WO2020056859A1 - 一种9,10-二氢吖啶衍生物及其制备方法和用途 - Google Patents

一种9,10-二氢吖啶衍生物及其制备方法和用途 Download PDF

Info

Publication number
WO2020056859A1
WO2020056859A1 PCT/CN2018/113120 CN2018113120W WO2020056859A1 WO 2020056859 A1 WO2020056859 A1 WO 2020056859A1 CN 2018113120 W CN2018113120 W CN 2018113120W WO 2020056859 A1 WO2020056859 A1 WO 2020056859A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
formula
substituted
unsubstituted
dihydroacridine derivative
Prior art date
Application number
PCT/CN2018/113120
Other languages
English (en)
French (fr)
Inventor
孙华
朱文明
陈志宽
Original Assignee
宁波卢米蓝新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波卢米蓝新材料有限公司 filed Critical 宁波卢米蓝新材料有限公司
Publication of WO2020056859A1 publication Critical patent/WO2020056859A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the invention belongs to the field of display technology, and particularly relates to a 9,10-dihydroacridine derivative, a preparation method and an application thereof.
  • OLEDs Organic light-emitting diodes
  • OLED is a carrier double-injection light-emitting device.
  • the light-emitting mechanism is: driven by an external electric field, electrons and holes are injected into the organic functional layer from the cathode and anode, respectively, and exciton and exciton are recombined in the organic light-emitting layer Radiation transitions back to the ground state and emits light.
  • the material of the organic light emitting layer is of great significance to the performance of the OLED device.
  • TADF Thermally Activated Delayed Fluorescence
  • RISC Reverse Intersystem Crossing
  • the technical problem to be solved by the present invention is to overcome the defect that the thermally activated delayed fluorescent material in the prior art cannot achieve high-efficiency blue light and dark blue light emission.
  • the present invention provides a 9,10-dihydroacridine derivative having a structure represented by formula (I):
  • each X is independently selected from N or C (R 3 ); T is selected from O, S, C (R 4 ) (R 5 ) or N (R 6 );
  • R 1 -R 6 are independently selected from hydrogen, deuterium, halogen, cyano, C1-C30 substituted or unsubstituted alkyl, C2-C30 substituted or unsubstituted alkenyl, C2-C30 substituted or unsubstituted Substituted alkynyl, C3-C30 substituted or unsubstituted cycloalkyl, C1-C30 substituted or unsubstituted alkoxy, C1-C30 substituted or unsubstituted silane, C6-C60 substituted or unsubstituted Substituted aryl, or C3-C30 substituted or unsubstituted heteroaryl;
  • R 7 to R 8 are independently selected from hydrogen, deuterium, halogen, cyano, C1-C30 substituted or unsubstituted alkyl, C2-C30 substituted or unsubstituted alkenyl, C2-C30 substituted or unsubstituted Substituted alkynyl, C3-C30 substituted or unsubstituted cycloalkyl, C1-C30 substituted or unsubstituted alkoxy, C1-C30 substituted or unsubstituted silane, C6-C60 substituted or unsubstituted A substituted aryl, a C3-C30 substituted or unsubstituted heteroaryl, or a ring A that shares a side with an adjacent phenyl to form a fused ring; the ring A is selected from a benzene ring, a 3- to 7-membered saturation Or a partially unsaturated carbocyclic ring, a 3- to 7-member
  • Ar 1 -Ar 3 are independently selected from hydrogen, deuterium, halogen, cyano, C1-C30 substituted or unsubstituted alkyl, C2-C30 substituted or unsubstituted alkenyl, C2-C30 substituted or unsubstituted Substituted alkynyl, C3-C30 substituted or unsubstituted cycloalkyl, C1-C30 substituted or unsubstituted alkoxy, C1-C30 substituted or unsubstituted silane, C6-C60 substituted or unsubstituted Substituted aryl, or C3-C30 substituted or unsubstituted heteroaryl;
  • L is a single bond, a C1-C10 substituted or unsubstituted aliphatic hydrocarbon group, a C6-C60 substituted or unsubstituted aryl group, or a C3-C30 substituted or unsubstituted heteroaryl group;
  • heteroaryl, heterocyclic, and fused ring heteroaryl each independently have at least one hetero atom independently selected from nitrogen, sulfur, oxygen, phosphorus, boron, or silicon.
  • the L, Ar 1 -Ar 3 are independently selected from unsubstituted or 1-5 R 1a substituted phenyl, biphenyl, Adamantyl, naphthyl, anthracenyl, phenanthryl, fluorenyl, fluorenyl, fluorenyl, cleynyl, triphenylene, fluoranthenyl, pyridyl, pyrimidinyl, pyranyl, thianyl, pyrazine , Pyridazinyl, triazinyl, phthalazinyl, phenazinyl, thienyl, furyl, pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, thiazolyl, indolyl, carbazolyl, indyl Indolocarbazolyl, triaromatic amino, diaromatic amino,
  • R 1a is selected from cyano or C 1 -C 6 alkyl.
  • At least one X in the compound represented by formula (I) is nitrogen.
  • the R 1 -R 6 are independently selected from hydrogen, C 1 -C 6 alkyl, phenyl, biphenyl, and adamantyl , Naphthyl, anthryl, phenanthryl, fluorenyl, fluorenyl, fluorenyl, alkenyl, triphenylene, fluoranthenyl, pyridyl, pyrimidinyl, pyranyl, thienyl, pyrazinyl, pyridyl Azinyl, triazinyl, phthalazinyl, phenazinyl, thienyl, furanyl, pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, thiazolyl, indolyl, carbazolyl, indolocarb Oxazolyl, triaromatic amino, diaromatic amino, phen
  • the R 7 -R 8 are independently selected from hydrogen, C 1 -C 6 alkyl, phenyl, biphenyl, adamantyl, naphthyl, anthracenyl, phenanthryl, fluorenyl, fluorenyl, fluorene Base, thalkenyl, triphenylene, fluoranthenyl, pyridyl, pyrimidinyl, pyranyl, thienyl, pyrazinyl, pyridazinyl, triazinyl, phthalazinyl, phenazinyl, thienyl , Furyl, pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, thiazolyl, indolyl, carbazolyl, indolocarbazolyl, triaromatic amino, diaromatic amino, phenanthridyl, Acridinyl, pyridinyl, pteri
  • the ring A is selected from The ring B is selected from a benzene ring, a biphenyl ring, an adamantane ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a fluorene ring, a fluorene ring, a fluorene ring, a bowlene ring, a triphenylene ring, a fluoranthene ring, a pyridine ring, Pyrimidine ring, pyran ring, thioan ring, pyrazine ring, pyridazine ring, triazine ring, phthalazine ring, phenazine ring, thiophene ring, furan ring, pyrrole ring, pyrazole ring, imidazole ring, oxazole ring , Thiazole ring, indole ring, carbazole
  • the above 9,10-dihydroacridine derivative has a molecular structure shown in any of the following:
  • the present invention provides a method for preparing the above-mentioned 9,10-dihydroacridine derivative.
  • the synthetic steps of the compound represented by formula (I) are as follows:
  • a compound represented by formula (A) and a compound represented by formula (B) are used as starting materials, and intermediate 1 is obtained through a nucleophilic addition reaction; intermediate 1 and the compound represented by formula (C) exist in an Eaton reagent Intermediate 2 is obtained through dehydration condensation reaction; Intermediate 2 and a compound represented by formula (D) are reacted in a coupling reaction in the presence of a catalyst to obtain a compound represented by formula (I);
  • a compound represented by the formula (A) and a compound represented by the formula (E) are used as starting materials, and an intermediate 3 is obtained through a nucleophilic addition reaction; the intermediate 3 is formed into an intermediate 3 'through a nucleophilic substitution reaction, Intermediate 3 'reacts with a compound represented by formula (G) to form intermediate 4 through a Suzuki reaction.
  • Intermediate 4 reacts with a compound represented by formula (E) by a coupling reaction in the presence of a catalyst to obtain a compound represented by formula (I) Compound
  • N is selected from fluorine, chlorine, bromine or iodine
  • W is selected from fluorine, chlorine, bromine, iodine or trifluoromethanesulfonyl.
  • the invention provides an application of the above-mentioned 9,10-dihydroacridine derivative as a thermally activated delayed fluorescent material.
  • the invention provides an organic electroluminescence device. At least one functional layer of the organic electroluminescence device contains the 9,10-dihydroacridine derivative according to any one of claims 1-6.
  • the functional layer is a light emitting layer.
  • the light-emitting layer material includes a host material and a guest light-emitting dye, and the guest light-emitting material is the 9,10-dihydroacridine derivative.
  • the light-emitting layer material includes a host material and a guest luminescent dye
  • the host material is the 9,10-dihydroacridine derivative
  • the selected guest luminescent dye has Thermal activation delays fluorescence performance.
  • the 9,10-dihydroacridine derivative provided by the present invention has the structure shown in formula (I), and the electron-donating group in the 9,10-dihydroacridine derivative Electron withdrawing group They are distributed on different groups, so that the HOMO energy level distributed in the electron-donating group and the LUMO energy level distributed in the electron-withdrawing group are relatively separated to obtain a small ⁇ E ST .
  • HOMO and LUMO are moderate at the L group. Overlap, combined with the rigid twisted structure of 9,10-dihydroacridine derivatives, giving it high luminous efficiency.
  • the dihydroacridine group and the dibenzoheterocycle are connected by a sigma bond, and a modification group is introduced by a sigma bond to further regulate the triplet energy of the compound.
  • Level (T 1 ) and singlet energy level (S 1 ) so that the 9,10-dihydroacridine derivative has both a high S 1 level and a small ⁇ E ST , and realizes light emission in the blue and dark blue light regions. It can be seen from FIG.
  • the electron-donating group formed by the ⁇ bond provided by the present invention has higher single and triplet energy levels and smaller ⁇ E than the electron-donating group formed by the spiro-ring connection.
  • ST It can be seen from FIG. 3 that the TADF material molecules are formed by using the above-mentioned ⁇ -bonded electron donor groups. Compared with the TADF material molecules having the spiral ring-connected electron donor groups, the singlet energy level and triplet state of the TADF material molecules The energy level is increased, and the single-triplet energy level difference is reduced, which can realize high-efficiency light emission in the blue light and dark blue light regions.
  • the material molecule has a better electron and hole transport rate, and the hole and electron transport efficiency is balanced to further improve Luminous efficiency of the device.
  • the 9,10-dihydroacridine derivative of the structure represented by formula (I) has a high glass transition temperature, high thermal stability and morphological stability, and excellent film-forming properties. Conducive to improving the performance and luminous efficiency of OLED devices.
  • the 9,10-dihydroacridine derivative provided by the present invention can further adjust the electron-donating group and the electron-withdrawing group in the material molecule by further adjusting the substituent groups of R1-R8 and Ar1-Ar3, and further Improve the hole transport and electron transport properties of the material molecules, and improve the balance of their charge transport.
  • the singlet energy level of the material molecules can be further increased while maintaining a small ⁇ Est, which can increase the 9,10-dihydroacridine derivative.
  • the luminous efficiency of the light emitting material As a blue light emitting material, the luminous efficiency of the light emitting material; third, by setting the substitution group to adjust the electron donor and electron withdrawing group, the distribution of the LUMO energy level or the HOMO energy level is more uniform, and the HOMO and LUMO energy levels are further optimized.
  • the method for preparing the 9,10-dihydroacridine derivative provided by the present invention the starting materials are easy to obtain, the reaction conditions are mild, and the operation steps are simple, which is the large-scale production of the above 9,10-dihydroacridine derivative A simple and easy-to-implement preparation method is provided.
  • At least one functional layer of the organic electroluminescent device provided by the present invention contains the above-mentioned 9,10-dihydroacridine derivative.
  • the functional layer is a light emitting layer.
  • 9,10-dihydroacridine derivative When a 9,10-dihydroacridine derivative is used as a guest luminescent dye in a light-emitting layer, the thermal activation of the 9,10-dihydroacridine derivative delays the fluorescence property, so that the triplet excitons of the material molecule can be converted into singlet excitons. , Using singlet exciton fluorescence to achieve high luminous efficiency; at the same time, 9,10-dihydroacridine derivatives can achieve high-efficiency light emission in the blue and dark blue light regions, which is conducive to obtaining high luminous efficiency The blue light organic electroluminescence device solves the problem that the blue light OLED device has low luminous efficiency due to high blue light energy.
  • the 9,10-dihydroacridine derivative is used as the host material of the light-emitting layer, so that the host material has bipolarity and a narrow energy gap, which is conducive to the recombination of electrons and holes on the host material and increases the recombination area.
  • Reduce exciton concentration effectively reduce exciton quenching, and solve the problems of low efficiency and short life due to exciton quenching.
  • the high inter-system crossover (RISC) rate of the conversion of 9,10-dihydroacridine derivatives as the host material T 1 to S 1 can suppress the Dex from the host material to the luminescent dye.
  • FIG. 1 is a schematic structural diagram of an organic electroluminescent device in Examples 67 to 77 and Comparative Example 1, and Comparative Example 2 of the present invention
  • FIG. 2 shows the compound represented by formula C-1 provided in Example 1 of the present application and the compound represented by formula II-1 provided in Comparative Example 2, the singlet energy level, triplet energy level and ⁇ Est comparison of theoretical calculation results;
  • FIG. 3 is a comparison of theoretical calculation results of singlet energy levels, triplet energy levels, and ⁇ Est of the compound represented by Formula II-1 provided in Comparative Example 2 of the compound provided by Example 1 in Example 1 of this application.
  • 1-anode 2-hole injection layer, 3-hole transport layer, 4-light emitting layer, 5-electron transport layer, 6-electron injection layer, 7-cathode.
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-1:
  • the method for preparing the 9,10-dihydroacridine derivative represented by Formula C-1 specifically includes the following steps:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-2:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-3:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-4:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-5:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-6:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-7:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-8:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-9:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-10:
  • the method for preparing the 9,10-dihydroacridine derivative represented by Formula C-1 specifically includes the following steps:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-11:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-12:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-13:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-14:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-15:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-16:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-17:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-18:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-19:
  • the method for preparing the 9,10-dihydroacridine derivative represented by Formula C-19 specifically includes the following steps:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-20:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-21:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-22:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-23:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-24:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-25:
  • the compound represented by formula E-7 was used in place of the compound E-1 in step (3) of Example 19. The yield was 76%.
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-26:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-27:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-37:
  • the method for preparing a 9,10-dihydroacridine derivative represented by Formula C-37 includes the following steps:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-38:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-39:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-40:
  • the compound represented by formula E-4 was used in place of the compound E-1 in step (3) of Example 28.
  • the yield was 85%.
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-41:
  • the compound represented by formula E-5 was used in place of the compound E-1 in step (3) of Example 28.
  • the yield was 85%.
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-42:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-43:
  • the compound represented by formula E-7 was used in place of the compound E-1 in step (3) of Example 28.
  • the yield was 76%.
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-44:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-45:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-46:
  • the method for preparing the 9,10-dihydroacridine derivative represented by Formula C-46 specifically includes the following steps:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-47:
  • the compound represented by formula E-2 was used in place of the compound E-1 in step (3) of Example 37.
  • the yield was 82%.
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-48:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-49:
  • the compound represented by formula E-4 was used in place of the compound E-1 in step (3) of Example 37. Yield: 81%.
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-50:
  • the compound represented by formula E-5 was used in place of the compound E-1 in step (3) of Example 37. Yield was 853%.
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-51:
  • the compound represented by formula E-6 was used in place of the compound E-1 in step (3) of Example 37.
  • the yield was 77%.
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-52:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-53:
  • the compound represented by formula E-8 was used in place of the compound E-1 in step (3) of Example 37.
  • the yield was 76%.
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-54:
  • the compound represented by formula E-9 was used in place of the compound E-1 in step (3) of Example 37.
  • the yield was 72%.
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-46:
  • the method for preparing the 9,10-dihydroacridine derivative represented by Formula C-55 specifically includes the following steps:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-56:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-57:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-58:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-61:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-62:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-63:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-64:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-65:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-66:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-67:
  • the method for preparing the 9,10-dihydroacridine derivative represented by Formula C-55 specifically includes the following steps:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-70:
  • the compound represented by formula G-3 was used in place of the compound G-2 in step (3) of Example 56.
  • the yield was 76%.
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-71:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-72:
  • the compound represented by formula G-5 was used in place of the compound G-2 in step (3) of Example 56.
  • the yield was 86%.
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-73:
  • the compound represented by formula G-6 was used in place of the compound G-2 in step (3) of Example 56. Yield: 81%.
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-75:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-78:
  • the compound represented by formula G-8 was used in place of the compound G-2 in step (3) of Example 56.
  • the yield was 82%.
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-80:
  • the method for preparing a 9,10-dihydroacridine derivative represented by Formula C-80 specifically includes the following steps:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-81:
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-82:
  • the compound represented by formula E-12 was used in place of the compound E-10 in step (3) of Example 63.
  • the yield was 85%.
  • This embodiment provides a 9,10-dihydroacridine derivative having a structure represented by the following formula C-90:
  • the organic electroluminescent device includes an anode 1, a hole injection layer 2, a hole transport layer 3, a light emitting layer 4, an electron transport layer 5, Electron injection layer 6 and cathode 7.
  • the anode is made of ITO; the cathode 7 is made of metal Al;
  • HAT (CN) 6 has the following chemical structure:
  • the material of the hole transport layer 3 is a compound having the following structure:
  • the material of the electron transport layer 5 is a compound having the following structure:
  • the material of the electron injection layer 6 is formed by doping a compound of the structure shown below and an electron injection material LiF:
  • the light-emitting layer 32 is formed by co-doping the host material and a guest luminescent dye.
  • the host material is compound BH
  • the guest light-emitting material is 9,10-dihydroacridine derivative (C-1).
  • the mass ratio of material and guest material doping is 100: 10.
  • the organic electroluminescent device is formed into the following specific structure: ITO / hole injection layer (HIL) / hole transport layer (HTL) / organic light emitting layer (BH doped compound C-1) / electron transport layer (ETL) / electron injection Layer (EIL / LiF) / cathode (Al).
  • HIL hole injection layer
  • HTL hole transport layer
  • ETL electron transport layer
  • EIL electron injection Layer
  • LiF cathode
  • the guest material of the light-emitting layer As the guest material of the light-emitting layer, a compound C-1 having thermally activated delayed fluorescence properties was selected, and the HOMO energy level and LUMO energy level of the TADF material molecules were respectively positioned at different electron-donating groups. Electron withdrawing group On the other hand, the HOMO energy level and the LUMO energy level are relatively separated, the rigid twisted structure, the material molecule has a small ⁇ E ST , and the triplet excitons of the TADF molecule are converted into singlet excitons by reverse intersystem crossing. The exciton emits light with high luminous efficiency.
  • the dihydroacridine group in the electron-donating group is connected to the dibenzofuran with a sigma bond to further adjust the S 1 and T 1 of the TADF molecule.
  • Figure 2 shows the electron-donating group formed by the sigma bond ( The comparison results of the electron-donating group in the compound represented by Formula C-1) and the electron-donating group (the electron-donating group in the compound represented by Formula II-1) formed by spiro ring connection can be seen from FIG. 2.
  • the dihydroacridine derivative shown by C-1 has high glass transition temperature, high thermal stability and morphological stability, and excellent film-forming properties. It is not easy to crystallize as a light-emitting layer material, which is conducive to the improvement of OLED devices. Performance and luminous efficiency.
  • the guest light-emitting material of the light-emitting layer may also be selected from any 9,10-dihydroacridine derivative represented by formula (C-2) to formula (C-100).
  • the guest light-emitting material of the light-emitting layer may also be selected from any other compound having a chemical structure represented by the general formula (I).
  • This embodiment provides an organic electroluminescence device.
  • the only difference from the organic electroluminescence device provided in Example 67 is that the light-emitting layer guest light-emitting material is a 9,10-dihydroacridine derivative with the structure shown below. :
  • This embodiment provides an organic electroluminescence device.
  • the only difference from the organic electroluminescence device provided in Example 67 is that the light-emitting layer guest light-emitting material is a 9,10-dihydroacridine derivative with the structure shown below :
  • This embodiment provides an organic electroluminescence device.
  • the only difference from the organic electroluminescence device provided in Example 67 is that the light-emitting layer guest light-emitting material is a 9,10-dihydroacridine derivative with the structure shown below. :
  • This embodiment provides an organic electroluminescence device.
  • the only difference from the organic electroluminescence device provided in Example 67 is that the light-emitting layer guest light-emitting material is a 9,10-dihydroacridine derivative with the structure shown below. :
  • This embodiment provides an organic electroluminescence device.
  • the only difference from the organic electroluminescence device provided in Example 67 is that the light-emitting layer guest light-emitting material is a 9,10-dihydroacridine derivative with the structure shown below. :
  • This embodiment provides an organic electroluminescence device.
  • the only difference from the organic electroluminescence device provided in Example 67 is that the light-emitting layer guest light-emitting material is a 9,10-dihydroacridine derivative with the structure shown below. :
  • This embodiment provides an organic electroluminescence device.
  • the only difference from the organic electroluminescence device provided in Example 67 is that the light-emitting layer guest light-emitting material is a 9,10-dihydroacridine derivative with the structure shown below. :
  • This embodiment provides an organic electroluminescence device.
  • the only difference from the organic electroluminescence device provided in Example 67 is that the light-emitting layer guest light-emitting material is a 9,10-dihydroacridine derivative with the structure shown below. :
  • This embodiment provides an organic electroluminescence device.
  • the only difference from the organic electroluminescence device provided in Example 67 is that the light-emitting layer guest light-emitting material is a 9,10-dihydroacridine derivative with the structure shown below. :
  • This embodiment provides an organic electroluminescence device.
  • the only difference from the organic electroluminescence device provided in Example 67 is that the light-emitting layer guest light-emitting material is a 9,10-dihydroacridine derivative with the structure shown below. :
  • This comparative example provides an organic electroluminescence device, which is different from the organic electroluminescence device provided in Example 7 only in that the light-emitting layer guest light-emitting material uses the compound BD:
  • This comparative example provides an organic electroluminescence device, which is different from the organic electroluminescence device provided in Example 7 only in that the light-emitting layer guest light-emitting material is selected from the following compounds:
  • DSC differential scanning calorimeter
  • the organic electroluminescent devices provided in Comparative Examples 67-77 and Comparative Examples 1 and 2 were tested, and the results are shown in Table 2.
  • the OLED device has high external quantum efficiency, high color purity, and high blue light emission efficiency.
  • the OLED device provided in Examples 67-77 is more conducive to the realization of the dark blue light region.
  • Light emission means that the 9,10-dihydroacridine provided in the present invention as a guest light-emitting material of the light-emitting layer of an OLED device can realize a dark blue light-emitting device with high light-emitting efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

一种9,10-二氢吖啶衍生物,具有式(I)所示的结构,以及一种有机电致发光器件,至少有一个功能层中含有式(I)所示的9,10-二氢吖啶衍生物。9,10-二氢吖啶衍生物的HOMO能级和LUMO分布于不同的供电子基团和吸电子基团,使HOMO能级和LUMO相对分离,以获得小的ΔE ST,能够作为TADF材料用于有机电致发光器件。供电子基团中的二氢吖啶基团与二苯并杂环通过σ键相连接,通过σ键引入修饰基团,进一步调控化合物的三线态能级、单线态能级,使TADF材料在蓝光和深蓝光区域具有高的发光效率。以式(I)所示的9,10-二氢吖啶衍生物为发光层的客体发光材料,能够得到具有高蓝光发光效率的OLED器件。

Description

一种9,10-二氢吖啶衍生物及其制备方法和用途
交叉引用
本申请要求在2018年09月17日提交中国专利局、申请号为2018110843897、发明名称为“一种9,10-二氢吖啶衍生物及其制备方法和用途”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于显示技术领域,具体涉及一种9,10-二氢吖啶衍生物及其制备方法和用途。
背景技术
有机电致发光二极管(organic light-emitting diodes,OLEDs)由于超薄、重量轻、能耗低、主动发光、视角宽、响应快等优点,在显示和照明领域有极大的应用前景,越来越受到人们的重视。
OLED属于载流子双注入型发光器件,发光机理为:在外界电场的驱动下,电子和空穴分别由阴极和阳极注入到有机功能层,并在有机发光层中复合生成激子,激子辐射跃迁回到基态并发光。有机发光层材料对于OLED器件的性能具有重要意义。
1987年,美国Eastman Kodak公司的邓青云(C.W.Tang)和Vanslyke首次报道了利用透明导电膜作阳极,Alq3作发光层,三芳胺作空穴传输层,Mg/Ag合金作阴极,制成了双层有机电致发光器件。传统荧光材料易于合成,材料稳定,器件寿命较长,但是由于电子自旋禁阻的原因最多只能利用25%的单线态激子进行发光,75%的三线态激子被浪费掉,器件外效率往往低于5%,需要进一步提高。为提高OLED器件效率,人们提出在有机材料分子中引入重金属原子,由于重金属原子的自旋量子耦合,促使激子从最低三线态(T 1)向基态(S 0)转移发出磷光发光。这种方法同时捕获了三线态和单线态激子,使器件的内量子效率达到100%。但是,磷光器件普遍使用的铱(Ir),铂(Pt)等重金属,较高的材料成本限制了其进一步发展。
为了降低成本同时突破OLED器件25%的内量子效率限制,日本九州大学的Adachi教授提出了热活化延迟荧光(TADF:Thermally Activated Delayed Fluorescence)机制。在具有较小单线态-三线态能级差(ΔE ST)的有机小分子材料中,其三线态激子可通过反向系间窜越(RISC:Reverse Intersystem Crossing)这一过程转化为单线态激子,理论上其器件内量子效率能达到100%。TADF材料能够同时结合荧光和磷光材料的优点,被称为第三代有机发光材料,引起了大家的广泛关注。
迄今为止,一系列具有高发光效率的TADF材料被相继开发出来;然而,蓝光TADF材料受蓝光波长短、辐射发光所需能量高以及TADF材料需要小的ΔE ST的限制,蓝光TADF材料在发光效率上存在缺陷。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中热活化延迟荧光材料无法实现高效率的蓝光以及深蓝光发光的缺陷。
为此,本发明提供如下技术方案:
本发明提供了一种9,10-二氢吖啶衍生物,具有如式(I)所示的结构:
Figure PCTCN2018113120-appb-000001
其中,每个X彼此独立地选自N或C(R 3);T选自O、S、C(R 4)(R 5)或N(R 6);
R 1-R 6彼此独立地选自氢、氘、卤素、氰基、C1-C30的取代或未取代的烷基、C2-C30的取代或未取代的烯基、C2-C30的取代或未取代的炔基、C3-C30的取代或未取代的环烷基、C1-C30的取代或未取代的烷氧基、C1-C30的取代或未取代的硅烷基、C6-C60的取代或未取代的芳基,或者C3-C30的取代或未取代的杂芳基;
R 7-R 8彼此独立地选自氢、氘、卤素、氰基、C1-C30的取代或未取代的烷基、C2-C30的取代或未取代的烯基、C2-C30的取代或未取代的炔基、C3-C30的取代或未取代的环烷基、C1-C30的取代或未取代的烷氧基、C1-C30的取代或未取代的硅烷基、C6-C60的取代或未取代的芳基、C3-C30的取代或未取代的杂芳基,或是与相邻苯基共有一边形成稠环的环A;所述环A选自苯环、3元到7元的饱和或部分不饱和的碳环、3元到7元的饱和或部分不饱和的杂环、C6-C60的稠环芳基或C3-C30的稠环杂芳基;
Ar 1-Ar 3彼此独立地选自氢、氘、卤素、氰基、C1-C30的取代或未取代的烷基、C2-C30的取代或未取代的烯基、C2-C30的取代或未取代的炔基、C3-C30的取代或未取代的环烷基、C1-C30的取代或未取代的烷氧基、C1-C30的取代或未取代的硅烷基、C6-C60的取代或未取代的芳基,或者C3-C30的取代或未取代的杂芳基;
L为单键、C1-C10的取代或未取代的脂肪烃基、C6-C60的取代或未取代的芳基,或者C3-C30的取代或未取代的杂芳基;
所述杂芳基、杂环、稠环杂芳基彼此独立地具有至少一个独立地选自氮、硫、氧、磷、硼或硅的杂 原子。
可选地,根据权利要求1所述的9,10-二氢吖啶衍生物,其特征在于,所述L、Ar 1-Ar 3彼此独立地选自C6-C60的取代或未取代的稠环芳基、C3-C30的取代或未取代的桥环烷基、C3-C30的取代或未取代的单环杂芳基,或者C3-C30的取代或未取代的稠环杂芳基。
可选地,上述的9,10-二氢吖啶衍生物,所述L、Ar 1-Ar 3彼此独立地选自未取代的或1-5个R 1a取代的苯基、联苯基、金刚烷基、萘基、蒽基、菲基、芴基、芘基、苝基、碗烯基、三亚苯基、荧蒽基、吡啶基、嘧啶基、吡喃基、噻喃基、吡嗪基、哒嗪基、三嗪基、酞嗪基、吩嗪基、噻吩基、呋喃基、吡咯基、吡唑基、咪唑基、噁唑基、噻唑基、吲哚基、咔唑基、吲哚并咔唑基、三芳香胺基、二芳香胺基、菲啶基、吖啶基、呸啶基、蝶啶基、喹唑啉基、喹喔啉基、噌啉基、喹啉基、菲罗啉基、咔啉基,或者由上述基团形成稠环基、螺环基或联环基;
R 1a选自氰基或C 1-C 6的烷基。
可选地,上述的9,10-二氢吖啶衍生物,所述式(I)所示的化合物中,至少有一个X为氮。
可选地,上述的9,10-二氢吖啶衍生物,所述R 1-R 6彼此独立地选自氢、C 1-C 6的烷基、苯基、联苯基、金刚烷基、萘基、蒽基、菲基、芴基、芘基、苝基、碗烯基、三亚苯基、荧蒽基、吡啶基、嘧啶基、吡喃基、噻喃基、吡嗪基、哒嗪基、三嗪基、酞嗪基、吩嗪基、噻吩基、呋喃基、吡咯基、吡唑基、咪唑基、噁唑基、噻唑基、吲哚基、咔唑基、吲哚并咔唑基、三芳香胺基、二芳香胺基、菲啶基、吖啶基、呸啶基、蝶啶基、喹唑啉基、喹喔啉基、噌啉基、喹啉基、菲罗啉基或咔啉基;
所述R 7-R 8彼此独立地选自氢、C 1-C 6的烷基、苯基、联苯基、金刚烷基、萘基、蒽基、菲基、芴基、芘基、苝基、碗烯基、三亚苯基、荧蒽基、吡啶基、嘧啶基、吡喃基、噻喃基、吡嗪基、哒嗪基、三嗪基、酞嗪基、吩嗪基、噻吩基、呋喃基、吡咯基、吡唑基、咪唑基、噁唑基、噻唑基、吲哚基、咔唑基、吲哚并咔唑基、三芳香胺基、二芳香胺基、菲啶基、吖啶基、呸啶基、蝶啶基、喹唑啉基、喹喔啉基、噌啉基、喹啉基、菲罗啉基、咔啉基或是与相邻苯基共有一边形成稠环的环A;
所述环A选自
Figure PCTCN2018113120-appb-000002
所述环B选自苯环、联苯环、金刚烷环、萘环、蒽环、菲环、芴环、芘环、苝环、碗烯环、三亚苯环、荧蒽环、吡啶环、嘧啶环、吡喃环、噻喃环、吡嗪环、哒嗪环、三嗪环、酞嗪环、吩嗪环、噻吩环、呋喃环、吡咯环、吡唑环、咪唑环、噁唑环、噻唑环、吲哚环、咔唑环、吲哚并咔唑环、三芳香胺环、二芳香胺环、菲啶环、吖啶环、呸啶环、蝶啶环、喹唑啉环、喹喔啉环、噌啉环、喹啉环、菲罗啉环或咔啉环。
可选地,上述的9,10-二氢吖啶衍生物,具有下述任一所示的分子结构:
Figure PCTCN2018113120-appb-000003
Figure PCTCN2018113120-appb-000004
Figure PCTCN2018113120-appb-000005
Figure PCTCN2018113120-appb-000006
Figure PCTCN2018113120-appb-000007
Figure PCTCN2018113120-appb-000008
本发明提供了一种上述的9,10-二氢吖啶衍生物的制备方法,所述式(I)所示化合物的合成步骤如下所示:
以式(A)所示的化合物和式(B)所示的化合物为起始原料,经亲核加成反应得到中间体1;中间体1与式(C)所示的化合物在伊顿试剂存在下经脱水缩合反应得到中间体2;中间体2与式(D)所示的化合物在催化剂存在下经偶联反应反应得到式(I)所示的化合物;
所述式(I)所示化合物的合成路径如下所示:
Figure PCTCN2018113120-appb-000009
或者,以式(A)所示的化合物和式(E)所示的化合物为起始原料,经亲核加成反应得到中间体3;中间体3经亲核取代反应生成中间体3’,中间体3’与式(G)所示的化合物经铃木反应生成中间体4,中间体4与式(E)所示的化合物在催化剂存在下经偶联反应反应得到式(I)所示的化合物;
所述式(I)所示化合物的合成路径如下所示:
Figure PCTCN2018113120-appb-000010
其中,N选自氟、氯、溴或碘,W选自氟、氯、溴、碘或三氟甲磺酰基。
本发明提供了一种上述的9,10-二氢吖啶衍生物作为热活化延迟荧光材料的应用。
本发明提供了一种有机电致发光器件,所述有机电致发光器件的至少有一个功能层中含有权利要求1-6任一项所述的9,10-二氢吖啶衍生物。
可选地,上述的有机电致发光器件,所述功能层为发光层。
进一步可选地,上述的有机电致发光器件,所述发光层材料包括主体材料和客体发光染料,所述客体发光材料为所述9,10-二氢吖啶衍生物。
进一步可选地,上述的有机电致发光器件,所述发光层材料包括主体材料和客体发光染料,所述主体材料为所述9,10-二氢吖啶衍生物,所选客体发光染料具有热活化延迟荧光性能。
本发明技术方案,具有如下优点:
1、本发明提供的9,10-二氢吖啶衍生物,具有如式(I)所示的结构,9,10-二氢吖啶衍生物中的供电子基团
Figure PCTCN2018113120-appb-000011
和吸电子基团
Figure PCTCN2018113120-appb-000012
分别分布于不同的基团上,使分布于供电子基团的HOMO能级和分布于吸电子基团的LUMO能级相对分离,以获得小的ΔE ST,HOMO和LUMO在L基团处适度重叠,结合9,10-二氢吖啶衍生物的刚性扭曲结构,使其具有高的发光效率。9,10-二氢吖啶衍生物的供电子基团中,二氢吖啶基团与二苯并杂环通过σ键相连接,以σ键引入修饰基团,进一步调控化合物的三线态能级(T 1)、单线态能级(S 1),使9,10-二氢吖啶衍生物同时具有高的S 1能级和小的ΔE ST,实现在蓝光和深蓝光区域的发光。结合图2可知,本发明提供的以σ键相连形成的供电子基团,与以螺环形式连接形成的供电子基团相比,具有更高的单、三线态能级和更小的ΔE ST;结合图3可知,利用上述σ键相连的供电子基团形成TADF材料分子,与具有螺环连接的供电子基团的TADF材料分子相比,TADF材料分子的单线态能级和三线态能级提高、单-三线态能级差减小,能够实现在蓝光和深蓝光区域的高效发光。另外,通过使二氢吖啶基团与二苯并杂环以σ键相连接,使材料分子具有较好的电子传输率和空穴传输率,平衡空穴和电子的传输效率,以进一步提高器件的发光效率。
同时,式(I)所示结构的9,10-二氢吖啶衍生物玻璃态转变温度高,热稳定性和形态学稳定性高,成膜性能优异,作为发光层主体材料不易结晶,有利于提升OLED器件的性能和发光效率。
上述的9,10-二氢吖啶衍生物作为一种新的热活化延迟荧光材料,由于具有小的ΔE ST,促进三线态(T 1)激子通过反向系间窜越(RISC)上转化为单线态(S 1)激子,然后由S 1激子辐射跃迁,发出荧光,实现了理论上100%的内量子效率。另外,通过设计材料分子内二氢吖啶基团与二苯并杂环以σ键相连接,实现在蓝光以及深蓝光区域的发光,得到了具有高发光效率的蓝光TADF材料分子,同时上述的蓝光TADF材料分子具有良好的热稳定性和相对平衡的电子和空穴的传输效率。在作为OLED器件的荧光发光材料 时,能够实现器件的高效率蓝光发光,获得高的外量子效率。
2、本发明提供的9,10-二氢吖啶衍生物,通过进一步调节R1-R8以及Ar1-Ar3的取代基团,能够进一步调节材料分子中的供电子基团和吸电子基团,进一步提高材料分子的空穴传输性能和电子传输性能,提高其电荷传输的平衡性;另外,可以进一步提高材料分子的单线态能级并保持小的△Est,提高9,10-二氢吖啶衍生物作为蓝光发光材料的发光效率;第三,通过设置取代基团,以调节供、吸电子基团,使LUMO能级或HOMO能级的分布更加均匀,进一步优化HOMO和LUMO能级。
3、本发明提供的9,10-二氢吖啶衍生物的制备方法,起始原料易于获得,反应条件温和,操作步骤简单,为上述9,10-二氢吖啶衍生物的大规模生产提供了一种简单、易于实现的制备方法。
4、本发明提供的有机电致发光器件至少有一个功能层中含有上述的9,10-二氢吖啶衍生物。其中,所述功能层为发光层。
9,10-二氢吖啶衍生物作为发光层的客体发光染料时,9,10-二氢吖啶衍生物的热活化延迟荧光性能使材料分子的三线态激子能够上转化为单线态激子,利用单线态激子的荧光发光,以获得高的发光效率;同时,9,10-二氢吖啶衍生物能够实现在蓝光和深蓝光区域的高效发光,有利于获得具有高发光效率的蓝光有机电致发光器件,解决了蓝光OLED器件由于蓝光能量高导致的器件发光效率低的问题。
另外,9,10-二氢吖啶衍生物作为发光层的主体材料,使主体材料具有双极性和较窄的能隙,有利于电子和空穴在主体材料上复合,增大了复合区域,降低激子浓度,有效减少激子淬灭,解决了由于激子淬灭造成的效率低和寿命短的问题。另外,相比传统的主体材料,9,10-二氢吖啶衍生物作为主体材料T 1向S 1转化的高反系间穿越(RISC)速率可以抑制从主体材料到发光染料的德克斯特能量转移(DET),促进
Figure PCTCN2018113120-appb-000013
能量转移,提高单线态激子比例,同时抑制三线态激子,从而大大减少德克斯特能量转移(DET)的激子损失,有效降低了有机电致发光器件的效率滚降,器件的外量子效率提高。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例67-实施例77和对比例1、对比例2中有机电致发光器件的结构示意图;
图2为本申请中实施例1提供的式C-1所示的化合物与对比例2提供的式II-1所示的化合物,其供电子基团的单线态能级、三线态能级和△Est的理论计算结果对比图;
图3为本申请中实施例1提供的式C-1所示的化合物对比例2提供的式II-1所示的化合物的单线态能级、三线态能级和△Est的理论计算结果对比图;
附图标记说明:
1-阳极,2-空穴注入层,3-空穴传输层,4-发光层,5-电子传输层,6-电子注入层,7-阴极。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
本发明可以以许多不同的形式实施,而不应该被理解为限于在此阐述的实施例。相反,提供这些实施例,使得本公开将是彻底和完整的,并且将把本发明的构思充分传达给本领域技术人员,本发明将仅由权利要求来限定。在附图中,为了清晰起见,会夸大层和区域的尺寸和相对尺寸。应当理解的是,当元件例如层被称作“形成在”或“设置在”另一元件“上”时,该元件可以直接设置在所述另一元件上,或者也可以存在中间元件。相反,当元件被称作“直接形成在”或“直接设置在”另一元件上时,不存在中间元件。
实施例1
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-1所示的结构:
Figure PCTCN2018113120-appb-000014
式C-1所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000015
式C-1所示9,10-二氢吖啶衍生物的制备方法具体包括以下步骤:
(1)合成中间体1-1
氮气保护下,1L的三口烧瓶中,加入19.5g(100mmol)9(10H)-吖啶酮(化合物A-1),700mL的四氢呋喃,-20℃下加入110mL(1M)苯基溴化镁溶液(化合物B-1),室温反应8小时后,加氯化铵水溶液淬灭反应,用二氯甲烷萃取三次后,旋蒸除去溶剂,过硅胶柱得到24g固体中间体1-1(产率:88%);
(2)合成中间体2-1
氮气保护下,1L的三口烧瓶中,加入22.0g(80mmol)化合物1-1,27g(160mmol)二苯并呋喃(化合物D-1),600mL的二氯甲烷,逐滴加入1.8mL(0.9M)伊顿试剂,室温反应30分钟后,加入碳酸氢钠溶液淬灭反应,用甲苯萃取三次后,旋蒸除去溶剂,过硅胶柱得到13.5g固体中间体2-1(产率:40%);
(3)合成9,10-二氢吖啶衍生物C-1
氮气保护下,加入8g中间体2-1(20mmol),0.13g醋酸钯(0.6mmol),0.45g三叔丁基膦(2.2mmol),8.5g化合物E-1(22mmol),5.7g叔丁醇钠,甲苯300mL,110℃反应12小时,冷却至室温后,氯仿萃取,旋蒸除去溶剂,过硅胶柱得到12.0g固体化合物C-1(产率82%)。
元素分析:(C52H34N4O)理论值:C,85.46;H,4.69;N,7.67;O,2.19;实测值:C,85.49;H,4.71;N,7.66;O,2.14,HRMS(ESI)m/z(M+):理论值:730.2732;实测值:730.2745。
实施例2
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-2所示的结构:
Figure PCTCN2018113120-appb-000016
式C-2所示9,10-二氢吖啶衍生物的制备步骤与实施例1中提供的C-1所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-2所示的化合物代替实施例1步骤(3)中的化合物E-1。产率80%。
实施例3
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-3所示的结构:
Figure PCTCN2018113120-appb-000017
式C-3所示9,10-二氢吖啶衍生物的制备步骤与实施例1中提供的C-1所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-3所示的化合物代替实施例1步骤(3)中的化合物E-1。产率78%。
实施例4
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-4所示的结构:
Figure PCTCN2018113120-appb-000018
式C-4所示9,10-二氢吖啶衍生物的制备步骤与实施例1中提供的C-1所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-4所示的化合物代替实施例1步骤(3)中的化合物E-1。产率85%。
实施例5
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-5所示的结构:
Figure PCTCN2018113120-appb-000019
式C-5所示9,10-二氢吖啶衍生物的制备步骤与实施例1中提供的C-1所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-5所示的化合物代替实施例1步骤(3)中的化合物E-1。产率84%。
实施例6
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-6所示的结构:
Figure PCTCN2018113120-appb-000020
式C-6所示9,10-二氢吖啶衍生物的制备步骤与实施例1中提供的C-1所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-6所示的化合物代替实施例1步骤(3)中的化合物E-1。产率77%。
实施例7
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-7所示的结构:
Figure PCTCN2018113120-appb-000021
式C-7所示9,10-二氢吖啶衍生物的制备步骤与实施例1中提供的C-1所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-7所示的化合物代替实施例1步骤(3)中的化合物E-1。产率79%。
实施例8
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-8所示的结构:
Figure PCTCN2018113120-appb-000022
式C-8所示9,10-二氢吖啶衍生物的制备步骤与实施例1中提供的C-1所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-8所示的化合物代替实施例1步骤(3)中的化合物E-1。产率75%。
实施例9
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-9所示的结构:
Figure PCTCN2018113120-appb-000023
式C-9所示9,10-二氢吖啶衍生物的制备步骤与实施例1中提供的C-1所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-9所示的化合物代替实施例1步骤(3)中的化合物E-1。产率73%。
化合物E-2、E-3、E-4、E-5、E-6、E-7、E-8、E-9的结构如下所示:
Figure PCTCN2018113120-appb-000024
实施例10
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-10所示的结构:
Figure PCTCN2018113120-appb-000025
式C-10所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000026
式C-1所示9,10-二氢吖啶衍生物的制备方法具体包括以下步骤:
(1)合成中间体1-1
氮气保护下,1L的三口烧瓶中,加入19.5g(100mmol)9(10H)-吖啶酮(化合物A-1),700mL的四氢呋喃,-20℃下加入110mL(1M)苯基溴化镁溶液(化合物B-1),室温反应8小时后,加氯化铵水溶液淬灭反应,用二氯甲烷萃取三次后,旋蒸除去溶剂,过硅胶柱得到24g固体化合物1-1(产率:88%);
(2)合成中间体2-2
氮气保护下,1L的三口烧瓶中,加入22.0g(80mmol)化合物1-1,29g(160mmol)二苯并噻吩(化合物D-2),600mL的二氯甲烷,逐滴加入1.8mL(0.9M)伊顿试剂,室温反应30分钟后,加入碳酸氢钠溶液淬灭反应,用甲苯萃取三次后,旋蒸除去溶剂,过硅胶柱得到13.3g固体化合物1-3;
(3)合成9,10-二氢吖啶衍生物C-10
氮气保护下,加入8.8g化合物的2-2(20mmol),0.13g醋酸钯(0.6mmol),0.45g三叔丁基膦(2.2mmol),8.5g化合物E-1(22mmol),5.7g叔丁醇钠,甲苯300mL,110℃反应12小时,冷却至室温后,氯仿萃取,旋蒸除去溶剂,过硅胶柱得到12.5g固体化合物C-10(产率83%)。
元素分析:(C52H34N4S)理论值:C,83.62;H,4.59;N,7.50;S,4.29;实测值:C,83.60;H,4.61;N,7.47;S,4.33,HRMS(ESI)m/z(M+):理论值:746.2504;实测值:746.2521。
实施例11
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-11所示的结构:
Figure PCTCN2018113120-appb-000027
式C-11所示9,10-二氢吖啶衍生物的制备步骤与实施例10中提供的C-10所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-2所示的化合物代替实施例10步骤(3)中的化合物E-1。产率81%。
实施例12
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-12所示的结构:
Figure PCTCN2018113120-appb-000028
式C-12所示9,10-二氢吖啶衍生物的制备步骤与实施例10中提供的C-10所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-3所示的化合物代替实施例10步骤(3)中的化合物E-1。产率78%。
实施例13
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-13所示的结构:
Figure PCTCN2018113120-appb-000029
式C-13所示9,10-二氢吖啶衍生物的制备步骤与实施例10中提供的C-10所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-4所示的化合物代替实施例10步骤(3)中的化合物E-1。产率86%。
实施例14
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-14所示的结构:
Figure PCTCN2018113120-appb-000030
式C-14所示9,10-二氢吖啶衍生物的制备步骤与实施例10中提供的C-10所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-5所示的化合物代替实施例10步骤(3)中的化合物E-1。产率83%。
实施例15
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-15所示的结构:
Figure PCTCN2018113120-appb-000031
式C-15所示9,10-二氢吖啶衍生物的制备步骤与实施例10中提供的C-10所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-6所示的化合物代替实施例10步骤(3)中的化合物E-1。产率79%。
实施例16
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-16所示的结构:
Figure PCTCN2018113120-appb-000032
式C-16所示9,10-二氢吖啶衍生物的制备步骤与实施例10中提供的C-10所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-7所示的化合物代替实施例10步骤(3)中的化合物E-1。产率79%。
实施例17
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-17所示的结构:
Figure PCTCN2018113120-appb-000033
式C-17所示9,10-二氢吖啶衍生物的制备步骤与实施例10中提供的C-10所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-8所示的化合物代替实施例10步骤(3)中的化合物E-1。产率74%。
实施例18
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-18所示的结构:
Figure PCTCN2018113120-appb-000034
式C-18所示9,10-二氢吖啶衍生物的制备步骤与实施例10中提供的C-10所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-9所示的化合物代替实施例10步骤(3)中的化合物E-1。产率78%。
实施例19
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-19所示的结构:
Figure PCTCN2018113120-appb-000035
式C-19所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000036
式C-19所示9,10-二氢吖啶衍生物的制备方法具体包括以下步骤:
(1)合成中间体1-1
氮气保护下,1L的三口烧瓶中,加入19.5g(100mmol)9(10H)-吖啶酮(化合物A-1),700mL的四氢呋喃,-20℃下加入110mL(1M)苯基溴化镁溶液(化合物B-1),室温反应8小时后,加氯化铵水溶液淬灭反应,用二氯甲烷萃取三次后,旋蒸除去溶剂,过硅胶柱得到24g固体化合物1-1(产率:88%);
(2)合成中间体2-3
氮气保护下,2L的三口烧瓶中,加入22.0g(80mmol)化合物1-1,35g(160mmol)化合物D-3,1000mL的二氯甲烷,逐滴加入1.8mL(0.9M)伊顿试剂,室温反应30分钟后,加入碳酸氢钠溶液淬灭反应,用甲苯萃取三次后,旋蒸除去溶剂,过硅胶柱得到12.8g固体化合物2-3(产率:34%);
(3)合成9,10-二氢吖啶衍生物C-19
氮气保护下,加入9.5g化合物的2-3(20mmol),0.13g醋酸钯(0.6mmol),0.45g三叔丁基膦(2.2mmol),8.5g化合物E-1(22mmol),5.7g叔丁醇钠,甲苯300mL,110℃反应12小时,冷却至室温后, 氯仿萃取,旋蒸除去溶剂,过硅胶柱得到12.0g固体化合物C-19(产率82%)。
元素分析:(C56H36N4O)理论值:C,86.13;H,4.65;N,7.17;O,2.05;实测值:C,86.10;H,4.67;N,7.15;O,2.08,HRMS(ESI)m/z(M+):理论值:780.2889;实测值:780.2877。
实施例20
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-20所示的结构:
Figure PCTCN2018113120-appb-000037
式C-20所示9,10-二氢吖啶衍生物的制备步骤与实施例19中提供的C-19所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-2所示的化合物代替实施例19步骤(3)中的化合物E-1。产率85%。
实施例21
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-21所示的结构:
Figure PCTCN2018113120-appb-000038
式C-21所示9,10-二氢吖啶衍生物的制备步骤与实施例19中提供的C-19所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-3所示的化合物代替实施例19步骤(3)中的化合物E-1。产率81%。
实施例22
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-22所示的结构:
Figure PCTCN2018113120-appb-000039
式C-22所示9,10-二氢吖啶衍生物的制备步骤与实施例19中提供的C-19所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-4所示的化合物代替实施例19步骤(3)中的化合物E-1。产率85%。
实施例23
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-23所示的结构:
Figure PCTCN2018113120-appb-000040
式C-23所示9,10-二氢吖啶衍生物的制备步骤与实施例19中提供的C-19所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-5所示的化合物代替实施例19步骤(3)中的化合物E-1。产率84%。
实施例24
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-24所示的结构:
Figure PCTCN2018113120-appb-000041
式C-24所示9,10-二氢吖啶衍生物的制备步骤与实施例19中提供的C-19所示9,10-二氢吖啶衍生物 的制备步骤的区别仅在于:
以式E-6所示的化合物代替实施例19步骤(3)中的化合物E-1。产率79%。
实施例25
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-25所示的结构:
Figure PCTCN2018113120-appb-000042
式C-25所示9,10-二氢吖啶衍生物的制备步骤与实施例19中提供的C-19所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-7所示的化合物代替实施例19步骤(3)中的化合物E-1。产率76%。
实施例26
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-26所示的结构:
Figure PCTCN2018113120-appb-000043
式C-26所示9,10-二氢吖啶衍生物的制备步骤与实施例19中提供的C-19所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-8所示的化合物代替实施例19步骤(3)中的化合物E-1。产率73%。
实施例27
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-27所示的结构:
Figure PCTCN2018113120-appb-000044
式C-27所示9,10-二氢吖啶衍生物的制备步骤与实施例19中提供的C-19所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-9所示的化合物代替实施例19步骤(3)中的化合物E-1。产率75%。
实施例28
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-37所示的结构:
Figure PCTCN2018113120-appb-000045
式C-37所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000046
式C-37所示9,10-二氢吖啶衍生物的制备方法具体包括以下步骤:
(1)合成中间体5-1
氮气保护下,加入19.5g(100mmol)9(10H)-吖啶酮(化合物A-1),0.65g醋酸钯(3mmol),2.25g三叔丁基膦(11.0mmol),42.5g化合物E-1(110mmol),28.5g叔丁醇钠,甲苯100mL,110℃反应12小时,冷却至室温后,氯仿萃取,旋蒸除去溶剂,过硅胶柱得到63.8g固体中间体5-1(产率87%);
(2)合成中间体6-1
氮气保护下,加入40g(80mmol)化合物5-1,800mL的四氢呋喃,-20℃下加入88mL(1M)苯基溴化镁溶液(化合物B-1),室温反应8小时后,加氯化铵水溶液淬灭反应,用二氯甲烷萃取三次后,旋蒸除去溶剂,过硅胶柱得到34.8g固体中间体6-1(产率:78%);
(3)合成9,10-二氢吖啶衍生物C-37
氮气保护下,加入29g(50mmol)化合物6-1,1000mL的四氢呋喃,19g(150mmol)三苯基膦,10g(60mmol)咔唑(化合物D-4),10.5g(60mmol)DEAD(偶氮二甲酸二乙酯),室温反应12小时后,用二氯甲烷萃取三次后,旋蒸除去溶剂,过硅胶柱得到23.5g固体化合物C-37(产率:65%)。
元素分析:(C56H36N4O)理论值:(C58H39N5)理论值:C,86.43;H,4.88;N,8.69;实测值:C,86.47;H,4.85;N,8.67,HRMS(ESI)m/z(M+):理论值:805.3205;实测值:805.3237。
实施例29
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-38所示的结构:
Figure PCTCN2018113120-appb-000047
式C-38所示9,10-二氢吖啶衍生物的制备步骤与实施例28中提供的C-37所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-2所示的化合物代替实施例28步骤(3)中的化合物E-1。产率84%。
实施例30
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-39所示的结构:
Figure PCTCN2018113120-appb-000048
式C-39所示9,10-二氢吖啶衍生物的制备步骤与实施例28中提供的C-37所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-3所示的化合物代替实施例28步骤(3)中的化合物E-1。产率81%。
实施例31
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-40所示的结构:
Figure PCTCN2018113120-appb-000049
式C-40所示9,10-二氢吖啶衍生物的制备步骤与实施例28中提供的C-37所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-4所示的化合物代替实施例28步骤(3)中的化合物E-1。产率85%。
实施例32
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-41所示的结构:
Figure PCTCN2018113120-appb-000050
式C-41所示9,10-二氢吖啶衍生物的制备步骤与实施例28中提供的C-37所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-5所示的化合物代替实施例28步骤(3)中的化合物E-1。产率85%。
实施例33
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-42所示的结构:
Figure PCTCN2018113120-appb-000051
式C-42所示9,10-二氢吖啶衍生物的制备步骤与实施例28中提供的C-37所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-6所示的化合物代替实施例28步骤(3)中的化合物E-1。产率79%。
实施例34
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-43所示的结构:
Figure PCTCN2018113120-appb-000052
式C-43所示9,10-二氢吖啶衍生物的制备步骤与实施例28中提供的C-37所示9,10-二氢吖啶衍生物 的制备步骤的区别仅在于:
以式E-7所示的化合物代替实施例28步骤(3)中的化合物E-1。产率76%。
实施例35
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-44所示的结构:
Figure PCTCN2018113120-appb-000053
式C-44所示9,10-二氢吖啶衍生物的制备步骤与实施例28中提供的C-37所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-8所示的化合物代替实施例28步骤(3)中的化合物E-1。产率73%。
实施例36
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-45所示的结构:
Figure PCTCN2018113120-appb-000054
式C-45所示9,10-二氢吖啶衍生物的制备步骤与实施例28中提供的C-37所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-9所示的化合物代替实施例28步骤(3)中的化合物E-1。产率78%。
实施例37
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-46所示的结构:
Figure PCTCN2018113120-appb-000055
式C-46所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000056
式C-46所示9,10-二氢吖啶衍生物的制备方法具体包括以下步骤:
(1)合成中间体1-1
氮气保护下,1L的三口烧瓶中,加入19.5g(100mmol)9(10H)-吖啶酮(化合物A-1),700mL的四氢呋喃,-20℃下加入110mL(1M)苯基溴化镁溶液(化合物B-1),室温反应8小时后,加氯化铵水溶液淬灭反应,用二氯甲烷萃取三次后,旋蒸除去溶剂,过硅胶柱得到24g固体化合物1-1(产率:88%);
(2)合成中间体2-4
气保护下,加入22.0g(80mmol)化合物1-1,20g(80mmol)9-苯基咔唑(化合物D-5),800mL的二氯甲烷,逐滴加入11.5mL(80mmol)三氟化硼乙醚溶液,室温反应5小时后,加入水淬灭反应,用甲苯萃取三次后,旋蒸除去溶剂,过硅胶柱得到33.3g固体中间体2-4(产率:85%);
(3)合成9,10-二氢吖啶衍生物C-46
氮气保护下,加入10.0g化合物的2-4(20mmol),0.13g醋酸钯(0.6mmol),0.45g三叔丁基膦 (2.2mmol),8.5g化合物E-1(22mmol),5.7g叔丁醇钠,甲苯300mL,110℃反应12小时,冷却至室温后,氯仿萃取,旋蒸除去溶剂,过硅胶柱得到13.5g固体化合物C-46(产率84%)。
元素分析:(C58H39N5)理论值:C,86.43;H,4.88;N,8.69;实测值:C,86.47;H,4.82;N,8.72,HRMS(ESI)m/z(M+):理论值:805.3205;实测值:805.3237。
实施例38
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-47所示的结构:
Figure PCTCN2018113120-appb-000057
式C-47所示9,10-二氢吖啶衍生物的制备步骤与实施例37中提供的C-46所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-2所示的化合物代替实施例37步骤(3)中的化合物E-1。产率82%。
实施例39
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-48所示的结构:
Figure PCTCN2018113120-appb-000058
式C-48所示9,10-二氢吖啶衍生物的制备步骤与实施例37中提供的C-46所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-3所示的化合物代替实施例37步骤(3)中的化合物E-1。产率80%。
实施例40
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-49所示的结构:
Figure PCTCN2018113120-appb-000059
式C-49所示9,10-二氢吖啶衍生物的制备步骤与实施例37中提供的C-46所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-4所示的化合物代替实施例37步骤(3)中的化合物E-1。产率81%。
实施例41
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-50所示的结构:
Figure PCTCN2018113120-appb-000060
式C-50所示9,10-二氢吖啶衍生物的制备步骤与实施例37中提供的C-46所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-5所示的化合物代替实施例37步骤(3)中的化合物E-1。产率853%。
实施例42
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-51所示的结构:
Figure PCTCN2018113120-appb-000061
式C-51所示9,10-二氢吖啶衍生物的制备步骤与实施例37中提供的C-46所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-6所示的化合物代替实施例37步骤(3)中的化合物E-1。产率77%。
实施例43
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-52所示的结构:
Figure PCTCN2018113120-appb-000062
式C-52所示9,10-二氢吖啶衍生物的制备步骤与实施例37中提供的C-46所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-7所示的化合物代替实施例37步骤(3)中的化合物E-1。产率79%。
实施例44
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-53所示的结构:
Figure PCTCN2018113120-appb-000063
式C-53所示9,10-二氢吖啶衍生物的制备步骤与实施例37中提供的C-46所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-8所示的化合物代替实施例37步骤(3)中的化合物E-1。产率76%。
实施例45
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-54所示的结构:
Figure PCTCN2018113120-appb-000064
式C-54所示9,10-二氢吖啶衍生物的制备步骤与实施例37中提供的C-46所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-9所示的化合物代替实施例37步骤(3)中的化合物E-1。产率72%。
实施例46
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-46所示的结构:
Figure PCTCN2018113120-appb-000065
式C-55所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000066
式C-55所示9,10-二氢吖啶衍生物的制备方法具体包括以下步骤:
(1)合成中间体3-1
氮气保护下,加入24.6g(100mmol)化合物F-1,四氢呋喃500mL,-78℃情况下逐滴加入63mL正丁基锂(1.6M),低温反应30分钟,升温至30℃反应3小时,再次降温至-78℃,加入500mL9(10H)-吖啶酮溶液(化合物A-1)(0.2M,9.5g(100mmol)),缓慢升温至30℃,反应15小时后加入氯化铵水溶液淬灭反应,氯仿萃取,旋蒸除去溶剂,过硅胶柱得到20.3g固体中间体3-1(产率56%);
(2)合成中间体3-1’
氮气保护下,加入14.5g(40mmol)化合物3-1,5.0g(48mmol)三乙胺,400mL的二氯甲烷,-20℃下加入13.5g(48mmol)三氟甲磺酸酐,室温反应3小时后,用甲苯萃取三次后,旋蒸除去溶剂,甲醇洗涤三次,得17g中间体3-1’(产率:87%);
(3)合成中间体4-1
氮气保护下,加入14.8g(30mmol)化合物3-1’,3.7g(30mmol)苯基硼酸(化合物G-1),70g(33mmol)磷酸钾,1.7g(1.5mmol)四三苯基膦钯,水50mL,1,4-二氧六环300mL,120℃反应8小时,冷却至室温后,氯仿萃取,旋蒸除去溶剂,过硅胶柱得到10.3g固体中间体4-1(产率81%);
(4)合成9,10-二氢吖啶衍生物C-55
氮气保护下,加入8.5g化合物4-1(20mmol),0.13g醋酸钯(0.6mmol),0.45g三叔丁基膦(2.2mmol),8.5g化合物E-1(22mmol),5.7g叔丁醇钠,甲苯300mL,110℃反应12小时,冷却至室温后,氯仿萃取, 旋蒸除去溶剂,过硅胶柱得到12.3g固体化合物C-55(产率84%)。
元素分析:(C52H34N4O)理论值:C,85.46;H,4.69;N,7.67;O,2.19;实测值:C,85.41;H,4.73;N,7.69;O,2.23,HRMS(ESI)m/z(M+):理论值:730.2732;实测值:730.2749。
实施例47
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-56所示的结构:
Figure PCTCN2018113120-appb-000067
式C-56所示9,10-二氢吖啶衍生物的制备步骤与实施例46中提供的C-55所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-3所示的化合物代替实施例46步骤(4)中的化合物E-1。产率82%。
实施例48
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-57所示的结构:
Figure PCTCN2018113120-appb-000068
式C-57所示9,10-二氢吖啶衍生物的制备步骤与实施例46中提供的C-55所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-5所示的化合物代替实施例46步骤(4)中的化合物E-1。产率81%。
实施例49
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-58所示的结构:
Figure PCTCN2018113120-appb-000069
式C-58所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000070
式C-58所示9,10-二氢吖啶衍生物的制备步骤与实施例46中提供的C-55所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式F-2所示的化合物代替实施例46步骤(1)中的化合物F-1。产率83%。
元素分析:(C52H34N4S)理论值:C,83.62;H,4.59;N,7.50;S,4.29;实测值:C,83.57;H,4.60;N,7.52;S,4.25,HRMS(ESI)m/z(M+):理论值:746.2504;实测值:746.2513。
实施例50
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-61所示的结构:
Figure PCTCN2018113120-appb-000071
式C-61所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000072
式C-61所示9,10-二氢吖啶衍生物的制备步骤与实施例46中提供的C-55所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式F-3所示的化合物代替实施例46步骤(1)中的化合物F-1。产率84%。
元素分析:(C55H40N4)理论值:C,87.27;H,5.33;N,7.40;实测值:C,87.2;H,5.37;N,7.42,HRMS(ESI)m/z(M+):理论值:756.3253;实测值:756.3239。
实施例51
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-62所示的结构:
Figure PCTCN2018113120-appb-000073
式C-62所示9,10-二氢吖啶衍生物的制备步骤与实施例50中提供的C-61所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-3所示的化合物代替实施例50步骤(4)中的化合物E-1。产率78%。
实施例52
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-63所示的结构:
Figure PCTCN2018113120-appb-000074
式C-63所示9,10-二氢吖啶衍生物的制备步骤与实施例50中提供的C-61所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-5所示的化合物代替实施例50步骤(4)中的化合物E-1。产率83%。
实施例53
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-64所示的结构:
Figure PCTCN2018113120-appb-000075
式C-64所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000076
式C-64所示9,10-二氢吖啶衍生物的制备步骤与实施例46中提供的C-55所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式F-4所示的化合物代替实施例46步骤(1)中的化合物F-1。产率78%。
实施例54
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-65所示的结构:
Figure PCTCN2018113120-appb-000077
式C-65所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000078
式C-65所示9,10-二氢吖啶衍生物的制备步骤与实施例46中提供的C-55所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式F-5所示的化合物代替实施例46步骤(1)中的化合物F-1。产率78%。
实施例55
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-66所示的结构:
Figure PCTCN2018113120-appb-000079
式C-66所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000080
式C-66所示9,10-二氢吖啶衍生物的制备步骤与实施例46中提供的C-55所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式F-6所示的化合物代替实施例46步骤(1)中的化合物F-1。产率84%。
实施例56
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-67所示的结构:
Figure PCTCN2018113120-appb-000081
式C-67所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000082
式C-55所示9,10-二氢吖啶衍生物的制备方法具体包括以下步骤:
(1)合成中间体3-7
氮气保护下,加入16.8g(100mmol)化合物F-7,四氢呋喃500mL,-78℃情况下逐滴加入63mL正丁基锂(1.6M),低温反应30分钟,升温至30℃反应3小时,再次降温至-78℃,加入500mL 9(10H)-吖啶酮溶液(化合物A-1)(0.2M,9.5g(100mmol)),缓慢升温至30℃,反应15小时后加入氯化铵水溶液淬灭反应,氯仿萃取,旋蒸除去溶剂,过硅胶柱得到17.3g固体中间体3-7(产率47%);
(2)合成中间体3-7’
氮气保护下,加入14.5g(40mmol)化合物3-7,5.0g(48mmol)三乙胺,400mL的二氯甲烷,-20℃下加入13.5g(48mmol)三氟甲磺酸酐,室温反应3小时后,用甲苯萃取三次后,旋蒸除去溶剂,甲醇洗涤三次,得17g化合物3-7’(产率:87%);
(3)合成中间体4-7
氮气保护下,加入14.8g(30mmol)化合物3-7’,5.2g(30mmol)化合物G-2,70g(33mmol)磷酸钾,1.7g(1.5mmol)四三苯基膦钯,水50mL,1,4-二氧六环300mL,120℃反应8小时,冷却至室温后,氯仿萃取,旋蒸除去溶剂,过硅胶柱得到11.1g固体化合物4-7(产率77%);
(4)合成9,10-二氢吖啶衍生物C-67
氮气保护下,加入9.5g化合物4-7(20mmol),0.13g醋酸钯(0.6mmol),0.45g三叔丁基膦(2.2mmol), 8.5g化合物E-1(22mmol),5.7g叔丁醇钠,甲苯300mL,110℃反应12小时,冷却至室温后,氯仿萃取,旋蒸除去溶剂,过硅胶柱得到12.6g固体化合物C-67(产率81%)。
元素分析:(C56H36N4O)理论值:C,86.13;H,4.65;N,7.17;O,2.05;实测值:C,86.10;H,4.67;N,7.13;O,2.09,HRMS(ESI)m/z(M+):理论值:780.2889;实测值:780.2893。
实施例57
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-70所示的结构:
Figure PCTCN2018113120-appb-000083
式C-70所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000084
式C-70所示9,10-二氢吖啶衍生物的制备步骤与实施例56中提供的C-67所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式G-3所示的化合物代替实施例56步骤(3)中的化合物G-2。产率76%。
实施例58
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-71所示的结构:
Figure PCTCN2018113120-appb-000085
式C-71所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000086
式C-71所示9,10-二氢吖啶衍生物的制备步骤与实施例56中提供的C-67所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式G-4所示的化合物代替实施例56步骤(3)中的化合物G-2。产率78%。
实施例59
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-72所示的结构:
Figure PCTCN2018113120-appb-000087
式C-72所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000088
式C-72所示9,10-二氢吖啶衍生物的制备步骤与实施例56中提供的C-67所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式G-5所示的化合物代替实施例56步骤(3)中的化合物G-2。产率86%。
实施例60
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-73所示的结构:
Figure PCTCN2018113120-appb-000089
式C-73所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000090
式C-73所示9,10-二氢吖啶衍生物的制备步骤与实施例56中提供的C-67所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式G-6所示的化合物代替实施例56步骤(3)中的化合物G-2。产率81%。
实施例61
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-75所示的结构:
Figure PCTCN2018113120-appb-000091
式C-75所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000092
式C-75所示9,10-二氢吖啶衍生物的制备步骤与实施例56中提供的C-67所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式G-7所示的化合物代替实施例56步骤(3)中的化合物G-2。产率80%。
实施例62
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-78所示的结构:
Figure PCTCN2018113120-appb-000093
式C-78所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000094
式C-78所示9,10-二氢吖啶衍生物的制备步骤与实施例56中提供的C-67所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式G-8所示的化合物代替实施例56步骤(3)中的化合物G-2。产率82%。
实施例63
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-80所示的结构:
Figure PCTCN2018113120-appb-000095
式C-80所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000096
式C-80所示9,10-二氢吖啶衍生物的制备方法具体包括以下步骤:
(1)合成中间体1-1
氮气保护下,1L的三口烧瓶中,加入19.5g(100mmol)9(10H)-吖啶酮(化合物A-1),700mL的四氢呋喃,-20℃下加入110mL(1M)苯基溴化镁溶液(化合物B-1),室温反应8小时后,加氯化铵水溶液淬灭反应,用二氯甲烷萃取三次后,旋蒸除去溶剂,过硅胶柱得到24g固体中间体1-1(产率:88%);
(2)合成中间体2-1
氮气保护下,1L的三口烧瓶中,加入22.0g(80mmol)化合物1-1,27g(160mmol)二苯并呋喃(化合物D-1),600mL的二氯甲烷,逐滴加入1.8mL(0.9M)伊顿试剂,室温反应30分钟后,加入碳酸氢钠溶液淬灭反应,用甲苯萃取三次后,旋蒸除去溶剂,过硅胶柱得到13.5g固体中间体2-1(产率:40%);
(3)合成9,10-二氢吖啶衍生物C-80
氮气保护下,加入8.5g化合物的2-1(20mmol),0.13g醋酸钯(0.6mmol),0.45g三叔丁基膦(2.2mmol),22mmol化合物E-10,5.7g叔丁醇钠,甲苯300mL,110℃反应12小时,冷却至室温后,氯仿萃取,旋蒸除去溶剂,过硅胶柱得到14.2g固体化合物C-80(产率84%)。
元素分析:(C60H54N4O)理论值:C,85.07;H,6.43;N,6.61;O,1.89;实测值:C,85.02;H,6.46;N,6.57;O,1.92,HRMS(ESI)m/z(M+):理论值:846.4297;实测值:846.4271。
化合物E-10的合成步骤如下所示:
氮气保护下,加入21.8g(100mmol)化合物E-10-1,二氯甲烷150mL,32g(200mmol)化合物E-10-2,0℃下反应30分钟,逐滴加入108mL五氯化锑二氯甲烷溶液(1M),室温反应2小时后,45℃反应40小时,冷却至室温,过滤得到固体,0℃下将固体缓慢加入500mL氨水中(30%),室温搅拌20小时,过滤得到固体,水洗、烘干,进一步除去不溶于甲苯的固体,用丙酮洗涤产物后烘干得到16.3g固体化合物E-10(产率34%)。
化合物E-10的合成路径如下所示:
Figure PCTCN2018113120-appb-000097
实施例64
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-81所示的结构:
Figure PCTCN2018113120-appb-000098
式C-81所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000099
式C-78所示9,10-二氢吖啶衍生物的制备步骤与实施例63中提供的C-80所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-11所示的化合物代替实施例63步骤(3)中的化合物E-10。产率81%。
元素分析:(C62H58N4O)理论值:C,85.09;H,6.68;N,6.40;O,1.83;实测值:C,85.06;H,6.70;N,6.38;O,1.87,HRMS(ESI)m/z(M+):理论值:874.4610;实测值:874.4571。
实施例65
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-82所示的结构:
Figure PCTCN2018113120-appb-000100
式C-82所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000101
式C-82所示9,10-二氢吖啶衍生物的制备步骤与实施例63中提供的C-80所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-12所示的化合物代替实施例63步骤(3)中的化合物E-10。产率85%。
元素分析:(C62H58N4O)理论值:C,85.09;H,6.68;N,6.40;O,1.83;实测值:C,85.07;H,6.73;N,6.32;O,1.89,HRMS(ESI)m/z(M+):理论值:874.4610;实测值:874.4607。
实施例66
本实施例提供一种9,10-二氢吖啶衍生物,具有下述式C-90所示的结构:
Figure PCTCN2018113120-appb-000102
式C-90所示9,10-二氢吖啶衍生物的合成路径如下所示:
Figure PCTCN2018113120-appb-000103
式C-90所示9,10-二氢吖啶衍生物的制备步骤与实施例63中提供的C-80所示9,10-二氢吖啶衍生物的制备步骤的区别仅在于:
以式E-13所示的化合物代替实施例63步骤(3)中的化合物E-10。产率64%。
元素分析:(C53H33N5O)理论值:C,84.22;H,4.40;N,9.27;O,2.12;实测值:C,84.18;H,4.43;N,9.28;O,2.13,HRMS(ESI)m/z(M+):理论值:755.2685;实测值:755.2697。
实施例67
本实施例提供一种有机电致发光器件,如图1所示,包括从下向上依次层叠设置的阳极1、空穴注入层2、空穴传输层3、发光层4、电子传输层5、电子注入层6和阴极7。
有机电致发光器件中阳极选用ITO材料;阴极7选用金属Al;
空穴注入层2材料选用HAT(CN)6,HAT(CN)6具有如下所示化学结构:
Figure PCTCN2018113120-appb-000104
空穴传输层3材料选用如下所述结构的化合物:
Figure PCTCN2018113120-appb-000105
电子传输层5材料选用如下所述结构的化合物:
Figure PCTCN2018113120-appb-000106
电子注入层6材料由下述所示结构的化合物与电子注入材料LiF掺杂形成:
Figure PCTCN2018113120-appb-000107
有机电致发光器件中发光层32以主体材料和客体发光染料共掺杂形成,其中,主体材料选用化合物BH,客体发光材料选用9,10-二氢吖啶衍生物(C-1),主体材料和客体材料掺杂的质量比为100:10。使有机致电发光器件形成如下具体结构:ITO/空穴注入层(HIL)/空穴传输层(HTL)/有机发光层(BH掺杂化合物C-1)/电子传输层(ETL)/电子注入层(EIL/LiF)/阴极(Al)。9,10-二氢吖啶衍生物(C-1)、化合物BH的化学结构如下所示:
Figure PCTCN2018113120-appb-000108
发光层客体材料选择具有热活化延迟荧光性能的化合物C-1,上述TADF材料分子的HOMO能级和LUMO能级分别定位于不同的给电子基团
Figure PCTCN2018113120-appb-000109
和吸电子基团
Figure PCTCN2018113120-appb-000110
上,使HOMO能级和LUMO能级相对分离,具有刚性扭曲结构,材料分子具有小的ΔE ST,TADF分子的三线态激子通过反向系间窜越转化为单线态激子,利用单线态激子的荧光发光,获得高的发光效率。同时,给电子基团中的二氢吖啶基团与二苯并呋喃同过σ键连接,进一步调节TADF分子的S 1和T 1,图2显示以σ键连接形成的供电子基团(式C-1所示化合物中的供电子基团)与以螺环连接形成的供电子基团(式II-1所示化合物中的供电子基团)的对比结果图,由图2可知,本发明中以σ键连接形成的
Figure PCTCN2018113120-appb-000111
比螺环连接的
Figure PCTCN2018113120-appb-000112
其S 1能级、T 1能级提高,ΔE ST减小;利用上述σ键连接的供电子基团形成的TADF分子,同时具有高的S 1和小的ΔE ST(图3),能够实现在蓝光和深蓝光区域的高效率发光。同时,二氢吖啶基团与二苯并呋喃以σ键连接,有助于优化材料分子的空穴传输性能和电子传输性能,进一步提升器件的蓝光发光效率。
另一方面,C-1所示的二氢吖啶衍生物其玻璃态转变温度高、热稳定性和形态学稳定性高,成膜性能优异,作为发光层材料不易结晶,有利于提升OLED器件的性能和发光效率。
作为可替代的实施方式,发光层的客体发光材料还可以选择式(C-2)~式(C-100)所示的任一9,10-二氢吖啶衍生物。
作为可替代的实施方式,发光层的客体发光材料还可以选择具有通式(I)所示化学结构的任一其他化合物。
实施例68
本实施例提供一种有机电致发光器件,与实施例67中提供有机电致发光器件的区别仅在于:发光层客体发光材料选用下述所示结构的9,10-二氢吖啶衍生物:
Figure PCTCN2018113120-appb-000113
实施例69
本实施例提供一种有机电致发光器件,与实施例67中提供有机电致发光器件的区别仅在于:发光层客体发光材料选用下述所示结构的9,10-二氢吖啶衍生物:
Figure PCTCN2018113120-appb-000114
实施例70
本实施例提供一种有机电致发光器件,与实施例67中提供有机电致发光器件的区别仅在于:发光层客体发光材料选用下述所示结构的9,10-二氢吖啶衍生物:
Figure PCTCN2018113120-appb-000115
实施例71
本实施例提供一种有机电致发光器件,与实施例67中提供有机电致发光器件的区别仅在于:发光层客体发光材料选用下述所示结构的9,10-二氢吖啶衍生物:
Figure PCTCN2018113120-appb-000116
实施例72
本实施例提供一种有机电致发光器件,与实施例67中提供有机电致发光器件的区别仅在于:发光层客体发光材料选用下述所示结构的9,10-二氢吖啶衍生物:
Figure PCTCN2018113120-appb-000117
实施例73
本实施例提供一种有机电致发光器件,与实施例67中提供有机电致发光器件的区别仅在于:发光层客体发光材料选用下述所示结构的9,10-二氢吖啶衍生物:
Figure PCTCN2018113120-appb-000118
实施例74
本实施例提供一种有机电致发光器件,与实施例67中提供有机电致发光器件的区别仅在于:发光层客体发光材料选用下述所示结构的9,10-二氢吖啶衍生物:
Figure PCTCN2018113120-appb-000119
实施例75
本实施例提供一种有机电致发光器件,与实施例67中提供有机电致发光器件的区别仅在于:发光层客体发光材料选用下述所示结构的9,10-二氢吖啶衍生物:
Figure PCTCN2018113120-appb-000120
实施例76
本实施例提供一种有机电致发光器件,与实施例67中提供有机电致发光器件的区别仅在于:发光层客体发光材料选用下述所示结构的9,10-二氢吖啶衍生物:
Figure PCTCN2018113120-appb-000121
实施例77
本实施例提供一种有机电致发光器件,与实施例67中提供有机电致发光器件的区别仅在于:发光层客体发光材料选用下述所示结构的9,10-二氢吖啶衍生物:
Figure PCTCN2018113120-appb-000122
对比例1
本对比例提供一种有机电致发光器件,与实施例7中提供有机电致发光器件的区别仅在于:发光层客体发光材料选用化合物BD:
Figure PCTCN2018113120-appb-000123
对比例2
本对比例提供一种有机电致发光器件,与实施例7中提供有机电致发光器件的区别仅在于:发光层客体发光材料选用下述化合物:
Figure PCTCN2018113120-appb-000124
测试例1
1、测定玻璃态转变温度
使用差示扫描量热仪(DSC)对本专利材料进行玻璃态转变温度进行测试,测试范围室温至400℃,升温速率10℃/min,氮气氛围下。
2、分别在298K以及77K温度下测定9,10-二氢吖啶衍生物的甲苯溶液(物质的量浓度:10 -5mol/L)的荧光以及磷光光谱,并根据计算公式E=1240/λ计算出相应的单线态(S 1)以及三线态(T 1)能级,进而得到9,10-二氢吖啶衍生物的单线态-三线态能级差。其中,9,10-二氢吖啶衍生物的能级差如下表1所示:
表1
Figure PCTCN2018113120-appb-000125
测试例2
器件的电流、电压、亮度、发光光谱等特性采用PR 650光谱扫描亮度计和Keithley K 2400数字源表系统同步测试。对实施例67-77和对比例中的所提供的有机电致发光器件进行测试,结果如表2所示:
表2
Figure PCTCN2018113120-appb-000126
Figure PCTCN2018113120-appb-000127
对比实施例67-77和对比例1、2中的所提供的有机电致发光器件进行测试,结果如表2所示,相比于对比例1中的器件,实施例67-77中所提供的OLED器件的外量子效率高、色纯度高,具有高的蓝光发光效率;与对比例2中的器件相比,实施例67-77中所提供的OLED器件更有利于实现在深蓝光区域的发光,说明以本发明中提供的9,10-二氢吖啶作为OLED器件发光层的客体发光材料,能够实现具有高发光效率的深蓝光发光器件。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (12)

  1. 一种9,10-二氢吖啶衍生物,其特征在于,具有如式(I)所示的结构:
    Figure PCTCN2018113120-appb-100001
    其中,每个X彼此独立地选自N或C(R 3);T选自O、S、C(R 4)(R 5)或N(R 6);
    R 1-R 6彼此独立地选自氢、氘、卤素、氰基、C1-C30的取代或未取代的烷基、C2-C30的取代或未取代的烯基、C2-C30的取代或未取代的炔基、C3-C30的取代或未取代的环烷基、C1-C30的取代或未取代的烷氧基、C1-C30的取代或未取代的硅烷基、C6-C60的取代或未取代的芳基,或者C3-C30的取代或未取代的杂芳基;
    R 7-R 8彼此独立地选自氢、氘、卤素、氰基、C1-C30的取代或未取代的烷基、C2-C30的取代或未取代的烯基、C2-C30的取代或未取代的炔基、C3-C30的取代或未取代的环烷基、C1-C30的取代或未取代的烷氧基、C1-C30的取代或未取代的硅烷基、C6-C60的取代或未取代的芳基、C3-C30的取代或未取代的杂芳基,或是与相邻苯基共有一边形成稠环的环A;所述环A选自苯环、3元到7元的饱和或部分不饱和的碳环、3元到7元的饱和或部分不饱和的杂环、C6-C60的稠环芳基或C3-C30的稠环杂芳基;
    Ar 1-Ar 3彼此独立地选自氢、氘、卤素、氰基、C1-C30的取代或未取代的烷基、C2-C30的取代或未取代的烯基、C2-C30的取代或未取代的炔基、C3-C30的取代或未取代的环烷基、C1-C30的取代或未取代的烷氧基、C1-C30的取代或未取代的硅烷基、C6-C60的取代或未取代的芳基,或者C3-C30的取代或未取代的杂芳基;
    L为单键、C1-C10的取代或未取代的脂肪烃基、C6-C60的取代或未取代的芳基,或者C3-C30的取代或未取代的杂芳基;
    所述杂芳基、杂环、稠环杂芳基彼此独立地具有至少一个独立地选自氮、硫、氧、磷、硼或硅的杂原子。
  2. 根据权利要求1所述的9,10-二氢吖啶衍生物,其特征在于,所述L、Ar 1-Ar 3彼此独立地选自C6-C60的取代或未取代的稠环芳基、C3-C30的取代或未取代的桥环烷基、C3-C30的取代或未取代的单环杂芳基,或者C3-C30的取代或未取代的稠环杂芳基。
  3. 根据权利要求1或2所述的9,10-二氢吖啶衍生物,其特征在于,所述L、Ar 1-Ar 3彼此独立地选自未取代的或1-5个R 1a取代的苯基、联苯基、金刚烷基、萘基、蒽基、菲基、芴基、芘基、苝基、碗烯基、三亚苯基、荧蒽基、吡啶基、嘧啶基、吡喃基、噻喃基、吡嗪基、哒嗪基、三嗪基、酞嗪基、吩嗪基、噻吩基、呋喃基、吡咯基、吡唑基、咪唑基、噁唑基、噻唑基、吲哚基、咔唑基、吲哚并咔唑基、三芳香胺基、二芳香胺基、菲啶基、吖啶基、呸啶基、蝶啶基、喹唑啉基、喹喔啉基、噌啉基、喹啉基、菲罗啉基、咔啉基,或者由上述基团形成稠环基、螺环基或联环基;
    R 1a选自氰基或C 1-C 6的烷基。
  4. 根据权利要求1-3任一项所述的9,10-二氢吖啶衍生物,其特征在于,所述式(I)所示的化合物中,至少有一个X为氮。
  5. 根据权利要求1-4任一项所述的9,10-二氢吖啶衍生物,其特征在于,所述R 1-R 6彼此独立地选自氢、C 1-C 6的烷基、苯基、联苯基、金刚烷基、萘基、蒽基、菲基、芴基、芘基、苝基、碗烯基、三亚苯基、荧蒽基、吡啶基、嘧啶基、吡喃基、噻喃基、吡嗪基、哒嗪基、三嗪基、酞嗪基、吩嗪基、噻吩基、呋喃基、吡咯基、吡唑基、咪唑基、噁唑基、噻唑基、吲哚基、咔唑基、吲哚并咔唑基、三芳香胺基、二芳香胺基、菲啶基、吖啶基、呸啶基、蝶啶基、喹唑啉基、喹喔啉基、噌啉基、喹啉基、菲罗啉基或咔啉基;
    所述R 7-R 8彼此独立地选自氢、C 1-C 6的烷基、苯基、联苯基、金刚烷基、萘基、蒽基、菲基、芴基、芘基、苝基、碗烯基、三亚苯基、荧蒽基、吡啶基、嘧啶基、吡喃基、噻喃基、吡嗪基、哒嗪基、三嗪基、酞嗪基、吩嗪基、噻吩基、呋喃基、吡咯基、吡唑基、咪唑基、噁唑基、噻唑基、吲哚基、咔唑基、吲哚并咔唑基、三芳香胺基、二芳香胺基、菲啶基、吖啶基、呸啶基、蝶啶基、喹唑啉基、喹喔啉基、噌啉基、喹啉基、菲罗啉基、咔啉基或是与相邻苯基共有一边形成稠环的环A;
    所述环A选自
    Figure PCTCN2018113120-appb-100002
    所 述环B选自苯环、联苯环、金刚烷环、萘环、蒽环、菲环、芴环、芘环、苝环、碗烯环、三亚苯环、荧蒽环、吡啶环、嘧啶环、吡喃环、噻喃环、吡嗪环、哒嗪环、三嗪环、酞嗪环、吩嗪环、噻吩环、呋喃环、吡咯环、吡唑环、咪唑环、噁唑环、噻唑环、吲哚环、咔唑环、吲哚并咔唑环、三芳香胺环、二芳香胺环、菲啶环、吖啶环、呸啶环、蝶啶环、喹唑啉环、喹喔啉环、噌啉环、喹啉环、菲罗啉环或咔啉环。
  6. 根据权利要求1-5任一项所述的9,10-二氢吖啶衍生物,其特征在于,具有下述任一所示的分子结构:
    Figure PCTCN2018113120-appb-100003
    Figure PCTCN2018113120-appb-100004
    Figure PCTCN2018113120-appb-100005
    Figure PCTCN2018113120-appb-100006
    Figure PCTCN2018113120-appb-100007
    Figure PCTCN2018113120-appb-100008
    Figure PCTCN2018113120-appb-100009
    Figure PCTCN2018113120-appb-100010
    Figure PCTCN2018113120-appb-100011
    Figure PCTCN2018113120-appb-100012
  7. 一种如权利要求1-6任一项所述9,10-二氢吖啶衍生物的制备方法,其特征在于,所述式(I)所示化合物的合成步骤如下所示:
    以式(A)所示的化合物和式(B)所示的化合物为起始原料,经亲核加成反应得到中间体1;中间体1与式(C)所示的化合物在伊顿试剂存在下经脱水缩合反应得到中间体2;中间体2与式(D)所示的化合物在催化剂存在下经偶联反应反应得到式(I)所示的化合物;
    所述式(I)所示化合物的合成路径如下所示:
    Figure PCTCN2018113120-appb-100013
    或者,以式(A)所示的化合物和式(E)所示的化合物为起始原料,经亲核加成反应得到中间体3;中间体3经亲核取代反应生成中间体3’,中间体3’与式(G)所示的化合物经铃木反应生成中间体4,中间体4与式(E)所示的化合物在催化剂存在下经偶联反应反应得到式(I)所示的化合物;
    所述式(I)所示化合物的合成路径如下所示:
    Figure PCTCN2018113120-appb-100014
    其中,N选自氟、氯、溴或碘,W选自氟、氯、溴、碘或三氟甲磺酰基。
  8. 一种权利要求1-6任一项所述的9,10-二氢吖啶衍生物作为热活化延迟荧光材料的应用。
  9. 一种有机电致发光器件,其特征在于,所述有机电致发光器件的至少有一个功能层中含有权利要求1-6任一项所述的9,10-二氢吖啶衍生物。
  10. 根据权利要求9所述的有机电致发光器件,其特征在于,所述功能层为发光层。
  11. 根据权利要求10所述的有机电致发光器件,其特征在于,所述发光层材料包括主体材料和客体发光染料,所述客体发光材料为所述9,10-二氢吖啶衍生物。
  12. 根据权利要求10所述的有机电致发光器件,其特征在于,所述发光层材料包括主体材料和客体发光染料,所述主体材料为所述9,10-二氢吖啶衍生物,所选客体发光染料具有热活化延迟荧光性能。
PCT/CN2018/113120 2018-09-17 2018-10-31 一种9,10-二氢吖啶衍生物及其制备方法和用途 WO2020056859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811084389.7A CN109206416B (zh) 2018-09-17 2018-09-17 一种9,10-二氢吖啶衍生物及其制备方法和用途
CN201811084389.7 2018-09-17

Publications (1)

Publication Number Publication Date
WO2020056859A1 true WO2020056859A1 (zh) 2020-03-26

Family

ID=64984470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113120 WO2020056859A1 (zh) 2018-09-17 2018-10-31 一种9,10-二氢吖啶衍生物及其制备方法和用途

Country Status (3)

Country Link
US (1) US11393982B2 (zh)
CN (1) CN109206416B (zh)
WO (1) WO2020056859A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102664158B1 (ko) * 2018-12-24 2024-05-08 엘지디스플레이 주식회사 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치
CN112480092B (zh) * 2019-09-11 2022-10-25 江苏三月科技股份有限公司 一种以二苯基吖啶为核心的化合物及其在有机电致发光器件上的应用
CN112661709B (zh) * 2020-12-18 2021-11-19 陕西莱特光电材料股份有限公司 一种含氮有机化合物及使用其的电子元件和电子装置
CN113214229B (zh) * 2021-05-20 2022-08-30 南京邮电大学 芴基热活化延迟荧光材料及其制备方法和应用
CN113636971B (zh) * 2021-07-22 2023-10-20 西安近代化学研究所 一种d-a螺环骨架构型化合物、合成方法及应用
CN113831340B (zh) * 2021-10-18 2023-04-18 中国科学院化学研究所 一种杯[n]二氢吖啶大环及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120021215A (ko) * 2010-08-31 2012-03-08 롬엔드하스전자재료코리아유한회사 신규한 유기 전자 재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20130142967A (ko) * 2012-06-20 2013-12-30 에스에프씨 주식회사 이형고리 화합물 및 이를 포함하는 유기전계발광소자
US20180138429A1 (en) * 2016-11-14 2018-05-17 Samsung Display Co., Ltd. Heterocyclic compound and organic electroluminescence device including the same
US20180155617A1 (en) * 2016-12-01 2018-06-07 Samsung Display Co., Ltd. Aromatic compound and organic electroluminescence device including the same
US20180201632A1 (en) * 2017-01-13 2018-07-19 Samsung Display Co., Ltd. Polycyclic compound and organic electroluminescence device including the same
US20180237460A1 (en) * 2017-02-23 2018-08-23 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
CN108586430A (zh) * 2018-03-05 2018-09-28 王美妮 一种有机电致发光材料、有机电致发光器件及显示装置
CN108658941A (zh) * 2018-03-23 2018-10-16 王美妮 含有不饱和含氮杂环的吖啶类化合物、有机电致发光器件及显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108516959A (zh) * 2018-02-23 2018-09-11 王美妮 吖啶类化合物、有机电致发光器件及显示装置
CN109232419B (zh) * 2018-09-17 2021-01-05 宁波卢米蓝新材料有限公司 一种9,10-二氢吖啶衍生物及其制备方法和用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120021215A (ko) * 2010-08-31 2012-03-08 롬엔드하스전자재료코리아유한회사 신규한 유기 전자 재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20130142967A (ko) * 2012-06-20 2013-12-30 에스에프씨 주식회사 이형고리 화합물 및 이를 포함하는 유기전계발광소자
US20180138429A1 (en) * 2016-11-14 2018-05-17 Samsung Display Co., Ltd. Heterocyclic compound and organic electroluminescence device including the same
US20180155617A1 (en) * 2016-12-01 2018-06-07 Samsung Display Co., Ltd. Aromatic compound and organic electroluminescence device including the same
US20180201632A1 (en) * 2017-01-13 2018-07-19 Samsung Display Co., Ltd. Polycyclic compound and organic electroluminescence device including the same
US20180237460A1 (en) * 2017-02-23 2018-08-23 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
CN108586430A (zh) * 2018-03-05 2018-09-28 王美妮 一种有机电致发光材料、有机电致发光器件及显示装置
CN108658941A (zh) * 2018-03-23 2018-10-16 王美妮 含有不饱和含氮杂环的吖啶类化合物、有机电致发光器件及显示装置

Also Published As

Publication number Publication date
CN109206416A (zh) 2019-01-15
CN109206416B (zh) 2020-10-23
US11393982B2 (en) 2022-07-19
US20200091436A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
WO2020056859A1 (zh) 一种9,10-二氢吖啶衍生物及其制备方法和用途
WO2020000827A1 (zh) 一种稠环化合物及其制备方法和用途
CN109232419B (zh) 一种9,10-二氢吖啶衍生物及其制备方法和用途
WO2020000826A1 (zh) 一种稠环化合物及其制备方法和用途
CN112679310A (zh) 多种发光材料以及包含其的有机电致发光装置
CN108530454B (zh) 一种稠合多环化合物及其制备方法和用途
CN105051014A (zh) 用于电子器件的材料
CN108774239B (zh) 一种稠环化合物及其制备方法和用途
WO2020155419A1 (zh) 一种二苯并杂环化合物及其制备方法和应用
WO2020133833A1 (zh) 一种二苯并杂环化合物及其制备方法和应用
CN110903276A (zh) 有机化合物及有机电致发光器件
CN113540369A (zh) 有机电致发光装置
WO2021129102A1 (zh) 杂环化合物及其合成方法和有机电致发光器件和电子设备
Xiao et al. tert-Butylated spirobifluorene derivative incorporating triphenylamine groups: A deep-blue emitter with high thermal stability and good hole transport ability for organic light emitting diode applications
CN114835626A (zh) 有机电致发光化合物、多种主体材料和包含其的有机电致发光装置
CN112242492A (zh) 有机电致发光器件及装置和制备方法
KR20210127076A (ko) 유기 전계 발광 소자
CN111777614B (zh) 一种有机电致发光化合物及其应用
CN114957306B (zh) 一种热活化延迟荧光材料和电致发光器件
CN112430190B (zh) 芳香族胺衍生物及包含其的有机电致发光器件
Zhong et al. Highly twisted bipolar molecules for efficient near-ultraviolet organic light-emitting diodes via a hybridized local and charge-transfer mechanism
Li et al. Novel thieno-[3, 4-b]-pyrazine derivatives for non-doped red organic light-emitting diodes
Lee et al. π linker mediated coupling of two emitting units for improved efficiency in thermally activated delayed fluorescent emitters
CN113429397B (zh) 化合物、显示面板及显示装置
CN114075172A (zh) 有机电致发光化合物、多种主体材料和包含其的有机电致发光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934482

Country of ref document: EP

Kind code of ref document: A1