WO2020009438A1 - 마이크로캡슐의 제조방법 - Google Patents

마이크로캡슐의 제조방법 Download PDF

Info

Publication number
WO2020009438A1
WO2020009438A1 PCT/KR2019/008067 KR2019008067W WO2020009438A1 WO 2020009438 A1 WO2020009438 A1 WO 2020009438A1 KR 2019008067 W KR2019008067 W KR 2019008067W WO 2020009438 A1 WO2020009438 A1 WO 2020009438A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcapsules
formula
integer
monomer
polymerization
Prior art date
Application number
PCT/KR2019/008067
Other languages
English (en)
French (fr)
Inventor
오정환
차경온
김현주
김찬중
최재훈
Original Assignee
주식회사 엘지생활건강
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지생활건강, 주식회사 엘지화학 filed Critical 주식회사 엘지생활건강
Priority to US17/051,391 priority Critical patent/US11986790B2/en
Priority to CN201980027247.3A priority patent/CN112262208B/zh
Priority to EP19831160.7A priority patent/EP3770239A4/en
Priority to JP2020554453A priority patent/JP7080988B2/ja
Priority claimed from KR1020190079286A external-priority patent/KR102457231B1/ko
Publication of WO2020009438A1 publication Critical patent/WO2020009438A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes

Definitions

  • the present invention relates to a method for producing an environmentally friendly microcapsule which can increase the fiber adhesion of the flavor capsule, is not swollen in water, and thus has excellent fragrance carrying capacity and improves biodegradability compared to the prior art, and thus has fragrance persistence even after use.
  • Microcapsules are widely used in various fields. For example, it can be used in various applications such as colorants, catalysts, adhesives, fragrances, fuels, pesticides, biomaterials, pharmaceuticals, food, cosmetics, household goods, detergents.
  • fragrance oil microcapsules especially those used in biomaterials, pharmaceuticals, foods, cosmetics, detergents (e.g., hair rinses, body washes, fabric softeners, etc.), should be harmless to humans.
  • detergents e.g., hair rinses, body washes, fabric softeners, etc.
  • fragrance capsules are excellent in fragrance carrying capacity and supporting efficiency, but the capsules are not decomposed after use, causing environmental problems.
  • flavor microcapsules are prepared using biopolymers (gumarabic, starch, cellulose, gelatin alginate, albumin, etc.) and modified biopolymers (ethyl cellulose, CMC, HPMC, HPMC-AS).
  • biopolymers gumarabic, starch, cellulose, gelatin alginate, albumin, etc.
  • modified biopolymers ethyl cellulose, CMC, HPMC, HPMC-AS
  • the picking emulsion prepared as described above is vulnerable to the surrounding environment such as acid, base, temperature, etc., the emulsion is easily destroyed, it is difficult to prepare the desired microcapsules and there is a problem that the fiber adhesion of the flavor capsule is inferior.
  • the object of the present invention is to solve the above problems, can increase the fiber adhesion through the charge control of the surface of the flavor capsule, and because it is not swollen in water, the fragrance support is excellent and biodegradability is improved, so that the fragrance persistence even after use It is intended to provide an environmentally friendly method for producing microcapsules.
  • the present invention it is possible to increase the fiber adhesion by controlling the charge on the surface of the fragrance capsule, it is not swollen in water, the fragrance carrying capacity is excellent and biodegradability is improved than before, it is the fragrance persistence and environmentally friendly inorganic nano-particles after use- There is an effect to provide an acrylic resin composite microcapsules.
  • Figure 1 shows an electron micrograph of the microcapsules of Example 1 of the present invention.
  • Figure 2 shows an electron micrograph of the microcapsules of Reference Example 1.
  • Figure 3 shows a comparison of the zeta potential measurement results of Example 1 and Reference Example 1.
  • the present invention provides a method for forming an inorganic nanoparticle-acrylic resin composite capsule to solve the conventional problem.
  • the present invention by adsorbing an acrylic monomer to a hydrophilic inorganic nanoparticles, such as silica to form a stable fragrance emulsion in a pickling emulsion (Pickering emulsion) method, inorganic nanoparticles-acryl by radical polymerization by the initiation reaction of the radical initiator dissolved in the fragrance dissolved
  • the amine-based monomer is further polymerized on the surface of the capsule to control the charge (charge) of the capsule surface, characterized in that to increase the fiber adhesion of the flavor capsule.
  • microcapsules crosslinked using the pickling emulsion are polyacrylate capsules, and ester groups in the structure may be biodegraded by hydrolysis to prepare environment-friendly fragrance capsules.
  • the first step is to adsorb the acrylic monomer on the surface of the hydrophilic inorganic nanoparticles.
  • the inorganic nanoparticles can be used as long as the particles having hydrophilicity.
  • the inorganic nanoparticles may be selected from the group consisting of silica, titania, metal oxide, noble metal, apatite and limestone having an average particle diameter of 2 nm to 100 nm. More preferably, the average particle diameter of the inorganic nanoparticles may be 5nm to 50nm.
  • the inorganic nanoparticles may be used silica or titania having an average particle diameter of 2nm to 100nm or 5nm to 50nm.
  • the inorganic nanoparticles in the first step may be used in the colloidal aqueous solution, and the dispersion process of the acrylic monomer in the colloidal aqueous solution, it is possible to form a stable pickling emulsion when added fragrance oil.
  • the first step may include adding an acrylic monomer using an aqueous silica colloidal solution and dispersing the mixture to adsorb the acrylic monomer onto the silica surface.
  • the dispersion treatment method is not limited as long as the inorganic nanoparticles, such as silica, in a colloidal aqueous solution, and the ultrasonic treatment method may be used as an example.
  • hydrophilic silica as the inorganic nanoparticles will be described as an example.
  • a fragrance picking emulsion is stably formed on the inorganic nanoparticles (preferably silica).
  • such a stable pickling emulsion can be prepared in the silica-acrylate microcapsules by radical polymerization by the initiation reaction of the radical initiator dissolved in the fragrance.
  • a pickling emulsion of fragrance oil is formed, and a capsule is formed by pre-radical polymerization.
  • the acrylic monomer includes a biodegradable ester group, and has a water solubility of 1 to 100 g / L, and may be used alone or in combination.
  • the temperature conditions of the water solubility may be based on room temperature 25 °C.
  • the acrylic monomer may be used so that water solubility is 5 to 60 g / L or 10 to 60 g / L.
  • solubility of the acrylic monomer in water is 1 g / L or less, it is difficult to adsorb the acrylic monomer to the hydrophilic inorganic nanoparticles, so that the pickling emulsion cannot be formed.
  • solubility of the acrylic monomer in water is 100 g / L or more, the hydrophilicity of the surface of the hydrophilic inorganic nanoparticles is maximized and the contact angle between the water and the oil becomes small, so that a substantial portion of the surface of the particles is present in the water phase. . In this case, there is a problem that an unstable emulsion may be formed.
  • the acrylic monomer may include at least one selected from the group consisting of a diacryl monomer represented by Formula 1 and a monoacrylic monomer compound represented by Formula 2.
  • R 1 and R 2 are each independently hydrogen or-(CH 2 ) n CH 3 (n is an integer of 0 to 5), R 3 is-(CH 2 CR 4 HO) m ,-( CH 2 CR 4 H) m O, or-(CH 2 CH (OH) CH 2 -O) m (m is an integer from 1 to 5), R 4 is hydrogen or-(CH 2 ) n CH 3 (n Is an integer from 0 to 5),
  • R 1 is hydrogen or-(CH 2 ) n CH 3 (n is an integer of 0 to 5)
  • R 3 is-(CH 2 CR 4 HO) m ,-(CH 2 CR 4 H) m O, or-(CH 2 CH (OH) CH 2 -O) m (m is an integer from 1 to 5)
  • R 4 is hydrogen or-(CH 2 ) n CH 3 (n is an integer from 0 to 5) )to be.
  • an acrylic monomer having a solubility in water of 5 to 50 g / L may be used.
  • an acrylic monomer one or more selected from the group consisting of dipropylene glycol diacrylate, diethylene glycol diacrylate, and tetraethylene glycol dimethacrylate may be used.
  • the acrylic monomer when the acrylic monomer is adsorbed on the surface of the inorganic nanoparticles, when the ultrasonic treatment method is used, it can proceed to the following method.
  • the first step may include adding an acrylic monomer using an inorganic nanoparticle colloidal aqueous solution, and performing an ultrasonic treatment for 1 to 30 minutes to adsorb the acrylic monomer to the surface of the inorganic nanoparticles.
  • the sonication is preferably carried out at low temperature conditions such as ice baths.
  • the inorganic nanoparticles may have an average particle diameter of 5nm to 50nm.
  • the second step may be a step of forming an emulsion by adding fragrance oil to the inorganic nanoparticles of the acrylic monomer adsorbed on the surface of the inorganic nanoparticles prepared in the first step.
  • the emulsion formed in the second step may be a pickling emulsion.
  • the fragrance oil is added to the inorganic nanoparticles on which the acrylic monomer is adsorbed on the surface and sonicated for 1 to 30 minutes to form an oil-in-water picking emulsion (O / W pickering emulsion). It may include.
  • the sonication is preferably carried out at low temperature conditions such as ice baths.
  • the fragrance oil in the second step it can be used by dissolving the oil-soluble initiator in the fragrance oil.
  • the oil-soluble initiator may be at least one selected from the group consisting of azo series and peroxide series.
  • the oil-soluble initiator is in powder form and its amount is not particularly limited, and may be used according to contents well known in the art as long as the oil-soluble initiator is dissolved in fragrance oil. In addition, one-off commercial products can be used.
  • the inorganic nanoparticles, acrylic monomers and fragrance oils are added to the colloidal aqueous solution containing water, the inorganic nanoparticles, acrylic monomers and fragrance oils based on the total content of the pickling emulsion solution. It can be used by adjusting the content of.
  • the pickling emulsion solution of the third step may be a solution containing water, inorganic nanoparticles, acrylic monomers and fragrance.
  • the pickling emulsion solution is 60 to 80% by weight of water based on the total solution content, 0.1 to 16% by weight of inorganic nanoparticles and 0.2 to 25% by weight of acrylic monomer and 2 to 36% by weight of fragrance. Can be used to include.
  • the emulsion is formed in more than 1000 ⁇ m, if more than 16% by weight there is a problem that the emulsion is formed in less than 0.1 ⁇ m.
  • the content of the acrylic monomer is less than 0.2% by weight, pickling emulsion cannot be formed or inorganic nanoparticles-acrylic resin capsule cannot be formed. If the content exceeds 25% by weight, it is not adsorbed by inorganic nanoparticles and participates in the polymerization reaction. There is a problem that a large amount of acrylic monomer not remaining in the aqueous phase.
  • the capsule If the fragrance content is less than 2% by weight, the capsule is too thick, there is a problem that the fragrance is not released, if more than 36% by weight there is a problem that the performance of the capsule is reduced to form an unstable emulsion.
  • the third step is to proceed with the polymerization of the pickling emulsion obtained in the second step.
  • the aromatic / inorganic nanoparticle-polyacrylate capsule is synthesized by undergoing radical polymerization under certain conditions.
  • the polymerization of the third step may include the step of radical polymerization of the oil-in-water pickling emulsion at 30 to 90 ° C. for 6 to 20 hours to form microcapsules.
  • the stirring conditions during the polymerization may be 100 to 700 rpm, preferably 200 to 400 rpm.
  • the polymerization may be performed under inert conditions through nitrogen purging or the like.
  • the concentration or / and drying process can be further proceeded as necessary before the progress of the fourth step to be described later, the conditions are not limited.
  • microcapsules obtained through the polymerization in the third step are composed of inorganic nanoparticles, acrylic monomers and incense.
  • the fourth step includes the step of polymerizing by adding an amine monomer and an initiator to the polymerization solution of the third step.
  • the step of polymerizing the amine-based monomer in the capsule surface additionally in the fourth step, it is possible to control the charge on the capsule surface, thereby increasing the fiber adhesion of the flavor capsule.
  • the amine monomer and the initiator may be added during the polymerization of the third step or after completion of the polymerization.
  • an additional amine monomer and an initiator may be added to the polymerization solution of the third step.
  • Between the second half of the polymerization and the completion of the polymerization may mean a time at which polymerization of about 80 to 100% is completed in the total polymerization time (6 to 20 hours) described later.
  • the amine monomer preferably includes an amine monomer of Formula 3 or Formula 4.
  • R 6 and R 7 may be the same or different from each other, alkyl of C 1 to C 5 , — (CH 2 ) n —CH ⁇ CH 2 (n is an integer of 1 to 5), and an acrylamide series of Formula a Or a substituent of the acrylic acid series of the formula b, wherein R 6 and R 7 is not an alkyl group of C 1 to C 5 at the same time,
  • R 9 and R 10 may be the same as or different from each other, and include — (CH 2 ) n —CH ⁇ CH 2 (n is an integer of 1 to 5), an acrylamide series of formula a or an acrylic acid series of formula b A substituent,
  • n and m are each independently or simultaneously integers of 1 to 5, and R 11 and R 12 are each independently or simultaneously hydrogen or-(CH 2 ) n ' CH 3 ( n' is 0 To an integer of 5).
  • R 4 to R 6 may be-(CH 2 ) n-CH 3 (n is an integer of 0 to 5), and R 7 may be formula a.
  • n may be 2 to 3
  • R 11 may be-(CH 2 ) n CH 3 ( n 'may be an integer of 0 to 2), and more preferably n' may be 0.
  • C 1 to C 5 alkyl may include a linear or branched alkyl group.
  • the amine monomer may be preferably [3- (methacryloylamino) propyl] trimethylammonium chloride solution ([3- (Methacryloylamino) propyl] trimethylammonium chloride solution) or diallyldimethylammonium chloride solution. Can be.
  • the content of the amine monomer may be used in an amount of 0.2 to 5 parts by weight based on 100 parts by weight of the total solution content up to the third step.
  • the content of the amine monomer is 0.2 parts by weight or less, there is a problem that the surface charge modification effect is reduced, and when 5 parts by weight or more, the monomer is polymerized on the capsule surface and polymerized separately to form polymer particles. have.
  • the initiator used in the fourth step may be a water-soluble initiator, may be one or more selected from the group consisting of azo-based and peroxide-based, all of the water-soluble initiators well known in the art can be used.
  • the water-soluble initiator may be used, such as sodium persulfate (SPS), ammonium persulfate (APS), or the like.
  • SPS sodium persulfate
  • APS ammonium persulfate
  • the water-soluble initiator may be used in an amount of 0.004 to 0.03 parts by weight based on 100 parts by weight of the total solution content up to the third step.
  • the polymerization of the fourth step may include a step of modifying the surface of the microcapsules formed in the third step by performing the polymerization at 30 to 90 ° C. for 6 to 20 hours.
  • the stirring conditions during the polymerization may be 100 to 700 rpm, preferably 200 to 400 rpm.
  • the present invention provides an inorganic nanoparticle-acrylic resin composite, and a microcapsule comprising a fragrance component; And a surface of the microcapsule is modified with an amine compound, and the surface charge has a zeta potential of +5 to 60 mV.
  • the microcapsules provided herein mean a flavor capsule in which the capsule surface is modified with an amine compound, and includes a surface-modified inorganic nanoparticle-acrylic resin composite microcapsule containing a flavor component, and a zeta potential It may be about +5 to 60mV or +10 to 55mV or +30 to 50mV.
  • the microcapsules are obtained by surface modification with an amine compound, and the zeta potential is obtained by measuring apparent zeta potential 10 times for each microcapsule by using a Malvern zetasizer device and a disposable folded capillary cell (Malvern DTS 1070). The result is.
  • 0.5 to 40% by weight of inorganic nanoparticles 1 to 60% by weight acrylic monomer, 0.02 to 15% by weight amine monomer and 10 to 90% by weight fragrance can do.
  • the surface-modified microcapsules of the present invention may be provided in the form of a surface-modified inorganic nanoparticle-acrylic resin composite capsule containing a fragrance component having an average particle diameter of 0.1 ⁇ m to 1000 ⁇ m.
  • the surface-modified inorganic nanoparticles-acrylic resin composite capsule of the present invention does not swell in water, and thus has excellent fragrance support but is eco-friendly due to biodegradation of ester groups.
  • the inorganic nanoparticle-acrylate composite capsule of the present invention does not swell in water, and thus has excellent fragrance supporting ability, but is also environmentally friendly due to biodegradation of the ester group.
  • a water-soluble initiator (APS (Ammonium persulfate)
  • [3- (methacryloylamino) propyl] trimethylammonium chloride solution 0.6 3-g of [3- (Methacryloylamino) propyl] trimethylammonium chloride solution
  • APS Ammonium persulfate
  • [3- (methacryloylamino) propyl] trimethylammonium chloride solution 0.6 3-g of [3- (Methacryloylamino) propyl] trimethylammonium chloride solution
  • An oily pickling emulsion was prepared by adding 20 g of fragrance oil to an aqueous silica colloidal solution containing silica having an average particle diameter of 20 nm.
  • SMA styrene maleic anhydride copolymer
  • Pre-MF pre-Melamine formaldehyde
  • Ethyl acetate was added to saturated water at a concentration of 1% of a surfactant (tween80) to prepare an aqueous phase.
  • a surfactant tween80
  • the core solution was prepared by dissolving EC (Ethyl cellulose) in ethyl acetate at a concentration of 20% and mixing fragrance (Oil) with EC at a weight ratio of 1: 1.
  • the resulting fragrance emulsion solution was heated to about 60 ° C. and stirred at 500 rpm to remove fragrance / EC microcapsules with ethyl acetate removed.
  • the solution was placed in a three-necked round flask connected with a condenser and sealed. After stirring at 300 rpm for about 30 minutes, N 2 bubbling was performed, followed by radical polymerization in an oil bath heated to 60 ° C. Proceeding for 20 hours, the fragrance / silica-acrylate microcapsules were prepared.
  • Electron micrographs of the microcapsules of Example 1 and Reference Example 1 were measured, and the results are shown in FIGS. 1 and 2.
  • the apparent zeta potential was measured 10 times for each microcapsule by a method using a Malvern zetasizer device and a disposable folded capillary cell (Malvern DTS 1070), and the results are shown in FIG. 3.
  • the capsule before and after the surface modification (Reference Example 1) and the capsule after the surface modification (Example 1) were each prepared in a size of about 5um and there was no morphological difference before and after the surface modification.
  • the surface-modified silica-acrylic resin flavor capsules had a value of about -76 mV, and the capsules whose surface was modified with an amine monomer had a value of about +43 mV. Indicated.
  • the fiber adhesion of the fragrance capsule was evaluated by the evaluation of the reverberation in the fibers after washing.
  • Test specimens were prepared with commercially available 100% cotton towels (30 * 20cm) and blended reverberation evaluation cloth (30 ⁇ 20cm) specimens. Dehydrated was used.
  • composition (i.e. microcapsules) of the present invention was made into a 1% aqueous solution, and then treated with a rinse course in each rinse water (20 DEG C) used on a standard washing machine (0.67 ml / 1 L wash water) in a stirred washing machine and dewatered. After the test piece was taken out. Then, the specimen is not stretched or warped and flat-dried at 20 ° C. and 60% RH for 24 hours, and then the sensory evaluation test by an experienced panelist is used to score the intensity of fragrance. The reverberation effect was measured as an average value by repeating it three times or more. Other detailed test conditions shall be in accordance with the test method in EL306 (Fiber Softener) of the Environmental Labeling Certification Standard of Korea Environmental Industry and Technology Institute.
  • Test specimens were prepared with commercially available 100% cotton towels (30 ⁇ 20 cm) and fabric cotton standard fabric (30 ⁇ 20 cm) specimens, and then washed repeatedly with a washing machine for 5 times using a standard laundry detergent. After dehydration was used. The contents of the composition (ie microcapsules) of the present invention in 0.2% aqueous solution were immersed for 10 minutes and then taken out. Then, the test piece was not stretched or twisted, and then flat dried at 20 ° C. and 60% RH for 24 hours, and then the sensory evaluation test of an experienced panelist was used as the score of the intensity of the fragrance. Five points were given and this was repeated three more times, and the reverberation effect was measured as the average value. Other detailed test conditions shall be in accordance with the test method in EL306 (Fiber Softener) of the Environmental Labeling Certification Standard of Korea Environmental Industry and Technology Institute.
  • the content range must be used in a specific range, and both the fiber adhesion and the fragrance supporting power can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

본 발명에서는 무기 나노입자와 생분해가 가능한 에스터 그룹을 포함한 아크릴계 모노머를 이용하여 피커링 에멀젼을 제조한 후, 이의 중합을 통해 캡슐을 제조하고, 상기 캡슐 표면을 아민계 모노머로 개질함으로써, 향캡슐의 섬유 부착력을 증대시키고 사용 후에도 향기 지속성이 우수하며, 상기 에스터 그룹의 생분해에 의해 친환경적인 표면 개질된 마이크로캡슐의 제조방법을 제공하기 위한 것이다.

Description

마이크로캡슐의 제조방법
관련 출원(들)과의 상호 인용
본 출원은 2018년 7월 2일자 한국 특허 출원 제10-2018-0076605호 및 2019년 7월 2일자 한국 특허 출원 제 10-2019-0079286 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 향캡슐의 섬유부착력을 증대시킬 수 있고, 물에 팽윤되지 않아 향 담지력이 우수하고 종래보다 생분해성이 향상됨으로써, 사용 후에도 향기 지속성을 가지는 친환경 마이크로캡슐의 제조방법에 관한 것이다.
마이크로캡슐은 다양한 방면에 널리 쓰이고 있다. 예를 들면, 색제, 촉매, 접착제, 향료, 연료, 농약, 생체재료, 의약품, 식품, 화장품, 생활용품, 세정제 등에 다양한 용도로 쓰일 수 있다.
이중에서도, 특히 생체재료나 의약품, 식품, 화장품, 세정제 등(예를 들면, 모발 린스, 바디와쉬, 섬유유연제 등)에 사용되는 향오일 마이크로캡슐은 인체에 무해해야 하며, 나아가 캡슐이 생분해되는 친환경적인 제품이어야 하는 점이 요구되고 있다.
그러나, 기존의 대부분 방법은 향오일을 계면활성 고분자나 나노입자를 이용하여 에멀젼 액적을 형성한 후, 멜라민-포름알데히드, 우레아, 우레탄 등의 수지를 에멀젼 향 액적 표면에서 축중합하여 캡슐화하고 있다. 이렇게 제조된 향캡슐은 향 담지력, 담지효율은 우수하나, 사용 후 캡슐이 분해가 되지 않아 환경적으로 문제가 되고 있다.
이러한 문제를 해결하기 위하여, 바이오 고분자 (검아라빅, 전분, 셀루로오스, 젤라틴 알지네이트, 알부민 등) 및 변성 바이오 고분자 (에틸 셀룰로오스, CMC, HPMC, HPMC-AS)를 사용하여 향마이크로 캡슐을 제조하려는 시도들이 있었다. 하지만, 상기 고분자들은 물 혹은 향오일에 의해 팽윤될 수 있기 때문에 향에 대한 담지력이 매우 약하다.
또 다른 방법은, 친수성 실리카 나노입자와 다이알킬 아디페이트를 사용하여 oil-in-water Picking emulsion을 제조하는 방법을 제시한 바 있다 (Soft Matter, Pickering emulsions stabilized by hydrophilic nanoparticles: in situ surface modification by oil, Binks et al., 2016, 12, 6858 내지 6867)
하지만, 이렇게 제조된 피커링 에멀젼(Picking emulsion)은 산, 염기, 온도 등의 주변 환경에 취약하여 에멀젼이 쉽게 파괴되므로, 원하는 마이크로캡슐을 제조하기 어렵고 향 캡슐의 섬유 부착력이 떨어지는 문제가 있다.
본 발명의 목적은 상기한 문제점을 해결하여, 향 캡슐 표면의 전하 조절을 통해 섬유 부착력을 증대시킬 수 있고, 또한 물에 팽윤되지 않아 향 담지력이 우수하고 생분해성이 향상됨으로써, 사용 후에도 향기 지속성을 가지며 친환경적인 마이크로캡슐의 제조방법을 제공하기 위한 것이다.
본 발명의 일 구현예에 따르면, 무기 나노 입자 표면에 물에 대한 용해도가 1 내지 100 g/L인 아크릴계 모노머를 흡착시키는 제1단계;
표면에 아크릴계 모노머가 흡착된 무기나노입자에 향오일을 첨가하여 에멀젼을 형성하는 제2단계;
상기 제2단계의 혼합물을 중합하는 제3단계; 및
상기 제3단계의 중합 용액에, 아민계 모노머와 개시제를 첨가하여 중합하는 제4단계;
를 포함하는, 마이크로캡슐의 제조방법을 제공한다.
본 발명의 다른 구현예에 따르면, 상기 방법으로 제조된 표면 개질된 마이크로캡슐을 제공한다.
본 발명에서는 향 캡슐 표면의 전하를 조절하여 섬유 부착력을 증대시킬 수 있고, 물에 팽윤되지 않아 향 담지력이 우수하며 종래보다 생분해성이 향상됨으로써, 사용후에도 향기 지속성을 가지며 친환경적인 무기나노입자-아크릴 수지 복합 마이크로캡슐을 제공하는 효과가 있다.
도 1은 본 발명의 실시예 1의 마이크로캡슐의 전자현미경 사진을 나타낸 것이다.
도 2는 참고예 1의 마이크로캡슐의 전자현미경 사진을 나타낸 것이다.
도 3은 실시예 1 및 참고예 1의 제타 전위 측정 결과를 비교하여 나타낸 것이다.
이하에서, 본 발명을 더욱 구체적으로 설명한다. 또한, 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
또한 본 발명의 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.
이하 발명의 구체적인 구현예에 따른 마이크로캡슐의 제조방법과, 이를 이용하여 제조한 마이크로캡슐에 대해 설명하기로 한다.
본 발명은 종래 문제를 해결하기 위하여 무기나노입자-아크릴수지 복합 캡슐을 형성하는 방법을 제시한다.
본 발명에서는 실리카와 같은 친수성 무기나노입자에 아크릴계 모노머를 흡착시켜 피커링 에멀젼(Pickering emulsion) 방식으로 안정적인 향 에멀젼을 만든 후, 향에 녹여 녹은 라디칼 개시제의 개시 반응에 의한 라디칼 중합으로 무기나노입자-아크릴 수지 마이크로 캡슐을 제조한 다음, 추가적으로 아민계열의 모노머를 상기 캡슐 표면에서 중합시켜 캡슐 표면의 전하(charge) 조절을 통해, 향 캡슐의 섬유 부착력을 증대시키는 것을 특징으로 한다.
또, 상기 피커링 에멀젼을 사용하여 가교된 마이크로캡슐은 폴리아크릴레이트 캡슐로서, 구조 내 에스터(ester)기가 가수분해로 생분해되어 종래보다 친환경적인 향캡슐을 제조할 수 있다.
구체적으로, 본 발명의 일 구현예에 따르면, 무기 나노 입자 표면에 물에 대한 용해도가 1 내지 100 g/L인 아크릴계 모노머를 흡착시키는 제1단계;
표면에 아크릴계 모노머가 흡착된 무기나노입자에 향오일을 첨가하여 에멀젼을 형성하는 제2단계;
상기 제2단계의 혼합물을 중합하는 제3단계; 및
상기 제3단계의 중합 용액에, 아민계 모노머와 개시제를 첨가하여 중합하는 제4단계;
를 포함하는, 마이크로캡슐의 제조방법이 제공된다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
상술한 제1단계는 친수성 무기 나노 입자 표면에 아크릴계 모노머를 흡착시키는 단계이다.
바람직하게, 상기 무기 나노 입자는 친수성을 갖는 입자라면 모두 사용 가능하다. 예를 들면, 상기 무기 나노 입자는 2nm 내지 100nm의 평균입경을 갖는 실리카, 티타니아, 메탈옥사이드, 노블메탈, 인회석 및 석회석으로 이루어진 군에서 선택될 수 있다. 더 바람직하게, 상기 무기 나노입자의 평균 입경은 5nm 내지 50nm일 수 있다.
가장 바람직하게, 상기 무기 나노 입자는 2nm 내지 100nm 혹은 5nm 내지 50nm의 평균 입경을 갖는 실리카 또는 티타니아가 사용될 수 있다.
또한, 상기 제1단계에서 무기 나노 입자는 콜로이달 수용액 상태로 사용될 수 있으며, 콜로이달 수용액에 아크릴계 모노머를 분산 처리하는 과정을 거치므로, 향오일 첨가시 안정적인 피커링 에멀젼이 형성되도록 할 수 있다.
따라서, 상기 제1단계는 실리카 콜로이달 수용액을 사용하여 아크릴계 모노머를 첨가하고, 분산 처리하여, 실리카 표면에 아크릴계 모노머를 흡착하는 단계를 포함할 수 있다.
상기 분산 처리 방법은 실리카와 같은 무기 나노 입자를 콜로이달 수용액 상태로 만드는 조건이면 그 방법이 제한되지 않으며, 일례로 초음파 처리 방법이 사용될 수 있다.
더 구체적으로, 무기 나노 입자로 친수성 실리카를 사용하는 것을 예로 들어 설명한다.
본 발명에서는 친수성 실리카(hydrophillic silica)에 아크릴계의 모노머를 초음파 처리함으로써, 상기 실리카 표면에 아크릴계 모노머를 흡착시키는 것이기 때문에, 무기 나노입자(바람직하게 실리카)에 안정적으로 향 피커링 에멀젼이 형성된다. 또, 이러한 안정적인 피커링 에멀젼은 향에 녹여 놓은 라디칼 개시제의 개시반응에 의한 라디칼 중합으로 실리카-아크릴레이트 마이크로캡슐을 제조할 수 있다.
즉, 상기 친수성 무기 나노 입자(실리카 나노 입자) 표면에 아크릴레이트 또는 디아크릴레이트 모노머와 같은 아크릴계 모노머를 흡착시킨 후 향오일의 피커링 에멀젼을 형성 후, 바로 프리라디칼 중합으로 캡슐을 형성한다.
상기 아크릴계 모노머는 생분해가 가능한 에스터 그룹을 포함하며, 물에 대한 용해도(water solubility)가 1 내지 100 g/L인 것이 특징이며, 단독 또는 혼합 사용 가능하다. 상기 물 용해도의 온도 조건은 상온 25℃을 기준으로 할 수 있다.
더 바람직하게, 본 발명에 따르면 상기 아크릴계 모노머는 물에 대한 용해도(water solubility)가 5 내지 60 g/L 혹은 10 내지 60g/L가 되는 것으로 사용할 수 있다.
상기 아크릴계 모노머의 물에 대한 용해도가 1 g/L 이하이면, 친수성 무기 나노입자에 아크릴계 모노머를 흡착시키기 어려워 피커링에멀젼 형성이 불가능하다. 또한, 상기 아크릴계 모노머의 물에 대한 용해도가 100 g/L 이상이면, 친수성 무기 나노입자의 표면의 친수성이 극대화되고 물/오일 사이의 접촉각이 작아지게 되어 입자표면의 상당부분이 수상으로 존재하게 된다. 이 경우 불안정적인 에멀젼이 형성될 수 있는 문제가 있다.
이러한 상기 아크릴계 모노머는 하기 화학식 1로 표시되는 디아크릴계 모노머 및 화학식 2로 표시되는 모노아크릴계 모노머 화합물로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다:
[화학식 1]
Figure PCTKR2019008067-appb-I000001
상기 화학식 1에서, R1 및 R2는 각각 독립적으로 수소 또는 -(CH2)nCH3 (n은 0 내지 5의 정수임)이고, R3는 -(CH2CR4H-O)m, -(CH2CR4H)mO, 또는 -(CH2CH(OH)CH2-O)m (m은 1 내지 5의 정수임)이고, R4는 수소 또는 -(CH2)nCH3 (n은 0 내지 5의 정수임)이고,
[화학식 2]
Figure PCTKR2019008067-appb-I000002
상기 화학식 2에서, R1은 수소 또는 -(CH2)nCH3 (n은 0 내지 5의 정수임)이고, R3는 -(CH2CR4H-O)m, -(CH2CR4H)mO, 또는 -(CH2CH(OH)CH2-O)m (m은 1 내지 5의 정수임)이고, R4는 수소 또는 -(CH2)nCH3 (n은 0 내지 5의 정수임)이다.
바람직하게, 상술한 바대로 본 발명에서는 물에 대한 용해도가 5 내지 50 g/L인 아크릴계 모노머를 사용할 수 있다. 이러한 아크릴계 모노머의 구체적인 예는 하기 표 1과 같이, 디프로필렌글리콜 디아크릴레이트, 디에틸렌글리콜 디아크릴레이트 및 테트라에틸렌글리콜 디메타크릴레이트로 이루어진 군에서 선택된 1종 이상이 사용될 수 있다.
Figure PCTKR2019008067-appb-T000001
또한, 상기 제1단계에서, 무기나노입자 표면에 아크릴계 모노머를 흡착시킬 때, 초음파 처리 방법이 사용되는 경우, 다음의 방법으로 진행될 수 있다.
즉, 상기 제1단계는 무기나노입자 콜로이달 수용액을 사용하여 아크릴계 모노머를 첨가하고, 1분 내지 30분 동안 초음파 처리하여, 무기나노입자 표면에 아크릴계 모노머를 흡착하는 단계를 포함할 수 있다. 상기 초음파 처리는 얼음조와 같은 낮은 온도 조건에서 진행하는 것이 바람직하다.
상기 무기나노입자는 5nm 내지 50nm의 평균입경을 가질 수 있다.
한편, 상기 제2단계는 상기 제1단계에서 제조된 무기 나노 입자 표면에 아크릴계 모노머가 흡착된 무기 나노 입자에 향오일을 첨가하여 에멀젼을 형성하는 단계일 수 있다.
상기 제2단계에서 형성된 에멀젼은 피커링 에멀젼일 수 있다.
구체적으로, 상기 제2단계는 표면에 아크릴계 모노머가 흡착된 무기나노입자에 향오일을 첨가하고, 1분 내지 30분 동안 초음파 처리하여, 수중유형 피커링 에멀젼(O/W pickering emulsion)을 형성하는 단계를 포함할 수 있다. 상기 초음파 처리는 얼음조와 같은 낮은 온도 조건에서 진행하는 것이 바람직하다.
상기 제2단계에서 향오일 사용시, 향오일에 유용성 개시제를 용해하여 사용할 수 있다.
상기 유용성 개시제는 아조계열 및 과산화물계열로 이루어진 군에서 선택된 1종 이상이 될 수 있다. 상기 유용성 개시제는 분말 형태로서 그 사용량은 크게 제한되지는 않으며, 향오일에 용해될 정도의 양이라면 이 분야에 잘 알려진 함량에 따라 사용될 수 있다. 또한, 일발적인 시판 제품을 사용할 수 있다.
한편, 본 발명에서 마이크로캡슐을 제조할 때, 무기 나노 입자와 아크릴계 모노머 및 향오일은 물을 포함한 콜로이달 수용액에 첨가되므로, 피커링 에멀젼 용액의 전체 함량을 기준으로 무기 나노 입자, 아크릴계 모노머 및 향오일의 함량을 적절히 조절하여 사용할 수 있다.
바람직한 일례를 들면, 본 발명에서 중합을 진행하기 전, 제3단계의 피커링 에멀젼 용액은 물, 무기 나노 입자, 아크릴계 모노머 및 향을 포함하는 용액일 수 있다.
또한, 상기 피커링 에멀젼 용액은 전체 용액 함량을 기준으로 수상인 물이 60 내지 80 중량%를 차지하며, 무기 나노 입자 0.1 내지 16 중량% 및 아크릴계 모노머 0.2 내지 25 중량% 및 향 2 내지 36 중량%를 포함하도록 사용될 수 있다.
상기 무기나노입자의 함량이 0.1 중량% 미만이면 에멀젼이 1000 ㎛ 이상으로 형성되고, 16 중량%를 초과하면 에멀젼이 0.1 ㎛ 이하로 형성되는 문제가 있다.
상기 아크릴계 모노머의 함량이 0.2 중량% 미만이면 피커링에멀젼 형성이 불가하거나, 무기나노입자-아크릴수지 캡슐 형성이 불가한 문제가 있고, 25 중량%를 초과하면 무기나노입자에 흡착되지 않고 중합반응에 참여하지 않는 아크릴계 모노머가 수상에 다량 잔류하는 문제가 있다.
상기 향 함량이 2 중량% 미만이면 캡슐이 너무 두꺼워 향이 방출되지 않는 문제가 있고, 36 중량%를 초과하면 불안정한 에멀젼 형성되어 캡슐의 성능이 저하되는 문제가 있다.
한편, 제3단계는 상기 제2단계의 얻은 피커링 에멀젼의 중합을 진행하는 단계이다.
상술한 방법에 따라, 피커링 에멀젼이 얻어지면, 일정 조건하에 라디칼 중합을 진행함으로써, 향/무기나노입자-폴리아크릴레이트 캡슐이 합성되게 된다.
바람직하게, 상기 제3단계의 중합은 30 내지 90℃에서 6 내지 20시간 동안 수중유형 피커링 에멀젼의 라디칼 중합을 진행하여, 마이크로캡슐을 형성하는 단계를 포함하는 것이 바람직하다. 또, 상기 중합시 교반 조건은 100 내지 700 rpm, 바람직하게 200 내지 400 rpm이 될 수 있다. 또한, 상기 중합은 질소 퍼징 등을 통한 불활성한 조건에서 진행될 수 있다.
상기 제3단계의 중합 후, 후술하는 제4단계의 진행 전에 필요에 따라 농축 또는/및 건조 과정을 추가로 진행할 수 있고, 그 조건이 제한되지는 않는다.
상기 제3단계의 중합을 통해 얻어진 마이크로캡슐은 무기 나노 입자, 아크릴계 모노머 및 향으로 이루어져 있다.
또, 상기 제4단계는 상기 제3단계의 중합 용액에, 아민계 모노머와 개시제를 첨가하여 중합하는 단계를 포함한다. 본 발명에서는 상기 제4단계에서 추가적으로 아민 계열의 모노머를 캡슐 표면에서 중합시키는 단계를 수행하여, 캡슐 표면의 전하를 조절할 수 있으며, 이를 통해 향캡슐의 섬유부착력을 증대시킬 수 있다.
상기 제4단계에서, 아민계 모노머와 개시제는 제3단계의 중합 중 또는 중합 완료 후에 투입될 수 있다. 바람직한 일례로, 제4단계에서 상기 제3단계의 중합 후반부 내지 중합완료 사이 시점에서, 제3단계의 중합 용액에 추가 아민계 모노머와 개시제를 투입할 수 있다. 상기 중합 후반부 내지 중합 완료 사이는 후술하는 전체 중합 시간(6 내지 20시간)에서, 약 80 내지 100% 정도의 중합이 완료되는 시간을 의미할 수 있다.
상기 아민계 모노머는 하기 화학식 3 또는 화학식 4의 아민계 모노머를 포함하는 것이 바람직하다.
[화학식 3]
Figure PCTKR2019008067-appb-I000003
[화학식 4]
Figure PCTKR2019008067-appb-I000004
(화학식 3 및 4에서,
R4 및 R5는 서로 동일하거나 상이할 수 있고, -(CH2)n-(CH)=CH2 (n은 1 내지 5의 정수) 또는 -(CH2)n-CH3 (n은 0 내지 5의 정수)이고,
R6 및 R7은 서로 동일하거나 상이할 수 있고, C1 내지 C5의 알킬, -(CH2)n-CH=CH2 (n은 1 내지 5의 정수), 하기 화학식 a의 아크릴아마이드 계열 또는 하기 화학식 b의 아크릴산 계열의 치환기이고, 이때 R6 및 R7 가 동시에 C1 내지 C5의 알킬기는 아니며,
R8은 수소, -(CH2)n-(CH)=CH2 (n은 1 내지 5의 정수) 또는 -(CH2)n-CH3 (n은 0 내지 5의 정수)이고,
R9 및 R10은 서로 동일하거나 상이할 수 있고, -(CH2)n-CH=CH2 (n은 1 내지 5의 정수), 하기 화학식 a의 아크릴아마이드 계열 또는 하기 화학식 b의 아크릴산 계열의 치환기이고,
[화학식 a]
Figure PCTKR2019008067-appb-I000005
[화학식 b]
Figure PCTKR2019008067-appb-I000006
상기 화학식 a 및 b에서, n 및 m은 각각 독립적으로 또는 동시에 1 내지 5의 정수이고, R11 및 R12는 각각 독립적으로 또는 동시에 수소 또는 -(CH2)n'CH3 (n'은 0 내지 5의 정수)이다.
상기 화학식 3 및 4에서, R4 내지 R6은 -(CH2)n-CH3(n은 0 내지 5의 정수)이고, R7은 화학식 a일 수 있다. 이때, 화학식 a에서, n은 2 내지 3이고, R11은 -(CH2)nCH3 (n'은 0 내지 2의 정수)일 수 있고, 더 바람직하게 n'은 0일 수 있다.
본 발명에서, C1 내지 C5의 알킬은 직쇄 또는 측쇄의 알킬기를 포함할 수 있다.
상기 아민계 모노머는 [3-(메타크릴로일아미노)프로필]트리메틸암모늄 클로라이드 용액([3-(Methacryloylamino)propyl]trimethylammonium chloride solution) 또는 디알릴디메틸암모늄 클로라이드 용액(Diallyldimethylammonium chloride solution) 이 바람직하게 사용될 수 있다.
상기 아민계 모노머의 함량은 제3단계까지의 전체 용액 함량을 기준으로, 100 중량부 대비 0.2 내지 5 중량부로 사용될 수 있다. 상기 아민계 모노머의 함량이 0.2 중량부 이하이면 표면 전하 개질 효과가 감소되는 문제가 있고, 5 중량부 이상이면 넣어준 모노머가 캡슐 표면에 중합되는 것 외에 개별적으로 중합되어 폴리머 입자를 형성하는 문제가 있다.
또, 상기 제4단계에서 사용되는 개시제는 수용성 개시제일 수 있고, 아조계열 및 과산화물계열로 이루어진 군에서 선택된 1종 이상이 될 수 있으며 이 분야에 잘 알려진 수용성 개시제가 모두 사용 가능하다. 예를 들면, 상기 수용성 개시제는, SPS(Sodium persulfate), APS(Ammonium persulfate) 등이 사용될 수 있다. 상기 수용성 개시제의 함량은 제3단계까지의 전체 용액 함량을 기준으로, 100 중량부 대비 0.004 내지 0.03 중량부로 사용될 수 있다.
상기 제4단계의 중합은 30 내지 90℃에서 6 내지 20시간 동안 중합을 진행하여, 제3단계에서 형성된 마이크로캡슐의 표면을 개질하는 단계를 포함할 수 있다. 또, 상기 중합시 교반 조건은 100 내지 700 rpm, 바람직하게 200 내지 400 rpm이 될 수 있다.
본 발명의 다른 구현예에 따르면, 상기 방법으로 제조된 표면 개질된 마이크로캡슐을 제공한다.
또 다른 일례로, 본 발명은 무기 나노 입자-아크릴 수지 복합체, 및 향 성분을 포함하는 마이크로 캡슐; 및 상기 마이크로 캡슐의 표면이 아민계 화합물로 개질되어 있으며, 표면 전하가 +5 내지 60mV의 제타 전위를 갖는 것을 특징으로 하는, 표면 개질된 마이크로캡슐을 제공한다.
구체적으로, 본원 명세서에서 제공하는 마이크로캡슐은 아민계 화합물로 캡슐 표면이 개질된 향 캡슐을 의미하는 것으로서, 향성분을 함유한 표면 개질된 무기나노입자-아크릴 수지 복합 마이크로캡슐을 포함하며, 제타 전위가 약 +5 내지 60mV 혹은 +10 내지 55mV 혹은 +30 내지 50mV일 수 있다. 이러한 마이크로캡슐은 아민계 화합물로 표면개질되어 얻어진 것이며, 상기 제타 전위는 Malvern zetasizer 장비 및 disposable folded capillary cell (Malvern DTS 1070)을 이용한 방법으로 각 마이크로캡슐에 대해 10회씩, apparent zeta potential을 측정하여 얻어진 결과이다.
또한, 상기 표면 개질된 향 캡슐의 총 중량을 기준으로, 무기나노입자 0.5 내지 40 중량%, 아크릴계 모노머 1 내지 60 중량%%, 아민계 모노머 0.02 내지 15 중량% 및 향 10 내지 90 중량%를 포함할 수 있다.
또한, 본 발명의 표면이 개질된 마이크로캡슐은 평균입경 0.1㎛ 내지 1000㎛의 향성분을 함유한 표면 개질된 무기나노입자-아크릴 수지 복합 캡슐의 형태로 제공될 수 있다.
특히, 본 발명의 표면 개질된 무기나노입자-아크릴 수지 복합 캡슐은 물에 팽윤되지 않으므로 향 담지력이 우수하면서도 에스터그룹이 생분해되어 친환경적이다.
특히, 본 발명의 무기나노입자-아크릴레이트 복합 캡슐은 물에 팽윤되지 않으므로 향 담지력이 우수하면서도 에스터그룹이 생분해되어 친환경적이다.
이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.
실시예 1
제1단계
친수성 실리카 (25nm) 0.4g을 물 50ml 에 분산시켜 실리카 콜로이달 수용액을 제조한 후, 물에 대한 용해도가 25 g/L 정도인 디에틸렌글리콜 디아크릴레이트 3g을 첨가하여 얼음조에서 20분 동안 초음파(sonication) 처리하여, 실리카 표면에 아크릴계 모노머를 흡착시켰다.
제2단계
이후, 상기 용액에 유용성 개시제를 녹인 향 오일(Oil)을 20g 넣고, 얼음조에서 다시 20분 동안 초음파 (sonication) 처리 해주면서, 피커링 에멀젼(Pickering emulsion)을 제조하였다.
제3단계
이어서, 상기 용액을 컨덴서를 연결해 둔 3구 둥근 플라스크에 넣고 밀폐시킨 다음, 300rpm으로 교반하면서 N2 bubbling을 약 30분 가량 해준 후, 60℃로 가열된 오일조(Oil bath)에서 라디칼 중합반응을 20시간 진행하여 향/ 실리카-아크릴레이트 마이크로 캡슐을 제조하였다.
제4단계
상기 중합 중에 수용성 개시제(APS (Ammonium persulfate) 0.01g)와 [3-(메타크릴로일아미노)프로필]트리메틸암모늄 클로라이드 용액([3-(Methacryloylamino)propyl]trimethylammonium chloride solution) 0.6g을 투입하고 15시간 더 중합을 진행하여, 표면이 개질된 향/실리카-아크릴 수지 마이크로 캡슐을 제조하였다.
실시예 2
제4단계에서 [3-(메타크릴로일아미노)프로필]트리메틸암모늄 클로라이드 용액 대신, 디알릴디메틸암모늄 클로라이드 용액(Diallyldimethylammonium chloride solution) 0.5g을 사용하는 것을 제외하고, 실시예 1과 동일한 방법으로 표면이 개질된 향/실리카-아크릴레이트 마이크로 캡슐을 제조하였다.
참고예 1
제1단계
친수성 실리카 (25nm) 0.4g을 물 50ml 에 분산시켜 실리카 콜로이달 수용액을 제조한 후, 물에 대한 용해도가 25 g/L 정도인 디에틸렌글리콜 디아크릴레이트 3g을 첨가하여 얼음조에서 20분 동안 초음파(sonication) 처리하여, 실리카 표면에 아크릴계 모노머를 흡착시켰다.
제2단계
이후, 상기 용액에 유용성 개시제를 녹인 향 오일(Oil)을 20g 넣고, 얼음조에서 다시 20분 동안 초음파 (sonication) 처리 해주면서, 피커링 에멀젼(Pickering emulsion)을 제조하였다.
제3단계
이어서, 상기 용액을 컨덴서를 연결해 둔 3구 둥근 플라스크에 넣고 밀폐시킨 다음, 300rpm으로 교반하면서 N2 bubbling을 약 30분 가량 해준 후, 60℃로 가열된 오일조(Oil bath)에서 라디칼 중합반응을 20시간 진행하여 향/ 실리카-아크릴레이트 마이크로 캡슐을 제조하였다.
비교예 1
평균입경 20nm의 실리카를 함유한 실리카 콜로이달 수용액에 향오일 20g을 첨가하여 오일상의 피커링 에멀젼을 제조하였다.
안정한 에멀젼 상태를 유지하기 위해 SMA (styrene maleic anhydride copolymer) 1.6g을 첨가하고, 위 용액의 pH를 4 내지 6으로 만들어 주었다.
여기에 pre-MF(pre-Melamine formaldehyde) 용액 (pH 8.5 내지 9)을 천천히 떨어뜨린 후, 온도를 50 내지 70℃로 올려주고 3시간 정도 반응시켜 실리카-MF 마이크로 캡슐을 합성하였다.
비교예 2
에틸아세테이트를 포화시킨 물에 계면활성제 (tween80) 1% 농도로 첨가하여 수상을 준비하였다.
에틸 아세테이트에 EC(Ethyl cellulose)를 20% 농도로 녹이고 여기에 향(Oil)을 EC와 1:1의 중량비율로 혼합하여 코어 용액을 준비하였다.
에틸 아세테이트를 포화시킨 물 100ml에 준비한 코어 용액 30ml을 넣고 ultra turrax를 이용하여 에멀젼을 만들었다.
만들어진 향 에멀젼 용액을 약 60℃로 가열하고, 500rpm으로 교반하면 에틸 아세테이트가 제거되면서 향/EC 마이크로 캡슐이 합성되었다.
참고예 2
제4단계에서 [3-(메타크릴로일아미노)프로필]트리메틸암모늄 클로라이드 용액([3-(Methacryloylamino)propyl]trimethylammonium chloride solution) 0.1g을 사용하는 것을 제외하고, 실시예 1과 동일한 방법으로 마이크로캡슐을 합성하였다.
참고예 3
제4단계에서 [3-(메타크릴로일아미노)프로필]트리메틸암모늄 클로라이드 용액([3-(Methacryloylamino)propyl]trimethylammonium chloride solution) 3g을 사용하는 것을 제외하고, 실시예 1과 동일한 방법으로 마이크로캡슐을 합성하였다.
비교예 3
제1단계
친수성 실리카 25nm) 1g를 물 87.5g에 분산시켜 실리카 콜로이달 수용액을 제조한 후, 물에 대한 용해도가 0.9 g/L 정도인 E-TMPTA (E-Trimethylolpropane triacrylate) 10g를 첨가하여 얼음조에서 20분 동안 초음파(sonication) 처리하였다.
제2단계
이후, 상기 용액에 유용성 개시제를 녹인 향 오일(Oil)을 20g 넣고, 얼음조에서 다시 20분 동안 초음파 (sonication) 처리 해주면서, 피커링 에멀젼(Pickering emulsion)을 만들었다.
제3단계
이어서, 상기 용액을 컨덴서를 연결해 둔 3구 둥근 플라스크에 넣고 밀폐시킨 다음, 300rpm으로 교반하면서 N2 bubbling을 약 30분 가량 해준 후, 60℃로 가열된 오일조(Oil bath)에서 라디칼 중합반응을 20시간 진행하여 향/ 실리카-아크릴레이트 마이크로 캡슐을 제조하고자 하였다.
그러나, E-TMPTA의 낮은 물에 대한 용해도(water solubility)가 0.9 g/L로 낮기 때문에 불안정한 에멀젼 형성으로 인해, 캡슐화가 잘 진행되지 않았다.
즉, 캡슐 합성 후에 에멀젼을 이루지 못한 향(Oil)이 떠다니고, 만들어진 캡슐의 형상도 매끈하지 않음을 확인하였다.
실시예 3
디에틸렌글리콜디아크릴레이트 대신 물에 대한 용해도가 52g/L인 테트라에틸렌글리콜디메타아크릴레이트 2g을 사용하여 실시예 1과 동일한 방법으로 향/실리카-아크릴레이트 마이크로 캡슐을 제조하였다.
실험예
실시예 1 내지 3, 각 비교예 및 참고예 1 내지 3에 대하여, 표면의 형태 및 향담지 효율 평가를 진행하였고, 결과를 표 2, 3에 나타내었다.
(1) 표면 형태 관찰 및 전하 측정
실시예 1 및 참고예 1의 마이크로캡슐의 전자현미경사진을 측정하여 그 결과를 도 1 및 2에 나타내었다. 또한, Malvern zetasizer 장비 및 disposable folded capillary cell (Malvern DTS 1070)을 이용한 방법으로 각 마이크로캡슐에 대해 10회씩, apparent zeta potential을 측정하였고 그 결과를 도 3에 나타내었다.
도 1 및 2에서 보면, 표면개질 전 향캡슐 (참고예1)과 표면개질 후 향캡슐(실시예1)은 각각 5um 내외 크기로 제조되었고 표면개질 전후의 형태적인 차이는 없었다.
그러나, 도 3에 나타낸 바와 같이, zeta potential을 측정했을 때 표면개질을 하지 않은 실리카-아크릴수지 향캡슐은 약 -76mV의 값을, 아민계 모노머로 표면을 개질한 캡슐은 약 +43mV의 값을 나타내었다.
따라서, 아민게 모노머의 표면 중합으로 인해 향캡슐의 표면 charge가 크게 변화하는 것을 볼 수 있고, 이에 따른 섬유부착력 증대 효과를 아래에 나타내었다.
(2) 섬유 부착력 평가
각 향캡슐의 향 담지량과 담지효율이 같다고 가정했을 때, 세탁 후 섬유에서의 잔향 평가로 향캡슐의 섬유부착력을 평가하였다.
* 시험 조건
- 일반세탁기 평가 : 시험 시편은 시판되는 100% 면타올(30*20cm), 혼방 잔향 평가 천(30×20cm) 시편을 준비한 다음, 일반 세탁세제를 표준사용량 사용하고 세탁기로 5회 반복세탁한 후 탈수한 것을 사용하였다.
본 발명의 조성물(즉, 마이크로캡슐)을 1% 수용액으로 만든 다음, 교반식 세탁기에 표준사용량(0.67㎖/1ℓ 세탁수)을 기준으로 사용한 각각의 헹굼물(20℃)에 행굼코스로 처리하고 탈수 후 시험편을 꺼내었다. 그리고, 시험편을 신장되거나 뒤틀리지 않게 하여 20℃, 60% RH조건에서 24시간 망 건조(flat dry)한 다음 숙련된 panelist의 관능 평가 시험에 의하여 향의 강도 정도를 점수로서 최저 1점에서 최고 5점까지 부여하게 하고 이것을 3회 이상 반복하여 그 평균값으로서 잔향효과를 측정하였다. 기타 세부 시험 조건은 한국환경산업기술원의 환경표지인증기준 중 EL306(섬유유연제)내 시험방법에 준한다.
- 담금세탁 평가 : 시험 시편은 시판되는 100% 면타올(30×20cm), 직물 면표준포(30×20cm)) 시편을 준비한 다음, 일반 세탁세제를 표준사용량 사용하고 세탁기로 5회 반복세탁한 후 탈수한 것을 사용하였다. 본 발명의 조성물(즉, 마이크로캡슐)을 0.2% 수용액으로 만든 내용물에, 시편험을 10분 동안 담근 후 꺼내었다. 그리고, 상기 시험편을 신장되거나 뒤틀리지 않게 하여 20℃, 60% RH조건에서 24시간 망 건조(flat dry)한 다음 숙련된 panelist의 관능 평가 시험에 의하여 향의 강도 정도를 점수로서 최저 1점에서 최고 5점까지 부여하게 하고 이것을 3회 이상 반복하여 그 평균값으로서 잔향효과를 측정하였다. 기타 세부 시험 조건은 한국환경산업기술원의 환경표지인증기준 중 EL306(섬유유연제)내 시험방법에 준한다.
Figure PCTKR2019008067-appb-T000002
Figure PCTKR2019008067-appb-T000003
상기 표 2의 결과를 보면, 본 발명의 실시예 1 내지 3은 참고예 1에 비해, 세탁기 세탁 및 담금 세탁 평가에서, 모두 우수한 섬유 부착력과 향지속성이 유지됨을 확인하였다.
또한, 표 3에서 보면, 기존 일반적으로 사용되는 비교예 1 및 2의 향캡슐은 향 담지력이 약하여, 섬유 부착력이 불량하였다. 또한, 참고예 2 및 3을 통해, 표면 개질시 사용되는 아민계 모노머의 함량이 본원 범위를 만족하지 못하는 경우도, 섬유 부착력 증대 효과를 얻을 수 없었다. 또한, 상술한 바와 같이, 비교예 3은 캡슐 합성이 잘 진행되지 않아 상기 물성을 평가할 수 없었다.
따라서, 아민계 화합물을 사용하여 캡슐 표면을 개질시 그 함량 범위를 특정 범위로 사용해야, 섬유 부착력과 향 담지력이 모두 우수한 효과를 얻을 수 있다.

Claims (17)

  1. 무기 나노 입자 표면에 물에 대한 용해도가 1 내지 100 g/L인 아크릴계 모노머를 흡착시키는 제1단계;
    표면에 아크릴계 모노머가 흡착된 무기나노입자에 향오일을 첨가하여 에멀젼을 형성하는 제2단계;
    상기 제2단계의 혼합물을 중합하는 제3단계; 및
    상기 제3단계의 중합 용액에, 아민계 모노머와 개시제를 첨가하여 중합하는 제4단계;
    를 포함하는, 마이크로캡슐의 제조방법.
  2. 제1항에 있어서,
    상기 아크릴계 모노머는 물에 대한 용해도가 5 내지 60 g/L인 마이크로캡슐의 제조방법.
  3. 제1항에 있어서,
    상기 아크릴계 모노머는 하기 화학식 1로 표시되는 디아크릴계 모노머 및 화학식 2로 표시되는 모노아크릴계 모노머 화합물로 이루어진 군에서 선택된 1종 이상을 포함하는,
    마이크로캡슐의 제조방법:
    [화학식 1]
    Figure PCTKR2019008067-appb-I000007
    상기 화학식 1에서, R1 및 R2는 각각 독립적으로 수소 또는 -(CH2)nCH3 (n은 0 내지 5의 정수임)이고, R3는 -(CH2CR4H-O)m, -(CH2CR4H)mO, 또는 -(CH2CH(OH)CH2-O)m (m은 1 내지 5의 정수임)이고, R4는 수소 또는 -(CH2)nCH3 (n은 0 내지 5의 정수임)이고,
    [화학식 2]
    Figure PCTKR2019008067-appb-I000008
    상기 화학식 2에서, R1은 수소 또는 -(CH2)nCH3 (n은 0 내지 5의 정수임)이고, R3는 -(CH2CR4H-O)m, -(CH2CR4H)mO, 또는 -(CH2CH(OH)CH2-O)m (m은 1 내지 5의 정수임)이고, R4는 수소 또는 -(CH2)nCH3 (n은 0 내지 5의 정수임)이다.
  4. 제3항에 있어서,
    상기 아크릴계 모노머는 디프로필렌글리콜 디아크릴레이트, 디에틸렌글리콜 디아크릴레이트 및 테트라에틸렌글리콜 디메타크릴레이트로 이루어진 군에서 선택된 1종 이상인 마이크로캡슐의 제조방법.
  5. 제1항에 있어서,
    상기 아민계 모노머는 하기 화학식 3 또는 화학식 4의 아민계 모노머를 포함하는, 마이크로캡슐의 제조방법.
    [화학식 3]
    Figure PCTKR2019008067-appb-I000009
    [화학식 4]
    Figure PCTKR2019008067-appb-I000010
    (화학식 3 및 4에서,
    R4 및 R5는 서로 동일하거나 상이할 수 있고, -(CH2)n-(CH)=CH2 (n은 1 내지 5의 정수) 또는 -(CH2)n-CH3 (n은 0 내지 5의 정수)이고,
    R6 및 R7은 서로 동일하거나 상이할 수 있고, C1 내지 C5의 알킬, -(CH2)n-CH=CH2 (n은 1 내지 5의 정수), 하기 화학식 a의 아크릴아마이드 계열 또는 하기 화학식 b의 아크릴산 계열의 치환기이고, 이때 R6 및 R7 가 동시에 C1 내지 C5의 알킬기는 아니며,
    R8은 수소, -(CH2)n-(CH)=CH2 (n은 1 내지 5의 정수) 또는 -(CH2)n-CH3 (n은 0 내지 5의 정수)이고,
    R9 및 R10은 서로 동일하거나 상이할 수 있고, -(CH2)n-CH=CH2 (n은 1 내지 5의 정수), 하기 화학식 a의 아크릴아마이드 계열 또는 하기 화학식 b의 아크릴산 계열의 치환기이고,
    [화학식 a]
    Figure PCTKR2019008067-appb-I000011
    [화학식 b]
    Figure PCTKR2019008067-appb-I000012
    상기 화학식 a 및 b에서, n 및 m은 각각 독립적으로 또는 동시에 1 내지 5의 정수이고, R11 및 R12는 각각 독립적으로 또는 동시에 수소 또는 -(CH2)n'CH3 (n'은 0 내지 5의 정수)이다.
  6. 제1항에 있어서, 상기 아민계 모노머의 함량은 제3단계까지의 전체 용액 함량을 기준으로 100 중량부 대비 0.2 내지 5 중량부로 사용하는 마이크로캡슐의 제조방법.
  7. 제1항에 있어서,
    상기 무기 나노 입자는 2nm 내지 100nm의 평균입경을 갖는 실리카, 티타니아, 메탈옥사이드, 노블메탈, 인회석 및 석회석으로 이루어진 군에서 선택되는 마이크로캡슐의 제조방법.
  8. 제1항에 있어서,
    상기 제1단계는 무기나노입자 콜로이달 수용액을 사용하여 아크릴계 모노머를 첨가하고, 분산 처리하여, 무기나노입자 표면에 아크릴계 모노머를 흡착하는 단계를 포함하는 마이크로캡슐의 제조방법.
  9. 제1항에 있어서,
    상기 제2단계는 표면에 아크릴계 모노머가 흡착된 무기나노입자에 향오일을 첨가하고, 수중유형 피커링 에멀젼(O/W pickering emulsion)을 형성하는 단계를 포함하는,
    마이크로캡슐의 제조방법.
  10. 제1항에 있어서,
    상기 제2단계의 향오일에 유용성 개시제를 용해하여 사용하는 마이크로캡슐의 제조방법.
  11. 제1항에 있어서,
    상기 제3단계의 중합은 30 내지 90℃에서 6 내지 20시간 동안 수중유형 피커링 에멀젼의 라디칼 중합을 진행하여 마이크로캡슐을 형성하는 단계를 포함하는,
    마이크로캡슐의 제조방법.
  12. 제1항에 있어서,
    상기 제4단계에서, 아민계 모노머와 개시제는 제3단계의 중합 중 또는 중합 완료 후에 투입되는
    마이크로캡슐의 제조방법.
  13. 제1항에 있어서,
    상기 제4단계의 중합은 30 내지 90℃에서 6 내지 20시간 동안 중합을 진행하여, 제3단계에서 형성된 마이크로캡슐의 표면을 개질하는 단계를 포함하는,
    마이크로캡슐의 제조방법.
  14. 제1항에 있어서,
    표면 개질된 향 캡슐의 총 중량을 기준으로, 무기나노입자 0.5 내지 40 중량%, 아크릴계 모노머 1 내지 60 중량%%, 아민계 모노머 0.02 내지 15 중량% 및 향 10 내지 90 중량%를 포함하는 마이크로캡슐의 제조방법.
  15. 제1항에 있어서, 평균입경 0.1㎛ 내지 1000㎛의 향성분을 함유한 표면 개질된 무기나노입자-아크릴 수지 복합 캡슐을 포함하는 마이크로캡슐의 제조방법.
  16. 제1항 내지 제15항 중 어느 한 항의 방법으로 제조된 표면 개질된 마이크로캡슐.
  17. 무기 나노 입자-아크릴 수지 복합체, 및 향 성분을 포함하는 마이크로 캡슐; 및
    상기 마이크로 캡슐의 표면이 아민계 화합물로 개질되어 있으며, 표면 전하가 +5 내지 60mV의 제타 전위를 갖는 것을 특징으로 하는, 표면 개질된 마이크로캡슐.
PCT/KR2019/008067 2018-07-02 2019-07-02 마이크로캡슐의 제조방법 WO2020009438A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/051,391 US11986790B2 (en) 2018-07-02 2019-07-02 Method for preparing microcapsules
CN201980027247.3A CN112262208B (zh) 2018-07-02 2019-07-02 制备微胶囊的方法
EP19831160.7A EP3770239A4 (en) 2018-07-02 2019-07-02 MANUFACTURING METHOD FOR MICROCAPSULES
JP2020554453A JP7080988B2 (ja) 2018-07-02 2019-07-02 マイクロカプセルの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180076605 2018-07-02
KR10-2018-0076605 2018-07-02
KR10-2019-0079286 2019-07-02
KR1020190079286A KR102457231B1 (ko) 2018-07-02 2019-07-02 마이크로캡슐의 제조방법

Publications (1)

Publication Number Publication Date
WO2020009438A1 true WO2020009438A1 (ko) 2020-01-09

Family

ID=69060420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008067 WO2020009438A1 (ko) 2018-07-02 2019-07-02 마이크로캡슐의 제조방법

Country Status (1)

Country Link
WO (1) WO2020009438A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130036002A (ko) * 2010-02-18 2013-04-09 다우 코닝 코포레이션 표면-개질된 하이드로겔 및 하이드로겔 미세입자
KR20160019549A (ko) * 2013-06-14 2016-02-19 바스프 에스이 친수성 캡슐 코어가 있는 마이크로캡슐을 포함하는 마이크로캡슐 분산액의 제조 방법
US20160168507A1 (en) * 2013-07-29 2016-06-16 Takasago International Corporation Microcapsules
US20160168508A1 (en) * 2013-07-29 2016-06-16 Takasago International Corporation Microcapsules
US20160166480A1 (en) * 2009-09-18 2016-06-16 International Flavors & Fragrances Inc. Microcapsule compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160166480A1 (en) * 2009-09-18 2016-06-16 International Flavors & Fragrances Inc. Microcapsule compositions
KR20130036002A (ko) * 2010-02-18 2013-04-09 다우 코닝 코포레이션 표면-개질된 하이드로겔 및 하이드로겔 미세입자
KR20160019549A (ko) * 2013-06-14 2016-02-19 바스프 에스이 친수성 캡슐 코어가 있는 마이크로캡슐을 포함하는 마이크로캡슐 분산액의 제조 방법
US20160168507A1 (en) * 2013-07-29 2016-06-16 Takasago International Corporation Microcapsules
US20160168508A1 (en) * 2013-07-29 2016-06-16 Takasago International Corporation Microcapsules

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3770239A4 *

Similar Documents

Publication Publication Date Title
EP1465931B1 (en) Azetidinium modified polymers and fabric treatment composition
JP2004512431A (ja) 布類を処理するためのポリマーのナノ粒子又はナノラテックスをベースとする組成物
EP1753785B1 (en) Process for preparation of polysaccharide-grafted polymer particles
JP4593916B2 (ja) ポリマー粒子の製造方法
JP2006518790A5 (ko)
KR102457231B1 (ko) 마이크로캡슐의 제조방법
JPH08505166A (ja) ビニルピロリドン−およびビニルイミダゾール−コポリマー,その製造方法および洗剤中でのその使用
DE19645024A1 (de) Bleichhilfsmittel enthaltende Mikrokapseln
WO2020009438A1 (ko) 마이크로캡슐의 제조방법
CN114164655A (zh) 一种人棉面料的抗菌整理工艺
CA1118164A (en) Textile materials having durable soil release and moisture transport characteristics and process for producing same
WO2017090998A1 (ko) 양친매성 이방성 분체를 포함하는 이중 연속상 유화 조성물
CN116490536A (zh) 生物可降解的递送颗粒
WO2021091046A1 (ko) 자연 분해성 마이크로캡슐 및 이의 제조방법
JPH01156577A (ja) 繊維製品処理製剤
EP1490544A1 (en) Fabric care composition
WO2019054797A1 (ko) 중합성 조성물, 고분자 캡슐 및 이를 포함하는 섬유 유연제 조성물
WO2017204372A1 (ko) 자기회합형 야누스 마이크로 입자 및 이의 제조방법
EP1490466B1 (en) Fabric care composition
JP2004010732A (ja) シリコーンアクリル樹脂組成物及びその製造方法
CZ20021815A3 (cs) Textilní materiál
JP5154038B2 (ja) 洗浄剤組成物
Rahman et al. Synthesis of Acrylate Binder from Soft and Hard Monomers through Emulsion Polymerization to Introduce Mechanical Properties to the Applied Substrate
KR100471465B1 (ko) 피혁용 염료의 제조 방법
CN107904955B (zh) 一种复合抗皱抗起毛处理剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554453

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019831160

Country of ref document: EP

Effective date: 20201022

NENP Non-entry into the national phase

Ref country code: DE