩散,并出现有混凝土在此处整块脱落的现象。并且,注浆套筒的外径较大,在4~5cm范围,且目前注浆套筒的外表面的一般制作的比较光滑,不能很好的和周围混凝土形成有效约束,因此在工程后期,经常出现底部混凝土大块往外掉落,底部有效受压面积减小,故该装配结构本身会影响墙体后期承载能力,降低墙体延性。
基于以上所述,装配式建筑领域急需一种传力直接、结构稳定的预制墙体,以及装配质量可控,并且对墙体影响小的装配结构及施工方法。
发明内容
本发明的目的之一是在现有技术的基础上,为了解决预制墙体的墙脚部构造部件多且复杂,已严重影响墙体承载力的技术问题,提供一种墙体骨架简单、无需增设预埋件的装配式预制墙体。
为了实现上述的各目的,本发明分别采用的技术方案如下:
一种装配式预制墙体,包括混凝土主体和浇筑在混凝土主体中的刚性骨架,刚性骨架包括n根纵向延伸的竖直筋,n是大于等于3的整数,其中,预制墙体的上端面及下端面在竖直筋的同一轴线的位置共形成有m个机械连接部,m取小于等于2n的整数,所述机械连接部均形成于竖直筋的端头部。这样设置的目的在于:由于本发明将机械连接部设计在竖直筋的端部,一方面,将预制墙体中墙脚部的预埋件全部取消,极大的简化了预制墙体内部架构的结构,有利于墙体预制过程中骨架的定位及固定,有效的避免了浇筑过程中造成的机械连接部错位移位的问题,以及进一步方便了振捣密实的稳定性。另一方面,机械连接部设计在竖直筋的端部,有利于连接后力的直接传递。再一方面,连接点外露在混凝土主体外,使得连接的牢固程度变看可视可控,有力的保证了连接质量。
机械连接部包括承接端头和/或承接腔,在预制墙体的上端面和/或下端 面,其中,竖直筋的端头部伸出混凝土主体的表面,并且在其端头部形成的承接部为承接端头;竖直筋的端头部形成沿其轴线方向向内凹陷的敞口式承接部为承接腔。这样设置的目的在于:一方面机械连接部可以延伸出混凝土主体,不再将机械连接部预埋在混凝土主体中,使得连接可视化,便于检查并直观的了解连接的牢固程度,方便保证连接质量;另一方面改变了现有技术中混凝土主体中预埋套筒的墙体结构,机械连接部无需设置灌浆孔和出气孔,以克服现有技术中,墙体的墙脚部构造部件多且复杂,导致降低墙体延性的技术问题。
承接端头的外径为竖直筋外径的0.7~2倍,承接腔的外径为竖直筋外径的1.2-3倍。这样设置的目的在于:由于与现有的套筒相比极大的减短和缩小了机械连接部的体积,以克服现有技术中套筒连接或搭接中套筒的灌浆孔和出气孔占用底部体积太大,使得墙体底部区域成为墙体的相对薄弱的部分,避免了受力时因灌浆孔或出气孔周围相对薄弱而形成扩散裂缝,以及混凝土在此处整块脱落的现象。
承接端头上设有外螺纹,承接腔内设有内螺纹。这样的设置的目的是,通过螺纹来连接多个组件,方便机械连接部及其他组件的加工及安装,并且通过螺纹连接传力明确、连接可靠、安装方便,可明显提高施工速度。
承接腔是基于竖直筋的端头部刚性连接的套筒而形成,套筒远离竖直筋的一端形成敞口式的承接腔。这样的设置的目的是,由于承接腔的形成是由竖直筋和连接在其端部的套筒组合而成,这样与竖直筋一体成型承接腔相比,加工成本更低,也方便在墙体预制过程中骨架固定时需要转动承接腔的情况下,这时,竖直筋和套筒相对独立,单独旋转套筒即可,有利于竖直筋及套筒在模具中的定位及固定。
装配式预制墙体,不仅包括一块平直造型的墙体,还包括L形、矩形、U形弧形等异形墙体,当预制墙体为异形构造时,预制墙体之间彼此相邻的墙面在水平方向上呈∠α,0°<∠α<360°,异形预制墙体的成型可以是多块墙体固定拼合连接或一体成型。这样的设置的目的是,当单一的预制墙体不能满足建筑需要的时候,就需要将预制墙体组合或变形,将上述的预制墙体在横向方向上形成为一个非直线的整体的墙体,那么预制墙体的纵向方向上就形成了类似上述的墙体的竖直筋加机械连接部的结构,这样, 极大的简化了所形成的预制墙体内预埋件及预制墙体内刚性骨架的结构构造,为在模具中预制复杂墙体提供了极大的便利和实践基础。同时,也进一步的为墙体间纵向方向的连接提供了极大便利。
本发明的另一个目的是针对现有装配式预制墙体的连接方式中的间接传力、密封要求高、连接质量不易保证的技术问题,提出一种便于装配并且传力直接的预制构件的连接方式或装配结构及其施工方法。
一种包含上述预制墙体的装配式建筑的装配结构,包括上层墙体、下层墙体、紧固组件,所述上层墙体和下层墙体为上述的预制墙体;其中,上层墙体位于下层墙体的上方,且上层墙体内的竖向筋与下层墙体内的竖向筋由紧固组件机械连接。
还包括上层墙体和下层墙体间的混凝土现浇区,混凝土现浇区包覆紧固组件。
紧固组件包括插杆、锁紧件、扣筒、转接套筒,上层墙体或下层墙体的机械连接部分别对应连接转接套筒和插杆,扣筒固定在转接套筒内,插杆插入扣筒,锁紧件套设在插杆外缘,使得插杆与扣筒无间隙卡接。从而将上层墙体和下层墙体纵向方向在现浇区牢固连接,这样的连接构造使得相连接的部分不再隐蔽在墙体内,可以清楚的观察到连接是否到位,以便保证墙体连接的稳定性和装配质量的可控性,另外,这样的连接构造是将墙体或墙体内的纵向(竖直)筋直接连接,力的传递更直接,并在墙体连接构造内部形成贯通筋,提升了墙体及由之构成的建筑物的整体延性。
进一步的,还包括预制楼板和现浇层,预制楼板的下缘搭在两两相邻的下层墙体之上,现浇层填补在预制楼板、上层墙体和下层墙体之间的装配间隙,并且,在竖直方向上,现浇层的高度至少与上层装配式预制墙体或墙体的下端面齐平。由于本发明技术方案中将墙体之间的机械连接部分设置在预制墙体外,这就需要在形成整体建筑物时,将架空的部分用现浇层填充或填补起来,现浇层很好的填补了装配间隙,由于现浇混凝土料具有流动性,可以全面的有效的将所有装配间隙一次填补完毕,这样进一步的保证了装配式连接构的整体性,确保连接构造整体无间隙,浑然一体,进一步提升其稳定性。
进一步的,现浇层填补的装配间隙包括,上层墙体的下端面和下层 墙体的上端面之间的架空区,以及预制楼板的上表面至上层墙体的下端面所在平面之间的空间。由于现浇层的成型需要一定的时间,在预制楼板上填充现浇层,这样在现浇层成型过程中,方便对预制楼板上的现浇层进一步施工增加其他附着物,如地砖、地板龙骨、插线板等。
进一步的,预制楼板的上表面裸露有刚性桁架,现浇层将刚性桁架填覆。在预制楼板上裸露刚性桁架,再用现浇层覆盖填充,以方便固定预制楼板内的预埋物,以及对预制楼板的内部构造进一步施工,将预制楼板的预埋物固定在刚性桁架或铺设在预制楼板上或穿插在刚性桁架的间隙,现浇层填覆后这些预埋物即固定在楼层内,预埋物包括预制楼板的横向筋或纵向筋,电线管路,空调管路,地暖管路,走水管路等等。
一种装配式建筑的施工方法,包括以下步骤:
下层墙体固定步骤:将下层墙体固定在地基或承台或已完成装配的楼层上;
支撑设置步骤:根据设计要求,在下层墙体的周边组装支撑预制楼板的支撑架;
预制楼板铺设步骤:将预制楼板铺设在支撑加上,并使得预制楼板的端部与下层墙体的顶部相搭接;
墙体对接步骤:吊装上层墙体至指定位置,使得上层墙体的竖向筋与下层墙的竖向筋由紧固组件进行机械连接;
紧固件调节步骤:调节紧固组件到满足上层墙体和下层墙体连接固定的抗拔抗拉的要求;
现浇步骤:将混凝土填料浇注到预制楼板及上层墙体和下层墙体之间的装配间隙,形成现浇层,使得楼板、上层墙体和下层墙体形成无间隙的整体构造;
重复上述支撑设置步骤至现浇步骤,直至完成装配式建筑的施工。
在支撑设置步骤中,将起支撑作用的支架与下层墙体的上端面齐平的组装固定,以便支撑架在水平方向支撑预制楼板,以避免预制楼板跌落的事故。
进一步的,在墙体对接步骤中,还包括调节定位,在上层墙体和下层墙体之间设置调节垫块,在预制楼板与上层墙体之间设置斜撑。这样在 墙体对接时,通过调节垫块的多寡来调节墙体的长边的水平及高度,通过斜撑来调节墙体的垂直及短边的水平及倾斜度,不仅可以解放吊具还进一步实现精确的对接,提高连接精度。
与现有技术相比本发明具有以下特点和有益效果:
本发明方法采用紧固组件及机械连接部将竖直筋直接对接的连接方法,可快速安装定位装配式墙体,增大节点连接刚度,实现强节点弱构件的设计原则。这种节点构造具有很好的抗震性能,同时保证墙体连接有很好的稳定性。预制墙体的设计考虑了墙体受力的整体性,利用竖直筋加强了部分混凝土墙体的强度,提高墙脚处的延性,使得构件整体稳定性加强,保证墙体安全可靠。竖直筋相互连接后装配式连接构造内形成贯通筋,更好的保证了连接构造的整体性,有力的保证了墙体受力,使得承载力不被削减。
附图说明
图1为背景技术中套筒注浆墙体结构示意图;
图2为本发明预制墙体的结构示意图;
图3为本发明预制墙体的内部结构示意图;
图4为本发明预制墙体的机械连接部的结构示意图;
图5为本发明承接端头的结构示意图;
图6为本发明承接腔的结构示意图;
图7为本发明承接端头和承接腔具体位置的结构示意图;
图8为本发明另一种承接端头和承接腔具体位置的结构示意图;
图9为本发明承接端头和承接腔的具体结构示意图;
图10为本发明另一种承接端头和承接腔的具体结构示意图;
图11为本发明预制墙体的结构示意图;
图12为另一种本发明预制墙体的结构示意图;
图13为另一种本发明预制墙体的结构示意图;
图14为本发明预制墙体的连接构造的连接前结构示意图;
图15为本发明预制墙体的连接构造的结构示意图;
图16为另一种预制墙体的连接构造的连接前结构示意图;
图17为另一种预制墙体的连接构造的结构示意图;
图18为另一种预制墙体的连接构造的连接前结构示意图;
图19为另一种预制墙体的连接构造的结构示意图;
图20为实施例4的预制墙体的连接构造的结构示意图;
图21为图20中A为放大的结构示意图;
图22为实施例5的预制墙体的连接构造的结构示意图;
图23为图22中B位放大的结构示意图;
图24为施工方法流程示意图;
其中:预制墙体1,混凝土主体2,刚性骨架3,竖直筋4,机械连接部5,承接端头6,承接腔7,套筒8,异形预制墙体9,上层墙体10,下层墙体11,紧固组件12,插杆13、锁紧件14、扣筒15、转接套筒16,现浇层17,架空区18,预制楼板19,刚性桁架20,灌浆套筒21,灌浆孔22,出气孔23,支撑架24,调节垫块25,斜撑26。
具体实施方式
下面结合实施例对本发明作进一步说明。
实施例1
参见图2所示,一种装配式预制墙体,包括混凝土主体2及浇筑在混凝土主体2中的刚性骨架3,刚性骨架由竖直筋、横向筋及箍筋相互连接而组成,其中,刚性是指具有在静力负荷作用下,抵抗变形的能力,刚性骨架3是指不使用可缩性材料或结构的、在压力作用下变形或位移很小的支架结构,包括钢筋、复合金属及硬性纤维等材料通过编制或穿插固定而组成的骨架,参见图3所示,刚性骨架3中包括一组沿墙体长度方向、均匀间隔设置的竖直筋4,其中竖直筋4至少为3根,当少于3根时,即使竖直筋4全部连接,预制墙体与预制墙体的连接也是稳定性不足,所以为了增强稳定性,需要竖直筋4至少为3根,其中竖直筋4应建筑设计要求需要连接时,在需要连接的竖直筋4的端部形成有机械连接部5,所以机械连接部5均为在混凝土主体上裸露的或敞口的,即需要连接时,可通过紧固组件与其进行直接的连接,至少是可以直接的与紧固组件中的一个部件完成连接,这样就需要机械连接部5是在竖直筋4的端头部形成的。
该技术方案通过机械连接部的设置不仅带来前述的效果,还可以克服了预埋注浆套筒的如下弊端,由于预埋注浆套筒以及在套筒内搭接钢筋,使得墙体的墙脚部的内部构造设有双倍于墙体的竖向钢筋,加上水平加密钢筋、预埋注浆套筒以及螺旋箍筋等,在此处的构造部件多且复杂,同时由于没有更合理的配套设备和完善的施工工艺,此处竖向钢筋及套筒的定位也相对更为复杂,浇筑混凝土时容易造成注浆套筒错位,影响墙体拼接。另外,在这样复杂的构造中,混凝土在此处的振捣密实也难以保证。而本技术方案中竖直筋及机械连接部的设置极大的简化了预制墙体内部的构造,本方案刚性骨架完全可以按照传统的现浇中的钢筋笼的制作方式来配制,无需加装其他预埋件。这样,预制墙体的内部构造仅包括必要配筋,无需双倍的竖向筋。
参见图4所示,机械连接部5包括承接端头6或承接腔7,承接端头6通常高出混凝土主体2表面,承接腔7通常设置为与混凝土主体2的表面齐平,承接端头6或承接腔7的设置是为了在预制墙体1装配时作为连接上下墙体的的一个连接端口,承接端头6和承接腔7根据具体的连接方式设置有对应的可用于连接的接口结构,例如根据设计需要相应的紧固组件与其卡接,则在承接端头6和承接腔7上设置成用卡接的卡接槽或卡接挡块等。也可以设置为螺纹连接或销键连接等,在本实施例中,参见图5、6所示,基于螺纹连接传力明确、连接可靠、安装方便等优点,优先选择螺纹连接,即在承接端头6上设有外螺纹,承接腔7内设有内螺纹,另外,为了克服现有技术中用于连接的灌浆套筒或搭接套筒本身及其灌浆孔和出气孔占用底部体积太大的弊端,本发明从缩小并同比例减端机械连接部的外形尺寸出发,本发明通过大量的实验得出,具体尺寸做如下限定时效果最佳,可以实现既不容易拉断,同时还能起到牢固连接的作用,即承接端头6的外径为竖直筋4外径的0.7~2倍,承接腔7的外径为竖直筋4外径的1.2~3倍,其中,竖直筋4的外径为d,承接端头6的外径为d1,承接腔7的外径为d2,则2d≥d1≥0.7d,3d≥d2≥1.2d,这样设置避免了受力时因预埋件占用体积太大而形成裂缝及混凝土脱落的现象。
其中承接端头6和承接腔7在预制墙体端面上的具体位置可以灵活设置,如图7所示,承接端头6全部位于预制墙体1的上端,承接腔7全部位于 预制墙体1的下端,这样设置是将承接端头6和承接腔7在预制墙体1上的方向统一,在预制墙体1在工厂预制加工时,可以有利于配料配筋及骨架的固定;在装配预制墙体时,由于端部的一致性,无需考虑机械连接部5的连接方向,方便安装及装配。
如图8所示,承接端头6和承接腔7是在预制墙体1的上端和下端随机分布,这样设置虽然在预制加工时费力,但是,在墙体装配中,由于承接端头6和承接腔7相对于预制墙体1本身存在落差,完成连接后,连接点也自然的形成落差,即个连接点的高度也是随着承接端头6和承接腔7的设置而形成具有落差的连接点,这样,连接后的混凝土构造在受到剪切力的时候,由于连接点不在同一水平面上,所以可以承受更大的剪切力,进而提高了建筑构造的稳定性。
参见图9所示,承接端头6的形成是由竖直筋4伸出混凝土主体2一端的端部加工而成,承接腔7的形成是由竖直筋4的端头部镦粗后沿其轴线方向加工成向内凹陷的敞口式腔室而成。这样,通过承接端头6和承接腔7将预制墙体1连接后相当于是直接的将预制墙体1之间的竖直筋4连接在一起,从而在墙体构造内形成贯通构造体的竖向贯通筋,更好的保证了其构造的整体性,提高墙体的稳定性及安全性。
参见图10所示,承接端头6的形成是由竖直筋伸4出混凝土主体2一端的端部加工而成,承接腔7的形成是基于竖直筋4的端头部刚性连接的套筒8而形成,套筒8远离竖直筋4的一端形成敞口式的承接腔。这里的刚性连接是指两个物体之间,当一个物体产生位移或受力时,与之相连的另一物体不会相对于第一个物体产生位移或相对变形,也就是两个连接为了一个整体。可以是螺纹连接、销键卡接、焊接以及热处理或冷轧连接等等。这样虽然略微损耗了承接腔与竖直筋的一体性,但是极大的提升了安装及加工的便利性,可以及其灵活的加工和装配,同时加工成本也更低。
实施例2
参见图11-13所示,异形预制墙体9是由单片的预制墙体1组合而成的,即多块预制墙体1之间彼此相邻的预制墙体在横向上成一定角度拼合而成,由于拼合方式或横向连接不在本发明保护范围内,并且其拼合方式本领域技术人员可以根据现有技术得到多种拼合方式,当然预制墙体之间的横向 筋的连接也可以采用上述竖直筋的结构构造,以及本案后面所述的连接方式,此处不在赘述,本发明的特点是,由于异形预制墙体9是由上述的预制墙体1组合而成,故异形预制墙体9的纵向方向的机械连接部5及异形预制墙体9内的预埋骨架结构均源于预制墙体1,因此,该异形预制墙体9集合了预制墙体1本身的优点。另外,该异形预制墙体9为预制复杂墙体的实现提供了可行的实践基础,即异形预制墙体9成整体预制时,由于其简单的内部骨架,极大的方便了骨架在模具中的固定,并且内部预埋件基本忽略不计,即使是复杂墙体,其墙体属性也不会发生改变,这就为预制复杂墙体提供了极大的便利和实践性。当然,由于预制墙体1和异形预制墙体9只是形状变化,并且其关键的竖向筋及机械连接部相同,所以,异形预制墙体9可以看做是预制墙体的一种变形,故本案中预制墙体1包括平直的墙体和异形的墙体。
本实施例中图11所示,预制墙体1为“L”形预制墙体,其墙体间内墙面的夹角∠a为90°,在墙体的纵向方向上设有机械连接部5,以便于墙体间的连接。
本实施例中图12所示,预制墙体1为“V”形预制墙体,其墙体间内墙面的夹角∠b小于90°,在墙体的纵向方向上设有机械连接部5,以便于墙体间的连接。
本实施例中图13所示,预制墙体1为开口式等腰梯形预制墙体,其中,相邻墙体间内墙面的夹角∠c为91°~179°,在墙体的纵向方向上设有机械连接部5,以便于墙体间的连接。
实施例3
参见图14、15所示,一种装配式建筑的装配结构,上层墙体10为设定为处于上层的端面相匹配的实施例1中的预制墙体1或实施例2中的异形预制墙体9(以下简称上层墙体),下层墙体11为设定为处于下层的端面相匹配的实施例1中的预制墙体1或实施例2中的异形预制墙体9(以下简称下层墙体),端面相匹配是指设计为墙体或墙体的端面上配置的机械连接部相互对应,具体的说,当两个墙体上下端面相对时,处于同一轴线并用于墙体间连接的机械连接部5满足墙体间配筋连接的要求。上层墙体10和下层墙体11共同的特点是根据设计需要其纵向设置的竖直筋4的端头部在墙体上形 成有相应的机械连接部5,上层墙体10和下层墙体11之间通过紧固组件12连通机械连接部5并锁紧固定进而形成装配式建筑的装配结构,紧固组件12在墙体间留置的架空区18对应的装配连接。
在该墙体的连接构造中还包括现浇层17,在上层墙体10和下层墙体11之间形成的连接用架空区18内装配紧固组件12并连接牢固后,现浇层17将架空区18填补密实,使得上层墙体10和下层墙体11成为一个整体。
上层墙体10和下层墙体11之间的连接是通过紧固组件5在墙体间留置的架空区18对应的装配紧固组件12,即上层墙体10和下层墙体11之间形成连接用架空区18,在架空区18装配紧固组件12,紧固组件12只要满足通过连接墙体上预留的连接端口将上下层墙体相对固定的连接在一起,使得墙体连接满足设计要求即可,所以紧固组件12的组合方式及连接结构可以有多种选择,本领域技术人员应当理解的是,通常刚性骨架中主筋的连接方式及主筋间的紧固组件应当在可以在此处适用。比如焊接连接、螺纹连接、销键连接等,这里列举了螺纹连接中的一种方案,其中,紧固组件12包括插杆13、锁紧件14、扣筒15、转接套筒16,上层墙体10的机械连接部5对应连接转接套筒16,下层墙体11的机械连接部5对应连接插杆13;或者,上层墙体10的机械连接部5对应连接插杆13,下层墙体11的机械连接部5对应连接转接套筒16,扣筒15固定在转接套筒16内,插杆13插入扣筒15,锁紧件14套设在插杆13外缘,使得插杆13与扣筒15无间隙卡接。从而将上层墙体10和下层墙体11纵向方向牢固连接,这样的连接构造使得相连接的部分不再隐蔽在墙体内,可以清楚的观察到连接是否到位,以便保证墙体连接的稳定性,另外,这样的连接构造是将墙体内的纵向(竖直)筋直接连接,力的传递更直接,提升了墙体及墙体构成的建筑物的整体延性。
当上层墙体10的机械连接部5为承接腔7,下层墙体6的机械连接部5为承接端头6时,在上层墙体10预制完成后在承接腔7处安装插杆13,在下层墙体11预制完成后在承接端头6处安装转接套筒16,并将扣筒15容置并固定于转接套筒16内,当上层墙体10与下层墙体11连接时,调节上层墙体10的高度,将插杆13插接到扣筒15中,插杆13上的插接头撑开并穿过扣筒15上的弹片,弹片自然回复到缩紧状态,从而形成了对插杆13限位止退的作用, 然后并紧插杆13上的锁紧件14,使得插杆13与扣筒15无间隙卡接。
当上层墙体10的机械连接部5为承接端头6,下层墙体11的机械连接部5为承接腔7时,上层墙体10与下层墙体11的连接刚好与上述的情况相反,连接方式反过来即可。
参见图16、17所示,当上层墙体10的机械连接部5为承接端头6,下层墙体11的机械连接部5为承接端头6时,在上层墙体10预制完成后在承接端头6处安装转接套筒16,然后在该转接套筒16中安装插杆13,这时该转接套筒16的连接腔需造型为承接腔7的内部造型,在下层墙体11预制完成后在承接端头6处安装转接套筒16,并将扣筒15容置并固定于该转接套筒16内,当上层墙体10与下层墙体11连接时,调节上层墙体10的高度,将插杆13插接到扣筒15中,插杆13上的插接头撑开并穿过扣筒15上的弹片,弹片自然回复到缩紧状态,从而形成了对插杆13限位止退的作用,然后并紧插杆13上的锁紧件14,使得插杆13与扣筒15无间隙卡接,从而将竖直筋牢固的连接在一起。
参见图18、19所示,当上层墙体10的机械连接部5为承接腔7,下层墙体11的机械连接部5为承接腔7时,则下层墙体11的承接腔7造型为转接套筒16的内腔,这样,在上层墙体10预制完成后在承接腔7处安装插杆13,在下层墙体11预制完成后在承接腔7处直接将扣筒15容置并固定于承接腔7内,当上层墙体10与下层墙体11连接时,调节上层墙体10的高度,将插杆13插接到扣筒15中,插杆13上的插接头撑开并穿过扣筒15上的弹片,弹片自然回复到缩紧状态,从而形成了对插杆13限位止退的作用,然后并紧插杆13上的锁紧件14,使得插杆13与扣筒15无间隙卡接,从而将竖直筋牢固的连接在一起。
实施例4
参照图20、21所示,一种装配式建筑的装配结构,包括实施例4中的墙体的装配结构,还包括预制楼板19和现浇层17,预制楼板19的下缘搭接在两两相邻的下层墙体11之上,现浇层17填补在预制楼板19、上层墙体10和下层墙体11之间的装配间隙,并且,至少与上层墙体10的下端面齐平地填补在预制楼板19上及上层墙体10和下层墙体11形成的架空区18,即在竖直方向上现浇层的高度至少与上层墙体10的下端面齐平。其中,现浇层17为 流质混凝土填料或改性填料,满足建筑填料的力学要求即可,具体的也可以是由砂、石、水泥、水、添加剂和掺合料等经精确计量,用混凝土搅拌机制成的低坍落度的新拌混凝土。
本实施例的装配结构中上、下层墙体的装配结构采用如图14所示的装配结构,即上层墙体10的机械连接部5为承接腔7,下层墙体11的机械连接部5为承接端头6,通过紧固组件12将竖直筋4连接为一个整体,同时由于墙体之间的端面有紧固组件12,故预制楼板19只能水平的搭接在下层墙体11之间,并且预制楼板19之间的横向筋也需要搭接,这样,预制楼板19、上层墙体10和下层墙体11之间必然的存在装配间隙,其中,装配间隙包括,上层墙体10的下端面和下层墙体11的上端面之间的架空区18,以及预制楼板19的上表面至上层墙体10的下端面所在平面之间的空间。即现浇层17填补的区域包括,上层墙体10的下端面和下层墙体11的上端面之间的架空区18,以及预制楼板19的上表面至上层墙体10的下端面所在平面之间的空间。本发明将墙体间需要连接的配筋全部连接牢固后,采用现浇层17填充装配间隙,一方面使得机械连接部可视并可控,保证了连接质量;另一方面使得建筑构件连接构造融为一个整体,并且在该构造中连接形成有多根贯通筋,有效提高了建筑构造的抗震抗拉抗拔的能力,使得整体建筑构造更加安全可靠。
实施例5
参见图22、23所示,本实施例与实施例4基本相同,区别是预制楼板19的上表面裸露有刚性桁架20,以方便预制楼板19内固定附着物或预埋物,将预制楼板19的附着物或预埋物固定在刚性桁架20或铺设在预制楼板19上的刚性桁架20间隙中,附着物或预埋物包括预制楼板19的横向筋或纵向筋,电线管路,空调管路,地暖管路,走水管路等等,这样,现浇层17将刚性桁架20填覆,这些附着物或预埋物即固定在楼层内,使得建筑的表面清爽干净,避免了后期装修时开槽等行为对建筑构造的损伤,同时也具有良好的经济效应,节约资源、降低成本。
参见图24所示,进一步说明一种装配式建筑的装配结构的构造方法,特别是实施例4和实施例5中的装配结构的构造方法,包括所述的预制楼板19、上层墙体10和下层墙体11,预制楼板19通过支撑架24搭在两两相邻的 下层墙体11的上端,上层墙体10高出预制楼板19的厚度地悬置于下层墙体11的上方,上层墙体10和下层墙体11端面相对,在上层墙体10、下层墙体11和预制楼板19之间的架空区18将配筋牢固连接后,采用现浇层17填充装配间隙,现浇层17至少与上层墙体10的下端面齐平地填补在预制楼板19上及上层墙体10和下层墙体11形成的架空区18。
上述建筑的装配结构的施工方法为依次按照如下步骤施工,
构件预制步骤:预制加工装配式预制墙体1和预制楼板19;
构件运送步骤:将加工完成的装配式预制墙体1和预制楼板19运送至施工现场,将紧固组件12装配到预制墙体1及预制楼板19上需要连接的部位;
下层墙体固定步骤:安装下层墙体11或已完成装配的楼层上;
楼板装配步骤,将预制楼板19铺搭在下层墙体11之间;为了方便并防止楼板跌落,可以先进行支撑设置步骤:根据设计要求,在下层墙体的周边组装支撑预制楼板的支撑架24,将起支撑作用的支架与下层墙体11的上端面齐平的组装固定,以便支撑架24在水平方向支撑预制楼板19,支撑架24可以是横平竖直的顶持杆件,也可以是三角形的顶持架。
墙体对接步骤:吊装上层墙体10至指定位置;为了将上层墙体10更好的定位,在上层墙体10和下层墙体11之间设置调节垫块25,通过增加或减少调节垫块25而改变高低,来调节上层墙体10的长边的水平及高度,在预制楼板19与上层墙体10之间设置斜撑26,通过斜撑26来调节上层墙体10的垂直及短边的水平及倾斜度。
紧固件调节步骤:在上层墙体10和下层墙体11之间,紧固组件12分别对应的与机械连接部5固定连接,并调节紧固组件12到满足上层墙体10和下层墙体11连接固定的抗拔抗拉的要求。
现场浇注步骤:在施工现场将混凝土填料浇注到预制楼板19及上层墙体10和下层墙体11之间的装配间隙,使得预制楼板19、上层墙体10和下层墙体11形成无间隙的整体构造。其中,现场浇注的部分形成现浇层17,现浇层17为流质混凝土填料,是由砂、石、水泥、水、添加剂和掺合料等经精确计量,用混凝土搅拌机制成的低坍落度的新拌混凝土。
重复上述支撑设置步骤至现场浇注步骤,直至完成装配式建筑的施 工。
该施工方法与套筒注浆技术相比,采用铸钢或型材切削加工成型的注浆套筒,其加工成本较高,搭接长度较长也需要更多的钢筋及灌浆料用量,这样,预制墙体的造价几乎达到现浇墙体的2倍,且现场灌浆工作量较大,工期全部依赖现场工人对灌浆的施工速度,而工人受限于技能熟练度,工作认真度等因素,在施工过程中常常出现灌浆不密实的情况,质量不易保证。而本案克服了现有的装配结构安装速度慢、效率质量不易保证的不足,优化了墙体、楼板之间的连接节点结构,使装配结构连接可靠、结构简单、施工方便、容易安装。

Claims (13)

  1. 一种装配式建筑的预制墙体,包括混凝土主体和浇筑在混凝土主体中的刚性骨架,其特征在于,刚性骨架包括n根纵向延伸的竖直筋,n是大于等于3的整数,预制墙体的上端面及下端面在竖直筋的同一轴线的位置共形成有m个裸露的机械连接部,m取小于等于2n的整数,所述机械连接部均形成于竖直筋的端头部。
  2. 根据权利要求1所述的预制墙体,其特征在于,机械连接部包括承接端头,其中,竖直筋的端头部形成凸出于混凝土主体竖向端面的承接部为承接端头。
  3. 根据权利要求2所述的预制墙体,其特征在于,承接端头上设有外螺纹;承接端头的外径为竖直筋外径的0.7~2倍。
  4. 根据权利要求1所述的预制墙体,其特征在于,机械连接部包括承接腔,其中,竖直筋的端头部形成沿其轴线方向向内凹陷的敞口式承接部为承接腔。
  5. 根据权利要求4所述的预制墙体,其特征在于,承接腔是基于竖直筋的端头部刚性连接的套筒而形成,套筒远离竖直筋的一端形成敞口式的承接腔。
  6. 根据权利要求4所述的预制墙体,其特征在于,承接腔内设有内螺纹;承接腔的外径为竖直筋外径的1.2~3倍。
  7. 一种装配式建筑的装配结构,包括:上层墙体、下层墙体以及紧固组件,其特征在于,所述上层墙体和下层墙体为权利要求1~6中任意项所述的装配式建筑的预制墙体;
    其中,上层墙体位于下层墙体的上方,且上层墙体内的竖向筋与下层墙体内的竖向筋由紧固组件机械连接。
  8. 根据权利要求7所述的装配结构,其特征在于,紧固组件包括插杆、锁紧件、扣筒、转接套筒;
    上层墙体的机械连接部对应连接转接套筒,下层墙体的机械连接部对应连接插杆;或者,上层墙体的机械连接部对应连接插杆,下层墙体的机械连接部对应连接转接套筒;
    扣筒固定在转接套筒内,插杆插入扣筒,锁紧件套设在插杆外缘,使得插杆与扣筒无间隙卡接。
  9. 根据权利要求7或8所述的任一装配结构,其特征在于,还包括上层墙体和下层墙体间的混凝土现浇区,混凝土现浇区包覆紧固组件。
  10. 根据权利要求7所述的装配结构,其特征在于,还包括预制楼板,预制楼板的下缘搭在两两相邻的下层墙体之上。
  11. 根据权利要求10所述的装配结构,其特征在于,预制楼板的上表面裸露有刚性桁架。
  12. 根据权利要求10或11所述的任一装配结构,其特征在于,还包括现浇层,现浇层铺设在预制楼板上且能够填充预制楼板、上层墙体以及下层墙体之间的装配间隙。
  13. 一种装配式建筑的施工方法,其特征在于,包括以下步骤:
    下层墙体固定步骤;将下层墙体固定在地基或承台或已完成装配的楼层上;
    支撑设置步骤;根据设计要求,在下层墙体的周边组装支撑预制楼板的支撑架;
    预制楼板铺设步骤;将预制楼板铺设在支撑加上,并使得预制楼板的端部与下层墙体的顶部相搭接;
    墙体对接步骤;吊装上层墙体至指定位置,使得上层墙体的竖向筋与下层墙的竖向筋由紧固组件进行机械连接;
    紧固件调节步骤;调节紧固组件到满足上层墙体和下层墙体连接固定的抗拔抗拉的要求;
    现浇步骤;将混凝土填料浇注到预制楼板及上层墙体和下层墙体之间的装配间隙,形成现浇层,使得楼板、上层墙体和下层墙体形成无间隙的整体构造;
    重复上述支撑设置步骤至现浇步骤,直至完成装配式建筑的施工。
PCT/CN2019/095384 2018-07-10 2019-07-10 一种装配式建筑的预制墙体和装配结构及其施工方法 WO2020011186A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2019303060A AU2019303060B2 (en) 2018-07-10 2019-07-10 Prefabricated wall and assembly structure for prefabricated building, and construction method therefor
JP2021524091A JP7127910B2 (ja) 2018-07-10 2019-07-10 プレハブ建物のプレキャスト壁体、組立構成及びその施工方法
CA3106047A CA3106047C (en) 2018-07-10 2019-07-10 Prefabricated wall and assembly structure for prefabricated building, and construction method therefor
EA202190107A EA202190107A1 (ru) 2018-07-10 2019-07-10 Сборная стена и сборочная конструкция для сборного здания и способ их строительства
US17/259,069 US11401707B2 (en) 2018-07-10 2019-07-10 Prefabricated wall and assembly structure for prefabricated building, and construction method therefor
EP19835153.8A EP3822422A4 (en) 2018-07-10 2019-07-10 PREFABRICATED WALL AND ASSEMBLY STRUCTURE FOR A PREFABRICATED BUILDING, AND ASSOCIATED CONSTRUCTION METHOD
ZA2021/00222A ZA202100222B (en) 2018-07-10 2021-01-13 Prefabricated wall and assembly structure for prefabricated building, and construction method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810753058.1 2018-07-10
CN201810753058.1A CN110700420A (zh) 2018-07-10 2018-07-10 一种装配式建筑的预制墙体和装配结构及其施工方法

Publications (1)

Publication Number Publication Date
WO2020011186A1 true WO2020011186A1 (zh) 2020-01-16

Family

ID=69143136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095384 WO2020011186A1 (zh) 2018-07-10 2019-07-10 一种装配式建筑的预制墙体和装配结构及其施工方法

Country Status (9)

Country Link
US (1) US11401707B2 (zh)
EP (1) EP3822422A4 (zh)
JP (1) JP7127910B2 (zh)
CN (1) CN110700420A (zh)
AU (1) AU2019303060B2 (zh)
CA (1) CA3106047C (zh)
EA (1) EA202190107A1 (zh)
WO (1) WO2020011186A1 (zh)
ZA (1) ZA202100222B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113006377A (zh) * 2021-03-25 2021-06-22 中冶建工集团有限公司 构造柱钢筋施工方法
CN113530254A (zh) * 2021-08-26 2021-10-22 中建八局第二建设有限公司 一种折线错位异形幕墙施工方法
CN113653189A (zh) * 2021-08-12 2021-11-16 中建二局第一建筑工程有限公司 一种适用于高风力高震率地区的装配式构件及其连接方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021022334A1 (en) * 2019-08-05 2021-02-11 Hickory Design Pty Ltd Precast building panel
US11692341B2 (en) * 2020-07-22 2023-07-04 Nano And Advanced Materials Institute Limited Lightweight concrete modular integrated construction (MIC) system
CN112971400B (zh) * 2021-03-03 2022-06-14 唯想建筑设计(上海)有限公司 一种儿童活动室
CN113431223B (zh) * 2021-07-01 2022-09-30 重庆大学 一种工字型卡槽式复合剪力墙及其拼接方法
CN113931340B (zh) * 2021-10-09 2022-07-05 湖南大学设计研究院有限公司 装配式半嵌入式外墙板以及建筑物
CN114086692B (zh) * 2021-11-29 2022-12-30 江苏科技大学 一种楼板平面内协同抗剪的装配式剪力墙拼缝连接结构及其施工方法
CN114045958B (zh) * 2021-11-29 2022-12-30 江苏科技大学 一种应用于装配式剪力墙的同步灌浆齿槽及其施工方法
CN114261015A (zh) * 2021-12-27 2022-04-01 安徽富煌建筑科技有限公司 一种eps模块混凝土框架填充墙施工工艺
CN114108938A (zh) * 2022-01-01 2022-03-01 易建网科技有限公司 一种预制超低能耗保温结构装饰一体化结构
CN114892826A (zh) * 2022-04-02 2022-08-12 广州建筑产业开发有限公司 一种干法施工的轻钢楼板和墙板结构及其装配方法
CN114934682B (zh) * 2022-05-07 2024-03-08 安徽中擎建设发展有限公司 建筑预留洞口的防水渗漏装置
CN114896665B (zh) * 2022-05-18 2024-04-19 华北水利水电大学 一种基于Tekla软件的装配式剪力墙结构预制墙板深化设计方法
CN114775891B (zh) * 2022-05-20 2023-07-11 广东国嘉建设工程有限公司 装配式建筑的预制墙体
CN115045413A (zh) * 2022-06-17 2022-09-13 东南大学 一种可复位的局部后浇连接混凝土剪力墙及连接方法
CN114908979B (zh) * 2022-06-19 2023-08-11 重庆建工第二建设有限公司 超高层建筑异形构件的施工安装方法
CN115354870B (zh) * 2022-08-18 2023-10-24 济南一建集团有限公司 一种用于装配式建筑楼体吊装的引导器及其吊装安装方法
CN115262751B (zh) * 2022-08-31 2024-04-02 陕西建筑产业投资集团有限公司 一种低层装配式混凝土结构体系的施工方法
CN115897861B (zh) * 2022-11-21 2023-08-01 南京理工大学 一种外钢箱型砼结构
CN116427537A (zh) * 2023-04-18 2023-07-14 中厦建设有限公司 一种梁柱节点混凝土封堵器及梁柱节点浇筑方法
CN116497975B (zh) * 2023-06-26 2024-01-16 成都建工第六建筑工程有限公司 一种装配式墙体及其固定结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6058672A (en) * 1998-06-03 2000-05-09 Mcclellan; Robert B. Construction of wall panel and panel structure
CN202809892U (zh) * 2012-06-02 2013-03-20 江苏金砼预制装配建筑发展有限公司 预制砼自保温剪力墙及装配式砼建筑剪力墙结构
CN206722139U (zh) * 2017-04-28 2017-12-08 四川建筑职业技术学院 一种装配整体式剪力墙建筑结构
CN207003837U (zh) * 2017-02-10 2018-02-13 上海安投机械配件有限公司 一种预制混凝土构件对接用的钢筋接驳器
CN108222280A (zh) * 2017-12-29 2018-06-29 中国十七冶集团有限公司 一种装配式混凝土构件干式连接装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3295286A (en) * 1961-05-31 1967-01-03 Owens Illinois Inc Cementitious slab with bolt means
US3369334A (en) * 1965-09-28 1968-02-20 Ralph R. Berg Building system
US5134828A (en) * 1990-12-14 1992-08-04 High Industries, Inc. Connection for joining precast concrete panels
DE19525082C2 (de) * 1995-06-30 1999-09-30 Ralf Sebald Wandelement für Hochbauten und Verfahren zu seiner Herstellung
JPH1162920A (ja) 1997-08-11 1999-03-05 Shintoku Kogyo Kk ブラインドジョイント及びその施工方法
JP2001055812A (ja) 1999-08-19 2001-02-27 Tokyo Tekko Co Ltd ネジ継手用アタッチメント
KR100377923B1 (ko) * 2000-12-06 2003-03-29 김영찬 삽입식 이형철근용 이음장치와 그 체결 방법
JP2005016157A (ja) 2003-06-26 2005-01-20 Nippon Kaiser Kk プレキャストコンクリート板、スラブおよびその構築方法
US7134805B2 (en) * 2004-04-01 2006-11-14 Kwik Slab, Llc Precast concrete slab system and method therefor
JP2006045871A (ja) 2004-08-04 2006-02-16 Kumagai Gumi Co Ltd 床スラブ用コンクリート版
US8434280B2 (en) * 2007-04-02 2013-05-07 Barnet L. Lieberman Modular building units
KR100830241B1 (ko) * 2007-07-02 2008-05-16 한국건설기술연구원 어댑터를 이용한 경량 합성구조 시스템의 상하층 경량합성벽체와 콘크리트 바닥 슬래브의 복합화방법
US7975444B2 (en) * 2007-11-29 2011-07-12 Barsplice Products, Inc. Coupler system for adjacent precast concrete members and method of connecting
JP5151442B2 (ja) 2007-12-13 2013-02-27 株式会社大林組 Pc壁板の接合方法、壁構造
US8490363B2 (en) * 2008-12-31 2013-07-23 The Spancrete Group, Inc. Modular concrete building
CN101575872A (zh) * 2009-06-08 2009-11-11 南京工业大学 一种适合工业化生产的节能建筑结构体系
PL2686497T3 (pl) 2011-03-16 2016-02-29 Areva Gmbh Moduł ścienny do wzniesienia budowli
KR101389825B1 (ko) * 2012-07-12 2014-04-29 나병관 철근 이음장치
TWI502117B (zh) * 2012-10-24 2015-10-01 Su-I Lim 續接器
JP6032606B2 (ja) 2013-02-01 2016-11-30 株式会社ヒーローライフカンパニー 建物におけるワッフルスラブのスラブ鉄筋組立構造およびその組立方法
US9523201B2 (en) * 2014-09-12 2016-12-20 Sergei V. Romanenko Construction components having embedded internal support structures to provide enhanced structural reinforcement for, and improved ease in construction of, walls comprising same
JP6459118B2 (ja) 2014-09-25 2019-01-30 株式会社ピーエス三菱 合成床版用リブ付プレキャストコンクリート版
JP6567277B2 (ja) 2015-01-19 2019-08-28 鹿島建設株式会社 接続構造、およびプレキャストブロック
CN204781349U (zh) * 2015-06-25 2015-11-18 周兆弟 一种可调距的连接件
EP3115528A1 (en) * 2015-07-10 2017-01-11 Fundacíon Tecnalia Research & Innovation Construction arrangement and detachable connection assembly for this construction arrangement
CN204940608U (zh) 2015-08-19 2016-01-06 周兆弟 装配式建筑物的预制吊装墙体
CN206539865U (zh) * 2017-03-16 2017-10-03 李振相 一种基于大学教育的计算机显示器固定装置
CN107338867B (zh) * 2017-07-31 2023-12-01 天津大学 一种可解锁的模块化钢结构插入自锁式节点
CN107386492A (zh) * 2017-08-30 2017-11-24 河北建筑工程学院 一种预制芯柱式自保温外墙板、连接结构及其施工方法
CN107724592A (zh) * 2017-11-06 2018-02-23 苏州市世好建材新技术工程有限公司 承重加气块装配式墙板体和楼板体
CN107893478A (zh) * 2017-12-12 2018-04-10 浙江新邦远大绿色建筑产业有限公司 叠合墙与水平构件连接节点及其施工方法
CN108193801A (zh) * 2017-12-29 2018-06-22 常州工程职业技术学院 一种使用可靠的预制钢管剪力墙连接结构及方法
US10094101B1 (en) * 2017-12-29 2018-10-09 Mohammad Omar A. Jazzar Precast concrete system with rapid assembly formwork
US10260224B1 (en) * 2017-12-29 2019-04-16 Mohammad Omar A. Jazzar Simplified precast concrete system with rapid assembly formwork
CN208792505U (zh) * 2018-07-10 2019-04-26 浙江兆筑建材有限公司 一种装配式建筑的预制墙体和装配结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6058672A (en) * 1998-06-03 2000-05-09 Mcclellan; Robert B. Construction of wall panel and panel structure
CN202809892U (zh) * 2012-06-02 2013-03-20 江苏金砼预制装配建筑发展有限公司 预制砼自保温剪力墙及装配式砼建筑剪力墙结构
CN207003837U (zh) * 2017-02-10 2018-02-13 上海安投机械配件有限公司 一种预制混凝土构件对接用的钢筋接驳器
CN206722139U (zh) * 2017-04-28 2017-12-08 四川建筑职业技术学院 一种装配整体式剪力墙建筑结构
CN108222280A (zh) * 2017-12-29 2018-06-29 中国十七冶集团有限公司 一种装配式混凝土构件干式连接装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3822422A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113006377A (zh) * 2021-03-25 2021-06-22 中冶建工集团有限公司 构造柱钢筋施工方法
CN113653189A (zh) * 2021-08-12 2021-11-16 中建二局第一建筑工程有限公司 一种适用于高风力高震率地区的装配式构件及其连接方法
CN113530254A (zh) * 2021-08-26 2021-10-22 中建八局第二建设有限公司 一种折线错位异形幕墙施工方法

Also Published As

Publication number Publication date
ZA202100222B (en) 2022-08-31
US20210277651A1 (en) 2021-09-09
CA3106047C (en) 2023-05-02
AU2019303060A1 (en) 2021-02-04
AU2019303060B2 (en) 2022-05-19
EA202190107A1 (ru) 2021-06-30
JP2021531429A (ja) 2021-11-18
EP3822422A1 (en) 2021-05-19
US11401707B2 (en) 2022-08-02
CA3106047A1 (en) 2020-01-16
JP7127910B2 (ja) 2022-08-30
EP3822422A4 (en) 2022-04-20
CN110700420A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2020011186A1 (zh) 一种装配式建筑的预制墙体和装配结构及其施工方法
WO2017197853A1 (zh) 保温预制墙体和装配式房屋
CN202391019U (zh) 钢筋端部加粗灌浆接头
CN106836479A (zh) 一种装配式预应力混凝土框架结构
CN101858114A (zh) 现场浇筑整体式轻体隔墙施工方法
CN108678218B (zh) 基于多用途薄壁钢管的装配式混凝土剪力墙及其建造方法
CN206707005U (zh) 一种装配式预应力混凝土框架结构
CN105155724A (zh) 一种与框架结构填充墙同时施工的构造柱的施工方法
CN104863290A (zh) 一种单一预制墙段的组合墙体及施工方法
CN115162505A (zh) 一种键槽连接的全装配整体式建筑体系及施工方法
CN208792505U (zh) 一种装配式建筑的预制墙体和装配结构
CN105089182B (zh) 一种用于钢结构的混凝土隔墙体系及其施工方法
KR101260392B1 (ko) 저모멘트존에서 연결되는 pc기둥 및 보유닛의 조립식 구조
CN115142576A (zh) 预制双钢板混凝土组合剪力墙干式连接节点及施工方法
US20220220733A1 (en) A modular structural system and construction method thereof
CN208219912U (zh) 一种预制剪力墙l形节点连接构造
CN205857403U (zh) 建筑墙板连接和拼缝结构
CN105113662A (zh) 一种与框架结构填充墙同时施工的装配式构造柱
CN206319482U (zh) 内隔墙板
EA041364B1 (ru) Сборочная конструкция для сборного здания
CN212716089U (zh) 一种快速安装的配电房结构
CN220150663U (zh) 加强型alc板、楼板结构与墙体结构
CN211775035U (zh) 一种预制墙板结构
CN220058540U (zh) 一种陶粒钢筋混凝土墙板结构
CN211548234U (zh) 一种预制装配式分隔墙

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19835153

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3106047

Country of ref document: CA

Ref document number: 2021524091

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019303060

Country of ref document: AU

Date of ref document: 20190710

Kind code of ref document: A