WO2020003915A1 - ガラス物品の製造方法 - Google Patents

ガラス物品の製造方法 Download PDF

Info

Publication number
WO2020003915A1
WO2020003915A1 PCT/JP2019/022090 JP2019022090W WO2020003915A1 WO 2020003915 A1 WO2020003915 A1 WO 2020003915A1 JP 2019022090 W JP2019022090 W JP 2019022090W WO 2020003915 A1 WO2020003915 A1 WO 2020003915A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
furnace
melting furnace
glass melting
heating
Prior art date
Application number
PCT/JP2019/022090
Other languages
English (en)
French (fr)
Inventor
長谷川 徹
陸朗 愛
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201980029112.0A priority Critical patent/CN112041277B/zh
Priority to KR1020207027693A priority patent/KR20210023801A/ko
Publication of WO2020003915A1 publication Critical patent/WO2020003915A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/26Outlets, e.g. drains, siphons; Overflows, e.g. for supplying the float tank, tweels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/425Preventing corrosion or erosion

Definitions

  • the present invention relates to a method for producing a glass article, comprising: a step of continuously producing molten glass as a base of a glass article using a glass melting furnace; and a step of starting up the furnace to a state in which the step can be performed.
  • Patent Literature 1 discloses an example of a method of continuously producing molten glass using a glass melting furnace.
  • the glass material while continuously supplying the glass material onto the molten glass stored in the glass melting furnace, the glass material is melted to continuously generate new molten glass, and the outflow passage (the same document) Then, the molten glass flows out of the furnace through the throat).
  • the inner peripheral surface of the outflow passage is usually made of platinum or a platinum alloy.
  • the present invention which has been made in view of the above-described circumstances, has a problem in manufacturing a glass article by raising the temperature in a glass melting furnace by using heating by a combustion burner and starting up the furnace. It is a technical object to minimize oxidation and volatilization of platinum and a platinum alloy constituting a surface.
  • the present invention for solving the above problems, while continuously supplying the glass raw material on the molten glass stored in the glass melting furnace, while continuously producing a new molten glass by melting the glass raw material, platinum or
  • the heating by the combustion burner is performed in a state where the contact between the atmosphere in the glass melting furnace and the inner peripheral surface of the outflow passage is reduced. It is.
  • the temperature raising step heating is performed by the combustion burner under a state in which contact between the atmosphere in the glass melting furnace and the inner peripheral surface of the outflow passage is reduced, and the temperature in the furnace is reduced from room temperature. Going up. Thereby, even if the atmosphere in the furnace containing oxygen sent into the furnace with the use of the combustion burner flows into or out of the outflow passage, it forms the inner peripheral surface of the outflow passage. Oxidation and volatilization of platinum and a platinum alloy can be suppressed as much as possible.
  • the shielding material By preventing the contact between the atmosphere in the furnace and the inner peripheral surface of the outflow passage with a glass material, the following effects can be obtained. That is, a member other than glass (for example, a metal member or a refractory) can be adopted as the shielding material. In this case, however, an operation for removing the shielding material occurs. Further, the shielding material may be mixed with the molten glass to cause a problem. If a glass material is used, the glass material is eventually melted into molten glass as the temperature in the furnace increases, and is sent to the downstream process together with the molten glass obtained by melting the glass raw material. Therefore, if a glass material is employed as the shielding material, the operation of removing the shielding material becomes unnecessary, and the possibility that the shielding material is mixed with the molten glass to cause a problem can be eliminated.
  • a member other than glass for example, a metal member or a refractory
  • the shielding material may be mixed with the molten glass to cause a
  • the glass plate covering the opening at the upstream end of the outflow passage can accurately prevent the atmosphere in the furnace containing oxygen from flowing into the outflow passage. This is further advantageous in suppressing oxidation and volatilization of platinum or a platinum alloy constituting the inner peripheral surface of the outflow passage as much as possible.
  • the composition of the glass material is preferably the same as that of the molten glass.
  • the glass melting furnace is provided with an electrode movable between an advanced position advanced into the furnace and a retracted position retracted from the furnace, and in the continuous generation step, the electrode positioned at the advanced position is used.
  • heating is performed by a combustion burner in a temperature raising step in a state where the atmosphere in the glass melting furnace is prevented from contacting the electrode by covering the tip of the electrode located at the retreat position with a cover member. Is preferred.
  • the glass melting furnace is a first glass melting furnace
  • the outflow passage is a first outflow passage.
  • the second glass melting furnace into which the molten glass flowing out of the furnace flows, is connected, and in the second glass melting furnace, a heating step of raising the temperature in the second glass melting furnace from room temperature by a combustion burner is performed.
  • the atmosphere in the second glass-melting furnace contacts the inner peripheral surface of the first outflow passage, and the atmosphere in the second glass-melting furnace and the outside of the second glass-melting furnace.
  • the heating by the combustion burner may be performed in a state where the second outflow passage for discharging the molten glass is prevented from contacting the inner peripheral surface made of platinum or a platinum alloy with a shielding material.
  • the “alkali-free glass” is a glass that does not substantially contain an alkali component (alkali metal oxide), and specifically means a glass having a weight ratio of the alkali component of 3000 ppm or less.
  • the weight ratio of the alkali component is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less.
  • the temperature of the inside of the glass melting furnace is raised by utilizing the heating by the combustion burner to start up the furnace.
  • platinum alloy can be suppressed as much as possible from oxidation and volatilization.
  • FIG. 2 is a cross-sectional plan view illustrating a continuous generation step in the method for manufacturing a glass article according to the first embodiment of the present invention. It is a vertical side view which shows the start-up process in the manufacturing method of the glass article which concerns on 1st embodiment of this invention.
  • FIG. 2 is a perspective view illustrating a start-up process in the method for manufacturing a glass article according to the first embodiment of the present invention. It is a vertical side view which shows the start-up process in the manufacturing method of the glass article which concerns on 1st embodiment of this invention.
  • FIGS. 1 and 2 show an embodiment in which a continuous production step is performed in a glass melting furnace 1 (hereinafter simply referred to as furnace 1).
  • the molten glass 2 stored in the furnace 1 is electrically heated by the electrode 3 while the temperature in the furnace 1 (molten glass) is maintained at an operating temperature (for example, 1450 ° C. to 1550 ° C.). Meanwhile, the glass material 4 continuously supplied on the surface 2a of the molten glass 2 is sequentially melted to continuously produce new molten glass 2, and the molten glass 2 is passed through a pipe 5 as an outflow passage (first outflow passage). Flow out of furnace 1. In this continuous generation step, the molten glass 2 is heated only by the electric heating by the electrode 3.
  • the molten glass 2 generated in the continuous generation step is sent to a downstream step including a forming step and the like, and is subjected to a process of forming the molten glass 2 in the downstream step and the like, and is processed into a glass article (for example, a glass plate, a glass tube, a glass). Fiber).
  • a glass article for example, a glass plate, a glass tube, a glass). Fiber
  • the furnace 1 used in the present embodiment has a rectangular cross section in plan view.
  • the furnace 1 includes a front wall 1a located at an upstream end in a flow direction T of the glass raw material 4 in the furnace 1, a rear wall 1b located at a downstream end, a pair of side walls 1c and 1d, and a ceiling wall 1e. , Bottom wall 1f.
  • These furnace walls 1a to 1f are each made of a refractory (in the present embodiment, high zirconia electroformed refractory brick).
  • a plurality of (three in the present embodiment) screw feeders 6 for supplying the glass raw material 4 into the furnace 1 are arranged in parallel on the front wall 1a.
  • Each screw feeder 6 is inserted into an opening 1aa formed in the front wall 1a without a gap.
  • tin oxide is added to the glass raw material 4 supplied from the screw feeder 6 as a fining agent.
  • the screw feeder 6 is used to supply the glass raw material 4, but a batch charger other than the screw feeder 6 may be used.
  • a vibration feeder, a pusher, a blanket charger, or the like may be used. From the viewpoint of improving the hermeticity in the furnace 1, it is preferable to use the screw feeder 6 or the vibration feeder.
  • a plurality of screw feeders 6 are used, but the number of screw feeders 6 may be only one.
  • a pipe 5 for discharging the molten glass 2 is disposed on the rear wall 1b.
  • the inner peripheral surface 5a of the pipe 5 is made of platinum or a platinum alloy.
  • a burner pair 9 composed of a pair of one air combustion burner 7 and one oxygen combustion burner 8 is arranged.
  • three pairs of the burners are provided on the side wall 1c.
  • Burner pairs 9 are arranged, and two pairs of burner pairs 9 are arranged on the side wall 1d.
  • the air combustion burners 7 and the oxyfuel burners 8 are arranged in pairs, but the numbers of the air combustion burners 7 and the oxyfuel burners 8 may be different. Further, the air combustion burner 7 and the oxyfuel burner 8 may be arranged on the ceiling wall 1e.
  • the air combustion burner 7 is a burner that mixes and burns gaseous fuel such as natural gas and air.
  • the oxyfuel burner 8 is a burner that mixes and burns gaseous fuel and oxygen.
  • Each of the two burners 7, 8 can inject the flames 7a, 8a from the side wall 1c (side wall 1d) side to the opposing side wall 1d (side wall 1c) side, as shown by a two-dot chain line in FIG. It is.
  • the thermal power of the oxyfuel burner 8 is larger than the thermal power of the air combustion burner 7.
  • the flame 7a injected by the air combustion burner 7 is wider in plan view than the flame 8a injected by the oxyfuel burner 8.
  • the air combustion burner 7 can be removed from the side wall 1c (side wall 1d) in a state where the operation is stopped.
  • the oxyfuel burner 8 may also be removable from the side wall 1c (side wall 1d) in a state where the operation is stopped.
  • the electrode 3 arranged on the bottom wall 1f is formed in a rod shape.
  • the electrode 3 has an advanced position where the electrode 3 has advanced into the furnace 1 from the bottom wall 1f (the position where the electrode 3 is located in FIG. 1) and a retracted position where the electrode 3 has been retracted from the furnace 1 (the electrode 3 has been located in FIG. Position).
  • the electrode 3 is made of, for example, molybdenum.
  • the molten glass 2 is heated by the electrode 3 located at the advanced position and immersed in the molten glass 2 in the furnace 1.
  • the voltage applied to the electrode 3 it is possible to adjust the energy generated by the electrode 3 (thermal energy applied to the molten glass 2).
  • the electrode 3 heats the molten glass 2
  • the glass raw material 4 on the surface 2a of the molten glass 2 is indirectly heated and melted. Thereby, new molten glass 2 is generated sequentially.
  • the molten glass 2 is heated by the rod-shaped electrode 3.
  • the molten glass 2 is applied to each of the pair of side walls 1 c and 1 d.
  • the molten glass 2 may be heated by the arranged plate-shaped electrodes or block-shaped electrodes.
  • start-up process is executed to start up the furnace 1 to a state where the above-described continuous generation process can be executed.
  • a first temperature raising step in which the temperature in the furnace 1 is raised from room temperature (particularly a temperature at which cooling and heating is not performed, for example, 20 ° C. ⁇ 15 ° C.) by the air combustion burner 7; 8 a second temperature raising step for raising the temperature in the furnace 1 (FIG. 5), a raw material supply starting step for starting the supply of the glass raw material 4 into the furnace 1 (FIG. 6), and melting the glass raw material 4
  • An energization heating start step (FIG. 8) for starting energization heating of the stored molten glass 2 is performed.
  • both the first heating step and the second heating step constitute a heating step.
  • the member is placed on the bottom wall 1f of the furnace 1. Since the first glass plate 10 is located right above the electrode 3, the tip (upper end) of the electrode 3 is covered with the first glass plate 10. Thus, the electrode 3 is protected by the first glass plate 10. The state in which the electrode 3 is covered with the first glass plate 10 continues until the first glass plate 10 is melted with the rise in the temperature in the furnace 1. This prevents contact between the electrode 3 and the atmosphere containing oxygen in the furnace 1 from the start of the first temperature raising step until the first glass plate 10 is melted, thereby oxidizing the electrode 3. Work around. The space formed between the first glass plate 10 and the electrode 3 is filled with a large number of glass blocks (not shown) formed in a block shape.
  • the tip of the electrode 3 when separating the electrode 3 from the inside of the furnace 1, the tip of the electrode 3 is covered with the first glass plate 10, but this is not a limitation.
  • the tip of the electrode 3 may be covered with cullet.
  • the first glass plate 10 and the cullet it is preferable to use a glass plate and a cullet made of glass having the same composition as the molten glass 2 generated by melting the glass raw material 4, and have the same composition as the molten glass 2. It is more preferable to use a glass plate and cullet.
  • the opening 5ba at the upstream end 5b of the pipe 5 is covered with the second glass plate 11 and the third glass plate 12 as glass materials.
  • the inside of the pipe 5 and the inside of the furnace 1 are partitioned by the two glass plates 11 and 12.
  • the state in which the inside of the pipe 5 is separated from the inside of the furnace 1 continues until the glass plates 11 and 12 are melted with the rise in the temperature inside the furnace 1.
  • the contact between the inner atmosphere and the inner peripheral surface 5a of the pipe 5 is prevented.
  • the molten glass 2 is non-alkali glass
  • the present invention can be applied even when the cross section of the flow path of the pipe 5 is other than rectangular, for example, circular, elliptical, or polygonal.
  • both the glass plates 11 and 12 have a rectangular shape.
  • the second glass plate 11 is installed in a state of being leaned against the upstream end 5b of the pipe 5 (the rear wall 1b of the furnace 1).
  • the main surface (front and back) of the second glass plate 11 is inclined with respect to the vertical line.
  • the width of the second glass plate 11 (the width along the horizontal direction) is the same as the width of the pipe 5.
  • the upper side of the second glass plate 11 is located higher than the upper part of the upstream end 5b.
  • the lower side of the second glass plate 11 is in contact with the bottom wall 1 f of the furnace 1.
  • Each of the two third glass plates 12 is installed in a substantially upright posture with its main surface leaning against the widthwise end surface of the second glass plate 11.
  • the upper sides of these third glass plates 12 are located above the upper part of the upstream end 5b.
  • the lower side of the third glass plate 12 is in contact with the bottom wall 1 f of the furnace 1.
  • One of a pair of sides of the third glass plate 12 extending in the vertical direction is in contact with the rear wall 1 b of the furnace 1.
  • the gaps extending from the inside of the furnace 1 to the pipes 5 including the gaps formed between the widthwise end surfaces of the second glass plate 11 and the main surface of the third glass plate 12 are glass materials. It is preferable to cover with a piece of glass plate or cullet. In addition, since these gaps are required to be as small as possible, they may be closed with the glass raw material 4. However, from the viewpoint of avoiding the possibility that some of the components of the raw material 4 volatilize before melting, the glass material 4 is used. It is preferable to use.
  • the surface shapes of the second glass plate 11 and the third glass plate 12 may be other than rectangles, for example, trapezoids or triangles, and glass plates having different surface shapes may be used in combination.
  • the outer peripheral surface of the upstream end 5b is in contact with the rear wall 1b without being exposed to the atmosphere in the furnace 1, but the outer peripheral surface of the upstream end 5b.
  • the surface may be exposed to the atmosphere in the furnace 1.
  • the entire portion of the pipe 5 (the portion made of platinum or a platinum alloy) that comes into contact with the molten glass 2 during the continuous production step, including the outer peripheral surface of the upstream end portion 5b, is a cullet, a glass plate, You may make it cover with a plate piece, glass raw material 4, etc.
  • the upper surface of the outer peripheral surface of the upstream end 5b may be covered with a glass plate, and the side surface of the outer peripheral surface of the upstream end 5b may be covered with each of the two third glass plates 12 described above. Further, the inner peripheral surface 5a of the pipe 5 may be covered with the glass raw material 4 filled in the pipe 5.
  • the tip of the electrode 3 is covered with the first glass plate 10 and the opening 5ba of the upstream end 5b is closed with the second glass plate 11 and the third glass plate 11.
  • the glass plate 12 are not restrictive, and they may be performed at the start of the first heating step.
  • the first temperature raising step is started by operating the air combustion burner 7 and injecting the flame 7a as shown in FIG. .
  • the supply of the glass raw material 4 into the furnace 1 has not been started, and the above-described first to third glass plates 10, 11, 12 and both glass plates have been started. Except for a piece of glass plate or a cullet that closes a gap between the plates 11 and 12, the molten glass 2 and the glass raw material 4 do not exist in the furnace 1.
  • the start of the first temperature raising step when the temperature inside the furnace 1 (the ambient temperature of the ceiling wall 1e) rises to an arbitrary temperature within a range of 700 ° C. to 900 ° C., as shown in FIG.
  • Switching from the step to the second temperature raising step is performed.
  • the operation of the air combustion burner 7 is sequentially stopped, and the operation of the oxyfuel burner 8 is sequentially started.
  • the start of the operation of the first oxyfuel burner 8 is the start of the second heating step.
  • a raw material supply start step is performed.
  • the glass raw material 4 may be partially or entirely cullet.
  • the raw material supply start step may be performed at the same time as the completion of the switching from the first temperature raising step to the second temperature raising step, as long as the temperature in the furnace 1 has risen to the melting temperature.
  • the raw material supply start step may be performed at any time before the temperature in the furnace 1 rises to the melting temperature.
  • the raw material supply start step is performed after the temperature in the furnace 1 is raised to the melting temperature. Is preferably performed.
  • the glass raw material 4 supplied into the furnace 1 is sequentially melted, and the molten glass 2 is stored in the furnace 1. Thereby, the height position of the surface 2 a of the molten glass 2 gradually rises in the furnace 1.
  • the first glass plate 10 partitioning the inside of the furnace 1 from the electrode 3 the second glass plate 11 partitioning the inside of the furnace 1 and the inside of the pipe 5, and the second glass plate 11
  • the three glass plates 12 melt sequentially as the temperature inside the furnace 1 increases.
  • the electrode 3 is moved from the retracted position to the advanced position. Then, an energization heating start step is performed by applying a voltage to the electrode 3. At this point, the temperature inside the furnace 1 (molten glass) is, for example, in the range of 1300 ° C. to 1600 ° C.
  • the furnace 1 In order to maintain the inside temperature, the operation of the oxyfuel burner 8 is sequentially stopped. When the operation of all the oxyfuel burners 8 is stopped, the start-up process is completed. Then, the continuous production process is started in the furnace 1.
  • the contact between the atmosphere in the furnace 1 and the inner peripheral surface 5a of the pipe 5 is made by the two glass plates 11 and 12.
  • heating by the air combustion burner 7 or the oxyfuel burner 8 is performed, and the temperature in the furnace 1 increases from room temperature.
  • the atmosphere in the furnace 1 containing oxygen sent into the furnace 1 due to the use of the two combustion burners 7 and 8 can be prevented from flowing into the pipe 5.
  • oxidation and volatilization of platinum or a platinum alloy constituting the inner peripheral surface 5a of the pipe 5 can be suppressed as much as possible.
  • the second embodiment is different from the first embodiment in that the furnace 1 is a first glass melting furnace 13 (hereinafter, referred to as a first furnace 13), and the pipe 5 is After that, the first furnace 13 and the second glass melting furnace 15 (hereinafter, referred to as a second furnace 15) into which the molten glass 2 flowing out of the first furnace 13 flows through the first pipe 14. It is a connected point.
  • the second furnace 15 has the same configuration as the first furnace 13 except that the second furnace 15 is not provided with the screw feeder 6.
  • the first pipe 14 of the present embodiment is arranged in a posture in which the longitudinal direction is horizontal
  • the first pipe 14 may be arranged in a posture in which the longitudinal direction is inclined so that the height increases as the distance from the first furnace 13 increases.
  • the bottom wall 1f of the first furnace 13 and the bottom wall 1f of the second furnace 15 have the same height, but the bottom wall 1f of the second furnace 15 is It may be arranged at a position higher than 1f, or the bottom wall 1f of the second furnace 15 may be arranged at a position lower than the bottom wall 1f of the first furnace 13.
  • the first and second temperature raising steps of raising the temperature in the second furnace 15 from room temperature by the air combustion burner 7 or the oxyfuel burner 8 are executed.
  • the first and second heating steps of the second furnace 15 are started and executed simultaneously with the execution of the first and second heating steps in the first furnace 13, but are not necessarily started simultaneously. It is not necessary to execute them synchronously, and there may be a slight time lag.
  • the first and second heating steps in the second furnace 15 can be performed under the same conditions as the first and second heating steps in the first furnace 13.
  • the opening 5ca of the downstream end 5c of the first pipe 14 may not be covered with the glass plate.
  • the opening 5ca of the downstream end 5c of the first pipe 14 is provided with the second glass plate 11 and the third glass as the glass material. Preferably, it is covered with a plate 12.
  • the form that covers the opening 5ca of the downstream end 5c is the same as the form that covers the opening 5ba of the upstream end 5b.
  • the atmosphere inside the second furnace 15 and the second pipe as a second outflow passage for allowing the molten glass 2 to flow out of the second furnace 15. 16 is prevented from contacting the inner peripheral surface 5a.
  • the opening 5ba at the upstream end 5b of the second pipe 16 is covered with a second glass plate 11 and a third glass plate 12 as glass materials.
  • the form that covers the opening 5ba of the upstream end 5b of the second pipe 16 is the same as the form that covers the opening 5ba of the upstream end 5b of the first pipe 14.
  • the present invention is not limited to the configuration of the above-described embodiment, nor is it limited to the above-described effects.
  • the present invention can be variously modified without departing from the gist of the present invention.
  • the molten glass is continuously generated by heating only the electrode 3 in the continuous generation step.
  • the burners 7 and 8 may be used in combination.
  • the heating of the electrodes 3 and the heating of the burners 7 and 8 in the first furnace 13 are performed. And only the heating of the burners 7 and 8 in the second furnace 15 may be used.
  • the oxyfuel combustion burner 8 it is preferable to use the oxyfuel combustion burner 8. From the viewpoint of reducing the ⁇ -OH value of the manufactured glass article, as in the first embodiment, using a single melting furnace 1 and continuously producing molten glass by heating only the electrode 3 in the continuous production step Is preferred.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

炉1内に貯留された溶融ガラス2上にガラス原料4を連続供給しつつ、原料4を溶解させて新たな溶融ガラス2を連続生成すると共に、白金又は白金合金で構成される内周面5aを有するパイプ5を通じて溶融ガラス2を炉1外に流出させる連続生成工程と、連続生成工程を実行可能な状態まで炉1を立ち上げる立上工程とを備えたガラス物品の製造方法について、立上工程が、燃焼バーナー7,8により炉1内の温度を常温から上昇させる昇温ステップを含み、昇温ステップでは、炉1内の雰囲気とパイプ5の内周面5aとの接触を低減した状態で、燃焼バーナー7,8による加熱を行うようにした。

Description

ガラス物品の製造方法
 本発明は、ガラス溶解炉を用いてガラス物品の元となる溶融ガラスを連続生成する工程と、当該工程を実行可能な状態まで炉を立ち上げる工程とを備えたガラス物品の製造方法に関する。
 周知のように、ガラス板、ガラス管、ガラス繊維等に代表されるガラス物品は、ガラス原料を溶解させて生成した溶融ガラスを所定の形状に成形することにより製造される。ここで、特許文献1には、ガラス溶解炉を用いて溶融ガラスを連続生成する手法の一例が開示されている。
 同文献に開示された手法では、ガラス溶解炉内に貯留された溶融ガラス上にガラス原料を連続供給しつつ、ガラス原料を溶解させて新たな溶融ガラスを連続生成すると共に、流出通路(同文献では、スロート)を通じて溶融ガラスを炉外に流出させている。なお、流出通路の内周面は、白金又は白金合金で構成されるのが通例である。
特開2003-183031号公報
 ところで、ガラス溶解炉を稼働させるに際しては、溶融ガラスの連続生成が可能な状態まで炉を立ち上げることが必要となる。炉の立ち上げにあたっては、炉内の温度を常温から上昇させるため、天然ガス等の気体燃料と空気とを混合させて燃焼させる空気燃焼バーナーや、気体燃料と酸素とを混合させて燃焼させる酸素燃焼バーナーを利用する場合が多い。これらバーナーによる加熱を行うことで、炉内の温度がガラス原料を溶解させ得る温度まで上昇すると、炉内にガラス原料の供給を開始する。これに伴ってガラス原料が溶解し、溶融ガラスが炉内に貯留されていく。
 しかしながら、上記の態様によるガラス溶解炉の立ち上げにおいては、下記のような問題が発生していた。
 すなわち、ガラス溶解炉内の温度を上昇させるため、空気燃焼バーナーや酸素燃焼バーナーを利用する場合には、炉内に対する空気や酸素の送り込みが持続する状態となり、これに伴って、酸素を含んだ炉内の雰囲気が流出通路に不可避的に流れ込んでしまう。その結果、流出通路の内周面を構成する白金や白金合金が酸化したり、揮発したりする問題が発生していた。
 上記の事情に鑑みなされた本発明は、ガラス物品を製造するに際し、燃焼バーナーによる加熱を利用してガラス溶解炉内の温度を上昇させて炉を立ち上げるにあたり、溶融ガラスの流出通路の内周面を構成する白金や白金合金の酸化や揮発を可及的に抑制することを技術的な課題とする。
 上記の課題を解決するための本発明は、ガラス溶解炉内に貯留された溶融ガラス上にガラス原料を連続供給しつつ、ガラス原料を溶解させて新たな溶融ガラスを連続生成すると共に、白金又は白金合金で構成される内周面を有する流出通路を通じて溶融ガラスをガラス溶解炉外に流出させる連続生成工程と、連続生成工程を実行可能な状態までガラス溶解炉を立ち上げる立上工程とを備えたガラス物品の製造方法であって、立上工程が、燃焼バーナーによりガラス溶解炉内の温度を常温から上昇させる昇温ステップと、ガラス溶解炉内にガラス原料の供給を開始する原料供給開始ステップとを含み、昇温ステップでは、ガラス溶解炉内の雰囲気と流出通路の内周面との接触を低減した状態で、燃焼バーナーによる加熱を行うことに特徴付けられる。
 本方法によれば、昇温ステップにおいて、ガラス溶解炉内の雰囲気と流出通路の内周面との接触が低減された状態の下、燃焼バーナーによる加熱が行われて炉内の温度が常温から上昇していく。これにより、燃焼バーナーの利用に伴って炉内に送り込まれた酸素を含んだ炉内の雰囲気が、流出通路に流れ込んだり、流れ込もうとしたりした場合でも、流出通路の内周面を構成する白金や白金合金の酸化や揮発を可及的に抑制できる。
 上記の方法において、ガラス溶解炉内の雰囲気と流出通路の内周面との接触を遮蔽材で防ぐことが好ましい。
 ガラス溶解炉内の雰囲気と流出通路の内周面との接触を遮蔽材で防ぐことにより、ガラス溶解炉内の雰囲気と流出通路の内周面との接触を安定して低減することができる。
 上記の方法において、遮蔽材として、ガラス材を用いることが好ましい。
 炉内の雰囲気と流出通路の内周面との接触をガラス材で防ぐことで、下記のような効果も得ることが可能である。すなわち、遮蔽材としてガラス以外の部材(例えば金属部材や耐火物等)を採用することも可能であるが、この場合、遮蔽材を除去する作業が発生する。また、遮蔽材が溶融ガラスに混入して不具合を発生させるおそれがある。ガラス材を用いれば、炉内の温度の上昇に従い、ガラス材もやがて溶融して溶融ガラスとなり、ガラス原料が溶融してなる溶融ガラスと共に下流側工程に送られていく。そのため、遮蔽材としてガラス材を採用すれば、遮蔽材を除去する作業が不要となると共に、遮蔽材が溶融ガラスに混入して不具合を発生させるおそれを排除できる。
 上記の方法において、ガラス材として、流出通路における上流側端部の開口を覆うガラス板を用いることが好ましい。
 このようにすれば、流出通路における上流側端部の開口を覆うガラス板により、酸素を含んだ炉内の雰囲気が、流出通路に流れ込むことを的確に回避できる。これにより、流出通路の内周面を構成する白金や白金合金の酸化や揮発を可及的に抑制する上で、更に有利となる。
 上記の方法において、ガラス材の組成が、溶融ガラスと同一の組成であることが好ましい。
 このようにすれば、ガラス材によって溶融ガラスの組成が変動することを防止できるので、溶融ガラスを利用する上で有利となる。
 上記の方法において、ガラス溶解炉は、炉内に進出した進出位置と、炉内から退避した退避位置との間を移動可能な電極を備え、連続生成工程では、進出位置に位置させた電極により通電加熱を行い、昇温ステップでは、退避位置に位置させた電極の先端をカバー部材で覆うことによってガラス溶解炉内の雰囲気が電極と接触するのを防いだ状態で、燃焼バーナーによる加熱を行うことが好ましい。
 このようにすれば、カバー部材で電極が覆われることで、電極と炉内の雰囲気との接触を低減でき、電極を酸化から保護することが可能となる。
 上記の方法において、上記のガラス溶解炉を第一ガラス溶解炉とし、且つ、上記の流出通路を第一流出通路として、第一流出通路を介して、第一ガラス溶解炉と、第一ガラス溶解炉から流出した溶融ガラスが流入する第二ガラス溶解炉とを連結し、第二ガラス溶解炉において、燃焼バーナーにより第二ガラス溶解炉内の温度を常温から上昇させる昇温ステップを実行し、第二ガラス溶解炉での昇温ステップでは、第二ガラス溶解炉内の雰囲気と第一流出通路の内周面との接触、及び、第二ガラス溶解炉内の雰囲気と第二ガラス溶解炉外に溶融ガラスを流出させるための第二流出通路の白金または白金合金でなる内周面との接触を遮蔽材で防いだ状態で、燃焼バーナーによる加熱を行ってもよい。
 このようにすれば、第一ガラス溶解炉のみならず、第二ガラス溶解炉においても流出通路(第二流出通路)の内周面を構成する白金や白金合金の酸化や揮発を可及的に抑制することが可能となる。
 上記の方法において、連続生成工程では、ガラス溶解炉内に貯留された溶融ガラスを通電加熱のみで加熱することが好ましい。
 このようにすれば、燃焼バーナーによる加熱と通電加熱とを併用するような場合と比較して、ガラス溶解炉内の雰囲気を乾燥させることが可能となる。これにより、炉内の雰囲気中の水分が溶融ガラスに溶け込むことを防止しやすくなり、製造されるガラス物品におけるβ‐OH値を低減しやすくなる。その結果、ガラス物品を加熱した際のコンパクションを低下させることができ、ディスプレイ用の無アルカリガラス基板に好適なガラス物品を得ることが可能となる。
 ここで、「無アルカリガラス」とは、アルカリ成分(アルカリ金属酸化物)が実質的に含まれていないガラスであり、具体的には、アルカリ成分の重量比が3000ppm以下のガラスを意味する。なお、アルカリ成分の重量比は、好ましくは1000ppm以下であり、より好ましくは500ppm以下であり、最も好ましくは300ppm以下である。
 本発明によれば、ガラス物品を製造するに際し、燃焼バーナーによる加熱を利用してガラス溶解炉内の温度を上昇させて炉を立ち上げるにあたり、溶融ガラスの流出通路の内周面を構成する白金や白金合金の酸化や揮発を可及的に抑制することが可能となる。
本発明の第一実施形態に係るガラス物品の製造方法における連続生成工程を示す縦断側面図である。 本発明の第一実施形態に係るガラス物品の製造方法における連続生成工程を示す横断平面図である。 本発明の第一実施形態に係るガラス物品の製造方法における立上工程を示す縦断側面図である。 本発明の第一実施形態に係るガラス物品の製造方法における立上工程を示す斜視図である。 本発明の第一実施形態に係るガラス物品の製造方法における立上工程を示す縦断側面図である。 本発明の第一実施形態に係るガラス物品の製造方法における立上工程を示す縦断側面図である。 本発明の第一実施形態に係るガラス物品の製造方法における立上工程を示す縦断側面図である。 本発明の第一実施形態に係るガラス物品の製造方法における立上工程を示す縦断側面図である。 本発明の第一実施形態に係るガラス物品の製造方法における立上工程を示す縦断側面図である。 本発明の第二実施形態に係るガラス物品の製造方法における立上工程を示す縦断側面図である。
<第一実施形態>
 以下、本発明の第一実施形態に係るガラス物品の製造方法について、添付の図面を参照しながら説明する。
 図1及び図2は、ガラス溶解炉1(以下、単に炉1と表記)にて連続生成工程を実行する態様を示している。
 連続生成工程では、炉1内(溶融ガラス)の温度が操業温度(例えば1450℃~1550℃)に維持された状態の下、炉1内に貯留された溶融ガラス2を電極3によって通電加熱しつつ、溶融ガラス2の表面2a上に連続供給したガラス原料4を順次に溶解させて新たな溶融ガラス2を連続生成すると共に、溶融ガラス2を流出通路(第一流出通路)としてのパイプ5を通じて炉1外に流出させる。この連続生成工程では、電極3による通電加熱のみで溶融ガラス2を加熱する。
 連続生成工程で生成した溶融ガラス2は、成形工程等を含む下流側工程に送り、下流側工程にて溶融ガラス2を成形する等の過程を経てガラス物品(例えば、ガラス板、ガラス管、ガラス繊維等)を製造する。
 本実施形態に用いる炉1は、平面視で矩形状をなす断面形状を有する。この炉1は、炉1内でのガラス原料4の流れ方向Tにおける上流端に位置する前壁1aと、下流端に位置する後壁1bと、一対の側壁1c,1dと、天井壁1eと、底壁1fとを有する。これら炉壁1a~1fは、それぞれ耐火物(本実施形態では、高ジルコニア電鋳耐火煉瓦)でなる。
 前壁1aには、ガラス原料4を炉1内に供給するためのスクリューフィーダー6が並列に複数基(本実施形態では、三基)配置されている。各スクリューフィーダー6は、前壁1aに形成された開口部1aaに対して隙間なく挿入されている。なお、スクリューフィーダー6から供給されるガラス原料4には、清澄剤として酸化スズが添加されている。
 ここで、本実施形態では、ガラス原料4の供給にスクリューフィーダー6を用いているが、スクリューフィーダー6以外のバッチチャージャーを用いてもよい。バッチチャージャーの一例として、振動フィーダーやプッシャー、ブランケットチャージャー等を用いてもよい。炉1内の密閉性を向上させる観点からは、スクリューフィーダー6又は振動フィーダーを用いることが好ましい。また、本実施形態では、複数基のスクリューフィーダー6を用いているが、スクリューフィーダー6の数は一基のみであってもよい。
 後壁1bには、溶融ガラス2を流出させるためのパイプ5が配置されている。このパイプ5における内周面5aは、白金又は白金合金で構成されている。
 側壁1cと側壁1dとの各々には、一基の空気燃焼バーナー7と一基の酸素燃焼バーナー8との対でなるバーナー対9が配置されており、本実施形態では、側壁1cに三対のバーナー対9が配置され、側壁1dに二対のバーナー対9が配置されている。なお、本実施形態で、空気燃焼バーナー7と酸素燃焼バーナー8とを対にして配置するが、空気燃焼バーナー7と酸素燃焼バーナー8の数が異なってもよい。また、空気燃焼バーナー7及び酸素燃焼バーナー8は、天井壁1eに配置してもよい。本実施形態の連続生成工程の実行中には、合計五対のバーナー対9の各々において、空気燃焼バーナー7と酸素燃焼バーナー8との両者は、いずれも稼働が停止した状態となる。
 空気燃焼バーナー7は、天然ガス等の気体燃料と空気とを混合させて燃焼させるバーナーである。これに対して、酸素燃焼バーナー8は、気体燃料と酸素とを混合させて燃焼させるバーナーである。
 両バーナー7,8の各々は、図2に二点鎖線で示すように、側壁1c(側壁1d)側から対向する側壁1d(側壁1c)側に向かって火炎7a,8aを噴射することが可能である。なお、酸素燃焼バーナー8の火力は、空気燃焼バーナー7の火力と比較して大きくなっている。一方、空気燃焼バーナー7が噴射する火炎7aは、酸素燃焼バーナー8が噴射する火炎8aよりも平面視で幅広となっている。なお、本実施形態において、空気燃焼バーナー7は、稼働を停止させた状態の下で側壁1c(側壁1d)から取り外すことが可能となっている。酸素燃焼バーナー8も稼働を停止させた状態の下で側壁1c(側壁1d)から取り外し可能としてもよい。
 底壁1fに配置された電極3は棒状に形成されている。この電極3は、底壁1fから炉1内に進出した進出位置(図1で電極3が位置した位置)と、炉1内から退避した退避位置(後に言及する図3で電極3が位置した位置)との間を移動することが可能である。この電極3は、例えばモリブデンで構成されている。
 連続生成工程の実行中には、進出位置に位置して炉1内の溶融ガラス2に浸漬された状態にある電極3により溶融ガラス2を加熱する。この電極3に印加する電圧を調節することで、電極3により発生させるエネルギー(溶融ガラス2に付与する熱エネルギー)を調節することが可能である。そして、電極3が溶融ガラス2を加熱するのに伴い、溶融ガラス2の表面2a上のガラス原料4が間接的に加熱されて溶解する。これにより、新たな溶融ガラス2が順次に生成されていく。
 ここで、本実施形態では、棒状の電極3により溶融ガラス2を加熱しているが、棒状の電極3に加えて、又は、棒状の電極3に代えて、一対の側壁1c,1dの各々に配置された板状の電極や、ブロック状の電極により溶融ガラス2を加熱するようにしてもよい。
 本実施形態では、上記の連続生成工程を実行可能な状態まで炉1を立ち上げるにあたり、下記の立上工程を実行する。
 立上工程では、空気燃焼バーナー7により炉1内の温度を常温(特に冷やしたり熱したりしない温度、例えば20℃±15℃)から上昇させる第一昇温ステップ(図3)と、酸素燃焼バーナー8により炉1内の温度を上昇させる第二昇温ステップ(図5)と、炉1内にガラス原料4の供給を開始する原料供給開始ステップ(図6)と、ガラス原料4を溶解させて貯留した溶融ガラス2の通電加熱を開始する通電加熱開始ステップ(図8)とを行う。本実施形態では、第一昇温ステップと第二昇温ステップとの両方で昇温ステップを構成している。
 最初に、立上工程を実行するための準備として、第一昇温ステップの開始前に、図3に示すように、電極3を退避位置に位置させた上で、第一ガラス板10(カバー部材)を炉1の底壁1f上に載置する。第一ガラス板10は電極3の真上に位置するので、電極3の先端(上端)が第一ガラス板10で覆われる。このようにして、第一ガラス板10により電極3を保護する。この第一ガラス板10で電極3が覆われた状態は、炉1内の温度の上昇に伴って第一ガラス板10が溶解するまで継続する。これにより、第一昇温ステップの開始後から第一ガラス板10が溶解するまでの間、炉1内の酸素を含んだ雰囲気と電極3との接触を防止し、電極3の酸化を可及的に回避する。なお、第一ガラス板10と電極3との相互間に形成される空間は、ブロック状に形成された多数のガラス(図示省略)で充填している。
 ここで、本実施形態では、電極3と炉1内とを仕切るに際し、第一ガラス板10で電極3の先端を覆っているが、この限りではない。第一ガラス板10に代えて、例えばカレットで電極3の先端を覆ってもよい。第一ガラス板10及びカレットには、ガラス原料4を溶解することによって生成する溶融ガラス2と同じ組成系のガラスからなるガラス板及びカレットを用いることが好ましく、溶融ガラス2と同一の組成でなるガラス板及びカレットを用いることがより好ましい。
 さらに、第一昇温ステップの開始前には、パイプ5における上流側端部5bの開口5baをガラス材としての第二ガラス板11および第三ガラス板12で覆う。このようにして、両ガラス板11,12によりパイプ5内と炉1内とを仕切る。このパイプ5内と炉1内とが仕切られた状態は、炉1内の温度の上昇に伴って両ガラス板11,12が溶解するまで継続する。これにより、第一昇温ステップの開始後から両ガラス板11,12が溶解するまでの間、炉1内とパイプ5内との間でガスの往来を防止し、炉1内の酸素を含んだ雰囲気とパイプ5の内周面5aとの接触を防止する。このようにして、パイプ5の内周面5aを構成する白金の酸化を可及的に回避する。溶融ガラス2が無アルカリガラスである場合、両ガラス板11,12には、無アルカリガラスからなるガラス板を用いることが好ましい。
 以下、図4を参照することで、第二ガラス板11および第三ガラス板12を設置する具体的な形態について説明する。本実施形態では、パイプ5の流路断面が矩形をなす場合を例に挙げて説明する。勿論ではあるが、パイプ5の流路断面が矩形以外、例えば、円形や楕円形、多角形をなす場合であっても、本発明を適用することが可能である。
 図4に示すように、第二ガラス板11は一枚が設置され、第三ガラス板12は第二ガラス板11を挟むようにして二枚が設置されている。本実施形態では、両ガラス板11,12はいずれも矩形の形状を有する。
 第二ガラス板11は、パイプ5の上流側端部5b(炉1の後壁1b)に立て掛けられた状態で設置されている。この第二ガラス板11の主面(表裏面)は、鉛直線に対して傾斜した状態となっている。第二ガラス板11の幅寸法(水平方向に沿った幅の寸法)は、パイプ5の幅寸法と同一の寸法となっている。第二ガラス板11の上辺部は、上流側端部5bの上部よりも上方に位置している。一方、第二ガラス板11の下辺部は、炉1の底壁1fに接している。
 二枚の第三ガラス板12の各々は、略直立姿勢の下、その主面が第二ガラス板11の幅方向端面に接触するように立て掛けられた状態で設置されている。これら第三ガラス板12の上辺部は、上流側端部5bの上部よりも上方に位置している。一方、第三ガラス板12の下辺部は、炉1の底壁1fに接している。第三ガラス板12における上下方向に延びた一対の辺部の片方は、炉1の後壁1bに接している。
 図示は省略するが、第二ガラス板11の幅方向端面と第三ガラス板12の主面との間に形成される隙間を含め、炉1内からパイプ5内に通じる隙間は、ガラス材としてのガラス板片やカレット等で塞ぐことが好ましい。なお、これらの隙間はできる限り少ないことが要求されるので、ガラス原料4で塞ぐようにしてもよいが、原料4の成分の一部が溶解前に揮発する虞を回避する観点では、ガラス材を用いることが好ましい。また、第二ガラス板11および第三ガラス板12の表面形状は、矩形以外、例えば台形や三角形であってもよく、表面形状が異なるガラス板を組み合わせて用いてもよい。
 なお、本実施形態では、上流側端部5bの外周面は、炉1内の雰囲気に対して露出することなく、後壁1bと接触した状態となっているが、上流側端部5bの外周面が、炉1内の雰囲気に対して露出した状態であってもよい。この場合、上流側端部5bの外周面を含め、連続生成工程の実行中に溶融ガラス2と接触するパイプ5の全部位(白金又は白金合金で構成される部位)をカレット、ガラス板、ガラス板片、ガラス原料4等で覆うようにしてもよい。例えば、上流側端部5bの外周面の上面をガラス板で覆うと共に、上流側端部5bの外周面の側面を前述の二枚の第三ガラス板12の各々で覆うようにしてもよい。さらに、パイプ5内に充填したガラス原料4で当該パイプ5の内周面5aを覆うようにしてもよい。
 ここで、本実施形態においては、第一昇温ステップの開始前に、電極3の先端を第一ガラス板10で覆うと共に、上流側端部5bの開口5baを第二ガラス板11および第三ガラス板12で覆っているが、この限りではなく、これらを第一昇温ステップの開始時に行ってもよい。
 以上のようにして、立上工程を実行する準備が完了すると、次いで、図3に示すように、空気燃焼バーナー7を稼働させて火炎7aを噴射させることで、第一昇温ステップを開始する。なお、本実施形態において、第一昇温ステップの開始時には、炉1内へのガラス原料4の供給は開始されておらず、上記の第一~第三ガラス板10,11,12および両ガラス板11,12の間の隙間を塞ぐガラス板片やカレットを除いて、炉1内に溶融ガラス2及びガラス原料4が存在しない状態となっている。
 第一昇温ステップの開始後、炉1内の温度(天井壁1eの雰囲気温度)が700℃~900℃の範囲内における任意の温度まで上昇すると、図5に示すように、第一昇温ステップから第二昇温ステップへの切り換えを行う。例えば、空気燃焼バーナー7の稼働を順次停止させると共に、酸素燃焼バーナー8の稼働を順次開始させる。最初の酸素燃焼バーナー8の稼働の開始をもって第二昇温ステップの開始となる。
 第一昇温ステップから第二昇温ステップへの切り換え後、炉1内の温度がガラス原料4を溶解させ得る温度(以下、溶解可能温度と表記)まで上昇すると、図6に示すように、スクリューフィーダー6を稼働させて炉1内へのガラス原料4の供給を開始することで、原料供給開始ステップを行う。ガラス原料4は、一部又は全部がカレットであってもよい。
 なお、原料供給開始ステップは、炉1内の温度が溶解可能温度まで上昇している限りで、第一昇温ステップから第二昇温ステップへの切り換えの完了と同時に行ってもよい。一方で、炉1内の温度が溶解可能温度まで上昇する以前の任意の時点で原料供給開始ステップを行ってもよい。ただし、ガラス原料4に含まれる成分が当該原料4の溶解前に揮発して消失するような虞を回避する観点からは、炉1内の温度が溶解可能温度まで上昇してから原料供給開始ステップを行うことが好ましい。
 原料供給開始ステップ後には、図7に示すように、炉1内に供給されたガラス原料4が順次に溶解し、炉1内に溶融ガラス2が貯留されていく。これにより、炉1内で溶融ガラス2の表面2aの高さ位置が次第に上昇していく。なお、図7にて二点鎖線で示すように、炉1内と電極3とを仕切っていた第一ガラス板10、炉1内とパイプ5内とを仕切っていた第二ガラス板11および第三ガラス板12は、炉1内の温度の上昇に伴って順次に溶解する。
 そして、溶融ガラス2の表面2aの高さ位置が予め定めた基準位置に到達した後、図8に示すように、電極3を退避位置から進出位置に移動させる。そして、電極3に電圧を印加することで通電加熱開始ステップを行う。この時点における炉1内(溶融ガラス)の温度は、例えば1300℃~1600℃の範囲内である。
 その後、図9に示すように、溶融ガラス2の表面2aの高さ位置が連続生成工程を実行する際の位置まで到達すると共に、炉1内の温度が操業温度で略均一になると、炉1内の温度を維持するため、酸素燃焼バーナー8の稼働を順次停止させていく。全ての酸素燃焼バーナー8の稼働を停止させると立上工程が完了する。そして、炉1にて連続生成工程の実行が開始される。
 以下、本発明の実施形態に係るガラス物品の製造方法による主たる作用・効果について説明する。
 上記の第一実施形態に係るガラス物品の製造方法では、第一および第二昇温ステップにおいて、炉1内の雰囲気とパイプ5の内周面5aとの接触が、両ガラス板11,12で防がれた状態の下、空気燃焼バーナー7、或いは、酸素燃焼バーナー8による加熱が行われ、炉1内の温度が常温から上昇していく。これにより、両燃焼バーナー7,8の利用に伴って炉1内に送り込まれた酸素を含んだ炉1内の雰囲気が、パイプ5内に流れ込むことを回避できる。その結果、パイプ5の内周面5aを構成する白金や白金合金の酸化や揮発を可及的に抑制することが可能となる。
<第二実施形態>
 以下、図10を参照して、本発明の第二実施形態に係るガラス物品の製造方法について説明する。なお、第二実施形態の説明では、上記の第一実施形態で説明済みの要素と実質的に同一の要素については、同一の符号を付すことで重複する説明を省略し、第一実施形態との相違点についてのみ説明する。
 第二実施形態が上記の第一実施形態と相違している点は、炉1を第一ガラス溶解炉13(以下、第一炉13と表記)とし、且つ、パイプ5を第一パイプ14とした上で、第一パイプ14を介して、第一炉13と、当該第一炉13から流出した溶融ガラス2が流入する第二ガラス溶解炉15(以下、第二炉15と表記)とを連結している点である。第二炉15は、スクリューフィーダー6を備えていない点を除いて、第一炉13と同一の構成を有する。なお、本実施形態の第一パイプ14は、その長手方向が水平な姿勢で配置されるが、第一炉13から遠ざかるに従って高くなるように長手方向が傾斜した姿勢で配置されてもよい。また、本実施形態では、第一炉13の底壁1fと第二炉15の底壁1fとが同じ高さであるが、第二炉15の底壁1fを、第一炉13の底壁1fよりも高い位置に配置してもよく、あるいは、第二炉15の底壁1fを、第一炉13の底壁1fよりも低い位置に配置してもよい。
 第二炉15でも、空気燃焼バーナー7、或いは、酸素燃焼バーナー8により第二炉15内の温度を常温から上昇させる第一および第二昇温ステップを実行する。本実施形態では、第二炉15の第一および第二昇温ステップを、第一炉13での第一および第二昇温ステップの実行と同時に開始して実行するが、必ずしも、同時に開始したり、同期して実行したりする必要はなく、多少のタイムラグがあってもよい。第二炉15での第一および第二昇温ステップは、第一炉13での第一および第二昇温ステップと同様の条件で実行することができる。
 第二炉15での第一および第二昇温ステップでは、第一パイプ14における下流側端部5cの開口5caをガラス板で覆わなくてもよいが、第二炉15内の雰囲気と第一パイプ14の内周面5aとの接触をさらに防ぐため、図10に示すように、第一パイプ14における下流側端部5cの開口5caを、ガラス材としての第二ガラス板11および第三ガラス板12で覆うことが好ましい。下流側端部5cの開口5caを覆う形態は、上流側端部5bの開口5baを覆う形態と同様である。
 また、第二炉15での第一および第二昇温ステップでは、第二炉15内の雰囲気と、第二炉15外に溶融ガラス2を流出させるための第二流出通路としての第二パイプ16の内周面5aとの接触を防ぐ。この目的のために、第二パイプ16における上流側端部5bの開口5baを、ガラス材としての第二ガラス板11および第三ガラス板12で覆う。第二パイプ16における上流側端部5bの開口5baを覆う形態は、第一パイプ14における上流側端部5bの開口5baを覆う形態と同様である。
 なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
 上記の実施形態では、連続生成工程で電極3のみの加熱により溶融ガラスを連続生成しているが、この限りではなく、バーナー7、8の加熱を併用してもよい。また、第二実施形態のようにガラス溶解炉を第一炉13と第二炉15とで構成する場合の連続生成工程では、第一炉13で電極3の加熱とバーナー7、8の加熱とを併用し、第二炉15でバーナー7、8の加熱のみを用いてもよい。連続生成工程でバーナー7、8の加熱を用いる場合は、酸素燃焼バーナー8を用いることが好ましい。製造されるガラス物品のβ‐OH値を低減する観点では、第一実施形態のように、単一の溶解炉1を用いると共に連続生成工程で電極3のみの加熱により溶融ガラスを連続生成することが好ましい。
 1     ガラス溶解炉
 2     溶融ガラス
 4     ガラス原料
 5     パイプ
 5a    内周面
 5b    上流側端部
 5ba   開口
 7     空気燃焼バーナー
 8     酸素燃焼バーナー
 11    第二ガラス板
 12    第三ガラス板
 13    第一ガラス溶解炉
 14    第一パイプ
 15    第二ガラス溶解炉
 16    第二パイプ

Claims (8)

  1.  ガラス溶解炉内に貯留された溶融ガラス上にガラス原料を連続供給しつつ、該ガラス原料を溶解させて新たな溶融ガラスを連続生成すると共に、白金又は白金合金で構成される内周面を有する流出通路を通じて溶融ガラスを前記ガラス溶解炉外に流出させる連続生成工程と、該連続生成工程を実行可能な状態まで前記ガラス溶解炉を立ち上げる立上工程とを備えたガラス物品の製造方法であって、
     前記立上工程が、燃焼バーナーにより前記ガラス溶解炉内の温度を常温から上昇させる昇温ステップと、前記ガラス溶解炉内に前記ガラス原料の供給を開始する原料供給開始ステップとを含み、
     前記昇温ステップでは、前記ガラス溶解炉内の雰囲気と前記流出通路の内周面との接触を低減した状態で、前記燃焼バーナーによる加熱を行うことを特徴とするガラス物品の製造方法。
  2.  前記ガラス溶解炉内の雰囲気と前記流出通路の内周面との接触を遮蔽材で防ぐことを特徴とする請求項1に記載のガラス物品の製造方法。
  3.  前記遮蔽材として、ガラス材を用いることを特徴とする請求項2に記載のガラス物品の製造方法。
  4.  前記ガラス材として、前記流出通路における上流側端部の開口を覆うガラス板を用いることを特徴とする請求項3に記載のガラス物品の製造方法。
  5.  前記ガラス材の組成が、前記溶融ガラスと同一の組成であることを特徴とする請求項3又は4に記載のガラス物品の製造方法。
  6.  前記ガラス溶解炉は、炉内に進出した進出位置と、炉内から退避した退避位置との間を移動可能な電極を備え、
     前記連続生成工程では、前記進出位置に位置させた前記電極により通電加熱を行い、
     前記昇温ステップでは、前記退避位置に位置させた前記電極の先端をカバー部材で覆うことによって前記ガラス溶解炉内の雰囲気が前記電極と接触するのを防いだ状態で、前記燃焼バーナーによる加熱を行うことを特徴とする請求項1~5のいずれかに記載のガラス物品の製造方法。
  7.  前記ガラス溶解炉を第一ガラス溶解炉とし、且つ、前記流出通路を第一流出通路として、
     前記第一流出通路を介して、前記第一ガラス溶解炉と、該第一ガラス溶解炉から流出した溶融ガラスが流入する第二ガラス溶解炉とを連結し、
     前記第二ガラス溶解炉において、燃焼バーナーにより前記第二ガラス溶解炉内の温度を常温から上昇させる昇温ステップを実行し、
     前記第二ガラス溶解炉での前記昇温ステップでは、前記第二ガラス溶解炉内の雰囲気と前記第一流出通路の内周面との接触、及び、前記第二ガラス溶解炉内の雰囲気と該第二ガラス溶解炉外に溶融ガラスを流出させるための第二流出通路の白金または白金合金でなる内周面との接触を遮蔽材で防いだ状態で、前記燃焼バーナーによる加熱を行うことを特徴とする請求項1~6のいずれかに記載のガラス物品の製造方法。
  8.  前記連続生成工程では、前記ガラス溶解炉内に貯留された溶融ガラスを通電加熱のみで加熱することを特徴とする請求項1~7のいずれかに記載のガラス物品の製造方法。
PCT/JP2019/022090 2018-06-27 2019-06-04 ガラス物品の製造方法 WO2020003915A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980029112.0A CN112041277B (zh) 2018-06-27 2019-06-04 玻璃物品的制造方法
KR1020207027693A KR20210023801A (ko) 2018-06-27 2019-06-04 유리 물품의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-122162 2018-06-27
JP2018122162A JP7198423B2 (ja) 2018-06-27 2018-06-27 ガラス物品の製造方法

Publications (1)

Publication Number Publication Date
WO2020003915A1 true WO2020003915A1 (ja) 2020-01-02

Family

ID=68986504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022090 WO2020003915A1 (ja) 2018-06-27 2019-06-04 ガラス物品の製造方法

Country Status (5)

Country Link
JP (1) JP7198423B2 (ja)
KR (1) KR20210023801A (ja)
CN (1) CN112041277B (ja)
TW (1) TWI807047B (ja)
WO (1) WO2020003915A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113754247B (zh) * 2021-09-24 2023-01-06 芜湖东旭光电科技有限公司 利用铂金通道生产玻璃基板的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095639A (ja) * 2011-11-01 2013-05-20 Asahi Glass Co Ltd ガラス溶融炉の予備加熱方法とガラス溶融装置およびガラス物品の製造方法
JP2013216531A (ja) * 2012-04-06 2013-10-24 Avanstrate Inc ガラス板の製造方法及びガラス板の製造装置
JP2014019629A (ja) * 2012-07-20 2014-02-03 Nippon Electric Glass Co Ltd ガラス板製造装置及びその組立方法
WO2016013523A1 (ja) * 2014-07-24 2016-01-28 旭硝子株式会社 ガラス溶融物製造装置、ガラス溶融物製造方法、ガラス物品製造装置およびガラス物品製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1350639A (en) * 1971-06-07 1974-04-18 Technisches Glas Veb K Glass melting furnace
FR2703041B1 (fr) * 1993-03-23 1995-06-09 Saint Gobain Vitrage Int Procede et dispositif pour la fusion du verre.
JP2003183031A (ja) 2001-12-18 2003-07-03 Nippon Electric Glass Co Ltd ガラス繊維製造用電気溶融炉及び繊維用ガラスの溶融方法
JP5660028B2 (ja) * 2009-03-09 2015-01-28 日東紡績株式会社 ガラス繊維製造用ガラス溶融装置及びこれを用いたガラス繊維の製造方法
JP5752647B2 (ja) * 2012-06-29 2015-07-22 AvanStrate株式会社 ガラス基板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095639A (ja) * 2011-11-01 2013-05-20 Asahi Glass Co Ltd ガラス溶融炉の予備加熱方法とガラス溶融装置およびガラス物品の製造方法
JP2013216531A (ja) * 2012-04-06 2013-10-24 Avanstrate Inc ガラス板の製造方法及びガラス板の製造装置
JP2014019629A (ja) * 2012-07-20 2014-02-03 Nippon Electric Glass Co Ltd ガラス板製造装置及びその組立方法
WO2016013523A1 (ja) * 2014-07-24 2016-01-28 旭硝子株式会社 ガラス溶融物製造装置、ガラス溶融物製造方法、ガラス物品製造装置およびガラス物品製造方法

Also Published As

Publication number Publication date
TWI807047B (zh) 2023-07-01
TW202010715A (zh) 2020-03-16
CN112041277B (zh) 2023-04-28
CN112041277A (zh) 2020-12-04
KR20210023801A (ko) 2021-03-04
JP7198423B2 (ja) 2023-01-04
JP2020001953A (ja) 2020-01-09

Similar Documents

Publication Publication Date Title
KR101653408B1 (ko) 유리 제조 장치 및 제조 방법
TWI787409B (zh) 玻璃物品的製造方法
WO2020003915A1 (ja) ガラス物品の製造方法
JP7118359B2 (ja) ガラス物品の製造方法
KR101760172B1 (ko) 글래스 제조 방법
CN202785940U (zh) 一种玻璃窑炉
JP6263355B2 (ja) ガラス熔解装置、ガラスシート製造装置、ガラス熔解装置用の電極およびガラスシート製造方法
JPWO2019054385A1 (ja) ガラス物品の製造方法
JP6292090B2 (ja) 溶解窯、溶解方法、および無アルカリガラス板の製造方法
CN104496168A (zh) 用于生产玄武岩连续纤维的电气结合熔化炉
WO2020004138A1 (ja) ガラス物品の製造方法
KR20060020888A (ko) 유리용해로 용융조용 전기부스팅장치
JPH11100214A (ja) ガラス溶融炉
JP7459624B2 (ja) ガラス溶解炉、ガラス製造装置及びガラス製造方法
WO2023199909A1 (ja) ガラス物品の製造方法
JP7012937B2 (ja) ガラス物品の製造方法
JP6749123B2 (ja) ガラス基板の製造方法、及び、ガラス基板の製造装置
KR20190078512A (ko) 유리 기판 제조 장치 및 유리 기판의 제조 방법
JP6333602B2 (ja) ガラス基板の製造方法
JP2013082608A (ja) ガラス板の製造方法
WO2020137011A1 (ja) ガラス物品製造装置及びガラス物品の製造方法
JP2023121645A (ja) ガラス溶解炉、ガラス製品の製造設備、およびガラス製品の製造方法
JP2024060295A (ja) ガラス物品の製造方法及び製造装置
JPH04317424A (ja) 高粘性ガラスの素地上げ方法
CH247957A (fr) Procédé et four pour la fabrication du verre.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826566

Country of ref document: EP

Kind code of ref document: A1