WO2020000594A1 - 振动传感器和音频设备 - Google Patents

振动传感器和音频设备 Download PDF

Info

Publication number
WO2020000594A1
WO2020000594A1 PCT/CN2018/100383 CN2018100383W WO2020000594A1 WO 2020000594 A1 WO2020000594 A1 WO 2020000594A1 CN 2018100383 W CN2018100383 W CN 2018100383W WO 2020000594 A1 WO2020000594 A1 WO 2020000594A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
circuit board
bracket
vibration
receiving cavity
Prior art date
Application number
PCT/CN2018/100383
Other languages
English (en)
French (fr)
Inventor
王友
潘新超
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2020000594A1 publication Critical patent/WO2020000594A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Definitions

  • the present invention relates to the technical field of sensors, and in particular, to a vibration sensor and an audio device using the vibration sensor.
  • existing MEMS vibration sensors include vibration sensing devices and vibration detection devices that convert vibration into electrical signals. Because the vibration induction devices and vibration detection devices are integrated together, and because the vibration detection devices use piezoelectric or capacitive sensing, It can only be sensed when it is directly squeezed and contacted by pressure, making it sensitive to vibrations at low frequencies ⁇ 500Hz, but low response to vibrations at high frequencies> 1kHz, which has a poor effect in the audio field.
  • the main object of the present invention is to provide a vibration sensor, which aims to make the vibration sensor have better vibration response to both high frequency vibration and low frequency vibration, thereby improving the effect of the vibration sensor in the audio field.
  • the vibration sensor provided by the present invention includes:
  • a casing the casing is formed with a receiving cavity, and the receiving cavity is formed with an opening;
  • a circuit board assembly that is fixedly connected to the housing and blocks the opening
  • a MEMS microphone is disposed on a surface of the circuit board component and is located in the receiving cavity, and the MEMS microphone and the circuit board component are electrically connected;
  • a first diaphragm, the first diaphragm is disposed on an inner wall surface of the receiving cavity;
  • a mass, the mass is attached to a surface of the first diaphragm
  • the circuit board assembly is further provided with an ASIC chip, the ASIC chip is housed in the receiving cavity, and is electrically connected to the MEMS microphone.
  • the circuit board assembly includes a first circuit board, the casing is provided on a surface of the first circuit board, and the first circuit board is further provided with a through hole;
  • the MEMS microphone includes a first bracket and a second diaphragm.
  • the first bracket is disposed around the through hole, and the second diaphragm is fixed to the first bracket and is disposed to cover the through hole.
  • the circuit board assembly further includes a second circuit board, a resonant cavity is formed between the first circuit board and the second circuit board, and the housing is disposed on the first circuit board away from the resonant cavity.
  • a surface, the through hole communicates the receiving cavity and the resonant cavity;
  • the first diaphragm is disposed on a surface of the casing facing the second diaphragm.
  • the distance h between the first diaphragm and the second diaphragm is: 0.1 mm ⁇ h ⁇ 1 mm.
  • a second bracket is also provided on the inner wall surface of the casing, and the second bracket is arranged in a ring shape.
  • the edge of the first diaphragm is fixed to the second bracket and is connected with the second bracket.
  • the enclosure forms a vibration space, and the first diaphragm is directly opposite to the second diaphragm.
  • the projection area of the first diaphragm in the up-down direction is larger than the projection area of the second diaphragm in the up-down direction.
  • an edge of the mass is fixedly connected to the second bracket.
  • the second bracket is formed with a first ventilation hole, and the ventilation hole communicates the vibration space with the accommodation cavity;
  • the first diaphragm and the mass are each formed with a second vent hole, and the second vent hole communicates the vibration space with the receiving cavity.
  • the present invention also provides an audio device including a vibration sensor, the vibration sensor including:
  • a casing the casing is formed with a receiving cavity, and the receiving cavity is formed with an opening;
  • a circuit board assembly that is fixedly connected to the housing and blocks the opening
  • a MEMS microphone is disposed on a surface of the circuit board component and is located in the receiving cavity, and the MEMS microphone and the circuit board component are electrically connected;
  • a first diaphragm, the first diaphragm is disposed on an inner wall surface of the receiving cavity;
  • a mass, the mass is attached to a surface of the first diaphragm
  • the housing and the circuit board component are fixed to each other, so that a receiving cavity formed by the housing is blocked, and a MEMS microphone electrically connected to the circuit board component is disposed in the receiving cavity, and is disposed in the receiving cavity.
  • First diaphragm and mass When a vibration sensor is needed, a vibration signal or a pressure signal is input on the side of the housing facing away from the receiving cavity. The first diaphragm and the mass are excited by the vibration signal or the pressure signal, and the mass and the first diaphragm generate vibration to accommodate The gas in the cavity vibrates to change the air pressure in the receiving cavity.
  • the MEMS microphone and the medium to be detected are located in the same receiving cavity, the MEMS microphone can better sense the gas generated in the receiving cavity. Vibrate and convert the sensed information into a detectable electrical signal, which is transmitted to the circuit board assembly. In this way, the technical solution of the present invention can make the vibration sensor have better vibration response to both high-frequency vibration and low-frequency vibration, thereby improving the effect of the vibration sensor in the audio field.
  • FIG. 1 is a schematic structural diagram of an embodiment of a vibration sensor according to the present invention.
  • the present invention provides a vibration sensor 100.
  • the vibration sensor 100 provided by the technical solution of the present invention includes:
  • a circuit board assembly 11 which is fixedly connected to the casing 31 and blocks the opening;
  • a MEMS microphone 13 which is disposed on a surface of the circuit board assembly 11 and is located in the receiving cavity 313; the MEMS microphone 13 is electrically connected to the circuit board assembly 11;
  • a mass block 334 which is attached to a surface of the first diaphragm 332 in an abutting manner
  • the housing 31 and the circuit board assembly 11 are fixed to each other, so that the receiving cavity 313 formed by the housing 31 is blocked, and a MEMS microphone 13 electrically connected to the circuit board assembly 11 is provided in the receiving cavity 313.
  • a first diaphragm 332 and a mass 334 are disposed in the receiving cavity 313.
  • a vibration signal or a pressure signal is input on the side of the casing 31 facing away from the receiving cavity 313.
  • the first diaphragm 332 and the mass block 334 are excited by the vibration signal or the pressure signal.
  • the membrane 332 generates vibration, so that the gas in the receiving cavity 313 vibrates, so that the air pressure in the receiving cavity 313 changes.
  • the microphone 13 can better sense the vibration generated by the gas in the accommodating cavity 313, and convert the sensed information into a detectable electrical signal and transmit it to the circuit board assembly 11. In this way, the technical solution of the present invention can make the vibration sensor 100 have better vibration response to both high-frequency vibration and low-frequency vibration, thereby improving the effect of the vibration sensor 100 in the audio field.
  • the MEMS microphone 13 can be electrically connected to the circuit board assembly 11 by soldering.
  • the housing 31 can be fixed to the circuit board assembly 11 by an adhesive member, or can be connected to the circuit by a buckle or a connection member.
  • the board assembly 11 is fixed as long as it is convenient for the MEMS microphone 13 to better sense the vibration generated by the gas in the receiving cavity 313.
  • the MEMS microphone 13 is a MEMS (Microelectro Mechanical (Micro-Electro-Mechanical Systems) microphone
  • the circuit board assembly 11 is further provided with an ASIC chip 115, which is housed in the receiving cavity 313 and is electrically connected to the MEMS microphone 13.
  • the performance of the MEMS microphone 13 is very stable at different temperatures, and its sensitivity is not affected by temperature, vibration, humidity and time. Due to its high heat resistance, the MEMS microphone 13 can withstand high temperature reflow soldering at 260 ° C without any change in performance. Because the sensitivity changes before and after assembly are small, it can also save audio debugging costs during manufacturing.
  • ASIC Application Specific Integrated Circuit
  • ASIC Application Specific Integrated Circuit
  • the circuit board assembly 11 includes a first circuit board 111, the casing 31 is disposed on a surface of the first circuit board 111, and the first circuit board 111 is further provided with a through hole. Hole 1111
  • the MEMS microphone 13 further includes a first bracket 1311 and a second diaphragm 1312.
  • the first bracket 1311 is disposed around the through hole 1111.
  • the second diaphragm 1312 is fixed to the first bracket 1311 and covers the first bracket 1311.
  • the through hole 1111 is provided.
  • the manufacturing process of the MEMS microphone 13 is to first deposit several layers of different materials on the wafer, and then etch away unnecessary materials, forming a cavity on the base wafer, and covering the cavity with a layer of movable material.
  • the diaphragm ie, the second diaphragm 1312
  • a fixed back plate ie, the first bracket 1311).
  • the back plate has better rigidity and adopts a through-hole structure.
  • the second diaphragm 1312 is thin and easily bent. When the air pressure is changed, the second diaphragm 1312 will bend with the change in air pressure.
  • the circuit board assembly 11 may be a single circuit board, so that the through-hole 1111 is communicated with the outside, so that the vibration resistance of the second diaphragm 1312 is minimized. It should be noted that in this setting, the entry of external noise should be considered, so as to reduce the unnecessary vibration of the second diaphragm 1312.
  • the circuit board assembly 11 further includes a second circuit board 112, a resonance cavity 113 is formed between the first circuit board 111 and the second circuit board 112, and the vibration sensing device 30
  • the first circuit board 111 is disposed on a surface facing away from the resonant cavity 113, and the through hole 1111 communicates with the receiving cavity 313 and the resonant cavity 113;
  • the first diaphragm 332 is disposed on a surface of the casing 31 facing the MEMS microphone 13.
  • a vibration signal or a pressure signal (defined as a vibration source) is input to the side of the vibration sensing device 30 facing away from the receiving cavity 313, the gas in the receiving cavity 313 generates vibration, and the vibration gas drives the second diaphragm 1312 to generate vibration.
  • the second diaphragm 1312 covers the through hole 1111, and a resonant cavity 113 is provided on the other side of the through hole 1111.
  • the second diaphragm 1312 performs fine vibration, it is easy to compress the side of the diaphragm away from the vibration source, thereby reducing
  • the vibration resistance of the second diaphragm 1312 makes it possible to easily generate a vibration response under minute air vibrations, so that the sensitivity of the MEMS microphone 13 is higher.
  • the volume of the resonant cavity 113 is 0.1-5 mm3, so that the second diaphragm 1312 can be vibrated on the one hand, and the volume of the vibration sensor 100 can be reduced on the other hand. high.
  • the first circuit board 111 and the second circuit board 112 may be provided with a support block 114 to form a resonant cavity 113.
  • the outer shell 31 is substantially rectangular rectangular, and the material of the outer shell 31 can be metal (the material of the metal can be stainless steel, aluminum, aluminum, copper, Copper alloy materials, ferrous materials, iron alloy materials, etc.), plastics (plastics can choose hard plastics, such as ABS, POM, PS, PMMA, PC, PET, PBT, PPO, etc.), and other alloy materials.
  • metal the material of the metal can be stainless steel, aluminum, aluminum, copper, Copper alloy materials, ferrous materials, iron alloy materials, etc.
  • plastics plastics can choose hard plastics, such as ABS, POM, PS, PMMA, PC, PET, PBT, PPO, etc.
  • other alloy materials such as ABS, POM, PS, PMMA, PC, PET, PBT, PPO, etc.
  • the first diaphragm 332 and the mass 334 vibrate, so that the air inside the receiving cavity 313 vibrates, causing a change in gas pressure.
  • the change in air pressure is received by the MEMS microphone 13 and converted into The detected electrical signal is output.
  • the first diaphragm 332 and the second diaphragm 1312 of the MEMS microphone 13 are provided in the receiving cavity 313, so that the pressure change caused by the vibration of the first diaphragm 332 can be directly sensed by the MEMS microphone 13, and the air pressure will not be caused by The energy of the air pressure is reduced through the holes being attenuated, so that the MEMS microphone 13 can most accurately detect the change in air pressure.
  • the housing 31 includes a top plate 311 and a side plate 312 extending from the top plate 311.
  • the top plate 311 and the side plate 312 together enclose to form a receiving cavity 313.
  • the first diaphragm 332 is fixedly connected to the top plate 311. , Provided on the top plate 311 can easily transmit the pressure or vibration of the top plate 311, thereby changing the air pressure in the receiving cavity 313;
  • the first diaphragm 332 is fixedly connected to the side plate 312, and the first diaphragm 332 is provided on the top plate 311 to facilitate the transmission of pressure or vibration of the side plate 312, thereby changing the air pressure in the receiving cavity 313.
  • the first diaphragm 332 is disposed on the surface of the casing 31 directly facing the MEMS microphone 13, so that the MEMS microphone 13 directly senses the change in air pressure caused by the first diaphragm 332, thereby improving the sensing effect of the vibration sensor 100.
  • a distance h between the first diaphragm 332 and the second diaphragm 1312 is: 0.1 mm ⁇ h ⁇ 1 mm. It should be noted that the distance h specifically refers to the distance between the first diaphragm 332 and the second diaphragm 1312 in the up-down direction, and the distance may be formed by the line between the two points closest to each other. distance. When the distance between the first diaphragm 332 and the second diaphragm 1312 is less than 0.1 mm, it is easy to cause the first diaphragm 332 to touch the second diaphragm 1312 under the condition of vibration, thereby causing a loss of vibration energy.
  • the first diaphragm 332 When the distance between the diaphragm 332 and the second diaphragm 1312 is greater than 1 mm, the first diaphragm 332 generates a change in air pressure caused by vibration under slight vibration, and is not easily induced by the second diaphragm 1312.
  • the second vibrating membrane 1312 can better sense the change in air pressure caused by the first vibrating membrane 332.
  • the distance h can also be 0.2mm, 0.3mm, 0.4mm, 0.5mm, 0.55mm, 0.6mm, 0.7mm, 0.8mm, 0.9mm, as long as it is convenient to make the second diaphragm 1312 sense the air pressure caused by the first diaphragm 332. Just change.
  • a second bracket 331 is further provided on the inner wall surface of the casing 31, the second bracket 331 is arranged in a ring shape, and an edge of the first diaphragm 332 is fixed to the second
  • the bracket 331 surrounds the second bracket 331 to form a vibration space 333.
  • the first diaphragm 332 is directly opposite the second diaphragm 1312.
  • the second bracket 331 is arranged around the top plate 311, or the second bracket 331 surrounds the side plate 312 and is transversely spaced between the top plate 311 and the second diaphragm 1312, and is arranged in a ring structure to facilitate the first diaphragm.
  • the part 332 located in the vibration space 333 is vibrated. The vibration of the first diaphragm 332 can better vibrate the gas in the receiving cavity 313, thereby causing a change in air pressure.
  • a projection area of the first diaphragm 332 in the vertical direction is larger than a projection area of the second diaphragm 1312 in the vertical direction.
  • the contact area between the first diaphragm 332 and the gas in the receiving cavity 313 is larger, so that it can vibrate the gas better, and the area of the second diaphragm 1312 is smaller, so that the MEMS microphone 13 will face the speaker mounted on the same PCB.
  • the resulting PCB noise produces lower vibration coupling and is convenient to use.
  • an edge of the mass 334 is fixedly connected to the second bracket 331.
  • the mass block 334 allows the first diaphragm 332 to vibrate after receiving the vibration or pressure signal, thereby causing a pressure change.
  • the mass 334 can make the sensing effect of the vibration sensing device 30 better, and can have a more sensitive response under fine vibration.
  • the mass m of the mass block 334 may be 0.003 mg ⁇ m ⁇ 0.5 mg. When the mass of the mass block 334 is too small or too large, it is not conducive to the vibration of the first diaphragm 332 caused by the mass block 334.
  • the mass m of the mass block 334 can be set to 0.004mg, 0.004mg, 0.005mg, 0.008mg, 0.009mg, 0.01mg, 0.03mg, 0.05mg, 0.08mg, 0.09mg , 0.1mg, 0.2mg, 0.3mg, 0.4mg, etc.
  • the mass 334 may be an elastic piece, a beam, or other structure, and provides support for the first diaphragm 332 when vibrating with the first diaphragm 332.
  • the edge of the mass 334 can also be connected to the second bracket 331, so as to better support the first diaphragm 332. It can be understood that after the mass 334 is connected to the second bracket 331, the first A diaphragm 332 still has a vibration function.
  • the thickness of the mass 334 is gradually increased from the edge to the center, so that the vibration effect is better.
  • the second bracket 331 is formed with a first vent hole, and the vent hole communicates the vibration space 333 with the receiving cavity 313;
  • the first diaphragm 332 and the mass 334 are each formed with a second vent hole, and the second vent hole communicates the vibration space 333 with the receiving cavity 313.
  • the closed vibration space 333 When the first diaphragm 332 vibrates, the closed vibration space 333 will generate vibration resistance to the vibration of the first diaphragm 332, which is not conducive to the vibration of the gas in the receiving cavity 313 caused by the first diaphragm 332, thereby causing a change in air pressure.
  • An air vent can communicate the vibration space 333 to the outside, thereby reducing the resistance when the first diaphragm 332 vibrates.
  • the mechanism is similar to that of the second diaphragm 1312, which is not repeated here.
  • the number and position of the first vent holes can be set according to actual needs, as long as it is convenient to reduce the vibration resistance of the first diaphragm 332.
  • the second vent hole has the same effect as the first vent hole.
  • the first vent hole or the second vent hole or the first vent hole and the second vent hole may be used separately. As long as it is convenient to reduce the vibration resistance of the first diaphragm 332.
  • the present invention also provides an audio device (not shown), which includes a vibration sensor 100 including a housing 31, the housing 31 is formed with a receiving cavity 313, and the receiving cavity 313 is formed with an opening;
  • a circuit board assembly 11 which is fixedly connected to the casing 31 and blocks the opening;
  • a MEMS microphone 13 which is disposed on a surface of the circuit board assembly 11 and is located in the receiving cavity 313; the MEMS microphone 13 is electrically connected to the circuit board assembly 11;
  • a mass block 334 which is attached to a surface of the first diaphragm 332 in an abutting manner
  • the audio device may be a bone conduction microphone.
  • the audio device further includes a mounting hole, so that a part of the casing of the vibration sensor 100 is easily exposed, thereby facilitating vibration induction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

本发明公开一种振动传感器和音频设备,振动传感器包括外壳,所述外壳形成有容纳腔,该容纳腔形成有开口;电路板组件,该电路板组件与所述外壳固定连接,并将所述开口封堵;MEMS麦克风,该MEMS麦克风设于所述电路板组件的一表面,并位于容置于所述容纳腔内,该MEMS麦克风所述电路板组件电性连接;第一振膜,该第一振膜设置于所述容纳腔的内壁面;质量块,该质量块贴合设置于所述第一振膜的表面;在外壳背离容纳腔的一侧输入振动信号或压力信号时,第一振膜和质量块振动,带动容纳腔内的气压产生变化。本发明技术方案旨在使振动传感器对高频振动和低频振动均具备较好的振动响应,从而提升振动传感器应用于音频领域的效果。

Description

振动传感器和音频设备
技术领域
本发明涉及传感器技术领域,特别涉及一种振动传感器和应用该振动传感器的音频设备。
背景技术
目前现有的MEMS振动传感器包括振动感应装置及将振动转化为电信号的振动检测装置,由于振动感应装置及振动检测装置均集成于一起,并且由于振动检测装置采用压电或电容式的感应,在受到压力直接挤压接触的情况下才能感应,使得其对低频<500Hz的振动敏感,但对高频>1kHz的振动响应很低,应用于音频领域的效果较差。
发明内容
本发明的主要目的是提供一种振动传感器,旨在使振动传感器对高频振动和低频振动均具备较好的振动响应,从而提升振动传感器应用于音频领域的效果。
为实现上述目的,本发明提供的振动传感器,包括:
外壳,所述外壳形成有容纳腔,所述容纳腔形成有开口;
电路板组件,所述电路板组件与所述外壳固定连接,并将所述开口封堵;
MEMS麦克风,所述MEMS麦克风设于所述电路板组件的一表面,并位于容置于所述容纳腔内,所述MEMS麦克风所述电路板组件电性连接;
第一振膜,所述第一振膜设置于所述容纳腔的内壁面;
质量块,所述质量块贴合设置于所述第一振膜的表面;
在所述外壳背离容纳腔的一侧输入振动信号或压力信号时,所述第一振膜和所述质量块振动,带动所述容纳腔内的气压产生变化。
可选地,所述电路板组件还设有ASIC芯片,所述ASIC芯片容置于所述容纳腔内,并与所述MEMS麦克风电性连接。
可选地,所述电路板组件包括第一电路板,所述外壳设于所述第一电路板的一表面,所述第一电路板还设有贯穿孔;
所述MEMS麦克风包括第一支架和第二振膜,所述第一支架环绕贯穿孔设置,所述第二振膜固定于所述第一支架,并罩盖所述贯穿孔设置。
可选地,所述电路板组件还包括第二电路板,所述第一电路板和第二电路板之间形成有谐振腔,所述外壳设于所述第一电路板背离所述谐振腔的一表面,所述贯穿孔连通所述容纳腔和所述谐振腔;
且/或,所述第一振膜设于所述外壳正对所述第二振膜的表面。
可选地,所述第一振膜与所述第二振膜的距离h为:0.1mm≤h≤1mm。
可选地,所述外壳的内壁面还设有第二支架,所述第二支架呈环状设置,所述第一振膜的边缘固定于所述第二支架,并与所述第二支架围合形成振动空间,所述第一振膜正对所述第二振膜设置。
可选地,所述第一振膜在上下方向的投影面积大于所述第二振膜在上下方向的投影面积。
可选地,所述质量块的边缘与所述第二支架固定连接。
可选地,所述第二支架形成有第一通气孔,所述通气孔将所述振动空间与所述容纳腔连通;
且/或,所述第一振膜和所述质量块均形成有第二通气孔,所述第二通气孔将所述振动空间与所述容纳腔连通。
本发明还提出一种音频设备,包括振动传感器,该振动传感器包括:
外壳,所述外壳形成有容纳腔,所述容纳腔形成有开口;
电路板组件,所述电路板组件与所述外壳固定连接,并将所述开口封堵;
MEMS麦克风,所述MEMS麦克风设于所述电路板组件的一表面,并位于容置于所述容纳腔内,所述MEMS麦克风所述电路板组件电性连接;
第一振膜,所述第一振膜设置于所述容纳腔的内壁面;
质量块,所述质量块贴合设置于所述第一振膜的表面;
在所述外壳背离容纳腔的一侧输入振动信号或压力信号时,所述第一振膜和所述质量块振动,带动所述容纳腔内的气压产生变化。
本发明的技术方案通过将外壳与电路板组件相互固定,使外壳形成的容纳腔被封堵,并在该容纳腔内设置与电路板组件电性连接的MEMS麦克风,以及在该容纳腔内设置第一振膜和质量块。当需要使用振动传感器时,在外壳背离容纳腔的一侧输入振动信号或压力信号,第一振膜和质量块被该振动信号或压力信号激励,质量块和第一振膜产生振动,从而容纳腔的气体产生振动,以使容纳腔内的气压产生变化,由于MEMS麦克风和被检测的介质(容纳腔内的空气)位于同一容纳腔内,MEMS麦克风可以较好的感应容纳腔内气体产生的振动,并将感应到的信息转换成可以检测的电信号,传递到电路板组件。如此,本发明的技术方案可以使振动传感器对高频振动和低频振动均具备较好的振动响应,从而提升振动传感器应用于音频领域的效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明振动传感器一实施例的结构示意图。
附图标号说明:
标号 名称 标号 名称
100 振动传感器 1312 第二振膜
11 电路板组件 31 外壳
111 第一电路板 311 顶板
1111 贯穿孔 312 侧板
112 第二电路板 313 容纳腔
113 谐振腔 331 第二支架
114 支撑块 332 第一振膜
115 ASIC芯片 333 振动空间
13 MEMS麦克风 334 质量块
1311 第一支架
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提出一种振动传感器100。
参照图1,本发明技术方案提出的振动传感器100包括:
外壳31,所述外壳31形成有容纳腔313,所述容纳腔313形成有开口;
电路板组件11,所述电路板组件11与所述外壳31固定连接,并将所述开口封堵;
MEMS麦克风13,所述MEMS麦克风13设于所述电路板组件11的一表面,并位于容置于所述容纳腔313内,所述MEMS麦克风13所述电路板组件11电性连接;
第一振膜332,所述第一振膜332设置于所述容纳腔313的内壁面;
质量块334,所述质量块334贴合设置于所述第一振膜332的表面;
在所述外壳31背离容纳腔313的一侧输入振动信号或压力信号时,所述第一振膜332和所述质量块334振动,带动所述容纳腔313内的气压产生变化。
本发明的技术方案通过将外壳31与电路板组件11相互固定,使外壳31形成的容纳腔313被封堵,并在该容纳腔313内设置与电路板组件11电性连接的MEMS麦克风13,以及在该容纳腔313内设置第一振膜332和质量块334。当需要使用振动传感器100时,在外壳31背离容纳腔313的一侧输入振动信号或压力信号,第一振膜332和质量块334被该振动信号或压力信号激励,质量块334和第一振膜332产生振动,从而容纳腔313的气体产生振动,以使容纳腔313内的气压产生变化,由于MEMS麦克风13和被检测的介质(容纳腔313内的空气)位于同一容纳腔313内,MEMS麦克风13可以较好的感应容纳腔313内气体产生的振动,并将感应到的信息转换成可以检测的电信号,传递到电路板组件11。如此,本发明的技术方案可以使振动传感器100对高频振动和低频振动均具备较好的振动响应,从而提升振动传感器100应用于音频领域的效果。
在本申请的一实施例中,MEMS麦克风13可以通过焊锡实现与电路板组件11的电性连接诶,外壳31可以通过胶接件与电路板组件11固定,或者通过卡扣或连接件与电路板组件11固定,只要便于MEMS麦克风13可以较好的感应容纳腔313内气体产生的振动即可。
进一步地,所述MEMS麦克风13为MEMS(Microelectro Mechanical Systems,微机电系统)麦克风,所述电路板组件11还设有ASIC芯片115,所述ASIC芯片115容置于所述容纳腔313内,并与所述MEMS麦克风13电性连接。MEMS麦克风13在不同温度下的性能都十分稳定,其敏感性不会受温度、振动、湿度和时间的影响。由于耐热性强,MEMS麦克风13可承受260℃的高温回流焊,而性能不会有任何变化。由于组装前后敏感性变化很小,还可以节省制造过程中的音频调试成本。ASIC(Application Specific Integrated Circuit)芯片为MEMS麦克风13提供外部偏置,有效的偏置将使MEMS麦克风13在整个操作温度范围内都可保持稳定的声学和电气参数,还支持具有不同敏感性的麦克风设计。
在本申请的一实施例中,所述电路板组件11包括第一电路板111,所述外壳31设于所述第一电路板111的一表面,所述第一电路板111还设有贯穿孔1111;
所述MEMS麦克风13还包括第一支架1311和第二振膜1312,所述第一支架1311环绕贯穿孔1111设置,所述第二振膜1312固定于所述第一支架1311,并罩盖所述贯穿孔1111设置。
在本实施例中,MEMS麦克风13的制造过程是,首先在晶圆上沉积数层不同的物质,然后蚀去无用的物质,在基础晶片形成一个腔室,在腔室覆盖一层能够运动的振膜(即第二振膜1312)和一个固定的背板(即第一支架1311).背板具有较好的刚性,采用通孔结构。第二振膜1312较薄,易弯曲。当气压变换时,第二振膜1312会随着气压变化而弯曲,第二振膜1312弯曲时其与MEMS麦克风13的背极板(图中未示出)之间的电容量将会变化,该电容量变化使MEMS麦克风13输出电信号,从而ASIC芯片15可以对MEMS麦克风13的电信号进行处理。电路板组件11可以为单独的一块电路板,如此设置将贯穿孔1111与外部连通,最大的减小了第二振膜1312的振动阻力。需要说明的是,如此设置时应考虑外部噪声的进入,从而减少第二振膜1312的多余振动。
在本申请的一实施例中,所述电路板组件11还包括第二电路板112,所述第一电路板111和第二电路板112之间形成有谐振腔113,所述振动感应装置30设于所述第一电路板111背离所述谐振腔113的一表面,所述贯穿孔1111连通所述容纳腔313和所述谐振腔113;
且/或,所述第一振膜332设于所述外壳31正对所述MEMS麦克风13的表面。
当振动感应装置30背离容纳腔313的一侧输入振动信号或压力信号(在此定义为振动源),从而容纳腔313的气体产生振动,振动的气体带动第二振膜1312产生振动,由于第二振膜1312罩盖贯穿孔1111,并且在贯穿孔1111的另一侧设置谐振腔113,第二振膜1312进行细微振动时,容易将振膜远离振动源的一侧进行压缩,从而减小第二振膜1312的振动阻力,使其能够容易地在细微的空气振动下产生振动响应,从而使MEMS麦克风13的灵敏度较高。可以理解的是,该谐振腔113的体积越大越好,越大的谐振腔113,其空气较多,便于第二振膜1312的振动。在本申请的一实施例中,谐振腔113的体积为0.1-5mm3,如此设置一方面可以使第二振膜1312较好的振动,另一方面可以减少振动传感器100的体积,其综合性较高。可以理解的是,第一电路板111和第二电路板112可以通过设置支撑块114,从而形成谐振腔113。
在本实施例中,该外壳31大致呈顶部为矩形的直四棱柱状设置,该外壳31的材质可以采用金属(金属的材质可选择不锈钢材料、铝质材料,铝合金材料、铜质材料、铜合金材料、铁质材料、铁合金材料等)、塑料(塑料可选择硬质塑料,如ABS、POM、PS、PMMA、PC、PET、PBT、PPO等),以及其他合金材料等。如此,更加有利于提升外壳31的设置稳定性,从而有效提升外壳31的实用性、可靠性、及耐久性。
外壳31受到外部振动或压力的影响后,第一振膜332和质量块334产生振动,从而容纳腔313内部的空气产生振动,引起气体压力变化,气压变化被MEMS麦克风13接收,从而转化成可被检测的电信号输出。并且将第一振膜332和MEMS麦克风13的第二振膜1312设于容纳腔313内,便于经过第一振膜332振动后产生的气压变化,可以被MEMS麦克风13直接感应,气压不会由于经过孔洞被衰减而减少气压的能量,从而可以使MEMS麦克风13最准确的检测到气压的变化。
在本申请的一实施例中,外壳31包括顶板311和自顶板311延伸的侧板312,该顶板311和侧板312共同围合形成容纳腔313,该第一振膜332与顶板311固定连接,设于顶板311可以便于传递顶板311的压力或振动,从而使容纳腔313内的气压产生变化;
或者该第一振膜332与侧板312固定连接,设于顶板311可以便于传递侧板312的压力或振动,从而使容纳腔313内的气压产生变化。
将第一振膜332设于外壳31正对MEMS麦克风13的表面,便于MEMS麦克风13直接感应第一振膜332引起的气压变化,从而提高振动传感器100的传感效果。
在本申请的一实施例中,所述第一振膜332与所述第二振膜1312的距离h为:0.1mm≤h≤1mm。需要说明的是,该距离h具体指,在上下方向,第一振膜332与第二振膜1312之间的距离,该距离可以为二者最靠近的两个点之间的连线形成的距离。当第一振膜332与第二振膜1312的距离小于0.1mm时,容易导致第一振膜332在振动的情况下触碰到第二振膜1312,从而引起振动能量的损失,当第一振膜332与第二振膜1312的距离大于1mm时,第一振膜332在细微振动下产生振动引起的气压变化,不容易被第二振膜1312感应。当第一振膜332和第二振膜1312之间的距离处于0.1mm≤h≤1mm时,可以较好地使第二振膜1312感应第一振膜332引起的气压变化。该距离h还可以为0.2mm、0.3mm、0.4mm、0.5mm、0.55mm、0.6mm、0.7mm、0.8mm、0.9mm,只要便于使第二振膜1312感应第一振膜332引起的气压变化即可。
在本申请的一实施例中,所述外壳31的内壁面还设有第二支架331,所述第二支架331呈环状设置,所述第一振膜332的边缘固定于所述第二支架331,并与所述第二支架331围合形成振动空间333,所述第一振膜332正对所述第二振膜1312设置。
可以理解的是,第二支架331环绕顶板311设置,或者第二支架331环绕侧板312,横隔于顶板311和第二振膜1312之间,将其设置成环状结构便于第一振膜332位于振动空间333的部分振动,通过第一振膜332振动可以较好的将容纳腔313内的气体进行振动,从而引起气压变化。
在本申请的一实施例中,所述第一振膜332在上下方向的投影面积大于所述第二振膜1312在上下方向的投影面积。第一振膜332与容纳腔313内气体的接触面积更大,使其可以更好地振动气体,第二振膜1312的面积较小,使MEMS麦克风13会对由安装在同一PCB上的扬声器引起的PCB噪声产生更低的振动耦合,方便使用。
在本申请的一实施例中,所述质量块334的边缘与所述第二支架331固定连接。
设置质量块334可以让其在接收振动或压力信号后,带动第一振膜332振动,从而引起压力变化。质量块334可以使振动感应装置30的感应效果更好,可以在细微振动下具有更敏感的响应。该质量块334的质量m可以为0.003mg≤m≤0.5mg,当质量块334的质量过小,或过大都不利于质量块334带动第一振膜332的振动。为了使振动感应装置30的灵敏度较高,可以将质量块334的质量m设置为0.004mg、0.004mg、0.005mg、0.008mg、0.009mg、0.01mg、0.03mg、0.05mg、0.08mg、0.09mg、0.1mg、0.2mg、0.3mg、0.4mg等。该质量块334可以为弹片、横梁或其他结构,在与第一振膜332振动时,为第一振膜332提供支撑。以及,该质量块334的边缘还可以与第二支架331连接,从而更好地为第一振膜332提供支撑,可以理解的是,该质量块334与第二支架331连接后,应保证第一振膜332仍具备振动功能。
在本申请的一实施例中,该质量块334的厚度由边缘至中心逐渐增加,从而使其振动的效果更好。
在本申请的一实施例中,所述第二支架331形成有第一通气孔,所述通气孔将所述振动空间333与所述容纳腔313连通;
且/或,所述第一振膜332和所述质量块334均形成有第二通气孔,所述第二通气孔将所述振动空间333与所述容纳腔313连通。
在第一振膜332振动时,封闭的振动空间333会对第一振膜332的振动产生振动阻力,不利于第一振膜332带动容纳腔313内的气体振动,从而引起气压变化,设置第一通气孔可以使振动空间333于外部连通,从而减小第一振膜332振动时的阻力,其机理类似第二振膜1312,在此不作赘述。该第一通气孔的数量和位置可以根据实际需要进行设定,只要便于减小第一振膜332的振动阻力即可。
同样的,该第二通气孔与第一通气孔的效果一样,在本申请的实施例中,可以单独采用设置第一通气孔或设置第二通气孔或者第一通气孔与第二通气孔结合的方案,只要便于减小第一振膜332的振动阻力即可。
本发明还提出一种音频设备(未图示),该音频设备包括振动传感器100,该振动传感器100包括:外壳31,所述外壳31形成有容纳腔313,所述容纳腔313形成有开口;
电路板组件11,所述电路板组件11与所述外壳31固定连接,并将所述开口封堵;
MEMS麦克风13,所述MEMS麦克风13设于所述电路板组件11的一表面,并位于容置于所述容纳腔313内,所述MEMS麦克风13所述电路板组件11电性连接;
第一振膜332,所述第一振膜332设置于所述容纳腔313的内壁面;
质量块334,所述质量块334贴合设置于所述第一振膜332的表面;
在所述外壳31背离容纳腔313的一侧输入振动信号或压力信号时,所述第一振膜332和所述质量块334振动,带动所述容纳腔313内的气压产生变化。
可以理解的是,该音频设备可以为骨传导麦克风。该音频设备还包括安装孔,从而便于将振动传感器100的外壳部分显露,从而便于感应振动。
由于本音频设备采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (20)

  1. 一种振动传感器,其特征在于,包括:
    外壳,所述外壳形成有容纳腔,所述容纳腔形成有开口;
    电路板组件,所述电路板组件与所述外壳固定连接,并将所述开口封堵;
    MEMS麦克风,所述MEMS麦克风设于所述电路板组件的一表面,并位于容置于所述容纳腔内,所述MEMS麦克风所述电路板组件电性连接;
    第一振膜,所述第一振膜设置于所述容纳腔的内壁面;
    质量块,所述质量块贴合设置于所述第一振膜的表面;
    在所述外壳背离容纳腔的一侧输入振动信号或压力信号时,所述第一振膜和所述质量块振动,带动所述容纳腔内的气压产生变化。
  2. 如权利要求1所述的振动传感器,其特征在于,所述电路板组件还设有ASIC芯片,所述ASIC芯片容置于所述容纳腔内,并与所述MEMS麦克风电性连接。
  3. 如权利要求2所述的振动传感器,其特征在于,所述电路板组件包括第一电路板,所述外壳设于所述第一电路板的一表面,所述第一电路板还设有贯穿孔;
    所述MEMS麦克风包括第一支架和第二振膜,所述第一支架环绕贯穿孔设置,所述第二振膜固定于所述第一支架,并罩盖所述贯穿孔设置。
  4. 如权利要求3所述的振动传感器,其特征在于,所述电路板组件还包括第二电路板,所述第一电路板和第二电路板之间形成有谐振腔,所述外壳设于所述第一电路板背离所述谐振腔的一表面,所述贯穿孔连通所述容纳腔和所述谐振腔;
    且/或,所述第一振膜设于所述外壳正对所述第二振膜的表面。
  5. 如权利要求4所述的振动传感器,其特征在于,所述第一振膜与所述第二振膜的距离h为:0.1mm≤h≤1mm。
  6. 如权利要求3所述的振动传感器,其特征在于,所述外壳的内壁面还设有第二支架,所述第二支架呈环状设置,所述第一振膜的边缘固定于所述第二支架,并与所述第二支架围合形成振动空间,所述第一振膜正对所述第二振膜设置。
  7. 如权利要求4所述的振动传感器,其特征在于,所述外壳的内壁面还设有第二支架,所述第二支架呈环状设置,所述第一振膜的边缘固定于所述第二支架,并与所述第二支架围合形成振动空间,所述第一振膜正对所述第二振膜设置。
  8. 如权利要求5所述的振动传感器,其特征在于,所述外壳的内壁面还设有第二支架,所述第二支架呈环状设置,所述第一振膜的边缘固定于所述第二支架,并与所述第二支架围合形成振动空间,所述第一振膜正对所述第二振膜设置。
  9. 如权利要求8所述的振动传感器,其特征在于,所述第一振膜在上下方向的投影面积大于所述第二振膜在上下方向的投影面积。
  10. 如权利要求8所述的振动传感器,其特征在于,所述质量块的边缘与所述第二支架固定连接。
  11. 如权利要求10所述的振动传感器,其特征在于,所述第二支架形成有第一通气孔,所述通气孔将所述振动空间与所述容纳腔连通;
    且/或,所述第一振膜和所述质量块均形成有第二通气孔,所述第二通气孔将所述振动空间与所述容纳腔连通。
  12. 一种音频设备,其特征在于,包括振动传感器,所述振动传感器包括:
    外壳,所述外壳形成有容纳腔,所述容纳腔形成有开口;
    电路板组件,所述电路板组件与所述外壳固定连接,并将所述开口封堵;
    MEMS麦克风,所述MEMS麦克风设于所述电路板组件的一表面,并位于容置于所述容纳腔内,所述MEMS麦克风所述电路板组件电性连接;
    第一振膜,所述第一振膜设置于所述容纳腔的内壁面;
    质量块,所述质量块贴合设置于所述第一振膜的表面;
    在所述外壳背离容纳腔的一侧输入振动信号或压力信号时,所述第一振膜和所述质量块振动,带动所述容纳腔内的气压产生变化。
  13. 如权利要求12所述的音频设备,其特征在于,所述电路板组件还设有ASIC芯片,所述ASIC芯片容置于所述容纳腔内,并与所述MEMS麦克风电性连接。
  14. 如权利要求13所述的音频设备,其特征在于,所述电路板组件包括第一电路板,所述外壳设于所述第一电路板的一表面,所述第一电路板还设有贯穿孔;
    所述MEMS麦克风包括第一支架和第二振膜,所述第一支架环绕贯穿孔设置,所述第二振膜固定于所述第一支架,并罩盖所述贯穿孔设置。
  15. 如权利要求14所述的音频设备,其特征在于,所述电路板组件还包括第二电路板,所述第一电路板和第二电路板之间形成有谐振腔,所述外壳设于所述第一电路板背离所述谐振腔的一表面,所述贯穿孔连通所述容纳腔和所述谐振腔;
    且/或,所述第一振膜设于所述外壳正对所述第二振膜的表面。
  16. 如权利要求15所述的音频设备,其特征在于,所述第一振膜与所述第二振膜的距离h为:0.1mm≤h≤1mm。
  17. 如权利要求14所述的音频设备,其特征在于,所述外壳的内壁面还设有第二支架,所述第二支架呈环状设置,所述第一振膜的边缘固定于所述第二支架,并与所述第二支架围合形成振动空间,所述第一振膜正对所述第二振膜设置。
  18. 如权利要求16所述的音频设备,其特征在于,所述外壳的内壁面还设有第二支架,所述第二支架呈环状设置,所述第一振膜的边缘固定于所述第二支架,并与所述第二支架围合形成振动空间,所述第一振膜正对所述第二振膜设置。
  19. 如权利要求18所述的音频设备,其特征在于,所述第一振膜在上下方向的投影面积大于所述第二振膜在上下方向的投影面积。
  20. 如权利要求18所述的音频设备,其特征在于,所述质量块的边缘与所述第二支架固定连接。
PCT/CN2018/100383 2018-06-29 2018-08-14 振动传感器和音频设备 WO2020000594A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810721362.8 2018-06-29
CN201810721362.8A CN108513241B (zh) 2018-06-29 2018-06-29 振动传感器和音频设备

Publications (1)

Publication Number Publication Date
WO2020000594A1 true WO2020000594A1 (zh) 2020-01-02

Family

ID=63404267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100383 WO2020000594A1 (zh) 2018-06-29 2018-08-14 振动传感器和音频设备

Country Status (2)

Country Link
CN (1) CN108513241B (zh)
WO (1) WO2020000594A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112714389A (zh) * 2020-12-25 2021-04-27 歌尔微电子有限公司 麦克风和电子设备
CN116045922A (zh) * 2023-03-16 2023-05-02 湖南大学 一种用于深海测量的深度计
WO2023144366A1 (en) * 2022-01-31 2023-08-03 Sonion Nederland B.V. Vibration sensor with controlled vibration mode
WO2023144365A1 (en) * 2022-01-31 2023-08-03 Sonion Nederland B.V. Compact vibration sensor
US11961520B2 (en) * 2020-01-07 2024-04-16 Samsung Electronics Co., Ltd. Voice recognition system and display device using the same

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11051109B2 (en) * 2018-09-27 2021-06-29 Taiwan Semiconductor Manufacturing Company, Ltd. Dual back-plate and diaphragm microphone
WO2020133334A1 (zh) * 2018-12-29 2020-07-02 共达电声股份有限公司 Mems声音传感器、mems麦克风及电子设备
CN110574397B (zh) * 2018-12-29 2021-04-27 共达电声股份有限公司 Mems声音传感器、mems麦克风及电子设备
CN110574396B (zh) * 2018-12-29 2020-12-22 共达电声股份有限公司 Mems声音传感器、mems麦克风及电子设备
WO2020133352A1 (zh) * 2018-12-29 2020-07-02 共达电声股份有限公司 Mems声音传感器、mems麦克风及电子设备
CN109781410A (zh) * 2019-01-22 2019-05-21 北京君林科技股份有限公司 一种声纹识别的轴承故障检测方法及装置
WO2020232669A1 (zh) * 2019-05-22 2020-11-26 深圳市大疆创新科技有限公司 打击检测方法、设备、可移动平台及计算机可读存储介质
WO2021000163A1 (zh) * 2019-06-30 2021-01-07 瑞声声学科技(深圳)有限公司 骨传导mems麦克风和移动终端
CN110428799B (zh) * 2019-07-08 2020-09-29 维沃移动通信有限公司 终端设备
CN110300364B (zh) * 2019-07-18 2024-05-28 东莞市瑞勤电子有限公司 骨导硅麦克风
CN110602615A (zh) * 2019-08-22 2019-12-20 歌尔股份有限公司 用于振动感测装置的振动组件以及振动感测装置
CN110536220A (zh) * 2019-08-22 2019-12-03 歌尔股份有限公司 振动感测装置感测振动的方法以及振动感测装置
CN210513399U (zh) * 2019-08-22 2020-05-12 歌尔科技有限公司 一种振动感测装置
JP7413682B2 (ja) * 2019-08-29 2024-01-16 セイコーエプソン株式会社 振動デバイス、電子機器および移動体
CN110631685B (zh) * 2019-09-05 2022-08-16 无锡韦感半导体有限公司 一种振动检测装置及其制造方法
CN110972045B (zh) * 2019-11-18 2021-11-16 潍坊歌尔微电子有限公司 一种振动感测装置以及电子设备
CN111031424B (zh) * 2019-12-06 2021-11-16 潍坊歌尔微电子有限公司 振动感测装置、耳机以及电子设备
CN111131988B (zh) * 2019-12-30 2021-06-18 歌尔股份有限公司 振动传感器和音频设备
TWI732617B (zh) * 2020-03-25 2021-07-01 美律實業股份有限公司 振動感測器
CN212572961U (zh) * 2020-06-30 2021-02-19 瑞声声学科技(深圳)有限公司 振动传感器及具有其的音频设备
CN212785847U (zh) * 2020-06-30 2021-03-23 瑞声声学科技(深圳)有限公司 振动传感器
CN218679379U (zh) * 2020-06-30 2023-03-21 瑞声声学科技(深圳)有限公司 振动传感器
CN218679382U (zh) * 2020-06-30 2023-03-21 瑞声声学科技(深圳)有限公司 振动传感器
CN218679381U (zh) * 2020-06-30 2023-03-21 瑞声声学科技(深圳)有限公司 振动传感器
CN113613110B (zh) * 2020-07-14 2024-01-12 深圳市冠旭电子股份有限公司 麦克风组装方法、麦克风及耳机
CN213342679U (zh) * 2020-09-25 2021-06-01 瑞声声学科技(深圳)有限公司 一种骨传导麦克风
CN112188377B (zh) * 2020-09-27 2022-01-14 郑州大轩电子科技有限公司 一种利用振动发热感应振膜的音响检测机
CN112118522B (zh) * 2020-09-29 2022-04-29 瑞声声学科技(深圳)有限公司 Mems麦克风
KR20230091147A (ko) * 2020-12-28 2023-06-22 썬전 샥 컴퍼니 리미티드 진동센서
CN113280907A (zh) * 2021-05-17 2021-08-20 歌尔微电子股份有限公司 振动传感器和振动传感器的制作方法
TWI773389B (zh) * 2021-06-18 2022-08-01 大陸商美律電子(深圳)有限公司 振動感測組件
CN114598977B (zh) * 2022-05-10 2022-09-09 迈感微电子(上海)有限公司 一种mems麦克风和语音通讯设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104980850A (zh) * 2014-04-10 2015-10-14 美商楼氏电子有限公司 双振膜声学装置
CN205179362U (zh) * 2015-12-08 2016-04-20 歌尔声学股份有限公司 单指向mems麦克风
CN106153241A (zh) * 2016-08-25 2016-11-23 华东光电集成器件研究所 一种mems电容式压力传感器
US20170359648A1 (en) * 2016-06-13 2017-12-14 Dongbu Hitek Co., Ltd. Mems microphone and method of manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0963136B1 (en) * 1998-05-08 2011-08-31 Panasonic Corporation Speaker
KR101496200B1 (ko) * 2013-08-08 2015-02-27 싸니코전자 주식회사 복수의 진동판을 구비한 멤스 마이크로폰
CN103618985B (zh) * 2013-11-19 2016-08-31 瑞声科技(南京)有限公司 骨导式麦克风
US9661411B1 (en) * 2015-12-01 2017-05-23 Apple Inc. Integrated MEMS microphone and vibration sensor
EP3703389A1 (en) * 2016-08-26 2020-09-02 Sonion Nederland B.V. Vibration sensor with low-frequency roll-off response curve
CN206413130U (zh) * 2016-12-27 2017-08-15 歌尔科技有限公司 一种麦克风和环境传感器的集成装置
CN206602637U (zh) * 2017-01-12 2017-10-31 瑞声科技(新加坡)有限公司 振膜及使用该振膜的电声器件
CN208386931U (zh) * 2018-06-29 2019-01-15 歌尔股份有限公司 振动传感器和音频设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104980850A (zh) * 2014-04-10 2015-10-14 美商楼氏电子有限公司 双振膜声学装置
CN205179362U (zh) * 2015-12-08 2016-04-20 歌尔声学股份有限公司 单指向mems麦克风
US20170359648A1 (en) * 2016-06-13 2017-12-14 Dongbu Hitek Co., Ltd. Mems microphone and method of manufacturing the same
CN106153241A (zh) * 2016-08-25 2016-11-23 华东光电集成器件研究所 一种mems电容式压力传感器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11961520B2 (en) * 2020-01-07 2024-04-16 Samsung Electronics Co., Ltd. Voice recognition system and display device using the same
CN112714389A (zh) * 2020-12-25 2021-04-27 歌尔微电子有限公司 麦克风和电子设备
CN112714389B (zh) * 2020-12-25 2022-03-22 歌尔微电子有限公司 麦克风和电子设备
WO2023144366A1 (en) * 2022-01-31 2023-08-03 Sonion Nederland B.V. Vibration sensor with controlled vibration mode
WO2023144365A1 (en) * 2022-01-31 2023-08-03 Sonion Nederland B.V. Compact vibration sensor
CN116045922A (zh) * 2023-03-16 2023-05-02 湖南大学 一种用于深海测量的深度计
CN116045922B (zh) * 2023-03-16 2023-06-23 湖南大学 一种用于深海测量的深度计

Also Published As

Publication number Publication date
CN108513241A (zh) 2018-09-07
CN108513241B (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
WO2020000594A1 (zh) 振动传感器和音频设备
CN212086490U (zh) 振动传感器和电子设备
WO2018161736A1 (zh) 移动终端
CN111131988B (zh) 振动传感器和音频设备
TWI229565B (en) Electret microphone
US20030068055A1 (en) Electret microphone
JP2007306125A (ja) カード型memsマイクロホン
TW423260B (en) Piezoelectric sounder
MXPA05002088A (es) Microfono condensador en forma de paralelepipedo.
WO2022000794A1 (zh) 振动传感器
CN215187377U (zh) 振动传感器
WO2015172601A1 (zh) 扬声器模组
WO2022089299A1 (zh) 骨声纹传感器模组和电子设备
US11895452B2 (en) Bone conduction microphone
WO2023000999A1 (zh) 振动传感器和电子设备
WO2022100551A1 (zh) Mems压电微扬声器、微扬声器单元及电子设备
WO2022000852A1 (zh) 振动传感器
WO2022000792A1 (zh) 振动传感器
US9357313B2 (en) Microphone unit having a plurality of diaphragms and a signal processing unit
CN215187378U (zh) 振动传感器
WO2015131411A1 (zh) 电子打击乐器及其非接触式传感器和信号检测方法
WO2021248929A1 (zh) 硅基麦克风装置及电子设备
CN114786104A (zh) 一种麦克风结构和语音通讯设备
WO2022000853A1 (zh) 振动传感器
Yasuno et al. Temperature characteristics of electret condenser microphones

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924929

Country of ref document: EP

Kind code of ref document: A1