WO2020000627A1 - 一种宏量制备单原子催化剂的方法 - Google Patents

一种宏量制备单原子催化剂的方法 Download PDF

Info

Publication number
WO2020000627A1
WO2020000627A1 PCT/CN2018/103126 CN2018103126W WO2020000627A1 WO 2020000627 A1 WO2020000627 A1 WO 2020000627A1 CN 2018103126 W CN2018103126 W CN 2018103126W WO 2020000627 A1 WO2020000627 A1 WO 2020000627A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball mill
ball
tank
metal
ball milling
Prior art date
Application number
PCT/CN2018/103126
Other languages
English (en)
French (fr)
Inventor
纪红兵
何晓辉
张颖
肖华健
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Publication of WO2020000627A1 publication Critical patent/WO2020000627A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/688Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to the field of materials science and engineering technology, in particular to a method for preparing metal monoatomic catalytic materials in a large amount.
  • Single-atom catalysts can effectively utilize each metal atom in the catalytic reaction process, and have a higher atomic utilization rate than metal nanoparticles and metal nanoclusters.
  • SACs Single-atom catalysts
  • the types of catalytic reactions currently applicable to single-atom catalysts include selective oxidation reactions, selective hydrogenation reactions, water vapor conversion reactions, oxygen reduction reactions, and hydrogenation reactions, showing great industrial application prospects.
  • monoatomic catalysts not only have the characteristics of independent active sites of homogeneous catalysis, but also have the characteristics of stable and easy separation of heterogeneous catalysis. Therefore, monoatomic catalysts are considered as a bridge connecting homogeneous catalysis and multiple catalysis. .
  • monoatomic catalysts also allows people to understand the nature of catalysis from an atomic point of view and deepen their understanding of catalytic reactions.
  • the conventional metal single atom synthesis methods include wet chemical method, deposition method and pyrolysis method.
  • the wet chemical method has the problems of poor metal applicability (precious metal) and the need to accurately configure the concentration of metal salts.
  • the deposition method uses expensive equipment and high cost, and requires precise control of the deposition conditions.
  • the precursor synthesis in the pyrolysis method is difficult, and it is necessary to select High-temperature catalytic carrier material.
  • none of these methods can prepare monoatomic catalysts in a large amount, and it is difficult to realize the practical application of monoatomic catalysts.
  • Chinese patent CN 106914237 A prepared and synthesized including Pt, Ag, Au, Pd, Rh, Ir, Ru, Co, Ni and Cu, and supported on TiO 2 , zinc oxide, cerium oxide, alumina, silicon oxide, oxide Metal single atoms such as iron, manganese oxide, C 3 N 4 , mesoporous carbon, super rhenium carbon film, graphene, carbon nanotubes or molecular sieve materials. But this method needs to be matched first A certain concentration of precursor solution, freezing-lighting-thawing, etc., are easy to agglomerate to form nanoparticles due to improper concentration control.
  • Chinese patent CN105170147 B uses atomic layer deposition to prepare a Pd 1 / Al 2 O 3 single-atom catalyst, which has good hydrogenation activity for acetylene.
  • this method requires strict control of deposition temperature, carrier flow rate, deposition time, complicated operation and expensive equipment.
  • the characteristics and shortcomings of the method for preparing single metal atoms based on wet chemical method, deposition method and pyrolysis method are to provide a method for preparing single-atom catalyst in a large amount in order to solve the problems of low metal content and kind in the prior art. It has few problems, poor adjustability, complicated operation and low preparation.
  • a method for preparing a single atom catalyst includes the following steps:
  • the first step mechanical ball milling:
  • the mechanical ball milling method is used to disperse the noble metal salt in the diluted metal salt to obtain a monoatomic catalyst precursor.
  • the weight ratio of the noble metal salt to the diluted metal salt is 1: 100 to 1: 1000; the diluted metal salt is a transition metal acetate.
  • Step 2 High temperature roasting:
  • the monoatomic catalyst precursor obtained in the first step is roasted at high temperature, and the corresponding monoatomic catalyst can be obtained after cooling to room temperature.
  • the invention uses a mechanical ball milling method to disperse the noble metal salt in the diluted metal salt, and adjust the metal content by adjusting the weight ratio of the noble metal salt to the diluted metal salt; regulate the monoatomic metal species by regulating the types of different precious metal salts;
  • the type of metal salt is used to regulate the type of support; the transition from mixed metal salt to oxide-supported monoatomic catalyst is achieved by adjusting the roasting conditions.
  • the total mass of the metal monoatomic catalyst prepared is controlled by regulating the total mass of the noble metal salt and the diluted metal salt.
  • the monoatomic catalyst obtained by the present invention is a noble metal monoatomic material M 1 / M 2 O x supported on a metal oxide support.
  • the metal centers of the prepared monoatomic catalysts include Au, Ru, Ir, Rh, Pd, Pt, Ag, Os.
  • Metal oxide support comprises CeO x, MnO x, NiO x , FeO x, CuO x, CoO x, AlO x, ZnO x, ZrO x.
  • the noble metal salt is one or more of noble metal acetate, noble metal acetylacetonate, noble metal oxalate or noble metal carbonate.
  • the roasting conditions are at a temperature of 300-800 ° C.
  • the roasting gas stream is selected from one of air and oxygen
  • the roasting time is 1-5 hours.
  • the mechanical ball mill is a ball mill, which is a planetary ball mill, a canned ball mill, a vibration mill, a stirred ball mill, a pin mill, a rolling mill, and a sand mill.
  • a ball mill which is a planetary ball mill, a canned ball mill, a vibration mill, a stirred ball mill, a pin mill, a rolling mill, and a sand mill.
  • the ball mill tank used by the planetary ball mill is an agate tank, and the volume of the ball mill tank is 100-1000 ml, ball milling beads are agate beads, and their bead radii include 6 mm, 10 mm or 20 mm; ball milling time is 1-48 h; ball milling frequency is 0.1-45.0 HZ; ball milling conditions are single-phase operation or bidirectional operation One of them, the alternating time for bidirectional operation is 1.5 h, and the waiting time for bidirectional operation shutdown is set to 0; the ball mill tank used in the canned ball mill is a nylon tank, the volume of the ball mill tank is 10 L, and the ball mill beads used are Agate ball grinding beads, the bead size includes 6 mm, 10 mm or 20 mm.
  • the mechanical ball milling is performed in a ball mill tank, and the ball mill tank is a stainless steel ball mill tank, a polytetrafluoroethylene ball mill tank, an agate ball mill tank, a nylon ball mill tank, or a corundum ball mill tank.
  • the speed of the ball mill tank is 100-800 r / min; ball milling time is 1-48 h.
  • the grinding ball used in the mechanical ball milling is one of a stainless steel grinding ball, an alumina grinding ball, and an agate grinding ball.
  • the preparation method of the present invention makes full use of that during the ball milling process, noble metal ions are uniformly dispersed and coordinated by transition metal ions and metal salt ions, and with the continuous progress of ball milling, the average particle size also becomes smaller.
  • This preparation method makes full use of cheap and readily available raw materials, and through simple ball milling: firstly adjusts the ratio of the target metal salt to the diluted metal salt for ball milling, and then roasts at high temperature to achieve the content, type, and stability Sexual regulation.
  • This controllable preparation method of metal monoatomic catalyst reduces the reaction cost and experimental requirements, can expand a variety of metal salts, meet the requirements of experimental diversification, and enrich the research in related fields.
  • the present invention does not require any template, additive or solvent in the preparation process, has low cost, simple preparation method, does not require expensive and precise instruments, and is suitable for industrial production.
  • the present invention accurately masses precious metal salts and dilute metal salts to achieve controllable and macroscopic preparation of metal monoatomic catalyst masses (5 g-3 kg); the current prior art is concerned with the preparation of milligrams or grams of single atoms, The invention is the first preparation of kilogram-level monoatomic catalyst.
  • the present invention makes full use of ball milling and precursor dilution to disperse metal atoms and has a wide range of applications.
  • Fig. 2 is the prepared HA 1 / CeO 2 monoatomic catalyst with a spherical aberration corrected transmission electron microscope (AC HAADF-STEM) of the 20 g order; the ring marks the monoatomic metal;
  • AC HAADF-STEM spherical aberration corrected transmission electron microscope
  • Figure 3 is a 50 g-scale Au 1 / CeO 2 monoatomic catalyst with spherical aberration correction transmission electron microscope AC HAADF-STEM picture; the monocyclic metal is marked with a circle;
  • FIG. 4 is a diagram of the prepared 120 g-level Au 1 / CeO 2 monoatomic catalyst with spherical aberration correction transmission electron microscope AC HAADF-STEM; the ring marks the monoatomic metal;
  • FIG. 5 is an AC HAADF-STEM image of the spherical aberration corrected transmission electron microscope of the Au 1 / CeO 2 monoatomic catalyst prepared in the order of 1200 g; the circle marks the monoatomic metal;
  • FIG. 6 is an AC HAADF-STEM image of a spherical aberration corrected transmission electron microscope of a 3000 g-level Au 1 / CeO 2 single-atom catalyst prepared; a ring indicates a single-atom metal;
  • FIG. 7 is an AC HAADF-STEM image of a spherical aberration corrected transmission electron microscope of a 3000 g-level Au 1 / MnO x single-atom catalyst prepared; a ring indicates a single-atom metal;
  • FIG. 8 is an AC HAADF-STEM image of the spherical aberration corrected transmission electron microscope of a prepared 3000 g-level Ir 1 / CeO 2 single-atom catalyst; the ring indicates a single-atom metal;
  • FIG. 9 is an AC HAADF-STEM image of the spherical aberration corrected transmission electron microscope of the prepared 3000 g-level Ir 1 / NiO single-atom catalyst; the ring indicates the single-atom metal;
  • FIG. 10 is an AC HAADF-STEM image of a spherical aberration corrected transmission electron microscope for a prepared Rh 1 / MnO x monoatomic catalyst of the order of 3000 g; a ring indicates a monoatomic metal;
  • FIG. 11 is an AC HAADF-STEM image of a spherical aberration corrected transmission electron microscope of a 3000 g-order Ru 1 / MnO x single-atom catalyst prepared; a ring indicates a single-atom metal;
  • FIG. 12 is an AC HAADF-STEM image of the spherical aberration corrected transmission electron microscope of a prepared Rh 1 / ZnO single-atom catalyst of the order of 3000 g; a ring indicates a single-atom metal;
  • FIG. 13 is an AC HAADF-STEM image of a spherical aberration corrected transmission electron microscope of a prepared 3000 g-level Ru 1 / ZnO single-atom catalyst; the ring indicates a single-atom metal;
  • FIG. 14 is an AC HAADF-STEM image of the spherical aberration corrected transmission electron microscope of a 3000 g-order Pd 1 / ZnO single-atom catalyst prepared; a ring indicates a single-atom metal.
  • a mixture of 0.05 g of gold acetate hydrate (CAS: 15804-32-7) and 20 g of cerium acetate hydrate (CAS: 206996-60-3) was added to a commercial 1L agate ball mill jar with a lid, and the jar was placed
  • the size of the zirconia ball mill beads is several, put the agate ball mill pot into the planetary ball mill QM3SP4L, and pre-mix it with a 20 HZ ball mill for half an hour to disperse the mixture evenly, then take out the ball mill pot, use the key to manually mix the medicine in the ball mill pot, put it again Ball mill into the ball mill for 10 hours, the ball milling conditions are forward and reverse every 1.5 h, the two-way stop waiting time is 0, the frequency is 30 HZ, the ball milled solids are ground and placed in a muffle furnace, at 500 °C in air Calcined for 5 h to obtain a monoatomic catalytic material.
  • the ball milling conditions are forward and reverse every 1.5 h, the waiting time for two-way shutdown is 0, the frequency is 30 HZ, and the frequency It was 30 HZ.
  • the ball-milled solid was ground and placed in a muffle furnace, and baked at 500 ° C for 5 h under air conditions to obtain a monoatomic catalytic material.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 3 Au 1 / CeO 2 .
  • the size of the zirconia ball mill beads is several, put the agate ball mill jar into the planetary ball mill QM-2SP20, pre-milled at 20 HZ for half an hour to disperse the mixture uniformly, and then take the ball mill jar out, and manually mix the medicine in the ball mill jar with the key Into the ball mill for 40 hours, scrape the acetate from the agate tank wall every 10 h, and then perform subsequent ball milling.
  • the ball milling conditions are forward and reverse every 1.5 h, and the frequency is 30 HZ. After grinding the solid, it was placed in a muffle furnace and baked at 500 ° C for 5 h under air conditions to obtain a monoatomic catalytic material.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 4 Au 1 / CeO 2 .
  • put the nylon ball mill tank on the WZM-experimental ball mill first use 5 HZ ball mill for half an hour to disperse the mixture uniformly, remove the ball mill tank, use the key to manually mix the medicine in the ball mill tank, and put it into the ball mill for 80 h again.
  • the acetate on the agate tank wall is scraped off every 10 h, and subsequent ball milling is performed with a frequency of 8 HZ.
  • the ball-milled solid is ground and placed in a muffle furnace, and baked at 500 ° C for 5 h in air. To obtain a monoatomic catalytic material.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 6 Au 1 / CeO 2 .
  • a mixture of 7.5 g of gold acetate hydrate (CAS: 15804-32-7) and 3 kg of manganese acetate hydrate (CAS: 6156-78-1) was added to a 10 L nylon ball mill tank.
  • Agate ball mill beads were placed in the tank.
  • put the nylon ball mill tank on the WZM-experimental ball mill first use 5 HZ ball mill for half an hour to disperse the mixture uniformly, remove the ball mill tank, use the key to manually mix the medicine in the ball mill tank, and put it into the ball mill for 80 h again.
  • the acetate on the agate tank wall is scraped off every 10 h, and subsequent ball milling is performed with a frequency of 8 HZ.
  • the ball-milled solid is ground and placed in a muffle furnace, and baked at 500 ° C for 5 h in air. To obtain a monoatomic catalytic material.
  • the spherical aberration corrected transmission electron microscope is shown in FIG. 7Au 1 / MnO x .
  • the ball-milled solid is ground and placed in a muffle furnace, and baked at 500 ° C for 5 h in air. To obtain a monoatomic catalytic material.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 8 Ir 1 / CeO 2 .
  • the ball-milled solid is ground and placed in a muffle furnace, and baked at 500 ° C for 5 h in air. To obtain a monoatomic catalytic material.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 9 Ir 1 / NiO.
  • a mixture of 7.5 g of rhodium acetate hydrate (CAS: 15956-28-2) and 3 kg of manganese acetate hydrate (CAS: 6156-78-1) was added to a 10 L nylon ball mill tank.
  • Agate ball mill beads were placed in the tank.
  • put the nylon ball mill tank on the WZM-experimental ball mill first use 5 HZ ball mill for half an hour to disperse the mixture uniformly, remove the ball mill tank, use the key to manually mix the medicine in the ball mill tank, and put it into the ball mill for 80 h again.
  • the acetate on the agate tank wall is scraped off every 10 h, and subsequent ball milling is performed with a frequency of 8 HZ.
  • the ball-milled solid is ground and placed in a muffle furnace, and baked at 500 ° C for 5 h in air. To obtain a monoatomic catalytic material.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 10 Rh 1 / MnO x .
  • the acetate on the agate tank wall is scraped off every 10 h, and subsequent ball milling is performed with a frequency of 8 HZ.
  • the ball-milled solid is ground and placed in a muffle furnace, and baked at 500 ° C for 5 h in air. To obtain a monoatomic catalytic material.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 11 Ru 1 / MnO x .
  • the acetylacetone salt on the agate tank wall was scraped off every 10 hours, and then the subsequent ball milling was performed at a frequency of 8 HZ.
  • the ball-milled solid was ground and placed in a muffle furnace, and baked at 400 ° C for 2 hours under air conditions. A monoatomic catalytic material was obtained.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 12 Rh 1 / ZnO.
  • a mixture of 7.5 ruthenium acetylacetonate (CAS: 14284-93-6) and 3 kg of zinc acetylacetonate hydrate (CAS: 108503-47-5) was added to a 10 L nylon ball mill tank, and agate balls were placed in the tank. Put the nylon ball mill jar on the WZM-experimental ball mill. First, use a 5 HZ ball mill for half an hour to disperse the mixture uniformly. Take out the ball mill jar, use the key to manually mix the medicine in the ball mill jar, and put it into the ball mill for 80 h.
  • the acetylacetone salt on the agate tank wall was scraped off every 10 hours, and then the subsequent ball milling was performed at a frequency of 8 HZ.
  • the ball-milled solid was ground and placed in a muffle furnace, and baked at 400 ° C for 2 hours under air conditions. A monoatomic catalytic material was obtained.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 13 Ru 1 / ZnO.
  • the ball-milled solid was ground and placed in a muffle furnace, and baked at 400 ° C for 2 hours under air conditions. A monoatomic catalytic material was obtained.
  • the spherical aberration corrected transmission electron microscope is shown in Fig. 14 Pd 1 / ZnO.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

一种宏量制备单原子催化剂的方法,包括如下步骤:第一步:机械球磨:利用机械球磨的方法使贵金属盐分散在稀释金属盐中,得到单原子催化剂前驱体,贵金属盐与稀释金属盐的重量比例1∶100-1∶1000;该稀释金属盐为过渡金属乙酸盐、镧系乙酸盐、过渡金属乙酰丙酮盐、镧系金属乙酰丙酮盐、过渡金属草酸盐、镧系金属草酸盐、过渡金属碳酸盐或镧系金属碳酸盐中的一种或几种混合;第二步:高温焙烧:将第一步所得单原子催化剂前驱体进行高温焙烧,冷却至室温后即可得相应的单原子催化剂。该方法实现了金属单原子材料的宏量制备,具有良好的拓展性和重现性,解决了现有技术中金属含量低、种类少、制备方法复杂等问题。

Description

一种宏量制备单原子催化剂的方法 技术领域
本发明涉及属于材料科学与工程技术领域,具体地说,涉及一种宏量制备金属单原子催化材料的方法。
 
背景技术
单原子催化剂(SACs)在催化反应过程中,可以有效利用每一个金属原子,与金属纳米粒子和金属纳米团簇相比具有更高的原子利用率。对于一些需要大量使用贵金属负载型催化剂的领域,单原子催化剂的出现可以大幅降低生产成本,提高催化剂的利用效率,达到以一当十甚至以一当百的催化效果。目前单原子催化剂适用的催化反应类型,包括选择性氧化反应、选择性氢化反应、水汽转换反应、氧还原反应、加氢反应,显示出巨大的工业应用前景。同时单原子催化剂作为一类新型催化剂,既具有均相催化独立活性位点的特性,又具有多相催化稳定易分离的特点,因此单原子催化剂被认为是连接均相催化和多项催化的桥梁。单原子催化剂的出现也使得人们可以从原子的角度了解催化的本质,加深对于催化反应的理解。
常规金属单原子合成方法有湿化学法、沉积法、热解法。湿化学法存在金属适用性差(贵金属),需精确配置金属盐浓度等问题,沉积法使用设备造价昂贵,成本高,而且需精确控制沉积条件,而热解法中前驱体合成困难,需选择耐高温催化载体材料。且这些方法均不能宏量制备单原子催化剂,难以实现单原子催化剂的实际应用。
中国专利CN 106914237 A,制备了合成了包括 Pt、Ag、Au、Pd、Rh、Ir、Ru、Co、Ni和Cu,和负载在TiO 2、氧化锌、氧化铈、氧化铝、氧化硅、氧化铁、氧化锰、C 3N 4、介孔碳、超溥碳膜、石墨烯、碳纳米管或分子筛材料等的金属单原子。但这种方法需要先配
Figure 7f5d
一定浓度的前驱体溶液,冷冻-光照-解冻等操作,容易因浓度控制不当而团聚形成纳米粒子。
中国专利CN105170147 B利用原子层沉积制备了Pd 1/Al 2O 3单原子催化剂,该催化剂具有良好乙炔的加氢活性。但该方法需要严格控制沉积温度、载体流速、沉积时间、操作复杂、设备昂贵。
美国专利US2014275686-A1,通过调节pH控制六水合硝酸钴在二氧化硅形成前驱体,进一步500℃热解形成Co 1/SiO 2单原子。但此方法操作复杂,需要精确调控反应比例,原料昂贵,反应浓度低,产品制备量较少。
技术问题
基于湿化学法、沉积法、热解法的金属单原子制备方法的特点和不足,本发明的目的在于提供一种宏量制备单原子催化剂的方法,以解决现有技术中金属含量低、种类少、可调性差、操作复杂且制备量低等问题。
 
技术解决方案
为了实现上述目的,本发明采用如下技术方案:
一种单原子催化剂的制备方法,包括如下步骤:
第一步:机械球磨:
利用机械球磨的方法使贵金属盐分散在稀释金属盐中,得到单原子催化剂前驱体,贵金属盐与稀释金属盐的重量比例1:100 -1:1000;所述稀释金属盐为过渡金属乙酸盐、镧系乙酸盐、过渡金属乙酰丙酮盐、镧系金属乙酰丙酮盐、过渡金属草酸盐、镧系金属草酸盐、过渡金属碳酸盐或镧系金属碳酸盐中的一种或几种混合;
第二步:高温焙烧:
将第一步所得单原子催化剂前驱体进行高温焙烧,冷却至室温后即可得相应的单原子催化剂。
本发明利用机械球磨的方法使贵金属盐分散在稀释金属盐中,通过调控贵金属盐与稀释金属盐的重量比例来调控金属含量;通过调控不同贵金属盐的种类来调控金属单原子种类;通过调控稀释金属盐种类来调控载体种类;通过调控焙烧条件实现从混合金属盐到氧化物负载的单原子催化剂的转变。通过调控贵金属盐和稀释金属盐的总质量调控制备的金属单原子催化剂的总质量。
本发明得到的单原子催化剂为金属氧化物载体负载的贵金属单原子材料M 1/M 2O x。所制备得到的单原子催化剂的金属中心包括Au,Ru,Ir,Rh,Pd,Pt,Ag,Os。金属氧化物载体包括CeO x,MnO x,NiO x,FeO x,CuO x,CoO x,AlO x,ZnO x,ZrO x
作为优选的,在上述的制备方法中,所述贵金属盐为贵金属乙酸盐、贵金属乙酰丙酮盐、贵金属草酸盐或贵金属碳酸盐中的一种或几种混合。
作为优选的,在上述的制备方法中,所述焙烧条件为温度300-800℃,焙烧的气流选自空气、氧气中的一种,焙烧时间1-5 小时。
作为优选的,在上述的制备方法中,所述机械球磨是采用球磨机,为行星式球磨机、罐装式球磨机、振动式磨矿机、搅拌式球磨机、针磨机、滚轧机和砂磨机中的一种。所述行星式球磨机所采用的球磨罐为玛瑙罐,球磨罐体积为100-1000 ml,球磨珠为玛瑙珠,其小珠半径包括6 mm,10 mm或20 mm三种;球磨时间为1-48 h,其球磨频率为0.1-45.0 HZ,球磨条件为单相运行或双向运行中的一种,双向运行交替时间为1.5 h,双向运行停机等待时间设定为0;所述罐装式球磨机所采用的球磨罐为尼龙罐,球磨罐体积为10 L,所采用球磨珠为玛瑙球磨珠,其小珠粒径包括6 mm、10 mm或20 mm三种。
作为优选的,在上述的制备方法中,所述机械球磨是在球磨罐中进行,所述球磨罐为不锈钢球磨罐、聚四氟乙烯球磨罐、玛瑙球磨罐、尼龙球磨罐、刚玉球磨罐中的一种;所述球磨罐转速为100-800 r/min;球磨时间为1-48 h。
作为优选的,在上述的制备方法中,所述机械球磨所采用的研磨球为不锈钢研磨球、氧化铝研磨球、玛瑙研磨球氧化锆研磨球中的一种。
本发明的制备方法充分利用了在球磨过程中,贵金属离子被过渡金属离子和金属盐离子均匀地分散和配位,而且随着球磨的不断进行,其平均粒度也不断变小,为实现金属单原子的形成及稳定创造了良好的条件;本制备方法充分利用便宜易得的原料,经简单球磨:先调控目标金属盐与稀释金属盐比例进行球磨,再高温焙烧,实现了含量、种类、稳定性的调节。这种金属单原子催化剂的可控制备方法,降低了反应成本和实验要求,可以对多种金属盐进行拓展,满足实验多样化要求,丰富了相关领域的研究。
 
有益效果
1. 本发明在制备过程中不需要任何模板、添加剂或溶剂,成本低,制备方法简单,无需贵重精密仪器,可适用于工业化生产。
2. 本发明精确贵金属盐与稀释金属盐的质量,实现金属单原子催化剂质量的可控和宏量制备(5 g-3 kg);目前现有技术关于单原子都是毫克或者克级的制备,本发明是首次制备得到公斤级的单原子催化剂。
3. 本发明精确贵金属盐与稀释金属盐的比例,实现贵金属含量的可控制备(0.1-1 wt%);
4. 本发明充分利用球磨和前驱体稀释使金属原子得到分散,适用面广。
 
附图说明
图1为球磨制备单原子催化剂示意图;n=100-1000;
    图2为制备的20 g量级Au 1/CeO 2单原子催化剂球差校正透射电镜AC HAADF-STEM图;圆环标出单原子金属;
    图3为制备的50 g量级Au 1/CeO 2单原子催化剂球差校正透射电镜AC HAADF-STEM图;圆环标出单原子金属;
    图4为制备的120 g量级Au 1/CeO 2单原子催化剂球差校正透射电镜AC HAADF-STEM图;圆环标出单原子金属;
图5为为制备的1200 g量级Au 1/CeO 2单原子催化剂球差校正透射电镜AC HAADF-STEM图;圆环标出单原子金属;
图6为为制备的3000 g量级Au 1/CeO 2单原子催化剂球差校正透射电镜AC HAADF-STEM图;圆环标出单原子金属;
图7为为制备的3000 g量级Au 1/MnO x单原子催化剂球差校正透射电镜AC HAADF-STEM图;圆环标出单原子金属;
图8为为制备的3000 g量级Ir 1/CeO 2单原子催化剂球差校正透射电镜AC HAADF-STEM图;圆环标出单原子金属;
图9为为制备的3000 g量级Ir 1/NiO单原子催化剂球差校正透射电镜AC HAADF-STEM图;圆环标出单原子金属;
图10为为制备的3000 g量级Rh 1/MnO x单原子催化剂球差校正透射电镜AC HAADF-STEM图;圆环标出单原子金属;
图11为制备的3000 g量级Ru 1/MnO x单原子催化剂球差校正透射电镜AC HAADF-STEM图;圆环标出单原子金属;
图12为为制备的3000 g量级Rh 1/ZnO单原子催化剂球差校正透射电镜AC HAADF-STEM图;圆环标出单原子金属;
图13为制备的3000 g量级Ru 1/ZnO单原子催化剂球差校正透射电镜AC HAADF-STEM图;圆环标出单原子金属;
图14为制备的3000 g量级Pd 1/ZnO单原子催化剂球差校正透射电镜AC HAADF-STEM图;圆环标出单原子金属。
 
本发明的最佳实施方式
下面结合实施例对本发明做进一步的说明,但本发明的保护范围并不局限于实施例表示的范围。
实施例1
将0.05 g乙酸金水合物(CAS:15804-32-7)和20 g乙酸铈水合物 (CAS:206996-60-3)的混合物加入到商用的有盖的1L玛瑙球磨罐中,罐中放置氧化锆球磨珠大小若干,将玛瑙球磨罐放入行星式球磨机 QM3SP4L中,预先以20 HZ球磨半小时使混合物分散均匀,再将球磨罐取出,用钥匙将球磨罐中药品手动混匀,再次放入球磨机球磨10小时,球磨条件为每隔1.5 h正反转,双向停机等待时间为0,频率为30 HZ,将球磨好的固体研磨后放入马弗炉中,在空气条件下以500 ℃焙烧5 h,得到单原子催化材料。球差校正透射电镜如图2 Au 1/CeO 2所示。
实施例2
将0.125 g乙酸金水合物(CAS号:15804-32-7)和50 g乙酸铈水合物 (CAS:206996-60-3)的混合物加入到商用的有盖的1L玛瑙球磨罐中,罐中放置氧化锆球磨珠大小若干,将玛瑙球磨罐放入行星式球磨机 QM3SP4L中,预先以20 HZ球磨半小时使混合物分散均匀,再将球磨罐取出,用钥匙将球磨罐中药品手动混匀,再次放入球磨机球磨20 h,在球磨10 h后将壁上乙酸盐刮下来,再进行后续球磨,球磨条件为每隔1.5 h正反转,双向停机等待时间为0,频率为30 HZ,频率为30 HZ,将球磨好的固体研磨后放入马弗炉中,在空气条件下以500 ℃焙烧5 h,得到单原子催化材料。球差校正透射电镜如图3 Au 1/CeO 2所示。
实施例3
 将0.3 g乙酸金水合物(CAS号:15804-32-7)和120 g乙酸铈水合物 (CAS:206996-60-3)的混合物加入到商用的有盖的5 L玛瑙球磨罐中,罐中放置氧化锆球磨珠大小若干,将玛瑙球磨罐放入行星式球磨机 QM-2SP20中,预先以20 HZ球磨半小时使混合物分散均匀,再将球磨罐取出,用钥匙将球磨罐中药品手动混匀,再次放入球磨机球磨40小时,每隔10 h将玛瑙罐壁上乙酸盐刮下来,再进行后续球磨,球磨条件为每隔1.5 h正反转,频率为30 HZ,将球磨好的固体研磨后放入马弗炉中,在空气条件下以500 ℃焙烧5 h,得到单原子催化材料。球差校正透射电镜如图4 Au 1/CeO 2所示。
实施例4
将3 g乙酸金水合物(CAS号:15804-32-7)和1.2 kg乙酸铈水合物 (CAS:206996-60-3)的混合物加入到10 L尼龙球磨罐中,罐中放置玛瑙球磨珠大小若干,将尼龙球磨罐放在WZM-实验球磨机上,先以5 HZ球磨半小时使混合物分散均匀,将球磨罐取出,用钥匙将球磨罐中药品手动混匀,再次放入球磨机球磨80 h,每隔10 h将玛瑙罐壁上乙酸盐刮下来,再进行后续球磨,频率设置为8 HZ,将球磨好的固体研磨后放入马弗炉中,在空气条件下以500 ℃焙烧5 h,得到单原子催化材料。球差校正透射电镜如图5 Au 1/CeO 2所示。
实施例5
将7.5 g乙酸金水合物(CAS:15804-32-7)和3 kg乙酸铈水合物 (CAS:206996-60-3)的混合物加入到10 L尼龙球磨罐中,罐中放置玛瑙球磨珠大小若干,将尼龙球磨罐放在WZM-实验球磨机上,先以5 HZ球磨半小时使混合物分散均匀,将球磨罐取出,用钥匙将球磨罐中药品手动混匀,再次放入球磨机球磨80 h,每隔10 h将玛瑙罐壁上乙酸盐刮下来,再进行后续球磨,频率设置为8 HZ,将球磨好的固体研磨后放入马弗炉中,在空气条件下以500 ℃焙烧5 h,得到单原子催化材料。球差校正透射电镜如图6 Au 1/CeO 2所示。
实施例6
  将7.5 g乙酸金水合物(CAS:15804-32-7)和3 kg乙酸锰水合物 (CAS:6156-78-1)的混合物加入到10 L尼龙球磨罐中,罐中放置玛瑙球磨珠大小若干,将尼龙球磨罐放在WZM-实验球磨机上,先以5 HZ球磨半小时使混合物分散均匀,将球磨罐取出,用钥匙将球磨罐中药品手动混匀,再次放入球磨机球磨80 h,每隔10 h将玛瑙罐壁上乙酸盐刮下来,再进行后续球磨,频率设置为8 HZ,将球磨好的固体研磨后放入马弗炉中,在空气条件下以500 ℃焙烧5 h,得到单原子催化材料。球差校正透射电镜如图7Au 1/MnO x所示。
实施例7
将7.5 g乙酸铱水合物(CAS:52705-52-9)和3 kg乙酸铈水合物 (CAS:206996-60-3)的混合物加入到10 L尼龙球磨罐中,罐中放置玛瑙球磨珠大小若干,将尼龙球磨罐放在WZM-实验球磨机上,先以5 HZ球磨半小时使混合物分散均匀,将球磨罐取出,用钥匙将球磨罐中药品手动混匀,再次放入球磨机球磨80 h,每隔10 h将玛瑙罐壁上乙酸盐刮下来,再进行后续球磨,频率设置为8 HZ,将球磨好的固体研磨后放入马弗炉中,在空气条件下以500 ℃焙烧5 h,得到单原子催化材料。球差校正透射电镜如图8 Ir 1/CeO 2所示。
实施例8
将7.5 g乙酸铱水合物(CAS:52705-52-9)和3 kg乙酸镍水合物 (CAS:6018-89-9)的混合物加入到10 L尼龙球磨罐中,罐中放置玛瑙球磨珠大小若干,将尼龙球磨罐放在WZM-实验球磨机上,先以5 HZ球磨半小时使混合物分散均匀,将球磨罐取出,用钥匙将球磨罐中药品手动混匀,再次放入球磨机球磨80 h,每隔10 h将玛瑙罐壁上乙酸盐刮下来,再进行后续球磨,频率设置为8 HZ,将球磨好的固体研磨后放入马弗炉中,在空气条件下以500 ℃焙烧5 h,得到单原子催化材料。球差校正透射电镜如图9 Ir 1/NiO所示。
实施例9
将7.5 g乙酸铑水合物(CAS:15956-28-2)和3 kg乙酸锰水合物 (CAS:6156-78-1)的混合物加入到10 L尼龙球磨罐中,罐中放置玛瑙球磨珠大小若干,将尼龙球磨罐放在WZM-实验球磨机上,先以5 HZ球磨半小时使混合物分散均匀,将球磨罐取出,用钥匙将球磨罐中药品手动混匀,再次放入球磨机球磨80 h,每隔10 h将玛瑙罐壁上乙酸盐刮下来,再进行后续球磨,频率设置为8 HZ,将球磨好的固体研磨后放入马弗炉中,在空气条件下以500 ℃焙烧5 h,得到单原子催化材料。球差校正透射电镜如图10 Rh 1/MnO x所示。
实施例10
将7.5 g乙酸钌水合物(CAS:72196-32-8)和3 kg乙酸锰水合物 (CAS:6156-78-1)的混合物加入到10 L尼龙球磨罐中,罐中放置玛瑙球磨珠大小若干,将尼龙球磨罐放在WZM-实验球磨机上,先以5 HZ球磨半小时使混合物分散均匀,将球磨罐取出,用钥匙将球磨罐中药品手动混匀,再次放入球磨机球磨80 h,每隔10 h将玛瑙罐壁上乙酸盐刮下来,再进行后续球磨,频率设置为8 HZ,将球磨好的固体研磨后放入马弗炉中,在空气条件下以500 ℃焙烧5 h,得到单原子催化材料。球差校正透射电镜如图11 Ru 1/MnO x所示。
实施例11
将7.5 乙酰丙酮铑 (CAS:14874-82-9)和3 kg乙酰丙酮锌水合物 (CAS:108503-47-5)的混合物加入到10 L尼龙球磨罐中,罐中放置玛瑙球磨珠大小若干,将尼龙球磨罐放在WZM-实验球磨机上,先以5 HZ球磨半小时使混合物分散均匀,将球磨罐取出,用钥匙将球磨罐中药品手动混匀,再次放入球磨机球磨80 h,每隔10 h将玛瑙罐壁上乙酰丙酮盐刮下来,再进行后续球磨,频率设置为8 HZ,将球磨好的固体研磨后放入马弗炉中,在空气条件下以400 ℃焙烧2 h,得到单原子催化材料。球差校正透射电镜如图12 Rh 1/ZnO所示。
实施例12
将7.5 乙酰丙酮钌 (CAS:14284-93-6)和3 kg乙酰丙酮锌水合物 (CAS:108503-47-5)的混合物加入到10 L尼龙球磨罐中,罐中放置玛瑙球磨珠大小若干,将尼龙球磨罐放在WZM-实验球磨机上,先以5 HZ球磨半小时使混合物分散均匀,将球磨罐取出,用钥匙将球磨罐中药品手动混匀,再次放入球磨机球磨80 h,每隔10 h将玛瑙罐壁上乙酰丙酮盐刮下来,再进行后续球磨,频率设置为8 HZ,将球磨好的固体研磨后放入马弗炉中,在空气条件下以400 ℃焙烧2 h,得到单原子催化材料。球差校正透射电镜如图13 Ru 1/ZnO所示。
实施例13
将7.5 乙酰丙酮钯 (CAS:14024-61-4)和3 kg乙酰丙酮锌水合物 (CAS:108503-47-5)的混合物加入到10 L尼龙球磨罐中,罐中放置玛瑙球磨珠大小若干,将尼龙球磨罐放在WZM-实验球磨机上,先以5 HZ球磨半小时使混合物分散均匀,将球磨罐取出,用钥匙将球磨罐中药品手动混匀,再次放入球磨机球磨80 h,每隔10 h将玛瑙罐壁上乙酰丙酮盐刮下来,再进行后续球磨,频率设置为8 HZ,将球磨好的固体研磨后放入马弗炉中,在空气条件下以400 ℃焙烧2 h,得到单原子催化材料。球差校正透射电镜如图14 Pd 1/ZnO所示。
 

Claims (8)

  1. 一种单原子催化剂的制备方法,其特征在于包括如下步骤:
    第一步:机械球磨:
    利用机械球磨的方法使贵金属盐分散在稀释金属盐中,得到单原子催化剂前驱体,贵金属盐与稀释金属盐的重量比例1:100 -1:1000;所述稀释金属盐为过渡金属乙酸盐、镧系乙酸盐、过渡金属乙酰丙酮盐、镧系金属乙酰丙酮盐、过渡金属草酸盐、镧系金属草酸盐、过渡金属碳酸盐或镧系金属碳酸盐中的一种或几种混合;
    第二步:高温焙烧:
    将第一步所得单原子催化剂前驱体进行高温焙烧,冷却至室温后即可得相应的单原子催化剂。
  2. 根据权利要求1所述的制备方法,其特征在于所述贵金属盐为贵金属乙酸盐、贵金属乙酰丙酮盐、贵金属草酸盐或贵金属碳酸盐中的一种或几种混合。
  3. 根据权利要求1所述的制备方法,其特征在于所述焙烧条件为温度300-800℃,焙烧的气流选自空气、氧气中的一种,焙烧时间1-5 小时。
  4. 根据权利要求1所述的制备方法,其特征在于所述机械球磨是采用球磨机,为行星式球磨机、罐装式球磨机、振动式磨矿机、搅拌式球磨机、针磨机、滚轧机和砂磨机中的一种。
  5. 根据权利要求1所述的制备方法,其特征在于所述机械球磨是
    在球磨罐中进行,所述球磨罐为不锈钢球磨罐、聚四氟乙烯球磨罐、玛瑙球磨罐、尼龙球磨罐、刚玉球磨罐中的一种;所述球磨罐转速为100-800 r/min;球磨罐时间为10-48 h。
  6. 根据权利要求1所述的制备方法,其特征在于所述机械球磨所采用的研磨球为不锈钢研磨球、氧化铝研磨球、玛瑙研磨球或氧化锆研磨球中的一种。
  7. 根据权利要求1所述的制备方法,其特征在于,第一步的机械球磨分如下三种情况:
    100 g以下单原子催化剂前驱体的制备:称取贵金属盐与稀释金属盐;将其放入1 L球磨罐中,加入大小球磨珠若干,采用行星式球磨机QM3SP4L,球磨时间1-40 h,在球磨过程中需多次将沾壁的金属盐用塑料勺刮下来;球磨后混合物用小口玻璃瓶装入,真空80℃干燥过夜备用;
    100-300g单原子催化剂前驱体的制备:称取贵金属盐与稀释金属盐;将其放入5 L球磨罐中,加入大小球磨珠若干,采用行星式球磨机QM-2SP20,球磨时间1-40 h,在球磨过程中需多次将沾壁的金属盐用塑料勺刮下来;球磨后混合物用小口玻璃瓶装入,真空80℃干燥过夜备用;
    300 g以上单原子催化剂前驱体的制备:称取贵金属盐与稀释金属盐;将其放入10 L球磨罐中,加入大小球磨珠若干,采用罐装式球磨机,球磨时间1-40 h,在球磨过程中需多次将沾壁的金属盐用塑料勺刮下来;球磨后混合物用小口玻璃瓶装入,真空80℃干燥过夜备用。
  8. 根据权利要求4所述的制备方法,其特征在于所述行星式球磨机所采用的球磨罐为玛瑙罐,球磨罐体积为100-1000 ml,球磨珠为玛瑙珠,其小珠半径包括6 mm,10 mm或20 mm三种;球磨时间为1-48 h,其球磨频率为0.1-45.0 HZ,球磨条件为单相运行或双向运行中的一种,双向运行交替时间为1.5 h,双向运行停机等待时间设定为0;所述罐装式球磨机所采用的球磨罐为尼龙罐,球磨罐体积为10 L,所采用球磨珠为玛瑙球磨珠,其小珠粒径包括6 mm、10 mm或20 mm三种。
PCT/CN2018/103126 2018-06-29 2018-08-30 一种宏量制备单原子催化剂的方法 WO2020000627A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810698338.7 2018-06-29
CN201810698338.7A CN108927155B (zh) 2018-06-29 2018-06-29 一种宏量制备单原子催化剂的方法

Publications (1)

Publication Number Publication Date
WO2020000627A1 true WO2020000627A1 (zh) 2020-01-02

Family

ID=64447053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103126 WO2020000627A1 (zh) 2018-06-29 2018-08-30 一种宏量制备单原子催化剂的方法

Country Status (2)

Country Link
CN (1) CN108927155B (zh)
WO (1) WO2020000627A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113731416A (zh) * 2021-07-30 2021-12-03 联科华技术有限公司 一种局域酸位点改性的单原子催化剂、制备方法及其应用
CN114481167A (zh) * 2022-01-26 2022-05-13 大连理工大学 一种O-Ni SAC/MWCNTs复合催化剂的制备方法及应用
CN115155642A (zh) * 2022-07-27 2022-10-11 武汉理工大学 一种规模化制备单原子催化剂的方法
CN116371395A (zh) * 2023-04-13 2023-07-04 成都理工大学 一种铈单原子纳米酶、制备方法以及检测有机磷的方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110479248B (zh) * 2019-08-19 2022-05-24 中山大学 一种金属氧化物负载单原子催化剂的制备方法
CN110479249B (zh) * 2019-08-19 2022-05-24 中山大学 一种前驱体雾化制备单原子催化剂的方法
CN110975867A (zh) * 2019-12-12 2020-04-10 山西大学 一种Pd-ZnO/Al2O3催化剂及其制备方法和应用
CN111530458B (zh) * 2020-05-15 2021-06-25 江南大学 一种单原子催化剂及其在二氧化碳加氢反应中的应用
CN111715239A (zh) * 2020-07-03 2020-09-29 广州志成新材料有限公司 一种氧化物负载单原子催化剂的制备方法
CN114481160B (zh) * 2022-01-26 2022-12-27 大连理工大学 一种CNT-Zn单原子催化材料的制备方法
CN114774979B (zh) * 2022-05-10 2024-01-30 浙江工业大学 一种基于球磨法制备的碳负载钯-锌双金属氧化物电催化剂、其制备方法和应用
CN115283008A (zh) * 2022-09-15 2022-11-04 南京工业大学 一种二氧化碳加氢制低碳醇催化剂的制备方法及应用
CN115990478A (zh) * 2023-02-17 2023-04-21 安徽熵卡科技有限公司 用于co和voc催化分解的单原子催化剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170636A (zh) * 2013-04-17 2013-06-26 新疆大学 一种固相化学反应制备纳米金属单质的方法
WO2014205258A1 (en) * 2013-06-19 2014-12-24 University Of Houston System Formation of p-type filled skutterudite by ball-milling and thermo-mechanical processing
CN107116228A (zh) * 2017-06-20 2017-09-01 中南大学 一种固相还原制备超细镍粉的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107626294B (zh) * 2017-10-23 2020-04-17 清华大学 一种金属单原子位点催化剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170636A (zh) * 2013-04-17 2013-06-26 新疆大学 一种固相化学反应制备纳米金属单质的方法
WO2014205258A1 (en) * 2013-06-19 2014-12-24 University Of Houston System Formation of p-type filled skutterudite by ball-milling and thermo-mechanical processing
CN107116228A (zh) * 2017-06-20 2017-09-01 中南大学 一种固相还原制备超细镍粉的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DENG, TING ET AL.: "Increasing the Range of Non-noble-metal Single-atom Catalysts", CHINESE JOURNAL OF CATALYSIS, vol. 38, no. 9, 31 December 2017 (2017-12-31), pages 1489 - 1497, XP055669462, ISSN: 0253-9837 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113731416A (zh) * 2021-07-30 2021-12-03 联科华技术有限公司 一种局域酸位点改性的单原子催化剂、制备方法及其应用
CN114481167A (zh) * 2022-01-26 2022-05-13 大连理工大学 一种O-Ni SAC/MWCNTs复合催化剂的制备方法及应用
CN114481167B (zh) * 2022-01-26 2022-12-20 大连理工大学 一种O-Ni SAC/MWCNTs复合催化剂的制备方法及应用
CN115155642A (zh) * 2022-07-27 2022-10-11 武汉理工大学 一种规模化制备单原子催化剂的方法
CN116371395A (zh) * 2023-04-13 2023-07-04 成都理工大学 一种铈单原子纳米酶、制备方法以及检测有机磷的方法

Also Published As

Publication number Publication date
CN108927155A (zh) 2018-12-04
CN108927155B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2020000627A1 (zh) 一种宏量制备单原子催化剂的方法
Zhou et al. Methanation of carbon dioxide over Ni/CeO2 catalysts: Effects of support CeO2 structure
WO2018166419A1 (zh) 一种甲烷氧化偶联催化剂及其制备方法和应用
JP3749391B2 (ja) 排ガス浄化用触媒及びその製造方法
CN108295848B (zh) 一种高分散纳米催化剂的制备方法
CN110479248A (zh) 一种金属氧化物负载单原子催化剂的制备方法
Ye et al. The high photocatalytic efficiency and stability of LaNiO 3/gC 3 N 4 heterojunction nanocomposites for photocatalytic water splitting to hydrogen
JP2015529157A (ja) 多層カーボンナノチューブ製造用触媒組成物
TW201328776A (zh) 奈米金承載於氧化銅-二氧化鈰觸媒之製法及其在氫氣流中氧化一氧化碳之應用
CN110038590A (zh) 一种多夹层复合催化剂及其制备方法和应用
Shafiee et al. Promoted Ni–Co–Al2O3 nanostructured catalysts for CO2 methanation
WO2018025555A1 (ja) メタン化反応用触媒、メタン化反応用触媒の製造方法およびメタンの製造方法
WO2021192871A1 (ja) 還元剤およびガスの製造方法
WO2018142787A1 (ja) メタン化反応用触媒、メタン化反応用触媒の製造方法およびメタンの製造方法
CN109499577A (zh) 用于逆水煤气反应的Cu-Ni基催化剂的制备及应用方法
CN108179301A (zh) 一种含碳复合载体负载纳米金属材料的制备方法
Bian et al. Multi-core@ Shell catalyst derived from LDH@ SiO2 for low-temperature dry reforming of methane
Romero-Saez et al. Defective Ce3+ associated CeO2 nanoleaves for enhanced CO oxidation
CN107649125B (zh) 丙烷脱氢Ptx-Sny二元合金纳米催化剂及其制备方法
CN106984318B (zh) 一种双金属钴基催化剂及制备方法和应用
CN116786126A (zh) 一种应用到氨分解的镍硅催化剂及其制备方法
CN113600194B (zh) 一种含不同价态钴的纳米光催化剂、制备方法及其应用
CN114100604B (zh) LaMnO3催化剂及其制备方法和应用
CN113457722A (zh) 一种甲烷二氧化碳干重整催化剂及其制备方法和应用
WO2022126843A1 (zh) 三元 NiO 纳米片 @ 双金属 CeCuOx 微片核壳结构复合材料及其制备与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924935

Country of ref document: EP

Kind code of ref document: A1