WO2020000826A1 - 一种稠环化合物及其制备方法和用途 - Google Patents

一种稠环化合物及其制备方法和用途 Download PDF

Info

Publication number
WO2020000826A1
WO2020000826A1 PCT/CN2018/113122 CN2018113122W WO2020000826A1 WO 2020000826 A1 WO2020000826 A1 WO 2020000826A1 CN 2018113122 W CN2018113122 W CN 2018113122W WO 2020000826 A1 WO2020000826 A1 WO 2020000826A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
formula
unsubstituted
compound
fused ring
Prior art date
Application number
PCT/CN2018/113122
Other languages
English (en)
French (fr)
Inventor
孙华
陈志宽
Original Assignee
宁波卢米蓝新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波卢米蓝新材料有限公司 filed Critical 宁波卢米蓝新材料有限公司
Priority to JP2019533177A priority Critical patent/JP6792712B2/ja
Priority to KR1020197017931A priority patent/KR102245800B1/ko
Priority to DE112018000255.1T priority patent/DE112018000255T5/de
Publication of WO2020000826A1 publication Critical patent/WO2020000826A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed systems contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the invention belongs to the field of display technology, and particularly relates to a fused ring compound and a preparation method and application thereof.
  • OLED Organic Light-Emitting Diode
  • OLEDs use a sandwich structure, that is, an organic light-emitting layer is sandwiched between the electrodes on both sides.
  • the light-emitting mechanism is: driven by an external electric field, electrons and holes are injected into the organic electron transport layer and the hole transport layer from the cathode and the anode, respectively, and the exciton is recombined in the organic light-emitting layer, and the exciton radiation transitions back to the ground state. And glow.
  • electroluminescence singlet excitons and triplet excitons are generated at the same time. According to the statistical law of electronic spins, it is estimated that the ratio of singlet excitons to triplet excitons is 1: 3, and the singlet excitons transition to the ground state. , The material fluoresces, the triplet exciton transitions back to the ground state, and the material emits phosphorescence.
  • Fluorescent materials are the earliest applied organic electroluminescent materials (Organic Electroluminescent Materials). They are many types and cheap, but are limited by the spin inhibition of electrons and can only use 25% singlet excitons to emit light. The internal quantum efficiency is low. Limits the efficiency of the device. For phosphorescent materials, using the spin coupling of heavy atoms, the energy of a singlet exciton is transferred to the triplet exciton through intersystem crossing (ISC), and then the triplet exciton emits phosphorescence, which can theoretically be achieved 100% internal quantum efficiency. However, concentration quenching and triplet-triplet annihilation are common in phosphorescent devices, affecting the luminous efficiency of the device.
  • ISC intersystem crossing
  • the doped OLED device has advantages in terms of the luminous efficiency of the device. Therefore, the light emitting layer material is often formed by doping the guest material with the host material. Among them, the host material is an important factor affecting the luminous efficiency and performance of the OLED device.
  • 4,4'-Bis (9H-carbazol-9-yl) biphenyl (CBP) is a widely used host material with good hole transport properties.
  • CBP 9,H-carbazol-9-yl) biphenyl
  • CBP is a hole-type host material
  • electrons and air Cavity transmission is unbalanced
  • exciton recombination efficiency is low
  • luminous area is not ideal
  • device roll-off phenomenon is severe during operation
  • the triplet energy of CBP is lower than that of blue light-doped materials, leading to the loss of host material
  • the efficiency of energy transfer to the guest material is low, reducing device efficiency.
  • the technical problem to be solved by the present invention is to overcome the low triplet energy level and easy crystallization of the host material of the light emitting layer in the prior art.
  • the charge transfer of the host material is unbalanced, the light emitting region is not ideal, and the energy of the host material cannot be Efficient transfer to the guest material causes defects in the device's luminous efficiency and luminous performance.
  • the present invention provides a fused ring compound having a structure represented by formula (I) or formula (II):
  • X 1 is selected from N or C-R 1a
  • X 2 is selected from N or C-R 2a
  • X 3 is selected from N or C-R 3a
  • X 4 is selected from N or C-R 4a
  • X 5 is selected from N or C-R 5a
  • X 6 is selected from N or C-R 6a
  • X 7 is selected from N or C-R 7a ;
  • R 1a- R 7a are independently selected from hydrogen, halogen, cyano, alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, silane, aryl, or heteroaryl;
  • R 1 and R 2 are independently selected from hydrogen, halogen, cyano, alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, silane, aryl, or heteroaryl;
  • L is a single bond, C 1 -C 10 substituted or unsubstituted aliphatic hydrocarbon group is substituted or unsubstituted C 6 -C 60 aryl group, or a C 3 -C 30 substituted or unsubstituted heteroaryl;
  • Ar 1 is selected from hydrogen, halogen, cyano, alkyl, alkenyl, alkynyl, cycloalkyl, alkoxy, silyl, aryl or heteroaryl;
  • the heteroaryl group has at least one hetero atom independently selected from nitrogen, sulfur, oxygen, phosphorus, boron, or silicon.
  • R 1 and R 2 are independently selected from hydrogen, halogen, cyano, C 1 -C 30 substituted or unsubstituted alkyl, C 2 -C 30 substituted or unsubstituted alkenyl, C 2 -C 30 Substituted or unsubstituted alkynyl, C 3 -C 30 substituted or unsubstituted cycloalkyl, C 1 -C 30 substituted or unsubstituted alkoxy, C 1 -C 30 substituted or unsubstituted Silyl, C 6 -C 60 substituted or unsubstituted aryl, or C 3 -C 30 substituted or unsubstituted heteroaryl;
  • Ar 1 is selected from hydrogen, halogen, cyano, C 1 -C 30 substituted or unsubstituted alkyl, C 2 -C 30 substituted or unsubstituted alkenyl, C 2 -C 30 substituted or unsubstituted Alkynyl, C 3 -C 30 substituted or unsubstituted cycloalkyl, C 1 -C 30 substituted or unsubstituted alkoxy, C 1 -C 30 substituted or unsubstituted silane, C 6- C 60 substituted or unsubstituted aryl, or C 3 -C 30 substituted or unsubstituted heteroaryl;
  • R 1a -R 7a is independently selected from hydrogen, halo, cyano, C 1 -C 30 substituted or unsubstituted alkyl group, C a substituted or unsubstituted 2 -C 30 alkenyl, C 2 -C 30 Substituted or unsubstituted alkynyl, C 3 -C 30 substituted or unsubstituted cycloalkyl, C 1 -C 30 substituted or unsubstituted alkoxy, C 1 -C 30 substituted or unsubstituted Silyl, C 6 -C 60 substituted or unsubstituted aryl, or C 3 -C 30 substituted or unsubstituted heteroaryl.
  • the Ar 1 is selected from any one of the following groups: the R 1 , R 2 , R 1a , R 2a , R 3a , R 4a , R 5a , R 6a , R 7a Are independently selected from hydrogen or any of the following groups:
  • X is nitrogen, oxygen, or sulfur
  • Y is each independently nitrogen or carbon; Wherein at least one of said Y is nitrogen;
  • n is an integer of 0-5, m is an integer of 0-7, p is an integer of 0-6, q is an integer of 0-8, and t is an integer of 0-7; Single or double bond;
  • R 3 is each independently selected from substituted or unsubstituted phenyl or hydrogen
  • Ar 3 is each independently selected from hydrogen, phenyl, fluorenyl, pentenenyl, indenyl, naphthyl, fluorenyl, fluorenyl, heptenyl, octenyl, benzodiindenyl, pinene Base, phenalenyl, phenanthryl, anthryl, triindenyl, fluoranthenyl, benzofluorenyl, benzofluorenyl, benzofluoranthenyl, phenanthryl, acetanthenyl, 9,10- Benzophenanthryl, fluorenyl, 1,2-benzophenanthryl, butylphenyl, butanyl, heptenyl, fluorenyl, fluorenyl, pentaphenyl, pentaphenyl, tetraphenylene, bile Anthracenyl, spirenyl, hexenyl, erythroyl, hal
  • the fused ring compound has a molecular structure as shown below:
  • the present invention provides a method for preparing the above-mentioned fused ring compound
  • intermediate 1 is obtained through a coupling reaction under the action of a catalyst; after intermediate 1 is cyclized, intermediate 2 is obtained; intermediate 2 and the compound T 3 -L-Ar 1 under the action of a catalyst through a substitution or coupling reaction to obtain a compound represented by formula (I);
  • intermediate 3 is obtained through a coupling reaction under the action of a catalyst; after intermediate 3 is cyclized, intermediate 4 is obtained; intermediate After the nitro group of the body 4 is reduced, a coupling reaction is performed to obtain intermediate 5.
  • the intermediate 5 and the compound T 3 -L-Ar 1 are reacted by substitution or coupling under the action of a catalyst to obtain the formula (II).
  • T 1 -T 6 are independently selected from hydrogen, fluorine, chlorine, bromine or iodine.
  • the present invention provides a method for preparing the above-mentioned fused ring compound
  • a compound represented by the formula (A ') and a compound represented by the formula (B') are used as starting materials, and a coupling reaction is performed under the action of a catalyst to obtain an intermediate 1 '; after the intermediate 1' is cyclized, an intermediate is obtained 2 '; intermediate 2' and compound T 3 -L-Ar 1 under the action of a catalyst through substitution or coupling reaction to obtain a compound represented by formula (I);
  • T 1 -T 5 are independently selected from hydrogen, fluorine, chlorine, bromine or iodine.
  • the present invention provides the use of the fused ring compound as an organic electroluminescent material.
  • the present invention provides an organic electroluminescence device, and at least one functional layer of the organic electroluminescence device contains the fused ring compound described above.
  • the functional layer is a light emitting layer.
  • the light-emitting layer material includes a host material and a guest light-emitting dye, and the host material is the fused ring compound.
  • the fused ring compound provided by the present invention has a structure represented by formula (I) or formula (II).
  • the above fused ring compounds are designed to fuse aromatic rings and heterocyclic rings in the core structure, which increases the effective conjugation in the core structure. While improving the hole performance of the fused ring compounds, it is beneficial to balance the molecular structure of the material. Electronic transmission performance.
  • the HOMO level of the fused ring compound is increased, and the energy difference between the singlet and triplet states of the material molecule is reduced.
  • the HOMO energy level of the light emitting layer can be made. It is more matched with the hole injection layer, which facilitates the injection of holes.
  • the fused ring compound can have both the electron transport performance and the hole transport performance.
  • the fused ring compound is used as the host material of the light emitting layer, the proportion of electrons and holes in the light emitting layer can be balanced and the current carrying capacity can be improved. The probability of recombination of the electrons widens the recombination region of the carriers, thereby improving the luminous efficiency.
  • the fused ring compound represented by the formula (I) or the formula (II) has a high triplet (T 1 ) energy level and a high glass transition temperature.
  • the high energy level can promote effective energy transfer from the host material to the guest material, reduce energy return, and improve the luminous efficiency of the OLED device.
  • the fused ring compound has a high glass transition temperature, high thermal and morphological stability, and excellent film-forming properties. It is not easy to crystallize as a light-emitting layer host material, which is conducive to improving the performance and luminous efficiency of OLED devices.
  • the fused ring compound provided by the present invention can introduce an electron withdrawing group (pyridine, pyrimidine, triazine, pyrazine) on the substituted group by adjusting R 1 , R 2 , R 1a -R 7a , Ar 1 substituents.
  • an electron withdrawing group pyridine, pyrimidine, triazine, pyrazine
  • the HOMO energy level is distributed to the electron donor Group
  • the LUMO energy level is distributed in the electron-withdrawing group, which further improves the hole transport and electron transport properties of the material molecule, and improves the balance of charge transport; when used as the host material of the light-emitting layer, the holes and electrons are further enlarged
  • the exciton concentration per unit volume is diluted to prevent the triplet exciton concentration annihilation due to high concentration or triplet-triplet exciton annihilation.
  • the HOMO of the fused ring compound is increased, and the LUMO energy level is reduced.
  • the fused ring compound enables HOMO to distribute by distributing HOMO and LUMO on different electron-donating groups and electron-withdrawing groups.
  • the effective separation of energy level and LUMO energy level reduces the singlet and triplet energy level difference ⁇ Est ( ⁇ 0.3eV) of the material molecule, which facilitates the intersystem crossing of triplet excitons to singlet excitons and promotes the main body.
  • Material to object Energy transfer reduces losses during energy transfer.
  • the twisted rigid molecular configuration is achieved, and the degree of intermolecular conjugation is adjusted to further increase the triplet energy level of the material molecule to obtain a small ⁇ Est.
  • L and Ar 1 adjusting the donor and electron-withdrawing groups and the distance between the two, the distribution of the LUMO energy level or the HOMO energy level is more uniform, and the HOMO and LUMO energy levels are further optimized.
  • the starting materials are easy to obtain, the reaction conditions are mild, and the operation steps are simple, which provides a simple and easy-to-implement preparation method for large-scale production of the fused ring compound.
  • the organic electroluminescence (OLED) device provided by the present invention includes at least one functional layer containing the above-mentioned fused ring compound, wherein the functional layer is a light-emitting layer.
  • the above-mentioned fused ring compound balances the electron and hole transport performance, and increases the recombination probability of electrons and holes in the light-emitting layer.
  • the fused ring compound has a high triplet energy level, which is conducive to promoting the host material to the guest material. Energy transfer to prevent energy back.
  • the high glass transition temperature of the fused ring compound can prevent the molecular crystallization of the light-emitting layer material and improve the performance of the OLED device.
  • the electron and hole transport performance of the fused ring compound is further improved, and the charge and hole transport in the light-emitting layer are more balanced, thereby expanding the area where holes and electrons are recombined into electrons in the light-emitting layer and reducing the excitation.
  • the return of the sub to the transmission layer further improves the device efficiency.
  • the above-mentioned fused ring compound uses the electron-donating group and the electron-withdrawing group to adjust the HOMO level and LUMO level of the material molecule, and reduces the overlap between the HOMO level and the LUMO level, so that the fused ring has a small ⁇ Est, which promotes Inverse intersystem crossing (RISC) for the conversion of triplet excitons to singlet excitons, thereby inhibiting the Dexter energy transfer (DET) from the host material to the luminescent dye and promoting Energy transfer reduces the energy loss in the Dexter energy transfer (DET) process, effectively reducing the efficiency roll-off of organic electroluminescent devices, and increasing the external quantum efficiency of the devices.
  • RISC Inverse intersystem crossing
  • FIG. 1 is a graph of theoretical calculation results of HOMO level, LOMO level, and ⁇ Est of the fused ring compound shown in D-2 prepared in Example 1 of the present invention
  • FIG. 2 is a schematic structural diagram of an organic electroluminescent device in Examples 7 to 12 and Comparative Example 1 of the present invention
  • 1-anode 2-hole injection layer, 3-hole transport layer, 4-light emitting layer, 5-electron transport layer, 6-electron injection layer, 7-cathode.
  • This embodiment provides a fused ring compound having a structure represented by the following formula D-2:
  • the method for preparing the fused ring compound represented by Formula D-2 specifically includes the following steps:
  • This embodiment provides a fused ring compound having a structure represented by the following formula D-1:
  • the method for preparing the fused ring compound represented by Formula D-1 specifically includes the following steps:
  • This embodiment provides a fused ring compound having a structure represented by the following formula D-7:
  • the method for preparing the fused ring compound represented by Formula D-7 specifically includes the following:
  • This embodiment provides a fused ring compound having a structure represented by the following formula D-8:
  • the method for preparing the fused ring compound represented by Formula D-18 specifically includes the following steps:
  • This embodiment provides a fused ring compound having a structure represented by the following formula D-5:
  • the method for preparing the fused ring compound represented by Formula D-5 specifically includes the following steps:
  • This embodiment provides a fused ring compound having a structure represented by the following formula D-6:
  • the method for preparing the fused ring compound represented by Formula D-6 specifically includes the following:
  • This embodiment provides an organic electroluminescence device. As shown in FIG. 2, it includes an anode 1, a hole injection layer 2, a hole transport layer 3, a light emitting layer 4, an electron transport layer 5, Electron injection layer 6 and cathode 7.
  • the anode is selected from ITO material; the cathode 7 is selected from metal Al;
  • HAT (CN) 6 has the following chemical structure:
  • the material of the hole transport layer 3 is a compound having the following structure:
  • the electron transport layer 5 is made of a compound with the following structure:
  • the material of the electron injection layer 6 is formed by doping the compound of the structure shown below with the electron injection material LiF:
  • the light-emitting layer 32 is formed by co-doping the host material and the guest luminescent dye.
  • the host material is a fused ring compound (D-2)
  • the guest material is a compound RD.
  • the ratio is 100: 5.
  • the organic electroluminescent device is formed into the following specific structures: ITO / hole injection layer (HIL) / hole transport layer (HTL) / organic light emitting layer (fused ring compound D-2 doped compound RD) / electron transport layer (ETL) / Electron injection layer (EIL / LiF) / cathode (Al).
  • HIL hole injection layer
  • HTL hole transport layer
  • ETL electron transport layer
  • EIL Electron injection layer
  • LiF cathode
  • the host material in the light-emitting layer is a fused ring compound represented by formula D-2.
  • the fused benzene ring and heterocyclic ring in the mother core structure increase the effective conjugation in the compound and improve the hole performance of the compound. Conducive to balancing its electronic transmission performance.
  • the triplet energy level and glass transition temperature of the fused ring compound shown in D-2 are high, which can ensure the effective transfer of energy from the host material to the guest material, and prevent the molecules of the light-emitting layer material from crystallizing.
  • the compound has dual dipolarity, and the HOMO level and LUMO level of the host material are respectively positioned at different electron-donating groups.
  • the balance between charge and hole transport in the host material is good, the area where holes and electrons recombine into electrons in the light-emitting layer is enlarged, the exciton concentration is reduced, and the triplet state of the device is prevented-
  • the triplet annihilation improves the device efficiency; the area where the carriers are recombined in the host material is far from the adjacent interface between the light-emitting layer and the hole or electron transport layer, which improves the color purity of the OLED device, and can prevent the exciton from returning to the transport layer. To further improve device efficiency.
  • the HOMO level and LUMO level of the fused ring compound D-2 are matched with the adjacent hole transport layer and the electron transport layer, so that the OLED device has a small driving voltage.
  • the HOMO energy level and the LUMO energy level of the fused ring compound D-2 are relatively separated, and have small singlet and triplet energy level differences ( ⁇ E ST ), which promotes the intersystem migration of triplet excitons to singlet excitons;
  • the high inverse intersystem crossing (RISC) rate of the transition from the triplet state T1 to the singlet state S1 of the host material can inhibit the Dexter energy transfer (DET) from the host material to the luminescent dye and promote the Energy transfer reduces exciton loss of Dexter energy transfer (DET), avoids the efficiency roll-off effect of organic electroluminescent devices, and improves the luminous efficiency of the devices.
  • the host material of the light-emitting layer may also be selected from any of the fused ring compounds represented by the formulas (D-1) to (D-21).
  • This embodiment provides an organic electroluminescence device, which is different from the organic electroluminescence device provided in Embodiment 7 only in that the main material of the light-emitting layer is a fused heterocyclic compound having the structure shown below:
  • This embodiment provides an organic electroluminescence device, which is different from the organic electroluminescence device provided in Embodiment 7 only in that the main material of the light-emitting layer is a fused heterocyclic compound having the structure shown below:
  • This embodiment provides an organic electroluminescence device, which is different from the organic electroluminescence device provided in Embodiment 7 only in that the main material of the light-emitting layer is a fused heterocyclic compound having the structure shown below:
  • This embodiment provides an organic electroluminescence device, which is different from the organic electroluminescence device provided in Embodiment 7 only in that the main material of the light-emitting layer is a fused heterocyclic compound having the structure shown below:
  • This embodiment provides an organic electroluminescence device, which is different from the organic electroluminescence device provided in Embodiment 7 only in that the main material of the light-emitting layer is a fused heterocyclic compound having the structure shown below:
  • This comparative example provides an organic electroluminescence device, which is different from the organic electroluminescence device provided in Example 7 only in that 4,4'-bis (9-carbazole) biphenyl (abbreviation: CBP).
  • DSC differential scanning calorimeter
  • Fused heterocyclic compounds Formula D-2 Formula D-1 Formula D-7 Formula D-8 Formula D-5 Formula D-6 Glass transition temperature (°C) 158 162 169 161 160 165 T1 (eV) 2.74 2.72 2.67 2.70 2.65 2.68 S1-T1 (eV) 0.25 0.19 0.17 0.21 0.14 0.30
  • the organic electroluminescent devices provided in Comparative Examples 7-12 and Comparative Example 1 were tested. The results are shown in Table 2.
  • the luminous efficiency of the OLED devices provided in Examples 7-12 was higher than that in Comparative Example 1.
  • the driving voltage is lower than that of the OLED device in Comparative Example 1, indicating that the use of the fused heterocyclic compound provided in the present invention as the host material of the light emitting layer of the OLED device can effectively improve the light emitting efficiency of the device and reduce the driving voltage of the device .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

本发明公开了一种稠环化合物,具有如式(I)或式(II)所示的结构。稠环化合物中通过控制芳香环与杂环的有效共轭,在提升其空穴性能的同时,有利于均衡电子传输性能,上述化合物具有高的三线态能级和玻璃态转变温度,材料分子不易结晶,作为发光层主体材料能够保障能量向客体材料的高效传递。调节稠环化合物的取代基团,进一步提高了电子和空穴的传输性能,减小了单线态和三线态能级差,拓宽了载流子的复合区域,防止三线态激子湮灭。本发明还公开了一种有机电致发光器件,至少有一个功能层中含有上述的稠环化合物,稠环化合物作为发光层的主体材料,与相邻的载流子传输层能级匹配,在提高器件发光效率的同时,降低了器件的驱动电压。

Description

一种稠环化合物及其制备方法和用途
交叉引用
本申请要求在2018年06月28日提交中国专利局、申请号为201810691339.9、发明名称为“一种稠环化合物及其制备方法和用途”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于显示技术领域,具体涉及一种稠环化合物及其制备方法和用途。
背景技术
Pope等人于1965年首次发现了单晶蒽的电致发光性质,这是有机化合物的首例电致发光现象;1987年,美国Kodak公司的Tang等采用有机小分子半导体材料研制成功低电压、高亮度的有机发光二极管(Organic Light-Emitting Diode,OLED)。有机电致发光二极管(Organic Light-Emitting Diode,OLED)作为一种新型的显示技术,具有自发光、宽视角、低能耗、色彩丰富、响应速度快、适用温度范围广以及可实现柔性显示等诸多优点,在显示和照明领域有极大的应用前景,越来越受到人们的重视。
OLED多采用三明治结构,即将有机发光层夹在两侧电极之间。发光机理为:在外界电场的驱动下,电子和空穴分别由阴极和阳极注入到有机电子传输层和空穴传输层,并在有机发光层中复合生成激子,激子辐射跃迁回到基态并发光。在电致发光过程中,单线态激子和三线态激子同时产生,根据电子自旋统计规律推测,单线态激子与三线态激子的比例为1:3,单线态激子跃迁回基态,材料发荧光,三线态激子跃迁回基态,则材料发磷光。
荧光材料是最早应用的有机电致发光材料(Organic Electroluminescent Materials),种类繁多,价格便宜,但是受电子自旋禁阻的限制只能利用25%的单线态激子发光,内量子效率较低,限制了器件的效率。对磷光材料而言,利用重原子的自旋耦合作用,单线态激子的能量通过系间窜越(ISC)转移到三线态激子中,进而由三线态激子发出磷光,理论上可实现100%的内量子效率。然而,磷光器件中普遍存在浓度淬灭和三线态-三线态湮灭现象,使器件的发光效率受到影响。
采用掺杂方式制作的OLED器件在器件的发光效率上具有优势,因此发光层材料常利用主体材料掺杂客体材料形成,其中,主体材料是影响OLED器件的发光效率和性能的重要因素。4,4'-Bis(9H-carbazol-9-yl)biphenyl(CBP)是一种广泛应用的主体材料,具有良好的空穴传输性质,但CBP作为主体材料使用时,由于CBP的玻璃态转变温度低,在工作状态下分子堆积状态和薄膜形貌容易发生变化,分子容易再次结晶,进而导致OLED器件的使用性能和发光效率降低;另一方面,CBP为空穴型主体材料,电子和空穴的传输不平衡,激子的复合效率低,发光区域不理想,器件在工作中滚降(roll-off)现象严重,同时CBP的三线态能量低于蓝光掺杂材料,导致了从主体材料向客体材料能量转移的效率低,降低了器件效率。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中发光层的主体材料的三线态能级低、易结晶; 另外,主体材料的电荷传输不平衡、发光区域不理想,主体材料的能量不能高效传递至客体材料,导致器件的发光效率和发光性能低的缺陷。
为此,本发明提供如下技术方案:
第一方面,本发明提供了一种稠环化合物,具有如式(I)或式(II)所示的结构:
Figure PCTCN2018113122-appb-000001
X 1选自N或C—R 1a,X 2选自N或C—R 2a,X 3选自N或C—R 3a,X 4选自N或C—R 4a,X 5选自N或C—R 5a,X 6选自N或C—R 6a,X 7选自N或C—R 7a
R 1a-R 7a彼此独立地选自氢、卤素、氰基、烷基、烯基、炔基、环烷基、烷氧基、硅烷基、芳基或杂芳基;
R 1、R 2彼此独立地选自氢、卤素、氰基、烷基、烯基、炔基、环烷基、烷氧基、硅烷基、芳基或杂芳基;
L为单键、C 1-C 10的取代或未取代的脂肪烃基、C 6-C 60的取代或未取代的芳基,或者C 3-C 30的取代或未取代的杂芳基;
Ar 1选自氢、卤素、氰基、烷基、烯基、炔基、环烷基、烷氧基、硅烷基、芳基或杂芳基;
所述杂芳基具有至少一个独立地选自氮、硫、氧、磷、硼或硅的杂原子。
优选地,上述的稠环化合物,
R 1、R 2彼此独立地选自氢、卤素、氰基、C 1-C 30的取代或未取代的烷基、C 2-C 30的取代或未取代的烯基、C 2-C 30的取代或未取代的炔基、C 3-C 30的取代或未取代的环烷基、C 1-C 30的取代或未取代的烷氧基、C 1-C 30的取代或未取代的硅烷基、C 6-C 60的取代或未取代的芳基,或者C 3-C 30的取代或未取代的杂芳基;
Ar 1选自氢、卤素、氰基、C 1-C 30的取代或未取代的烷基、C 2-C 30的取代或未取代的烯基、C 2-C 30的取代或未取代的炔基、C 3-C 30的取代或未取代的环烷基、C 1-C 30的取代或未取代的烷氧基、C 1-C 30的取代或未取代的硅烷基、C 6-C 60的取代或未取代的芳基,或者C 3-C 30的取代或未取代的杂芳基;
R 1a-R 7a彼此独立地选自氢、卤素、氰基、C 1-C 30的取代或未取代的烷基、C 2-C 30的取代或未取代的烯基、C 2-C 30的取代或未取代的炔基、C 3-C 30的取代或未取代的环烷基、C 1-C 30的取代或未取代的烷氧基、C 1-C 30的取代或未取代的硅烷基、C 6-C 60的取代或未取代的芳基,或者C 3-C 30的取代或未取代的杂芳基。
优选地,上述的稠环化合物,所述Ar 1选自下述任一基团,所述R 1、R 2、R 1a、R 2a、R 3a、R 4a、R 5a、R 6a、R 7a彼此独立地选自氢或下述任一基团:
Figure PCTCN2018113122-appb-000002
其中,X为氮、氧或硫,Y各自独立地为氮或碳;所述
Figure PCTCN2018113122-appb-000003
中,所述Y至少有一个为氮;
n为0-5的整数,m为0-7的整数,p为0-6的整数,q为0-8的整数,t为0-7的整数;
Figure PCTCN2018113122-appb-000004
为单键或双键;
R 3各自独立地选自取代的或未取代的苯基或氢;
Ar 3各自独立地选自氢、苯基、蒄基、戊搭烯基、茚基、萘基、薁基、芴基、庚搭烯基、辛搭烯基、苯并二茚基、苊烯基、非那烯基、菲基、蒽基、三茚基、荧蒽基、苯并芘基、苯并苝基、苯并荧蒽基、醋菲基、醋蒽烯基、9,10-苯并菲基、芘基、1,2-苯并菲基、丁苯基、丁省基、七曜烯基、苉基、苝基、五苯基、并五苯基、亚四苯基、胆蒽基、螺烯基、己芬基、玉红省基、晕苯基、联三萘基、庚芬基、皮蒽基、卵苯基、心环烯基、蒽嵌蒽基、三聚茚基、吡喃基、苯并吡喃基、呋喃基、苯并呋喃基、异苯并呋喃基、氧杂蒽基、噁唑啉基、二苯并呋喃基、迫呫吨并呫吨基、噻吩基、噻吨基、噻蒽基、吩噁噻基、硫茚基、异硫茚基、萘并噻吩基、二苯并噻吩基、苯并噻吩基、吡咯基、吡唑基、碲唑基、硒唑基、噻唑基、异噻唑基、噁唑基、噁二唑基、呋咱基、吡啶基、吡嗪基、嘧啶基、哒嗪基、三嗪基、吲嗪基、 吲哚基、异吲哚基、吲唑基、嘌呤基、喹嗪基、异喹啉基、咔唑基、芴并咔唑基、吲哚并咔唑基、咪唑基、萘啶基、酞嗪基、喹唑啉基、苯二氮卓基、喹喔啉基、噌啉基、喹啉基、蝶啶基、菲啶基、吖啶基、呸啶基、菲咯啉基、吩嗪基、咔啉基、吩碲嗪基、吩硒嗪基、吩噻嗪基、吩噁嗪基、三苯二噻嗪基、氮杂二苯并呋喃基、三苯二噁嗪基、蒽吖嗪基、苯并噻唑基、苯并咪唑基、苯并噁唑基、苯并异噁唑基或苯并异噻唑基。
优选地,上述的稠环化合物,具有如下所示分子结构:
Figure PCTCN2018113122-appb-000005
Figure PCTCN2018113122-appb-000006
第二方面,本发明提供了一种上述稠环化合物的制备方法,
所述式(I)所示化合物的合成步骤如下所示:
以式(A)所示的化合物和式(B)所示的化合物为起始原料,在催化剂作用下经偶联反应得到中间体1;中间体1环化后,得到中间体2;中间体2与化合物T 3-L-Ar 1在催化剂作用下,经取代或偶联反应,得到式(I)所示的化合物;
所述式(I)所示化合物的合成路径如下所示:
Figure PCTCN2018113122-appb-000007
所述式(II)所示化合物的合成步骤如下所示:
以式(C)所示的化合物和式(E)所示的化合物为起始原料,在催化剂作用下,经偶联反应得到中间体3;中间体3环化后,得到中间体4;中间体4的硝基被还原后,经偶联反应,得到中间体5,中间体5与化合物T 3-L-Ar 1在催化剂作用下,经取代或偶联反应,得到式(II)所示的化合物;
所述式(II)所示化合物的合成路径如下所示:
Figure PCTCN2018113122-appb-000008
其中, T 1-T 6彼此独立地选自氢、氟、氯、溴或碘。
第三方面,本发明提供了一种上述稠环化合物的制备方法,
所述式(I)所示化合物的合成步骤如下所示:
以式(A’)所示的化合物和式(B’)所示的化合物为起始原料,在催化剂作用下经偶联反应得到中间体1’;中间体1’环化后,得到中间体2’;中间体2’与化合物T 3-L-Ar 1在催化剂作用下,经取代或偶联反应,得到式(I)所示的化合物;
所述式(I)所示化合物的合成路径如下所示:
Figure PCTCN2018113122-appb-000009
所述式(II)所示化合物的合成步骤如下所示:
以式(C’)所示的化合物和式(E’)所示的化合物为起始原料,在催化剂作用下,经偶联)应得到中间体3’;中间体3’环化后,得到中间体4’;中间体4’的硝基被还原后,经偶联反应,得到中间体5’,中间体5’与化合物T 3-L-Ar 1在催化剂作用下,经取代或偶联反应,得到式(II)所示的化合物;
所述式(II)所示化合物的合成路径如下所示:
Figure PCTCN2018113122-appb-000010
其中,T 1-T 5彼此独立地选自氢、氟、氯、溴或碘。
第四方面,本发明提供了一种上述稠环化合物作为有机电致发光材料的用途。
第五方面,本发明提供了一种有机电致发光器件,所述有机电致发光器件的至少有一个功能层中含有上述的稠环化合物。
优选地,上述的有机电致发光器件,所述功能层为发光层。
进一步优选地,上述的有机电致发光器件,所述发光层材料包括主体材料和客体发光染料,所述主体材料为所述稠环化合物。
本发明技术方案,具有如下优点:
1、本发明提供的稠环化合物,具有如式(I)或式(II)所示的结构。上述的稠环化合物通过设计母核结构中芳香环和杂环的稠合方式,增加了母核结构中的有效共轭,在提高稠环化合物的空穴性能的同时,有利于平衡材料分子的电子传输性能。通过控制分子的共轭程度,使稠环化合物的HOMO能级提高,材料分子单线态和三线态的能极差减小;在以其作为发光层主体材料时,能够使发光层的HOMO能级与空穴注入层更加匹配,有利于空穴的注入。
通过设置X 1-X 7的,能够使稠环化合物兼具电子传输性能和空穴传输性能,稠环化合物作为发光层主体材料时,能够平衡发光层中电子和空穴的比例,提高载流子复合几率,拓宽了载流子的复合区域,进而提高发光效率。
另一方面,式(I)或式(II)所示的稠环化合物具有高的三线态(T 1)能级和高的玻璃态转变温度, 在作为发光层主体材料时,由于其三线态能级高,能够促进主体材料向客体材料有效的能量传递,减少能量回传,提高OLED器件的发光效率。稠环化合物的玻璃态转变温度高,热稳定性和形态学稳定性高,成膜性能优异,作为发光层主体材料不易结晶,有利于提升OLED器件的性能和发光效率。
2、本发明提供的稠环化合物,通过调节R 1、R 2、R 1a-R 7a、Ar 1取代基,能够在取代基团上引入吸电子基团(吡啶,嘧啶,三嗪,吡嗪,恶二唑,噻二唑,喹唑啉,咪唑,喹喔啉,喹啉等等),或者是供电子基团(二苯胺,三苯胺,芴等等),HOMO能级分布于给电子基团,LUMO能级分布于吸电子基团,进一步提高材料分子的空穴传输性能和电子传输性能,提高其电荷传输的平衡性;在作为发光层主体材料时,进一步扩大了空穴和电子的复合区域,稀释单位体积的激子浓度,防止三线态激子由于高浓度引发的浓度湮灭或者三线态-三线态激子湮灭。通过设置给电子基团和吸电子基团,稠环化合物的HOMO提高,LUMO能级降低,在作为发光层主体材料时,有利于进一步匹配相邻的空穴和电子型的载流子功能层。
如图1所示(图1中所示化合物为D-2所述的稠环化合物),稠环化合物通过将HOMO和LUMO分布于不同地给电子基团和吸电子基团上,使HOMO能级和LUMO能级的有效分离,减小了材料分子的单线态和三线态能级差△Est(≤0.3eV),有利于三线态激子向单线态激子的反系间窜越,促进主体材料向客体材料的
Figure PCTCN2018113122-appb-000011
能量转移,减少能量传递过程中的损失。
通过设置供电子基团与吸电子基团及其空间位置,实现扭曲刚性的分子构型,并对分子间共轭程度进行调节,进一步提高材料分子的三线态能级,获得小的△Est。另一方面,通过设置L和Ar 1,调节给、吸电子基团,以及两者之间的间隔距离,使LUMO能级或HOMO能级的分布更加均匀,进一步优化HOMO和LUMO能级。
3、本发明提供的稠环化合物的制备方法,起始原料易于获得,反应条件温和,操作步骤简单,为上述稠环化合物的大规模生产提供了一种简单、易于实现的制备方法。
4、本发明提供的有机电致发光(OLED)器件,至少有一个功能层中含有上述的稠环化合物,其中,所述功能层为发光层。
上述的稠环化合物平衡了电子和空穴的传输性能,使发光层中电子和空穴的复合几率提高;同时,稠环化合物具有高的三线态能级,有利于促进主体材料向客体材料的能量传递,防止能量回传。稠环化合物的高玻璃态转变温度能够防止发光层材料分子结晶,提升OLED器件的使用性能。
通过调节取代基团,进一步提高稠环化合物同的电子、空穴的传输性能,发光层中电荷和空穴的传输更加平衡,从而扩大了发光层中空穴和电子复合为电子的区域,降低激子浓度,防止器件的三线态-三线态湮灭,提高器件效率;并且能使载流子复合的区域远离发光层与空穴或者电子传输层的相邻界面,提高OLED器件的色纯度,避免激子向传输层的回传,进一步提高器件效率。
上述的稠环化合物利用供电子基团和吸电子基团调节材料分子的HOMO能级和LUMO能级,减小 HOMO能级与LUMO能级的交叠,使稠环具有小的△Est,促进了三线态激子向单线态激子转化的反系间穿越(RISC),从而抑制从主体材料到发光染料的德克斯特能量转移(DET),促进
Figure PCTCN2018113122-appb-000012
能量转移,减少德克斯特能量转移(DET)过程中的能量损失,有效降低了有机电致发光器件的效率滚降,器件的外量子效率提高。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1制备的D-2所示的稠环化合物的HOMO能级、LOMO能级和△Est的理论计算结果图;
图2为本发明实施例7~实施例12和对比例1中有机电致发光器件的结构示意图;
附图标记说明:
1-阳极,2-空穴注入层,3-空穴传输层,4-发光层,5-电子传输层,6-电子注入层,7-阴极。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
本发明可以以许多不同的形式实施,而不应该被理解为限于在此阐述的实施例。相反,提供这些实施例,使得本公开将是彻底和完整的,并且将把本发明的构思充分传达给本领域技术人员,本发明将仅由权利要求来限定。在附图中,为了清晰起见,会夸大层和区域的尺寸和相对尺寸。应当理解的是,当元件例如层被称作“形成在”或“设置在”另一元件“上”时,该元件可以直接设置在所述另一元件上,或者也可以存在中间元件。相反,当元件被称作“直接形成在”或“直接设置在”另一元件上时,不存在中间元件。
实施例1
本实施例提供一种稠环化合物,具有下述式D-2所示的结构:
Figure PCTCN2018113122-appb-000013
式D-2所示稠环化合物的合成路径如下所示:
Figure PCTCN2018113122-appb-000014
式D-2所示稠环化合物的制备方法具体包括以下步骤:
(1)合成中间体1-1
氮气保护下,向500mL的三口烧瓶中,加入9.1g(50mmol)的式(A-1)所示的化合物,7.8g(25mmol)2,2’-二溴联苯(式(B-1)所示的化合物),200mL一四二氧六环,48mg碘化亚铜(0.25mmol),3.5g叔丁醇钠(36mmol),0.3mL顺式-1,2-环己二胺,100℃下反应12小时后,用三氯甲烷萃取三次后,旋蒸除去溶剂,过硅胶柱得到6.2g固体中间体1-1(产率:60%);
(2)合成中间体2-1
氮气保护下,1L三口烧瓶中,分别秤取4.13g中间体1-1(10mmol),2.2g叔丁醇钾(23mmol),二甲基亚砜500mL,光照条件下反应2个小时后,反应液用用甲苯萃取后旋蒸除去溶剂,过硅胶柱得到1.7g固体中间体2-1(产率50%);
(3)合成稠环化合物D-2
氮气保护下,加入1.7g中间体2-1(5mmol),1.6g化合物
Figure PCTCN2018113122-appb-000015
(6mmol),1.7g碳酸铯(5mmol),0.3g 4-二甲氨基吡啶(2.5mmol),二甲基亚砜20mL,100℃反应3小时,冷却至室温后,甲苯萃取,旋蒸除去溶剂,过硅胶柱得到2.3g固体稠环化合物D-2(产率85%)。
元素分析:(C38H24N4)理论值:C,85.05;H,4.51;N,10.44;实测值:C,85.01;H,4.53;N,10.45,HRMS(ESI)m/z(M+):理论值:536.20;实测值:536.23。
实施例2
本实施例提供一种稠环化合物,具有下述式D-1所示的结构:
Figure PCTCN2018113122-appb-000016
式D-1所示稠环化合物的合成路径如下所示:
Figure PCTCN2018113122-appb-000017
式D-1所示稠环化合物的制备方法具体包括以下步骤:
(1)以实施例1中所示的合成方法,合成中间体2-1;
(2)合成稠环化合物D-1
氮气保护下,加入1.7g化合物1-2(5mmol),0.03g醋酸钯(0.15mmol),0.1g三叔丁基膦(0.55mmol),2g化合物
Figure PCTCN2018113122-appb-000018
(5.1mmol),1.41g叔丁醇钠,甲苯750mL,110℃反应12小时,冷却至室温后,氯仿萃取,旋蒸除去溶剂,过硅胶柱得到2.6g固体化合物C-16(产率81%)。
元素分析:(C45H29N5)理论值:C,84.48;H,4.57;N,10.95;实测值:C,84.50;H,4.55;N,10.96,HRMS(ESI)m/z(M+):理论值:639.24;实测值:639.27。
实施例3
本实施例提供一种稠环化合物,具有下述式D-7所示的结构:
Figure PCTCN2018113122-appb-000019
式D-7所示稠环化合物的合成路径如下所示:
Figure PCTCN2018113122-appb-000020
式D-7所示稠环化合物的制备方法具体包括以下内容:
(1)合成中间体3-1
氮气保护下,向500mL三口烧瓶中,加入5.6g式(C-1)所述化合物(20mmol),3.5g 3-氯-2-氟硝基苯(式(E-1)所示化合物)(20mmol),7.8g碳酸铯(24mmol),二甲基亚砜80mL,反应15小时,甲苯萃取,旋蒸除去溶剂,过硅胶柱得到6.5g固体中间体3-1(产率75%);
(2)合成中间体4-1
氮气保护下,加入4.3g中间体3-1(10mmol),0.2g醋酸钯(1.0mmol),0.73g三环己基膦四氟硼酸盐(2.0mmol),9.7g碳酸铯(30mmol),邻二甲苯50mL,加热回流反应2小时,氯仿萃取,旋蒸除去溶剂,过硅胶柱得到2.8g固体中间体4-1(产率75%);
(3)合成中间体5-1
氮气保护下,加入2.8g中间体4-1(7mmol),6.3g二水合氯化亚锡(28mmol),5mL盐酸,40mL乙醇,60摄氏度反应10小时,氯仿萃取,水洗,盐洗,无水硫酸镁干燥,旋蒸除去溶剂,干燥后转入反应瓶中,加入64mg三(二亚苄基丙酮)二钯(0.07mmol),50mL甲苯,110摄氏度反应8小时后,冷却至室温,氯仿萃取,水洗,旋蒸除去溶剂后,过硅胶柱得到1.68g固体中间体5-1(产率71%);
(4)合成稠环化合物D-7
氮气保护下,加入1.65g中间体5-1(5mmol),0.03g醋酸钯(0.15mmol),0.1g三叔丁基膦 (0.55mmol),2g化合物
Figure PCTCN2018113122-appb-000021
(5.1mmol),1.41g叔丁醇钠,甲苯750mL,110℃反应12小时,冷却至室温后,氯仿萃取,旋蒸除去溶剂,过硅胶柱得到2.5g固体稠环化合物D-7(产率79%)。
元素分析:(C45H27N5)理论值:C,84.75;H,4.27;N,10.98;实测值:C,84.78;H,4.25;N,11.01,HRMS(ESI)m/z(M+):理论值:637.23;实测值:637.41。
实施例4
本实施例提供一种稠环化合物,具有下述式D-8所示的结构:
Figure PCTCN2018113122-appb-000022
式D-8所示稠环化合物的合成路径如下所示:
Figure PCTCN2018113122-appb-000023
式D-18所示稠环化合物的制备方法具体包括以下步骤:
(1)以实施例3中所示的合成方法,合成中间体5-1;
(2)合成稠环化合物D-8
氮气保护下,加入1.65g中间体5-1(5mmol),1.6g化合物
Figure PCTCN2018113122-appb-000024
(6mmol),1.7g碳酸铯(5mmol),0.3g 4-二甲氨基吡啶(2.5mmol),二甲基亚砜20mL,100℃反应3小时,冷却至室温后,甲苯萃取,旋蒸除去溶剂,过硅胶柱得到2.2g固体化合物D-8(产率83%)。
元素分析:(C38H22N4)理论值:C,85.37;H,4.15;N,10.48;实测值:C,85.34;H,4.21;N,10.53,HRMS(ESI)m/z(M+):理论值:534.18;实测值:534.32。
实施例5
本实施例提供一种稠环化合物,具有下述式D-5所示的结构:
Figure PCTCN2018113122-appb-000025
式D-5所示稠环化合物的合成路径如下所示:
Figure PCTCN2018113122-appb-000026
式D-5所示稠环化合物的制备方法具体包括以下步骤:
(1)合成中间体3’-1
氮气保护下,向500mL三口烧瓶中,加入12.2g式(C’-1)所示的化合物(50mmol),8.8g 3-氯-2-氟硝基苯(50mmol)(式(E’-1)所示的化合物),19.5g碳酸铯(60mmol),二甲基亚砜200mL,反应15小时,甲苯萃取,旋蒸除去溶剂,过硅胶柱得到14.3g固体中间体3’-1(产率72%);
(2)合成中间体4’-1
氮气保护下,加入12g中间体3’-1(30mmol),0.6g醋酸钯(3.0mmol),2.2g三环己基膦四氟硼酸盐(6.0mmol),29.1g碳酸铯(90mmol),邻二甲苯150mL,加热回流反应2小时,氯仿萃取,旋蒸除去溶剂,过硅胶柱得到8.2g固体中间体4’-1(产率75%);
(3)合成中间体5’-1
氮气保护下,加入7.6g中间体4’-1(21mmol),18.9g二水合氯化亚锡(84mmol),15mL盐酸,120mL乙醇,60摄氏度反应10小时,氯仿萃取,水洗,盐洗,无水硫酸镁干燥,旋蒸除去溶剂,干燥后转入反应瓶中,加入0.19g三(二亚苄基丙酮)二钯(0.21mmol),150mL甲苯,110摄氏度反应8小时后,冷却至室温,氯仿萃取,水洗,旋蒸除去溶剂后,过硅胶柱得到5.13g固体中间体5’-1(产率73%);
(4)合成稠环化合物D-5
氮气保护下,加入3.3g中间体5’-1(10mmol),3.2g化合物
Figure PCTCN2018113122-appb-000027
(12mmol),3.4g碳酸铯(10mmol),0.6g 4-二甲氨基吡啶(5.0mmol),二甲基亚砜40mL,100℃反应3小时,冷却至室温后,甲苯萃取,旋蒸除去溶剂,过硅胶柱得到4.6g稠环化合物D-5(产率85%)。
元素分析:(C37H23N5)理论值:C,82.66;H,4.31;N,13.03;实测值:C,82.68;H,4.28;N,13.01,HRMS(ESI)m/z(M+):理论值:537.20;实测值:535.27。
实施例6
本实施例提供一种稠环化合物,具有下述式D-6所示的结构:
Figure PCTCN2018113122-appb-000028
式D-6所示稠环化合物的合成路径如下所示:
Figure PCTCN2018113122-appb-000029
式D-6所示稠环化合物的制备方法具体包括以下内容:
(1)以式(C’-2)所示的化合物和式(E’-1)所示的化合物为原料,依据实施例5中的合成方法,合成中间体5’-2;
(2)合成稠环化合物D-6
氮气保护下,加入5.6g中间体5’-1(16.7mmol),5.5g化合物
Figure PCTCN2018113122-appb-000030
(17mmol),0.11g醋酸钯(0.5mmol),0.37g三叔丁基膦(1.83mmol),4.7g叔丁醇钠,甲苯250mL,110℃反应12小时,冷却至室温后,甲苯萃取,旋蒸除去溶剂,过硅胶柱得到8.2g稠环化合物D-6(产率85%)。
元素分析:(C40H25N5)理论值:C,83.46;H,4.38;N,12.17;实测值:C,83.42;H,4.41;N,12.14,HRMS(ESI)m/z(M+):理论值:575.21;实测值:575.27。
实施例7
本实施例提供一种有机电致发光器件,如图2所示,包括从下向上依次层叠设置的阳极1、空穴注入层2、空穴传输层3、发光层4、电子传输层5、电子注入层6和阴极7。
有机电致发光器件中阳极选用ITO材料;阴极7选用金属Al;
空穴注入层2材料选用HAT(CN)6,HAT(CN)6具有如下所示化学结构:
Figure PCTCN2018113122-appb-000031
空穴传输层3材料选用如下所述结构的化合物:
Figure PCTCN2018113122-appb-000032
电子传输层5材料选用如下所述结构的化合物:
Figure PCTCN2018113122-appb-000033
电子注入层6材料由下述所示结构的化合物与电子注入材料LiF掺杂形成:
Figure PCTCN2018113122-appb-000034
有机电致发光器件中发光层32以主体材料和客体发光染料共掺杂形成,其中,主体材料选用稠环化合物(D-2),客体材料选用化合物RD,主体材料和客体材料掺杂的质量比为100:5。使有机致电发光器件形成如下具体结构:ITO/空穴注入层(HIL)/空穴传输层(HTL)/有机发光层(稠环化合物D-2掺杂化合物RD)/电子传输层(ETL)/电子注入层(EIL/LiF)/阴极(Al)。稠环化合物(D-2)、化合物RD的化学结构如下所示:
Figure PCTCN2018113122-appb-000035
发光层中的主体材料选用式D-2所示的稠环化合物,其母核结构中苯环和杂环的稠合方式增加了化合物中的有效共轭,提高化合物的空穴性能的同时有利于平衡其电子传输性能。D-2所示的稠环化合物的三线态能级和玻璃态转变温度高,能够保障能量由主体材料向客体材料有效传递,并防止发光层材料分子结晶。同时,该化合物具有双偶极性,主体材料的HOMO能级和LUMO能级分别定位于不同的供电子基团
Figure PCTCN2018113122-appb-000036
和吸电子基团(喹唑啉)上,主体材料中电荷和空穴传输的平衡性好,扩大了发光层中空穴和电子复合为电子的区域,降低激子浓度,防止器件的三线态-三线态湮灭,提高器件效率;主体材料中载流子复合的区域远离发光层与空穴或者电子传输层的相邻界面,提高OLED器件的色纯度,同时能够防止激子向传输层的回传,进一步提高器件效率。
稠环化合物D-2的HOMO能级和LUMO能级与相邻的空穴传输层,电子传输层相匹配,使OLED器件具有小的驱动电压。
稠环化合物D-2的HOMO能级和LUMO能级相对分离,具有小的单线态和三线态能级差(ΔE ST),促进三线态激子向单线态激子的反系间窜越;另一方面,主体材料三线态T1向单线态S1转化的高反系间穿越(RISC)速率可以抑制从主体材料到发光染料的德克斯特能量转移(DET),促进
Figure PCTCN2018113122-appb-000037
能量转移,减少德克斯特能量转移(DET)的激子损失,避免有机电致发光器件的效率滚降效应,提高器件的发光效率。
作为可替代的实施方式,发光层的主体材料还可以选择式(D-1)~式(D-21)所示的任一稠环化合物。
实施例8
本实施例提供一种有机电致发光器件,与实施例7中提供有机电致发光器件的区别仅在于:发光层主体材料选用下述所示结构的稠合杂环化合物:
Figure PCTCN2018113122-appb-000038
实施例9
本实施例提供一种有机电致发光器件,与实施例7中提供有机电致发光器件的区别仅在于:发光层主体材料选用下述所示结构的稠合杂环化合物:
Figure PCTCN2018113122-appb-000039
实施例10
本实施例提供一种有机电致发光器件,与实施例7中提供有机电致发光器件的区别仅在于:发光层主体材料选用下述所示结构的稠合杂环化合物:
Figure PCTCN2018113122-appb-000040
实施例11
本实施例提供一种有机电致发光器件,与实施例7中提供有机电致发光器件的区别仅在于:发光层主体材料选用下述所示结构的稠合杂环化合物:
Figure PCTCN2018113122-appb-000041
实施例12
本实施例提供一种有机电致发光器件,与实施例7中提供有机电致发光器件的区别仅在于:发光层主体材料选用下述所示结构的稠合杂环化合物:
Figure PCTCN2018113122-appb-000042
对比例1
本对比例提供一种有机电致发光器件,与实施例7中提供有机电致发光器件的区别仅在于:发光层主体材料选用4,4'-二(9-咔唑)联苯(简称:CBP)。
Figure PCTCN2018113122-appb-000043
测试例1
1、测定玻璃态转变温度
使用差示扫描量热仪(DSC)对本专利材料进行玻璃态转变温度进行测试,测试范围室温至400℃,升温速率10℃/min,氮气氛围下。
2、分别在298K以及77K温度下测定稠合杂环化合物的甲苯溶液(物质的量浓度:10 -5mol/L)的荧光以及磷光光谱,并根据计算公式E=1240/λ计算出相应的单线态(S1)以及三线态(T1)能级,进而得到稠合杂环化合物的单线态-三线态能级差。其中,稠合杂环化合物的能级差如下表1所示:
表1
稠合杂环化合物 式D-2 式D-1 式D-7 式D-8 式D-5 式D-6
玻璃态转变温度(℃) 158 162 169 161 160 165
T1(eV) 2.74 2.72 2.67 2.70 2.65 2.68
S1-T1(eV) 0.25 0.19 0.17 0.21 0.14 0.30
测试例2
器件的电流、电压、亮度、发光光谱等特性采用PR 650光谱扫描亮度计和Keithley K 2400数字源表系统同步测试。对实施例7-12和对比例1中的所提供的有机电致发光器件进行测试,结果如表2所示:
表2
Figure PCTCN2018113122-appb-000044
对比实施例7-12和对比例1中的所提供的有机电致发光器件进行测试,结果如表2所示,实施例7-12中所提供的OLED器件的发光效率高于对比例1中的器件,而驱动电压低于对比例1中的OLED器件,说明以本发明中提供的稠合杂环化合物作为OLED器件发光层的主体材料,能够有效提高器件的发光效率、降低器件的驱动电压。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种稠环化合物,其特征在于,具有如式(I)或式(II)所示的结构:
    Figure PCTCN2018113122-appb-100001
    X 1选自N或C-R 1a,X 2选自N或C-R 2a,X 3选自N或C-R 3a,X 4选自N或C-R 4a,X 5选自N或C-R 5a,X 6选自N或C-R 6a,X 7选自N或C-R 7a
    R 1a-R 7a彼此独立地选自氢、卤素、氰基、烷基、烯基、炔基、环烷基、烷氧基、硅烷基、芳基或杂芳基;
    R 1、R 2彼此独立地选自氢、卤素、氰基、烷基、烯基、炔基、环烷基、烷氧基、硅烷基、芳基或杂芳基;
    L为单键、C 1-C 10的取代或未取代的脂肪烃基、C 6-C 60的取代或未取代的芳基,或者C 3-C 30的取代或未取代的杂芳基;
    Ar 1选自氢、卤素、氰基、烷基、烯基、炔基、环烷基、烷氧基、硅烷基、芳基或杂芳基;
    所述杂芳基具有至少一个独立地选自氮、硫、氧、磷、硼或硅的杂原子。
  2. 根据权利要求1所述的稠环化合物,其特征在于,
    R 1、R 2彼此独立地选自氢、卤素、氰基、C 1-C 30的取代或未取代的烷基、C 2-C 30的取代或未取代的烯基、C 2-C 30的取代或未取代的炔基、C 3-C 30的取代或未取代的环烷基、C 1-C 30的取代或未取代的烷氧基、C 1-C 30的取代或未取代的硅烷基、C 6-C 60的取代或未取代的芳基,或者C 3-C 30的取代或未取代的杂芳基;
    Ar 1选自氢、卤素、氰基、C 1-C 30的取代或未取代的烷基、C 2-C 30的取代或未取代的烯基、C 2-C 30的取代或未取代的炔基、C 3-C 30的取代或未取代的环烷基、C 1-C 30的取代或未取代的烷氧基、C 1-C 30的取代或未取代的硅烷基、C 6-C 60的取代或未取代的芳基,或者C 3-C 30的取代或未取代的杂芳基;
    R 1a-R 7a彼此独立地选自氢、卤素、氰基、C 1-C 30的取代或未取代的烷基、C 2-C 30的取代或未取代的烯基、C 2-C 30的取代或未取代的炔基、C 3-C 30的取代或未取代的环烷基、C 1-C 30的取代或未取代的烷氧基、C 1-C 30的取代或未取代的硅烷基、C 6-C 60的取代或未取代的芳基,或者C 3-C 30的取代或未取代的杂芳基。
  3. 根据权利要求1或2所述的稠环化合物,其特征在于,所述Ar 1选自下述任一基团,所述R 1、R 2、R 1a、R 2a、R 3a、R 4a、R 5a、R 6a、R 7a彼此独立地选自氢或下述任一基团:
    Figure PCTCN2018113122-appb-100002
    其中,X为氮、氧或硫,Y各自独立地为氮或碳;所述
    Figure PCTCN2018113122-appb-100003
    中,所述Y至少有一个为氮;
    n为0-5的整数,m为0-7的整数,p为0-6的整数,q为0-8的整数,t为0-7的整数;
    Figure PCTCN2018113122-appb-100004
    为单键或双键;
    R 3各自独立地选自取代的或未取代的苯基或氢;
    Ar 3各自独立地选自氢、苯基、蒄基、戊搭烯基、茚基、萘基、薁基、芴基、庚搭烯基、辛搭烯基、苯并二茚基、苊烯基、非那烯基、菲基、蒽基、三茚基、荧蒽基、苯并芘基、苯并苝基、苯并荧蒽基、醋菲基、醋蒽烯基、9,10-苯并菲基、芘基、1,2-苯并菲基、丁苯基、丁省基、七曜烯基、苉基、苝基、五苯基、并五苯基、亚四苯基、胆蒽基、螺烯基、己芬基、玉红省基、晕苯基、联三萘基、庚芬基、皮蒽基、卵苯基、心环烯基、蒽嵌蒽基、三聚茚基、吡喃基、苯并吡喃基、呋喃基、苯并呋喃基、异苯并呋喃基、氧杂蒽基、噁唑啉基、二苯并呋喃基、迫呫吨并呫吨基、噻吩基、噻吨基、噻蒽基、吩噁噻基、硫茚基、异硫茚基、萘并噻吩基、二苯并噻吩基、苯并噻吩基、吡咯基、吡唑基、碲唑基、硒唑基、噻唑基、异噻唑基、噁唑基、噁二唑基、呋咱基、吡啶基、吡嗪基、嘧啶基、哒嗪基、三嗪基、吲嗪基、 吲哚基、异吲哚基、吲唑基、嘌呤基、喹嗪基、异喹啉基、咔唑基、芴并咔唑基、吲哚并咔唑基、咪唑基、萘啶基、酞嗪基、喹唑啉基、苯二氮卓基、喹喔啉基、噌啉基、喹啉基、蝶啶基、菲啶基、吖啶基、呸啶基、菲咯啉基、吩嗪基、咔啉基、吩碲嗪基、吩硒嗪基、吩噻嗪基、吩噁嗪基、三苯二噻嗪基、氮杂二苯并呋喃基、三苯二噁嗪基、蒽吖嗪基、苯并噻唑基、苯并咪唑基、苯并噁唑基、苯并异噁唑基或苯并异噻唑基。
  4. 根据权利要求1-3任一项所述的稠环化合物,其特征在于,具有如下所示分子结构:
    Figure PCTCN2018113122-appb-100005
    Figure PCTCN2018113122-appb-100006
    Figure PCTCN2018113122-appb-100007
  5. 一种如权利要求1-4任一项所述稠环化合物的制备方法,其特征在于,
    所述式(I)所示化合物的合成步骤如下所示:
    以式(A)所示的化合物和式(B)所示的化合物为起始原料,在催化剂作用下经偶联反应得到中间体1;中间体1环化后,得到中间体2;中间体2与化合物T 3-L-Ar 1在催化剂作用下,经取代或偶联反应,得到式(I)所示的化合物;
    所述式(I)所示化合物的合成路径如下所示:
    Figure PCTCN2018113122-appb-100008
    所述式(II)所示化合物的合成步骤如下所示:
    以式(C)所示的化合物和式(E)所示的化合物为起始原料,在催化剂作用下,经偶联反应得到中间体3;中间体3环化后,得到中间体4;中间体4的硝基被还原后,经偶联反应,得到中间体5,中间体5与化合物T 3-L-Ar 1在催化剂作用下,经取代或偶联反应,得到式(II)所示的化合物;
    所述式(II)所示化合物的合成路径如下所示:
    Figure PCTCN2018113122-appb-100009
    其中,T 1-T 6彼此独立地选自氢、氟、氯、溴或碘。
  6. 一种如权利要求1-4任一项所述稠环化合物的制备方法,其特征在于,
    所述式(I)所示化合物的合成步骤如下所示:
    以式(A’)所示的化合物和式(B’)所示的化合物为起始原料,在催化剂作用下经偶联反应得到中间体1’;中间体1’环化后,得到中间体2’;中间体2’与化合物T 3-L-Ar 1在催化剂作用下,经取代或偶联反应,得到式(I)所示的化合物;
    所述式(I)所示化合物的合成路径如下所示:
    Figure PCTCN2018113122-appb-100010
    所述式(II)所示化合物的合成步骤如下所示:
    以式(C’)所示的化合物和式(E’)所示的化合物为起始原料,在催化剂作用下,经偶联)应得到中间体3’;中间体3’环化后,得到中间体4’;中间体4’的硝基被还原后,经偶联反应,得到中间体5’,中间体5’与化合物T 3-L-Ar 1在催化剂作用下,经取代或偶联反应,得到式(II)所示的化合物;
    所述式(II)所示化合物的合成路径如下所示:
    Figure PCTCN2018113122-appb-100011
    其中,T 1-T 5彼此独立地选自氢、氟、氯、溴或碘。
  7. 一种权利要求1-4任一项所述的稠环化合物作为有机电致发光材料的用途。
  8. 一种有机电致发光器件,其特征在于,所述有机电致发光器件的至少有一个功能层中含有权利要求1-4任一项所述的稠环化合物。
  9. 根据权利要求8所述的有机电致发光器件,其特征在于,所述功能层为发光层。
  10. 根据权利要求9所述的有机电致发光器件,其特征在于,所述发光层材料包括主体材料和客体发光染料,所述主体材料为所述稠环化合物。
PCT/CN2018/113122 2018-06-28 2018-10-31 一种稠环化合物及其制备方法和用途 WO2020000826A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019533177A JP6792712B2 (ja) 2018-06-28 2018-10-31 縮合環化合物及びその製造方法と用途
KR1020197017931A KR102245800B1 (ko) 2018-06-28 2018-10-31 축합고리 화합물 및 그의 제조방법과 용도
DE112018000255.1T DE112018000255T5 (de) 2018-06-28 2018-10-31 Kondensierte polyzyklische Verbindung, ein zugehöriges Herstellungsverfahren und eine zugehörige Verwendung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810691339.9A CN108997347B (zh) 2018-06-28 2018-06-28 一种稠环化合物及其制备方法和用途
CN201810691339.9 2018-06-28

Publications (1)

Publication Number Publication Date
WO2020000826A1 true WO2020000826A1 (zh) 2020-01-02

Family

ID=64601852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113122 WO2020000826A1 (zh) 2018-06-28 2018-10-31 一种稠环化合物及其制备方法和用途

Country Status (6)

Country Link
US (1) US20200006669A1 (zh)
JP (1) JP6792712B2 (zh)
KR (1) KR102245800B1 (zh)
CN (1) CN108997347B (zh)
DE (1) DE112018000255T5 (zh)
WO (1) WO2020000826A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102654683B1 (ko) * 2019-03-27 2024-04-04 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN109928977B (zh) * 2019-03-27 2020-09-08 宁波卢米蓝新材料有限公司 一种稠环化合物及其制备方法和用途
KR20200117591A (ko) * 2019-04-05 2020-10-14 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN110003256B (zh) * 2019-04-16 2021-09-07 南京邮电大学 一种稠环化合物及其合成方法和应用
CN114341136B (zh) * 2019-12-23 2024-01-26 广州华睿光电材料有限公司 一种有机化合物及有机电子器件
CN111018872B (zh) * 2019-12-26 2021-06-08 宁波卢米蓝新材料有限公司 氮杂环化合物及其制备方法、包含其的有机电致发光材料、发光层和应用
CN111454265B (zh) * 2020-05-07 2021-08-24 宁波卢米蓝新材料有限公司 一种稠杂环化合物及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102822174A (zh) * 2010-03-25 2012-12-12 默克专利有限公司 用于有机电致发光器件的材料
KR20150077220A (ko) * 2013-12-27 2015-07-07 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016105165A2 (ko) * 2014-12-26 2016-06-30 주식회사 두산 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
CN107108623A (zh) * 2014-12-23 2017-08-29 默克专利有限公司 具有二苯并氮杂卓结构的杂环化合物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5814141B2 (ja) * 2012-01-23 2015-11-17 ユー・ディー・シー アイルランド リミテッド 合成法、その合成法を用いて合成された化合物および有機電界発光素子
KR20180055998A (ko) * 2016-11-17 2018-05-28 삼성디스플레이 주식회사 헤테로환 화합물 및 이를 포함하는 유기 전계 발광 소자
CN108864108B (zh) * 2018-06-28 2021-07-06 宁波卢米蓝新材料有限公司 一种稠环化合物及其制备方法和用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102822174A (zh) * 2010-03-25 2012-12-12 默克专利有限公司 用于有机电致发光器件的材料
KR20150077220A (ko) * 2013-12-27 2015-07-07 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
CN107108623A (zh) * 2014-12-23 2017-08-29 默克专利有限公司 具有二苯并氮杂卓结构的杂环化合物
WO2016105165A2 (ko) * 2014-12-26 2016-06-30 주식회사 두산 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE Registry 25 July 2016 (2016-07-25), Database accession no. 1959597 -54-6 *

Also Published As

Publication number Publication date
JP2020527126A (ja) 2020-09-03
DE112018000255T5 (de) 2020-06-04
CN108997347A (zh) 2018-12-14
US20200006669A1 (en) 2020-01-02
CN108997347B (zh) 2020-05-01
KR20200002783A (ko) 2020-01-08
JP6792712B2 (ja) 2020-11-25
KR102245800B1 (ko) 2021-04-28

Similar Documents

Publication Publication Date Title
WO2020000827A1 (zh) 一种稠环化合物及其制备方法和用途
CN108864108B (zh) 一种稠环化合物及其制备方法和用途
WO2020000826A1 (zh) 一种稠环化合物及其制备方法和用途
CN113004290B (zh) 一种有机化合物、有机电致发光材料及其应用
CN108530454B (zh) 一种稠合多环化合物及其制备方法和用途
TW201425275A (zh) 化合物與有機電子裝置
WO2020155419A1 (zh) 一种二苯并杂环化合物及其制备方法和应用
WO2020056859A1 (zh) 一种9,10-二氢吖啶衍生物及其制备方法和用途
CN108774239B (zh) 一种稠环化合物及其制备方法和用途
WO2020056860A1 (zh) 一种9,10-二氢吖啶衍生物及其制备方法和用途
WO2020133833A1 (zh) 一种二苯并杂环化合物及其制备方法和应用
Zeng et al. Y‐Shaped pyrene‐based aggregation‐induced emission blue emitters for high‐performance OLED devices
JP2023500009A (ja) ヘテロ環化合物、これを含む有機発光素子、有機発光素子の有機物層用組成物および有機発光素子の製造方法
KR20130023071A (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
WO2022242521A1 (zh) 一种稠合氮杂环化合物及其应用以及包含该化合物的有机电致发光器件
CN114656475A (zh) 一种有机电致发光材料、发光器件和发光装置
CN108558894B (zh) 一种稠合多环化合物及其制备方法和用途
CN114957306B (zh) 一种热活化延迟荧光材料和电致发光器件
CN113429397B (zh) 化合物、显示面板及显示装置
JP7040817B2 (ja) ヘテロ環化合物およびこれを含む有機発光素子
CN114853792B (zh) 烯胺酮硼配合物荧光材料及其制备方法与应用
KR102380561B1 (ko) 화합물, 유기 광전자 소자 및 표시 장치
WO2024016687A1 (zh) 含氮化合物和电子元件及电子装置
Gao et al. A simple bipolar host material based on triphenylamine and pyridine featuring σ-linkage for efficient solution-processed phosphorescent organic light-emitting diodes
CN115843191A (zh) 有机电致发光器件

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019533177

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197017931

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: KR1020197017931

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924516

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18924516

Country of ref document: EP

Kind code of ref document: A1