WO2020006825A1 - 天线测试用的自动接线系统 - Google Patents

天线测试用的自动接线系统 Download PDF

Info

Publication number
WO2020006825A1
WO2020006825A1 PCT/CN2018/101690 CN2018101690W WO2020006825A1 WO 2020006825 A1 WO2020006825 A1 WO 2020006825A1 CN 2018101690 W CN2018101690 W CN 2018101690W WO 2020006825 A1 WO2020006825 A1 WO 2020006825A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
frame
tested
wiring system
automatic wiring
Prior art date
Application number
PCT/CN2018/101690
Other languages
English (en)
French (fr)
Inventor
陈林斌
蒋宇
王道翊
邓东亮
Original Assignee
深圳市新益技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市新益技术有限公司 filed Critical 深圳市新益技术有限公司
Publication of WO2020006825A1 publication Critical patent/WO2020006825A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Definitions

  • the invention relates to the technical field of antenna testing, in particular to an automatic wiring system for antenna testing.
  • An array antenna is an antenna system composed of many identical single antennas (such as symmetrical antennas) arranged in a certain regular order, also called an antenna array.
  • array antennas With the advent of the 5G era, in order to meet the needs of modern communication equipment, array antennas have gradually become popular and widely used.
  • An object of the embodiments of the present invention is to provide an automatic wiring system for antenna testing, which solves at least one of the above technical problems to a certain extent, and has the advantages of mass-connecting and automatically wiring antennas to be tested.
  • a first aspect of the present invention provides an automatic wiring system for antenna testing, including:
  • a transmission device for transmitting the antenna to be tested to a test station and outputting the antenna to be tested after the test is finished, the antenna to be tested is provided with a connection part for wiring test;
  • connection device externally connected to the test device, which is provided corresponding to the test station, and the connection device is provided with a plurality of connection pieces adapted to the connection portion;
  • a driving device that drives the wiring device to move toward the antenna under test when the antenna to be tested is in a test station, and inserts the connection portion and the connector to achieve a test purpose.
  • the automatic wiring system further includes: a rack that is placed on the ground and includes a first frame and a second frame;
  • the transmission device drives the antenna under test to move in a direction parallel to the ground, the transmission device is provided on the first frame, the driving device is provided on the second frame, and the wiring device is located Between the first frame and the second frame.
  • the setting of the rack provides a stable installation platform for the transmission device, the driving device and the wiring device, which improves the stability and accuracy during the wiring work; meanwhile, the wiring device is located on the rack Inside, the rack has better protection for it, and it saves space.
  • the transmission device includes:
  • a laser sensor provided on the rack for detecting whether the antenna to be tested is transmitted to the test station to control the opening and closing of the motor.
  • the automatic wiring system for antenna testing that realizes the above solution, through the combination of long rollers and short rollers, can not only achieve the purpose of transmitting the antenna to be tested, but also form a first gap at the test station of the first frame.
  • the gap is mainly used to connect the connection part and the connector to complete the wiring work; when the motor is working, the output shaft of the motor drives the long roller and short roller to rotate through the transmission structure, and the purpose of driving the antenna under test is achieved through friction.
  • the antenna under test When the antenna under test is transmitted to the test station, the antenna under test will block the induction radiation of the laser sensor, cut off the control circuit of the motor, and the motor will stop rotating, so that the antenna under test can be accurately stopped at the test station; the setting of the transmission device It can realize the automation of the movement and stop of the antenna to be tested, and it is easy to accurately control, so the wiring efficiency and wiring accuracy are relatively high.
  • the automatic wiring system further includes:
  • a tray for supporting the antenna to be tested which is provided with a second gap adapted to the antenna to be tested, and is transferred by the transfer device, and the tray is provided to surround the periphery of the antenna to be tested Arranged positioning holes;
  • the automatic wiring system for antenna testing to achieve the above solution, because the antenna to be tested is provided with a connection part, it is easy to damage the connection part by directly placing the connection part on the drum.
  • a tray is placed on the conveying device, and a suitable tray is provided in the middle of the tray. Equipped with the second notch of the antenna to be tested, it is convenient to leak out that the connection part of the antenna to be tested is plugged with the connector, which indirectly protects the connection part; when the tray is transferred to the test station, part of the positioning device is clicked into position In the hole, the tray is relatively stably fixed at the test station, and then the tray and the antenna under test are more stable during the connection process of the connection part and the connector.
  • the positioning device includes:
  • One end is fixedly mounted on the mounting seat on the first frame frame;
  • a positioning pin provided at the other end of the mounting base and locked into the positioning hole when the tray is transferred to the test station
  • control member provided between the positioning pin and the mounting seat to ensure that the positioning pin realizes a snap-in and pull-out action
  • the control member is a spring or an electromagnet
  • an end of the positioning pin protruding into the positioning hole is a convex curved surface, and the convex curved surface directly contacts the opening edge of the positioning hole;
  • the electromagnet is controlled to be opened and closed by a detection result of the laser sensor.
  • the transmission device drives the tray to move, and then the surface of the tray directly contacts the end of the positioning pin with a convex arc curved surface, squeezes the positioning pin and compresses the spring. Subsequent to the alignment of the positioning hole and the positioning pin, the elastic restoring force drives the positioning pin into the positioning hole, and the positioning pin is squeezed when the tray moves again.
  • the positioning pin has a driving force that drives it to retract due to the existence of the convex curved surface.
  • the spring is compressed again until the positioning pin slides out of the positioning hole.
  • the control element is an electromagnet
  • the movement of the positioning pin is controlled by the detection result of the laser sensor.
  • the tray just stops at the test station.
  • the magnetic force of the electromagnet disappears, the positioning pin moves under the effect of gravity to achieve the purpose of snapping into the positioning hole of the tray.
  • the electromagnet has magnetic force, which attracts the positioning pin to be pulled out from the positioning hole; both of the above methods can be implemented
  • the automatic cooperation between the positioning pin and the positioning hole eliminates the need for manual operation of the entire process and has a high degree of automation.
  • the automatic wiring system further includes: a guide block installed on the first frame for introducing the antenna to be tested into the test station.
  • the inner side of the guide block is provided with a guide slope.
  • the position of the tray may be in a skewed state.
  • Guide blocks are provided on both sides of the first frame to pass the chamfer of the tray and the guide block. The guiding effect after the cooperation between the guide slopes automatically adjusts the forward direction of the tray during the movement of the tray, and prepares for the next precise positioning of the tray.
  • the wiring device further includes:
  • a mounting plate for detachably assembling a plurality of the connecting members, the mounting plates being arranged in parallel with the antenna to be tested;
  • the mounting plate is mainly used to fix the connecting pieces, which helps to change the connecting pieces suitable for different antennas to be tested, and the mounting plate is arranged in parallel with the antenna to be tested, which is beneficial Multiple connectors are connected in parallel with the connection part of the antenna to be tested, and the connection is more stable.
  • connection component includes:
  • a first buffer assembly provided between the chassis and the mounting plate and used to reduce impact force.
  • the chassis moves the mounting plate through the first buffer component to realize the connection between the connector and the connecting part.
  • the board will first compress the first buffer component, which has a buffer effect, which is beneficial to extending the service life of the connector and the connecting part compared with the rigid direct plug.
  • chassis is further provided with a second cushioning component for reducing cushioning force, which is higher than the plane on which the mounting plate is located.
  • the design of the second buffer assembly when the drive device drives the chassis, because the plane of the second buffer assembly is higher than the plane of the mounting plate, the second buffer assembly can be effective Alleviating a part of the impact force transmitted to the antenna under test can also effectively reduce the noise problem caused by rigid contact.
  • the driving device is a lifting oil cylinder or a lifting cylinder.
  • the automatic wiring system for implementing the antenna test of the above scheme, and the connection and connection device of the lifting oil cylinder or the telescopic part of the lifting cylinder can all realize the purpose of driving the connection device.
  • the cushioning force is double-reduced, which has a better protection effect.
  • FIG. 1 is a schematic structural diagram of Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a perspective of an antenna under test in Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of a tray in Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of a positioning device, a first buffer component, and a second buffer component according to the first embodiment of the present invention, wherein the internal structure is shown in a sectional view;
  • FIG. 5 is a schematic structural diagram of a positioning device, a first buffer assembly, and a second buffer assembly in Embodiment 2 of the present invention, and the internal structure thereof is shown in a cross-sectional view.
  • An automatic wiring system for antenna testing is used for automatic wiring of the antenna 11 to be tested, including: transmission device 2, connection device 3, driving device 4, rack 5, tray 6, positioning device 7 And guide block 8.
  • the transmission device 2 is used to transport the antenna 1 to be tested to the test station and output the antenna 1 to be tested after the test is completed.
  • the antenna 1 to be tested is provided with a connection portion 11 (shown in FIG. 2) for connection testing; the connection device 3 Corresponding to the test station, and the wiring device 3 is located below the test station.
  • the wiring device 3 is externally connected to the test equipment.
  • the wiring device 3 has a plurality of connecting members 31 adapted to the connecting portion 11;
  • the driving device 4 drives the wiring device 3 to move toward the antenna 1 to be tested and inserts the connecting portion 11 and the connecting member 31 to achieve the testing purpose.
  • the driving device 4 is a lifting oil cylinder. In other embodiments, it can also be a lifting cylinder, a lifting oil cylinder, or a telescopic part of the lifting cylinder connected to the wiring device 3, which can achieve the purpose of driving the wiring device 3.
  • the transmission device 2 transports the antenna 1 to be tested to the test station, and then the wiring device 3 is driven by the driving device 4.
  • Several connecting members 31 on the wiring device 3 are moved toward the antenna 1 to be tested, so that the connecting portion 11 and the connecting member 31 are plugged in to complete the wiring work. In this process, no manual operation is required.
  • it not only improves the wiring efficiency, facilitates the large-scale large-scale testing of the antenna, but also improves the insertion strength and accuracy during manual wiring. It is difficult to control the antenna damage.
  • the antenna 1 to be tested horizontally and driving the wiring device 3 vertically is provided to achieve the purpose of automatic wiring.
  • the antenna 1 to be tested and the horizontal driving wiring device can be transmitted vertically.
  • the vertical transmission method can adopt a lifting structure
  • the horizontal drive method can use a screw slider structure, which is not limited in this embodiment.
  • the frame 5 is specifically composed of aluminum profiles welded or screw-locked, and has a rectangular shape.
  • the frame 5 is placed on the ground and includes a first frame 51 and a second frame 52, and the first frame 51 and the second frame.
  • the frames 52 are in the shape of a long rectangle.
  • the transmitting device 2 drives the antenna 1 to be tested in a direction parallel to the ground.
  • the transmitting device 2 is provided on the first frame 51, the driving device 4 is provided on the second frame 52, and the wiring device 3 It is located between the first frame frame 51 and the second frame frame 52.
  • the setting of the frame 5 provides a stable installation platform for the transmission device 2, the driving device 4, and the wiring device 3, which improves the stability and accuracy during the wiring work; at the same time, the wiring device 3 is located inside the frame 5 and then the frame 5 It has better protection and saves space.
  • the four corners of the tray 6 are provided with chamfers 62.
  • the guide block 8 is fixed on the first frame 51 by bolts.
  • the guide block 8 is used to introduce the antenna 1 to be tested into the test station.
  • the inner side of the guide block 8 is provided with a guide slope. 81.
  • Guide blocks 8 are provided on both sides of the first frame 51, and between the chamfer 62 of the tray 6 and the guide inclined surface 81 of the guide block 8. The coordinated guiding effect automatically adjusts the forward direction of the tray 6 during the movement of the tray 6 and prepares for the precise positioning of the tray 6 in the next step.
  • the wiring device 3 further includes: a mounting plate 32 for detachably assembling a plurality of connecting members 31, the mounting plate 32 is arranged in parallel with the antenna 1 to be tested; and a connecting component 33 provided between the mounting plate 32 and the driving device 4.
  • the mounting plate 32 is mainly used for fixing the connecting member 31, which is helpful to replace the matching connecting member 31 according to different antennas 1 to be tested.
  • the mounting plate 32 is arranged in parallel with the antenna 1 to be tested, which is beneficial to multiple connecting members 31 and The connection portions 11 of the antenna 1 to be tested are connected in parallel, and the connection is more stable.
  • the connection assembly 33 includes: a chassis 331 directly driven by the driving device 4; and a first buffer assembly 332 provided between the chassis 331 and the mounting plate 32 to reduce impact force.
  • the first buffer assembly 332 specifically has four groups and is arranged in a rectangular shape.
  • the driving device 4 pushes the chassis 331 to move
  • the chassis 331 pushes the mounting plate 32 to move through the first buffer assembly 332 to realize the connection between the connecting member 31 and the connecting portion 11.
  • the chassis 331 and the mounting plate 32 first compress the first buffer component 332, which has a buffer effect. Compared with a rigid direct plug connection, it is beneficial to extend the service life of the connecting member 31 and the connecting portion 11.
  • the chassis 331 is further provided with a second cushioning component 9 for reducing cushioning impact, which is higher than the plane on which the mounting plate 32 is located.
  • the second cushioning component 9 is specifically arranged in four groups and arranged in a rectangular shape.
  • the design of the second buffer assembly 9 allows the second buffer assembly 9 to effectively alleviate a part of the transmission to the test device when the plane of the second buffer assembly 9 is higher than the plane of the mounting plate 32 when the driving device 4 moves the chassis 331.
  • the impact force on the antenna 1 can also effectively reduce the noise problem caused by the rigid contact.
  • the conveying device 2 includes: a long roller 21 that is both ends rotatably connected to the first frame frame 51; and only a short side 22 that is rotatably connected to the first frame frame 51 to form between the inner ends of the short rollers 22 First notch, the first notch is used for the connection between the connecting portion 11 and the connecting member 31; the motor 23 fixedly installed on the frame 5, a transmission structure is provided between the output shaft of the motor 23 and the short drum 22 and the long drum 21 24; and a laser sensor 25 provided on the frame 5 for detecting whether the antenna 1 to be tested is transmitted to a test station to control the opening and closing of the motor 23.
  • the transmission structure 24 is specifically transmitted by a sprocket.
  • the transmission structure 24 may also be transmitted by a gear or a pulley.
  • the first notch is mainly used to connect the connecting portion 11 and the connecting member 31 to complete the wiring work; when the motor 23 is working, the motor 23
  • the output shaft drives the long drum 21 and the short drum 22 through the transmission structure 24, and the purpose of transmitting the antenna 1 to be tested is achieved through friction.
  • the antenna 1 to be tested will block the laser sensor.
  • the induction radiation of 25 cuts off the control circuit of the motor 23, and then the motor 23 stops rotating, so that the antenna 1 to be tested can be accurately stopped at the test station; the setting of the transmission device 2 can realize the movement of the antenna 1 to be tested and stop the entire process. , Easy to accurately control, so the wiring efficiency and wiring accuracy are relatively high.
  • the tray 6 is used to support the antenna 1 to be tested and a second gap adapted to the antenna 1 to be tested is provided in the middle.
  • the tray 6 is transferred by the transfer device 2, and the tray 6 is provided on the tray 6.
  • a tray 6 is placed on the conveying device 2, and an adaptable antenna 1 is provided in the middle of the tray 6.
  • the second notch is convenient for leaking that the connecting portion 11 of the antenna 1 to be tested is plugged with the connecting member 31, which indirectly protects the connecting portion 11.
  • part of the positioning device 7 is stuck. Into the positioning hole 61, so that the tray 6 is relatively stably fixed at the test station, and then during the process of connecting the connecting portion 11 and the connecting member 31, the tray 6 and the antenna 1 to be tested are more stable.
  • the first buffer assembly 332 is specifically composed of a first rod 3321 and a first buffer spring 3322.
  • One end of the first rod 3321 is welded to the mounting plate 32.
  • the chassis 331 is provided with another one for the first rod 3321. One end slides through the hole, and the other end of the first rod 3321 protrudes from the perforation.
  • the first buffer spring 3322 is located between the mounting plate 32 and the chassis 331. Therefore, when there is a large impact force during the automatic wiring process, the first buffer The spring 3322 will be compressed, and the other end of the first rod 3321 will slide down along the above-mentioned perforation, thereby providing cushioning protection.
  • the second buffer assembly 9 is specifically composed of a second rod 91 and a second buffer spring 92.
  • the second buffer spring 92 is sleeved on the second rod 91.
  • One end of the second rod 91 is welded with a circle that restricts the second buffer spring 92 from slipping off.
  • a through hole is provided on the chassis 331 for the other end of the second lever 91 to slide, and the other end of the second lever 91 protrudes from the through hole, and a second impact spring is located between the first frame 51 and the chassis 331, Therefore, during the automatic wiring process, when there is a large impact force, the second buffer spring 92 first abuts on the second frame 52 and is compressed, and the other end of the second rod 91 slides down the above through hole To further protect the buffer.
  • the positioning device 7 includes: a mounting base 71 fixed at one end to the first frame frame 51 by a plurality of sets of bolts; and the other end of the mounting base 71 that is inserted into the positioning hole 61 when the tray 6 is transferred to the test station.
  • a positioning pin 72 and a control member 73 provided between the positioning pin 72 and the mounting base 71 to ensure that the positioning pin 72 realizes the snap-in and pull-out action.
  • the control member 73 is an electromagnet, and the electromagnet is controlled to be opened and closed by a detection result of the laser sensor 25.
  • the movement of the positioning pin 72 is controlled by the detection result of the laser sensor 25.
  • the motor 23 stops working the tray 6 just stops at the test station, the magnetic force of the electromagnet disappears, and the positioning pin 72 moves under the action of gravity to realize the click.
  • the purpose of the positioning hole 61 of the tray 6 is that the electromagnet has magnetic force when the motor 23 is turned on, thereby attracting the positioning pin 72 to be pulled out from the positioning hole 61; the above two methods can achieve automatic cooperation between the positioning pin 72 and the positioning hole 61
  • the entire process does not require manual operation and has a high degree of automation.
  • An automatic wiring system for antenna testing is different from the first embodiment in that, as shown in FIG. 5, the control member 73 is a spring, and one end of the positioning pin 72 protruding into the positioning hole 61 is a convex arc surface, and The convex curved surface is directly in contact with the opening edge of the positioning hole 61.
  • the conveying device 2 drives the tray 6 to move, and then the surface of the tray 6 directly contacts the end of the positioning pin 72 having a convex curved surface.
  • the positioning pin 72 is squeezed and the spring is compressed. After the positioning hole 61 and the positioning pin 72 are aligned, the elasticity is achieved.
  • the restoring force drives the positioning pin 72 into the positioning hole 61. When the tray 6 moves again, the positioning pin 72 is pressed.
  • the positioning pin 72 Due to the existence of the convex curved surface, the positioning pin 72 has a driving force that drives it to retract, and the spring is compressed again until The positioning pin 72 slides out of the positioning hole 61 to realize automatic cooperation between the positioning pin 72 and the positioning hole 61.
  • the entire process does not require manual operation and has a high degree of automation.
  • the first buffer assembly 332 is specifically composed of a third rod 3323 and a third buffer spring 3324.
  • the third buffer spring 3324 is sleeved on the third rod 3323.
  • One end of the third rod 3323 is welded to the chassis 331.
  • the third buffer spring 3324 is located between the mounting plate 32 and the chassis 331. Therefore, during the automatic wiring process, the third buffer spring 3324 will be compressed.
  • the gap between the third rod 3323 and the mounting plate 32 will become smaller, thereby providing a cushioning protection function.
  • the second buffer assembly 9 is specifically composed of a fourth rod 93 and a fourth buffer spring 94.
  • the fourth buffer spring 94 is sleeved on the fourth rod 93.
  • One end of the fourth rod 93 is welded to the chassis 331.
  • the fourth buffer spring 94 is located between the first frame frame 51 and the chassis 331. Therefore, during the automatic wiring process, the fourth buffer spring 94 has a large impact force. It will be compressed, and the gap between the fourth lever 93 and the first frame 51 will become smaller, which will further play a buffering and protecting role.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

一种天线测试用的自动接线系统,包括:用于输送待测天线(1)至测试工位并在测试结束后将所述待测天线(1)输出的传送装置(2),所述待测天线(1)上设有用于接线测试的连接部(11);与所述测试工位相应设置的、外接测试设备的接线装置(3),所述接线装置(3)带有若干与所述连接部(11)相适配的连接件(31);以及当所述待测天线(1)处于测试工位时驱使所述接线装置(3)朝向所述待测天线(1)运动并使所述连接部(11)和所述连接件(31)相插接以实现测试目的的驱动装置。实现了无人工操作及自动化接线的目的,提高天线测试效率。

Description

天线测试用的自动接线系统 技术领域
本发明涉及天线测试技术领域,特别涉及一种天线测试用的自动接线系统。
背景技术
阵列天线是由许多相同的单个天线(如对称天线)按一定规律排列组成的天线系统,也称天线阵。随着5G时代来临,为适应现代通信设备的需求,阵列天线逐渐得到普及和广泛的应用。
在阵列天线研发阶段及投入市场之前的阶段,都频繁对阵列天线的性能进行测试,接线工作(将测试设备与阵列天线对插)是测试前的必备的工作。
但是,天线的测试效率已然成为企业研发工作及5G时代的技术瓶颈,目前阶段的接线工作大都通过人工手动完成,这种传统的接线方式直接导致测试效率极其低下,难以实现对阵列天线进行大批量规模化测试,故而有待改进。
发明内容
本发明实施例的目的是提供一种天线测试用的自动接线系统,至少在一定程度上解决上述技术问题之一,具有大批量且自动化对待测天线进行接线的优点。
本发明第一方面提供一种天线测试用的自动接线系统,包括:
用于输送待测天线至测试工位并在测试结束后将所述待测天线输出的传送装置,所述待测天线上设有用于接线测试的连接部;
与所述测试工位相应设置的、外接测试设备的接线装置,所述接线装置带有若干与所述连接部相适配的连接件;
以及当所述待测天线处于测试工位时驱使所述接线装置朝向所述待测天线运动并使所述连接部和所述连接件相插接以实现测试目的的驱动装置。
实现上述方案的天线测试用的自动接线系统,需要进行接线工作时,把待测天线上有连接部的一面朝向接线装置放置,传送装置输送待测天线到测试工位处,然后接线装置在驱动装置的带动下,接线装置上的若干连接件朝向待测天线运动,使连接部和连接件相插接并完成接线工作。此过程中无需人为手动操作即可,和传统的人工接线方式相比,不仅提高了接线效率,有利于实现对天线进行大批量规模化测试,而且改善了人工接线过程中因插接力度和准度难以把控而带来的天线损坏问题。
进一步的,所述自动接线系统还包括:放置于地面上的、包含第一架框和第二架框的机架;
所述传送装置带动所述待测天线沿与地面平行方向运动,所述传送装置设于所述第一架框上,所述驱动装置设于所述第二架框上,所述接线装置位于所述第一架框和所述第二架框之间。
实现上述方案的天线测试用的自动接线系统,机架的设置为传送装置、驱动装置、接线装置提供了稳定的安装平台,提高了接线工作过程中的稳定性和精度;同时接线装置位于机架内部,进而机架对其具有较佳的防护作用,而且节省了其占用空间。
进一步的,所述传送装置包括:
两端均转动连接于所述第一架框上的长滚筒;
仅外侧一端转动连接于所述第一架框上的短滚筒,以在所述短滚筒的内侧一端之间形成第一缺口,所述第一缺口用于所述连接部和所述连接件相插接;
固定安装于所述机架上的电机,所述电机的输出轴和所述短滚筒、所述长滚筒之间设有传动结构;
以及设于所述机架上的、用于检测所述待测天线是否被传送至所述测试工 位以控制所述电机启闭的激光传感器。
实现上述方案的天线测试用的自动接线系统,通过长滚筒和短滚筒的搭配使用,不仅可以达到传送待测天线的目的,而且在第一架框的测试工位处形成第一缺口,第一缺口主要用于连接部和连接件相插接以完成接线工作;当电机工作时,电机的输出轴通过传动结构带动长滚筒、短滚筒转动,通过摩擦力实现传动待测天线的目的,当待测天线被传送到测试工位时,待测天线会挡住激光传感器的感应射线,切断了电机的控制电路,进而电机停止转动,从而待测天线可以准确停止在测试工位处;传送装置的设置可以实现待测天线的运动及停止全程自动化,易于精确控制,从而接线效率和接线精度都比较高。
进一步的,所述自动接线系统还包括:
用于承托所述待测天线的、中间设有适配所述待测天线的第二缺口的、被所述传送装置所传送的托盘,所述托盘上设有环绕所述待测天线四周布置的定位孔;
以及设于所述机架上的、当所述托盘被传送至所述测试工位时部分卡入所述定位孔中的定位装置。
实现上述方案的天线测试用的自动接线系统,由于待测天线上设有连接部,直接将连接部放置到滚筒上容易损坏连接部,在传送装置上放置有托盘,在托盘的中间设有适配待测天线的第二缺口,方便漏出待测天线的连接部与连接件相插接,间接对连接部起到防护作用;当托盘被传送到测试工位时,定位装置的部分卡入定位孔中,从而把托盘较为稳定的固定在测试工位处,继而在连接部和连接件相插接过程中,托盘及待测天线更加稳定。
进一步的,所述定位装置包括:
一端固定安装于所述第一架框上的安装座;
设于所述安装座的另一端的、当所述托盘被传送至所述测试工位时卡入所述定位孔中的定位销,
以及设于所述定位销和所述安装座之间的、以确保所述定位销实现卡入及拔出动作的控制件,所述控制件为弹簧或者电磁铁;
当所述控制件采用弹簧时,所述定位销伸入所述定位孔中的一端呈凸弧形曲面,且其凸弧形曲面和所述定位孔的开口边沿直接接触;
当所述控制件采用电磁铁时,所述电磁铁受所述激光传感器的检测结果所控制启闭。
实现上述方案的天线测试用的自动接线系统,当控制件为弹簧时,传送装置带动托盘运动,继而托盘的表面直接与定位销具有凸弧形曲面的一端接触,挤压定位销并压缩弹簧,后续刚好定位孔和定位销对准后,弹性回复力驱使定位销卡入定位孔中,托盘再次运动时挤压定位销,定位销由于凸弧形曲面的存在具有受到驱使其回缩的驱动力,弹簧再次受到压缩,直至定位销滑出定位孔;当控制件为电磁铁时,定位销的运动情况由激光传感器的检测结果所控制,当电机停止工作,托盘刚好停止在测试工位处,电磁铁的磁力消失,定位销在重力作用下运动以实现卡入托盘定位孔的目的,电机开启工作时电磁铁具有磁力,从而吸引定位销从定位孔中拔出;上述两种方式均可实现定位销与定位孔之间的自动配合,整个过程无需人工操作,自动化程度高。
进一步的,所述托盘的四角均设有倒角,所述自动接线系统还包括:安装于所述第一架框上的、用于将所述待测天线导入所述测试工位的导向块,所述导向块的内侧设有导向斜面。
实现上述方案的天线测试用的自动接线系统,托盘进入测试工位之前,托盘所处的位置可能处于歪斜状态,在第一架框的两侧设置导向块,通过托盘的 倒角和导向块的导向斜面之间配合后的导向作用,从而在托盘的运动过程中自动调整了托盘的前进方向,为下一步托盘的精准定位做好准备。
进一步的,所述接线装置还包括:
供若干所述连接件可拆式装配的安装板,所述安装板与所述待测天线平行布置;
以及设于所述安装板和所述驱动装置之间的连接组件。
实现上述方案的天线测试用的自动接线系统,安装板主要用于固定连接件,有助于根据不同的待测天线更换与其适配的连接件,同时安装板与待测天线平行布置,有利于多个连接件与待测天线的连接部之间相平行插接,插接更加稳定。
进一步的,所述连接组件包括:
被所述驱动装置直接驱动的底盘;
设于所述底盘和所述安装板之间的、用于减缓冲击力的第一缓冲组件。
实现上述方案的天线测试用的自动接线系统,当驱动装置推动底盘运动时,底盘通过第一缓冲组件推动安装板运动,实现连接件和连接部的相插接,在接线过程中,底盘和安装板会先压缩第一缓冲组件,具有缓冲作用,与刚性的直接插接相比,有利于延长连接件和连接部的使用寿命。
进一步的,所述底盘上还设有高于所述安装板所处平面的、用于减缓冲击力的第二缓冲组件。
实现上述方案的天线测试用的自动接线系统,第二缓冲组件的设计,当驱动装置推动底盘运动时,由于第二缓冲组件所处的平面高于安装板所处平面,第二缓冲组件可以有效缓解一部分传递至待测天线上的冲击力,还能有效减小刚性接触带来的噪声问题。
进一步的,所述驱动装置为升降油缸或者升降气缸。
实现上述方案的天线测试用的自动接线系统,升降油缸或者升降气缸的伸缩部分连接接线装置,均可实现驱动接线装置的目的。
综上所述,本发明实施例具有以下有益效果:
其一,通过增设传送装置和驱动装置,不仅提高了接线效率,有利于实现对天线进行大批量规模化测试,而且改善了人工接线过程中因插接力度和准度难以把控而带来的天线损坏问题;
其二,通过增设第一缓冲组件和第二缓冲组件,双重减缓冲击力,具有较佳的的保护作用。
附图说明
图1是本发明实施例一的结构示意图;
图2是本发明实施例一中待测天线所处仰视角的结构示意图;
图3是本发明实施例一中托盘的结构示意图;
图4是是本发明实施例一中定位装置、第一缓冲组件和第二缓冲组件的结构示意图,其中以剖视图展示其内部结构;
图5是本发明实施例二中定位装置、第一缓冲组件和第二缓冲组件的结构示意图,其中以剖视图展示其内部结构。
附图标记:1、待测天线;11、连接部;2、传送装置;21、长滚筒;22、短滚筒;23、电机;24、传动结构;25、激光传感器;3、接线装置;31、连接件;32、安装板;33、连接组件;331、底盘;332、第一缓冲组件;3321、第一杆;3322、第一缓冲弹簧;3323、第三杆;3324、第三缓冲弹簧;9、第二缓冲组件;91、第二杆;92、第二缓冲弹簧;93、第四杆;94、第四缓冲弹簧;4、驱动装置;5、机架;51、第一架框;52、第二架框;6、托盘;61、定位孔; 62、倒角;7、定位装置;71、安装座;72、定位销;73、控制件;8、导向块;81、导向斜面。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
具体实施例一:
一种天线测试用的自动接线系统,结合图1所示,用于对待测天线11进行自动接线,包括:传送装置2、接线装置3、驱动装置4、机架5、托盘6、定位装置7以及导向块8。
传送装置2用于输送待测天线1至测试工位并在测试结束后将待测天线1输出,待测天线1上设有用于接线测试的连接部11(结合图2所示);接线装置3与测试工位相应设置,且接线装置3位于测试工位的下方,接线装置3外接有测试设备,接线装置3带有多个与连接部11相适配的连接件31;当待测天线1处于测试工位时,驱动装置4驱使接线装置3朝向待测天线1运动并使连接部11和连接件31相插接以实现测试目的。驱动装置4为升降油缸,在其他实施例中还可以为升降气缸,升降油缸或者升降气缸的伸缩部分连接接线装置3,均可实现驱动接线装置3的目的。
需要进行接线工作时,把待测天线1上有连接部11的一面朝向接线装置3放置,传送装置2输送待测天线1到测试工位处,然后接线装置3在驱动装置4的带动下,接线装置3上的若干连接件31朝向待测天线1运动,使连接部11和连接件31相插接并完成接线工作。此过程中无需人为手动操作即可,和传统 的人工接线方式相比,不仅提高了接线效率,有利于实现对天线进行大批量规模化测试,而且改善了人工接线过程中因插接力度和准度难以把控而带来的天线损坏问题。
本实施例中仅仅提供水平传送待测天线1及竖向向上驱动接线装置3的方式,以实现自动接线的目的,在其他实施例中,还可以竖向传送待测天线1以及水平驱动接线装置3的方式来实现自动接线的目的,其竖向传送方式可以采用起吊结构,水平驱动方式可采用丝杆滑块结构,本实施例中不作限制。
机架5具体由铝制型材焊接或者螺钉锁定组成,且呈矩形体形状,机架5放置于地面上并包含第一架框51和第二架框52,第一架框51和第二架框52均呈长矩形形状,传送装置2带动待测天线1沿与地面平行方向运动,传送装置2设于第一架框51上,驱动装置4设于第二架框52上,接线装置3位于第一架框51和第二架框52之间。机架5的设置为传送装置2、驱动装置4、接线装置3提供了稳定的安装平台,提高了接线工作过程中的稳定性和精度;同时接线装置3位于机架5内部,进而机架5对其具有较佳的防护作用,而且节省了其占用空间。
托盘6的四角均设有倒角62,导向块8通过螺栓固定安装于第一架框51上,导向块8用于将待测天线1导入测试工位,导向块8的内侧设有导向斜面81。托盘6进入测试工位之前,托盘6所处的位置可能处于歪斜状态,在第一架框51的两侧设置导向块8,通过托盘6的倒角62和导向块8的导向斜面81之间配合后的导向作用,从而在托盘6的运动过程中自动调整了托盘6的前进方向,为下一步托盘6的精准定位做好准备。
接线装置3还包括:供多个连接件31可拆式装配的安装板32,安装板32与待测天线1平行布置;以及设于安装板32和驱动装置4之间的连接组件33。 安装板32主要用于固定连接件31,有助于根据不同的待测天线1更换与其适配的连接件31,同时安装板32与待测天线1平行布置,有利于多个连接件31与待测天线1的连接部11之间相平行插接,插接更加稳定。
连接组件33包括:被驱动装置4直接驱动的底盘331;设于底盘331和安装板32之间的、用于减缓冲击力的第一缓冲组件332。第一缓冲组件332具体有四组且呈矩形布置,当驱动装置4推动底盘331运动时,底盘331通过第一缓冲组件332推动安装板32运动,实现连接件31和连接部11的相插接,在接线过程中,底盘331和安装板32会先压缩第一缓冲组件332,具有缓冲作用,与刚性的直接插接相比,有利于延长连接件31和连接部11的使用寿命。
底盘331上还设有高于安装板32所处平面的、用于减缓冲击力的第二缓冲组件9,第二缓冲组件9具体有四组且呈矩形布置。第二缓冲组件9的设计,当驱动装置4推动底盘331运动时,由于第二缓冲组件9所处的平面高于安装板32所处平面,第二缓冲组件9可以有效缓解一部分传递至待测天线1上的冲击力,还能有效减小刚性接触带来的噪声问题。
传送装置2包括:两端均转动连接于第一架框51上的长滚筒21;仅外侧一端转动连接于第一架框51上的短滚筒22,以在短滚筒22的内侧一端之间形成第一缺口,第一缺口用于连接部11和连接件31相插接;固定安装于机架5上的电机23,电机23的输出轴和短滚筒22、长滚筒21之间设有传动结构24;以及设于机架5上的、用于检测待测天线1是否被传送至测试工位以控制电机23启闭的激光传感器25。本实施例中传动结构24具体采用链轮传送,在其他实施例中传动结构24还可以采用齿轮传送或者带轮传动,通过长滚筒21和短滚筒22的搭配使用,不仅可以达到传送待测天线1的目的,而且在第一架框51的测试工位处形成第一缺口,第一缺口主要用于连接部11和连接件31相插接以完 成接线工作;当电机23工作时,电机23的输出轴通过传动结构24带动长滚筒21、短滚筒22转动,通过摩擦力实现传动待测天线1的目的,当待测天线1被传送到测试工位时,待测天线1会挡住激光传感器25的感应射线,切断了电机23的控制电路,进而电机23停止转动,从而待测天线1可以准确停止在测试工位处;传送装置2的设置可以实现待测天线1的运动及停止全程自动化,易于精确控制,从而接线效率和接线精度都比较高。
结合图1和图3所示,托盘6用于承托待测天线1的且其中间设有适配待测天线1的第二缺口的,托盘6被传送装置2所传送,托盘6上设有环绕待测天线1四周布置的定位孔61;定位装置7安装于机架5上,且当托盘6被传送至测试工位时定位装置7的部分卡入定位孔61中。由于待测天线1上设有连接部11,直接将连接部11放置到滚筒上容易损坏连接部11,在传送装置2上放置有托盘6,在托盘6的中间设有适配待测天线1的第二缺口,方便漏出待测天线1的连接部11与连接件31相插接,间接对连接部11起到防护作用;当托盘6被传送到测试工位时,定位装置7的部分卡入定位孔61中,从而把托盘6较为稳定的固定在测试工位处,继而在连接部11和连接件31相插接过程中,托盘6及待测天线1更加稳定。
结合图4所示,第一缓冲组件332具体由第一杆3321和第一缓冲弹簧3322组成,第一杆3321的一端焊接在安装板32上,底盘331上开设有供第一杆3321的另一端滑动的穿孔,且第一杆3321的另一端部分伸出穿孔,第一缓冲弹簧3322位于安装板32和底盘331之间,从而在自动接线过程中,具有较大冲击力时,第一缓冲弹簧3322会被压缩,第一杆3321的另一端则沿着上述穿孔向下滑动,进而起到缓冲保护作用。
第二缓冲组件9具体由第二杆91和第二缓冲弹簧92组成,第二缓冲弹簧 92套设在第二杆91上,第二杆91的一端焊接有限制第二缓冲弹簧92滑脱的圆盘,底盘331上开设有供第二杆91的另一端滑动的贯穿孔,且第二杆91的另一端部分伸出贯穿孔,第二冲弹簧位于第一架框51和底盘331之间,从而在自动接线过程中,具有较大冲击力时,第二缓冲弹簧92先抵接于第二架框52上且会被压缩,第二杆91的另一端则沿着上述贯穿孔向下滑动,进一步起到缓冲保护作用。
定位装置7包括:一端通过多组螺栓固定安装于第一架框51上的安装座71;设于安装座71的另一端的、当托盘6被传送至测试工位时卡入定位孔61中的定位销72,以及设于定位销72和安装座71之间的、以确保定位销72实现卡入及拔出动作的控制件73。
控制件73为电磁铁,电磁铁受激光传感器25的检测结果所控制启闭。定位销72的运动情况由激光传感器25的检测结果所控制,当电机23停止工作,托盘6刚好停止在测试工位处,电磁铁的磁力消失,定位销72在重力作用下运动以实现卡入托盘6定位孔61的目的,电机23开启工作时电磁铁具有磁力,从而吸引定位销72从定位孔61中拔出;上述两种方式均可实现定位销72与定位孔61之间的自动配合,整个过程无需人工操作,自动化程度高。
具体实施例二:
一种天线测试用的自动接线系统,与实施例一的不同之处在于,结合图5所示,控制件73为弹簧,定位销72伸入定位孔61中的一端呈凸弧形曲面,且其凸弧形曲面和定位孔61的开口边沿直接接触。传送装置2带动托盘6运动,继而托盘6的表面直接与定位销72具有凸弧形曲面的一端接触,挤压定位销72并压缩弹簧,后续刚好定位孔61和定位销72对准后,弹性回复力驱使定位销72卡入定位孔61中,托盘6再次运动时挤压定位销72,定位销72由于凸弧形 曲面的存在具有受到驱使其回缩的驱动力,弹簧再次受到压缩,直至定位销72滑出定位孔61,可实现定位销72与定位孔61之间的自动配合,整个过程无需人工操作,自动化程度高。
第一缓冲组件332具体由第三杆3323和第三缓冲弹簧3324组成,第三缓冲弹簧3324套设在第三杆3323上,第三杆3323的一端焊接在底盘331上,第三杆3323的另一端和安装板32之间留有间隙,第三缓冲弹簧3324位于安装板32和底盘331之间,从而在自动接线过程中,具有较大冲击力时,第三缓冲弹簧3324会被压缩,第三杆3323和和安装板32之间的间隙会变小,进而起到缓冲保护作用。
第二缓冲组件9具体由第四杆93和第四缓冲弹簧94组成,第四缓冲弹簧94套设在第四杆93上,第四杆93的一端焊接在底盘331上,第四杆93的另一端和第一架框51之间留有间隙,第四缓冲弹簧94位于第一架框51和底盘331之间,从而在自动接线过程中,具有较大冲击力时,第四缓冲弹簧94会被压缩,第四杆93和和第一架框51之间的间隙会变小,进一步起到缓冲保护作用。
以上的实施方式,并不构成对该技术方案保护范围的限定。任何在上述实施方式的精神和原则之内所作的修改、等同替换和改进等,均应包含在该技术方案的保护范围之内。

Claims (10)

  1. 一种天线测试用的自动接线系统,其特征在于,包括:
    用于输送待测天线(1)至测试工位并在测试结束后将所述待测天线(1)输出的传送装置(2),所述待测天线(1)上设有用于接线测试的连接部(11);
    与所述测试工位相应设置的、外接测试设备的接线装置(3),所述接线装置(3)带有若干与所述连接部(11)相适配的连接件(31);
    以及当所述待测天线(1)处于测试工位时驱使所述接线装置(3)朝向所述待测天线(1)运动并使所述连接部(11)和所述连接件(31)相插接以实现测试目的的驱动装置(4)。
  2. 根据权利要求1所述的天线测试用的自动接线系统,其特征在于,所述自动接线系统还包括:放置于地面上的、包含第一架框(51)和第二架框(52)的机架(5);
    所述传送装置(2)带动所述待测天线(1)沿与地面平行方向运动,所述传送装置(2)设于所述第一架框(51)上,所述驱动装置(4)设于所述第二架框(52)上,所述接线装置(3)位于所述第一架框(51)和所述第二架框(52)之间。
  3. 根据权利要求2所述的天线测试用的自动接线系统,其特征在于,所述传送装置(2)包括:
    两端均转动连接于所述第一架框(51)上的长滚筒(21);
    仅外侧一端转动连接于所述第一架框(51)上的短滚筒(22),以在所述短滚筒(22)的内侧一端之间形成第一缺口,所述第一缺口用于所述连接部(11)和所述连接件(31)相插接;
    固定安装于所述机架(5)上的电机(23),所述电机(23)的输出轴和所述短滚筒(22)、所述长滚筒(21)之间设有传动结构(24);
    以及设于所述机架(5)上的、用于检测所述待测天线(1)是否被传送至所述 测试工位以控制所述电机(23)启闭的激光传感器(25)。
  4. 根据权利要求3所述的天线测试用的自动接线系统,其特征在于,所述自动接线系统还包括:
    用于承托所述待测天线(1)的、中间设有适配所述待测天线(1)的第二缺口的、被所述传送装置(2)所传送的托盘(6),所述托盘(6)上设有环绕所述待测天线(1)四周布置的定位孔(61);
    以及设于所述机架(5)上的、当所述托盘(6)被传送至所述测试工位时部分卡入所述定位孔(61)中的定位装置(7)。
  5. 根据权利要求4所述的天线测试用的自动接线系统,其特征在于,所述定位装置(7)包括:
    一端固定安装于所述第一架框(51)上的安装座(71);
    设于所述安装座(71)的另一端的、当所述托盘(6)被传送至所述测试工位时卡入所述定位孔(61)中的定位销(72),
    以及设于所述定位销(72)和所述安装座(71)之间的、以确保所述定位销(72)实现卡入及拔出动作的控制件(73),所述控制件(73)为弹簧或者电磁铁;
    当所述控制件(73)采用弹簧时,所述定位销(72)伸入所述定位孔(61)中的一端呈凸弧形曲面,且其凸弧形曲面和所述定位孔(61)的开口边沿直接接触;
    当所述控制件(73)采用电磁铁时,所述电磁铁受所述激光传感器(25)的检测结果所控制启闭。
  6. 根据权利要求4所述的天线测试用的自动接线系统,其特征在于,所述托盘(6)的四角均设有倒角(62),所述自动接线系统还包括:安装于所述第一架框(51)上的、用于将所述待测天线(1)导入所述测试工位的导向块(8),所述导向块(8)的内侧设有导向斜面(81)。
  7. 根据权利要求1所述的天线测试用的自动接线系统,其特征在于,所述接线装置(3)还包括:
    供若干所述连接件(31)可拆式装配的安装板(32),所述安装板(32)与所述待测天线(1)平行布置;
    以及设于所述安装板(32)和所述驱动装置(4)之间的连接组件(33)。
  8. 根据权利要求7所述的天线测试用的自动接线系统,其特征在于,所述连接组件(33)包括:
    被所述驱动装置(4)直接驱动的底盘(331);
    设于所述底盘(331)和所述安装板(32)之间的、用于减缓冲击力的第一缓冲组件(332)。
  9. 根据权利要求8所述的天线测试用的自动接线系统,其特征在于,所述底盘(331)上还设有高于所述安装板(32)所处平面的、用于减缓冲击力的第二缓冲组件(9)。
  10. 根据权利要求1所述的天线测试用的自动接线系统,其特征在于,所述驱动装置(4)为升降油缸或者升降气缸。
PCT/CN2018/101690 2018-07-06 2018-08-22 天线测试用的自动接线系统 WO2020006825A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810738377.5A CN110687359A (zh) 2018-07-06 2018-07-06 一种自动化天线测量转台
CN201810738377.5 2018-07-06

Publications (1)

Publication Number Publication Date
WO2020006825A1 true WO2020006825A1 (zh) 2020-01-09

Family

ID=69060641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101690 WO2020006825A1 (zh) 2018-07-06 2018-08-22 天线测试用的自动接线系统

Country Status (2)

Country Link
CN (1) CN110687359A (zh)
WO (1) WO2020006825A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915282A (ja) * 1995-06-30 1997-01-17 Japan Radio Co Ltd アレイアンテナ診断方法およびその装置
CN201749132U (zh) * 2010-03-18 2011-02-16 深圳市瑞必达电源有限公司 一种测试夹具
CN203981786U (zh) * 2014-04-11 2014-12-03 广州光宝移动电子部件有限公司 一种工件测试设备
CN204439728U (zh) * 2015-03-17 2015-07-01 罗森伯格(上海)通信技术有限公司 交调信号测试系统
CN204964646U (zh) * 2015-09-02 2016-01-13 深圳市信维通信股份有限公司 一种天线测试装置
CN105334360A (zh) * 2014-08-14 2016-02-17 深圳市佳晨科技有限公司 一种自动化屏蔽测试装置及其测试流水线
CN205484622U (zh) * 2016-04-12 2016-08-17 河南科技学院 一种农产品安全质量溯源用标签检测装置
CN205786874U (zh) * 2016-05-27 2016-12-07 深圳市信维通信股份有限公司 一种天线自动测试装置
CN205941708U (zh) * 2016-07-01 2017-02-08 北京天河鸿城电子有限责任公司 天线幅相测试装置
CN108132391A (zh) * 2016-12-01 2018-06-08 深圳市新益技术有限公司 承载台以及天线测量隔离室

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3111055B2 (ja) * 1998-10-27 2000-11-20 ティーディーケイ株式会社 試験用搬送システム
CN2888459Y (zh) * 2006-05-08 2007-04-11 京信通信技术(广州)有限公司 柱面球面合一的多探头近场天线测量系统
CN104914321B (zh) * 2015-06-15 2019-02-01 广东金弘达自动化科技股份有限公司 一种通信天线幅相测试机
CN204989338U (zh) * 2015-08-06 2016-01-20 合肥东兴模具制造有限公司 一种天线调试架
JP6583675B2 (ja) * 2015-09-17 2019-10-02 有限会社Nazca アンテナ評価装置及びアンテナ評価方法
CN206187811U (zh) * 2016-11-13 2017-05-24 无锡凯施智联软件科技有限公司 一种用于rfid设备的多楔带传送结构
CN108132360A (zh) * 2016-12-01 2018-06-08 深圳市新益技术有限公司 旋转承载台以及天线测量隔离室
CN107081696A (zh) * 2017-05-12 2017-08-22 泰州库宝制冷设备制造有限公司 一种空调生产设备夹紧装置
CN207007945U (zh) * 2017-07-18 2018-02-13 刘科宏 一种天线测量探头装置及测量系统
CN207543115U (zh) * 2017-10-20 2018-06-26 泰姆瑞技术(深圳)有限公司 一种综合性基站天线检测设备
CN207424110U (zh) * 2017-11-03 2018-05-29 深圳市新益技术有限公司 天线柱面近场测量系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915282A (ja) * 1995-06-30 1997-01-17 Japan Radio Co Ltd アレイアンテナ診断方法およびその装置
CN201749132U (zh) * 2010-03-18 2011-02-16 深圳市瑞必达电源有限公司 一种测试夹具
CN203981786U (zh) * 2014-04-11 2014-12-03 广州光宝移动电子部件有限公司 一种工件测试设备
CN105334360A (zh) * 2014-08-14 2016-02-17 深圳市佳晨科技有限公司 一种自动化屏蔽测试装置及其测试流水线
CN204439728U (zh) * 2015-03-17 2015-07-01 罗森伯格(上海)通信技术有限公司 交调信号测试系统
CN204964646U (zh) * 2015-09-02 2016-01-13 深圳市信维通信股份有限公司 一种天线测试装置
CN205484622U (zh) * 2016-04-12 2016-08-17 河南科技学院 一种农产品安全质量溯源用标签检测装置
CN205786874U (zh) * 2016-05-27 2016-12-07 深圳市信维通信股份有限公司 一种天线自动测试装置
CN205941708U (zh) * 2016-07-01 2017-02-08 北京天河鸿城电子有限责任公司 天线幅相测试装置
CN108132391A (zh) * 2016-12-01 2018-06-08 深圳市新益技术有限公司 承载台以及天线测量隔离室

Also Published As

Publication number Publication date
CN110687359A (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
CN103394899B (zh) 一种双端子散热器自动化装配机
US20160329228A1 (en) Cassette positioning device and semiconductor processing apparatus
CN203390506U (zh) 一种双端子散热器自动化装配机
US10433451B1 (en) Mounting device
CN203696417U (zh) 弹簧式微动开关自动组装机的弹簧送料组装机构
WO2020006825A1 (zh) 天线测试用的自动接线系统
CN110687357A (zh) 天线测试用的自动接线系统
CN107098135B (zh) 手机彩盒上料机构
CN210895217U (zh) 一种内嵌式内存模块
CN218497735U (zh) 一种防尘型液晶拼接屏
CN111725686A (zh) 一种接插件端子自动插针机
CN113690102B (zh) 端子自动插接设备
CN207844253U (zh) 一种机床自动上料装置
CN204090319U (zh) 可拼接贴片机设备
CN215119519U (zh) 一种将排线插入接口的辅助治具
CN212785562U (zh) 一种智能摄像机高效散热结构
CN212392474U (zh) 一种接插件端子自动插针机
CN109408305B (zh) 硬盘背板测试工装
CN210285814U (zh) 高效下料设备及其取料机构及其取料机构
CN204188802U (zh) 一种用于大功率微波组件测试装夹
CN211056155U (zh) 一种使纸筒放置更稳定的纸筒推送装置
CN109287114B (zh) 压电石英器件的邦定夹具
CN209551577U (zh) 一种基于平板前壳的磁铁组装定位治具
KR101034041B1 (ko) 기판 정렬장치
CN217279951U (zh) 一种可拼接延展的液晶屏连接结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925665

Country of ref document: EP

Kind code of ref document: A1