WO2022000794A1 - 振动传感器 - Google Patents

振动传感器 Download PDF

Info

Publication number
WO2022000794A1
WO2022000794A1 PCT/CN2020/115028 CN2020115028W WO2022000794A1 WO 2022000794 A1 WO2022000794 A1 WO 2022000794A1 CN 2020115028 W CN2020115028 W CN 2020115028W WO 2022000794 A1 WO2022000794 A1 WO 2022000794A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
circuit board
diaphragm
vibration sensor
hole
Prior art date
Application number
PCT/CN2020/115028
Other languages
English (en)
French (fr)
Inventor
曾鹏
陈兴福
Original Assignee
瑞声声学科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022000794A1 publication Critical patent/WO2022000794A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers

Definitions

  • the utility model relates to the field of acoustic-electrical conversion, in particular to a vibration sensor used for bone conduction electronic products.
  • Vibration sensors are used to convert vibration signals into electrical signals.
  • the existing MEMS vibration sensor includes a diaphragm assembly as a vibration sensing device and a MEMS microphone as a vibration detection device that converts vibration signals into electrical signals. Since the vibration sensing device and the vibration detection device are integrated together, the structure is relatively complex. The signal bandwidth that can be picked up is smaller.
  • the purpose of the utility model is to provide a vibration sensor with high sensitivity and good reliability.
  • the utility model provides a vibration sensor, which includes:
  • circuit board encloses a board cavity, and one side of the circuit board is provided with a first through hole passing through it;
  • An inner shell the inner shell is covered and fixed on the circuit board and covers the first through hole, the inner shell and the circuit board together form a resonant cavity, and the inner shell is provided with a first through hole.
  • the outer casing is covered and fixed on the circuit board and accommodates the inner casing therein, and the outer casing, the inner casing and the circuit board together form a accommodating cavity;
  • the MEMS microphone is accommodated in the resonant cavity and is electrically connected to the circuit board;
  • the diaphragm assembly is accommodated in the accommodating cavity and divides the accommodating cavity into a first cavity and a second cavity, and the first cavity communicates with the resonant cavity through the second through hole ;
  • the vibration of the diaphragm assembly drives the air pressure in the receiving cavity to change.
  • the vibration sensor further includes an ASIC chip, the ASIC chip is accommodated in the resonant cavity and is electrically connected to the MEMS microphone.
  • the MEMS microphone includes a base fixed on the circuit board and having a back cavity, a first diaphragm and a back plate supported on an end of the base away from the circuit board; the base is connected to the base.
  • the part connected to the circuit board surrounds the first through hole, and the back cavity communicates with the board cavity through the first through hole; the first diaphragm and the back plate are spaced to form a capacitor structure.
  • the casing is provided with a first pressure relief hole therethrough.
  • the diaphragm assembly is provided with a second pressure relief hole therethrough, and the second pressure relief hole communicates the first cavity and the second cavity.
  • the inner shell includes an inner shell plate spaced apart from the circuit board and an inner shell plate that is bent and extended toward the circuit board from a peripheral edge of the inner shell plate and fixed to the circuit board, the The second through hole is disposed through the inner shell plate, and the diaphragm assembly is fixed on the inner plate;
  • the shell includes an outer shell plate opposite to the circuit board at a distance, and the outer shell plate is connected to the circuit from the peripheral edge of the outer shell plate to the circuit board.
  • the board is bent and extended in the direction of the circuit board and fixed on the outer board of the circuit board, the first pressure relief hole is arranged through the outer shell board, the outer board surrounds the inner board, the outer shell board and the inner shell board Relative settings.
  • the diaphragm assembly includes a gasket fixed on the inner side plate and arranged around the second through hole, and a second diaphragm fixed on the side of the gasket away from the second through hole, so The spacer, the second diaphragm and the inner side plate together form the first cavity, and the second pressure relief hole is arranged through the second diaphragm.
  • the diaphragm assembly further includes a mass block fixedly connected to the second diaphragm; the mass block is attached to a side of the second diaphragm close to the first cavity and/or the The second diaphragm is close to one side of the second cavity.
  • the mass blocks located on the same side of the second diaphragm include a plurality of mass block units spaced apart from each other.
  • the mass block is wrapped by the second diaphragm to form a fixation.
  • the second diaphragm includes two second diaphragms fixed on the spacer and stacked on each other, and the mass block is sandwiched and wrapped between the two second diaphragms.
  • the orthographic projection area of the first diaphragm on the circuit board along the vibration direction is smaller than the orthographic projection area of the second diaphragm on the circuit board along the vibration direction.
  • an inner shell and an outer shell are respectively covered on the circuit board, the outer shell, the inner shell and the circuit board together form a receiving cavity, and a diaphragm assembly is arranged in the receiving cavity to accommodate the
  • the cavity is divided into a first cavity and a second cavity; the inner shell and the circuit board are arranged to jointly enclose a resonant cavity, and the first cavity is communicated with the resonant cavity through the second through hole; and a MEMS microphone is arranged in the resonant cavity; through the above structural design , the diaphragm assembly is accommodated in the receiving cavity of the circuit board, and the MEMS microphone and the diaphragm assembly are spaced apart from each other, which avoids the integration and integration of the vibration sensing device and the vibration detection device in the related art.
  • the structure of the MEMS microphone and the diaphragm assembly is simple and convenient. MEMS microphones can better sense the vibrations generated by the air pressure changes in the containment cavity, and convert the induced vibration signals into electrical signals, so as to realize the transmission of the vibration signals to the containment cavity. Both high-frequency vibration and low-frequency vibration have better vibration response, effectively improving sensitivity.
  • the circuit board is provided with a board cavity and a first through hole passing through it, the base surrounds the first through hole, and the back cavity is communicated with the board cavity through the first through hole, so that the back cavity, the first through hole and the board cavity are connected together.
  • the rear cavity is formed, which is equivalent to increasing the volume of the cavity of the back cavity, so that the MEMS microphone can better sense the vibration signal, thereby effectively improving the signal-to-noise ratio.
  • Fig. 1 is the three-dimensional structure schematic diagram of the vibration sensor of the present invention
  • Fig. 2 is the partial three-dimensional structure exploded schematic diagram of the vibration sensor of the present invention
  • Fig. 3 is a sectional view along line A-A in Fig. 1;
  • FIG. 4 is a schematic structural diagram of a vibration sensor of the present invention.
  • FIG. 5 is a schematic structural diagram of the second embodiment of the fixing mode of the mass block and the second diaphragm of the vibration sensor in FIG. 4;
  • FIG. 6 is a schematic structural diagram of the third embodiment of the fixing mode of the mass block and the second diaphragm of the vibration sensor in FIG. 4;
  • FIG. 7 is a schematic structural diagram of another embodiment after the structure of the mass block in FIG. 6 is changed.
  • FIG. 8 is a schematic structural diagram of the fourth embodiment of the fixing method of the mass block and the diaphragm in the vibration sensor of the present invention.
  • the present invention provides a vibration sensor 100 , which includes a circuit board 1 , an inner shell 2 , an outer shell 3 , a MEMS microphone 4 and a diaphragm assembly 5 .
  • a circuit board 1 the circuit board 1 encloses a board cavity 10, and one side of the circuit board 1 is provided with a first through hole 11 penetrating therethrough.
  • the circuit board 1 is designed as a hollow three-dimensional structure, and the board cavity 10 is formed inside.
  • the inner shell 2 is covered and fixed on the circuit board 1 and covers the first through hole 11 .
  • the inner shell 2 and the circuit board 1 together form a resonance cavity 20 , namely the first through hole 11 . communicate with the resonant cavity 20 .
  • the inner shell 2 is provided with a second through hole 23 therethrough.
  • the inner shell 2 includes an inner shell plate 21 that is spaced apart from the circuit board 1 , and is bent and extended toward the circuit board 1 from the periphery of the inner shell plate 21 and fixed to the circuit Inside panel 22 of panel 1 .
  • the second through hole 23 is disposed through the inner shell plate 21 .
  • the outer shell 3 is covered and fixed on the circuit board 1 and accommodates the inner shell 2 therein.
  • the outer shell 3 , the inner shell 2 and the circuit board 1 together form a receiving cavity 30 .
  • the casing 3 includes a casing plate 31 opposite to the circuit board 1 at intervals, and a casing plate 31 that is bent and extended toward the circuit board 1 from the periphery of the casing plate 31 and is fixed to the circuit board 1 .
  • Outer panel 32 .
  • the outer panel 32 surrounds the inner panel 22 , and the outer panel 31 is disposed opposite to the inner panel 21 .
  • the MEMS (Microelectro Mechanical Systems) microphone 4 that is, a micro-electromechanical system microphone, the MEMS microphone 4 is accommodated in the resonant cavity 20 and is electrically connected to the circuit board 1 .
  • the MEMS microphone 4 includes a base 41 fixed on the circuit board 1 and having a back cavity 40 , a first diaphragm 42 supported on an end of the base 41 away from the circuit board 1 , and a back cavity 40 .
  • Plate 43 .
  • the base 41 and the circuit board 1 together form the back cavity 40 .
  • the portion of the base 41 connected to the circuit board 1 surrounds the first through hole 11 .
  • the back cavity 40 communicates with the plate cavity 10 through the first through hole 11 .
  • the back cavity 40 , the first through hole 11 and the plate cavity 10 together form a back cavity 7 , and the back cavity 7 is equivalent to increasing the volume of the back cavity 40 , thereby making the MEMS microphone 4 It can better sense the vibration signal, thereby effectively improving the signal-to-noise ratio.
  • the first diaphragm 42 and the back plate 43 are spaced apart to form a capacitance structure.
  • the capacitance generated by the MEMS microphone 4 can be changed, thereby Realize changes in electrical signals.
  • the MEMS microphone 4 converts the external input vibration signal or pressure signal into an electrical signal, and realizes the conversion of the vibration signal into an electrical signal.
  • the diaphragm assembly 5 is accommodated in the accommodating cavity 30 and divides the accommodating cavity 30 into a first cavity 301 and a second cavity 302 .
  • the first cavity 301 is connected to the The resonant cavity 20 is connected.
  • the performance of the MEMS microphone 4 is relatively stable under different temperature conditions, its sensitivity is basically not affected by factors such as temperature, vibration, temperature and time, and the reliability and stability are high. Because the MEMS microphone 4 can be subjected to high temperature reflow soldering at 260° C. and the performance is not affected, the basic performance with high accuracy can still be achieved without the audio debugging process after assembly.
  • the vibration sensor further includes an ASIC (Application Specific Integrated Circuit) chip 6 , the ASIC chip 6 is accommodated in the resonant cavity 20 and It is electrically connected with the MEMS microphone 4 .
  • the ASIC chip 6 provides an external bias for the MEMS microphone 4, and an effective bias will enable the MEMS microphone 4 to maintain stable acoustic sensitivity and electrical parameters in the entire operating temperature range, and can also support different sensitivities
  • the microphone structure design is more flexible and reliable.
  • the casing 3 is provided with a first pressure relief hole 33 penetrating the casing 3 .
  • the first pressure relief hole 33 is one and is provided through the casing plate 31 .
  • the setting of the first pressure relief hole 23 plays the role of balancing the air pressure.
  • the shell plate 31 is attached and fixed to the interior of the mobile device through surface assembly technology, and the first pressure relief hole 33 is blocked to seal the second cavity 302, which effectively avoids external air conduction sound signals interference, thereby improving the bone conduction sensitivity and frequency characteristics of the vibration sensor 100 .
  • the position and number of the first pressure relief holes 33 are not limited to this, and the principles are the same.
  • the position and number of the first pressure relief holes 33 are not limited to this, and the principles are the same.
  • the diaphragm assembly 5 is provided with a second pressure relief hole 50 therethrough, and the second pressure relief hole 50 communicates the first cavity 301 and the second cavity 302 to balance all the The gas pressures of the second cavity 302 and the first cavity 301 are balanced, that is, the gas pressures of the second cavity 302 and the resonant cavity 20 are balanced.
  • the diaphragm assembly 5 includes a gasket 51 fixed on the inner side plate 22 and disposed around the second through hole 23 , and a gasket 51 fixed on the side of the gasket 51 away from the second through hole 23 .
  • the second diaphragm 52 The spacer 51 , the second diaphragm 52 and the inner side plate 22 together form the first cavity 301 . That is, the spacer 51 is used to space the second diaphragm 52 from the circuit board 1 to provide a vibration space. Of course, the spacer 51 can also be integrally formed with the second diaphragm 52 .
  • the second pressure relief hole 50 is disposed through the second diaphragm 52 . Of course, the position of the second pressure relief hole 50 is not limited to this, and the principle is the same.
  • the diaphragm assembly 5 further includes a mass block 53 fixedly connected to the second diaphragm 52 .
  • the mass block 53 is attached to the side of the second diaphragm 52 close to the first cavity 301 and/or the side of the second diaphragm 52 close to the second cavity 302 .
  • the vibration film is The component 5 vibrates.
  • the vibration of the mass block 53 drives the diaphragm assembly to vibrate, so that the air pressure in the receiving cavity 30 and the resonant cavity 20 changes, so that the MEMS accommodated in the resonant cavity 20 changes.
  • the first diaphragm 42 of the microphone 4 vibrates, changing the distance between the first diaphragm 42 and the back plate 43 , that is, changing the capacitance generated by the MEMS microphone 4 , thereby converting the vibration signal into electrical energy.
  • the signal that is, an electrical signal that generates a synchronous change
  • the signal is transmitted to the circuit board 1 , so that the MEMS microphone 4 converts an external input vibration signal or pressure signal into an electrical signal, and converts the vibration signal into an electrical signal.
  • the side of the circuit board 1 of the vibration sensor 100 is attached to the neck, and when a person speaks, the bone conduction transmits the vibration signal, so as to realize the above transformation process.
  • the MEMS microphone 4 directly senses and detects the external input vibration signal, so that the MEMS microphone 4 can ensure the accurate detection of changes in air pressure to the greatest extent, especially for high-frequency vibration greater than 1KHz.
  • the sensitivity and reliability of the vibration sensor 100 are described.
  • the MEMS microphone 4 is accommodated in the resonant cavity 20, and the diaphragm assembly 5 is accommodated in the accommodation cavity 30, so that the MEMS microphone 3 and the vibration
  • the components 4 are spaced apart from each other to avoid the integration of the vibration sensing device and the vibration detection device in the related art.
  • the MEMS microphone 4 and the diaphragm assembly 5 have simple structures, are easy to produce, and can pick up a wide signal bandwidth.
  • the mass block 53 is attached to the side of the second diaphragm 52 close to the second cavity 302 .
  • the mass block 53 , the second diaphragm 52 and the spacer 51 are all located in the receiving cavity 30 between the inner casing 2 and the outer casing 3 , which saves space and facilitates production.
  • the orthographic projection area of the first diaphragm 42 on the circuit board 1 along the vibration direction is smaller than the orthographic projection area of the second diaphragm 52 on the circuit board 1 along the vibration direction.
  • the contact area between the second diaphragm 52 and the gas in the receiving cavity 30 is larger, so that the gas can vibrate better. Speaker-induced PCB noise results in lower vibration coupling, better acoustic performance, and ease of use.
  • FIG. 5 is a schematic structural diagram of the second embodiment of the fixing mode of the mass block and the second diaphragm of the vibration sensor in the embodiment of FIG. 4 .
  • the difference between the vibration sensor 200 of this embodiment is that the mass block 253 is attached to the side of the second diaphragm 252 close to the first cavity 301 .
  • the change of this embodiment reduces the occupation of the volume of the second cavity 302 by the mass 253 , increases the volume of the second cavity 302 , and further improves the sensitivity of the vibration sensor 200 .
  • the basis is the same as that of the above-mentioned embodiment shown in FIG. 4 , and details are not repeated here.
  • FIG. 6 is a schematic structural diagram of the third embodiment of the fixing method of the mass block and the second diaphragm of the vibration sensor in FIG. 4 .
  • the difference between the vibration sensor 300 of this embodiment is that the mass 353 is attached to the side of the second diaphragm 352 close to the first cavity 3301 and the second diaphragm 352 is close to the second diaphragm 352 One side of cavity 3302. That is, the mass blocks 353 include two groups, which are respectively attached to opposite sides of the second diaphragm 352 .
  • This structural design further increases the inertia of the vibration component 35, thereby further improving the sensitivity.
  • the basis is the same as that of the above-mentioned embodiment shown in FIG. 4 , and details are not repeated here.
  • FIG. 7 is a schematic structural diagram of another embodiment after the structure of the mass block in FIG. 6 is changed.
  • the mass 453 located on the same side of the second diaphragm 452 includes a plurality of mass units 4531 spaced apart from each other.
  • the structural design is also to increase the inertia of the vibration component 45 to further improve the sensitivity.
  • the basis is the same as that of the above-mentioned embodiment shown in FIG. 6 , and details are not repeated here.
  • FIG. 8 is a schematic structural diagram of the fourth embodiment of the fixing method of the mass block and the diaphragm in the vibration sensor of the present invention. Compared with other embodiments of the present invention, the main difference is that the mass block 553 is wrapped by the second diaphragm 552 to form a fixation.
  • the second diaphragm 552 includes two second sub-diaphragms 5521 fixed on the spacer 551 and stacked on each other, and the mass block 553 is sandwiched and wrapped around the two second sub-diaphragms Between 5521.
  • This structural design increases the fixing strength of the mass block 553 and further improves the reliability.
  • an inner shell and an outer shell are respectively covered on the circuit board, the outer shell, the inner shell and the circuit board together form a receiving cavity, and a diaphragm assembly is arranged in the receiving cavity to accommodate the
  • the cavity is divided into a first cavity and a second cavity; the inner shell and the circuit board are arranged to jointly enclose a resonant cavity, and the first cavity is communicated with the resonant cavity through the second through hole; and a MEMS microphone is arranged in the resonant cavity; through the above structural design , the diaphragm assembly is accommodated in the receiving cavity of the circuit board, and the MEMS microphone and the diaphragm assembly are spaced apart from each other, which avoids the integration of the vibration sensing device and the vibration detection device in the related art.
  • the structure of the MEMS microphone and the diaphragm assembly is simple and easy to produce. , and the signal that can be picked up has a larger bandwidth; while the MEMS microphone can better sense the vibration generated by the air pressure change in the containment cavity, and convert the induced vibration signal into an electrical signal, so as to achieve high transmission to the containment cavity. Both high-frequency vibration and low-frequency vibration have better vibration response, which effectively improves the sensitivity.
  • the circuit board is provided with a board cavity and a first through hole passing through it, the base surrounds the first through hole, and the back cavity is communicated with the board cavity through the first through hole, so that the back cavity, the first through hole and the board cavity are connected together.
  • the rear cavity is formed, which is equivalent to increasing the volume of the cavity of the back cavity, so that the MEMS microphone can better sense the vibration signal, thereby effectively improving the signal-to-noise ratio.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Micromachines (AREA)

Abstract

本实用新型提供了一种振动传感器,其包括电路板、内壳、外壳、MEMS麦克风及振膜组件;电路板具有板腔且设有第一通孔;内壳盖设固定于电路板并覆盖第一通孔,内壳与电路板共同围成谐振腔,内壳设有第二通孔;外壳盖设固定于电路板并将内壳收容,外壳、内壳及电路板共同围成收容腔;MEMS麦克风收容于谐振腔内并与电路板电性连接;第一振膜与背极板间隔形成电容结构;振膜组件收容于收容腔内并将收容腔分隔成第一腔和第二腔,第一腔通过第二通孔与谐振腔连通。与相关技术相比,本实用新型的振动传感器灵敏度更高,可靠性更好。

Description

振动传感器 技术领域
本实用新型涉及声电转换领域,尤其涉及一种用于骨传导电子产品的振动传感器。
背景技术
振动传感器,用于将振动信号转化为电信号。目前现有的MEMS振动传感器包括作为振动感应装置的振膜组件以及将振动信号转化为电信号的作为振动检测装置的MEMS麦克风,由于振动感应装置和振动检测装置均集成于一起,结构较复杂,所能拾取的信号带宽较小。
技术问题
因此,实有必要提供一种新的振动传感器解决上述技术问题。
技术解决方案
本实用新型的目的在于提供一种灵敏度高、可靠性好的振动传感器。
为了达到上述目的,本实用新型提供了一种振动传感器,其包括:
电路板,所述电路板围成板腔,所述电路板的其中一侧设有贯穿其上的第一通孔;
内壳,所述内壳盖设固定于所述电路板并覆盖所述第一通孔,所述内壳与所述电路板共同围成谐振腔,所述内壳设有贯穿其上的第二通孔;
外壳,所述外壳盖设固定于所述电路板并将所述内壳收容于其内,所述外壳、所述内壳以及所述电路板共同围成收容腔;
MEMS麦克风,所述MEMS麦克风收容于所述谐振腔内并与所述电路板电性连接;以及,
振膜组件,所述振膜组件收容于所述收容腔内并将所述收容腔分隔成第一腔和第二腔,所述第一腔通过所述第二通孔与所述谐振腔连通;
所述电路板背离所述板腔的一侧和/或所述外壳远离所述收容腔的一侧输入振动信号或压力信号时,所述振膜组件振动带动所述收容腔内的气压产生变化。
优选的,所述振动传感器还包括ASIC芯片,所述ASIC芯片收容于所述谐振腔内并与所述MEMS麦克风电性连接。
优选的,所述MEMS麦克风包括固定于所述电路板且具有背腔的基座、支撑于所述基座远离所述电路板一端的第一振膜和背极板;所述基座与所述电路板连接的部分环绕所述第一通孔,所述背腔通过所述第一通孔与所述板腔连通;所述第一振膜与所述背极板间隔形成电容结构。
优选的,所述外壳设有贯穿其上的第一泄压孔。
优选的,所述振膜组件设有贯穿其上的第二泄压孔,所述第二泄压孔将所述第一腔和所述第二腔连通。
优选的,所述内壳包括与所述电路板间隔相对的内壳板和由所述内壳板的周缘向所述电路板方向弯折延伸并固定于所述电路板的内侧板,所述第二通孔贯穿所述内壳板设置,所述振膜组件固定于所述内侧板;所述外壳包括与所述电路板间隔相对的外壳板和由所述外壳板的周缘向所述电路板方向弯折延伸并固定于所述电路板的外侧板,所述第一泄压孔贯穿所述外壳板设置,所述外侧板环绕所述内侧板,所述外壳板与所述内壳板相对设置。
优选的,所述振膜组件包括固定于所述内侧板并环绕所述第二通孔设置的垫片以及固定于所述垫片远离所述第二通孔一侧的第二振膜,所述垫片、所述第二振膜及所述内侧板共同围成所述第一腔,所述第二泄压孔贯穿所述第二振膜设置。
优选的,所述振膜组件还包括与所述第二振膜固定连接的质量块;所述质量块贴设于所述第二振膜靠近所述第一腔的一侧和/或所述第二振膜靠近所述第二腔的一侧。
优选的,位于所述第二振膜同一侧的所述质量块包括多个相互间隔设置质量块单元。
优选的,所述质量块由所述第二振膜包裹以形成固定。
优选的,所述第二振膜包括固定于所述垫片并相互叠设的两个第二子振膜,所述质量块夹设包裹于两个所述第二子振膜之间。
优选的,所述第一振膜沿其振动方向向所述电路板上的正投影面积小于所述第二振膜沿其振动方向向所述电路板上的正投影面积。
有益效果
与相关技术相比,本实用新型的振动传感器中,通过电路板上分别盖设内壳和外壳,外壳、内壳以及电路板共同围成收容腔,在收容腔内设置振膜组件以将收容腔分隔呈第一腔和第二腔;通过设置内壳与电路板共同围成谐振腔,第一腔通过第二通孔与谐振腔连通;并在谐振腔内设置MEMS麦克风;通过上述结构设计,振膜组件收容于电路板的收容腔内,且MEMS麦克风和振膜组件相互间隔设置,避免了相关技术振动感应装置和振动检测装置集成与一体,MEMS麦克风和振膜组件的结构简单,便于生产,并且能够拾取的信号宽带较大;而MEMS麦克风可更好的感应由收容腔内产生的气压变化而产生的振动,并将感应的振动信号转化为电信号,从而实现对收容腔传递的高频振动和低频振动均具有更好的振动响应,有效提高了灵敏度。另外,电路板设有板腔和贯穿其上的第一通孔,基座环绕第一通孔,背腔通过第一通孔与板腔连通,使得背腔、第一通孔及板腔共同形成后腔,该后腔相当于将背腔的腔体体积增大,从而使得MEMS麦克风可更好的感应振动信号,从而有效提升信噪比。
附图说明
为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本实用新型振动传感器的立体结构示意图;
图2为本实用新型振动传感器的部分立体结构分解示意图;
图3为沿图1中A-A线的剖示图;
图4为本实用新型振动传感器的结构示意图;
图5为图4中振动传感器的质量块与第二振膜固定方式的第二实施方式结构示意图;
图6为图4中振动传感器的质量块与第二振膜固定方式的第三实施方式结构示意图;
图7为图6中质量块结构变化后的另一实施方式结构示意图;
图8为本实用新型振动传感器中质量块与振膜固定方式的第四实施方式结构示意图。
本发明的实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本实用新型保护的范围。
需要说明的是,各实施例之间的技术方案可相互组合,但必须是以本领域普通技术人员能够实现为基础。
请同时参阅图1-4所示,本实用新型提供了一种振动传感器100,其包括电路板1、内壳2、外壳3、MEMS麦克风4以及振膜组件5。
电路板1,所述电路板1围成板腔10,所述电路板1的其中一侧设有贯穿其上的第一通孔11。比如,将所述电路板1设计为中空的立体结构,其内部则形成所述板腔10。
所述内壳2盖设固定于所述电路板1并覆盖所述第一通孔11,所述内壳2与所述电路板1共同围成谐振腔20,即所述第一通孔11与所述谐振腔20连通。所述内壳2设有贯穿其上的第二通孔23。
本实施方式中,所述内壳2包括与所述电路板1间隔相对的内壳板21和由所述内壳板21的周缘向所述电路板1方向弯折延伸并固定于所述电路板1的内侧板22。所述第二通孔23贯穿所述内壳板21设置。
所述外壳3盖设固定于所述电路板1并将所述内壳2收容于其内,所述外壳3、所述内壳2以及所述电路板1共同围成收容腔30。
本实施方式中,所述外壳3包括与所述电路板1间隔相对的外壳板31和由所述外壳板31的周缘向所述电路板1方向弯折延伸并固定于所述电路板1的外侧板32。所述外侧板32环绕所述内侧板22,所述外壳板31与所述内壳板21相对设置。
所述MEMS(Microelectro Mechanical Systems)麦克风4,即微机电系统麦克风,所述MEMS麦克风4收容于所述谐振腔20内并与所述电路板1电性连接。
本实施方式中,所述MEMS麦克风4包括固定于所述电路板1且具有背腔40的基座41、支撑于所述基座41远离所述电路板1一端的第一振膜42和背极板43。
所述基座41与所述电路板1共同围成所述背腔40。其中,所述基座41与所述电路板1连接的部分环绕所述第一通孔11。所述背腔40通过所述第一通孔11与所述板腔10连通。所述背腔40、所述第一通孔11及所述板腔10共同围成后腔7,该后腔7相当于将所述背腔40的腔体体积增大,从而使得MEMS麦克风4可更好的感应振动信号,从而有效提升信噪比。
所述第一振膜42与所述背极板43间隔形成电容结构,通过改变所述第一振膜42与所述背极板43的间距以改变所述MEMS麦克风4产生的电容大小,从而实现电信号的变化。从而使得所述MEMS麦克风4将外部的输入振动信号或压力信号转化为电信号,实现振动信号转化为电信号。
所述振膜组件5收容于所述收容腔30内并将所述收容腔30分隔成第一腔301和第二腔302,所述第一腔301通过所述第二通孔23与所述谐振腔20连通。
因MEMS麦克风4在不同温度情况下的性能均较稳定,其灵敏度基本不会受温度、振动、温度和时间等因素影响,可靠性好,稳定性高。因MEMS麦克风4可受260℃的高温回流焊且性能不受影响,因此,组装后省去音频调试工序仍可实现准确度高的基本性能。
更优的,为了进一步改善所述振动传感器100的灵敏度,本实施方式中,所述振动传感器还包括ASIC(Application Specific Integrated Circuit)芯片6,所述ASIC芯片6收容于所述谐振腔20内并与所述MEMS麦克风4电性连接。所述ASIC芯片6为所述MEMS麦克风4提供外部偏置,有效的偏置将使所述MEMS麦克风4在整个工作温度范围内都可保持稳定的声学灵敏度和电气参数,还可支持不同敏感性的麦克风结构设计,设计更灵活可靠。
本实施方式中,所述外壳3设有贯穿其上的第一泄压孔33。具体的,所述第一泄压孔33为一个且贯穿所述外壳板31设置。整机SMT装配时,该第一泄压孔23的设置起到平衡气压的作用。具体为,所述外壳板31通过表面组装技术贴设固定于移动设备的内部,并堵住所述第一泄压孔33实现所述第二腔302的密封,有效避免了外界气导声信号干扰,进而提高了振动传感器100骨导灵敏度和频率特性。当然,所述第一泄压孔33的位置和数量不限于此,其原理都一样。当然,所述第一泄压孔33的位置和数量不限于此,其原理都一样。
同理,所述振膜组件5设有贯穿其上的第二泄压孔50,所述第二泄压孔50将所述第一腔301和所述第二腔302连通,用以平衡所述第二腔302与所述第一腔301的气压平衡,也即平衡所述第二腔302与谐振腔20的气压平衡。
具体的,所述振膜组件5包括固定于所述内侧板22并环绕所述第二通孔23设置的垫片51以及固定于所述垫片51远离所述第二通孔23一侧的第二振膜52。所述垫片51、所述第二振膜52及所述内侧板22共同围成所述第一腔301。即所述垫片51用于将第二振膜52与所述电路板1间隔以提供振动空间。当然,垫片51也可与第二振膜52为一体结构。所述第二泄压孔50贯穿所述第二振膜52设置,当然,所述第二泄压孔50的位置不限于此,其原理都一样。
本实施方式中,所述振膜组件5还包括与所述第二振膜52固定连接的质量块53。所述质量块53贴设于所述第二振膜52靠近所述第一腔301的一侧和/或所述第二振膜52靠近所述第二腔302的一侧。
上述结构的振动传感器100中,所述电路板1背离所述板腔10的一侧和/或所述外壳3远离所述收容腔30的一侧输入振动信号或压力信号时,所述振膜组件5产生振动,具体的为所述质量块53振动带动振膜组件振动,使得所述收容腔30和所述谐振腔20内的气压产生变化,从而使得收容于所述谐振腔20内的MEMS麦克风4的第一振膜42振动,改变了所述第一振膜42与所述背极板43的间距,即改变了所述MEMS麦克风4产生的电容大小,从而实现将振动信号转变为电信号,即产生同步变化的电信号传递至电路板1,从而使得所述MEMS麦克风4将外部的输入振动信号或压力信号转化为电信号,实现振动信号转化为电信号。比如,振动传感器100的电路板1侧贴合于颈部,人说话时,实现骨导传递振动信号,以实现上述转化过程。该过程中,MEMS麦克风4直接感受检测外部的输入振动信号,从而使得MEMS麦克风4最大程度的保证准确检测至气压的变化,特别是对大于1KHz的高频振动同样具有准确响应,有效提高了所述振动传感器100的灵敏度和可靠性。
上述结构的振动传感器100中,所述MEMS麦克风4收容于所述谐振腔20内,并同时所述振膜组件5 收容于所述收容腔30内,从而使得所述MEMS麦克风3和所述振动组件4相互间隔设置,避免了相关技术振动感应装置和振动检测装置集成一体,所述 MEMS麦克风4和所述振膜组件5的结构简单,便于生产,并且能够拾取的信号宽带较大。
如图4所示,所述质量块53贴设于所述第二振膜52靠近所述第二腔302的一侧。质量块53、第二振膜52以及垫片51均位于所述内壳2与所述外壳3之间的所述收容腔30内,节省空间,便于生产。
更优的,所述第一振膜42沿其振动方向向所述电路板1上的正投影面积小于所述第二振膜52沿其振动方向向所述电路板1上的正投影面积。该结构设计第二振膜52与收容腔30内气体接触面积更大,使其更好的振动气体,第一振膜42面积相对较小,使得MEMS麦克风4会对由安装在同一PCB上的扬声器引起的PCB噪声产生更低的振动耦合,声学性能更好,方便使用。
请结合图5所示,为图4中实施方式的振动传感器的质量块与第二振膜固定方式的第二实施方式结构示意图。该实施方式的振动传感器200其区别点在于:所述质量块253贴设于所述第二振膜252靠近所述第一腔301的一侧。该实施方式的改变减少质量块253对第二腔302体积的占用,增大了第二腔302的体积,进一步提高了振动传感器200的灵敏度。除此之外,其与上述图4所示实施方式基础相同,在此不再赘述。
请结合图6所示,为图4中振动传感器的质量块与第二振膜固定方式的第三实施方式结构示意图。该实施方式的振动传感器300其区别点在于:所述质量块353贴设于所述第二振膜352靠近所述第一腔3301的一侧和所述第二振膜352靠近所述第二腔3302的一侧。即质量块353包括两组,分别贴设于第二振膜352的相对两侧。该结构设计进一步增加了振动组件35的惯性量,从而进一步提高灵敏度。除此之外,其与上述图4所示实施方式基础相同,在此不再赘述。
请结合图7,为图6中质量块结构变化后的另一实施方式结构示意图。该实施方式的振动传感器400中,位于所述第二振膜452同一侧的所述质量块453包括多个相互间隔设置质量块单元4531。该结构设计同样为增加振动组件45的惯性量以进一步提高灵敏度。除此之外,其与上述图6所示实施方式基础相同,在此不再赘述。
请结合图8,为本实用新型振动传感器中质量块与振膜固定方式的第四实施方式结构示意图。其与本实用新型的其它实施方式相比,主要区别在于,所述质量块553由所述第二振膜552包裹以形成固定。
具体的,所述第二振膜552包括固定于所述垫片551并相互叠设的两个第二子振膜5521,所述质量块553夹设包裹于两个所述第二子振膜5521之间。该结构设计增加了质量块553的固定强度,进一步提高了可靠性。
与相关技术相比,本实用新型的振动传感器中,通过电路板上分别盖设内壳和外壳,外壳、内壳以及电路板共同围成收容腔,在收容腔内设置振膜组件以将收容腔分隔呈第一腔和第二腔;通过设置内壳与电路板共同围成谐振腔,第一腔通过第二通孔与谐振腔连通;并在谐振腔内设置MEMS麦克风;通过上述结构设计,振膜组件收容于电路板的收容腔内,且MEMS麦克风和振膜组件相互间隔设置,避免了相关技术振动感应装置和振动检测装置集成一体,MEMS麦克风和振膜组件的结构简单,便于生产,并且能够拾取的信号宽带较大;而MEMS麦克风可更好的感应由收容腔内产生的气压变化而产生的振动,并将感应的振动信号转化为电信号,从而实现对收容腔传递的高频振动和低频振动均具有更好的振动响应,有效提高了灵敏度。另外,电路板设有板腔和贯穿其上的第一通孔,基座环绕第一通孔,背腔通过第一通孔与板腔连通,使得背腔、第一通孔及板腔共同形成后腔,该后腔相当于将背腔的腔体体积增大,从而使得MEMS麦克风可更好的感应振动信号,从而有效提升信噪比。
以上所述的仅是本实用新型的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本实用新型创造构思的前提下,还可以做出改进,但这些均属于本实用新型的保护范围。

Claims (12)

  1. 一种振动传感器,其特征在于,所述振动传感器包括:
    电路板,所述电路板围成板腔,所述电路板的其中一侧设有贯穿其上的第一通孔;
    内壳,所述内壳盖设固定于所述电路板并覆盖所述第一通孔,所述内壳与所述电路板共同围成谐振腔,所述内壳设有贯穿其上的第二通孔;
    外壳,所述外壳盖设固定于所述电路板并将所述内壳收容于其内,所述外壳、所述内壳以及所述电路板共同围成收容腔;
    MEMS麦克风,所述MEMS麦克风收容于所述谐振腔内并与所述电路板电性连接;以及,
    振膜组件,所述振膜组件收容于所述收容腔内并将所述收容腔分隔成第一腔和第二腔,所述第一腔通过所述第二通孔与所述谐振腔连通;
    所述电路板背离所述板腔的一侧和/或所述外壳远离所述收容腔的一侧输入振动信号或压力信号时,所述振膜组件振动带动所述收容腔内的气压产生变化。
  2. 根据权利要求1所述的振动传感器,其特征在于,所述振动传感器还包括ASIC芯片,所述ASIC芯片收容于所述谐振腔内并与所述MEMS麦克风电性连接。
  3. 根据权利要求1所述的振动传感器,其特征在于,所述MEMS麦克风包括固定于所述电路板且具有背腔的基座、支撑于所述基座远离所述电路板一端的第一振膜和背极板;所述基座与所述电路板连接的部分环绕所述第一通孔,所述背腔通过所述第一通孔与所述板腔连通;所述第一振膜与所述背极板间隔形成电容结构。
  4. 根据权利要求3所述的振动传感器,其特征在于,所述外壳设有贯穿其上的第一泄压孔。
  5. 根据权利要求4所述的振动传感器,其特征在于,所述振膜组件设有贯穿其上的第二泄压孔,所述第二泄压孔将所述第一腔和所述第二腔连通。
  6. 根据权利要求5所述的振动传感器,其特征在于,所述内壳包括与所述电路板间隔相对的内壳板和由所述内壳板的周缘向所述电路板方向弯折延伸并固定于所述电路板的内侧板,所述第二通孔贯穿所述内壳板设置,所述振膜组件固定于所述内侧板;所述外壳包括与所述电路板间隔相对的外壳板和由所述外壳板的周缘向所述电路板方向弯折延伸并固定于所述电路板的外侧板,所述第一泄压孔贯穿所述外壳板设置,所述外侧板环绕所述内侧板,所述外壳板与所述内壳板相对设置。
  7. 根据权利要求6所述的振动传感器,其特征在于,所述振膜组件包括固定于所述内侧板并环绕所述第二通孔设置的垫片以及固定于所述垫片远离所述第二通孔一侧的第二振膜,所述垫片、所述第二振膜及所述内侧板共同围成所述第一腔,所述第二泄压孔贯穿所述第二振膜设置。
  8. 根据权利要求7所述的振动传感器,其特征在于,所述振膜组件还包括与所述第二振膜固定连接的质量块;所述质量块贴设于所述第二振膜靠近所述第一腔的一侧和/或所述第二振膜靠近所述第二腔的一侧。
  9. 根据权利要求8所述的振动传感器,其特征在于,位于所述第二振膜同一侧的所述质量块包括多个相互间隔设置质量块单元。
  10. 根据权利要求9所述的振动传感器,其特征在于,所述质量块由所述第二振膜包裹以形成固定。
  11. 根据权利要求10所述的振动传感器,其特征在于,所述第二振膜包括固定于所述垫片并相互叠设的两个第二子振膜,所述质量块夹设包裹于两个所述第二子振膜之间。
  12. 根据权利要求7所述的振动传感器,其特征在于,所述第一振膜沿其振动方向向所述电路板上的正投影面积小于所述第二振膜沿其振动方向向所述电路板上的正投影面积。
     
PCT/CN2020/115028 2020-06-30 2020-09-14 振动传感器 WO2022000794A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021259127.2U CN218679379U (zh) 2020-06-30 2020-06-30 振动传感器
CN202021259127.2 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022000794A1 true WO2022000794A1 (zh) 2022-01-06

Family

ID=79315048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115028 WO2022000794A1 (zh) 2020-06-30 2020-09-14 振动传感器

Country Status (2)

Country Link
CN (1) CN218679379U (zh)
WO (1) WO2022000794A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114501252A (zh) * 2022-01-25 2022-05-13 青岛歌尔智能传感器有限公司 振动组件及其制备方法、骨声纹传感器及电子设备
US20220298010A1 (en) * 2021-03-19 2022-09-22 Merry Electronics Co., Ltd. Semi-finished product of electronic device and electronic device
US20220408197A1 (en) * 2021-06-18 2022-12-22 Merry Electronics(Shenzhen) Co., Ltd. Micro-electro mechanical device
US11561129B2 (en) * 2021-06-18 2023-01-24 Merry Electronics(Shenzhen) Co., Ltd. Vibration sensing assembly for bone conduction microphone
US20230124360A1 (en) * 2021-10-20 2023-04-20 Merry Electronics(Shenzhen) Co., Ltd. Electronic device
WO2023206644A1 (zh) * 2022-04-25 2023-11-02 瑞声声学科技(深圳)有限公司 Mems麦克风芯片
WO2024040494A1 (zh) * 2022-08-25 2024-02-29 瑞声声学科技(深圳)有限公司 振动传感器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116668923B (zh) * 2023-07-26 2023-10-03 苏州敏芯微电子技术股份有限公司 振动传感器、电子设备及制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090175477A1 (en) * 2007-08-20 2009-07-09 Yamaha Corporation Vibration transducer
US20150001648A1 (en) * 2013-06-27 2015-01-01 Bse Co., Ltd. Mems microphone
CN108513241A (zh) * 2018-06-29 2018-09-07 歌尔股份有限公司 振动传感器和音频设备
CN209396880U (zh) * 2018-12-13 2019-09-17 歌尔科技有限公司 一种芯片的封装结构
CN210093551U (zh) * 2019-06-27 2020-02-18 瑞声声学科技(深圳)有限公司 振动传感器和音频设备
CN111131988A (zh) * 2019-12-30 2020-05-08 歌尔股份有限公司 振动传感器和音频设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090175477A1 (en) * 2007-08-20 2009-07-09 Yamaha Corporation Vibration transducer
US20150001648A1 (en) * 2013-06-27 2015-01-01 Bse Co., Ltd. Mems microphone
CN108513241A (zh) * 2018-06-29 2018-09-07 歌尔股份有限公司 振动传感器和音频设备
CN209396880U (zh) * 2018-12-13 2019-09-17 歌尔科技有限公司 一种芯片的封装结构
CN210093551U (zh) * 2019-06-27 2020-02-18 瑞声声学科技(深圳)有限公司 振动传感器和音频设备
CN111131988A (zh) * 2019-12-30 2020-05-08 歌尔股份有限公司 振动传感器和音频设备

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220298010A1 (en) * 2021-03-19 2022-09-22 Merry Electronics Co., Ltd. Semi-finished product of electronic device and electronic device
US20220408197A1 (en) * 2021-06-18 2022-12-22 Merry Electronics(Shenzhen) Co., Ltd. Micro-electro mechanical device
US11561129B2 (en) * 2021-06-18 2023-01-24 Merry Electronics(Shenzhen) Co., Ltd. Vibration sensing assembly for bone conduction microphone
US11800298B2 (en) * 2021-06-18 2023-10-24 Merry Electronics(Shenzhen) Co., Ltd. Micro-electro mechanical device with vibration sensor and micro-electro mechanical microphone
US20230124360A1 (en) * 2021-10-20 2023-04-20 Merry Electronics(Shenzhen) Co., Ltd. Electronic device
US11952264B2 (en) * 2021-10-20 2024-04-09 Merry Electronics (Shenzhen) Co., Ltd. Electronic device
CN114501252A (zh) * 2022-01-25 2022-05-13 青岛歌尔智能传感器有限公司 振动组件及其制备方法、骨声纹传感器及电子设备
CN114501252B (zh) * 2022-01-25 2023-11-17 青岛歌尔智能传感器有限公司 振动组件及其制备方法、骨声纹传感器及电子设备
WO2023206644A1 (zh) * 2022-04-25 2023-11-02 瑞声声学科技(深圳)有限公司 Mems麦克风芯片
WO2024040494A1 (zh) * 2022-08-25 2024-02-29 瑞声声学科技(深圳)有限公司 振动传感器

Also Published As

Publication number Publication date
CN218679379U (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2022000794A1 (zh) 振动传感器
CN212572961U (zh) 振动传感器及具有其的音频设备
WO2022000793A1 (zh) 振动传感器
CN208386931U (zh) 振动传感器和音频设备
CN108513241A (zh) 振动传感器和音频设备
US11356765B2 (en) Vibration removal apparatus and method for dual-microphone earphones
CN210609708U (zh) Mems麦克风和电子设备
US8948432B2 (en) Microphone unit
EP2587834A1 (en) Microphone unit
WO2022000852A1 (zh) 振动传感器
WO2010013603A1 (ja) マイクロホンユニットおよびそれを備える携帯電話機
WO2021000163A1 (zh) 骨传导mems麦克风和移动终端
CN109413554B (zh) 一种指向性mems麦克风
US11895452B2 (en) Bone conduction microphone
CN215187377U (zh) 振动传感器
CN110267184A (zh) Mems麦克风
WO2022000792A1 (zh) 振动传感器
WO2022000791A1 (zh) 振动传感器
US9357313B2 (en) Microphone unit having a plurality of diaphragms and a signal processing unit
WO2023160719A1 (zh) 振动传感器、电子设备和振动检测方法
WO2022000853A1 (zh) 振动传感器
CN109068250B (zh) 一种麦克风和电子设备
WO2023116864A1 (zh) 一种骨声纹传感器
CN217389001U (zh) 一种麦克风结构和语音通讯设备
US20220349745A1 (en) Vibration Sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943718

Country of ref document: EP

Kind code of ref document: A1