WO2020007048A1 - 具备流体引导流路的燃料电池及其制造方法 - Google Patents

具备流体引导流路的燃料电池及其制造方法 Download PDF

Info

Publication number
WO2020007048A1
WO2020007048A1 PCT/CN2019/074682 CN2019074682W WO2020007048A1 WO 2020007048 A1 WO2020007048 A1 WO 2020007048A1 CN 2019074682 W CN2019074682 W CN 2019074682W WO 2020007048 A1 WO2020007048 A1 WO 2020007048A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
separator
gas diffusion
gas
fuel cell
Prior art date
Application number
PCT/CN2019/074682
Other languages
English (en)
French (fr)
Inventor
程建华
Original Assignee
上海旭济动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海旭济动力科技有限公司 filed Critical 上海旭济动力科技有限公司
Priority to KR1020217003357A priority Critical patent/KR20210028236A/ko
Priority to CN201980044662.XA priority patent/CN112400246A/zh
Priority to EP19830824.9A priority patent/EP3819970A1/en
Priority to JP2021522121A priority patent/JP7379481B2/ja
Publication of WO2020007048A1 publication Critical patent/WO2020007048A1/zh
Priority to US17/140,923 priority patent/US20210210771A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell configured by stacking a fuel cell unit into a plurality of layers.
  • the fuel cell unit uses an anode-side separator and a cathode-side separator for an electrolyte membrane, an anode-side catalyst layer, a cathode-side catalyst layer, and an anode.
  • the side gas diffusion layer and the cathode side gas diffusion layer are sandwiched.
  • the present invention particularly relates to a groove-shaped gas guide flow path provided at a middle position between each separator and each gas diffusion layer, and between two adjacent separators.
  • a polymer electrolyte fuel cell (Polymer Electrolyte Fuel Cell (PEFC)) includes the following electrolyte membrane and electrode assembly (CCM, MEA).
  • the electrolyte membrane and electrode assembly is formed of a polymer ion exchange membrane.
  • An anode electrode is disposed on one surface side of the electrolyte membrane, and a cathode electrode is disposed on the other surface side.
  • the MEA constitutes a power generation unit by being sandwiched by a partition.
  • a fuel cell is usually stacked in a predetermined number of power generating units and then assembled into a fuel cell electric vehicle, for example, as a fuel cell stack for a vehicle. In a fuel cell, tens to hundreds of power generating units are usually stacked, and then used, for example, as a fuel cell stack for a vehicle.
  • a fuel gas flow path is provided in the plane of one separator toward the anode electrode, and a flow path of an oxidizing gas is provided in the face of the other separator toward the cathode electrode.
  • a cooling medium flow path is formed between the anode separator and the cathode separator.
  • Patent Document 1 Japanese Patent Laid-Open No. 2016-58288
  • Patent Document 2 Japanese Patent Laid-Open No. 2006-120621
  • Patent Document 3 Japanese Patent Laid-Open No. 2006-339089
  • a separator is formed by press-forming a metal plate having groove-shaped flow paths having different rib heights.
  • the separator is deflected with processing, and the separator is cracked, deformed and hardened due to microfabrication. Deformation of the plate.
  • warpage occurs with a metal mold.
  • it is difficult to reform the metal mold from a technical perspective or a cost perspective.
  • the gas diffusion layer and the fluid guide flow path are integrally formed by vapor phase growth. Since the gas diffusion layer obtained by the gas phase generation in this way is integrated with the fluid guide flow path, when the flow path design needs to be performed under different specifications, it is disadvantageous from a cost standpoint to perform design changes. In addition, such vapor phase growth takes time in the process and is therefore not suitable for mass production.
  • Patent Document 3 a fluid-guided flow path is formed in a porous gas diffusion layer without a separator.
  • This gas diffusion layer is also formed by using a mold to integrate the gas diffusion layer and the fluid-guided flow path.
  • this technique cannot reduce costs by using the constituent components of the finished product.
  • An object of the present invention is to provide a fuel cell that can be manufactured at low cost and high efficiency.
  • a cooling medium flow path made of a dense highly conductive carbon-based coating material is formed between adjacent separators, and a highly conductive carbon-based coating is formed between the separator and the gas diffusion layer.
  • a dense and / or porous structure-made gas-guided flow path made of cloth material is used.
  • the object of the present invention is achieved by providing a fuel cell unit provided with a fluid-guiding flow path composed of a cooling medium flow path and a gas-guiding flow path, thereby suppressing the complexity of the manufacturing process.
  • Fluid guide flow path structure
  • the main purpose disclosed in the present invention is to optimize the design of the fluid guide flow path freely, so that the fuel cell is composed of a catalyst coating film (electrolyte film with catalyst layer), a pair of gas diffusion layers, and a pair of separators.
  • the fuel cell formed by the unit realizes the realization of high output density and high power density.
  • the present invention provides a fuel cell configured as described below.
  • An aspect of the present invention provides a fuel cell including a plurality of fuel cell units, each fuel cell unit including an opposing first separator, a second separator, and a fuel cell stacked between the first and second separators.
  • a membrane electrode assembly comprising a catalyst coating film and a first gas diffusion layer and a second gas diffusion layer respectively provided on a first side and a second side of the catalyst coating film, the fuel
  • the battery cell further includes a gas guiding flow path between the first separator and the first gas diffusion layer and / or between the second separator and the second gas diffusion layer, wherein the gas The guide flow path is attached to a surface of a corresponding separator facing a corresponding gas diffusion layer and / or a surface of a corresponding gas diffusion layer facing a corresponding separator.
  • the fuel cell further includes a first A cooling medium flow path between the partition and the partition, and the cooling medium flow path is attached to a surface of the first partition facing the corresponding second partition and / or the second partition faces the corresponding first
  • the surface of the separator is made of the gas Guide passage and the cooling medium flow passage of the fuel cell fluid guide passage is formed.
  • the cooling medium flow path is attached to an outer surface of the first partition and / or the second partition, and an inner side of the first partition and / or the second partition
  • the gas guide flow path is attached on the surface.
  • the cooling medium flow path is attached to an outer surface of the first partition and / or the second partition, and an inner side of the first partition and / or the second partition
  • the gas guide flow path is not attached on the surface.
  • the cooling medium flow path is attached to an outer surface of the first partition and / or the second partition, and an inner side of the first partition and / or the second partition
  • the gas guide flow path is attached to the surface of the surface facing the corresponding gas diffusion layer.
  • the fluid guiding flow path is formed on the surface of the corresponding separator and / or the surface of the gas diffusion layer by coating, printing, dispensing, spraying or transferring.
  • the surface of the partition plate and / or the gas diffusion layer for attaching the fluid guide flow path is smooth.
  • the fluid guide flow path is formed separately from the separator and the gas diffusion layer.
  • a material of the fluid guiding flow path is different from the separator and / or the gas diffusion layer.
  • a material of the fluid guiding flow path is a highly conductive material.
  • the gas guide flow path includes a rib portion and a channel portion for controlling a reaction fluid flow and fluid permeability.
  • the ribs of the gas guide flow path have a dense structure that prevents the reaction fluid from permeating between adjacent channels and penetrates to the corresponding gas diffusion layer via the ribs, or has a reaction structure that allows the reaction fluid to pass through the phase.
  • the gas guiding flow path further includes a bottom portion carrying the rib, the bottom portion having a dense structure preventing a reaction fluid from penetrating to a corresponding gas diffusion layer via the base portion, or having a reaction structure allowing the reaction fluid to pass through The base penetrates into the porous structure of the corresponding gas diffusion layer.
  • the rib portion of the gas guide flow path is formed on a surface of one of the opposed partition plate and the gas diffusion layer, and a part of the upper surface of the rib portion is opposite to the partition plate and the gas.
  • the surface of the other of the diffusion layers is in contact with each other, and the upper surface of the rib portion of the other portion is spaced from the surface of the opposite one of the separator and the other of the gas diffusion layer.
  • the rib portion of the gas guide flow path is formed on a surface of one of the opposed partition plate and the gas diffusion layer, and the upper surface of the rib portion is opposite to the partition plate of the opposite surface.
  • the cooling medium flow path is formed in contact with the surface of the other of the gas diffusion layer on the surface of one of the first partition and the second partition, and the upper surface of the rib is opposite to the surface of the opposite surface. The surface of the other of the partitions is in contact.
  • the ribs of the gas guide flow path are formed on the surfaces of the opposite partition and the gas diffusion layer, and the tops of the corresponding ribs on the opposite partition and the gas diffusion layer are in contact with each other.
  • the cooling medium flow path is formed on the surfaces of the opposing first and second partitions, and the top surfaces of the corresponding ribs on the opposing first and second partitions abut.
  • the ribs of the gas guide flow path are formed on the surfaces of the opposing separator and the gas diffusion layer, and the ribs on the separator are in contact with the surface of the gas diffusion layer, and the ribs on the gas diffusion layer In contact with the surface of the partition, the cooling medium flow path is formed on the surfaces of the opposing first and second partitions, and the ribs on the first partition are in contact with the surface of the second partition, the second The rib on the partition plate is in contact with the surface of the first partition plate.
  • a size at the abutting interface is smaller than a size at a contact surface between the rib and the separator or the gas diffusion layer.
  • a dimension at the abutting interface is larger than a dimension at a contact surface between the rib and the separator or the gas diffusion layer.
  • the material of the ribs enters an interface of the gas diffusion layer.
  • the ribs and the base of the gas guide flow path are formed in a manner of being fully attached.
  • a part or all of the top surface of the rib portion of the fluid guide flow path and the bottom surface of the channel portion are subjected to hydrophilic treatment.
  • the present invention also provides a method for manufacturing a fuel cell unit, comprising the steps of: providing a membrane electrode assembly including a catalyst coating film and a first side and a first side of the catalyst coating film, respectively.
  • a first gas diffusion layer and a second gas diffusion layer on both sides providing a first partition and a second partition; and adhering to a cooling medium flow on a surface outside the first partition and / or the second partition
  • the first gas diffusion layer and / or the second gas diffusion A gas guiding flow path rib is attached to the outer surface of the layer, and / or a gas guiding flow path rib is attached to the inner surface of the first partition and / or the second partition, and the first partition and
  • the outer surface of the first gas diffusion layer is pressed together, and a gas guide flow path formed by pressing the second separator and the outer surface of the second gas
  • the cooling medium flow path and the gas guide flow path are formed on the surface of the corresponding separator and / or the surface of the gas diffusion layer by coating, printing, spraying, or transferring.
  • a surface of a partition plate and / or a gas diffusion layer for adhering the cooling medium flow path and the gas guide flow path is smooth.
  • materials of the cooling medium flow path and the gas guide flow path are different from those of the partition plate and / or the gas diffusion layer.
  • a material of the cooling medium flow path and the gas guide flow path is a highly conductive material.
  • the cooling medium flow path and the gas guide flow path include a rib portion and a channel portion for controlling a reaction fluid flow and fluid penetration.
  • the gas guide flow path further includes a bottom portion carrying the rib portion.
  • the ribs and the bottom of the gas guide flow path are formed in a comprehensive coating manner.
  • the method further includes performing a hydrophilic treatment on part or all of a top surface of the gas guide flow path rib portion and a bottom surface of the channel portion.
  • FIG. 1 is an external view showing a configuration of a fuel cell stack according to an embodiment of the present invention.
  • FIG. 2 is a perspective view partially showing an example of a three-dimensional structure of a fluid guide flow path in an embodiment of the present invention.
  • FIGS. 3D and 3E show a fuel cell unit according to Embodiment 4
  • FIG. 3F shows a fuel cell unit according to Embodiment 5.
  • FIG. 4A-4C are perspective views of the shapes of three fluid guide channels (cooling medium channels or gas guide channels) provided on the surfaces of the substrates 4, 5, 6, and 7 in an embodiment of the present invention
  • FIG. 4A 4B shows the shape of the fluid guide flow path with a rectangular cross section
  • FIG. 4B shows the shape of the fluid guide flow path with a trapezoidal cross section
  • FIG. 4C shows the cross section of the rib 11 with a trapezoidal arc Fluid guide flow path shape.
  • FIGS. 5A to 5C show the gas guide channel ribs 11 obtained by adhering to the surfaces of the separators 6 and 7 facing the gas diffusion layers 4 and 5 in accordance with the first embodiment of the present invention to communicate with the gas diffusion layers 4 and 5.
  • Gas guide flow path structure formed by butting in contact with each other, and cooling medium flow path ribs 11 attached to the surfaces of one side of the anode-side separator 6 and / or the cathode-side separator 7 so as to be adjacent to the adjacent cathode side
  • FIG. 5A shows a cross-sectional view of a rectangular fluid guide flow path with a cross section of the rib 11
  • FIG. 5B shows the rib 11
  • FIG. 5C shows a cross-sectional view of a trapezoidal and rectangular fluid-guided flow path
  • FIG. 5C shows a cross-sectional view of the rib 11 as a trapezoidal and rectangular fluid-guided flow path with an arc
  • FIG. 5D shows a cooling medium flow of the present invention.
  • FIG. 6A to 6D show the fluid guide channel ribs 11 attached to the surfaces of the gas diffusion layers 4 and 5 facing the partition plates 6 and 7 in contact with the partition plates 6 and 7 in Embodiment 2 of the present invention.
  • the gas guide flow path structure formed by butt joints, and the cooling medium flow path ribs 11 attached to the surface of one side of the anode-side separator 6 and / or the cathode-side separator 7 respectively, are adjacent to the adjacent cathode-side separator 7 and The structure of the cooling medium flow path formed by pasting the anode-side separator 6 in contact with each other.
  • FIG. 6A shows a cross-sectional view of a rectangular fluid guide flow path with a cross section of the rib 11, and FIG.
  • FIG. 6 (B shows a cross section of the rib 11 A cross-sectional view of a trapezoidal and rectangular fluid-guiding flow path.
  • FIG. 6C shows a cross-section of the rib 11 as an inverted trapezoidal and rectangular fluid-guiding flow path with an arc.
  • FIG. 6D shows a cross-section of the rib 11 as an inverted trapezoid. And rectangular cross-sectional view of a fluid-guided flow path.
  • FIGS. 7A-7C show a gas guide flow path on the surfaces of the separators 6 and 7 facing the gas diffusion layers 4 and 5 in Embodiment 3 of the present invention, and the gas diffusion layers 4 and 5 facing the separators 6 and 7 are shown in FIGS.
  • a gas guide flow path is attached to the surface of the surface, a gas guide flow path structure formed by abutting each other, and a cooling medium flow path rib 11 attached to the surface of one side of the anode-side separator 6 and / or the cathode-side separator 7 respectively.
  • FIG. 7A shows a cross-sectional view of a fluid guide flow path in which the cross section of the rib 11 is rectangular.
  • FIG. 7B illustrates a cross-sectional view of the rib 11 with a trapezoidal and rectangular cross section of the fluid-guiding flow path
  • FIG. 7C illustrates a cross-section of the rib 11 with a trapezoidal and rectangular fluid-guiding path with a circular arc.
  • FIG. 8A and 8B are enlarged views showing a state in which the gas guide channel ribs 11 formed between the separators 6 and 7 and the gas diffusion layers 4 and 5 are sandwiched in one embodiment of the present invention
  • FIG. 8A shows The stress distribution of the trapezoidal gas-guiding flow path rib 11 of the first embodiment when it comes into contact with the gas diffusion layers 4 and 5 is shown in FIG. 8B.
  • the trapezoidal gas-guiding flow path rib 11 of the second embodiment and the partition plates 6, 7 are shown in FIG. 8B. Stress distribution on the gas diffusion layers 4 and 5 sides during contact.
  • FIG. 9A and 9B show Modification Example 1 of the fluid guide flow path of the present invention
  • FIG. 9A shows an example in which numerous holes are provided for the gas guide flow path rib 11 and the cooling medium flow path rib 11 of Embodiment 3.
  • FIG. 9B shows an example in which numerous holes are provided in the gas guide channel rib portion 11 and the cooling medium channel rib portion 11 in the first and second embodiments.
  • 10A to 10D are diagrams for illustrating a sequence of a head pressure method, a head impact method, and a bite method of a fluid guide flow path in one embodiment of the present invention.
  • FIG. 11A-11C are diagrams for explaining the difference in channel width Cw due to the arrangement of the fluid guide flow path ribs 11 in one embodiment of the present invention
  • FIG. 11A is a partial view showing the fluid guide flow path of the first embodiment
  • FIG. 11B is a view partially showing a fluid guide flow path rib 11 of the second embodiment
  • FIG. 11C is a view partially showing a fluid guide flow path rib 11 of the third embodiment.
  • FIG. 12 is an example of the cross-sectional shape of the fluid-guiding flow-path rib 11 applied to one embodiment of the present invention.
  • the column A represents the cross-sectional shape of the fluid-guiding flow-path rib 11 that is bilaterally symmetrical, and the row B represents the left-right asymmetrical
  • the cross-sectional shape of the fluid-guiding flow-path rib 11 is a shape in which either the angle ⁇ or ⁇ is a right angle
  • the column C represents the cross-sectional shape of the left-right asymmetrical fluid-guiding flow path rib 11.
  • FIGS. 13A-13F are fluid guide channels formed by combining a plurality of cross-sectional shapes of the rib channel 11 shown in FIG. 12 based on Embodiment 3 of the present invention.
  • An example of the fluid guide flow path rib 11, FIG. 13B is an example of the left and right asymmetric fluid guide flow path rib 11 being attached without difference, and FIG. 13C is an example of the left and right symmetrical flow guide flow path ribs and left and right asymmetrical attachment.
  • An example of the fluid guide flow path rib 11 and FIG. 13D is a left-right symmetrical fluid guide flow path with different sizes attached to the first base material (gas diffusion layers 4, 5) and the second base material (baffles 6, 7), respectively.
  • FIG. 13E is an example in which the left-right symmetrical trapezoidal fluid guide flow path ribs 11 are superimposed on each other
  • FIG. 13F is a left-right symmetrical trapezoidal fluid guide flow path rib 11
  • one side of the second substrate (partitions 6, 7) is provided with a cover layer in advance.
  • FIG. 14 is an example of a fluid guide flow path structure formed by a bite system in Embodiment 3 of the present invention.
  • FIG. 15A is a fluid guide flow path structure having a volcanic rib cross-sectional shape formed by a head pressure method according to Embodiment 1; 15B is a fluid guide flow path structure having a cross-sectional shape of a tower-shaped rib portion which is formed by a head strike method according to the third embodiment.
  • 16A-16B illustrate two examples of changes in the structure of a fluid guide flow path formed based on the first embodiment.
  • FIG. 1 shows the appearance of a fuel cell.
  • both ends of the fuel cell stack structure 9 obtained by stacking a plurality of fuel cell units 8 are fastened by end plates 101 and 102 functioning as pressing plates.
  • the fuel cell is configured by stacking a plurality of fuel cell units 8, and attaching a current collecting plate for taking out a current generated by the fuel cell unit 8 at both ends of the stacked body, and performing a process with the fuel cell unit 8.
  • Insulating insulating plates, end plates 101, 102, and the like are fastened by connecting rods.
  • the fuel cell works as follows.
  • the fuel fluid is supplied to an anode (called a fuel electrode), and with the help of a catalyst, electrons are separated from the supplied fuel fluid and moved to an external circuit.
  • hydrogen changes into hydrogen ions (called protons).
  • oxygen is supplied to a cathode (referred to as an air electrode). Oxygen reacts with protons passing through the electrolyte membrane and electrons flowing in from an external circuit to generate water.
  • the fuel fluid is typically a gas, such as hydrogen.
  • the fuel cell of the present invention is a solid polymer fuel cell in which a solid polymer electrolyte is used as the electrolyte membrane 1, and an anode-side catalyst layer 2 (referred to as a first catalyst layer) and The cathode-side catalyst layer 3 (referred to as a second catalyst layer) constitutes a catalyst coating film (CCM).
  • An anode-side separator 6 (referred to as a first separator) is added to the anode-side catalyst layer 2 through an anode-side gas diffusion layer 4 (referred to as a first gas diffusion layer).
  • a fuel cell unit 8 is formed by adding a cathode-side separator 7 (referred to as a second separator) with a cathode-side gas diffusion layer 5 (referred to as a second gas diffusion layer), and a plurality of the fuel cells are stacked. Cell 8 to obtain a polymer electrolyte fuel cell.
  • a cathode-side separator 7 referred to as a second separator
  • a cathode-side gas diffusion layer 5 referred to as a second gas diffusion layer
  • the constituent members of the fuel cell unit 8 according to one embodiment of the present invention and elements related to them can be formed using a known substrate.
  • the constituent members of the fuel cell unit 8 and the elements associated with them can be manufactured using conventional techniques.
  • each constituent member will be briefly described.
  • the electrolyte membrane 1 as the electrification unit generally any one of a fluorine-based polymer electrolyte membrane and a hydrocarbon-based polymer electrolyte membrane can be preferably used.
  • the main functions required of the electrolyte membrane 1 include good proton conductivity, impermeability of reaction gas, electronic insulation, and high physical and chemical durability.
  • the electrolyte membrane used in the present invention is not particularly limited as long as it is formed of a material that is excellent in ion (proton) permeability and does not flow a current.
  • anode-side catalyst layer 2 and the cathode-side catalyst layer 3 disposed on both sides of the electrolyte membrane 1 a fuel cell reaction between the anode and the cathode occurs.
  • a reaction hydrogenation reaction
  • the cathode-side catalyst layer 3 promotes a reaction (oxygen reduction reaction) for generating water from protons, electrons, and oxygen.
  • the catalyst electrode used in the present invention is not particularly limited, and conventional materials conventionally used can be used.
  • the anode-side gas diffusion layer 4 is located between the CCM plate (not shown) and the anode-side separator 6, and the cathode-side gas diffusion layer 5 is located between the CCM plate and the cathode-side separator 7.
  • the CCM plate is a general term for a CCM support film that holds an electrolyte membrane 1, an anode-side catalyst layer 2, and a cathode-side catalyst layer 3.
  • the gas diffusion layers 4 and 5 are layers having a function of efficiently guiding the fuel gas and the oxidizing gas required for the chemical reaction along the vertical direction of the surface of the electrolyte membrane 1.
  • the anode-side gas diffusion layer 4 is provided with a fluid-guided flow path capable of diffusing fuel gas
  • the cathode-side gas diffusion layer 5 is provided with a fluid-guided flow path capable of diffusing oxidizing gas.
  • the gas diffusion layer of a finished product used in a conventional fuel cell There is no particular limitation as long as it has gas permeability and can collect generated electricity, and it is possible to use a gas diffusion layer of a finished product used in a conventional fuel cell.
  • the separator is a thin metal plate that divides the fuel cell 8 as a power generator, and an electrolyte membrane 1 required for power generation is stored between the pair of separators 6 and 7.
  • the anode catalyst layer 2 and the cathode catalyst layer 3 An anode-side gas diffusion layer 4 and a cathode-side gas diffusion layer 5.
  • the separator also functions to collect electricity for power generation.
  • the separators 6 and 7 are formed of a metal thin plate having gas-barrier property, chemical stability, and electronic conductivity.
  • a metal thin plate having gas-barrier property, chemical stability, and electronic conductivity.
  • various metal sheets, metal foils, and metal films such as aluminum, copper, and stainless steel can be used.
  • These metal thin plates, metal foils, and metal thin films are preferably formed of a conductive material having corrosion resistance and mechanical strength.
  • the metal thin plate, metal foil, and metal thin film are members that have been subjected to surface coating, coating, and surface physicochemical treatment to have higher corrosion resistance, mechanical strength, and electrical conductivity.
  • the fluid guide flow path includes a gas guide flow path and a cooling medium flow path.
  • gas guiding flow paths There are two types of gas guiding flow paths: a fuel gas induction flow path (anode) and an oxidizing gas induction flow path (cathode).
  • the flow path for supplying fluid to the fuel cell is constituted by groove-shaped convex portions and concave portions.
  • the convex portion is called a rib portion, and the gas diffusion layer and the separator are contacted via a membrane electrode assembly (MEA), and function as a current collecting and conducting portion.
  • MEA membrane electrode assembly
  • the recessed portion is called a channel portion, and is a passage for supplying a fluid (fuel gas, oxidizing gas, cooling medium) and a discharge passage for water and the like to the fuel cell from the outside.
  • the fluid guide flow path may form a fuel gas guide flow path on one main surface of the anode-side separator, and a cooling medium flow path on the other main surface (reverse surface).
  • An oxidation gas guide flow path may be formed on one main surface of the cathode-side separator, and a cooling medium flow path may be formed on the other main surface (reverse surface).
  • the fuel gas guide flow path on the anode side through which hydrogen flows and the oxidation gas guide flow path on the cathode side through which air flows are not specifically distinguished and described.
  • the fluid guide flow path of the present invention includes two types of a gas guide flow path and a cooling medium flow path.
  • the gas guide flow path has two types of gas guide flow paths: a fuel gas induction flow path (anode) and an oxidizing gas induction flow path (cathode).
  • the structure can be applied to both the anode side flow path and the cathode side flow path.
  • the "reaction gas” mentioned in this specification includes a fuel gas, an oxidizing gas, and water vapor.
  • the “gas guide flow path” includes a gas guide flow path on the anode side and a gas guide flow path on the cathode side.
  • the “base material” refers to a substrate on which the fluid guide flow path ribs 11 are formed.
  • the “first substrate” refers to the gas diffusion layers 4 and 5, and the “second substrate” refers to the separators 6 and 7.
  • a "head pressing method” is adopted in the first and second embodiments
  • biting method is adopted in the third embodiment.
  • Embodiments 4 and 5 and other modification examples 1 can be applied to all three modes. These methods are suitable for forming a gas guide flow path and a cooling medium flow path.
  • the separators 6 and 7 and / or the gas diffusion layers 4 and 5 are used as a base material, and the gas guide flow path ribs 11 and the cooling medium flow path ribs attached to the surfaces thereof are shown by thin horizontal lines. 11 interface.
  • the gas guide flow path rib 11 and the cooling medium flow path rib 11 are indicated by hatching.
  • the gas flow path ribs 11 and the cooling medium flow path ribs 11 are indicated by hatching.
  • the sealing material 20 is indicated by a single black color.
  • FIGS. 2 to 5D, 10A to 10D, 12, 13A to 13F, 16A, and 16B The present invention is not limited to the first embodiment.
  • FIG. 2 shows the size marks constituting the fluid guide flow path.
  • the following symbols are assigned: “h” is the rib height, “Rw1” is the rib width on the substrate side, “Rw2” is the rib width, “Cw” is the channel width, and “ ⁇ ” And “ ⁇ ” is the angle formed by the rib interface (the interface refers to the boundary surface between the rib and the substrate) and the side of the rib, and “S” is the flow path pitch.
  • the main flow of the reaction gas passes through a channel portion that extends along the central axis of the recessed portion (indicated by a one-dot chain line in FIG. 2).
  • the manufacturing method of the fluid guide flow path in the present invention is not particularly limited, and for example, a substrate (a separator and / or a gas diffusion layer) having a desired thickness is prepared. These substrates themselves are not provided with a fluid guide flow path pattern. Therefore, the surface of these substrates has a smooth shape, and a flat metal sheet or other conductive sheet with less deformation can be selected. On the surface of such a thin plate, as shown in FIG. 5D, a very thin carbon cover film is formed by a vapor deposition coating method or other coating methods.
  • a two-dimensional method in which a dense and / or porous highly conductive carbon-based coating material is adhered to the surface of a substrate is preferably used.
  • This two-dimensional method is an all-in-one attachment method or multiple partial attachment method for designing a flow path, and includes printing, injection, coating, dispensing, and transfering. .
  • the printing method may be screen printing.
  • a step of performing a hydrophilic treatment on the entire channel bottom surface and the rib side surface of the fluid guide flow path is performed.
  • a fluorine-based polymer material is preferably used because it is excellent in hydrophilicity, corrosion resistance during electrode reaction, and the like, but it is not limited thereto.
  • the gas guide flow path rib 11 is trapezoidal, and the cooling medium flow path rib 11 is represented by a rectangle, but the shape of the rib is not limited to this.
  • FIGS. 10A to 10D are diagrams illustrating a basic sequence of formation of a fluid guide flow path of Embodiment 1.
  • FIG. FIG. 3A shows not only the explanatory diagram based on FIG. 10A, but also guides the upper surface of the flow path rib 11 to the upper surface of the flow path rib 11 by adhering the gas attached to the surfaces of the partition plates 6 and 7 facing the gas diffusion layers 4 and 5 to the gas diffusion layer 4.
  • 5D is a schematic view of the gas guide flow path according to the first embodiment of the present invention formed by butting (clamping) in a contact manner; at the same time, according to the explanatory diagram of FIG. 10D, the surfaces of the separators 6, 7 opposite to each other are respectively attached and cooled.
  • a schematic view of the cooling medium flow path of the third embodiment in which the medium flow paths are formed by alternately sandwiching the ribs with each other.
  • the gas guide flow path according to the first embodiment is attached to the surfaces of the separators 6 and 7 and is not attached to the surfaces of the gas diffusion layers 4 and 5, and the cooling medium flow path is attached to the surfaces of the separators 6 and 7. It is formed by abutting (clamping) with the adjacent partition plates 7, 6 in contact with each other.
  • the method of forming the fluid guide flow path in FIG. 10A is also referred to as a “head pressure method” because the heads of the so-called ribs are pressed against the facing surface material (the gas diffusion layers 4 and 5 in this example).
  • the fluid guide flow path formation method of FIG. 10D is also referred to as a "biting method" because the heads of the ribs are staggered with each other.
  • the cooling medium flow path is obtained by adhering the ribs 11 to the other surface of the anode separator 6 and / or the cathode-side separator 7 and then bonding the edges of the adjacent separators so that The ribs 11 are formed in contact (clamped) with the surfaces of the adjacent cathode-side separator 7 or anode separator 6.
  • the cooling medium flow path shown in FIG. 3A uses the occlusion method, but any method (head strike method, head pressure method, occlusion method) may be used.
  • FIG. 4A is a rectangular fluid guide flow path structure in cross section of the rib portion 11.
  • FIG. 4B is a fluid guide flow path structure in which the cross section of the rib 11 is trapezoidal.
  • FIG. 4C is a fluid guide flow path structure in which the cross section of the rib 11 is a trapezoid with an arc.
  • the shapes of the three fluid guide flow path ribs described in this specification are typical examples, and the present invention is not limited to Embodiment 1, and various modifications and applications can be made without departing from the gist of the present invention.
  • FIGS. 5A to 5D are cross-sectional views of a fluid guide flow path structure according to the first embodiment to which a typical example of the fluid guide flow path ribs 11 in FIGS. 4A, B, and C is applied.
  • Each of the cross-sectional views of FIGS. 5A-5D is a cross-sectional view obtained by perpendicularly crossing the direction in which the rib and the channel extend.
  • the “rib cross-sectional shape” or “rib shape” described in this specification is viewed from this cross-section.
  • the direction of the cross-sectional shape of the rib is such that the side that is in contact with the substrate is set to the lower side (indicated by a dotted line in the figure).
  • the cross section of the rib portion 11 is rectangular.
  • the cross section of the rib 11 is trapezoidal and rectangular.
  • the cross section of the rib 11 is trapezoidal and rectangular with an arc.
  • 5D is a cross-sectional view of a fluid-guided flow path composed of a cooling medium flow path and a gas-guided flow path.
  • the cross-sectional shape of the fluid guide flow path rib 11 of the first embodiment is not limited to the shape shown in FIGS. 5A, B, and C, as a matter of course.
  • the shape of the channel is designed in advance.
  • the surface of the material (baffle, gas diffusion layer) is formed by mounting a fluid guide flow path. Therefore, the design of the fluid guide flow path is studied based on the cross-sectional shape of the ribs. Therefore, in the present specification, the structure of the fluid guide flow path will be described by examining the cross-sectional shape of the rib portion while considering the shape of the channel.
  • Fluid-guided flow path structure since the angles ⁇ and ⁇ formed by the rib interface and the side surface of the rib are both 90 degrees, the cross-sectional shape of the rib is formed to be bilaterally symmetrical. Among them, the gas guide flow path can be understood by observing the upper right figure of FIG. 5 (A).
  • FIG. 5B shows a cross-sectional shape formed by increasing the size of the rib width Rw1 on the base material (in this example, the separator) side and reducing the size of the rib width Rw2 (Rw1> Rw2).
  • the example shown in FIG. 5C also has a dimension value (Rw1> Rw2) by increasing the rib width Rw1 on the base material (in this case, the spacer) side and reducing the rib width Rw2 (Rw1> Rw2).
  • the side is provided with a circular arc
  • the cross-sectional shape is a fluid guide flow path structure of a trapezoidal rib 11 with a circular arc.
  • the cross-sectional shapes of the ribs illustrated in FIGS. 5B and 5C are bilaterally symmetrical, and the angles ⁇ and ⁇ formed by the rib interface and the side surfaces of the ribs illustrated in FIGS. 5B and 5C are 90 degrees or less.
  • the rib portion 11 of the cooling medium flow path is a rib portion 11 having a rectangular cross-sectional shape.
  • the following features can be cited: by appropriately combining the rib width Rw1 on the substrate side and the rib top width Rw2, the channel width Cw, the rib height h, and the angle ⁇ It is possible to arbitrarily form the fluid guide channel rib portion 11 with dimensions such as ⁇ and the channel distance S. That is, the shape of the fluid guide flow path rib 11 in the present invention is not limited to the structure described in this specification, and various combinations of the cross-sectional shape of the fluid guide flow path rib portion in consideration of the characteristics peculiar to the material of the rib, and The most suitable structure that matches the purpose of the present invention.
  • each inverted rib shape inverted rib shapes
  • a left-right symmetric rectangle, a left-right asymmetric rectangle and its inverted type there are a left-right symmetric trapezoid and its inverted type, a left-right asymmetric trapezoid and its inverted type, and a left-right symmetrical circle and its Inverted type
  • left-right asymmetric non-circular (slanted circle) and its inverse type left-right symmetric rectangular with arc and its inverse type
  • left-right asymmetric rectangular with arc and its inverse Type left-right symmetrical trapezoid with circular arc and its reverse type
  • left-right asymmetric trapezoid with circular arc and its reverse type left-right asymmetric trapezoid with circular arc and its reverse type.
  • the dimension values of the channel width Cw, the rib height h, and the flow path pitch S can be set independently because they are elements that do not affect the symmetry of the cross-sectional shape of the rib. Therefore, in particular, they may not be constant and constant values, and may be set to irregular values, respectively.
  • the channel width Cw, the channel pitch S, and the like to have deviation values, it is possible to form channels without equal intervals (for example, two channel widths Cw are prepared, and an attempt is made to alternately set them separately. Fixed etc.).
  • various combinations of cross-sectional shapes of the ribs that are conceivable within the possible range can be found in the fluid guide flow path according to the first embodiment. Fluid-guided flow path structure.
  • the present invention is not limited to this.
  • the cross-sectional shape of the left and right asymmetric ribs shown in columns B and C of FIG. 12 may be applied.
  • a reverse type in which the cross-sectional shape of the rib portion which is symmetrical to the left and right and left to right is asymmetric can also be applied.
  • a rounded shape in which corners of the cross-sectional shapes of the ribs are rounded can be applied, and a combination of these can also be applied.
  • FIG. 8A is a diagram obtained by enlarging a part of FIG. 5B.
  • the gas diffusion layers 4 and 5 are brought into contact with the gas guide flow path ribs 11 attached to the partition plates 6 and 7 (head pressure method)
  • the corners of the ribs shown in the upper right figure shown in FIG. 8A are further enlarged as shown in FIG. 8A.
  • stress is concentrated on the corners of the upper surface of the ribs.
  • the stress can be dispersed by increasing the radius of curvature of the angle at which the corners of the ribs contact the gas diffusion layers 4, 5.
  • each arrow drawn in the enlarged cross-sectional view of FIG. 8A indicates the direction of the lateral flow reflecting the stress.
  • the width Rw2 of the ribs in contact with the gas diffusion layers 4, 5 is smaller than the width Rw1 of the ribs on the partition side. Crossflow becomes easier, and the flow of the reaction gas becomes better.
  • the fluid-guided flow path is attached to the partition plates 6 and 7 with the relationship of the ribs Rw1> Rw2. It is considered that the cross-flow of the reactive gas that has penetrated into the gas diffusion layers 4 and 5 is easily formed. That is, since the cross-sectional shape of the rib portion where the reactive gas easily diffuses, a fluid-guided flow path structure with good gas permeability can be realized.
  • the example shown in FIG. 5C also shows that the gas guide flow path is attached to the partition plates 6 and 7 with the relationship of the ribs Rw1> Rw2, and has good permeability to the gas diffusion layers 4 and 5.
  • the pressure and flow rate of the reaction gas can be adjusted by changing the width of the ribs. Therefore, not only by adjusting the dimensional values and angles ⁇ , ⁇ of the rib widths Rw1, Rw2, but also by changing the width of the waist portion of the ribs by adding arcs on both sides of the ribs, to improve gas permeability and adjust the reaction gas pressure And traffic.
  • the ribs 11 constituting the fluid guide flow paths adhered to the partition plates 6 and 7 may be adhered using the same dense highly conductive carbon-based coating material, or different materials may be used.
  • the fluid guide flow path, the partition plates 6, 7 attached to the fluid guide flow path, and the gas diffusion layers 4, 5 not attached to the fluid guide flow path are independent of each other. For integration.
  • the pattern of the fluid guide flow path is not particularly limited, and may be formed in the same manner as the pattern of the fluid guide flow path formed in the conventional separator.
  • a straight type, a snake type, a comb type, etc. are mentioned.
  • FIG. 16A and 16B show an example of a change in the structure of a fluid guide flow path formed based on the first embodiment.
  • the example shown in FIG. 16A is a cross-sectional view in which two shapes including a rectangular shape and a semi-circular shape which are symmetrical to the left and right are alternately formed including a rib portion attached to a separator serving as a second base material.
  • the example shown in FIG. 16B is a cross-sectional view in which two shapes including a trapezoidal shape and a semicircular shape which are left-right symmetrical in cross section are formed alternately including the ribs attached to the separator as the second base material.
  • the characteristics of the ribs are not limited to one type.
  • a part of the upper surface of the ribs 11 (rectangular or trapezoidal) on the partition plates 6, 7 is in contact with the gas diffusion layer 4, 5 or the partition plates 6, 7 and another part of the rib portions 11 (half The upper surface of the circle is spaced from the gas diffusion layers 4, 5 or the spacers 6, 7. It can be understood that the structure in which the ribs 11 are provided on the gas diffusion layers 4 and 5 is similar.
  • the configuration of the fluid guide flow path according to the first embodiment of the present invention is merely an example, and is not limited to the content described in this specification.
  • FIGS. 2 to 4C, 6A-6D, and 10A-10D a fuel cell having a fluid guide flow path according to a second embodiment of the present invention will be described using FIGS. 2 to 4C, 6A-6D, and 10A-10D.
  • the present invention is not limited to the second embodiment.
  • a fluid guide channel is formed only on the surfaces of the separators 6 and 7 as the second base material.
  • a gas guide flow path is not attached to the surfaces of the separators 6, 7 and the gas The gas guiding flow paths are attached to the surfaces of the diffusion layers 4 and 5 to implement this content.
  • FIGS. 5A-5D The main difference is that other structures, methods, and principles are basically the same as those of the first embodiment shown in FIGS. 5A-5D. It should be noted that the same reference numerals are given to the same portions as those in FIG. 5 described in the first embodiment of the present invention, and a part of the description is omitted.
  • FIGS. 10A to 10D are diagrams illustrating a basic sequence of formation of a fluid guide flow path of Embodiment 2.
  • FIG. 3B shows not only the explanatory diagram according to FIG. 10B, but also guides the upper surface of the flow path rib 11 to the upper surface of the flow path rib 11 by adhering the gas adhered to the surfaces of the gas diffusion layers 4 and 5 facing the separators 6 and 7 to communicate with the separators 6 and 7.
  • 7 is a schematic view of a gas guiding flow path according to the second embodiment of the present invention formed by butting (clamping) in a contact manner; at the same time, according to the explanatory diagram of FIG. 10D, cooling media are respectively attached to the surfaces of the partition plates 6, 7 facing each other.
  • the flow path is a schematic view of the cooling medium flow path of the third embodiment, which is formed by alternately sandwiching the ribs with each other.
  • the gas guide flow path according to the second embodiment is attached to the surfaces of the gas diffusion layers 4 and 5 and is not attached to the surfaces of the partition plates 6 and 7.
  • the cooling medium flow path is attached to the surfaces of the partition plates 6 and 7. It is formed by abutting (clamping) with the adjacent partitions 7, 6 in contact with each other.
  • the fluid guide flow path formation method of FIG. 10B is because the head of the so-called rib is directed to the facing surface material (in this example, The partition plates 6 and 7 are pressed, so this is also called a “head pressure method.”
  • the fluid guide flow path formation method of FIG. 10D is also called a “biting method because the heads of the ribs are staggered with each other. ".
  • the cooling medium flow path is obtained by adhering the ribs 11 to the other surface of the anode separator 6 and / or the cathode-side separator 7 and then bonding the edges of adjacent separators so that The ribs 11 are formed in contact (clamped) with the surfaces of the adjacent cathode-side separator 7 or anode separator 6.
  • the cooling medium flow path shown in FIG. 3A uses the occlusion method, but any method (head strike method, head pressure method, occlusion method) may be used.
  • FIGS. 6A to 6D are cross-sectional views of the fluid guide flow path structure of the second embodiment to which a typical example of the fluid guide flow path ribs 11 in Figs. 4A, B, and C is applied.
  • Each of the cross-sectional views of FIGS. 6A-6D is a cross-sectional view obtained by perpendicularly crossing the direction in which the rib and the channel extend.
  • the “rib cross-sectional shape” or “rib shape” described in this specification is viewed from this cross-section.
  • the direction of the cross-sectional shape of the rib is such that the side that is in contact with the substrate is set to the lower side (indicated by a dotted line in the figure).
  • the cross section of the rib portion 11 is rectangular.
  • the cross section of the rib 11 is rectangular and trapezoidal.
  • the cross section of the rib 11 is rectangular and trapezoidal with a circular arc.
  • the cross-sectional shape of the fluid-guiding flow-path rib 11 of the second embodiment is not limited to the shapes shown in FIGS. 6A, B, and C.
  • the ribs 11 of the cooling medium flow path and the ribs 11 of the gas guide flow path shown in the example of FIG. 6A are both rectangular.
  • the angles ⁇ and ⁇ formed by the rib interface and the side of the rib are both 90 degrees, and the cross-sectional shape of the rib is formed to be bilaterally symmetrical. Observing the diagram located on the upper right of FIG.
  • the ribs 11 of the cooling medium flow path shown in the example of FIG. 6B are rectangular, and the ribs 11 of the gas guide flow path are trapezoidal.
  • the gas guide flow path has a gas guide flow path having a trapezoidal cross section 11 formed by increasing the rib width Rw1 on the base material (gas diffusion layer) side and reducing the rib width Rw2 (Rw1> Rw2). structure.
  • the ribs 11 of the cooling medium flow path shown in the example of FIG. 6C are rectangular, and the ribs 11 of the gas guide flow path are circular trapezoidal.
  • the gas guide flow path is also formed by increasing the rib width Rw1 on the base material (gas diffusion layer) side, reducing the rib width Rw2 (Rw1> Rw2), and forming arcs on both sides of the rib.
  • the cross-sectional shape is a fluid guide flow path structure of a trapezoidal rib 11 with an arc shape.
  • the rib 11 of the medium flow path shown in the example of FIG. 6D is rectangular, and the rib 11 of the gas guide flow path is an inverted trapezoid.
  • the gas-guiding flow path has a gas-guiding flow having a rib 11 with an inverted trapezoidal cross-section formed by reducing the rib width Rw1 on the base material (gas diffusion layer) side and increasing the rib width Rw2 (Rw1 ⁇ Rw2). Road structure.
  • the cross-sectional shapes of the ribs of the gas-guiding flow paths illustrated in FIGS. 6B, 6C, and 6D are left-right symmetrical, and the angles ⁇ and ⁇ formed by the rib interface of the gas-guiding flow paths illustrated in FIG. 6B and FIG. Below the degree, the angles ⁇ and ⁇ formed by the interface between the rib portion of the gas guide flow path and the side surface of the rib in the example of FIG. 6D) are 90 degrees or more.
  • the rib width Rw1 on the substrate side is excessively increased, the contact surfaces of the gas diffusion layers 4, 5 and the fluid-guided flow path are reduced, and the reaction gas is blocked.
  • the gas diffusion flow path 4 can be enlarged by trying to make the angles ⁇ and ⁇ close to a right angle (increasing the angles ⁇ and ⁇ ) and narrowing the rib width Rw2 on the substrate side.
  • the contact surface between the 5 and the fluid guide flow path improves the gas permeability.
  • the example shown in FIG. 6D can also further increase the angles ⁇ and ⁇ formed by the rib interface and the side of the rib to 90 degrees or more.
  • the cross section of the ribs is inverted trapezoidal to reduce the width Rw1 of the ribs and improve the gas permeability.
  • the two sides of the ribs shown in the example of FIG. 6C are arc-shaped, and the reaction gas pressure can be adjusted by changing the width of the ribs Therefore, not only by adjusting the dimensional values and angles ⁇ , ⁇ of the rib widths Rw1, Rw2, but also by changing the width of the rib waist portion by adding arcs on both sides of the ribs, to improve gas permeability and adjustment Reacting gas pressure and flow.
  • the shape of the fluid guide flow path ribs which is a main feature of an embodiment of the present invention, is not limited to the structure described in this specification, and is based on a combination of cross-sectional shapes of the fluid guide flow path ribs in consideration of the characteristics unique to the material. It is preferable to apply the most appropriate structure matching the purpose of the present invention. For details, refer to the description of the first embodiment described above. In addition to the above-mentioned rib cross-sectional shape, a combination of a plurality of rib cross-sectional shapes conceivable within a range that can be conceived can be used to create various aspects of the fluid guide flow path according to the second embodiment. Fluid-guided flow path structure.
  • FIG. 12A Although the cross-sectional shape of the left-right symmetric ribs shown in FIG. 12A is described with reference to FIGS. 6A to 6D according to the fluid-guiding flow-path ribs according to the second embodiment, the present invention is not limited to this, and the drawings may be applied.
  • a reverse type in which the cross-sectional shape of the rib portion which is symmetrical to the left and right and left to right is asymmetric can also be applied.
  • a rounded shape in which corners of the cross-sectional shapes of the ribs are rounded can be applied, and a combination of these can also be applied.
  • FIG. 8B is a diagram obtained by enlarging a part of FIG. 6B. If the separators 6 and 7 are brought into abutment with the upper surfaces of the gas guide flow path ribs 11 supported by the gas diffusion layers 4 and 5 (head pressure method), the ribs shown in the upper right diagram shown in FIG. 8B are further enlarged. As drawn in the corners of the portion 11, the rib material enters the gas diffusion layers 4, 5 to form a fan-like interface. Therefore, the interface stress is dispersed, and the so-called anchoring effect is further obtained, so that the fluid guides the flow path ribs. The adhesion of the interface between the portion 11 and the gas diffusion layers 4 and 5 is improved.
  • the gas-permeable flow path is attached to the gas diffusion layers 4 and 5 in a relationship of Rw1 ⁇ Rw2. Therefore, it can be considered that the cross-flow of the reactive gas diffused into the gas diffusion layers 4 and 5 is easily formed. That is, since the cross-sectional shape of the rib portion where the reactive gas easily diffuses, a fluid-guided flow path structure with good gas permeability can be realized.
  • the ribs 11 constituting the cooling medium flow path attached to the separator and the ribs 11 attached to the gas guide flow path of the gas diffusion layers 4 and 5 can be coated with the same dense highly conductive carbon-based coating.
  • Cloth material is used for attachment, and different materials can also be used.
  • the fluid guide flow path, the partition plates 6, 7 attached to the cooling medium flow path, and the gas diffusion layers 4, 5 attached to the gas guide flow path are independent of each other. For integration.
  • the pattern of the fluid guide flow path is not particularly limited, and can be formed in the same manner as the pattern of the fluid guide flow path formed in a conventional separator.
  • a straight type, a snake type, a comb type, etc. are mentioned.
  • the configuration of the fluid guide flow path according to the second embodiment of the present invention is merely an example, and is not limited to the content described in this specification.
  • a fuel cell having a fluid guide flow path according to a third embodiment of the present invention will be described with reference to Figs. 3A-3F, 4A-4C, 7A-7C, and 10-15B.
  • the present invention is not limited to the third embodiment.
  • a fluid guide flow is formed on any of the first substrate (gas diffusion layers 4, 5) or the second substrate (separators 6, 7). Flow path, while no fluid guide flow path is formed on the other side.
  • a gas guide flow path is attached to the surfaces of the partition plates 6 and 7 facing the gas diffusion layers 4 and 5, and then, the partition plates 6 and 7 face each other.
  • the gas guide channels are attached to the surfaces of the gas diffusion layers 4 and 5 and the substrates on both sides where the ribs are formed are butted against each other so that the top surfaces of the corresponding ribs are in contact.
  • the dimension marks constituting the fluid guide flow path and the method of manufacturing the fluid guide flow path in the present invention are the same as those described in the first and second embodiments, and are therefore omitted.
  • FIGS. 10A to 10D are diagrams illustrating a basic sequence of formation of a fluid guide flow path of Embodiment 3.
  • FIG. 3C shows not only the fluid guide channels attached to the surfaces of the partition plates 6 and 7 facing the gas diffusion layers 4 and 5 according to FIG. 10C, but also the gas diffusion layers 4 and 5 facing the partition plates 6 and 7.
  • a schematic view of the gas guide flow path of this embodiment 3 formed by attaching a fluid guide flow path to the surface and then abutting (clamping) the heads of the ribs to each other; and a partition plate facing each other according to the explanatory diagram of FIG. 10D
  • a schematic diagram of the cooling medium flow path of the third embodiment is formed by attaching cooling medium flow paths to the surfaces of 6 and 7, respectively, and then staggering the ribs with each other.
  • the gas guide flow path according to the third embodiment is attached to the surfaces of the gas diffusion layers 4 and 5 and also to the surfaces of the partition plates 6 and 7, and the cooling medium flow path is attached to the surfaces of the partition plates 6 and 7. It is formed by abutting (clamping) with the adjacent partition plates 7, 6 in contact with each other.
  • the fluid guide flow path formation method of FIG. 10C is also referred to as a “head strike method” because the heads of the ribs abut each other.
  • the fluid guide flow path formation method of FIG. 10D is also referred to as a "biting method" because the heads of the ribs are staggered with each other.
  • the cooling medium flow path is obtained by adhering the ribs 11 to the other surface of the anode separator 6 and / or the cathode-side separator 7 and then bonding the edges of the adjacent separators so that The ribs 11 are formed in contact (clamped) with the surfaces of the adjacent cathode-side separator 7 or anode separator 6.
  • the cooling medium flow path shown in FIG. 3A uses the occlusion method, but any method (head strike method, head pressure method, occlusion method) may be used.
  • the gas guide flow path is formed by hitting each other's ribs on the surfaces of the partition plates 6 and 7 and the gas diffusion layers 4 and 5 with each other.
  • the occlusion pattern shown in FIG. FIG. 14 is an explanatory diagram according to FIG. 10D.
  • a gas guide flow path is attached to the surfaces of the partition plates 6 and 7 facing the gas diffusion layers 4 and 5.
  • a schematic view of the fluid-guided flow path according to the third embodiment is formed by adhering a gas-guided flow path to the surface of 5 and then engaging each other.
  • the gas guide flow path is attached to both the surfaces of the separators 6 and 7 and the surfaces of the gas diffusion layers 4 and 5.
  • biting method Since the heads of the mutual ribs are staggered with each other, this is also referred to as a "biting method". That is, in the third embodiment, the fluid guide flow path is adhered to both the surfaces of the separators 6 and 7 and the surfaces of the gas diffusion layers 4 and 5. Since the heads of the mutual ribs are staggered with each other, this is also referred to as a "biting method”. In the third embodiment, any method (head strike method, head pressure method, and bite method) can be adopted.
  • FIGS. 7A to 7C are cross-sectional views of a fluid guide flow path structure according to a third embodiment to which a typical example of the fluid guide flow path ribs 11 in FIGS. 4A, B, and C is applied.
  • Each of the cross-sectional views of FIGS. 7A-7C is a cross-sectional view obtained by perpendicularly crossing the direction in which the rib and the channel extend.
  • the “rib cross-sectional shape” or “rib shape” described in this specification is viewed from this cross-section.
  • the direction of the cross-sectional shape of the rib is such that the side that is in contact with the substrate is the lower side (adhesion side).
  • the cross section of the rib 11 is rectangular.
  • the cross section of the rib 11 is rectangular and trapezoidal.
  • the cross section of the rib 11 is rectangular and has a trapezoidal shape with an arc.
  • the cross-sectional shape of the ribs of the fluid guide flow path in the third embodiment is not limited to the shapes shown in Figs. 7A, B, and C.
  • the present invention is not limited to this.
  • the cross-sectional shape of the left and right asymmetric ribs shown in columns B and C of FIG. 12 may be applied.
  • a reverse type in which the cross-sectional shape of the rib portion which is symmetrical to the left and right and left to right is asymmetric can also be applied.
  • a rounded shape in which corners of the cross-sectional shapes of the ribs are rounded can be applied, and a combination of these can also be applied.
  • the angles ⁇ and ⁇ formed by the rib interface and the side of the rib are both 90 degrees, and the cross-sectional shape of the rib is formed to be bilaterally symmetrical.
  • FIG. 7 (A) is observed, it can be seen that if the rib widths Rw1 and Rw2 are excessively increased, the flow path of the reaction gas is affected, and cross flow becomes difficult.
  • FIG. 7 (A) the flow lines of the lateral flow in the gas diffusion layers 4, 5 and the channel portion 12 are indicated by arrows.
  • FIG. 7B and FIG. 7C shows the structure formed by increasing the rib width Rw1 on the base material (in this example, the separator and the gas diffusion layer) side, and reducing the rib width Rw2 (Rw1> Rw2).
  • the cross-sectional shape of the trapezoidal rib portion 11 is a gas guide channel structure.
  • the cross-sectional shapes of the ribs illustrated in FIGS. 7B and 7C are both left-right symmetrical, and the angles ⁇ and ⁇ formed by the rib interface and the rib side are 90 degrees or less.
  • the rib portion 11 of the cooling medium flow path is a rib portion 11 having a rectangular cross-sectional shape.
  • the gas guide flow paths shown in the examples of FIGS. 7B and 7C are those in which the ribs 11 constituting the gas guide flow paths attached to the partition plates 6 and 7 and the fluid guide flow paths attached to the gas diffusion layers 4 and 5 are formed.
  • the respective upper surfaces of the ribs 11 (in such a manner that the heads of the ribs abut each other) are abutted and formed.
  • the upper surfaces of the respective ribs 11 are flat surfaces to facilitate docking.
  • FIG. 7B and FIG. 7C in the rib portion (middle portion) obtained by the butt joint, since the upper width Rw2 of the trapezoidal rib portion is small, the rib portion 11 is narrow and the channel portion is wide, thereby improving the channel portion. Effect of gas flow.
  • the rib 11 of the gas guide channel is an inverted trapezoidal cross-section
  • the rib portion (middle portion) obtained by this butt joint has an upper width Rw2 of the inverted trapezoidal rib.
  • the cross-sectional shape can form the surface of several ribs as inclined surfaces. Therefore, if the structure of the gas guide flow path is applied to the cathode side, water droplets will drip on the surface of the ribs and remain on the side of the separator 7 at a low temperature.
  • the channel bottom surface also has the effect of preventing the generated water from remaining in the gas diffusion layer 5.
  • the shape of the freely attachable fluid guide flow path ribs which are the main features of one embodiment of the present invention, is not limited to the structure described in this specification, and it is preferable to apply characteristics peculiar to materials and fluid guide flow path ribs.
  • Embodiment 3 since the fluid guide flow path is formed on both the first base material and the second base material, there are two types of rib-shaped arrangements. They are a fluid-guided flow path structure formed by a head strike method and a fluid-guided flow path structure formed by a bite method.
  • FIGS. 13A-13F show a fluid guide flow path structure using a head strike method according to Embodiment 3, and the cross-sectional shape of the left-right symmetrical fluid guide flow path ribs in FIG. 12 (and its reverse type) is appropriately combined. Shape) and cross-sectional views of the fluid guide flow path structure obtained from the left and right asymmetrical cross-sectional shapes of the ribs of the fluid guide flow path (and their reversed shapes) in columns B and C of FIG. 12.
  • FIG. 13A, 13B, and 13C show a fluid guide flow path structure using a head strike method according to Embodiment 3, and the cross-sectional shape of the left-right symmetrical fluid guide flow path ribs in FIG. 12 (and its reverse type) is appropriately combined. Shape) and cross-sectional views of the fluid guide flow path structure obtained from the left and right asymmetrical cross-sectional shapes of the ribs of the fluid guide flow path (and their reversed shapes) in columns B and C of FIG. 12.
  • 13D is an example of a cross-sectional view of a fluid-guided flow path structure obtained by appropriately combining ribs having trapezoidal shapes and inverted trapezoids having different shapes and sizes based on a fluid-guided flow-path structure using a nip method according to Embodiment 3.
  • FIG. Similarly, by using this occlusion method, it is possible to form a right-left symmetrical cross-section shape of the ribs of the fluid guide flow path (and its reversed shape) of column A in FIG. 12 and a left-right non-alignment of columns B and C in FIG. 12 as appropriate.
  • 13E and 13F show a structure in which the rib portion 11 of the structure based on the fluid guide flow path according to the first and second embodiments is changed.
  • FIG. 13D shows a case where the left and right symmetrical trapezoidal rib cross-sectional shapes 11 are attached to the gas diffusion layers 4, 5 or the surfaces of the partition plates 6, 7, and the partition plates 6, 7 are also symmetrically attached to the opposite surfaces.
  • the trapezoidal rib cross-sectional shape 11 is clamped in such a manner that the upper surfaces (heads of the ribs) of the cross-sectional shapes of the ribs do not contact each other (ie, engage).
  • the size of the rib cross-sectional shape 11 of the gas diffusion layers 4 and 5 is set to be smaller than the size of the rib cross-sectional shape 11 of the separators 6 and 7.
  • the interface width Rw1 of the ribs attached to the gas diffusion layers 4 and 5 and the width Rw2 of the ribs attached to the separators 6 and 7 It is set to have the same size as the width of the channel, so that the contact surfaces between the reaction gas flowing in the channel and the gas diffusion layers 4 and 5 are evenly distributed, and the contact area is also ensured to be large, so that not only the reaction gas flows easily, The permeability of the reaction gas to the gas diffusion layers 4 and 5 is also improved.
  • the ribs formed on the separator are removed every other embodiment in Embodiment 1, and the ribs formed on the gas diffusion layers 4 and 5 are removed every other in Embodiment 2. These are spaced apart to form ribs. Then, by pressing the ribs of both sides against the base material facing the opposite side, a form of occlusion can be achieved. From the viewpoint of manufacturing, the first base material and the second base material can be shifted from the starting point for starting the adhesion of the fluid guide flow path so that the ribs of the fluid guide flow path can be smoothly engaged.
  • the trapezoidal rib section shape 11 of the trapezoids attached to both substrates may be a left-right asymmetric trapezoidal rib section shape 11 or a rectangular rib section as shown in FIG. 12. Shape 11, or a cross-sectional shape of the inverted type and a rounded corner shape.
  • the cross-sectional shape and the channel width of the ribs attached to the substrates of both sides may be different or different.
  • FIG. 13E the partition plates 6 and 7 are attached so that the cross-sectional shapes 11 of the ribs of the left and right symmetrical trapezoids overlap with each other.
  • the space on the upper side around the overlapping portion that is not in contact with the gas diffusion layers 4 and 5 functions as a channel portion where the reaction gas flows.
  • a space in contact with the partition plates 6 and 7 on the lower side around the overlapping portion serves as the bottom portion 13.
  • a dense highly conductive carbon-based coating material having the same properties as those of the fluid guide channel ribs 11 attached to the separators 6 and 7 as the second base material is used.
  • the rib portion 11 and the bottom portion 13 of the channel portion 12 are formed, and a gas guide flow path rib portion 11 having a trapezoidal cross-sectional shape in the shape of a left-right symmetry is mounted directly above the bottom portion. That is, in the example of Fig. 13F, the bottom of the channel 12 is provided by fully coating the separators 6,7.
  • Embodiment 2 when the gas diffusion layers 4 and 5 are completely coated and the bottom of the channel is provided, in order to ensure a path for the reaction gas to diffuse into the gas diffusion layers 4 and 5, it is necessary to provide Fully coated layer with gas permeability. Regarding the separators 6 and 7, the bottom formation by full coating can be applied to Embodiments 1, 3, 4, and 5.
  • the height h of the rib of the fluid guide channel can be adjusted according to the specifications of the fuel cell.
  • the height h of the ribs of the fluid guide flow path may not be a constant value, but may be set to have a value of irregularity, or the heights of the respective ribs may be set to fall (see FIG. 3F).
  • the adjustment of the height h of the ribs can be applied to both the first and second substrates.
  • the first substrate gas diffusion layers 4, 5) or the second substrate (separators 6, 7) have fluid flow channel ribs of the same shape attached to the substrate
  • the second base material Partitions 6, 7) with different rib shapes formed fluid-guiding flow paths and caused them to engage.
  • different ribs were alternately arranged.
  • Part-shaped fluid guide flow path structure That is, according to the occlusion method of the third embodiment, it is possible to make it easier to mix the structures using the fluid guide flow paths having different rib shapes.
  • the upper surface of the head corresponding to the ribs is flat, and only within the same area, as shown in FIG. 15A, the first base material (the gas diffusion layer 4, 5) or the second base material (partitions 6, 7) and the opposite second base material (partitions 6, 7) form fluid guide channels with different rib shapes, and use the upper surfaces of each other As shown in FIG. 15B, the ribs of different shapes are docked.
  • the cross-sectional shape of the tower-shaped ribs can be realized (the rectangular ribs are formed on the first base material or the second base material, and the second base on the opposite side is formed). Material forms a generally trapezoidal rib).
  • FIG. 15A shows a cross-sectional shape of a volcanic rib formed by a head pressure method of Embodiment 3, which is produced in a manner different from a tower shape.
  • the adhesion between the partition plates 6 and 7 and the fluid guide flow path and the gas diffusion layers 4 and 5 and the fluid guide flow path is adhered to the gas diffusion layer 4.
  • Gases of 5 and 5 guide part of the material of the flow path ribs into the gas diffusion layers 4 and 5 to form a fan-shaped interface, so that the interface stress with the gas diffusion layers 4 and 5 is dispersed and the so-called anchoring effect can be obtained (refer to the figure) 8B). Therefore, the gas guide flow path rib 11 has good adhesion to the gas diffusion layers 4 and 5.
  • FIGS. 11A to 11C are cross-sectional views of the shape of a fluid guide flow path when the separators 6 and 7 and the gas diffusion layers 4 and 5 are adhered to each of the first and second embodiments.
  • FIG. 11C is a cross-sectional view of the shape of the fluid guide flow path when the fluid guide flow paths are adhered to both of the fluid guide flow path separators 6 and 7 and the gas diffusion layers 4 and 5 in the third embodiment.
  • the interface area between the two ribs 11 and the partition plates 6 and 7 and the interface area with the gas diffusion layers 4 and 5 in the third embodiment are set to be the same as those of the partition plates 6 and 7 in the second embodiment and the fluid guide flow path, respectively.
  • the head pressure area of the ribs 11 and the area of the head pressure of the flow channel ribs 11 and the gas diffusion layers 4, 5 or the partition plates 6, 7 of the first embodiment are the same.
  • the maximum pressing pressure between the three gas diffusion layers 4 and 5 does not change, and the cross-sectional area of the channel of the fluid guide flow path in the third embodiment becomes large.
  • the contact area of the reaction gas also increases.
  • the shape of the fluid guide flow path in the third embodiment is smaller than the shape of the fluid guide flow path in the first and second embodiments (the ribs are formed on the single substrate).
  • the impedance is low, the reaction gas flows easily, and the permeability of the reaction gas to the gas diffusion layers 4 and 5 is also better. Since the reaction gas flows easily and the gas permeability is better, the height h of the rib can be made low. As a result, the thickness of the fuel cell unit can be reduced, and the output volume density of the fuel cell can be increased.
  • the head pressure area of the ribs 11 and the base material (gas diffusion layer) described in the first embodiment corresponding to the area indicated by the thick line in FIG. 11A
  • the head pressure area of the rib portion 11 and the base material (partition) corresponding to the portion indicated by the thick line in FIG. 11B
  • the parts indicated by dashed lines in FIG. 11C) are all equal, and the fluid guide flow path of the third embodiment has the following characteristics compared with the first and second embodiments described above, that is, it is ensured under the same compression pressure.
  • a structure in which the strength of the rib portion 11 is increased and the channel width Cw is wider than that of the central portion.
  • the ribs 11 constituting the fluid-guiding flow paths attached to the partition plates 6 and 7 and the ribs 11 constituting the fluid-guiding flow paths attached to the gas diffusion layers 4 and 5 can be made dense.
  • a highly conductive carbon-based coating material is used for adhesion, and different materials may be used.
  • the fluid guide flow path and the partition plates 6 and 7 attached thereto, and the fluid guide flow path on the opposite side and the gas diffusion layers 4 and 5 attached thereto are separately formed and connected to each other. No integration.
  • the upper surfaces of the ribs attached to both of the separators 6 and 7 and the gas diffusion layers 4 and 5 are flat, only the docking may be performed.
  • the adhesive penetrates into the ribs and becomes a barrier layer for the reaction gas, thereby hindering the permeability of the reaction gas.
  • the reaction gas will contact a large number of catalysts at one time, so it is considered that a high output can be obtained.
  • the cathode side since generated water also passes, it is necessary to secure a certain channel width Cw.
  • the channel width Cw is large, the speed at which the supply gas is discharged from the cell increases. In order to prevent the supplied gas from being discharged immediately, it is very important to reduce the channel width Cw to a certain degree, or to provide a fold back in the fluid guide flow path to make it flow slowly.
  • the pattern of the fluid guide flow path is not particularly limited, and can be formed in the same manner as the pattern of the fluid guide flow path formed in a conventional separator. For example, a straight type, a snake type, a comb type, etc. are mentioned.
  • the structure of the fluid guide flow path according to the third embodiment of the present invention is merely an example, and is not limited to the content described in this specification.
  • the configuration and structure of the anode-side fluid-guided flow path and the cathode-side fluid-guided flow path are the same as the fluid-guided flow path included in the fuel cell unit.
  • the structure is described.
  • the structure of the anode-side fluid-guided flow path and the method of forming the cathode-side fluid-guided flow path and The main difference is that the structure is implemented differently.
  • Other structures, methods, and principles are basically the same as those of the first to third embodiments, and therefore detailed descriptions thereof are omitted.
  • the dimension marks constituting the fluid guide flow path and the method for manufacturing the fluid guide flow path in the present invention are the same as those described in Embodiments 1 to 3, and are therefore omitted.
  • the formation method and structure of the fluid guide flow path according to the fourth embodiment are different between the anode side and the cathode side based on the shape of the fluid guide flow path described in the first to third embodiments.
  • the anode-side fluid guide flow path and the cathode-side fluid guide flow path need not necessarily be formed in the same formation method and structure.
  • the gas-guiding flow path on the anode side is attached to the surface of the separator 6 facing the gas diffusion layer 4, and the gas-guiding flow path is not attached to the gas diffusion layer 4.
  • the gas-guiding flow path on the cathode side is attached to the surface of the gas diffusion layer 5 facing the separator 7, and the gas-guiding flow path is not attached to the separator 7.
  • the present invention can be implemented on the anode side and the cathode side without attaching a gas guide flow path to the same substrate.
  • the anode-side gas guide flow path may be attached only to the separator 6 and the cathode-side gas guide flow path may be attached only to the gas diffusion layer 5.
  • an opposite combination can be used.
  • the gas-guiding flow path on the anode side is attached to the surface of the separator 6 facing the gas diffusion layer 4, and the gas-guiding flow path is not attached to the gas diffusion layer 4 facing the separator 6.
  • the gas-guiding flow path on the cathode side is attached to the surface of the gas diffusion layer 5 facing the separator 7, and the gas-guiding flow path is also attached to the separator 7 facing the gas diffusion layer 5.
  • the gas guide flow path is attached to only one side of one substrate as in the first embodiment, and on the cathode side, the gas guide flow path is attached to both sides as the substrate as in the third embodiment.
  • the opposite combination can also be used. That is, it is an example implemented by combining the first embodiment and the third embodiment.
  • the structure and structure of the fluid guide flow path on the anode side and the formation and structure of the fluid guide flow path on the cathode side are not necessarily the same.
  • the combination of the cross-sectional shapes of the ribs described in Embodiments 1 to 3, etc., the optimal method can be determined according to the product specifications, the components of the product and their functions, etc.
  • the cross-sectional shape of the ribs multiple combinations of various types of rib materials, multiple deformations to which additional elements are applied, and the like can be used.
  • the effects are preferably the same as those of the present invention. Based on the production of a product that meets the objectives of the present invention, studying the deformation that best fits the specifications can help to investigate the inherent characteristics, effects, and the like found in cases obtained by combining various elements in various ways.
  • the fluid-guided flow path according to the fourth embodiment for example, three types of flow path shape modifications shown in FIG. 4 can be applied.
  • the shapes of the three fluid guide flow path ribs described in this specification are typical examples, and the present invention is not limited to Embodiment 4, and various modifications and applications can be made without departing from the gist of the present invention.
  • the cross-sectional shape of the left-right symmetrical rib portion shown in column A of FIG. 12 may be applied, or the shape shown in columns B and C of FIG. 12 may be applied. Left and right asymmetrical rib cross-sectional shape.
  • a reverse type in which the cross-sectional shape of the rib portion which is symmetrical to the left and right and left to right is asymmetric can also be applied.
  • a rounded shape in which corners of the cross-sectional shapes of the ribs are rounded can be applied, and a combination of these can also be applied.
  • the ribs 11 constituting the fluid-guiding flow paths attached to the partition plates 6 and 7 and the ribs 11 constituting the fluid-guiding flow paths attached to the gas diffusion layers 4 and 5 can be used with the same denseness.
  • a highly conductive carbon-based coating material is used for adhesion, and different materials may be used.
  • the separators 6 and 7 to which the fluid guide flow path is attached and the gas diffusion layers 4 and 5 to which the fluid guide flow path is attached are formed separately and are docked without integration.
  • the pattern of the fluid guide flow path is not particularly limited, and may be formed in the same manner as the pattern of the fluid guide flow path formed in a conventional separator.
  • a straight type, a snake type, a comb type, etc. are mentioned.
  • the fluid guide flow path structure according to the fourth embodiment of the present invention is merely an example, and is not limited to the content described in this specification.
  • the present invention is not limited to the fifth embodiment.
  • the heights of the ribs of the fluid guide channel are made the same.
  • the height h of the rib of the fluid-guiding flow path matches the height h of the corresponding rib and is provided.
  • the difference is the main difference.
  • the other structures, methods, and principles are basically the same as those of the first to fourth embodiments, so detailed descriptions are omitted.
  • the dimensions of the fluid guide flow path and the method of manufacturing the fluid guide flow path in the present invention are the same as those described in the first to fourth embodiments, and are therefore omitted.
  • gas guide channel ribs are formed on both the surface of the separator and the surface of the gas diffusion layer.
  • the height h of the gas guide flow path ribs can be freely adjusted according to the height h of the relative ribs (for example, when the total height is set to 1, it is attached to the partition plates 6, 7 The height h of the ribs is adjusted to 0.7, and the height h of the opposite ribs attached to the gas diffusion layers 4 and 5 is adjusted to 0.3).
  • the drop in height h of the ribs of the gas guide flow path thus formed may be a regular drop (alternatively provided for adjacent ribs) or an irregular drop (provided every multiple ribs).
  • the example above is just an example, and so are their opposite combinations.
  • the shapes of the three fluid guide flow path ribs described in this specification are typical examples, and the present invention is not limited to Embodiment 5, and various modifications and applications can be made without departing from the gist of the present invention.
  • the cross-sectional shape of the left and right symmetrical ribs shown in column A of FIG. 12 may be applied, and the shapes of the ribs shown in columns B and C of FIG. 12 may be applied.
  • asymmetrical rib cross-sectional shape As shown in FIG. 12, a reverse type in which the cross-sectional shape of the rib portion which is symmetrical to the left and right and left to right is asymmetric can also be applied. In addition, a rounded shape in which corners of the cross-sectional shapes of the ribs are rounded can be applied, and a combination of these can also be applied.
  • the same denseness can be used for the ribs 11 constituting the fluid-guiding flow paths attached to the partition plates 6 and 7 and the ribs 11 constituting the fluid-guiding flow paths attached to the gas diffusion layers 4 and 5.
  • a highly conductive carbon-based coating material is used for adhesion, and different materials may be used.
  • the fluid guide flow path and the partition plates 6 and 7 attached thereto, and the opposite fluid guide flow path and the gas diffusion layers 4 and 5 attached thereto are separately formed and only docked, No integration took place.
  • the pattern of the fluid guide flow path is not particularly limited, and can be formed in the same manner as the pattern of the fluid guide flow path formed in a conventional separator.
  • a straight type, a snake type, a comb type, etc. are mentioned.
  • the structure of the anode-side fluid guide flow path is different from that of the cathode-side fluid guide flow path. Since a drop is provided at the part, a fluid-guided flow path structure can also be implemented.
  • the configuration of the fluid guide flow path according to the fifth embodiment of the present invention is merely an example, and is not limited to the content described in this specification.
  • FIGS. 9A and 9B Next, a fuel cell to which another modification example 1 of the present invention is applied will be described using FIGS. 9A and 9B.
  • the interface area between the gas diffusion layers 4 and 5 and the ribs 11 attached to their surfaces becomes larger, the channel width Cw becomes smaller, and the diffusion of the reaction gas into the gas diffusion layers 4 and 5 is restricted. Therefore, by providing numerous holes in the gas guide flow path ribs 11 of various shapes according to the above-mentioned Embodiments 1 to 5, the permeability of the reaction gas can be improved, the pressure difference between the channels can be adjusted, and the pressure difference can be maintained. The flow of the supplied exhaust gas is balanced, and the generated water is discharged.
  • FIG. 9A illustrates an example in which the ribs 11 constituting the fluid guide flow path attached to the surface of the partition plate and the fluid guide flow path attached to the surface of the gas diffusion layer are formed using the same material or different materials.
  • the rib portion 11 is then provided with numerous holes for each rib portion (shown by white circles in Figs. 9A and 9B).
  • FIGS. 9B and 9C show the fluid guide flow path ribs 11 attached to the surfaces of the gas diffusion layers 4 and 5 and / or the fluid guide flow paths constituting the fluid guide flow paths attached to the surfaces of the partition plates 6 and 7.
  • the ribs 11 are provided with numerous holes, respectively. As shown by the arrows crossing the ribs in FIGS.
  • the reaction gas penetrates the sides of the ribs (both sides of the channel) and passes through the ribs provided on the gas diffusion layer side to the gas diffusion layer. Subject diffusion. Therefore, the reactive gas can indirectly penetrate the main body of the gas diffusion layer. In addition, since the reaction gas penetrates the side surfaces (both sides of the channel) of the rib, the pressure difference between the channels can be adjusted, the flow of the supply and discharge of the reaction gas can be maintained in a balanced manner, and the generated water can be discharged.
  • the fluid guide flow path and the partition plates 6, 7 attached to the fluid guide flow path, and the fluid guide flow path on the opposite side and the gas diffusion layers 4, 5 attached to the fluid guide flow path are formed separately. And only docking, not integration.
  • the upper surfaces of the ribs attached to the separators 6, 7 or the gas diffusion layers 4, 5 and the opposite separators 6, 7 are flat, and only Just make the top surfaces of the two sides abut.
  • the adhesive penetrates into the ribs and becomes a barrier layer for the reaction gas, thereby hindering the permeability of the reaction gas.
  • the ribs 11 constituting the fluid guiding flow paths attached to the partition plates 6 and 7 and the ribs 11 constituting the fluid guiding flow paths attached to the gas diffusion layers 4 and 5 may have the same porosity and / or The dense and highly conductive carbon-based coating material is adhered, and different materials may be used.
  • the pattern of the fluid guide flow path is not particularly limited, and can be formed in the same manner as the pattern of the fluid guide flow path formed in a conventional separator.
  • a straight type, a snake type, a comb type, etc. are mentioned.
  • the numerous rib holes may be provided only on the fluid guide channel ribs 11 on the partition side, or may be provided only on the fluid guide channel ribs 11 on the gas diffusion layer side. Can be set on both sides. Alternatively, it may be provided locally or selectively, but it is preferable to perform the overall setting. Variations are conceivable that can be achieved in various ways.
  • the fluid guide flow path structure according to the other modification 1 of the present invention is only an example, and is not limited to the content described in this specification.
  • Embodiments 1 to 5 and other Modifications 1 use the two-dimensional method to apply the two-dimensional method to the first substrate (gas diffusion layers 4, 5) and the second substrate (separators 6, 7).
  • the shape of the fluid guide flow path rib 11 is freely formed on the surface, and various rib shapes 11 can be implemented in any combination, so that the effects described below can be obtained.
  • a metal mold has been required to form a flow path in a separator of a metal-worked body. If the metal mold is completed at once, design changes are difficult and costly and time consuming.
  • the fluid guide flow path of the present invention is produced by methods such as printing, spraying, coating, dispensing, and transfer. Therefore, a metal mold is not required, and the flow path design can be easily changed according to characteristics.
  • the ready-made gas diffusion layer material can be used, so it is possible to suppress the cost of changes in the material design of the integrated gas diffusion layers 4 and 5 and the redevelopment in each fuel cell design specification.
  • the separators 6 and 7 since the fluid guide flow path is attached to the surfaces of the separators 6 and 7 and / or the surfaces of the gas diffusion layers 4 and 5, the separators 6 and 7 used together with the gas diffusion layers 4 and 5 It is not necessary to form a fluid guide flow path by press working, and a separator having a smooth surface and a thin thickness can be used. By using an ultra-thin separator and controlling the adhesion height of the rib material, the thickness of the fuel cell unit can be suppressed. Therefore, by using a two-dimensional processing method such as adhesion, it is possible to mass-produce a small-sized high-volume output fuel cell.
  • the ribs 11 serving as flow channels are attached on the surface of the flat separator and the surface of the porous gas diffusion layer, so that the internal stress acting on the separators 6, 7, the ribs 11, and the gas diffusion layers 4, 5 is small.
  • the adhesion of the rib interface is high, so that both the reliability of the fuel cell and the effect of extending the life can be achieved.
  • the permeability of the reaction gas is improved, the pressure difference between the flow paths can be adjusted, the flow of the reaction gas can be maintained in equilibrium, and a fuel cell having a high current density can be obtained.
  • An embodiment of the present invention can be used as a fuel cell for vehicle mounting.
  • the present invention is not limited to the above-mentioned first to fifth embodiments and other modified examples 1, and can be realized by various structures without departing from the gist thereof.
  • the technical features described in Embodiments 1 to 5 and other modifications of the present specification can be appropriately replaced or combined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

一种燃料电池单元,包括相对的第一隔板、第二隔板和层叠在所述第一和第二隔板之间的膜电极接合体,所述膜电极接合体包括催化剂涂覆膜和分别设于所述催化剂涂覆膜的二侧的第一气体扩散层和第二气体扩散层,所述燃料电池单元还包括位于相对的所述隔板和所述气体扩散层之间的气体引导流路和位于第一隔板和/或所述第二隔板与另一燃料电池单元之间的冷却介质流路,其中所述气体引导流路附着在气体扩散层和/或相对隔板的表面,所述冷却介质流路附着在第一隔板和/或所述第二隔板的外侧表面。

Description

具备流体引导流路的燃料电池及其制造方法 技术领域
本发明涉及通过将燃料电池单元重叠成多个层叠状而构成的燃料电池,该燃料电池单元中利用阳极侧隔板和阴极侧隔板对电解质膜、阳极侧催化剂层、阴极侧催化剂层、阳极侧气体扩散层、阴极侧气体扩散层进行夹持,本发明尤其涉及具有设置于各隔板与各气体扩散层的中间位置的槽状的气体引导流路以及设置在两个相邻隔板之间的槽状的冷却介质流路的燃料电池。
背景技术
例如,在固体高分子型燃料电池(Polymer Electrolyte Fuel Cell,PEFC)中具备下述电解质膜·电极接合体(CCM、MEA),该电解质膜·电极接合体中,在由高分子离子交换膜形成的电解质膜的一个面侧配置有阳极电极,在另一个面侧配置有阴极电极。MEA通过被隔板夹持来构成发电单元。燃料电池通常通过层叠规定数量的发电单元,而后例如作为车载用燃料电池堆组装入燃料电池电气车辆。燃料电池中,通常层叠数十~数百个发电单元,而后例如作为车载用燃料电池堆来使用。
以往,燃料电池中,在一个隔板的面内,朝向阳极电极设置有燃料气体的流路,同时,在另一个隔板的面内,朝向阴极电极设置有氧化气体的流路。并且,在阳极隔板与阴极隔板之间形成冷却介质流路。
尤其是对于发电效率较高的燃料电池,为了加速高效率化、高耐久化、小规模化、低成本化而进行了研究和开发。由此得到下述课题,即:确立用于根据市场需求以高品质、低成本来安全进行量产的技术。
现有技术文献
专利文献
专利文献1:日本专利特开2016-58288号公报
专利文献2:日本专利特开2006-120621号公报
专利文献3:日本专利特开2006-339089号公报
发明内容
发明所要解决的技术问题
专利文献1中,利用冲压成形有肋部高度不同的槽状流路的金属板来形成隔板。若利用与隔板主体相同的金属板来形成肋部本身,则会存在下述问题,即:伴随着加工会发生隔板挠曲、伴随着微细加工会发生隔板的破裂、形变硬化、隔板的弯曲变形。若利用金属板通过冲压加工来制造流体引导流路,则会随着金属模具而发生翘曲。并且,对于金属模具,在发生了设计变更的情况下,无论从技术层面还是成本层面来看都难以进行金属模具的改造。
根据专利文献2,气体扩散层和流体引导流路通过气相生长来一体化形成。由于按此方式气相生成而得到的气体扩散层与流体引导流路一体化,因此当需要在不同规格下进行流路设计时,从成本上来看对于进行设计变更是不利的。并且,这种气相生长在过程中需要花费时间,因此不适于大量生产。
在专利文献3中,不在隔板而在多孔质的气体扩散层形成流体引导流路,这种气体扩散层也是使用模具通过将气体扩散层和流体引导流路一体化来形成,当需要在不同规格下进行流路设计时,从成本上来看对于进行模具变更等也是不利的。因此这种技术无法通过沿用成品的构成构件来进行成本削减。
本发明的目的在于提供一种能够以低成本和高效率制造的燃料电池。这种燃料电池通过在相邻的隔板之间形成由致密性高导电性碳系涂布材料构成的冷却介质流路,并且在隔板和气体扩散层之间形成由高导电性碳系涂布材料构成的有致密性和/或者多孔性结构的气体引导流路来实现。
此外,本发明的目的通过提供下述燃料电池单元来实现,该燃料电池单元具备通过容易地形成由冷却介质流路和气体引导流路组成的流体引导流路,从而可抑制制造过程复杂化的流体引导流路结构。
本发明所公开的主要目的在于,自由自在地通过流体引导流路设计最优化,使由催化剂涂覆膜(带催化剂层的电解质膜)、一对气体扩散层、一对隔板构 成的燃料电池单元所形成的燃料电池,实现具有高输出密度和高功率密度的具体化。
解决技术问题所采用的技术方案
本发明为了实现上述目的,提供按下述方式构成的燃料电池。
本发明的一个方面提供一种燃料电池,包括多个燃料电池单元,每个燃料电池单元包括相对的第一隔板、第二隔板和层叠在所述第一和第二隔板之间的膜电极接合体,所述膜电极接合体包括催化剂涂覆膜和分别设于所述催化剂涂覆膜的第一侧和第二侧的第一气体扩散层和第二气体扩散层,所述燃料电池单元还包括位于所述第一隔板和所述第一气体扩散层之间和/或所述第二隔板和所述第二气体扩散层之间的气体引导流路,其中所述气体引导流路是附着在对应的隔板面向对应的气体扩散层的表面和/或对应的气体扩散层面向对应的隔板的表面,所述燃料电池还包括位于相邻的燃料电池单元的第一隔板和所述隔板之间的冷却介质流路,并且所述冷却介质流路是附着在第一隔板面向对应的第二隔板的表面和/或第二隔板面向对应的第一隔板的表面,由所述气体引导流路和所述冷却介质流路形成所述燃料电池的流体引导流路。
根据本发明的一个方面,所述第一隔板和/或所述第二隔板的外侧表面上附着所述冷却介质流路,且所述第一隔板和/或第二隔板的内侧表面上附着所述气体引导流路。
根据本发明的一个方面,所述第一隔板和/或所述第二隔板的外侧表面上附着所述冷却介质流路,且所述第一隔板和/或第二隔板的内侧表面上无附着所述气体引导流路。
根据本发明的一个方面,所述第一隔板和/或所述第二隔板的外侧表面上附着所述冷却介质流路,且所述第一隔板和/或第二隔板的内侧表面所面向对应的气体扩散层的表面上附着所述气体引导流路。
根据本发明的一个方面,所述流体引导流路是以涂布、印刷、点胶、喷射或转印的方式形成于对应的隔板表面和/或气体扩散层表面。
根据本发明的一个方面,用于附着所述流体引导流路的隔板和/或气体扩 散层的表面是平滑的。
根据本发明的一个方面,所述流体引导流路与所述隔板和所述气体扩散层是分别形成的。
根据本发明的一个方面,所述流体引导流路的材料不同于所述隔板和/或所述气体扩散层。
根据本发明的一个方面,所述流体引导流路的材料为高导电性材料。
根据本发明的一个方面,所述气体引导流路包括用于控制反应流体流动和流体渗透性的肋部和沟道部。
根据本发明的一个方面,所述气体引导流路的肋部具有阻止反应流体在相邻沟道间渗透和经由肋部渗透至对应的气体扩散层的致密性结构、或者具有允许反应流体在相邻沟道间渗透或者经由肋部渗透至对应的气体扩散层的多孔结构。
根据本发明的一个方面,所述气体引导流路还包括承载所述肋部的底部,所述底部具有阻止反应流体经由基部渗透至对应的气体扩散层的致密性结构、或者具有允许反应流体经由基部渗透至对应的气体扩散层的多孔结构。
根据本发明的一个方面,所述气体引导流路的肋部形成于相对的隔板和气体扩散层的其中之一的表面上,且一部分肋部的上表面与相对的所述隔板和气体扩散层的另一个的表面接触,另一部分肋部的上表面与相对的所述隔板和气体扩散层的另一个的表面具有间距。
根据本发明的一个方面,所述气体引导流路的肋部形成于相对的隔板和气体扩散层的其中之一的表面上,且所述肋部的上表面与相对面的所述隔板和气体扩散层的另一个的表面接触,所述冷却介质流路形成于相对的第一隔板和第二隔板的其中之一的表面上,且所述肋部的上表面与相对面的所述隔板的另一个的表面接触。
根据本发明的一个方面,所述气体引导流路的肋部形成于相对的隔板和气体扩散层的表面上,且相对的隔板和气体扩散层上对应的肋部的顶面对接,所述冷却介质流路形成于相对的第一隔板和第二隔板的表面上,且相对的第一 隔板和第二隔板上对应的肋部的顶面对接。
根据本发明的一个方面,气体引导流路的肋部形成于相对的隔板和气体扩散层的表面上,且隔板上的肋部与气体扩散层的表面接触,气体扩散层上的肋部与隔板的表面接触,所述冷却介质流路形成于相对的第一隔板和第二隔板的表面上,且第一隔板上的肋部与第二隔板的表面接触,第二隔板上的肋部与第一隔板的表面接触。
根据本发明的一个方面,在一对对接的肋部上,对接界面处的尺寸小于肋部与隔板或气体扩散层接触面处的尺寸。
根据本发明的一个方面,在一对对接的肋部上,对接界面处的尺寸大于肋部与隔板或气体扩散层接触面处的尺寸。
根据本发明的一个方面,所述肋部的材料进入所述气体扩散层的界面。
根据本发明的一个方面,所述气体引导流路的肋部和基部是以全面附着的方式形成。
根据本发明的一个方面,所述流体引导流路的肋部的顶面和所述沟道部底面的部分或全部是经亲水性处理的。
本发明还提供一种燃料电池单元的制造方法,包括以下步骤:提供膜电极接合体,所述膜电极接合体包括催化剂涂覆膜和分别设于所述催化剂涂覆膜的第一侧和第二侧的第一气体扩散层和第二气体扩散层;提供第一隔板和第二隔板;在所述第一隔板和/或第二隔板外侧的表面附着(adhere)冷却介质流路肋部,用于与相邻的燃料电池单元的第二隔板和/或第一隔板的表面接触而形成冷却介质流路;在所述第一气体扩散层和/或第二气体扩散层的外侧表面附着(adhere)气体引导流路肋部,以及/或者在所述第一隔板和/或第二隔板内侧表面附着气体引导流路肋部,将所述第一隔板与所述第一气体扩散层的外侧表面压合,且将所述第二隔板与所述第二气体扩散层的外侧表面压合而形成的气体引导流路,形成燃料电池单元。
根据本发明的一个方面,所述冷却介质流路和所述气体引导流路以涂布、印刷、喷射或转印的方式形成于对应的隔板表面和/或气体扩散层表面。
根据本发明的一个方面,用于附着所述冷却介质流路和所述气体引导流路的隔板和/或气体扩散层的表面是平滑的。
根据本发明的一个方面,所述冷却介质流路和所述气体引导流路的材料不同于所述隔板和/或所述气体扩散层。
根据本发明的一个方面,所述冷却介质流路和所述气体引导流路的材料为高导电性材料。
根据本发明的一个方面,所述冷却介质流路和所述气体引导流路包括用于控制反应流体流动和流体渗透的肋部和沟道部。
根据本发明的一个方面,所述气体引导流路还包括承载所述肋部的底部。
根据本发明的一个方面,所述气体引导流路的肋部和底部是以全面涂布的方式形成。
根据本发明的一个方面,所述方法还包括对所述气体引导流路肋部的顶面和所述沟道部底面的部分或全部进行亲水性处理。
附图概述
本发明的特征、性能由以下的实施例及其附图进一步描述。
图1是表示本发明的一实施方式的燃料电池堆的结构的外观图。
图2是局部示出本发明的一实施方式中的流体引导流路的立体结构的一个示例的立体图。
图3A-3F是局部示出本发明的各实施方式的包含由冷却介质流路和气体引导流路组成的流体引导流路的燃料电池单元的一个示例的示意图,图3A示出实施方式1的燃料电池单元,图3B示出实施方式2的燃料电池单元,图3C示出实施方式3的燃料电池单元,图3D、3E示出实施方式4的燃料电池单元,图3F示出实施方式5的燃料电池单元。
图4A-4C是本发明的一实施方式中的基材4、5、6、7的表面所设置的三种流体引导流路(冷却介质流路或气体引导流路)形状的立体图,图4A示出肋部11的剖面为矩形的流体引导流路形状,图4B示出肋部11的剖面为梯形 的流体引导流路形状,图4C示出肋部11的剖面为带有圆弧的梯形的流体引导流路形状。
图5A-5C是本发明的实施方式1中,在面向气体扩散层4、5的隔板6、7的表面附着(adhere)得到的气体引导流路肋部11以与气体扩散层4、5相接触的方式对接形成的气体引导流路结构,以及在阳极侧隔板6和/或阴极侧隔板7的一侧的表面分别附着的冷却介质流路肋部11以与相邻的阴极侧隔板7和阳极侧隔板6相接触的方式粘贴而形成的冷却介质流路的结构,图5A示出肋部11的剖面为矩形的流体引导流路的剖视图,图5B示出肋部11的剖面为梯形和矩形的流体引导流路的剖视图,图5C示出肋部11的剖面为带有圆弧的梯形和矩形的流体引导流路的剖视图,图5D示出本发明的冷却介质流路和气体引导流路组成的流体引导流路的剖面图的一例。
图6A-6D是本发明的实施方式2中,在面向隔板6、7的气体扩散层4、5的表面附着得到的流体引导流路肋部11以与隔板6、7相接触的方式对接形成的气体引导流路结构,以及在阳极侧隔板6和/或阴极侧隔板7的一侧的表面分别附着的冷却介质流路肋部11以与相邻的阴极侧隔板7和阳极侧隔板6相接触的方式粘贴而形成的冷却介质流路的结构,图6A示出肋部11的剖面为矩形的流体引导流路的剖视图,图6(B示出肋部11的剖面梯形和矩形的流体引导流路的剖视图,图6C示出肋部11的剖面为带有圆弧的倒梯形和矩形的流体引导流路的剖视图,图6D示出肋部11的剖面为倒梯形和矩形的流体引导流路的剖视图。
图7A-7C是本发明的实施方式3中,在面向气体扩散层4、5的隔板6、7的表面附着气体引导流路,另外在面向隔板6、7的气体扩散层4、5的表面附着气体引导流路,使彼此对接而形成的气体引导流路结构,以及在阳极侧隔板6和/或阴极侧隔板7的一侧的表面分别附着的冷却介质流路肋部11以与相邻的阴极侧隔板7和阳极侧隔板6相接触的方式粘贴而形成的冷却介质流路的结构,图7A示出肋部11的剖面为矩形的流体引导流路的剖视图,图7B示出肋部11的剖面为梯形和矩形的流体引导流路的剖视图,图7C示出肋部11的剖 面为带有圆弧的梯形和矩形的的流体引导流路的剖视图。
图8A和8B是表示本发明的一实施方式中形成于隔板6、7与气体扩散层4、5的中间位置的气体引导流路肋部11被夹持的状态的放大图,图8A示出实施方式1的梯形的气体引导流路肋部11与气体扩散层4、5接触时的应力分布,图8B示出实施方式2的梯形的气体引导流路肋部11与隔板6、7接触时的气体扩散层4、5侧的应力分布。
图9A和9B示出本发明的流体引导流路变形例1,图9A示出对实施方式3的气体引导流路肋部11和冷却介质流路肋部11设有无数的孔的一个示例,图9B示出对实施方式1和2的气体引导流路肋部11和冷却介质流路肋部11设有无数的孔的一个示例。
图10A-10D是用于对本发明的实施方式的一个方式中流体引导流路的头压方式、头击方式、咬合方式的顺序进行图解的图解图。
图11A-11C是用于说明本发明的一实施方式中流体引导流路肋部11的配置所导致的沟道宽度Cw的不同的图,图11A是局部示出实施方式1的流体引导流路肋部11的图,图11B是局部示出实施方式2的流体引导流路肋部11的图,图11C是局部示出实施方式3的流体引导流路肋部11的图。
图12是应用于本发明的一实施方式的流体引导流路肋部11的剖面形状的一个示例,列A表示左右对称的流体引导流路肋部11的剖面形状,列B表示左右非对称的流体引导流路肋部11的剖面形状,是角度α或β的任一个为直角的形状,列C表示左右非对称的流体引导流路肋部11的剖面形状。
图13A-13F是基于本发明的实施方式3,对图12所示的肋部流路11的多种剖面形状进行组合而形成的流体引导流路的方式,图13A是交替附着左右非对称的流体引导流路肋部11的事例、图13B是无差别地附着左右非对称的流体引导流路肋部11的事例、图13C是交替附着左右对称的流体引导流路肋部和左右非对称的流体引导流路肋部11的示例、图13D是在第1基材(气体扩散层4、5)和第2基材(隔板6、7)分别附着尺寸不同的左右对称的流体引导流路肋部11的示例、图13E是以使左右对称的梯形的流体引导流路肋部11相互重 叠的方式进行附着的事例、图13F是在附着有左右对称的梯形的流体引导流路肋部11的第2基材(隔板6、7)侧的一面预先设有覆盖层的示例。
图14是本发明的实施方式3中以咬合方式形成的流体引导流路结构的一个示例。
图15A-15B是本发明的实施方式3中流体引导流路结构的一个示例,图15A是基于实施方式1以头压方式形成的具有火山状的肋部剖面形状的流体引导流路结构,图15B是基于实施方式3以头击方式形成的具有塔状的肋部剖面形状的流体引导流路结构。
图16A-16B示出基于本实施方式1形成的流体引导流路结构的变化的两个示例。
标号说明
1 电解质膜
2 阳极侧催化剂层
3 阴极侧催化剂层
4 阳极侧气体扩散层(第1基材)
5 阴极侧气体扩散层(第1基材)
6 阳极侧隔板(第2基材)
7 阴极侧隔板(第2基材)
8 单元
9 堆叠结构体
11 流体引导流路的肋部
12 流体引导流路的沟道部
13 流体引导流路的底部
101/102 端板
Rw1 基材侧的肋部宽度
Rw2 肋部上边宽度
h 肋部高度
Cw 沟道宽度
α、β 肋部界面与肋部侧面所成角度
S 流路间距
本发明的较佳实施方式
此处,参照附图,举例示出优选的实施方式来详细说明本发明的燃料电池。另外,在以下的说明中,以燃料电池为固体高分子型燃料电池的情况为例进行说明。其中,本发明的一实施方式中所记载的结构构件的材质、尺寸、形状、角度、其相对配置等只要没有特别地进行特定记载,那么本发明的范围就不仅限于这些记载。
下面,参照适当的附图对本发明的一实施方式进行详细说明。在所参照的附图中,图1示出燃料电池的外观。如图1所示,堆叠多个燃料电池单元8而得到的燃料电池堆结构体9的两端由起到按压板的作用的端板101、102紧固。燃料电池通过下述方式构成:层叠多个燃料电池单元8,在这些层叠体的两端安装用于取出燃料电池单元8发电产生的电流的集电板、用于与燃料电池单元8之间进行绝缘的绝缘板、以及端板101、102等,并利用连杆进行紧固。
〔燃料电池的工作原理〕
燃料电池的工作原理如下所述。燃料流体被提供给阳极(被称为燃料极),借助催化剂的帮助,电子从所提供的燃料流体中分离并向外部电路移动。这里,氢变化为氢离子(被称为质子)。另一方面,氧被提供给阴极(被称为空气极)。氧与从电解质膜通过的质子和从外部电路流入的电子进行反应从而生成水。燃料流体典型地为气体,例如氢气。
作为一个示例,本发明的燃料电池是下述固体高分子型燃料电池,即:电解质膜1使用固体高分子电解质,向该电解质膜1添加阳极侧催化剂层2(称为第一催化剂层)和阴极侧催化剂层3(称为第二催化剂层),构成催化剂涂覆膜(catalyst coated membrane,CCM)。在阳极侧催化剂层2以隔着阳极侧气体扩散层4(称为第一气体扩散层)的方式附加上阳极侧隔板6(称为第一隔板), 并在阴极侧催化剂层3以隔着阴极侧气体扩散层5(称为第二气体扩散层)的方式附加上阴极侧隔板7(称为第二隔板),由此来构成燃料电池单元8,堆叠多个该燃料电池单元8而得到固体高分子型燃料电池。
关于本发明的一实施方式所涉及的燃料电池单元8的构成构件和与它们关联的要素,可以使用公知的基材来形成。此外,可以使用惯用技术来制作燃料电池单元8的构成构件和与它们相关联的要素。本发明中,关于公知的基材和惯用技术没有特别的限制。下面,对各构成构件简单进行说明。
〔电解质膜〕
作为起电部的电解质膜1通常可优选使用氟系高分子电解质膜和碳化氢系高分子电解质膜中的任一个。电解质膜1要求具有的主要功能可列举出:良好的质子传导性、反应气体的不透过性、电子绝缘性及物理和化学高耐久性。作为本发明所使用的电解质膜,只要是由离子(质子)透过性优异且不会流过电流的材料形成的,则没有特别的限制。
〔催化剂层〕
配置于电解质膜1的两侧的阳极侧催化剂层2和阴极侧催化剂层3中,发生阳极和阴极的燃料电池反应。在阳极侧催化剂层2,促使进行氢分解成质子和电子的反应(氢氧化反应)。在阴极侧催化剂层3,促使进行由质子、电子、氧生成水的反应(氧还原反应)。本发明所使用的催化剂电极没有特别的限制,可使用以往所使用的通常的材料。
〔气体扩散层〕
阳极侧气体扩散层4位于CCM板(未图示)与阳极侧隔板6之间,阴极侧气体扩散层5位于CCM板与阴极侧隔板7之间。CCM板是保持电解质膜1、阳极侧催化剂层2和阴极侧催化剂层3的CCM支持膜的总称。气体扩散层4、5是具有高效地沿着电解质膜1的面垂直方向对化学反应所需的燃料气体和氧化气体进行引导的功能的层。即,在阳极侧气体扩散层4设有能够使燃料气体扩散的流体引导流路,在阴极侧气体扩散层5设有能够使氧化气体扩散的流体引导流路。只要是具有气体的透过性、且能够对产生的电进行集电,则没有特 别的限制,能够沿用以往的燃料电池所使用的成品的气体扩散层。
〔隔板〕
隔板是对作为发电体的燃料电池单元8彼此进行划分的金属薄板,在一对隔板6、7之间收纳有发电所需的电解质膜1、阳极侧催化剂层2、阴极侧催化剂层3、阳极侧气体扩散层4、阴极侧气体扩散层5。另外,该隔板也起到对发电的集电功能。
隔板6、7由具有气体遮断性、化学稳定性及电子传导性的金属薄板构成。作为隔板,例如可使用铝、铜、不锈钢等各种各样的金属薄板、金属箔、金属薄膜等。优选这些金属薄板、金属箔、金属薄膜由具有耐腐蚀性和机械强度的导电性材料形成。并且,更优选为所述金属薄板、金属箔、金属薄膜是经过表面涂布、涂层及表面物理化学处理从而耐腐蚀性、机械强度以及导电性变得更高的构件。
〔流体引导流路〕
流体引导流路包括气体引导流路和冷却介质流路两种。而气体引导流路有燃料气体诱导流路(阳极)和氧化气体诱导流路(阴极)两种。向燃料电池提供流体的流路由槽状的凸部和凹部构成。凸部被称为肋部,经由膜电极接合体(MEA),气体扩散层和隔板被接触,起到集电通电部的作用。凹部被称为沟道部,是从外部向燃料电池中提供流体(燃料气体,氧化气体,冷却介质)的通路和水等的排出通路。
流体引导流路可在阳极侧隔板的一个主面形成燃料气体引导流路,并在其另一个主面(反面)形成冷却介质流路。也可以在阴极侧隔板的一个主面上形成氧化气体引导流路,并且在其另一个主面(反面)上形成冷却介质流路。
以上本发明中构成构件及与它们相关联的要素的形态不限于上述结构,可适当进行变更。
以下,参照附图,对用于实施本发明的方式进行说明。另外,在各图中,对相同或相当的部分标注相同的标号,并适当地简化或省略其重复说明。需要注意的是,在这些附图中,为了使附图容易理解以及便于说明,没有使用准确 的比例尺,与实际相比会放大来进行表示。
本发明的一实施方式中,为了简化说明,不对氢气流动的阳极侧的燃料气体引导流路和空气流动的阴极侧的氧化气体引导流路特别进行区分来说明。本发明的流体引导流路包括气体引导流路和冷却介质流路两种。而气体引导流路有燃料气体诱导流路(阳极)和氧化气体诱导流路(阴极)两种气体引导流路的结构能够适用于阳极侧的流路和阴极侧流路这两方。本说明书中提及的“反应气体”中包含燃料气体、氧化气体和水蒸气。“气体引导流路”包含阳极侧的气体引导流路和阴极侧的气体引导流路。“基材”是指形成有流体引导流路肋部11的基板。另外,“第1基材”指气体扩散层4、5,“第2基材”指隔板6、7。
本发明中,使2个基材对接的方式有“头压方式”、“咬合方式”、“头击方式”这三种。详细内容在后文相关的实施方式中进行阐述,实施方式1和2中采用“头压方式”,实施方式3中采用“咬合方式”和“头击方式”。实施方式4、5及其他变形例1可适用所有的三种方式。这些方式适用于形成气体引导流路和冷却介质流路。
各附图中,将隔板6、7及/或气体扩散层4、5作为基材,用细小的横线来表示与其表面所附着的气体引导流路肋部11和冷却介质流路肋部11的界面。气体引导流路肋部11和冷却介质流路肋部11用斜线阴影来表示。气体流路肋部11和冷却介质流路肋部11用斜线阴影表示。密封材料20用单黑色表示。
实施方式1
以下,使用图2~5D、10A-10D、12、13A-13F、16A、16B,对具备本发明的实施方式1的流体引导流路的燃料电池进行说明。另外,本发明不仅仅限于实施方式1。
在具备本发明的实施方式1中所提及的气体引导流路的燃料电池中,如图5A-5D所示,在气体扩散层4、5的表面没有附着(adhere)流体引导流路,而在隔板6、7的表面附着气体引导流路来实施,并且对隔板6、7另一表面附着冷却介质流路。以下,对本实施方式1中流体引导流路的结构和原理进行说明。
图2中示出构成流体引导流路的尺寸标记。分配了下述标号:“h”设为肋部高度,“Rw1”设为基材侧的肋部宽度,“Rw2”设为肋部上边宽度,“Cw”设为沟道宽度,“α”、“β”设为肋部界面(界面是指肋部与基材的边界面)与肋部侧面所成的角度,“S”设为流路间距。如图2所示,反应气体的主要流动通过沿着凹部的中心轴(图2中用单点划线来表示)延伸的沟道部。关于反应气体的流动,除此以外,还有后述的“横流(Cross flow)”。
本发明中流体引导流路的制造方法没有特别的限定,例如,准备所期望的厚度的基材(隔板及/或气体扩散层)。这些基材本身并未设置流体引导流路图案。所以,,这些基材表面具有光滑的形状,可选择平坦的金属薄板或其他变形较小的电导性薄板。在这样的薄板表面上,如图5D所示,非常薄的碳覆盖膜通过蒸着镀膜方法或其它镀膜方法形成。
优选采用致密性及/或多孔性的高导电性碳系涂布材料附着于基材表面上的二维方法。该二维方法为设计流路的全体一次性附着法或多次部分附着法,包含印刷(printing)、喷射(injecting)、涂布(coating)、点胶(dispensing)以及转印(transfering)等。在此,印刷的方式可为丝网印刷(screen printing)。进行对流体引导流路的沟道底面和肋部侧面整体实施亲水性处理的工序。作为流体引导流路所使用的亲水性剂,由于亲水性、电极反应时的耐腐蚀性等优异,因此优选使用氟系高分子材料,但并不限定于此。另外,在图5D中,将气体引导流路肋部11用梯形,冷却介质流路肋部11用矩形表示,但是肋部形状不限于此。
图10A-10D中绘制了本实施方式1中提及的流体引导流路形成的顺序。图10A和图10D示出了用于图解实施方式1的流体引导流路形成的基本顺序的图解图。图3A所示的不仅是根据图10A的说明图,通过使面向气体扩散层4、5的隔板6、7的表面所附着的气体引导流路肋部11的上表面以与气体扩散层4、5接触的方式对接(夹持)而形成的本发明的实施方式1的气体引导流路的示意图;同时是根据图10D的说明图,相互对面的隔板6、7的表面上分別附着冷却介质流路,然后通过使肋部的相互彼此交错夹持来形成的本实施方式3的冷却介质流路的示意图。
因此,实施方式1所涉及的气体引导流路附着在隔板6、7的表面,不附着在气体扩散层4、5的表面;而冷却介质流路是附着在隔板6、7的表面,与相邻隔板7,6相互接触的方式对接(夹持)而形成的。图10A的流体引导流路形成方式是由于将所谓的肋部的头向相对的面材(本例中为气体扩散层4、5)进行按压,因此也将这称为“头压方式”。图10D的流体引导流路形成方式是由于使相互的肋部的头彼此交错,因此也将这称为“咬合方式”。
在本实施方式1中,冷却介质流路是通过使其肋部11在阳极隔板6和/或阴极侧隔板7的另一面上附着后,粘合相隣的隔板的边缘、使其肋部11和相隣的阴极侧隔板7或阳极隔板6的表面相接触(夹持)而形成。图3A所示的冷却介质流路是采用了咬合方式,但也可以采用任何方式(头击方式、头压方式、咬合方式)。
另外,关于图3A所例示的本实施方式1所记载的流体引导流路,例如,可应用图4所示的三种流体引导流路形状的变形。图4A是肋部11的剖面为矩形的流体引导流路结构。图4B是肋部11的剖面为梯形的流体引导流路结构。图4C是肋部11的剖面为带有圆弧的梯形的流体引导流路结构。理所当然的,本说明书所记载的三种流体引导流路肋部的形状是典型例,本发明并不限于实施方式1,可在不脱离本发明的主旨的范围内进行各种变形、应用。
图5A-5D是应用了图4A、B、C中的流体引导流路肋部11的典型例的实施方式1的流体引导流路结构的剖视图。图5A-5D的各个剖视图是垂直地横切肋部及沟道延伸的方向而得到的剖视图,本说明书中所述的“肋部剖面形状”或“肋部形状”是从该剖面观察到的肋部的情况。并且,在本说明书中,肋部剖面形状的方向为将与基材相接的边设为下边(图中用虚线来表示)。图5A中,肋部11的剖面为矩形。图5B中,肋部11的剖面为梯形和矩形。图5C中,肋部11的剖面为带有圆弧的梯形和矩形。图5D是冷却介质流路和气体引导流路组成的流体引导流路的剖面图。再次,本实施方式1的流体引导流路肋部11的剖面形状当然也不限于图5A、B、C所示的形状。
并且,以往,由于以与基板同一性质的材料作为母材挖掘沟道从而形成 流体引导流路,因此预先考虑了沟道的形状来进行设计;而在本发明中,作为实施方式,由于对基材(隔板、气体扩散层)的表面搭载流体引导流路来形成,因此,基于肋部的剖面形状来研究流体引导流路的设计。因此,本说明书中,边追加考虑沟道的形状,边探究肋部剖面形状,由此来进行流体引导流路结构的说明。
图5A的示例所示的是具有基材(本例中为隔板)侧的肋部宽度Rw1和肋部上边宽度Rw2以相同尺寸值(Rw1=Rw2)形成的剖面形状为矩形的肋部11的流体引导流路结构。根据该例,肋部界面与肋部侧面所成的角度α和β均为90度,因此肋部剖面形状形成为左右对称。其中,有关气体引导流路,观察图5(A)的右上图即可明白,若过于增大肋部宽度Rw1、Rw2的尺寸值,则难以进行反应气体的横流(从沟道透过并流动至气体扩散层内、或从气体扩散层流入沟道的气体的流动)。图5A中用箭头表示气体扩散层4、5和沟道部中横流的流线。
图5B的示例所示的是具有通过增大基材(本例中为隔板)侧的肋部宽度Rw1、减小肋部上边宽度Rw2的尺寸值(Rw1>Rw2)而形成的剖面形状为梯形的肋部11的流体引导流路结构。图5C的示例所示的也是具有通过增大基材(本例中为隔板)侧的肋部宽度Rw1、减小肋部上边宽度Rw2的尺寸值(Rw1>Rw2),并使肋部二侧带有圆弧,而形成的剖面形状为带有圆弧的梯形的肋部11的流体引导流路结构。图5B和图5C示例的肋部剖面形状都为左右对称,图5B和图5C示例的肋部界面与肋部侧面所成的角度α和β为90度以下。对于气体引导流路,由于与气体扩散层4、5接触的肋部上边宽度Rw2的尺寸值较小,因此,当然是扩散至气体扩散层4、5的反应气体的横流变得容易的形状。即,由于是反应气体容易扩散的肋部剖面形状,因此,能够实现气体渗透性良好的气体引导流路结构。另外,在图5A、B、C中,冷却介质流路的肋部11采用了剖面形状为矩形的肋部11。
作为本发明的一实施方式的主要特征,可列举下述特征,即:通过适当地组合基材侧的肋部宽度Rw1和肋部上边宽度Rw2、沟道宽度Cw、肋部高度 h、角度α和β、流路间距S等尺寸值,能够任意地形成流体引导流路肋部11。即,本发明中流体引导流路肋部11的形状并不仅限于本说明书所记载的结构,也可以应用考虑了肋部材料特有的特性的流体引导流路肋部剖面形状的各种组合、以及与本发明的目的相匹配的最为适当的结构。
此处,已叙述了本发明中的肋部的剖面形状中如图12的列A、列B、列C所示,存在各个反向型的肋部形状(inverted rib shapes)的情况。具体而言,存在有左右对称的矩形、左右非对称的矩形及其反向型、左右对称的梯形及其反向型、左右非对称的梯形及其反向型、左右对称的圆形及其反向型、左右非对称的非圆形(斜圆)及其反向型、左右对称的带有圆弧的矩形及其反向型、左右非对称的带有圆弧的矩形及其反向型、左右对称的带有圆弧的梯形及其反向型、左右非对称的带有圆弧的梯形及其反向型。
关于上述内容所启示的点,使用图12来详细阐述。关于基材侧的肋部宽度Rw1和肋部上边宽度Rw2,它们的相对的大小(大小关系)影响各个肋部剖面形状。即,通过任意地变更肋部宽度(Rw1、Rw2)能够改变肋部剖面形状。同样地,关于角度α和β,它们的相对大小(大小关系)也影响各个的肋部剖面形状。即,若将角度设为α=β,则形成为左右对称的肋部剖面形状(参照列A),若设定为α>β、α<β,则表示形成为左右非对称的肋部剖面形状(参照列B、C)。
另一方面,关于沟道宽度Cw、肋部高度h、流路间距S的尺寸值,由于它们是不会对肋部剖面形状的对称性产生影响的要素,因此能够独立地进行设定。因此,特别是,它们可以不是具有一贯性的恒定数值,可以分别设定为不规则的值。例如,通过将沟道宽度Cw、流路间距S等设为具有偏差的值,能够形成不具有等间隔的流路(例如,准备两个沟道宽度Cw,尝试着交替地对它们分别进行设定等)。在上述肋部剖面形状的基础上,依据与在可能的范围内所能想到的多个肋部剖面形状的组合,从而在本实施方式1所涉及的流体引导流路中,能够发现多种多样的流体引导流路结构。
根据本实施方式1所记载的流体引导流路肋部11,虽然使用图5A-5D对 图12的列A所示的左右对称的肋部剖面形状进行了说明,但并不需要限定于此,也可以应用图12的列B、C所示的左右非对称的肋部剖面形状。此外,如图12所示,也能够适用左右对称、左右非对称的肋部剖面形状的反向型。此外,可以适用使这些肋部剖面形状的角部带有圆弧的圆角形状,还可以适用它们的组合。
图8A所示的是放大图5B的一部分而得到的图。若使气体扩散层4、5与附着于隔板6、7的气体引导流路肋部11对接(头压方式),则如进一步放大图8A来表示的右上图所示的肋部的角部所示那样,应力集中于肋部上表面的角部。为了使应力集中缓和,如图8A的右下图所示,通过增大肋部角部与气体扩散层4、5相接触的角度的曲率半径,能够分散应力,因此,在流路形成时,若能够以使肋部本身带有圆弧的方式进行涂布、印刷则能够实现。另外,图8A的放大剖视图中引出的各箭头所表示的是反映应力的横流的方向。
如图8A的放大图所示,由于与气体扩散层4、5接触的肋部上边宽度Rw2比隔板侧的肋部宽度Rw1要小,因此,扩散至气体扩散层4、5的反应气体的横流变得容易,反应气体的流动变好。
若应用本实施方式1所记载的气体引导流路结构,在图5B的示例中,关于气体渗透性,由于流体引导流路以肋部Rw1>Rw2的关系被附着于隔板6、7,因此可认为是渗透至气体扩散层4、5的反应气体的横流容易形成的形状。即,由于是反应气体容易扩散的肋部剖面形状,因此能够实现气体渗透性良好的流体引导流路结构。图5C的示例所示的也是由于气体引导流路以肋部Rw1>Rw2的关系被附着于隔板6、7,对气体扩散层4、5有良好的渗透性。并且因肋部二侧带有圆弧状而可通过改变肋部宽度来调节反应气体压力和流量。因此,不仅通过调整肋部宽度Rw1、Rw2的尺寸值和角度α、β,也可以通过增设肋部二侧的圆弧状而改变肋部腰部位宽度,来改善气体渗透性和调节反应气体压力和流量。
本实施方式1中,构成附着于隔板6、7的流体引导流路的肋部11可以使用相同的致密性高导电性碳系涂布材料来进行附着,也可以使用不同的材料。
本实施方式1中,流体引导流路,被其流体引导流路附着的隔板6、7、以及没有被流体引导流路附着的气体扩散层4、5的3者之间是相互独立,没有进行一体化。
本实施方式1中,流体引导流路的图案并没有特别的限制,可以与现有的隔板中所形成的流体引导流路的图案相同地来形成。例如,可列举出直线型、蛇型、梳型,等。
图16A和16B示出基于本实施方式1形成的流体引导流路结构的变化的一个示例。图16A所示的示例是交替形成包含附着于作为第2基材的隔板的肋部的剖面为左右对称的矩形和半圆这两种形状的剖视图。图16B所示的示例是交替形成包含附着于作为第2基材的隔板的肋部的剖面为左右对称的梯形和半圆这两种形状的剖视图。因此,在隔板6、7的设有流路的整个表面无间隙地设置有通过全面附着得到的覆盖膜。关于全面涂布、印刷材料,根据肋部特性要求而不限定于一种。在图16A-16B的示例中,隔板6、7上的一部分肋部11(矩形或梯形)的上表面与气体扩散层4、5或隔板6、7接触,另一部分肋部11(半圆形)的上表面与气体扩散层4、5或隔板6、7具有间距。可以理解,将肋部11设置在气体扩散层4、5上的结构是类似的。
如上所述,本发明的实施方式1所涉及的流体引导流路的结构只是一个示例,并不限定于本说明书所记载的内容。
实施方式2
接着,使用图2~4C、6A-6D、10A-10D,对具有本发明的实施方式2的流体引导流路的燃料电池进行说明。另外,本发明不仅仅限于实施方式2。
上述实施方式1中,对仅在作为第2基材的隔板6、7的表面形成流体引导流路的示例进行了叙述。另外,在具备本发明的实施方式2所提及的备有反应气体通道的燃料电池中,如图6A-6D所示,在隔板6、7的表面不附着气体引导流路,而在气体扩散层4、5的表面附着气体引导流路来实施这一内容是主要的不同点,其他的结构、方式、原理与图5A-5D所示的实施方式1基本相同。另外,对与本发明的实施方式1中所述的图5的内容相重复的部分标注 相同的标号,并省略其一部分的说明。
关于本发明中构成流体引导流路的尺寸标记和流体引导流路的制造方法,由于在实施方式1中已进行了说明,因此此处省略。
图10A-10D中绘制了本实施方式2中提及的流体引导流路形成的顺序。图10B和图10D示出了用于图解实施方式2的流体引导流路形成的基本顺序的图解图。图3B所示的不仅是根据图10B的说明图,通过使面向隔板6、7的气体扩散层4、5的表面所附着的气体引导流路肋部11的上表面以与隔板6、7接触的方式对接(夹持)而形成的本发明的实施方式2的气体引导流路的示意图;同时是根据图10D的说明图,相互对面的隔板6、7的表面上分別附着冷却介质流路,然后通过使肋部的相互彼此交错夹持来形成的本实施方式3的冷却介质流路的示意图。
因此,实施方式2所涉及的气体引导流路附着在气体扩散层4、5的表面,而不附着在隔板6、7的表面;而冷却介质流路是附着在隔板6、7的表面,与相邻隔板7,6相互接触的方式对接(夹持)而形成的.图10B的流体引导流路形成方式是由于将所谓的肋部的头向相对的面材(本例中为隔板6、7进行按压,因此也将这称为“头压方式”。图10D的流体引导流路形成方式是由于使相互的肋部的头彼此交错,因此也将这称为“咬合方式”。
在本实施方式2中,冷却介质流路是通过使其肋部11在阳极隔板6和/或阴极侧隔板7的另一面上附着后,粘合相隣的隔板的边缘、使其肋部11和相隣的阴极侧隔板7或阳极隔板6的表面相接触(夹持)而形成。图3A所示的冷却介质流路是采用了咬合方式,但也可以采用任何方式(头击方式、头压方式、咬合方式)。
另外,关于图3B所例示的本实施方式2所记载的流体引导流路,例如,可应用图4所示的三种流路形状的变形。理所当然地,本说明书所记载的三种流体引导流路肋部的形状是典型例,本发明并不限定于实施方式2,在不脱离本发明的主旨的范围内可进行各种变形、应用。
图6A-6D是应用了图4A、B、C中的流体引导流路肋部11的典型例的实 施方式2的流体引导流路结构的剖视图。图6A-6D的各个剖视图是垂直地横切肋部及沟道延伸的方向而得到的剖视图,本说明书中所述的“肋部剖面形状”或“肋部形状”是从该剖面观察到的肋部的情况。并且,在本说明书中,肋部剖面形状的方向为将与基材相接的边设为下边(图中用虚线来表示)。图6A中,肋部11的剖面为矩形。图6B中,肋部11的剖面为矩形和梯形。图6C中,肋部11的剖面为矩形和带有圆弧梯形。再次,本实施方式2的流体引导流路肋部11的剖面形状不限于图6A、B、C所示的形状。
图6A的示例所示的冷却介质流路的肋部11和气体引导流路的肋部11均为矩形。气体引导流路的基材(气体扩散层)侧的肋部宽度Rw1和肋部上边宽度Rw2以相同尺寸(Rw1=Rw2)形成的剖面形状为矩形的肋部11的气体引导流路结构。根据该例,肋部界面与肋部侧面所成的角度α和β均为90度,肋部剖面形状形成为左右对称。若观察位于图6A的右上的图解图则可知,对于上述气体引导流路,如果过度增大肋部宽度Rw1、Rw2,则与气体渗透性相关的反应气体的横流变得困难。即,反应气体的流速、流量容易变得不足。图6A中用箭头示出气体扩散层4、5和沟道部12中横流的流线。
图6B的示例所示的冷却介质流路的肋部11为矩形,气体引导流路的肋部11为梯形。气体引导流路具有通过增大基材(气体扩散层)侧的肋部宽度Rw1,减小肋部上边宽度Rw2(Rw1>Rw2)而形成的剖面形状为梯形的肋部11的气体引导流路结构。
图6C的示例所示的冷却介质流路的肋部11为矩形,气体引导流路的肋部11为带有圆弧梯形。气体引导流路也具有通过增大基材(气体扩散层)侧的肋部宽度Rw1,减小肋部上边宽度Rw2(Rw1>Rw2),并使肋部二侧带有圆弧,而形成的剖面形状为带有圆弧的梯形的肋部11的流体引导流路结构。
图6D的示例所示的却介质流路的肋部11为矩形,气体引导流路的肋部11为倒梯形。气体引导流路具有通过减小基材(气体扩散层)侧的肋部宽度Rw1、增大肋部上边宽度Rw2(Rw1<Rw2)而形成的剖面形状为倒梯形的肋部11的气体引导流路结构。
图6B,图6C和图6D示例的气体引导流路肋部剖面形状都为左右对称,图6B和图6C示例的气体引导流路肋部界面与肋部侧面所成的角度α和β为90度以下,图6D)示例的气体引导流路肋部界面与肋部侧面所成的角度α和β为90度以上。在图6B和图6C的气体引导流路的结构中,若过度增大基材侧的肋部宽度Rw1,则气体扩散层4、5与流体引导流路的接触面减少,从而成为阻碍反应气体的横流的促进的重要原因,因此从气体渗透性的观点出发是不合适的。图6B和图6(C的气体引导流路可通过尝试着使角度α和β接近直角(增大角度α和β),并缩小基材侧的肋部宽度Rw2,从而能够扩大气体扩散层4、5与流体引导流路的接触面,提高气体渗透性。图6D所示例,也可进一步增大肋部界面与肋部侧面所成的角度α和β至90度以上,气体引导流路的肋部剖面为倒梯形,以减小肋部宽度Rw1,提高气体渗透性。此外、图6C的示例所示的肋部二侧带有圆弧状而可通过改变肋部宽度来调节反应气体压力和流量。因此,不仅通过调整肋部宽度Rw1、Rw2的尺寸值和角度α、β,也可以通过增设肋部二侧的圆弧状而改变肋部腰部位宽度,来改善气体渗透性和调节反应气体压力和流量。
作为本发明的一实施方式的主要特征的流体引导流路肋部的形状并非仅限于本说明书所记载的结构,在考虑了材料特有的特性的流体引导流路肋部剖面形状的组合基础上,优选应用与本发明的目的匹配的最为适当的结构。关于其详细内容,可参照已述的实施方式1的说明。在上述肋部剖面形状的基础上,利用与在可能的范围内所能想到的多个肋部剖面形状的组合,从而在本实施方式2所涉及的流体引导流路中,能够制作涉及多方面的流体引导流路结构。
根据本实施方式2所记载的流体引导流路肋部,虽然使用图6A-6D对图12A所示的左右对称的肋部剖面形状进行了说明,但并不需要限定于此,也可以应用图12的列B、C所示的左右非对称的肋部剖面形状。此外,如图12所示,也能够适用左右对称、左右非对称的肋部剖面形状的反向型。此外,可以适用使这些肋部剖面形状的角部带有圆弧的圆角形状,还可以适用它们的组合。
图8B所示的是放大图6B的一部分而得到的图。若使隔板6、7与气体扩 散层4、5所付着的气体引导流路肋部11的上表面对接(头压方式),则如进一步放大图8B来表示的右上图中所示的肋部11的角部所绘制的那样,肋部材料进入气体扩散层4、5,从而形成扇状的界面,因此,界面应力被分散,进一步地可获得所谓的锚定效果,从而流体引导流路肋部11与气体扩散层4、5的界面的附着性变好。
若应用本实施方式2所记载的流体引导流路结构,则尤其是在图6D的示例中,关于气体渗透性,由于气体引导流路以Rw1<Rw2的关系付着于气体扩散层4、5,因此可认为是扩散至气体扩散层4、5的反应气体的横流容易形成的形状。即,由于是反应气体容易扩散的肋部剖面形状,因此能够实现气体渗透性良好的流体引导流路结构。
关于图6B和图6C的示例,由于流体引导流路以Rw1<Rw2的关系涂布、印刷于气体扩散层4、5,因此与图6D的流体引导流路结构(形状和尺寸)相比,虽然流过沟道的气体与气体扩散层的接触面积较小,但通过适当地调整肋部宽度Rw1、Rw2的尺寸值和角度α、β,气体渗透性得到改善。
本实施方式2中,构成附着于隔板的冷却介质流路的肋部11和附着于气体扩散层4、5的气体引导流路的肋部11可以使用相同的致密性高导电性碳系涂布材料来进行附着,也可以使用不同的材料。
本实施方式2中,流体引导流路,被其冷却介质流路附着的隔板6、7,以及被其气体引导流路附着的气体扩散层4、5的3者之间是相互独立,没有进行一体化。
本实施方式2中,流体引导流路的图案并没有特别的限制,可以与现有的隔板中所形成的流体引导流路的图案相同地来形成。例如,可列举出直线型、蛇型、梳型、等。
如上所述,本发明的实施方式2所涉及的流体引导流路的结构只是一个示例,并不限定于本说明书所记载的内容。
实施方式3
接着,使用图3A-3F、4A-4C、7A-7C、10~15B,对具有本发明的实施方 式3的流体引导流路的燃料电池进行说明。另外,本发明不仅仅限于实施方式3。
上述实施方式1、2中,对下述示例进行叙述,即:在第1基材(气体扩散层4、5)或第2基材(隔板6、7)中的任一方形成流体引导流路,而在另一方不形成流体引导流路。另外,在本发明的实施方式3中,如图7A-7C所示,在面向气体扩散层4、5的隔板6、7的表面附着气体引导流路,接着另外在面向隔板6、7的气体扩散层4、5的表面附着气体引导流路,然后通过使形成有肋部的双方的基材相互对接,而使对应的肋部的顶面接触来实施这一点是主要的不同点,其他结构、方式、原理与图5A-5D、6A-6D等所示的实施方式1、2基本相同。另外,对与本发明的实施方式1、2的图5A-5D、6A-6D的内容相重复的部分标注相同的标号,并省略其一部分的说明。
关于本发明中构成流体引导流路的尺寸标记和流体引导流路的制造方法,由于与实施方式1、2中已说明的相同,因此省略。
图10A-10D中绘制了本实施方式3中提及的流体引导流路形成的顺序。图10C和图10D示出了用于图解实施方式3的流体引导流路形成的基本顺序的图解图。图3C所示的不仅是根据图10C,在面向气体扩散层4、5的隔板6、7的表面附着流体引导流路,接着另外在面向隔板6、7的气体扩散层4、5的表面附着流体引导流路,然后通过相互的肋部的头彼此对接(夹持)来形成的本实施方式3的气体引导流路的示意图;同时是根据图10D的说明图,相互对面的隔板6、7的表面上分別附着冷却介质流路,然后通过使肋部的相互彼此交错夹持来形成的本实施方式3的冷却介质流路的示意图。
因此,实施方式3所涉及的气体引导流路附着在气体扩散层4、5的表面,也附着在隔板6、7的表面;而冷却介质流路是附着在隔板6、7的表面,与相邻隔板7,6相互接触的方式对接(夹持)而形成的。图10C的流体引导流路形成方式是由于使相互的肋部的头彼此对接,因此也将这称为“头击方式”。图10D的流体引导流路形成方式是由于使相互的肋部的头彼此交错,因此也将这称为“咬合方式”。
在本实施方式3中,冷却介质流路是通过使其肋部11在阳极隔板6和/或阴极侧隔板7的另一面上附着后,粘合相隣的隔板的边缘、使其肋部11和相隣的阴极侧隔板7或阳极隔板6的表面相接触(夹持)而形成。图3A所示的冷却介质流路是采用了咬合方式,但也可以采用任何方式(头击方式、头压方式、咬合方式)。
在本实施方式3中,气体引导流路是由隔板6、7和气体扩散层4、5的表面附着流体引导流路的相互的肋部彼此头击的方式而形成,但也可以采用图14所示的咬合方式。图14所示的是根据图10D的说明图,在面向气体扩散层4、5的隔板6、7的表面附着气体引导流路,接着另外在面向隔板6、7的气体扩散层4、5的表面附着气体引导流路,然后通过使彼此咬合来形成的本实施方式3的流体引导流路的示意图。气体引导流路被附着在隔板6、7的表面和气体扩散层4、5的表面这双方。由于使相互的肋部的头彼此交错,因此也将这称为“咬合方式”。即,此实施方式3中,流体引导流路被附着在隔板6、7的表面和气体扩散层4、5的表面双方。由于使相互的肋部的头彼此交错,因此也将这称为“咬合方式”。实施方式3中,任何方式(头击方式、头压方式、咬合方式)都可以被采用。
另外,关于图3C所例示的本实施方式3所记载的流体引导流路,例如,可应用图4A-4C所示的三种流体引导流路形状的变形。理所当然的,本说明书所记载的三种流体引导流路肋部的形状是典型例,本发明并不限于实施方式3,在不脱离本发明的主旨的范围内可进行各种变形、应用。
图7A-7C是应用了图4A、B、C中的流体引导流路肋部11的典型例的实施方式3的流体引导流路结构的剖视图。图7A-7C的各个剖视图是垂直地横切肋部及沟道延伸的方向而得到的剖视图,本说明书中所述的“肋部剖面形状”或“肋部形状”是从该剖面观察到的肋部的情况。并且,在本说明书中,肋部剖面形状的方向为将与基材相接的边设为下边(附着侧)。图7A中,肋部11的剖面为矩形。图7B中,肋部11的剖面为矩形和梯形。图7C中,肋部11的剖面为矩形和带有圆弧梯形。本实施方式3的流体引导流路肋部的剖面形状当 然也不限于图7A、B、C所示的形状。
根据本实施方式3所记载的流体引导流路肋部11,虽然使用图7A-7C对图12的列A所示的左右对称的肋部剖面形状进行了说明,但并不需要限定于此,也可以应用图12的列B、C所示的左右非对称的肋部剖面形状。此外,如图12所示,也能够适用左右对称、左右非对称的肋部剖面形状的反向型。此外,可以适用使这些肋部剖面形状的角部带有圆弧的圆角形状,还可以适用它们的组合。
图7A的示例所示的是具有基材(本例中为隔板和气体扩散层)侧的肋部宽度Rw1和肋部上边宽度Rw2以相同尺寸(Rw1=Rw2)形成的剖面形状为矩形的肋部11的气体引导流路结构。根据该例,肋部界面与肋部侧面所成的角度α和β均为90度,肋部剖面形状形成为左右对称。但是,若观察图7(A)则可知,若过度增大肋部宽度Rw1、Rw2,则会给反应气体的流路造成影响,从而横流变得困难。图7(A)中用箭头表示气体扩散层4、5和沟道部12中横流的流线。
图7B和图7C的示例所示的是具有通过增大基材(本例中为隔板和气体扩散层)侧的肋部宽度Rw1、减小肋部上边宽度Rw2(Rw1>Rw2)而形成的剖面形状为梯形的肋部11的气体引导流路结构。图7B和图7C示例的肋部剖面形状都为左右对称、肋部界面与肋部侧面所成的角度α和β为90度以下。在图7A、7B、C中,冷却介质流路的肋部11采用了剖面形状为矩形的肋部11。
图7B和图7C的示例所示的气体引导流路是使构成附着于隔板6、7的气体引导流路的肋部11、以及构成附着于气体扩散层4、5的流体引导流路的肋部11各自的上表面(以肋部的头彼此相抵的方式)对接来形成。各自的肋部11的上表面设为平坦面以容易进行对接。如图7B和图7C所示,该对接得到的肋部部分(中间部)中,由于梯形肋部的上边宽度Rw2较小,因此肋部11狭窄,沟道部宽阔,从而具有提高沟道部的气体流动的效果。另外,如气体引导流路肋部11采用了剖面形状为倒梯形的肋部11,该对接得到的肋部部分(中间部)中,由于倒梯形肋部的上边宽度Rw2变大,关于肋部剖面形状,能够使若干肋部表面形成为倾斜面,因此,若将该气体引导流路的结构应用于阴极侧,则 在低温时水滴会滴落在肋部表面并留存在隔板7侧的沟道底面,因此还具有能够防止生成水留存在气体扩散层5的效果。
如上所述,作为本发明的一实施方式的主要特征的可自由附着的流体引导流路肋部的形状并非仅限于本说明书所记载的结构,优选应用材料特有的特性、流体引导流路肋部剖面形状的组合、以及与本发明的目的匹配的最为适当的结构。详细内容与已述的实施方式1、2相同,因此省略,但在上述肋部剖面形状的基础上,通过实现与在可能的范围内所能想到的多个肋部剖面形状的组合,从而能够利用所有的组合来形成流体引导流路结构。
上文中对附着于第1、第2基材的流体引导流路肋部的所有的剖面形状均为完全左右对称的情况进行了叙述。但附着于第1、第2基材的流体引导流路肋部的剖面形状无论是非对称、还是反向型的形状、还是它们的组合,本发明中均可实施。
如上所述,本实施方式3中,由于在第1基材和第2基材双方均形成流体引导流路,因此存在两个类型的肋部形状的配置。它们是通过头击方式形成的流体引导流路结构、以及通过咬合方式形成的流体引导流路结构。
图13A-13F中列举了几个代表例(点线为肋部附着侧)。图13A、13B、13C所示的是基于实施方式3的使用头击方式的流体引导流路结构,适当地组合图12的左右对称的流体引导流路肋部剖面形状(及其反向型的形状)和图12的列B、C的左右非对称的流体引导流路肋部剖面形状(及其反向型的形状)而得到的流体引导流路结构的剖视图。图13D所示的是基于实施方式3的使用咬合方式的流体引导流路结构,适当地组合形状和尺寸不同的梯形和倒梯形的肋部而得到的流体引导流路结构的剖视图的一个示例。同样地,使用该咬合方式,能够形成适当组合了图12的列A的左右对称的流体引导流路肋部剖面形状(及其反向型的形状)和图12的列B、C的左右非对称的流体引导流路肋部剖面形状(及其反向型的形状)的流体引导流路结构。图13E、13F所示的是使基于实施方式1和实施方式2的流体引导流路的结构的肋部11变化后的结构。
图13D是下述情况,即:在气体扩散层4、5或在隔板6、7表面上附着 左右对称的梯形的肋部剖面形状11,在相对面的隔板6、7也附着左右对称的梯形的肋部剖面形状11,并以各个肋部剖面形状的上表面(肋部的头)彼此不接触的方式(即,进行咬合)进行夹持。采用了这种咬合方式的示例中,气体扩散层4、5的肋部剖面形状11的尺寸设为比隔板6、7的肋部剖面形状11的尺寸要小。作为气体引导流路时,其理由是,若观察图13D则可知,通过将附着于气体扩散层4、5的肋部的界面宽度Rw1和附着于隔板6、7的肋部的上边宽度Rw2设为与沟道的宽度相同的尺寸,从而在沟道内流动的反应气体与气体扩散层4、5间的接触面均匀地分布,接触面积也确保为较大,由此不仅反应气体容易流动,反应气体向气体扩散层4、5的渗透性也提高。
此外,基本上,为了容易实施咬合,在实施方式1中以每隔一个去除形成于隔板的肋部,在实施方式2中以每隔一个去除形成于气体扩散层4、5的肋部,由此间隔开来形成肋部。于是,通过将双方的肋部按压至相对面的基材,从而能够实现咬合的形态。从制造的观点出发,可以在第1基材和第2基材中错开开始流体引导流路的附着的起点以使流体引导流路肋部顺利地咬合来执行。
另外,作为图13D的变形,可以将附着于双方的基材的梯形的肋部剖面形状11设为图12所示的左右非对称的梯形的肋部剖面形状11或/及矩形的肋部剖面形状11、或者它们的剖面形状的反向型、圆角形状的混合。并且,双方的基材中所附着的肋部剖面形状和沟道宽度可以不一致,可以不相同。
还可考虑下述这样的变形。图13E中,在隔板6、7,以使左右对称的梯形的肋部剖面形状11相互重合(重叠)的方式对它们进行附着。重叠部分周围的上侧的不与气体扩散层4、5接触的空间起到反应气体流动的沟道部的作用。重叠部分周围的下侧的与隔板6、7接触的空间作为底部13。
根据图13F,特别使用与作为第2基材的隔板6、7上所附着的流体引导流路肋部11同一性质的致密性高导电性碳系涂布材料,首先无间隙地全面附着来形成肋部11和沟道部12的底部13,接着在该底部的正上方安装剖面形状为左右对称的梯形的气体引导流路肋部11。即,在图13F的示例中,通过 对隔板6、7进行全面涂布来设置沟道12的底部。另外,在上述的实施方式2中,在对气体扩散层4、5进行全面涂布从而对沟道设置底部的情况下,为了确保反应气体向气体扩散层4、5进行扩散的路径,需要设置具有气体渗透性的全面涂布层。关于隔板6、7,通过全面涂布来进行的底部形成可应用于实施方式1、3、4、5。
由此,通过利用各种流体引导流路肋部剖面形状和通过对它们进行组合而获得的特性,从而能够构成对于反应气体流动和气体渗透性具有最优特性的最佳流体引导流路。
并且,能够根据燃料电池的规格来调整流体引导流路肋部的高度h。例如,关于流体引导流路肋部的高度h,可以不是恒定数值,而设定具有不规则性的值,也可以对各个肋部的高度设置落差(参照图3F)。关于肋部的高度h的调整,可应用于双方的基材即第1和第2基材。
从技术的观点出发,在对流体引导流路肋部进行附着时,存在下述倾向,即:对于任意的基材均同样地形成相同的肋部形状这一方式在制造过程中较为容易。即,对每个基材以相同形状同样地执行流体引导流路的附着在技术上是便利的。但是,对于实现通过组合肋部形状而带来的种类丰富的流体引导流路形状,通过混合各种形状的肋部,从而与产品规格的需求相对应的流体引导流路的结构的选择会变得更多更广。因此,若灵活使用咬合方式,在第1基材(气体扩散层4、5)或第2基材(隔板6、7)中,该基材中附着同样形状的流体引导流路肋部,而以其不同的肋部形状在相对面的第2基材(隔板6、7)中形成流体引导流路,并使它们咬合,其结果如图14所示,完成了交替配置了不同肋部形状的流体引导流路结构。即,通过实施方式3的咬合方式,能够使使用了不同肋部形状的流体引导流路的结构混合存在的情况变得容易。
此外,关于实施方式3的头击方式,相当于肋部的头的上表面是平坦的,仅在为相同面积的范围内,如图15A所示,在第1基材(气体扩散层4、5)或第2基材(隔板6、7)和相对面的第2基材(隔板6、7)中以各不相同的肋部形状形成流体引导流路,在相互的上表面使不同形状的肋部对接,其结果如图15B所 示那样,能够实现塔形的肋部剖面形状(在第1基材或第2基材形成矩形的肋部,而在相对面的第2基材形成大致梯形的肋部)。还存在与之相类似的剖面形状,图15A所示的是以与塔形不同的方式制作得到的利用实施方式3的头压方式形成的火山型的肋部剖面形状。
在本实施方式3所记载的流体引导流路形状中,关于隔板6、7与该流体引导流路及气体扩散层4、5与该流体引导流路的附着性,附着于气体扩散层4、5的气体引导流路肋部材料的一部分进入气体扩散层4、5,形成扇状的界面,由此与气体扩散层4、5的界面应力被分散,并可获得所谓锚定效果(参照图8B)。因此,气体引导流路肋部11与气体扩散层4、5的附着性良好。
使用图11A-11C,对实施方式1~3中沟道宽度Cw的不同进行说明。图11A、B示出在上述实施方式1、2的隔板6、7或气体扩散层4、5的任一方进行附着时的流体引导流路形状剖面。图11C示出在实施方式3的流体引导流路形状的隔板6、7及气体扩散层4、5双方附着流体引导流路时的流体引导流路形状剖面。
本实施方式3的两肋部11与隔板6、7的界面面积及与气体扩散层4、5的界面面积若设为分别与上述实施方式2的隔板6、7与该流体引导流路肋部11的头压面积、以及上述实施方式1的气体扩散层4、5或隔板6、7与该流路肋部11的头压的面积同等,则隔板6、7、肋部11及气体扩散层4、5这三者间的最大按压压力不会发生变化,本实施方式3的流体引导流路的沟道的截面积变大,气体扩散层4、5与流过沟道的反应气体的接触面积也变大。因此,本实施方式3的流体引导流路形状(在双方的基材均形成肋部)与上述的实施方式1、2的流体引导流路形状(在单个基材形成肋部)相比,流体阻抗较低,反应气体容易流动,反应气体向气体扩散层4、5的渗透性也更好。由于反应气体容易流动,气体渗透性也更好,因此,能够将肋部的高度h形成得较低,其结果是能够减小燃料电池单元的厚度,从而提高燃料电池的输出体积密度。
具体而言,若上述的实施方式1所记载的肋部11与基材(气体扩散层)的头压面积(相当于图11A中用粗线来表示的部位)、上述的实施方式2所记载的 肋部11与基材(隔板)的头压面积(相当于图11B中用粗线来表示部位)、以及本实施方式3所记载的肋部11的底面与基材的界面面积(相当于图11C中用虚线来表示的部位)均相等,则本实施方式3的流体引导流路与上述的实施方式1、2相比具有下述特征,即:形成了在同等的压缩压力下确保了肋部11的强度,并且沟道宽度Cw比中央部要广的结构。
本实施方式3中,对于构成附着于隔板6、7的流体引导流路的肋部11、以及构成附着于气体扩散层4、5的流体引导流路的肋部11,可以使用相同的致密性高导电性碳系涂布材料来进行附着,也可以使用不同的材料。
本实施方式3中,流体引导流路和被其附着的隔板6、7、以及相对面的流体引导流路和被其附着的气体扩散层4、5的4者之间是单独形成并对接,没有进行一体化。
本实施方式3中,附着于隔板6、7和气体扩散层4、5双方的肋部的上表面是平坦的,因此,仅进行对接即可。如果要利用粘接剂等来接合,则该粘接剂会透过到肋部内而成为反应气体的阻挡层,从而有碍反应气体的渗透性。
本实施方式3中,关于流体引导流路的整体的图案,流路面积较大的话,反应气体会相应地一次接触到较多的催化剂,因此认为能获得高输出。特别是在阴极侧,由于生成水也会通过,因此,需要确保一定程度的沟道宽度Cw。但是,若沟道宽度Cw较大,则供给气体从单元排出的速度增加。为了使所提供的气体不会立刻排出,缩小一定程度的沟道宽度Cw,或者在流体引导流路中设置折返来使其慢慢流动是非常重要的。流体引导流路的图案并没有特别的限制,可以与现有的隔板中所形成的流体引导流路的图案相同地来形成。例如,可列举出直线型、蛇型、梳型等。
如上所述,本发明的实施方式3所涉及的流体引导流路的结构只是一个示例,并不限定于本说明书所记载的内容。
实施方式4
接着,使用图2~4、12,对具有本发明的实施方式4的流体引导流路的燃料电池进行说明。另外,本发明不仅仅限于实施方式4。
在上述的实施方式1~3中,对将阳极侧的流体引导流路的结构和阴极侧的流体引导流路的形成方式和结构设为相同来构成的燃料电池单元所具备的流体引导流路的结构进行了叙述。另外,在具备本发明的实施方式4的流体引导流路的燃料电池中,如图3D、E所示,将阳极侧的流体引导流路的结构和阴极侧的流体引导流路的形成方式和结构设为不同来进行实施这一点是主要的不同点,其他结构、方式、原理与实施方式1~3基本相同,因此省略其详细说明。
关于本发明中构成流体引导流路的尺寸标记和流体引导流路的制造方法,由于与实施方式1~3中已说明的相同,因此省略。
本实施方式4的流体引导流路的形成方式和结构如图3D、E所示,基于本实施方式1~3中所述的流体引导流路形状,在阳极侧和阴极侧设为不同。本发明的实施方式4中,阳极侧的流体引导流路和阴极侧的流体引导流路未必要以相同的形成方式和结构来形成。
图3D的示例中,对于阳极侧的气体引导流路,在面向气体扩散层4的隔板6的表面附着气体引导流路,在气体扩散层4不附着气体引导流路。接着,对于阴极侧的气体引导流路,在面向隔板7的气体扩散层5的表面附着气体引导流路,在隔板7不附着气体引导流路。换言之,在阳极侧和阴极侧,即使不对同种基材附着气体引导流路,也能够实施本发明。如图3D所示那样,可以仅在隔板6附着阳极侧气体引导流路,仅在气体扩散层5附着阴极侧气体引导流路。或者,也能够采用与之相反的组合。
图3E的示例中,对于阳极侧的气体引导流路,在面向气体扩散层4的隔板6的表面附着气体引导流路,在面向隔板6的气体扩散层4不附着气体引导流路。接着,对于阴极侧的气体引导流路,在面向隔板7的气体扩散层5的表面附着气体引导流路,在面向气体扩散层5的隔板7也附着气体引导流路。换言之,在阳极侧,如上述实施方式1那样仅在一个基材的单面附着气体引导流路,在阴极侧,如上述实施方式3那样将双方作为基材来附着气体引导流路。也能够采用与之相反的组合。即,是组合实施方式1和实施方式3来实施的示 例。
即,如上述事例那样,阳极侧的流体引导流路的结构和阴极侧的流体引导流路的形成方式和结构未必一定要相同。
对于本发明的流体引导流路的肋部根数、实施方式1~3所述的肋部剖面形状的组合等,能够根据产品规格、产品的构成部分及其功能等来确定最优的方式,除了肋部剖面形状之外,也能进行多个种类的肋部材料的组合、应用了附加的要素等的多个变形,在它们的效果中优选与本发明的主旨相同。在制作符合本发明的目的的产品的基础上,研究最适合规格的变形能够有助于调查以各种方式组合各个要素而得到的事例中所发现的固有的特征、效果等。
另外,关于本实施方式4所涉及的流体引导流路,例如,能够应用图4所示的三种流路形状的变形。理所当然地,本说明书所记载的三种流体引导流路肋部的形状是典型例,本发明并不限定于实施方式4,在不脱离本发明的主旨的范围内可进行各种变形、应用。另外,作为本实施方式4的流体引导流路肋部11的一个示例,可以应用图12的列A所示的左右对称的肋部剖面形状,也可以应用图12的列B、C所示的左右非对称的肋部剖面形状。此外,如图12所示,也能够适用左右对称、左右非对称的肋部剖面形状的反向型。此外,可以适用使这些肋部剖面形状的角部带有圆弧的圆角形状,还可以适用它们的组合。
本实施方式4中,对于构成附着于隔板6、7的流体引导流路的肋部11、以及构成附着于气体扩散层4、5的流体引导流路的肋部11,可以使用相同的致密性高导电性碳系涂布材料来进行附着,也可以使用不同的材料。
本实施方式4中,附着有流体引导流路的隔板6、7、以及附着有流体引导流路的气体扩散层4、5单独形成后进行对接,没有进行一体化。
本实施方式4中,流体引导流路的图案并没有特别的限制,可以与现有的隔板中所形成的流体引导流路的图案相同地来形成。例如,可列举出直线型、蛇型、梳型等。如上所述,本发明的实施方式4所涉及的流体引导流路结构只是一个示例,并不限定于本说明书所记载的内容。
实施方式5
接着,使用图2~4C、12,对具有本发明的实施方式5的流体引导流路的燃料电池进行说明。另外,本发明不仅仅限于实施方式5。
上述实施方式1~4中,对将流体引导流路肋部的高度均设为相同的示例进行了叙述。另外,在具备本发明的实施方式5的流体引导流路的燃料电池中,如图F所示,使流体引导流路肋部的高度h与相对应的肋部的高度h相匹配并设有落差这一点是主要的不同点,其他结构、方式、原理与实施方式1~4基本相同,因此省略其详细说明。
关于本发明中流体引导流路的尺寸标记和流体引导流路的制造方法,由于与实施方式1~4中已说明的相同,因此省略。
本实施方式5中,如图3F所示,在阳极侧和阴极侧,与实施方式3相同,在隔板的表面及气体扩散层的表面双方均形成气体引导流路肋部。接着,作为实施方式5的特征,根据相对肋部的高度h,自由地调整这些气体引导流路肋部的高度h(例如,在将总高度设为1时,将附着于隔板6、7的肋部高度h调整为0.7,将附着于气体扩散层4、5的相对肋部的高度h调整为0.3)。由此形成的气体引导流路肋部的高度h的落差可以是规则的落差(对相邻肋部交替设置),也可以是不规则的落差(每隔多个肋部数设置)。上述的示例只是一个示例,它们的相反的组合也是这样。
另外,关于本实施方式5所记载的流体引导流路,例如,能够应用图4A-4C所示的三种流路形状的变形。理所当然地,本说明书所记载的三种流体引导流路肋部的形状是典型例,本发明并不限于实施方式5,可在不脱离本发明的主旨的范围内进行各种变形、应用。另外,作为本实施方式5的流体引导流路肋部11的一个示例,可以应用图12的列A所示的左右对称的肋部剖面形状,也可以应用图12的列B、C所示的左右非对称的肋部剖面形状。此外,如图12所示,也能够适用左右对称、左右非对称的肋部剖面形状的反向型。此外,可以适用使这些肋部剖面形状的角部带有圆弧的圆角形状,还可以适用它们的组合。
本实施方式5中,对于构成附着于隔板6、7的流体引导流路的肋部11、以及构成附着于气体扩散层4、5的流体引导流路的肋部11,可以使用相同的致密性高导电性碳系涂布材料来进行附着,也可以使用不同的材料。
本实施方式5中,流体引导流路和被其附着的隔板6、7、以及相对面的流体引导流路和被其附着的气体扩散层4、5之间是单独形成并仅进行对接,没有进行一体化。
本实施方式5中,流体引导流路的图案并没有特别的限制,可以与现有的隔板中所形成的流体引导流路的图案相同地来形成。例如,可列举出直线型、蛇型、梳型、等。
本实施方式5中,基于实施方式3的头击方式,如实施方式4中所述那样,边使阳极侧的流体引导流路的结构与阴极侧的流体引导流路结构不同,边对这些肋部设置落差,由此也能够实施流体引导流路结构。
如上所述,本发明的实施方式5所涉及的流体引导流路的结构只是一个示例,并不限定于本说明书所记载的内容。
上述各实施方式1~5所记载的示例中,对各个独立的结构进行了说明。也能够通过适当组合各实施方式1~5来实施。
其他变形例1
接着,使用图9A和9B,对应用了本发明的其他变形例1的燃料电池进行说明。
在上述实施方式1~5中,将以各种方式形成于各基材的表面的流体引导流路肋部全部设为无孔的致密性结构来进行了说明。
在其他的变形例1中,如图9A、9B所示,对实施方式1~5的流体引导流路肋部11设置无数的孔来实施这一点是主要的不同点,其他的结构、方式、原理与实施方式1~5基本相同。
若气体扩散层4、5与附着于它们的表面的肋部11的界面面积变大,则沟道宽度Cw变小,反应气体向气体扩散层4、5的扩散受到限制。因此,通过在上述的实施方式1~5所涉及的各种形状的气体引导流路肋部11中设置无 数的孔,能够改善反应气体的渗透性,调整沟道间的压力差,也能够保持供给排出气体的流动的均衡,排出生成水。
图9A中举例示出了下述情况,即:使用同种材料或不同材料形成构成附着于隔板表面的流体引导流路的肋部11、以及构成附着于气体扩散层表面的流体引导流路的肋部11,接着对各个肋部设置无数的孔(图9A、9B中用白色圆圈来呈现)。图9B、C中示出对附着于气体扩散层4、5的表面的流体引导流路肋部11、及/或构成附着于隔板6、7的表面的流体引导流路的流体引导流路肋部11分别设置无数的孔的情况。如图2、图9A、9B中横穿肋部的箭头所示那样,反应气体透过肋部的侧面(沟道两侧面),经由设置于气体扩散层侧的肋部,向气体扩散层的主体扩散。因此,反应气体可间接地透过气体扩散层的主体。此外,由于反应气体透过肋部的侧面(沟道两侧面),因此,能够调整沟道间的压力差,保持反应气体的供给排出的流动的均衡,使生成水排出。
流体引导流路和被其流体引导流路附着的隔板6、7、以及相对面的流体引导流路和被其流体引导流路附着的气体扩散层4、5的4者之间是单独形成并仅进行对接,没有进行一体化。
如图9A所示那样,在其他的变形例1中,隔板6、7或气体扩散层4、5和相对面的隔板6、7中所附着的肋部的上表面是平坦的,仅使两方的上表面对接即可。如果要利用粘接剂等来接合,则该粘接剂会透过到肋部内而成为反应气体的阻挡层,从而有碍反应气体的渗透性。
此外,对于构成附着于隔板6、7的流体引导流路的肋部11、以及构成附着于气体扩散层4、5的流体引导流路的肋部11,可以使用相同的多孔性及/或致密性高导电性碳系涂布材料来进行附着,也可以使用不同的材料。
并且,流体引导流路的图案并没有特别的限制,可以与现有的隔板中所形成的流体引导流路的图案相同地来形成。例如,可列举出直线型、蛇型、梳型、等。
另外,无数的肋部孔如图9A、9B所示,可以仅设置于隔板侧的流体引导流路肋部11,也可以仅设置于气体扩散层侧的流体引导流路肋部11,也可以 设置于双方。或者,也可以局部设置或选择性设置,但优选进行整体设置。可想到能以各种方式实现的变形。
如上所述,本发明的其他变形例1所涉及的流体引导流路结构只是一个示例,并不限定于本说明书所记载的内容。
并且,上述各实施方式1~5所记载的示例对各个独立的结构进行了说明,但例如也可以分别组合实施方式1~5和其他变形例1来应用。
发明效果
另外,本发明的实施方式1~5及其他变形例1如上所述,通过使用二维方法,在第1基材(气体扩散层4、5)和第2基材(隔板6、7)的表面自由地形成流体引导流路肋部11的形状,能够以任意的组合来实施各种肋部形状11,从而能够获得下述说明的效果。
以往以来,为了在金属加工体的隔板形成流路,需要金属模具。若金属模具一次完成,则进行设计变更较难,且需花费成本和时间。本发明的流体引导流路由于通过印刷、喷射、涂布、点胶、以及转印等的方法来制作,因此不需要金属模具,容易根据特性进行流路设计的变更。此外,能够采用现成的气体扩散层材料,因此能够抑制每个燃料电池设计规格中涉及一体化的气体扩散层4、5的材料设计的变更和再研发等的费用。并且,关于印刷、喷射、涂布、点胶、以及转印等用材料,采用致密性和多孔性高导电性碳系的大量廉价材料,通过在已有保湿力为良好多孔质的气体扩散层和隔板上附着流体引导流路,能够应对量产适应性。
另一方面,由于流体引导流路被附着于隔板6、7的表面及/或气体扩散层4、5的表面,因此,对于与该气体扩散层4、5一起使用的隔板6、7,无需通过冲压加工来形成流体引导流路,能够使用表面平滑且厚度较薄的隔板。通过采用厚度超薄的隔板和控制肋部材料的附着高度,可抑制燃料电池单元的厚度,由此通过使用附着这样的二维加工方法,能够大量制造小型化的高体积输出燃料电池。并且,通过在平坦的隔板表面和多孔质的气体扩散层表面附着成为流 路的肋部11,作用于隔板6、7、肋部11、气体扩散层4、5的内部应力较小,肋部界面的附着性较高,从而能够兼具燃料电池可靠性和寿命延长的效果。通过在肋部11设置无数的孔,从而反应气体的渗透性得到改善,能够调整流路间的压力差,保持反应气体的流动的均衡,能够获得具有高电流密度的燃料电池。
另外,本发明并不限于上述的实施方式,在不脱离其要旨的范围内可进行各种变更,即在不脱离权利要求书的范围的记载的情况下、在本领域技术人员能够想到的范围内各种变形方式也包含在本发明中。
工业上的实用性
本发明的一实施方式可作为车辆搭载用的燃料电池来使用。
本发明不限于上述实施方式1~5及其他变形例1,在不脱离其要旨的范围内可通过各种结构来实现。例如,为了解决上述问题及效果的一部分或全部,能够适当地替换、组合本发明说明书的实施方式1~5、其他变形例1所记载的技术特征。

Claims (30)

  1. 一种燃料电池,包括多个燃料电池单元,每个燃料电池单元包括相对的第一隔板、第二隔板和层叠在所述第一和第二隔板之间的膜电极接合体,所述膜电极接合体包括催化剂涂覆膜和分别设于所述催化剂涂覆膜的第一侧和第二侧的第一气体扩散层和第二气体扩散层,所述燃料电池单元还包括位于所述第一隔板和所述第一气体扩散层之间和/或所述第二隔板和所述第二气体扩散层之间的气体引导流路,其中所述气体引导流路是附着在对应的隔板面向对应的气体扩散层的表面和/或对应的气体扩散层面向对应的隔板的表面,所述燃料电池还包括位于相邻的燃料电池单元的第一隔板和所述隔板之间的冷却介质流路,并且所述冷却介质流路是附着在第一隔板面向对应的第二隔板的表面和/或第二隔板面向对应的第一隔板的表面,由所述气体引导流路和所述冷却介质流路形成所述燃料电池的流体引导流路。
  2. 如权利要求1所述的燃料电池,其中所述第一隔板和/或所述第二隔板的外侧表面上附着所述冷却介质流路,且所述第一隔板和/或第二隔板的内侧表面上附着所述气体引导流路。
  3. 如权利要求1所述的燃料电池,其中所述第一隔板和/或所述第二隔板的外侧表面上附着所述冷却介质流路,且所述第一隔板和/或第二隔板的内侧表面上无附着所述气体引导流路。
  4. 如权利要求1所述的燃料电池,其中所述第一隔板和/或所述第二隔板的外侧表面上附着所述冷却介质流路,且所述第一隔板和/或第二隔板的内侧表面所面向对应的气体扩散层的表面上附着所述气体引导流路。
  5. 如权利要求1所述的燃料电池,其中所述流体引导流路是以涂布、印刷、点胶、喷射或转印的方式形成于对应的隔板表面和/或气体扩散层表面。
  6. 如权利要求1所述的燃料电池,其中用于附着所述流体引导流路的隔板和/或气体扩散层的表面是平滑的。
  7. 如权利要求1所述的燃料电池,所述流体引导流路与所述隔板和所述 气体扩散层是分别形成的。
  8. 如权利要求1所述的燃料电池,其中所述流体引导流路的材料不同于所述隔板和/或所述气体扩散层。
  9. 如权利要求1所述的燃料电池,其中所述流体引导流路的材料为高导电性材料。
  10. 如权利要求1所述的燃料电池,其中所述气体引导流路包括用于控制反应流体流动和流体渗透性的肋部和沟道部。
  11. 如权利要求10所述的燃料电池,其中所述气体引导流路的肋部具有阻止反应流体在相邻沟道间渗透和经由肋部渗透至对应的气体扩散层的致密性结构、或者具有允许反应流体在相邻沟道间渗透或者经由肋部渗透至对应的气体扩散层的多孔结构。
  12. 如权利要求10所述的燃料电池,其中所述气体引导流路还包括承载所述肋部的底部,所述底部具有阻止反应流体经由基部渗透至对应的气体扩散层的致密性结构、或者具有允许反应流体经由基部渗透至对应的气体扩散层的多孔结构。
  13. 如权利要求10所述的燃料电池,其中所述气体引导流路的肋部形成于相对的隔板和气体扩散层的其中之一的表面上,且一部分肋部的上表面与相对的所述隔板和气体扩散层的另一个的表面接触,另一部分肋部的上表面与相对的所述隔板和气体扩散层的另一个的表面具有间距。
  14. 如权利要求1所述的燃料电池,其中所述气体引导流路的肋部形成于相对的隔板和气体扩散层的其中之一的表面上,且所述肋部的上表面与相对面的所述隔板和气体扩散层的另一个的表面接触,所述冷却介质流路形成于相对的第一隔板和第二隔板的其中之一的表面上,且所述肋部的上表面与相对面的所述隔板的另一个的表面接触。
  15. 如权利要求1所述的燃料电池,其中所述气体引导流路的肋部形成于相对的隔板和气体扩散层的表面上,且相对的隔板和气体扩散层上对应的肋部的顶面对接,所述冷却介质流路形成于相对的第一隔板和第二隔板的表面上, 且相对的第一隔板和第二隔板上对应的肋部的顶面对接。
  16. 如权利要求1所述的燃料电池,所述气体引导流路的肋部形成于相对的隔板和气体扩散层的表面上,且隔板上的肋部与气体扩散层的表面接触,气体扩散层上的肋部与隔板的表面接触,所述冷却介质流路形成于相对的第一隔板和第二隔板的表面上,且第一隔板上的肋部与第二隔板的表面接触,第二隔板上的肋部与第一隔板的表面接触。
  17. 如权利要求15所述的燃料电池,其中在一对对接的肋部上,对接界面处的尺寸小于肋部与隔板或气体扩散层接触面处的尺寸。
  18. 如权利要求15所述的燃料电池,其中在一对对接的肋部上,对接界面处的尺寸大于肋部与隔板或气体扩散层接触面处的尺寸。
  19. 如权利要求10所述的燃料电池,其中所述肋部的材料进入所述气体扩散层的界面。
  20. 如权利要求12所述的燃料电池,其中所述气体引导流路的肋部和基部是以全面附着的方式形成。
  21. 如权利要求10所述的燃料电池,其中所述流体引导流路的肋部的顶面和所述沟道部底面的部分或全部是经亲水性处理的。
  22. 一种燃料电池单元的制造方法,包括以下步骤:
    提供膜电极接合体,所述膜电极接合体包括催化剂涂覆膜和分别设于所述催化剂涂覆膜的第一侧和第二侧的第一气体扩散层和第二气体扩散层;
    提供第一隔板和第二隔板;
    在所述第一隔板和/或第二隔板外侧的表面附着(adhere)冷却介质流路肋部,用于与相邻的燃料电池单元的第二隔板和/或第一隔板的表面接触而形成冷却介质流路;
    在所述第一气体扩散层和/或第二气体扩散层的外侧表面附着(adhere)气体引导流路肋部,以及/或者在所述第一隔板和/或第二隔板内侧表面附着气体引导流路肋部,将所述第一隔板与所述第一气体扩散层的外侧表面压合,且将所述第二隔板与所述第二气体扩散层的外侧表面压合而形成的气体引导流路,形 成燃料电池单元。
  23. 如权利要求22的燃料电池单元的制造方法,其中所述冷却介质流路和所述气体引导流路以涂布、印刷、喷射或转印的方式形成于对应的隔板表面和/或气体扩散层表面。
  24. 如权利要求22的燃料电池单元的制造方法,其中用于附着所述冷却介质流路和所述气体引导流路的隔板和/或气体扩散层的表面是平滑的。
  25. 如权利要求22的燃料电池单元的制造方法,其中所述冷却介质流路和所述气体引导流路的材料不同于所述隔板和/或所述气体扩散层。
  26. 如权利要求22的燃料电池单元的制造方法,其中所述冷却介质流路和所述气体引导流路的材料为高导电性材料。
  27. 如权利要求22的燃料电池单元的制造方法,其中所述冷却介质流路和所述气体引导流路包括用于控制反应流体流动和流体渗透的肋部和沟道部。
  28. 如权利要求27的燃料电池单元的制造方法,其中所述气体引导流路还包括承载所述肋部的底部。
  29. 如权利要求28的燃料电池单元的制造方法,其中所述气体引导流路的肋部和底部是以全面涂布的方式形成。
  30. 如权利要求28的燃料电池单元的制造方法,其中还包括对所述气体引导流路肋部的顶面和所述沟道部底面的部分或全部进行亲水性处理。
PCT/CN2019/074682 2018-07-04 2019-02-03 具备流体引导流路的燃料电池及其制造方法 WO2020007048A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217003357A KR20210028236A (ko) 2018-07-04 2019-02-03 유체 가이드 유로를 구비한 연료전지 및 그의 제조방법
CN201980044662.XA CN112400246A (zh) 2018-07-04 2019-02-03 具备流体引导流路的燃料电池及其制造方法
EP19830824.9A EP3819970A1 (en) 2018-07-04 2019-02-03 Fuel cell having fluid guide flow path and manufacturing method therefor
JP2021522121A JP7379481B2 (ja) 2018-07-04 2019-02-03 流体ガイド流路を備えた燃料電池およびその製造方法
US17/140,923 US20210210771A1 (en) 2018-07-04 2021-01-04 Fuel cell having fluid guide flow path and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/094449 WO2020006697A1 (zh) 2018-07-04 2018-07-04 具备流体引导流路的燃料电池及其制造方法
CNPCT/CN2018/094449 2018-07-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/140,923 Continuation US20210210771A1 (en) 2018-07-04 2021-01-04 Fuel cell having fluid guide flow path and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2020007048A1 true WO2020007048A1 (zh) 2020-01-09

Family

ID=69060483

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/094449 WO2020006697A1 (zh) 2018-07-04 2018-07-04 具备流体引导流路的燃料电池及其制造方法
PCT/CN2019/074682 WO2020007048A1 (zh) 2018-07-04 2019-02-03 具备流体引导流路的燃料电池及其制造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094449 WO2020006697A1 (zh) 2018-07-04 2018-07-04 具备流体引导流路的燃料电池及其制造方法

Country Status (6)

Country Link
US (1) US20210210771A1 (zh)
EP (1) EP3819970A1 (zh)
JP (1) JP7379481B2 (zh)
KR (1) KR20210028236A (zh)
CN (2) CN112385065A (zh)
WO (2) WO2020006697A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261711B1 (en) * 1999-09-14 2001-07-17 Plug Power Inc. Sealing system for fuel cells
JP2006120621A (ja) 2004-09-21 2006-05-11 Masaru Hori 燃料電池用セパレータ、燃料電池用電極構造、それらの製造方法、及びこれを備えた固体高分子型燃料電池
JP2006339089A (ja) 2005-06-06 2006-12-14 Toyota Motor Corp 燃料電池
CN1957494A (zh) * 2004-12-28 2007-05-02 松下电器产业株式会社 燃料电池及包括该燃料电池的燃料电池堆
CN1996646A (zh) * 2006-12-18 2007-07-11 南京大学 便携式燃料电池极板
JP2016058288A (ja) 2014-09-10 2016-04-21 タカハタプレシジョンジャパン株式会社 ガス流路構造及び燃料電池

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235063A (ja) * 2003-01-31 2004-08-19 Nissan Motor Co Ltd 燃料電池
JP2005293902A (ja) * 2004-03-31 2005-10-20 Toyota Motor Corp 燃料電池用セパレータ及び燃料電池
JP4923386B2 (ja) * 2004-04-05 2012-04-25 トヨタ自動車株式会社 多孔質のセパレータを備える燃料電池
JP2005322433A (ja) 2004-05-06 2005-11-17 Toyota Motor Corp 燃料電池用セパレータとその製造方法
JP2007134145A (ja) 2005-11-10 2007-05-31 Toyota Motor Corp 燃料電池用メタルセパレータとその製造方法
JP2009105005A (ja) * 2007-10-25 2009-05-14 Toyota Motor Corp 燃料電池およびそのセパレータ
JP2009283290A (ja) * 2008-05-22 2009-12-03 Nippon Soken Inc 燃料電池
JP2010232062A (ja) * 2009-03-27 2010-10-14 Toyota Motor Corp 燃料電池
EP2477262A4 (en) * 2009-09-10 2017-07-12 Panasonic Corporation Gas diffusion layer and process for production thereof, and fuel cell
JP5178673B2 (ja) * 2009-09-24 2013-04-10 本田技研工業株式会社 固体高分子型燃料電池
JP5011362B2 (ja) * 2009-09-30 2012-08-29 株式会社日立製作所 燃料電池用バイポーラープレートおよび燃料電池
US8361673B2 (en) * 2009-10-13 2013-01-29 Panasonic Corporation Fuel cell and method for manufacturing same
JP2011090937A (ja) 2009-10-23 2011-05-06 Toppan Printing Co Ltd 燃料電池用セパレータおよびその製造方法
CN101789511A (zh) * 2010-02-23 2010-07-28 昆山弗尔赛能源有限公司 一种集成流场结构的膜电极组件及其燃料电池
JP2011204586A (ja) * 2010-03-26 2011-10-13 Toppan Printing Co Ltd 燃料電池用セパレータおよびその製造方法
JP6639085B2 (ja) * 2014-12-19 2020-02-05 トヨタ自動車株式会社 導電性インク
WO2016157714A1 (ja) * 2015-03-30 2016-10-06 パナソニックIpマネジメント株式会社 燃料電池、及び燃料電池の製造方法
JP2017162750A (ja) * 2016-03-11 2017-09-14 パナソニックIpマネジメント株式会社 燃料電池用ガス拡散層および燃料電池
JP6426261B2 (ja) * 2016-12-09 2018-11-21 日本碍子株式会社 燃料電池セル
CN107394228A (zh) * 2017-08-25 2017-11-24 新奥科技发展有限公司 一种双极板及其制备方法
CN107895804A (zh) * 2017-12-14 2018-04-10 苏州朔景动力新能源有限公司 燃料电池金属双极板及燃料电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261711B1 (en) * 1999-09-14 2001-07-17 Plug Power Inc. Sealing system for fuel cells
JP2006120621A (ja) 2004-09-21 2006-05-11 Masaru Hori 燃料電池用セパレータ、燃料電池用電極構造、それらの製造方法、及びこれを備えた固体高分子型燃料電池
CN1957494A (zh) * 2004-12-28 2007-05-02 松下电器产业株式会社 燃料电池及包括该燃料电池的燃料电池堆
JP2006339089A (ja) 2005-06-06 2006-12-14 Toyota Motor Corp 燃料電池
CN1996646A (zh) * 2006-12-18 2007-07-11 南京大学 便携式燃料电池极板
JP2016058288A (ja) 2014-09-10 2016-04-21 タカハタプレシジョンジャパン株式会社 ガス流路構造及び燃料電池

Also Published As

Publication number Publication date
KR20210028236A (ko) 2021-03-11
JP7379481B2 (ja) 2023-11-14
US20210210771A1 (en) 2021-07-08
EP3819970A1 (en) 2021-05-12
CN112385065A (zh) 2021-02-19
WO2020006697A1 (zh) 2020-01-09
JP2021530092A (ja) 2021-11-04
CN112400246A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
US9905880B2 (en) Fuel cell stack
JP4344484B2 (ja) 固体高分子型セルアセンブリ
JP4899339B2 (ja) 燃料電池のセパレータ
US8518601B2 (en) Gas separator for fuel cells and fuel cell equipped with gas separator
US11652219B2 (en) Hybrid bipolar plate for fuel cell
JP5234446B2 (ja) 燃料電池スタック用金属セパレータの積層性向上構造
US20080152988A1 (en) Fuel Cell Separator
JP2009059513A (ja) 燃料電池
US8241816B2 (en) Fuel cell separator
US10826097B2 (en) Fuel cell
JP2016042463A (ja) 反応物質の分布を改善した燃料電池
JP5228557B2 (ja) 燃料電池
JP2008059760A (ja) 燃料電池および燃料電池の製造方法
JP4268400B2 (ja) 燃料電池
WO2020007048A1 (zh) 具备流体引导流路的燃料电池及其制造方法
JP2020136218A (ja) 燃料電池セル及び燃料電池セルスタック
JP4947337B2 (ja) 燃料電池用セパレータ
JP2017147101A (ja) 燃料電池
JP2000251902A (ja) 燃料電池用ガスセパレータおよびその製造方法並びに燃料電池
JP2006147258A (ja) セパレータ及び燃料電池スタック
WO2019207811A1 (ja) 燃料電池用ガス供給拡散層、燃料電池用セパレータ及び燃料電池セルスタック
JP4422505B2 (ja) 燃料電池
US20210043948A1 (en) Fuel cell, cell unit thereof, and cell stack structure body
JP2004047489A (ja) 電解質膜電極接合体の製造方法
JP4967518B2 (ja) 燃料電池セパレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522121

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217003357

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019830824

Country of ref document: EP

Effective date: 20210204