WO2020000421A1 - 电连接组件以及移动终端 - Google Patents

电连接组件以及移动终端 Download PDF

Info

Publication number
WO2020000421A1
WO2020000421A1 PCT/CN2018/093817 CN2018093817W WO2020000421A1 WO 2020000421 A1 WO2020000421 A1 WO 2020000421A1 CN 2018093817 W CN2018093817 W CN 2018093817W WO 2020000421 A1 WO2020000421 A1 WO 2020000421A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
component
insulating
sub
contact
Prior art date
Application number
PCT/CN2018/093817
Other languages
English (en)
French (fr)
Other versions
WO2020000421A9 (zh
Inventor
江成
孟胤
姚文星
孙高龙
刘洋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202110535143.2A priority Critical patent/CN113410709B/zh
Priority to EP18924952.7A priority patent/EP3789818A4/en
Priority to PCT/CN2018/093817 priority patent/WO2020000421A1/zh
Priority to CN202110536888.0A priority patent/CN113473825B/zh
Priority to CN201880055328.XA priority patent/CN111051971B/zh
Publication of WO2020000421A1 publication Critical patent/WO2020000421A1/zh
Publication of WO2020000421A9 publication Critical patent/WO2020000421A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0274Details of the structure or mounting of specific components for an electrical connector module
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0064Earth or grounding circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/64Connections between or with conductive parts having primarily a non-electric function, e.g. frame, casing, rail

Definitions

  • the present application relates to the field of electronic communication technologies, and in particular, to electrical connection components and mobile terminals.
  • Stainless steel or metal aluminum is commonly used in mobile phones as a housing for supporting the above-mentioned electronic components.
  • the above-mentioned electronic component can be electrically connected to the casing and can be grounded.
  • the surface of stainless steel or metal aluminum is easily affected by factors such as insulating films or processing processes, which results in unstable surface contact resistance, which can cause Radiated Spurious Emission (RSE) and reduce grounding requirements.
  • RSE Radiated Spurious Emission
  • the embodiments of the present application provide an electrical connection assembly and a mobile terminal to solve the problem of unstable electrical connection point contact between an electronic component and a surface with unstable resistance.
  • an electrical connection assembly includes a first component, a second component, a conductive portion, and a first insulating layer.
  • the first component and the second component have conductive surfaces, and the conductive surface of the first component is opposite to the conductive surface of the second component.
  • the conductive portion is located between the first component and the second component.
  • a first insulating layer is disposed on a conductive surface of the first component, and the conductive portion is in contact with the first insulating layer.
  • the conductive portion is electrically connected to the conductive surface of the second member.
  • the electrical conductivity of the first component can be improved.
  • a first insulating layer in contact with the conductive portion is provided on the surface so that a capacitance is formed between the conductive portion and the first component having a non-ideal conductive surface.
  • the signal on the first component having a non-ideal conductive surface can be coupled to the conductive portion through the capacitance described above, and then transmitted to the second component through the conductive portion, thereby realizing the relationship between the first component and the second component. Coupling feed.
  • the conductive part does not need to be in direct contact with the non-ideal conductive surface of the first component, thereby improving the reliability of the electrical connection and reducing the probability of RSE exceeding the standard.
  • the conductive portion is in contact with the conductive surface of the second component.
  • the conductive portion includes a first conductive sub-portion and a second conductive sub-portion that are electrically connected.
  • the first conductive sub-portion and the second conductive sub-portion each include a first surface and a second surface.
  • the first surface of the first conductive sub-portion is in contact with the second surface of the second conductive sub-portion.
  • the first surface of the second conductive sub-portion is in contact with the first insulating layer.
  • the second surface of the first conductive sub-portion is in contact with the conductive surface of the second member.
  • the first surface of the first conductive sub-portion and the second surface of the second conductive sub-portion are in contact, so that the above-mentioned electrical connection component and the first The component and the second component are assembled.
  • the contact surface between the first surface of the first conductive sub-portion and the second surface of the second conductive sub-portion is located within an edge of the second surface of the second conductive sub-portion.
  • the area of the second surface of the second conductive sub-portion may be larger than that of the first surface of the first conductive sub-portion.
  • the first conductive sub-portion can be mainly used to support the first component and the second component
  • the second conductive sub-portion is used to increase the area of the lower substrate of the first capacitor formed by the conductive portion and the first component.
  • the first conductive sub-portion is a conductive foam or a conductive adhesive.
  • the second conductive sub-portion is a metal sheet or a conductive film.
  • the conductive foam or conductive adhesive can provide better support for the first component and the second component.
  • the thickness of the metal sheet or the conductive film is small, so that the second conductive sub-portion can have a first surface and a second surface with a larger area.
  • the area of the second surface of the second conductive sub-portion is 9 mm 2 to 100 mm 2 .
  • the impedance of the second conductive sub-portion moves clockwise from the open point O1 along the Smith circle, and it is difficult to reach the short-circuit point.
  • it is larger than 10mm ⁇ 10mm the impedance of the second conductive sub-section moves clockwise from the open circuit point along the Smith circle, passes through the short-circuit point and enters the inductive region, so that the second conductive sub-section has a larger impedance.
  • the first insulating layer includes an insulating adhesive and an insulating Mylar, the insulating adhesive is in contact with the conductive surface of the first component, and the insulating Mylar is in contact with the conductive portion.
  • the insulating glue plays the role of bonding, and the texture of the insulation mylar is relatively hard. Therefore, during the installation of the first component and the second component, it is possible to prevent the insulation mylar from penetrating due to pressure, which may cause the first component or the first component to The phenomenon that the conductive surfaces of the two components are in virtual contact with the conductive parts occurs.
  • a second insulating layer is disposed on the conductive surface of the second component.
  • a second insulating layer may be provided on the conductive surface of the second component so that a second capacitor is formed between the conductive portion and the second component.
  • the conductive feeding between the conductive part and the second component through the above-mentioned second capacitor is used to realize the electrical connection between the two.
  • the conductive portion includes a first conductive sub-portion, a second conductive sub-portion, and a third conductive sub-portion that are electrically connected.
  • the first conductive sub-portion, the second conductive sub-portion, and the third conductive sub-portion each include a first surface and a second surface.
  • the first surface of the first conductive sub-portion is in contact with the second surface of the second conductive sub-portion.
  • a first surface of the second conductive sub-portion is in contact with the first insulating layer.
  • the second surface of the first conductive sub-portion is in contact with the first surface of the third conductive sub-portion.
  • the second surface of the third conductive sub-portion is in contact with the second insulating layer.
  • the second conductive sub-portion and the first insulating layer can be packaged together and assembled on the first component.
  • the third conductive sub-portion and the second insulating layer may be packaged together and assembled on the second component.
  • the first conductive sub-portion may be adhered to the first surface of the third conductive sub-portion by an adhesive layer bonding method.
  • the first component and the second component are then mounted together so that the first surface of the first conductive sub-portion is in contact with the second surface of the second conductive sub-portion, so that the electrical connection assembly described above can be conveniently connected to the first component and the second Parts for assembly.
  • the contact surface between the first surface of the first conductive sub-portion and the second surface of the second conductive sub-portion is located within an edge of the second surface of the second conductive sub-portion.
  • the area of the second surface of the second conductive sub-portion may be larger than that of the first surface of the first conductive sub-portion.
  • the first conductive sub-portion can be mainly used to support the first component and the second component
  • the second conductive sub-portion is used to increase the area of the lower substrate of the first capacitor formed by the conductive portion and the first component.
  • a contact surface between the second surface of the first conductive sub-portion and the first surface of the third conductive sub-portion is located within an edge of the first surface of the third conductive sub-portion.
  • the area of the first surface of the third conductive sub-portion may be larger than the area of the second surface of the first conductive sub-portion.
  • the first conductive sub-portion can be mainly used to support the first component and the second component
  • the third conductive sub-portion is used to increase the area of the upper substrate of the second capacitor formed by the conductive portion and the second component.
  • the first conductive sub-portion is a conductive foam or a conductive adhesive.
  • the second conductive sub-portion and the third conductive sub-portion are a metal sheet or a conductive film.
  • the conductive foam or conductive adhesive can provide better support for the first component and the second component.
  • the thickness of the metal sheet or the conductive film is relatively small, so that the second conductive sub-portion or the third conductive sub-portion can have a first surface and a second surface with a larger area.
  • the area of the second surface of the second conductive sub-portion is 9 mm 2 to 100 mm 2 .
  • the area of the first surface of the third conductive sub-portion is 9 mm 2 to 100 mm 2 .
  • the areas of the second surface of the second conductive sub-portion and the area of the first surface of the third conductive sub-portion have the same technical effects as the area of the second surface of the second conductive sub-portion in the foregoing embodiment, and are not repeated here.
  • the first insulating layer includes a first insulating glue and a first insulating Mylar.
  • the first insulating glue is in contact with the conductive surface of the first component, and the first insulating mylar is in contact with the conductive portion.
  • the second insulating layer includes a second insulating glue and a second insulating Mylar.
  • the second insulating glue is in contact with the conductive surface of the second component, and the second insulating mylar is in contact with the conductive portion.
  • the first insulating adhesive and the second insulating adhesive have the same technical effects as the insulating adhesive provided in the foregoing embodiment, and details are not described herein again.
  • the first and second insulating mylars have the same technical effects as the insulating mylars provided in the foregoing embodiments, and details are not described herein again.
  • the second insulating layer includes an insulating film and a second insulating glue.
  • the insulating film covers the conductive surface of the second component, the second insulating glue is located between the insulating film and the conductive portion, and the second insulating glue is in contact with the insulating film and the conductive portion.
  • the insulating film layer may be an oxide layer formed by an anodizing process, or an insulating film layer formed by a spray coating process.
  • the conductive portion includes a support portion and a conductive body, and at least three surfaces of the support portion are covered with the conductive body.
  • at least three surfaces of the support portion include surfaces of the support portion near the first component and near the second component.
  • the first insulating layer includes a first insulating glue and a first insulating Mylar.
  • the first insulating glue is in contact with the conductive surface of the first component, and the first insulating mylar is in contact with the conductive portion.
  • the second insulating layer when a second insulating layer is provided on the conductive surface of the second component, the second insulating layer includes a second insulating glue and a second insulating Mylar.
  • the second insulating glue is in contact with the conductive surface of the second component, and the second insulating mylar is in contact with the conductive portion.
  • the first insulating glue and the second insulating glue have the same technical effects as those of the insulating glue provided in the foregoing embodiment, and are not repeated here.
  • the first and second insulating mylars have the same technical effects as the insulating mylars provided in the foregoing embodiments, and details are not described herein again.
  • the second insulating layer includes an insulating film and a second insulating glue.
  • the insulating film covers the conductive surface of the second component, the second insulating glue is located between the insulating film and the conductive portion, and the second insulating glue is in contact with the insulating film and the conductive portion.
  • the insulating film has the same technical effect as the insulating film provided in the foregoing embodiment, and details are not described herein again.
  • the second insulating layer includes an insulating film and a second insulating glue.
  • the conductive portion further includes a conductive extension connected to the conductive body.
  • the vertical projection of the conductive body on the second component does not overlap with the vertical projection of the conductive extension on the second component.
  • at least the conductive extension is in contact with the second insulating glue.
  • the conductive portion when the volume of the support portion is reduced, in order to avoid reducing the capacitance value of the second capacitor formed by the conductive portion and the second component, the conductive portion further includes a fourth conductive sub-portion.
  • the fourth conductive sub-portion includes a first surface and a second surface. The first surface of the fourth conductive sub-portion is in contact with the first insulating Mylar. The second surface of the fourth conductive sub-portion is in contact with the conductive body.
  • the fourth conductive sub-portion may be a copper foil, and the area covered by the copper foil may be larger than the area of the upper surface of the support portion, thereby reducing the volume of the support portion to make the second conductive portion smaller. The capacitance value of the capacitor does not decrease.
  • the conductive portion includes a support portion and a conductive body.
  • the first insulating layer includes an insulating glue and an insulating Mylar. At least three surfaces of the support portion are sequentially covered with a conductive body and an insulating Mylar. Wherein, at least three surfaces of the support portion include surfaces of the support portion near the first component and near the second component. In this way, the supporting part, the conductive body, and the insulating Mylar can be packaged together, and then assembled on the first component through insulating glue.
  • the lower surface of the insulating Mylar is in contact with the conductive surface of the second component, so that the electrical connection assembly can be easily assembled with the first component and the second component.
  • the conductive body can be brought into close contact with the support portion, it is not necessary to apply a greater pressure on the support portion when the first component and the second component are assembled.
  • the support portion is foam.
  • the conductive body is a metal sheet or a conductive film. The technical effects of the foam and the metal sheet or the conductive film are the same as those described above, and are not repeated here.
  • the area of the surface of the support portion near the first component or the second component is 9 mm 2 to 100 mm 2 .
  • the area of the support portion near the surface of one side of the first component or the second component has the same technical effect as the area of the second surface of the second conductive sub-portion in the foregoing embodiment, and details are not described herein again.
  • the thickness of the first insulating layer is 0.01 mm to 0.05 mm.
  • the thickness of the first insulation layer is less than 0.01mm, the requirements for manufacturing accuracy are high, which is not conducive to reducing production costs, and when the thickness of the first insulation layer is greater than 0.05mm, it is not good for the capacitance value C of the plate capacitor Promotion.
  • the conductive portion and the first component constitute a first capacitor, so that the conductive portion and the first component can feed through the coupling of the first capacitor to achieve a non-contact electrical connection between the conductive portion and the first component.
  • the conductive portion and the second component constitute a second capacitor, so that the conductive portion and the second component can feed through the coupling of the second capacitor to achieve a non-contact electrical connection between the conductive portion and the second component.
  • a mobile terminal including any one of the electrical connection components described above.
  • the mobile terminal has the same technical effects as the electrical connection component provided in the foregoing embodiment, and details are not described herein again.
  • FIG. 1 is a schematic structural diagram of an electrical connection component according to some embodiments of the present application.
  • FIG. 2 is a schematic structural diagram of a mobile terminal according to some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of another mobile terminal according to some embodiments of the present application.
  • FIG. 4 is an equivalent circuit diagram corresponding to the structure shown in FIG. 1;
  • FIG. 5 is a schematic structural diagram of another electrical connection component according to some embodiments of the present application.
  • FIG. 6 is an equivalent circuit diagram corresponding to the structure shown in FIG. 5;
  • FIG. 7 is a schematic structural diagram of another electrical connection component according to some embodiments of the present application.
  • FIG. 8 is a schematic structural diagram of another electrical connection component according to some embodiments of the present application.
  • 9a is a schematic structural diagram of another electrical connection component according to some embodiments of the present application.
  • 9b is a schematic structural diagram of another electrical connection component according to some embodiments of the present application.
  • FIG. 10 is an equivalent circuit diagram corresponding to the structure shown in FIG. 9a;
  • FIG. 11 is a schematic diagram of a division principle of the second conductive sub-portion shown in FIG. 9a;
  • FIG. 12 is an equivalent circuit diagram of the structure shown in FIG. 11;
  • FIG. 15 is a schematic structural diagram of a mobile terminal according to some embodiments of the present application.
  • FIG. 16 is a test result diagram of an antenna anti-interference test using the structure shown in FIG. 15;
  • FIG. 17 is a schematic structural diagram of a mobile terminal according to some embodiments of the present application.
  • 18a is a schematic structural diagram of an electrical connection component according to some embodiments of the present application.
  • 18b is a schematic structural diagram of another electrical connection component according to some embodiments of the present application.
  • FIG. 19 is a schematic structural diagram of an electrical connection component according to some embodiments of the present application.
  • 20 is a schematic structural diagram of another electrical connection component according to some embodiments of the present application.
  • 21a is a schematic structural diagram of another electrical connection component according to some embodiments of the present application.
  • 21b is a schematic structural diagram of another electrical connection component according to some embodiments of the present application.
  • 21c is a schematic structural diagram of another electrical connection component according to some embodiments of the present application.
  • 21d is a schematic structural diagram of another electrical connection component according to some embodiments of the present application.
  • 22 is a schematic structural diagram of another electrical connection component according to some embodiments of the present application.
  • FIG. 23 is a schematic structural diagram of another electrical connection component according to some embodiments of the present application.
  • 24 is a schematic structural diagram of another electrical connection component according to some embodiments of the present application.
  • FIG. 25 is another Smith chart provided by some embodiments of the present application.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • orientation terms such as “up”, “down”, “left”, and “right” are defined relative to the orientation in which the components in the drawings are schematically placed. It should be understood that these directional terms are Relative concepts, which are used for relative description and clarification, can be changed correspondingly according to changes in the orientation in which the components are placed in the drawings.
  • the electrical connection assembly 01 includes a first component 10 and a second component 20. There may be a certain mounting tolerance between the first component 10 and the second component 20, and the first component 10 and the second component 20 may be installed in a detachable connection manner, such as threaded connection, snap-in connection, or pasting. together.
  • Some embodiments of the present application further provide a mobile terminal 02 as shown in FIG. 2.
  • the electrical connection component 01 described above may be applied to the mobile terminal 02.
  • the mobile terminal 02 may include a mobile phone, a tablet computer, a Personal Digital Assistant (PDA), an on-board computer, and the like.
  • PDA Personal Digital Assistant
  • the embodiment of the present application does not specifically limit the specific form of the mobile terminal.
  • the mobile phone may include a display module 110, a middle frame 111, a rear case 112, and the like.
  • the display module 110 includes a display screen 1101 and a touch panel 1102 disposed on a light-emitting side of the display screen 1101.
  • the display screen 1101 may be a liquid crystal display (Liquid Crystal Display, LCD), or an organic light emitting diode (Organic Light Emitting Diode, OLED) display, which is not limited in this application.
  • LCD Liquid Crystal Display
  • OLED Organic Light Emitting Diode
  • the touch panel 1102 may include a cover plate made of glass or a transparent resin material, and a touch electrode pattern made on the cover plate near the display screen 1011 side.
  • the middle frame 111 is located between the display module 110 and the rear case 112.
  • the middle frame 111 includes a frame 1110 and a carrier plate 1111 surrounded by the frame.
  • a display module 110 is mounted on one side of the carrier board 1111, and internal components such as a battery, a motherboard, a camera, and an antenna are mounted on the other side.
  • the above-mentioned frame 1110 and the carrier plate 1111 for forming the middle frame 111 may be an integrated structure.
  • the rear case 112 is mounted on the middle frame 111, and the rear case 112 can protect the above-mentioned internal components.
  • the first component 10 and the second component 20 of the electrical connection component 01 may be the display module 110 and the middle frame 111, respectively; or, The first part 10 and the second part 20 of the electrical connection assembly 01 may be a middle frame 111 and a rear case 112, respectively.
  • first member 10 and the second member 20 have conductive surfaces, and as shown in FIG. 1, the conductive surface A1 of the first member 10 and the conductive surface A2 of the second member 20 are opposite to each other.
  • the display module 110 in a case where the first component 10 and the second component 20 may be the display module 110 and the middle frame 111, respectively, in some embodiments of the application, the display module 110 is as shown in FIG. As shown in FIG. 2, it may further include a metal frame 1103 installed on the non-light-emitting side of the display screen 1101. The side of the metal frame 1103 facing away from the display screen 1101 can be adhered to the middle frame 111 through an adhesive layer, thereby achieving the purpose of installing the display module 110 on the middle frame 111.
  • non-light-emitting side of the display screen 1101 is a side surface disposed opposite to the light-emitting side of the display screen 1101 (close to the touch panel 1102).
  • the middle frame 111 of the mobile phone is generally equipped with an antenna 114 on a surface near the rear case 112.
  • the metal frame 1103 can prevent the display screen 1101 from absorbing the energy radiated from the antenna 114.
  • the antenna 114 may be provided above or below the frame 1110 of the middle frame 111.
  • the conductive surface A1 of the display module 110 as the first component 10 is the surface of the metal frame 1103 near the middle frame 111.
  • a metal conductive surface is provided on a side of the middle frame 111 as the second component 20 near the metal frame 1103 as the conductive surface A2 of the second component 20.
  • the surface of the carrier plate 1111 of the middle frame 111 near the metal frame 1103 may be the conductive surface A2 of the second component 20 .
  • the carrier plate 1111 of the middle frame 111 is close to the metal surface of the metal frame 1103
  • An aluminum radium carved surface may be formed by a radium carving process, and the aluminum radium carved surface is used as the conductive surface A2 of the second component 20 described above.
  • the above description is made by taking the aluminum-radium carved surface as the conductive surface A2 of the second member 20 as an example.
  • the metal plating layer may also be used as the conductive surface A2 of the second member 20.
  • the manufacturing process of the aluminum-radium carved surface described above has a lower cost.
  • the aluminum-radium carved surface is used as an example for the conductive surface A2 of the second component 20 as an example.
  • a metal shield cover 113 is disposed on a side of the middle frame 111 near the rear case 112.
  • the metal shield 113 is used to cover the chips mounted on the motherboard to reduce signal interference between the chips.
  • the material of the metal shield 113 may be stainless steel.
  • the conductive surface A1 of the middle frame 111 of the first member 10 is the above-mentioned metal shield 113 near the rear case 112. Side surface.
  • a metal conductive surface is provided on a side of the rear case 112 as the second component 20 near the metal shield 113 as the conductive surface A2 of the second component 20.
  • a side surface of the rear case 112 near the metal shield 113 may be the conductive surface A2 of the second component 20 described above.
  • the rear case 112 when the material constituting the rear case 112 includes metal aluminum or aluminum alloy, in order to improve the electrical conductivity of the conductive surface A2 of the second component 20, the rear case 112 is close to the metal surface on one side of the middle frame 111, and is the same as the above.
  • the relative position of the metal shielding cover 113 can be formed by an aluminum radium carving surface through a radium carving process, and the aluminum radium carving surface can be used as the conductive surface A2 of the second component 20 described above.
  • the electrical connection assembly 01 further includes a conductive portion 30 and a first insulating layer 40.
  • the conductive portion 30 is located between the first member 10 and the second member 20, and the first insulating layer 40 is provided on the conductive surface A1 of the first member 10.
  • the conductive portion 30 is in contact with the first insulating layer 40.
  • the conductive portion 30 and the first component 10 may constitute a first capacitor C1 as shown in FIG. 4.
  • the upper substrate of the first capacitor C1 is the first component 10
  • the lower substrate is the conductive portion 30. In this case, under the coupling and feeding of the first capacitor C1, the non-contact conductive portion 30 and the first component 10 can be electrically connected.
  • the conductive portion 30 is electrically connected to the conductive surface A2 of the second member 20.
  • a contact surface between the conductive portion 30 and the conductive surface A2 of the second member 20 may form a contact resistance R as shown in FIG. 4.
  • the electrical conductivity of the conductive surface A2 of the second component 20 may be greater than the electrical conductivity of the conductive surface A1 of the first component 10.
  • the conductive surface A2 of the second component 20 is a good conductor, and the resistance value of the contact resistance R is relatively small, and may be less than 0.25 ⁇ .
  • the first component 10 and the second component 20 are a display module 110 and a middle frame 111, respectively.
  • the metal frame 1103 of the display module 110 installed on the non-light-emitting side of the display 1101 is made of stainless steel.
  • the carrier plate 1111 in the middle frame 111 has the above-mentioned aluminum-radium engraved surface on a surface near the metal frame 1103.
  • the metal frame 1103 on the back of the display 1101 can be electrically connected to the aluminum radium carved surface on the middle frame 111 to achieve the grounding of the metal frame 1103, thereby reducing the antenna 114 Produce interference.
  • the surface of the metal frame 1103 as the conductive surface A1 of the first member 10 near the middle frame 111 has a small electrical conductivity.
  • the aluminum radium carved surface, which is the conductive surface A2 of the second member 20, has good electrical conductivity, so its electrical conductivity is large.
  • the electrical connection component 01 shown in FIG. 1 can be used, that is, the metal frame 1103 on the back of the display 1101 In the first insulating layer 40, the conductive portion 30 is in contact with the first insulating layer 40, and the surface of the conductive portion 30 facing away from the first insulating layer 40 is in contact with the aluminum-radium carved surface on the middle frame 111.
  • the manner in which the conductive portion 30 is electrically connected to the conductive surface A2 of the second member 20 may include a second insulating layer 41 on the conductive surface A2 of the second member 20.
  • the conductive portion 30 and the second member 20 may constitute a second capacitor C2 as shown in FIG. 6.
  • the upper substrate of the second capacitor C2 is the conductive portion 30, and the lower substrate is the second component 20.
  • the first component 10 and the second component 20 are a display module 110 and a middle frame 111, respectively.
  • the metal frame 1103 and the middle frame 111 on the back of the display screen 1101 are made of stainless steel.
  • the thickness of the insulating film formed after the oxidation of stainless steel is thick, which makes the contact resistance on the conductive surface unstable.
  • the surface of the middle frame 111 that is the conductive surface A2 of the second component 20 near the metal frame 1103 and the surface of the metal frame 1103 that is the conductive surface A1 of the first component 10 near the middle frame 111 are not ideal.
  • the conductive surface has a small electrical conductivity.
  • the electrical connection component 01 shown in FIG. 5 may be used, that is, a first insulating layer 40 is provided on the metal frame 1103 on the back of the display 1101.
  • a second insulating layer 41 is provided on the side of the middle frame 111 near the metal frame 1103.
  • the upper surface of the conductive portion 30 is in contact with the lower surface of the first insulating layer 40.
  • the lower surface of the conductive portion 30 is on the upper side of the second insulating layer 41. The surfaces are in contact.
  • a first insulating layer 40 in contact with the conductive portion 30 may be provided on the conductive surface of the first component 10 so that a first capacitor C1 is formed between the conductive portion 30 and the first component 10 having a non-ideal conductive surface.
  • the signal on the first component 10 with the non-ideal conductive surface can be coupled to the conductive portion 30 through the first capacitor C1, and then transmitted to the second component 20 through the conductive portion 30.
  • the lower surface of the first component 10 with unstable contact resistance needs to be coated with a good conductor plating layer 11 (for example, a nickel plating layer), and the first component 10 is plated with a gold-plated spot welding spring sheet 12. It is electrically connected to the second component 20.
  • a good conductor plating layer 11 for example, a nickel plating layer
  • the solution shown in FIG. 1 or FIG. 5 provided in the embodiment of the present application does not need to apply a good conductor plating layer 11 on the lower surface of the first component 10 with unstable contact resistance, and The spot welding process is not required, and the second component 20 is electrically connected to the first component 10 by using a gold-plated spot welding spring sheet 12. Therefore, costs can be reduced.
  • the upper surface of the conductive portion 30 is in contact with the lower surface of the first member 10, and the lower surface of the conductive portion 30 is in contact with the upper surface of the second member 20.
  • the conductive portion 30 and the first portion 10 can be reduced.
  • the lower surface of a component 10 is in direct contact with each other, which causes the reliability of the electrical connection to decrease, and the grounding effect around the antenna 114 is poor, which causes the probability of RSE exceeding the standard.
  • the conductive surface A1 of the first component 10 is a conductive surface with unstable contact resistance.
  • the conductive surface A1 of the first component 10 is provided with the first insulating layer 40 described above. The description will be made by taking the contact between the conductive surfaces A2 of the two members 20 as an example.
  • the conductive portion 30 includes a first conductive sub-portion 301 and a second conductive sub-portion 302 that are electrically connected.
  • the first conductive sub-portion 301 and the second conductive sub-portion 302 each include a first surface and a second surface.
  • the first surface and the second surface may be oppositely disposed, the first surface is an upper surface, and the second surface is a lower surface.
  • the first surface of the first conductive sub-portion 301 is the upper surface of the first conductive sub-portion 301 (ie, the surface near the side of the first member 10)
  • the second surface of the first conductive sub-portion 301 is the first The lower surface of the conductive sub-portion 301 (that is, the surface near the second member 20 side).
  • the first surface and the second surface of the second conductive sub-portion 302 are similarly available.
  • the first surface of the first conductive sub-portion 301 and the second surface of the second conductive sub-portion 302 are in contact.
  • the first surface of the second conductive sub-portion 302 is in contact with the first insulating layer 40.
  • the second surface of the first conductive sub-portion 301 is in contact with the conductive surface A2 of the second member 20.
  • the first conductive sub-portion 301 may be a conductive foam or a conductive adhesive.
  • the first conductive sub-portion 301 not only plays a conductive role, but also serves to support the first member 10 and the second member 20 located on both sides thereof.
  • the first conductive sub-portion 301 may also have an effect of absorbing mounting tolerances of the first member 10 and the second member 20, so that after the first member 10 and the second member 20 are mounted, the upper portion of the first conductive sub-portion 301 is described.
  • the surface is in contact with the lower surface of the second conductive sub-portion 302.
  • the conductive foam may be a conductive cloth wrapped on the surface of ordinary non-conductive foam, or a conductive coating may be made on the surface of ordinary non-conductive foam to form the conductive foam.
  • the second conductive sub-portion 302 may be a metal sheet or a conductive film.
  • the metal sheet may be a copper foil.
  • the conductive film may be a conductive cloth.
  • the conductive cloth includes a flexible substrate and a metal plating layer disposed on the flexible substrate.
  • the metal plating layer may be at least one of a gold plating layer, a nickel plating layer, or a copper plating layer. No restrictions. For convenience of description, the following embodiments are described by using the first conductive sub-portion 301 as a conductive foam and the second conductive sub-portion 302 as a copper foil.
  • the thickness H2 of the second conductive sub-portion 302 may be smaller than the thickness H1 of the first conductive sub-portion 301.
  • the direction of the thickness is perpendicular to the conductive surface A1 of the first component 10.
  • the arrangement manner of the first conductive sub-portion 301 and the second conductive sub-portion 302 in the above-mentioned conductive portion 30 may be as shown in FIG. 9a.
  • the contact surface of the second surface is located within an edge of the second surface of the second conductive sub-portion 302.
  • the copper foil as the second conductive sub-portion 302 is laid on the surface of the first insulating layer 40 close to the second conductive sub-portion 302, while the conductive foam as the first conductive sub-portion 301 only Part of the copper foil is in contact.
  • the portion of the copper foil that is not in contact with the conductive foam extends out of the area where the conductive foam is located.
  • the second conductive sub-portion 302 can increase the capacitance of the first capacitor formed by the conductive portion 30 and the first component 10, thereby effectively improving the effect of coupling and feeding between the first component 10 and the conductive portion 30.
  • the above-mentioned first insulating layer 40 includes an insulating glue 401, which has an insulating and adhesive effect.
  • the first insulation layer 40 penetrates due to the pressure applied to the first component 10 or the second component 20, resulting in the first component.
  • the conductive surface of the 10 or the second component 20 and the conductive portion 30 are virtually connected, so that the conductive resistance of the first component 10 or the second component 20 is unstable.
  • the first insulating layer 40 may further include an insulating Mylar 402.
  • the insulating glue 401 is in contact with the conductive surface A1 of the first component 10, and the insulating mylar 402 is in contact with the conductive portion 30.
  • the conductive portion 30 includes a first conductive sub-portion 301 and a second conductive sub-portion 302 as shown in FIG. 9 a
  • the above-mentioned insulating Mylar 402 is in contact with the second conductive sub-portion 302.
  • the material constituting the insulation Mylar 402 may be polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the texture of the insulating Mylar 402 is relatively hard. Therefore, during the installation of the first component 10 and the second component 20, it is possible to prevent the insulating Mylar 402 from penetrating due to pressure, which may cause the first component 10 or the second component 20 to conduct electricity. The phenomenon that the surface is in virtual contact with the conductive portion 30 occurs.
  • the first insulating layer 40 includes an insulating adhesive 401 and an insulating Mylar 402
  • the conductive portion 30 includes a first conductive sub-portion 301 and a second conductive sub-portion 302
  • the insulating rubber may be first 401 and insulation Mylar 402 are glued together.
  • the second conductive sub-portion 302, that is, the copper foil is disposed on a surface of the insulation mylar 402 facing away from the insulation glue 401 through a glue bonding or hot-melt process.
  • the first insulating layer 40 and the second conductive sub-portion 302 are packaged together.
  • the above packaged components are assembled on the first component 10, so that the surface of the insulating glue 401 facing away from the insulating Mylar 402 is adhered to the conductive surface A1 of the first component 10.
  • the contact surface between the second conductive sub-portion 302 and the insulating Mylar 402 is located within the edge of the lower surface of the insulating Mylar 402.
  • first conductive sub-portion 301 is provided on the conductive surface A2 of the second member 20 by means of gel bonding.
  • first component 10 and the second component 20 are mounted together so that the first surface of the first conductive sub-portion 301 is in contact with the second surface of the second conductive sub-portion 302.
  • the first insulation layer 40 includes an insulation film 403 and the insulation glue 401.
  • the insulating film 403 covers the conductive surface A1 of the first component 10.
  • the insulating glue 401 is located between the insulating film 403 and the conductive portion 30 and is in contact with the insulating film 403 and the conductive portion 30. At this time, the copper foil as the second conductive sub-portion 302 in the conductive portion 30 may be adhered to the lower surface of the insulating film 403 through the insulating glue 401.
  • the first insulating layer 40 is provided on the conductive surface A1 of the first component 10 in FIG. 9 a, and the copper foil (ie, the second conductive sub-portion 302) in the conductive portion 30 is in contact with the first insulating layer 40.
  • the first component 10 and the copper foil constitute a first capacitor C1 as shown in FIG. 10.
  • the signal on the first component 10 can be coupled to the copper foil through the first capacitor C1.
  • the conductive surface A2 of the second component 20 is a conductive surface with stable contact resistance. Therefore, only a little gel is required between the conductive foam in the conductive portion 30 (that is, the first conductive sub-portion 301) and the second component 20.
  • the conductive foam may be fixed on the second component 20, and most of the conductive foam is in direct contact with the conductive surface A2 of the second component 20. At this time, as shown in FIG. 9a, the position B1 where the first surface of the conductive foam is in contact with the second surface of the copper foil forms the ideal contact resistance R1 in FIG.
  • the position B2 where the second surface of the conductive foam is in contact with the conductive surface A2 of the second member 20 forms an ideal contact resistance R2 with a small resistance value (for example, about 0.2 ⁇ ) in FIG. 10.
  • the signal on the copper foil can be directly transmitted to the second component 20 through the conductive foam.
  • the capacitor used to realize signal transmission through the capacitive coupling method is a flat capacitor.
  • the capacitance value C of the plate capacitor satisfies the following formula:
  • the signals transmitted from the first component 10 to the second component 20 are usually medium and high frequency signals, for example, the frequency is in the range of 700 MHz to 2.7 GHz.
  • the frequency is in the range of 700 MHz to 2.7 GHz.
  • the capacitance value of the capacitor the better the signal transmission effect.
  • the thickness H3 of the first insulating layer 40 may be 0.01 to 0.05 mm.
  • the thickness H3 of the first insulation layer 40 is less than 0.01 mm, the requirements for manufacturing accuracy are high, which is not conducive to reducing production costs, and when the thickness H3 of the first insulation layer 40 is more than 0.05 mm, it is not conducive to the improvement of the capacitance value C .
  • the thickness H3 of the first insulating layer 40 may be 0.01 mm, 0.015 mm, 0.02 mm, or 0.04 mm.
  • the thickness of the foregoing insulating glue 401 may be 0.01 mm
  • the thickness of the insulating Mylar 402 may be 0.01 mm.
  • the capacitance value C is proportional to the area S of the upper and lower electrodes of the capacitor.
  • the area of the conductive surface A1 of the first member 10 or the conductive surface A2 of the second member 20 is usually larger than that of the copper foil. Therefore, the larger the area of the surface of the copper foil parallel to the conductive surface, the larger the capacitance value C of the capacitor.
  • the first capacitor C1 shown in FIG. 10 formed in the electrical connection component 01 can couple the middle and high frequency signals from the first component 10 by means of capacitive coupling.
  • the copper foil of the lower substrate of the first capacitor C1 (that is, the second conductive sub-portion 302) is shown in FIG. 11 and can be regarded as a coil wound in a circle from outside to inside, and the coil is finally wound to the contact point at the center. .
  • the contact point is an area where the copper foil is in contact with the conductive foam (that is, the first conductive sub-portion 301).
  • FIG. 11 a plurality of coils (L1, L2, L3, ..., Ln) divided by two adjacent dotted lines form a plurality of distributed capacitances (C_1, C_2, C_3, ...) between the conductive surface A1 of the first component 10, respectively. C_n).
  • the equivalent circuit after the above-mentioned copper foil is divided into coils is shown in FIG. 12. It can be seen that the above-mentioned multiple distributed capacitors (C_1, C_2, C_3 ... C_n) are connected in parallel. Therefore, the capacitance value of the first capacitor C1 in FIG. 10 is the sum of the capacitance values of the multiple distributed capacitances (C_1, C_2, C_3, ..., C_n).
  • the upper semicircle in the Smith chart is an inductive region, and the lower semicircle is a capacitive region.
  • the right endpoint of the horizontal axis is the open circuit point O1
  • the left endpoint is the short circuit point O2.
  • the coil Ln located in the outermost circle is not electrically connected to other components, so the coil Ln and the distributed capacitance C_n are located at the open point O1 of the Smith chart in FIG. 13.
  • the copper foil is in contact with the conductive foam. The contact point is located at the short-circuit point O2 of the Smith chart.
  • the multiple coils (L1, L2, L3 ... Ln) and the distributed capacitance (C_1, C_2, C_3 ... C_n) connected to each coil will make the impedance of the copper foil as shown in Figure 13, clockwise The movement starts from the open point O1 to the short point O2. If the size of the copper foil is set properly, the impedance of the copper foil will just move to the vicinity of the short-circuit point O2 and stop moving, so that the contact point of the copper foil is in a short-circuit state. At this time, the above-mentioned first capacitor formed by the first component 10 and the copper foil C1's capacitive coupling electrical connection works best.
  • the size of the copper foil is too large, the number of coils and distributed capacitors connected in FIG. 12 will also increase. In this way, the impedance of the copper foil will pass through during the clockwise movement from the open point O1.
  • the short-circuit point O2 continues to move to the upper semicircle, thereby entering the inductive region.
  • the first capacitor C1 becomes an inductor, and the impedance deviates from the short-circuit point O2, which reduces the effect of the capacitive coupling electrical connection of the first capacitor C1.
  • the optional second conductive sub-portion 302 that is, the area of the copper foil may be 9 mm 2 to 100 mm 2 (that is, 3 mm ⁇ 3 mm to 10 mm ⁇ 10 mm).
  • the impedance of the copper foil is shown in FIG. 13. It is difficult to reach the short-circuit point O2 during the clockwise movement from the open circuit point O1, and when the copper foil area is larger than 10mm ⁇ 10mm At this time, the impedance of the copper foil is shown in FIG. 13. During the process of moving clockwise from the open circuit point O1, it will be far away from the short circuit point O2, so that the copper foil resistance is larger.
  • the area of the second conductive sub-portion 302, that is, the copper foil may be 6 mm ⁇ 6 mm.
  • the copper foil of the first capacitor C1 composed of the first component 10 and the copper foil adopts a specification of 6mm ⁇ 6mm
  • the above-mentioned first capacitor is selected by selecting medium and high frequency signals of different frequencies (as shown in Table 1). The electrical connection effect of C1 is tested.
  • the impedance between the first component 10 and the second component 20 is embodied as a capacitor, for example, the capacitance value of the first capacitor C1 can reach About 30PF.
  • the impedance between the first component 10 and the second component 20 is also embodied as a capacitor, for example, the capacitance value of the first capacitor C1 can reach 500 PF.
  • the impedance between the first component 10 and the second component 20 is also reflected as an inductor.
  • the first capacitor C1 becomes an inductor, but as shown in the figure As shown in FIG. 14, the impedance of the copper foil in the first capacitor C1 moves to the vicinity of the short-circuit point O2, so the first capacitor C1 still has a good electrical connection effect after being transformed into an inductor.
  • an electrical connection component 01 having a copper foil with a size of 6mm ⁇ 6mm is applied to a mobile terminal 02, such as a mobile phone, and the interference to the antenna 114 is taken as an example to the mobile
  • the setting process of the electrical connection component 01 in the terminal 02 will be described.
  • the first component 10 and the second component 20 in the electrical connection assembly 01 are the display module 110 and the middle frame 111, respectively.
  • the conductive surface A1 of the first component 10 is a side surface of the metal frame 1103 on the back of the display screen 1101 near the middle frame 111; the conductive surface A2 of the second component 20 is an aluminum-radium carved surface formed on the middle frame 111.
  • the metal frame 1103 on the back of the display 1101 is usually made of stainless steel, the contact resistance of the surface of the metal frame 1103 near the middle frame 111 is unstable. Therefore, as shown in FIG. 15, the copper foil (that is, the second The conductive sub-portion 302) is pasted on the first insulating layer 40, and then the first insulating layer 40 assembled with copper foil is mounted on the surface of the metal frame 1103 near the middle frame 111 on the back of the display screen 1101.
  • a conductive foam that is, the first conductive sub-portion 301 can be pasted to the above-mentioned middle frame 111. Carved aluminum and radium.
  • the display screen 1101 is mounted on the middle frame 111. Since the conductive foam corresponds to the position of the copper foil, during the process of assembling the display screen 1101 and the middle frame 111, the conductive foam is pressed to make the conductive foam The side of the cotton facing away from the middle frame 111 is in contact with the copper foil.
  • the copper foil and the metal frame 1103 on the back of the display 1101 constitute a first capacitor C1, thereby electrically connecting the display 1101 and the middle frame 111 to ground the metal frame 1103. the goal of.
  • the antenna efficiency test is performed for the electrical connection of a mobile phone by using the above-mentioned capacitive coupling method. As shown in FIG. 16, three sets of (1, 2, 3) sets of curves are obtained. The matching parameters of the antennas 114 corresponding to different groups are different, so that the antennas 114 corresponding to different groups can emit different frequencies.
  • a solid line (indicated by a1, a2, or a3) represents an electrical connection method in which the conductive portion 30 directly contacts the metal frame 1103 on the back of the display screen 1101.
  • the dotted line (indicated by b1, b2, or b3) represents a capacitively-coupled electrical connection manner formed by the metal frame 1103 on the back of the display screen 1101 and the copper foil. It can be seen from FIG.
  • the effect of the capacitive coupling electrical connection method and the curve obtained by the direct contact electrical connection method basically overlap, so the effects of the two methods are equivalent, which can prove that the mobile phone
  • the display screen 1101 can achieve a good grounding effect.
  • an electrical connection component 01 having a copper foil with a size of 6mm ⁇ 6mm is applied to a mobile terminal 02, such as a mobile phone, to reduce the interference of multiple chips on the motherboard to the communication frequency band.
  • a mobile terminal 02 such as a mobile phone
  • the setting process of the electrical connection component 01 in the mobile terminal 02 will be described.
  • the metal shielding cover 113 covered on the chip and the conductive surface on the rear case 112, such as the aluminum-radium carved surface, can be electrically connected to realize
  • the ground of the metal shield 113 is such that the chips covered by the grounded metal shield 113 do not cause interference with nearby chips.
  • the first part 10 and the second part 20 in the electrical connection assembly 01 are the middle frame 111 and the rear case 112, respectively.
  • the conductive surface A1 of the first component 10 is a side surface of the metal shield 113 on the middle frame 111 near the rear case 112; the conductive surface A2 of the second component 20 may be an aluminum-radium carved surface formed on the rear case 112.
  • the metal shield 113 is usually made of stainless steel, the contact resistance of the surface of the metal shield 113 near the rear case 112 is unstable. Therefore, as shown in FIG. The portion 302) is pasted on the first insulating layer 40. Then, the first insulating layer 40 assembled with the copper foil is mounted on a surface of the metal shield 113 near the rear case 112.
  • a conductive foam that is, the first conductive sub-portion 301 can be pasted to the above-mentioned rear case 112. Carved aluminum and radium.
  • the middle frame 111 is mounted on the rear shell 112. Since the conductive foam corresponds to the position of the copper foil, during the process of assembling the middle frame 111 and the rear shell 112, the conductive foam is pressed to make the conductive foam The side of the cotton facing away from the rear case 112 is in contact with the copper foil.
  • the copper foil and the middle frame 111 with the metal shield 113 form a first capacitor C1, thereby electrically connecting the metal shield 113 and the rear shell 112 to achieve the metal shield. 113 Grounding purpose.
  • copper foils with other sizes can also be selected from a copper foil with an area ranging from 9 mm 2 to 100 mm 2 , such as : 3mm ⁇ 3mm, 4mm ⁇ 4mm, 5mm ⁇ 5mm, 7mm ⁇ 7mm, 8mm ⁇ 8mm, etc.
  • the copper foil may be square or rectangular, which is not limited in the present application.
  • a copper foil with a larger size can be selected from the area range of the copper foil of 9 mm 2 to 100 mm 2 .
  • the above example 1 is described by taking the conductive surface A1 of the first component 10 as a conductive surface with unstable contact resistance and the conductive surface A2 of the second component 20 as a conductive surface with stable contact resistance as an example.
  • the structure of the conductive portion 30 is as described in the following example.
  • the conductive surface A1 of the first component 10 and the conductive surface A2 of the second component 20 are both conductive surfaces with unstable contact resistance; the conductive surface A1 of the first component 10 is provided with the first An insulating layer 40 and a second insulating layer 41 provided on the conductive surface A2 of the second component 20 will be described as an example.
  • the conductive portion 30 includes a first conductive sub-portion 301, a second conductive sub-portion 302, and a third conductive sub-portion 303 that are electrically connected.
  • Each of the first conductive sub-portion 301, the second conductive sub-portion 302, and the third conductive sub-portion 303 includes a first surface and a second surface.
  • the first surface is an upper surface
  • the second surface is a lower surface.
  • a first surface of the first conductive sub-portion 301 and a second surface of the second conductive sub-portion 302 are in contact.
  • the first surface of the second conductive sub-portion 302 is in contact with the first insulating layer 40.
  • the second surface of the first conductive sub-portion 301 and the first surface of the third conductive sub-portion 303 are in contact.
  • the second surface of the third conductive sub-portion 303 is in contact with the second insulating layer 41.
  • the first conductive sub-portion 301 may be a conductive foam or a conductive adhesive.
  • the first conductive sub-portion 301 not only plays a conductive role, but also serves to support the first member 10 and the second member 20 located on both sides thereof.
  • the second conductive sub-portion 302 and the third conductive sub-portion 303 are metal sheets or conductive films.
  • the metal sheet may be a copper foil, and the conductive film may be a conductive cloth.
  • first conductive sub-portion 301 as a conductive foam
  • second conductive sub-portion 302 and the third conductive sub-portion 303 as copper foil
  • the manner of setting the first conductive sub-portion 301, the second conductive sub-portion 302, and the third conductive sub-portion 303 in the conductive portion 30 may be as shown in FIG. 18a.
  • the contact surface of the second surface of the second conductive sub-portion 302 is located within an edge of the second surface of the second conductive sub-portion 302.
  • the copper foil as the second conductive sub-portion 302 may be tiled on a surface of the first insulating layer 40 close to the second conductive sub-portion 302.
  • the second conductive sub-portion 302 and the first insulating layer 40 may be packaged together and assembled on the first component 10.
  • a contact surface between the second surface of the first conductive sub-portion 301 and the first surface of the third conductive sub-portion 303 is located within an edge of the first surface of the third conductive sub-portion 303.
  • the copper foil as the third conductive sub-portion 303 may be tiled on a surface of the second insulating layer 41 near the second conductive sub-portion 302.
  • the third conductive sub-portion 303 and the second insulating layer 41 may be packaged together and assembled on the second component 20.
  • the first conductive sub-portion 301 may be adhered to the first surface of the third conductive sub-portion 303 by an adhesive layer bonding method.
  • first component 10 and the second component 20 are mounted together so that the first surface of the first conductive sub-portion 301 is in contact with the second surface of the second conductive sub-portion 302.
  • the area of the second surface of the second conductive sub-portion 302 may be 9 mm 2 to 100 mm 2 .
  • the area of the first surface of the third conductive sub-portion 303 may be 9 mm 2 to 100 mm 2 .
  • the first insulating layer 40 includes a first insulating glue 411 and a first insulating Mylar 412.
  • the first insulating glue 411 is in contact with the conductive surface A1 of the first component 10, and the first insulating mylar 412 is in contact with the conductive portion 30.
  • the conductive portion 30 includes the first conductive sub-portion 301, the second conductive sub-portion 302, and the third conductive sub-portion 303
  • the first insulating Mylar 412 is in contact with the first surface of the second conductive sub-portion 302.
  • the second insulating layer 41 includes a second insulating glue 421 and a second insulating Mylar 422.
  • the second insulating glue 421 is in contact with the conductive surface A2 of the second member 20, and the second insulating mylar 422 is in contact with the conductive portion 30.
  • the conductive portion 30 includes the first conductive sub-portion 301, the second conductive sub-portion 302, and the third conductive sub-portion 303
  • the second insulating mylar 422 is in contact with the second surface of the third conductive sub-portion 303.
  • the second insulating Mylar 422 may not be provided.
  • the second insulating layer 41 includes an insulating film 403 and a second insulating glue 421.
  • the insulating film 403 covers the conductive surface A2 of the second component 20, and the second insulating glue 421 is located between the insulating film 403 and the conductive portion 30 and is in contact with the insulating film 403 and the conductive portion 30.
  • the second insulating glue 421 is in contact with the third conductive sub-portion 303 of the conductive portion 30.
  • the arrangement manner of the first insulating layer 40 in FIG. 18b is the same as that described above, and is not repeated here.
  • the manufacturing method of the insulating film 403 may be that an oxide layer formed by anodization is used as the insulating film 403.
  • a thin film layer formed by spraying or coating an insulating resin material may also be used as the insulating film 403.
  • the thickness of the second insulating layer 41 may range from 0.01 to 0.05 mm.
  • the technical effect of the thickness setting range of the second insulating layer 41 is the same as the technical effect of the thickness setting range of the first insulating layer 40, and details are not described herein again.
  • both sides of the conductive foam are provided with copper foils (i.e., the second conductive sub-portion 302 and the third conductive sub-portion 303) so that the copper foil located above (i.e. The second conductive sub-portion 302) and the first component 10 constitute the first capacitor C1 shown in FIG. 6, and the copper foil (ie, the third conductive sub-portion 303) and the second component 20 located below are configured as shown in FIG. The second capacitor C2.
  • the signal on the first component 10 is coupled to the upper copper foil through the first capacitor C1, and the copper foil transmits the signal to the lower copper foil through the conductive foam.
  • the underlying copper foil couples the signal to the second component 20 through the second capacitor C2.
  • the conductive surfaces of the first component 10 and the second component 20 on both sides of the conductive portion 30 are contact resistances.
  • the middle frame 111 as the second component 20 in FIG. 15 is made of stainless steel, and the surface of the middle frame 111 near the display screen 1101 is not provided with the above-mentioned aluminum radium carved surface.
  • a copper foil that is, the third conductive sub-portion 303 is attached to the second insulating layer 41, and then the second insulation assembled with the copper foil is attached to the surface of the middle frame 111 near the display screen 1101 side.
  • Layer 41
  • the metal frame 1103 on the back of the display screen 1101 in the display module 110 as the first component 10 still has a first insulating layer 40 and another copper foil (that is, The electronic part 302), so that both sides of the conductive foam are provided with a capacitor for realizing the coupling electrical connection.
  • the conductive portion 30 is a conductive foam that is the first conductive sub-portion 301 and a copper foil that is the second conductive sub-portion 302. They are located on the first component 10 and the second component 20 respectively.
  • the above-mentioned conductive foam and copper foil need to be Close contact.
  • a large pressing force needs to be applied to the conductive foam.
  • some parts that need to be grounded are very sensitive to the above-mentioned pressing force.
  • the display 1101 or camera with a metal frame 1103 installed a large pressing force will affect the quality of the above-mentioned parts.
  • some embodiments in the present application provide another arrangement manner of the conductive portion 30.
  • the conductive portion 30 includes a support portion 311 and a conductive body 312. At least three surfaces of the supporting portion 311 are covered with a conductive body 312.
  • the support portion 311 may be foam.
  • the support portion 311 can support the first member 10 and the second member 20.
  • the conductive body 312 may be a metal sheet or a conductive film. In the following, for convenience of explanation, the above description is made by taking the conductive body 312 as a copper foil as an example.
  • the at least three surfaces of the support portion 311 include surfaces of the support portion 311 near the first component 10 and near the second component 20.
  • the copper foil is in contact with the four surfaces of the foam (ie, the surface near the first component 10), the bottom (that is, the surface near the second component 20), left and right.
  • the copper foil can wrap around the foam and wrap the foam.
  • the copper foil is in contact with the upper, lower, and right surfaces of the foam.
  • the copper foil wraps the upper and lower surfaces of the conductive foam and the right side surface.
  • a first insulating layer 40 is disposed on a surface of the first component 10 near the conductive portion 30, and a surface of the second component 20 is in contact with the conductive portion 30.
  • the contact resistance of the conductive surface A1 of the first member 10 is unstable, and the contact resistance of the conductive surface A2 of the second member 20 is stable.
  • the first insulating layer 40 may include an insulating glue 401 in contact with the conductive surface A1 of the first component 10 and an insulating Mylar 402 in contact with the conductive body 312 (ie, copper foil).
  • the first insulation The layer 40 includes a first insulating glue 411 and a first insulating Mylar 412.
  • the arrangement of the first insulating glue 411 and the first insulating Mylar 412 is the same as described above, and is not repeated here.
  • the second insulating layer 41 is provided between the conductive portion 30 and the conductive surface A2 of the second member 20.
  • the second insulating layer 41 includes a second insulating glue 421 and a second insulating Mylar 422.
  • the manner of setting the second insulating glue 421 and the second insulating Mylar 422 is the same as that described above, and is not repeated here.
  • the contact resistances of the conductive surface A1 of the first component 10 and the conductive surface A2 of the second component 20 are both unstable, a solution as shown in FIG. 21b may be adopted, that is, the conductive surface A2 of the second component 20 passes through the anode.
  • the insulating film 403 is formed by a process such as oxidation, the second insulating Mylar 422 may not be provided.
  • the second insulating layer 41 includes an insulating film 403 and a second insulating glue 421.
  • the insulating film 403 covers the conductive surface A2 of the second component 20, and the second insulating glue 421 is located between the insulating film 403 and the conductive portion 30 and is in contact with the insulating film 403 and the conductive portion 30.
  • the second insulating glue 421 is in contact with the conductive body 312 in the conductive portion 30.
  • the conductive portion 30 further includes a conductive extension portion 313 connected to the conductive body 312.
  • the vertical projection of the conductive body 312 on the second component 20 does not overlap with the vertical projection of the conductive extension 313 on the second component 20.
  • the conductive extension portion 313 extends out of a region where the conductive body 312 is located.
  • the conductive extension 313 may be integrated with the conductive body 312.
  • a part of a copper foil is the conductive body 312 for covering the supporting portion 311, and another part of the copper foil is the conductive extension 313.
  • the solution shown in FIG. 21c is provided with the above-mentioned conductive extension portion 313 in the conductive portion 30, which can be a basis for appropriately reducing the volume of the support portion 311 (that is, foam).
  • the area of the upper electrode plate of the second capacitor C formed by the conductive portion 30 and the second component 20 is increased to improve the effect of coupling and feeding.
  • the conductive portion 30 further includes a first Four conductive sub-section 304.
  • the fourth conductive sub-portion 304 includes a first surface and a second surface. As described above, the first surface is the upper surface and the second surface is the lower surface.
  • the first surface of the fourth conductive sub-portion 304 is in contact with the first insulating Mylar 412.
  • the second surface of the fourth conductive sub-portion 304 is in contact with the conductive body 312.
  • the fourth conductive sub-portion 304 may be a copper foil, and an area of a lower surface of the copper foil may be larger than an area of an upper surface of the foam.
  • the manner of setting the lower surface area of the fourth conductive sub-portion 304 is the same as that described above, and is, for example, 9 mm 2 to 100 mm 2 . In this way, when the volume of the support portion 311 (that is, the foam) is reduced, the capacitance value of the second capacitor C formed by the conductive portion 30 and the second component 20 will not decrease.
  • the conductive portion 30 includes a support portion 311 and a conductive body 312
  • the above-mentioned first insulating layer 40 includes an insulating glue 401 and an insulating Mylar 402
  • some embodiments in this application provide another conductive portion 30 Ways of setting:
  • At least three surfaces of the supporting portion 311 are sequentially covered with a conductive body 312 and an insulating Mylar 402.
  • At least three surfaces of the support portion 311 include surfaces of the support portion 311 near the first component 10 and near the second component 20.
  • the upper surface i.e., the surface near the first component 10
  • the lower surface i.e., the surface near the second component 20
  • the left and right surfaces of the support portion 311 i.e., foam
  • the body 312 ie, copper foil
  • the insulating Mylar 402 are covered.
  • the copper foil and the insulating Mylar 402 can be wrapped around the foam in turn, and the foam can be wrapped.
  • the upper, lower, and right three surfaces of the support portion 311 are sequentially covered by the conductive body 312 (that is, copper foil) and the insulating mylar 402.
  • the purpose of the insulating glue 401 in the first insulating layer 40 is to fix the foam covered with the insulating Mylar 402 and the copper foil to the first component. 10 on the conductive surface A1. Therefore, the above-mentioned insulating glue 401 does not need to completely cover the conductive surface A1 of the first component 10, that is, the solution shown in FIG. In order to achieve the above-mentioned fixed role.
  • the above solution at least three surfaces of the support portion 311 (ie, foam) are covered with the conductive body 312 (ie, copper foil). Therefore, before the first component 10 and the second component 20 are assembled, the copper foil and the The foam can be brought into close contact, so when the first part 10 and the second part 20 are assembled, there is no need to exert a greater pressure on the foam. Therefore, the above solution is applicable to pressure-sensitive components, for example, a display screen 1101 or a camera equipped with a metal frame 1103.
  • the display screen 1101 on which the metal frame 1103 is installed is grounded.
  • the first component 10 and the second component 20 in the electrical connection assembly 01 are a display module 110 and a middle frame 111, respectively.
  • the foam covered with the insulating Mylar 402 and the copper foil is fixed to the side of the metal frame 1103 of the display screen 1101 facing away from the middle frame 111 through the insulating glue 401, and then the display screen 1101 and the middle frame 111 are assembled.
  • the conductive surface on the middle frame 111 is in contact with the side of the foam wrapped with the insulating Mylar 402 and the copper foil facing away from the display module 110.
  • the electrical connection component 01 shown in FIG. 24 is taken as an example to describe the grounding of the camera.
  • the first component 10 and the second component 20 in the electrical connection assembly 01 are a camera and a middle frame 111, respectively.
  • the foam covered with the insulating Mylar 402 and the copper foil is fixed to the ground terminal of the camera through the insulating glue 401, and then the camera is mounted on the middle frame 111 so that the conductive surface and the cover on the middle frame 111
  • the insulated Mylar 402 and the copper foil on the side facing away from the camera are in contact.
  • copper foil covers at least three surfaces of the foam. According to the principle of setting the size of the flat electrode in the capacitor, it can be seen that it is covered with an insulating Mylar 402 and copper foil, or only includes copper foil.
  • the foam can be used as a flat electrode of a capacitor for capacitive coupling electrical connection. Therefore, the area of the side surface of the supporting portion 311 (ie, the foam) near the first member 10 or the second member 20 may be 9 mm 2 to 100 mm 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Telephone Set Structure (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本申请实施例提供一种电连接组件以及移动终端,涉及电子通信技术领域,以解决电子元件与电阻不稳定的表面之间的电连接点接触不稳定的问题。上述电连接组件包括第一部件,第二部件,导电部,第一绝缘层。第一部件和第二部件具有导电面,且第一部件的导电面与第二部件的导电面相对设置。导电部位于第一部件和第二部件之间,第一部件的导电面上设置有第一绝缘层,导电部与第一绝缘层相接触。导电部与第二部件的导电面电连接。

Description

电连接组件以及移动终端 技术领域
本申请涉及电子通信技术领域,尤其涉及电连接组件以及移动终端。
背景技术
随着移动通信技术领域的发展,移动终端例如手机的集成度越来越高,内部结构越来越复杂,从而使得相邻器件之间的间距越来越小,甚至安装位置会有部分重叠。在此情况下,为了降低相邻电子元件之间的信号干扰,对电子元件的接地要求也越来越高。
手机中常用不锈钢或者金属铝作为用于支撑上述电子元件的壳体。上述电子元件可以与该壳体电连接可以实现接地。然而,由于不锈钢或者金属铝的表面容易受到绝缘薄膜或者加工工艺等因素的影响,导致其表面接触电阻不稳定,会导致辐射杂讯(Radiated Spurious Emission,RSE)现象的发生,降低接地要求。
发明内容
本申请的实施例提供电连接组件以及移动终端,以解决电子元件与电阻不稳定的表面之间的电连接点接触不稳定的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种电连接组件,该电连接组件包括第一部件,第二部件,导电部,第一绝缘层。其中,第一部件和第二部件具有导电面,且第一部件的导电面与第二部件的导电面相对设置。上述导电部位于第一部件和第二部件之间,第一部件的导电面上设置有第一绝缘层,导电部与第一绝缘层相接触。导电部与第二部件的导电面电连接。这样一来,上述电连接组件中,当待电连接的第一部件和第二部件中,第一部件的导电面为接触电阻不稳定的非理想导电面时,可以在该第一部件的导电面上设置与导电部相接触的第一绝缘层,以使得导电部与具有非理想导电面的第一部件之间形成电容。这样一来,具有非理想导电面的第一部件上的信号可以通过上述电容耦合到导电部上,然后再通过导电部传输至第二部件上,从而实现了第一部件和第二部件之间的耦合馈电。在此情况下,一方面可以导电部无需与第一部件的非理想导电面直接接触,从而能够提高电连接的可靠性,降低RSE超标现象出现的几率。另一方面,行数电连接组件中无需在第一部件的非理想导电面上形成导体镀层,因此能够避免制作导体镀层导致制作成本较高的问题。
结合第一方面,在一种可能的实现方式中,所述导电部与所述第二部件的导电面相接触。
可选的,导电部包括电连接的第一导电子部和第二导电子部。该第一导电子部和第二导电子部各包括第一表面和第二表面。其中,第一导电子部的第一表面和第二导电子部的第二表面相接触。第二导电子部的第一表面第一绝缘层相接触。第一导电子部的第二表面和第二部件的导电面相接触。这样一来,在制作的过程中,第一导电子 部可以组装于第二部件上,第二导电子部可以与第一绝缘层封装在一起并组装与第一部件上。在此情况下,当第一部件和第二部件安装在一起后,第一导电子部的第一表面和第二导电子部的第二表面相接触,从而可以方便上述电连接组件与第一部件和第二部件进行组装。
可选的,第一导电子部的第一表面和第二导电子部的第二表面的接触面位于第二导电子部的第二表面的边缘以内。在此情况下,第二导电子部的第二表面的面积可以大于第一导电子部的第一表面的面积。这样一来,第一导电子部可以主要用于对第一部件和第二部件进行支撑,而第二导电子部用于增大导电部与第一部件构成的第一电容的下基板的面积,达到增大第一电容的电容值的目的,从而有效提高第一部件与导电部之间耦合馈电的效果。
可选的,第一导电子部为导电泡棉或导电胶。第二导电子部为金属片或导电薄膜。导电泡棉或导电胶能够向第一部件和第二部件提供较好的支撑力。而金属片或导电薄膜的厚度较小,从而能够使得第二导电子部具有面积较大的第一表面和第二表面。
可选的,第二导电子部的第二表面的面积为9mm 2~100mm 2。当第二导电子部的面积小于3mm×3mm时,第二导电子部的阻抗沿史密斯圆顺时针从开路点O1移动的过程中,很难达到短路点,而当第二导电子部的面积大于10mm×10mm时,第二导电子部的阻抗沿史密斯圆顺时针从开路点移动的过程中,会穿过短路点进入感性区域,从而使得第二导电子部阻抗较大。
可选的,第一绝缘层包括绝缘胶和绝缘麦拉,绝缘胶和第一部件的导电面相接触,绝缘麦拉和导电部相接触。绝缘胶起到粘接的作用,而绝缘麦拉的质地较硬,因此第一部件和第二部件安装过程中,能够避免由于施压导致绝缘麦拉发生穿透,而引起第一部件或第二部件的导电面与导电部虚接的现象发生。
结合第一方面,在另一种可能的实现方式中,第二部件的导电面上设置有第二绝缘层。这样一来,当第二部件的导电面为接触电阻稳定的导电面时,可以在该第二部件的导电面上设置第二绝缘层,以使得导电部与第二部件之间形成第二电容,从而使得导电部与第二部件之间通过上述第二电容的耦合馈电作用,实现两者之间的电连接。
可选的,导电部包括电连接的第一导电子部、第二导电子部以及第三导电子部。上述第一导电子部、第二导电子部和第三导电子部各包括第一表面和第二表面。其中,第一导电子部的第一表面和第二导电子部的第二表面相接触。第二导电子部的第一表面所述第一绝缘层相接触。第一导电子部的第二表面和第三导电子部的第一表面相接触。第三导电子部的第二表面和第二绝缘层相接触。这样一来,在制作的过程中,第二导电子部与第一绝缘层可以封装在一起,并组装于第一部件上。第三导电子部与第二绝缘层可以封装在一起,并组装于第二部件上。第一导电子部可以通过胶层粘结方式,粘接于第三导电子部的第一表面上。然后将第一部件与第二部件安装在一起,使得第一导电子部的第一表面与第二导电子部的第二表面相接触,从而可以方便上述电连接组件与第一部件和第二部件进行组装。
可选的,第一导电子部的第一表面和第二导电子部的第二表面的接触面位于第二导电子部的第二表面的边缘以内。在此情况下,第二导电子部的第二表面的面积可以大于第一导电子部的第一表面的面积。这样一来,第一导电子部可以主要用于对第一 部件和第二部件进行支撑,而第二导电子部用于增大导电部与第一部件构成的第一电容的下基板的面积,达到增大第一电容的电容值的目的,从而有效提高第一部件与导电部之间耦合馈电的效果。
此外,第一导电子部的第二表面和第三导电子部的第一表面的接触面位于第三导电子部的第一表面的边缘以内。在此情况下,第三导电子部的第一表面的面积可以大于第一导电子部的第二表面的面积。这样一来,第一导电子部可以主要用于对第一部件和第二部件进行支撑,而第三导电子部用于增大导电部与第二部件构成的第二电容的上基板的面积,达到增大第二电容的电容值的目的,从而有效提高第二部件与导电部之间耦合馈电的效果。
可选的,第一导电子部为导电泡棉或导电胶。第二导电子部、第三导电子部为金属片或导电薄膜。导电泡棉或导电胶能够向第一部件和第二部件提供较好的支撑力。而金属片或导电薄膜的厚度较小,从而能够使得第二导电子部或第三导电子部具有面积较大的第一表面和第二表面。
可选的,第二导电子部的第二表面的面积为9mm 2~100mm 2。第三导电子部的第一表面的面积为9mm 2~100mm 2。第二导电子部的第二表面以及第三导电子部的第一表面的面积与前述实施例中第二导电子部的第二表面的面积具有相同的技术效果,此处不再赘述。
可选的,第一绝缘层包括第一绝缘胶和第一绝缘麦拉。第一绝缘胶和第一部件的导电面相接触,第一绝缘麦拉和导电部相接触。此外,第二绝缘层包括第二绝缘胶和第二绝缘麦拉。该第二绝缘胶和第二部件的导电面相接触,第二绝缘麦拉和导电部相接触。上述第一绝缘胶、第二绝缘胶具有与前述实施例提供的绝缘胶相同的技术效果,此处不再赘述。第一绝缘麦拉、第二绝缘麦拉具有与前述实施例提供的绝缘麦拉相同的技术效果,此处不再赘述。
或者,上述第二绝缘层包括绝缘薄膜和第二绝缘胶。绝缘薄膜覆盖第二部件的导电面,第二绝缘胶位于绝缘薄膜和导电部之间,第二绝缘胶与绝缘薄膜和导电部相接触。这样一来,当设置有上述绝缘薄膜时,无需再设置上述第二绝缘麦拉。上述绝缘薄膜层可以为通过阳极氧化工艺形成的氧化层,或者通过喷涂涂覆工艺形成的绝缘的薄膜层。
结合第一方面,在另一种可能的实现方式中,导电部包括支撑部以及导电本体,支撑部的至少三个表面覆盖有所述导电本体。其中,支撑部的至少三个表面包括支撑部靠近第一部件和靠近第二部件的表面。在此情况下,在第一部件和第二部件组装之前,导电本体与支撑部可以实现紧密接触,所以在第一部件和第二部件组装时,无需再对支撑部施加较大的压力。因此上述方案适用于对压力较敏感的部件,例如,安装有金属框的显示屏或者摄像头。
可选的,第一绝缘层包括第一绝缘胶和第一绝缘麦拉。第一绝缘胶和第一部件的导电面相接触,第一绝缘麦拉和导电部相接触。
此外,在第二部件的导电面上设置有第二绝缘层的情况下,第二绝缘层包括第二绝缘胶和第二绝缘麦拉。第二绝缘胶和所述第二部件的导电面相接触,第二绝缘麦拉和导电部相接触。上述第一绝缘胶、第二绝缘胶具有与前述实施例提供的绝缘胶相同 的技术效果,此处不再赘述。第一绝缘麦拉、第二绝缘麦拉具有与前述实施例提供的绝缘麦拉相同的技术效果,此处不再赘述。
或者,第二绝缘层包括绝缘薄膜和第二绝缘胶。绝缘薄膜覆盖第二部件的导电面,第二绝缘胶位于所述绝缘薄膜和导电部之间,第二绝缘胶与绝缘薄膜和导电部相接触。该绝缘薄膜与前述实施例提供的绝缘薄膜具有相同的技术效果,此处不再赘述。
可选的,在第二绝缘层包括绝缘薄膜和第二绝缘胶的情况下。导电部还包括与导电本体相连接的导电延伸部。导电本体在第二部件上的垂直投影与导电延伸部在第二部件上的垂直投影无交叠。此外,至少导电延伸部与第二绝缘胶相接触。这样一来,通过在导电部中设置上述导电延伸部,可以在适当减小支撑部体积的基础上,增加导电部与第二部件构成的第二电容的上极板的面积,提高耦合馈电的效果。
可选的,当减小支撑部的体积时,为了避免减小导电部与第二部件构成的上述第二电容的电容值,该导电部还包括第四导电子部。第四导电子部包括第一表面和第二表面。第四导电子部的第一表面与第一绝缘麦拉相接触。第四导电子部的第二表面与导电本体相接触。在此情况下,上述第四导电子部可以为铜箔,该铜箔下表满的面积可以大于上述支撑部上表面的面积,从而可以在减小上述支撑部体积的情况下,使得第二电容的电容值不会减小。
结合第一方面,在另一种可能的实现方式中,导电部包括支撑部以及导电本体。该第一绝缘层包括绝缘胶以及绝缘麦拉。支撑部的至少三个表面依次覆盖有导电本体和绝缘麦拉。其中,支撑部的至少三个表面包括支撑部靠近第一部件和靠近第二部件的表面。这样一来,支撑部、导电本体以及绝缘麦拉可以封装在一起,然后通过绝缘胶组装在第一部件上。接下来,在第一部件与第二部件安装在一起后,绝缘麦拉的下表面与第二部件的导电面相接触,从而可以方便上述电连接组件与第一部件和第二部件进行组装。此外,由于导电本体与支撑部可以实现紧密接触,所以在第一部件和第二部件组装时,无需再对支撑部施加较大的压力。
可选的,支撑部为泡棉。导电本体为金属片或导电薄膜。泡棉以及金属片或导电薄膜的技术效果同上所述,此处不再赘述。
可选的,支撑部靠近第一部件或第二部件一侧表面的面积为9mm 2~100mm 2。支撑部靠近第一部件或第二部件一侧表面的面积,与前述实施例中第二导电子部的第二表面的面积具有相同的技术效果,此处不再赘述。
可选的,第一绝缘层的厚度为0.01mm~0.05mm。其中,当第一绝缘层的厚度小于0.01mm时,对于制作精度的要求较高,不利于降低生产成本,而当第一绝缘层的厚度大于0.05mm时,不利于平板电容的电容值C的提升。
可选的,导电部与第一部件构成第一电容,从而使得导电部与第一部件可以通过第一电容的耦合馈电作用,实现导电部与第一部件的非接触电连接。此外,导电部与第二部件构成第二电容,从而使得导电部与第二部件可以通过第二电容的耦合馈电作用,实现导电部与第二部件的非接触电连接。
第二方面,提供一种移动终端,包括如上所述的任意一种电连接组件。该移动终端具有与前述实施例提供的电连接组件相同的技术效果,此处不再赘述。
附图说明
图1为本申请一些实施例提供的一种电连接组件的结构示意图;
图2为本申请一些实施例提供的一种移动终端的结构示意图;
图3为本申请一些实施例提供的另一种移动终端的结构示意图;
图4为与图1所示的结构相对应的等效电路图;
图5为本申请一些实施例提供的另一种电连接组件的结构示意图;
图6为与图5所示的结构相对应的等效电路图;
图7为本申请一些实施例提供的另一种电连接组件的结构示意图;
图8为本申请一些实施例提供的另一种电连接组件的结构示意图;
图9a为本申请一些实施例提供的另一种电连接组件的结构示意图;
图9b为本申请一些实施例提供的另一种电连接组件的结构示意图;
图10为与图9a所示的结构相对应的等效电路图;
图11为图9a所示的第二导电子部的划分原理示意图;
图12为图11所示的结构的等效电路图;
图13为本申请一些实施例提供的一种史密斯圆图;
图14为本申请另一些实施例提供的一种史密斯圆图;
图15为本申请一些实施例提供的一种移动终端的结构示意图;
图16为采用图15所示的结构进行天线抗干扰测试的测试结果图;
图17为本申请一些实施例提供的一种移动终端的结构示意图;
图18a为本申请一些实施例提供的一种电连接组件的结构示意图;
图18b为本申请一些实施例提供的另一种电连接组件的结构示意图;
图19为本申请一些实施例提供的一种电连接组件的结构示意图;
图20为本申请一些实施例提供的另一种电连接组件的结构示意图;
图21a为本申请一些实施例提供的另一种电连接组件的结构示意图;
图21b为本申请一些实施例提供的另一种电连接组件的结构示意图;
图21c为本申请一些实施例提供的另一种电连接组件的结构示意图;
图21d为本申请一些实施例提供的另一种电连接组件的结构示意图;
图22为本申请一些实施例提供的另一种电连接组件的结构示意图;
图23为本申请一些实施例提供的另一种电连接组件的结构示意图;
图24为本申请一些实施例提供的另一种电连接组件的结构示意图;
图25为本申请一些实施例提供的另一种史密斯圆图。
附图标记:
01-电连接组件;02-移动终端;10-第一部件;11-第二部件;12-镀金点焊弹片;110-显示模组;1101-显示屏;1102-触控面板;1103-金属框;111-中框;1110-边框;1111-承载板;112-后壳;113-金属屏蔽罩;114-天线;20-第二部件;30-导电部;301-第一导电子部;302-第二导电子部;303-第二导电子部;304-第四导电子部;311-支撑部;312-导电本体;313-导电延伸部;40-第一绝缘层;401-绝缘胶;402-绝缘麦拉;411-第一绝缘胶;412-第一绝缘麦拉;41-第二绝缘层;421-第二绝缘胶;422-第二绝缘麦拉;403-绝缘薄膜。
具体实施方式
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
此外,本申请中,“上”、“下”、“左”以及“右”等方位术语是相对于附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件所放置的方位的变化而相应地发生变化。
本申请一些实施例提供一种电连接组件01,如图1所示,该电连接组件01包括第一部件10和第二部件20。第一部件10和第二部件20之间可以具有一定的安装公差,且第一部件10和第二部件20之间可以通过可拆卸连接方式,例如螺纹连接、卡合连接或者粘贴等方式安装在一起。
本申请的一些实施例还提供一种如图2所示的移动终端02,上述电连接组件01可以应用于该移动终端02中。该移动终端02可以包括手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、车载电脑等。本申请实施例对上述移动终端的具体形式不做特殊限制。
以移动终端02为手机为例,该手机如图2所示,可以包括显示模组110、中框111以及后壳112等。
其中,显示模组110包括显示屏1101以及设置于显示屏1101出光侧的触控面板1102。
需要说明的是,上述显示屏1101可以为液晶显示屏(Liquid Crystal Display,LCD),或者有机发光二极管(Organic Light Emitting Diode,OLED)显示屏,本申请对此不作限定。
此外,上述触控面板1102可以包括由玻璃或者透明树脂材料制成的盖板以及制作于该盖板靠近显示屏1011一侧的触控电极图案。
上述中框111位于显示模组110和后壳112之间。中框111包括边框1110以及被边框包围的承载板1111。承载板1111的一侧安装有显示模组110,另一侧安装有电池、主板、摄像头(Camera)、天线等内部元件。用于构成中框111的上述边框1110与承载板1111可以为一体结构。
后壳112安装于中框111上,后壳112能够对上述内部元件进行保护。
在此情况下,在该移动终端02包括上述电连接组件01的情况下,上述电连接组件01的第一部件10和第二部件20可以分别为显示模组110和中框111;或者,上述电连接组件01的第一部件10和第二部件20可以分别为中框111和后壳112。
上述第一部件10和第二部件20具有导电面,且如图1所示,第一部件10的导电面A1与第二部件20的导电面A2相对设置。
在本申请的一些实施例中,在第一部件10和第二部件20可以分别为显示模组110和中框111的情况下,在本申请的一些实施例中,该显示模组110如图2所示,还可以包括安装于显示屏1101非出光侧的金属框1103。金属框1103背离显示屏1101的一侧可以通过胶层粘贴于中框111上,从而达到将显示模组110安装于中框111上的 目的。
需要说明的是,显示屏1101的非出光侧为与该显示屏1101出光侧(靠近触控面板1102)相对设置的一侧表面。
手机的中框111如图3所示,通常在靠近后壳112的一侧表面安装有天线114,上述金属框1103可以防止显示屏1101对天线114辐射出的能量进行吸收。其中,上述天线114可以在中框111的边框1110的上方或下方均设置。
基于此,作为第一部件10的显示模组110的导电面A1为上述金属框1103靠近中框111的一侧表面。
此外,作为第二部件20的中框111靠近金属框1103的一侧设置有金属导电面以作为该第二部件20的导电面A2。
例如,当构成中框111的材料为导电材料,例如不锈钢或者金属铝等材料时,该中框111中承载板1111靠近金属框1103的一侧表面即可以为上述第二部件20的导电面A2。
或者,当构成上述中框111的材料包括金属铝或铝合金时,为了提高第二部件20的导电面A2的电导率,该中框111中承载板1111靠近金属框1103的一侧金属面上可以通过镭雕工艺形成铝镭雕面,将该铝镭雕面作为上述第二部件20的导电面A2。
需要说明的是,上述是以铝镭雕面作为第二部件20的导电面A2为例进行的说明。此外,在本申请的另一些实施例中,当第二部件20上具有化学性能较稳定,且电导率较高的导体材料,例如,金、镍、铜等构成的金属镀层时,该金属镀层也可以作为第二部件20的导电面A2。上述铝镭雕面的制作工艺相对于金属镀层的制作工艺而言,成本较低。以下为了方便说明,以铝镭雕面为上述第二部件20的导电面A2为例进行说明。
在本申请的另一些实施例中,如图2所示,中框111靠近后壳112的一侧设置有金属屏蔽罩113。该金属屏蔽罩113用于覆盖安装于主板上的芯片,以减少芯片之间产生的信号干扰。其中,构成上述金属屏蔽罩113的材料可以为不锈钢。
基于此,在第一部件10和第二部件20可以分别为中框111和后壳112的情况下,作为第一部件10的中框111的导电面A1为上述金属屏蔽罩113靠近后壳112的一侧表面。
此外,作为第二部件20的后壳112靠近金属屏蔽罩113的一侧设置有金属导电面以作为该第二部件20的导电面A2。
例如,当构成后壳112的材料为导电材料,该后壳112靠近金属屏蔽罩113的一侧表面即可以为上述第二部件20的导电面A2。
或者,当构成上述后壳112的材料包括金属铝或铝合金时,为了提高上述第二部件20的导电面A2的电导率,该后壳112靠近中框111的一侧金属面,且与上述金属屏蔽罩113相对的位置可以通过镭雕工艺形成铝镭雕面,将该铝镭雕面作为上述第二部件20的导电面A2。
此外,如图1所示,上述电连接组件01还包括导电部30以及第一绝缘层40。
导电部30位于第一部件10和第二部件20之间,第一部件10的导电面A1上设置上述第一绝缘层40。
导电部30与第一绝缘层40相接触。该导电部30与第一部件10可以构成如图4所示的第一电容C1。其中,第一电容C1的上基板为第一部件10,下基板为导电部30。在此情况下,在上述第一电容C1的耦合馈电作用下,可以将非接触的导电部30与第一部件10之间实现电连接。
此外,导电部30与第二部件20的导电面A2电连接。
在本申请的一些实施例中,上述导电部30与第二部件20的导电面A2电连接的方式,如图1所示,可以是将导电部30与第二部件20的导电面A2相接触。导电部30与第二部件20的导电面A2的接触面可以形成如图4所示的接触电阻R。在此情况下,第二部件20导电面A2的电导率可以大于第一部件10导电面A1的电导率。此时,第二部件20的导电面A2为良导体,上述接触电阻R的阻值较小,可以为小于0.25Ω。
示例性的,第一部件10和第二部件20分别为显示模组110和中框111。
显示模组110中安装于显示屏1101非出光侧的金属框1103采用不锈钢构成。而中框111中承载板1111靠近金属框1103的一侧表面上具有上述铝镭雕面。
在此情况下,为了提高天线114周围的接地环境,可以将显示屏1101背面金属框1103与中框111上的铝镭雕面电连接,以实现金属框1103的接地,从而减小对天线114产生干扰。
基于此,由于不锈钢氧化后形成的绝缘薄膜的厚度较厚,因此作为第一部件10导电面A1的金属框1103靠近中框111一侧的表面的电导率较小。此外,作为第二部件20导电面A2的铝镭雕面具有良好的电导率,所以其电导率较大。
在此情况下,显示屏1101背面金属框1103与中框111上的铝镭雕面电连接时,可以采用如图1所示的电连接组件01,即在显示屏1101背面金属框1103上设置第一绝缘层40,导电部30与该第一绝缘层40相接触,而导电部30背离第一绝缘层40的一侧表面与中框111上的铝镭雕面相接触。
或者,上述导电部30与第二部件20的导电面A2电连接的方式,可以如图5所示,第二部件20的导电面A2上设置有第二绝缘层41。在此情况下,导电部30与第二部件20可以构成如图6所示的第二电容C2。其中,第二电容C2的上基板为导电部30,下基板为第二部件20。
示例性的,第一部件10和第二部件20分别为显示模组110和中框111。显示屏1101背面的金属框1103以及中框111均采用不锈钢构成。
在将显示屏1101背面金属框1103与中框111电连接,以实现金属框1103的接地时,由于不锈钢氧化后形成的绝缘薄膜的厚度较厚,从而使得导电面上的接触电阻不稳定,因此作为第二部件20导电面A2的中框111靠近金属框1103的一侧表面,以及作为第一部件10导电面A1的金属框1103靠近中框111一侧表面均为接触电阻不稳定的非理想导电面,其电导率均较小。
在此情况下,显示屏1101背面金属框1103与中框111电连接时,可以采用如图5所示的电连接组件01,即在显示屏1101背面金属框1103上设置第一绝缘层40,在中框111靠近金属框1103的一侧设置第二绝缘层41,导电部30的上表面与第一绝缘层40的下表面相接触,导电部30的下表面与第二绝缘层41的上表面相接触。
由上述可知,上述电连接组件01中,当待电连接的第一部件10和第二部件20中的一个部件,例如第一部件10的导电面为接触电阻不稳定的非理想导电面时,可以在该第一部件10的导电面上设置与导电部30相接触的第一绝缘层40,以使得导电部30与具有非理想导电面的第一部件10之间形成第一电容C1。这样一来,具有非理想导电面的第一部件10上的信号可以通过第一电容C1耦合到导电部30上,然后再通过导电部30传输至第二部件20上。
基于此,图7所示的方案中,需要在接触电阻不稳定的第一部件10的下表面涂覆良导体镀层11(例如镀镍层),且通过镀金点焊弹片12将第一部件10和第二部件20电连接。本申请实施例提供的图1或图5所示的方案相对于如图7所示的方案而言,不需要在接触电阻不稳定的第一部件10的下表面涂覆良导体镀层11,且无需采用点焊工艺,利用镀金点焊弹片12将第二部件20与上述第一部件10电连接。因此,能够降低成本。
此外,图8所示的方案中,将导电部30的上表面与第一部件10的下表面相接触,该导电部30的下表面与第二部件20的上表面相接触。本申请实施例提供的图1或图5所示的相对于如图8所示的方案而言,在第一部件10的下表面接触电阻不稳定的情况下,能够减小导电部30与第一部件10的下表面直接接触,而导致电连接可靠性下降,天线114周边接地效果较差,引起RSE超标现象出现的几率。
以下对导电部30的结构进行详细的说明。
示例一
本示例,如图9a所示,是以第一部件10的导电面A1为接触电阻不稳定的导电面,第一部件10的导电面A1上设置上述第一绝缘层40,导电部30与第二部件20的导电面A2相接触为例进行的说明。
基于此,如图9a所示,该导电部30包括电连接的第一导电子部301和第二导电子部302。
第一导电子部301和第二导电子部302各包括第一表面和第二表面。其中,上述第一表面和第二表面可以相对设置,第一表面为上表面,第二表面为下表面。例如,第一导电子部301的第一表面为该第一导电子部301的上表面(即靠近第一部件10一侧的表面),第一导电子部301的第二表面为该第一导电子部301的下表面(即靠近第二部件20一侧的表面)。第二导电子部302的第一表面和第二表面同理可得。
基于此,如图9a所示,第一导电子部301的第一表面和第二导电子部302的第二表面相接触。第二导电子部302的第一表面第一绝缘层40相接触。第一导电子部301的第二表面和第二部件20的导电面A2相接触。
在本申请的一些实施例中,上述第一导电子部301可以为导电泡棉或者导电胶。该第一导电子部301不仅起到导电作用,还以用于对位于其两侧的第一部件10和第二部件20进行支撑。此外,上述第一导电子部301还可以具有吸收第一部件10和第二部件20的安装公差的作用,使得第一部件10和第二部件20安装后,述第一导电子部301的上表面与第二导电子部302的下表面相接触。
上述导电泡棉可以是在普通非导电的泡棉表面包裹导电布,或者在普通非导电的泡棉表面制作导电涂层,以构成上述导电泡棉。
此外,上述第二导电子部302可以为金属片或者导电薄膜。上述金属片可以为铜箔。上述导电薄膜可以为导电布,该导电布包括柔性基底以及设置于该柔性基底上的金属镀层,该金属镀层可以为镀金层、镀镍层或镀铜层中的至少一种,本申请对此不做限定。为了方便说明,以下实施例均是以第一导电子部301为导电泡棉,第二导电子部302为铜箔为进行的说明。
在此情况下,第二导电子部302的厚度H2可以小于第一导电子部301的厚度H1。其中,上述厚度的方向垂直于第一部件10的导电面A1。
基于此,上述导电部30中第一导电子部301和第二导电子部302的设置方式,可以如图9a所示,第一导电子部301的第一表面和第二导电子部302的第二表面的接触面位于第二导电子部302的第二表面的边缘以内。
在此情况下,作为第二导电子部302的铜箔平铺于第一绝缘层40靠近第二导电子部302的一侧表面上,而作为第一导电子部301的导电泡棉只与铜箔的一部分相接触。该铜箔中未与导电泡棉相接触的部分延伸出导电泡棉所在的区域。这样一来,通过第二导电子部302可以增大导电部30与第一部件10构成的第一电容的电容值,从而有效提高第一部件10与导电部30之间耦合馈电的效果。
此外,如图9a所示,上述第一绝缘层40包括绝缘胶401,该绝缘胶401具有绝缘和粘合作用。
在此基础上,为了避免第一部件10和第二部件20安装的过程中,由于向第一部件10或第二部件20施压,使得第一绝缘层40发生穿透,而导致第一部件10或第二部件20的导电面与导电部30虚接,使得第一部件10或第二部件20的导电面出现接触电阻不稳定的现象。上述第一绝缘层40还可以包括绝缘麦拉402。
绝缘胶401和第一部件10的导电面A1相接触,绝缘麦拉402和导电部30相接触。在导电部30如图9a所示包括第一导电子部301和第二导电子部302的情况下,上述绝缘麦拉402与第二导电子部302相接触。
构成绝缘麦拉402的材料可以为聚对苯二甲酸类塑料(Polyethylene Terephthalate,PET)。绝缘麦拉402的质地较硬,因此第一部件10和第二部件20安装过程中,能够避免由于施压导致绝缘麦拉402发生穿透,而引起第一部件10或第二部件20的导电面与导电部30虚接的现象发生。
需要说明的是,当第一绝缘层40包括绝缘胶401和绝缘麦拉402,导电部30包括第一导电子部301和第二导电子部302时,在制作过程中,可以先将绝缘胶401和绝缘麦拉402粘贴在一起。然后将第二导电子部302,即铜箔通过胶体粘接或者热熔工艺设置于绝缘麦拉402背离绝缘胶401的一侧表面。在此情况下,第一绝缘层40与第二导电子部302封装在了一起。接下来,将上述封装在一起的组件,组装于第一部件10上,使得绝缘胶401背离绝缘麦拉402的一侧表面粘贴于第一部件10的导电面A1上。
其中,为了避免第二导电子部302与第一部件10的导电面A1相接触,该第二导电子部302与绝缘麦拉402的接触面位于绝缘麦拉402下表面的边缘以内。
此外,将第一导电子部301通过胶体粘接的方式设置于第二部件20的导电面A2上。
接下来,将第一部件10与第二部件20安装在一起,使得第一导电子部301的第一表面与第二导电子部302的第二表面相接触。
此外,当形成有绝缘胶401的部件表面,即上述第一部件10的导电面A1经过阳极氧化等工艺处理而形成有如图9b所示的绝缘薄膜403时,可以无需设置上述绝缘麦拉402。在此情况下,上述第一绝缘层40包括绝缘薄膜403和上述绝缘胶401。绝缘薄膜403覆盖第一部件10的导电面A1,绝缘胶401位于绝缘薄膜403和导电部30之间,并与绝缘薄膜403和导电部30相接触。此时,导电部30中作为第二导电子部302的铜箔可以通过绝缘胶401粘接于绝缘薄膜403的下表面。
由上述可知,图9a中第一部件10的导电面A1上设置上述第一绝缘层40,导电部30中的铜箔(即第二导电子部302)与第一绝缘层40相接触。此时,第一部件10与铜箔构成如图10所示的第一电容C1。第一部件10上的信号可以通过第一电容C1耦合到铜箔上。
此外,第二部件20的导电面A2为接触电阻稳定的导电面,因此导电部30中的导电泡棉(即第一导电子部301)与第二部件20之间只需要设置一点胶体以将导电泡棉固定于第二部件20上即可,而该导电泡棉的大部分与上述第二部件20的导电面A2直接接触。此时,如图9a所示,导电泡棉的第一表面与铜箔第二表面相接触的位置B1,形成图10中电阻值很小(例如,0.2Ω左右)的理想接触电阻R1,而该导电泡棉的第二表面与第二部件20的导电面A2相接触的位置B2,形成图10中电阻值很小(例如,0.2Ω左右)的理想接触电阻R2。在此情况下,铜箔上的信号可以通过导电泡棉直接传输至第二部件20。
由上述设置方式可知,用于通过电容耦合的方式实现信号传输的电容为平板电容。该平板电容的电容值C满足一下公式:
C=ε×ε 0×S/d       (1)
公式(1)中:C为平板电容值;ε为相对介电常数;ε 0真空介电常数;S为平板电极的面积,即上述第一部件10的导电面A1、铜箔或第二部件20的导电面A2的面积;d为电容中介质的厚度,即上述第一绝缘层40的厚度H3(如图9a所示)。
需要说明的是,上述电连接组件01应用于移动终端02时,由第一部件10传输至第二部件20的信号通常为中、高频信号,例如频率在700MHZ~2.7GHZ的范围内。对于上述高频信号而言,采用上述电容耦合的方式实现信号传输时,电容的电容值越大,信号的传输效果越好。
由公式(1)可知,电容值C与第一绝缘层40的厚度H3成反比,因此第一绝缘层40的厚度H3越小,电容值C的数值越大。因此为了增加电容值C,在本申请的一些实施例中,上述第一绝缘层40的厚度H3可以为0.01~0.05mm。当第一绝缘层40的厚度H3小于0.01mm时,对于制作精度的要求较高,不利于降低生产成本,而当第一绝缘层40的厚度H3大于0.05mm时,不利于电容值C的提升。可选的,上述第一绝缘层40的厚度H3可以为0.01mm、0.015mm、0.02mm、0.04mm。例如,在第一绝缘层40包括绝缘胶401和绝缘麦拉402的情况下,在本申请的一些实施例中,上述绝缘胶401的厚度可以均0.01mm,绝缘麦拉402的厚度可以为0.01mm。
此外,电容值C与电容的上、下电极的面积S呈正比。由于第一部件10的导电 面A1或第二部件20的导电面A2的面积通常大于铜箔的面积。因此铜箔中与上述导电面平行的表面的面积越大,该电容的电容值C越大。
然而,在通过电容耦合实现中、高频信号传输的过程中,如果在满足安装尺寸的条件下,一味地增加铜箔的面积,反倒会增加感性阻抗,导致信号传输的效率降低。
示例性的,以图9a所示的结构为例,电连接组件01中形成的如图10所示的第一电容C1可以通过电容耦合的方式,将中、高频信号从第一部件10耦合至第二部件20上。第一电容C1的下基板铜箔(即第二导电子部302)如图11所示,可以看作是由外向里一圈一圈缠绕的线圈,该线圈最终缠绕着至位于中心的接触点。该接触点为铜箔与导电泡棉(即第一导电子部301)相接触的区域。
图11中,相邻两条虚线划分出的多条线圈(L1、L2、L3……Ln)分别与第一部件10的导电面A1之间形成多个分布电容(C_1、C_2、C_3……C_n)。上述铜箔划分成线圈后的等效电路如图12所示。可以看出上述多个分布电容(C_1、C_2、C_3……C_n)并联。因此图10中第一电容C1的电容值为上述多个分布电容(C_1、C_2、C_3……C_n)的电容值之和。
在此情况下,由图13所示,该史密斯圆图中上半圆为感性区域,下半圆为容性区域。此外,该史密斯圆图中横轴右端点为开路点O1,左端点为短路点O2。由图11可知,位于最外圈的线圈Ln没有与其他部件电连接,因此线圈Ln以及分布电容C_n位于图13中史密斯圆图的开路点O1,此外,铜箔上与导电泡棉相接触的接触点位于史密斯圆图的短路点O2。
基于此,多条线圈(L1、L2、L3……Ln)和与各个线圈相连接的分布电容(C_1、C_2、C_3……C_n)会使得铜箔的阻抗如图13所示,沿顺时针移动,从而从开路点O1向短路点O2开始移动。如果铜箔的尺寸设置合理,铜箔的阻抗会刚好移动至短路点O2附近而停止移动,从而使得铜箔的接触点处于短路状态,此时第一部件10和铜箔形成的上述第一电容C1的电容耦合电连接效果最佳。
然而,如果铜箔的尺寸太大,那么图12中接入的线圈和分布电容的数量也会越多,这样一来,铜箔的阻抗在由开路点O1顺时针移动的过程中,会穿过短路点O2继续移动至上半圆,从而进入到感性区域,此时上述第一电容C1成为电感,而使得阻抗偏离短路点O2,降低了第一电容C1的电容耦合电连接的效果。
根据上述说明,在本申请的一些实施例中,可选的上述第二导电子部302,即铜箔的面积可以为9mm 2~100mm 2(即,3mm×3mm~10mm×10mm)。当铜箔的面积小于3mm×3mm时,铜箔的阻抗如图13所示,沿顺时针从开路点O1移动的过程中,很难达到短路点O2,而当铜箔的面积大于10mm×10mm时,铜箔的阻抗如图13所示,沿顺时针从开路点O1移动的过程中,会距离短路点O2较远,从而使得铜箔阻抗较大。
在本申请的一些实施例中,可选的,上述第二导电子部302,即铜箔的面积可以为6mm×6mm。在由第一部件10和铜箔构成的第一电容C1中铜箔采用6mm×6mm的规格的情况下,在选取不同频率的中、高频信号(如表1所示)对上述第一电容C1的电连接效果进行测试。
表1
Figure PCTCN2018093817-appb-000001
由表1可知,采用序号1和序号2对应的中频信号时,上述第一部件10和第二部件20之间的阻抗体现为电容,例如上述第一电容C1的电容值,该电容值可以达到30PF左右。
采用序号3对应的高频信号时,上述第一部件10和第二部件20之间的阻抗也体现为电容,例如上述第一电容C1的电容值,该电容值可以达到500PF。
当采用序号4-序号6对应的高频信号时,上述第一部件10和第二部件20之间的阻抗也体现为电感,在此情况下,上述第一电容C1变为电感,但是如图14所示,第一电容C1中铜箔的阻抗移动至短路点O2附近,因此第一电容C1转变为电感后仍然具有良好的电连接效果。
基于此,以图9a所示的结构为例,将具有6mm×6mm规格的铜箔的电连接组件01应用至移动终端02,例如手机中,以去除对天线114的干扰为例,对该移动终端02中上述电连接组件01的设置过程进行说明。
由上述可知,为了避免显示屏1101对安装与中框111上的天线114造成干扰,需要将显示屏1101背面的金属框1103与中框111上的导电面,例如铝镭雕面电连接,以实现金属框1103的接地。
在此情况下,电连接组件01中的第一部件10和第二部件20分别为显示模组110和中框111。第一部件10的导电面A1为显示屏1101背面的金属框1103靠近中框111的一侧表面;第二部件20的导电面A2为中框111上形成的铝镭雕面。
基于此,由于显示屏1101背面的金属框1103通常采用不锈钢构成,因此该金属框1103靠近中框111一侧表面的接触电阻不稳定,所以如图15所示,可以将铜箔(即第二导电子部302)粘贴于上述第一绝缘层40上,然后再将组装有铜箔的第一绝缘层40贴装于显示屏1101背面的金属框1103靠近中框111的一侧表面上。
接下来,由于中框111的铝镭雕面(即第二部件20的导电面A2)的接触电阻稳定,因此可将导电泡棉(即第一导电子部301)粘贴于上述中框111的铝镭雕面上。
然后,将显示屏1101安装于中框111上,由于导电泡棉与铜箔的位置相对应,因此在组装显示屏1101和中框111的过程中,导电泡棉受压后,使得该导电泡棉背离中框111的一侧与铜箔相接触,铜箔与显示屏1101背面的金属框1103构成第一电容C1,从而将显示屏1101与中框111电连接,达到将金属框1103接地处理的目的。
基于此,对采用上述电容耦合方式实现电连接手机进行天线效率的测试,如图16所示,分别获得三组(①、②、③)组曲线。不同组所对应的天线114的匹配参数不 同,从而使得不同组对应的天线114能够发出不同的频率。
其中,任意一组曲线中,实线(采用a1、a2或a3标示)代表采用将导电部30直接与显示屏1101背面的金属框1103相接触的电连接方式。而虚线(采用b1、b2或b3标示)代表通过显示屏1101背面的金属框1103与铜箔形成的电容耦合的电连接方式。由图16可以看出,对于任意一组曲线而言,采用电容耦合的电连接方式的效果与直接接触的电连接方式获取到的曲线基本重叠,因此两种方式的效果相当,从而可以证明手机中的上述电连接组件01中采用上述规格的铝箔时,对显示屏1101而言能够达到很好的接地效果。
或者,以图9a所示的结构为例,将具有6mm×6mm规格的铜箔的电连接组件01应用至移动终端02,例如手机中,以减小主板上的多个芯片对通信频段的干扰为例,对该移动终端02中上述电连接组件01的设置过程进行说明。
由上述可知,为了避免中框111上安装的主板上的多个芯片相互干扰,可以将芯片上覆盖的金属屏蔽罩113与后壳112上的导电面,例如铝镭雕面电连接,以实现金属屏蔽罩113的接地,使得被接地的金属屏蔽罩113覆盖的芯片不会对其附近的芯片造成干扰。
在此情况下,电连接组件01中的第一部件10和第二部件20分别为中框111和后壳112。第一部件10的导电面A1为中框111上金属屏蔽罩113靠近后壳112的一侧表面;第二部件20的导电面A2可以为后壳112上形成的铝镭雕面。
基于此,由于金属屏蔽罩113通常采用不锈钢构成,因此该金属屏蔽罩113靠近后壳112的一侧表面的接触电阻不稳定,所以可以如图17所示,将铜箔(即第二导电子部302)粘贴于第一绝缘层40上。然后,将组装有铜箔的第一绝缘层40贴装于金属屏蔽罩113靠近后壳112的一侧表面上。
接下来,由于后壳112的铝镭雕面(即第二部件20的导电面A2)的接触电阻稳定,因此可将导电泡棉(即第一导电子部301)粘贴于上述后壳112的铝镭雕面上。
然后,将中框111安装于后壳112上,由于导电泡棉与铜箔的位置相对应,因此在组装中框111和后壳112的过程中,导电泡棉受压后,使得该导电泡棉背离后壳112的一侧与铜箔相接触,铜箔与具有金属屏蔽罩113的中框111构成第一电容C1,从而将金属屏蔽罩113与后壳112电连接,达到将金属屏蔽罩113接地处理的目的。
上述均是以规格为6mm×6mm的铜箔为例进行的说明,在本申请的另一些实施例中,还可以在铜箔的面积范围9mm 2~100mm 2中选取其他规格的铜箔,例如:3mm×3mm、4mm×4mm、5mm×5mm、7mm×7mm、8mm×8mm等。上述铜箔可以为正方形或者为长方形,本申请对此不做限定。
本领域技术人员可以根据需要,对上述规格进行选择。示例性的,由公式(1)可知,当上述电连接组件01中的第一绝缘层40的厚度H3增大,例如,增大该第一绝缘层40中绝缘麦拉402的厚度时,为了避免上述电容的电容值减小,可以在上述铜箔的面积范围9mm 2~100mm 2中选取尺寸规格较大的铜箔。上述示例一是以第一部件10的导电面A1为接触电阻不稳定的导电面,而第二部件20的导电面A2为接触电阻稳定的导电面为例进行的说明。当第一部件10的导电面A1和第二部件20的导电面A2均为接触电阻不稳定的导电面时,导电部30的结构为以下示例所述。
示例二
本示例,如图18a所示,是以第一部件10的导电面A1和第二部件20的导电面A2均为接触电阻不稳定的导电面;第一部件10的导电面A1上设置上述第一绝缘层40,第二部件20的导电面A2上设置有第二绝缘层41为例进行的说明。
基于此,如图18a所示,上述导电部30包括电连接的第一导电子部301、第二导电子部302以及第三导电子部303。
第一导电子部301、第二导电子部302和第三导电子部303各包括第一表面和第二表面。其中,上述第一表面为上表面,第二表面为下表面。
此外,第一导电子部301的第一表面和第二导电子部302的第二表面相接触。第二导电子部302的第一表面第一绝缘层40相接触。第一导电子部301的第二表面和第三导电子部303的第一表面相接触。第三导电子部303的第二表面第二绝缘层41相接触。
在本申请的一些实施例中,第一导电子部301可以为导电泡棉或导电胶。该第一导电子部301不仅起到导电作用,还以用于对位于其两侧的第一部件10和第二部件20进行支撑。
第二导电子部302、第三导电子部303为金属片或导电薄膜。上述金属片可以为铜箔,上述导电薄膜可以为导电布。
为了方便说明,以下实施例均是以第一导电子部301为导电泡棉,第二导电子部302和第三导电子部303为铜箔为进行的说明。
基于此,上述导电部30中第一导电子部301、第二导电子部302、第三导电子部303的设置方式,可以如图18a所示,第一导电子部301的第一表面和第二导电子部302的第二表面的接触面位于第二导电子部302的第二表面的边缘以内。在此情况下,作为第二导电子部302的铜箔可以平铺于第一绝缘层40靠近第二导电子部302的一侧表面上。在制作过程中,上述第二导电子部302与第一绝缘层40可以封装在一起,并组装于第一部件10上。
此外,第一导电子部301的第二表面和第三导电子部303的第一表面的接触面位于第三导电子部303的第一表面的边缘以内。在此情况下,作为第三导电子部303的铜箔可以平铺于第二绝缘层41靠近第二导电子部302的一侧表面上。在制作过程中,上述第三导电子部303与第二绝缘层41可以封装在一起,并组装于第二部件20上。第一导电子部301可以通过胶层粘结方式,粘接于第三导电子部303的第一表面上。
接下来,将第一部件10与第二部件20安装在一起,使得第一导电子部301的第一表面与第二导电子部302的第二表面相接触。
与示例一原理相同,第二导电子部302的第二表面的面积可以为9mm 2~100mm 2。第三导电子部303的第一表面的面积可以为9mm 2~100mm 2
此外,如图18a所示,第一绝缘层40包括第一绝缘胶411和第一绝缘麦拉412。第一绝缘胶411和第一部件10的导电面A1相接触,第一绝缘麦拉412和导电部30相接触。在导电部30包括第一导电子部301、第二导电子部302和第三导电子部303的情况下,第一绝缘麦拉412与第二导电子部302的第一表面相接触。
第二绝缘层41包括第二绝缘胶421和第二绝缘麦拉422。第二绝缘胶421和第二 部件20的导电面A2相接触,第二绝缘麦拉422和导电部30相接触。在导电部30包括第一导电子部301、第二导电子部302和第三导电子部303的情况下,第二绝缘麦拉422与第三导电子部303的第二表面相接触。
或者,上述第二部件20的导电面A2经过阳极氧化等工艺处理而形成有绝缘薄膜403时,可以无需设置上述第二绝缘麦拉422。在此情况下,如图18b所示,第二绝缘层41包括绝缘薄膜403和第二绝缘胶421。该绝缘薄膜403覆盖第二部件20的导电面A2,第二绝缘胶421位于绝缘薄膜403和导电部30之间,且与绝缘薄膜403和导电部30相接触。在导电部30的结构如图18b所示时,上述第二绝缘胶421与导电部30中的第三导电子部303相接触。此外,图18b中第一绝缘层40的设置方式同上所述,此处不再赘述。
需要说明的是,绝缘薄膜403的制作方式可以为,采用阳极氧化形成的氧化层作为上述绝缘薄膜403。或者,还可以采用喷涂或涂覆绝缘的树脂材料形成的薄膜层作为上述绝缘薄膜403。
上述是以第二部件20的导电面A2形成有绝缘薄膜403为例进行的说明,当第一部件10的导电面A1也通过上述阳极氧化工艺形成上述绝缘的绝缘薄膜403时,第一绝缘层41的设置方式同上所述,此处不再赘述。
此外,上述第二绝缘层41的厚度范围可以为0.01~0.05mm。该第二绝缘层41的厚度设置范围的技术效果与第一绝缘层40的厚度设置范围的技术效果相同,此处不再赘述。
在此情况下,导电泡棉(第一导电子部301)的两侧均设置有铜箔(即第二导电子部302和第三导电子部303),以使得位于上方的铜箔(即第二导电子部302)与第一部件10构成如图6所示的第一电容C1,而位于下方的铜箔(即第三导电子部303)与第二部件20构成有如图6所示的第二电容C2。在此情况下,第一部件10上的信号通过第一电容C1耦合到位于上方的铜箔上,该铜箔通过导电泡棉将信号传输至位于下方的铜箔上。位于下方的铜箔将信号通过第二电容C2耦合至第二部件20上。
当以如图18a所示的电连接组件01为例,对手机中的一些部件接地处理进行的说明时,导电部30两侧的第一部件10和第二部件20的导电面均为接触电阻不稳定的表面,在此情况下,图15中作为第二部件20的中框111采用不锈钢材料构成,且该中框111靠近显示屏1101一侧的表面未设置上述铝镭雕面。此时,在该第二绝缘层41上贴附一铜箔(即第三导电子部303),然后,在中框111靠近显示屏1101一侧的表面贴附组装有铜箔的第二绝缘层41。此外,作为第一部件10的显示模组110中显示屏1101背面的金属框1103靠近中框111的一侧表面上仍然依次贴装有第一绝缘层40和另一铜箔(即第二导电子部302),从而使得导电泡棉两侧均设置有用于实现耦合电连接的电容。
由上述示例一或示例二的方案可知,在第一部件10和第二部件20组装之前,导电部30中作为第一导电子部301的导电泡棉和作为第二导电子部302的铜箔分别位于第一部件10和第二部件20上,在此情况下,为了在第一部件10和第二部件20组装的过程中,提高导电部30的导电性能,上述导电泡棉和铜箔需要紧密接触。这样一来,在安装过程中,需要对导电泡棉施加较大的按压力。然而有些需要接地的部件,对上 述按压力很敏感,例如安装有金属框1103的显示屏1101或者摄像头,较大的按压力会对上述部件的质量造成影响。
为了解决上述问题,本申请中的一些实施例提供了导电部30的另一种设置方式。
示例三、
本示例中,如图19、图20、图21a、图21b所示,导电部30包括支撑部311以及导电本体312。该支撑部311的至少三个表面覆盖有导电本体312。
在本申请的一些实施例中,上述支撑部311可以为泡棉。该支撑部311可以对第一部件10和第二部件20进行支撑。此外,导电本体312可以为金属片或导电薄膜。以下为了方便说明,是以上述导电本体312为铜箔为例进行的说明。
其中,上述支撑部311的至少三个表面包括支撑部311靠近第一部件10、靠近第二部件20的表面。
上述支撑部311(即泡棉)的至少三个表面覆盖有导电本体312(即铜箔)的方式如下:
例如,如图19所示,铜箔与泡棉的上(即靠近第一部件10的表面)、下(即靠近第二部件20的表面)、左、右四个面均接触。在此情况下,铜箔可以绕泡棉一圈,并将泡棉进行包裹。
或者又例如,如图20所示,铜箔与泡棉的上、下以及右三个表面相接触。在此情况下,铜箔将导电泡棉的上、下表面以及右侧的面进行包裹。
由图19和图20可知,电连接组件01中,第一部件10靠近导电部30的一侧表面设置有第一绝缘层40,而第二部件20的一侧表面与导电部30相接触。由上述可知,图19和图20所示的方案中,第一部件10的导电面A1的接触电阻不稳定,而第二部件20的导电面A2的接触电阻稳定。
其中,上述第一绝缘层40可以包括与第一部件10的导电面A1相接触的绝缘胶401,以及与上述导电本体312(即铜箔)相接触的绝缘麦拉402。
此外,当第一部件10的导电面A1和第二部件20的导电面A2的接触电阻均不稳定时,可以采用如图21a所示的方案,该图21a所示的方案中,第一绝缘层40包括第一绝缘胶411和第一绝缘麦拉412。第一绝缘胶411和第一绝缘麦拉412的设置方式同上所述,此处不再赘述。
上述图21a所示的方案中,在导电部30与第二部件20的导电面A2之间设置第二绝缘层41。第二绝缘层41包括第二绝缘胶421和第二绝缘麦拉422。第二绝缘胶421和第二绝缘麦拉422的设置方式同上所述,此处不再赘述。
或者,当第一部件10的导电面A1和第二部件20的导电面A2的接触电阻均不稳定时,可以采用如图21b所示的方案,即在第二部件20的导电面A2经过阳极氧化等工艺处理而形成有绝缘薄膜403时,可以无需设置上述第二绝缘麦拉422。
在此情况下,如图21b所示,第二绝缘层41包括绝缘薄膜403和第二绝缘胶421。该绝缘薄膜403覆盖第二部件20的导电面A2,第二绝缘胶421位于绝缘薄膜403和导电部30之间,且与绝缘薄膜403和导电部30相接触。在导电部30的结构如图21b所示时,上述第二绝缘胶421与导电部30中的导电本体312相接触。
此外,第二绝缘层41包括绝缘薄膜403和第二绝缘胶421的情况下,当第一部件 10的导电面A1和第二部件20的导电面A2的接触电阻均不稳定时,还可以采用如图21c所示的方案,即上述导电部30还包括与导电本体312相连接的导电延伸部313。
该导电本体312在第二部件20上的垂直投影与导电延伸部313在第二部件20上的垂直投影无交叠。在此情况下,导电延伸部313延伸出导电本体312所在的区域。
可选的,上述导电延伸部313可以与导电本体312为一体结构。例如一铜箔的一部分为上述用于覆盖支撑部311的导电本体312,而该铜箔的另一部分为上述导电延伸部313。
在此情况下,为了使得绝缘薄膜403和导电部30相接触,该导电部30中,如图21c所示,至少导电延伸部313与第二绝缘胶421相接触。
这样一来,图21c所示的方案相对于图21b所示的方案而言,通过在导电部30中设置上述导电延伸部313,可以在适当减小支撑部311(即泡棉)体积的基础上,增加导电部30与第二部件20构成的第二电容C的上极板的面积,提高耦合馈电的效果。
在此基础上,当减小支撑部311(即泡棉)的体积时,为了避免减小上述第二电容C的电容值,可选的,如图21d所示,上述导电部30还包括第四导电子部304。该第四导电子部304包括第一表面和第二表面。同上所述,第一表面为上表面,第二表面为下表面。
在此情况下,第四导电子部304的第一表面与第一绝缘麦拉412相接触。第四导电子部304的第二表面与导电本体312相接触。在此情况下,上述第四导电子部304可以为铜箔,该铜箔下表面的面积可以大于上述泡棉上表面的面积。该第四导电子部304下表面面积的设置方式同上所述,例如为9mm 2~100mm 2。这样一来,可以在减小上述支撑部311(即泡棉)体积的情况下,使得导电部30与第二部件20构成的第二电容C的电容值不会减小。
此外,在导电部30包括支撑部311以及导电本体312,且上述第一绝缘层40包括绝缘胶401和绝缘麦拉402的情况下,本申请中的一些实施例提供了导电部30的另一种设置方式:
示例四
如图22、图23以及图24所示,本示例中,支撑部311的至少三个表面依次覆盖有导电本体312和绝缘麦拉402。
其中,支撑部311的至少三个表面包括支撑部311靠近第一部件10和靠近第二部件20的表面。
上述支撑部311(即泡棉)的至少三个表面依次覆盖有导电本体312(即铜箔)和绝缘麦拉402的方式如下:
例如,如图22所示,支撑部311(即泡棉)的上(即靠近第一部件10的表面)、下(即靠近第二部件20的表面)、左、右四个面依次被导电本体312(即铜箔)和绝缘麦拉402覆盖。在此情况下,铜箔和绝缘麦拉402可以依次绕泡棉一圈,并将泡棉进行包裹。
或者,如图23所示,支撑部311(即泡棉)的上、下以及右三个表面依次被导电本体312(即铜箔)和绝缘麦拉402覆盖。
需要说明的是,当采用图22或图23所示的方案时,上述第一绝缘层40中的绝缘 胶401的目是将覆盖有绝缘麦拉402和铜箔的泡棉固定于第一部件10的导电面A1上。因此,上述绝缘胶401无需将第一部件10的导电面A1完全覆盖,即可以采用图24所示的方案,在绝缘麦拉402与第一部件10的导电面A1之间设置一点绝缘胶401,以起到上述固定的作用即可。
综上所述,上述方案中,支撑部311(即泡棉)的至少三个表面覆盖有导电本体312(即铜箔),因此在第一部件10和第二部件20组装之前,铜箔与泡棉可以实现紧密接触,所以在第一部件10和第二部件20组装时,无需再对泡棉施加较大的压力。因此上述方案适用于对压力较敏感的部件,例如,安装有金属框1103的显示屏1101或者摄像头(Camera)。
示例性的,以图24所示的电连接组件01为例,对安装有金属框1103的显示屏1101接地进行说明。
其中,电连接组件01中的第一部件10和第二部件20分别为显示模组110和中框111。在此情况下,将覆盖有绝缘麦拉402和铜箔的泡棉通过绝缘胶401固定于显示屏1101的金属框1103背离中框111的一侧,然后将显示屏1101与中框111组装,以使得中框111上的导电面与包裹有绝缘麦拉402和铜箔的泡棉背离显示模组110的一侧相接触。
又示例性的,以图24所示的电连接组件01为例,对摄像头接地进行说明。
其中,电连接组件01中的第一部件10和第二部件20分别为摄像头和中框111。在此情况下,将覆盖有绝缘麦拉402和铜箔的泡棉通过绝缘胶401固定于摄像头的接地端,然后将摄像头安装于中框111上,以使得中框111上的导电面与覆盖有绝缘麦拉402和铜箔的泡棉背离摄像头的一侧相接触。
图19~图24所示的方案中,铜箔覆盖泡棉的至少三个表面,由上述电容中平板电极尺寸的设置原理可知,覆盖有绝缘麦拉402和铜箔,或者仅包括有铜箔的泡棉可以作为用于电容耦合电连接的电容的一个平板电极。因此,支撑部311(即泡棉)靠近第一部件10或第二部件20的一侧表面的面积可以为9mm 2~100mm 2
以泡棉的面积为36mm 2(规格为6mm×6mm),且对采用图19~图24所示的方案为例,通过选取不同频率的中、高频信号(如表2所示),对第一部件10和第二部件20的导通效果进行测试,测试结果如图25所示。
表2
序号 频率 损耗
1 700.00000MHz 0.2022dB
2 1.0000000GHz 0.1551dB
3 1.8000000GHz 0.3697dB
4 2.6000000GHz 0.6878dB
由图25可知,采用表2中各个序号对应频率对第一部件10和第二部件20的导通效果进行测试时,各个序号(1、2、3、4)对应的测试结果均位于史密斯圆图的中心位置附近,且各个测试结果对应的横坐标(表示损耗),均为横坐标0的附近。因此第一部件10和第二部件20的导通过程中的损耗接近为零,所以采用上述电连接结构01可以具有良好的信号传输效果。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种电连接组件,其特征在于,所述电连接组件包括第一部件,第二部件,导电部,第一绝缘层;
    所述第一部件和所述第二部件具有导电面,且所述第一部件的导电面与所述第二部件的导电面相对设置;
    所述导电部位于所述第一部件和所述第二部件之间,所述第一部件的导电面上设置有第一绝缘层,所述导电部与所述第一绝缘层相接触;
    所述导电部与所述第二部件的导电面电连接。
  2. 根据权利要求1所述的电连接组件,其特征在于,所述导电部与所述第二部件的导电面相接触。
  3. 根据权利要求1或2所述的电连接组件,其特征在于,所述导电部包括电连接的第一导电子部和第二导电子部;
    所述第一导电子部和所述第二导电子部各包括第一表面和第二表面;
    其中,所述第一导电子部的第一表面和所述第二导电子部的第二表面相接触;
    所述第二导电子部的第一表面所述第一绝缘层相接触;
    所述第一导电子部的第二表面和所述第二部件的导电面相接触。
  4. 根据权利要求3所述的电连接组件,其特征在于,所述第一导电子部的第一表面和所述第二导电子部的第二表面的接触面位于所述第二导电子部的第二表面的边缘以内。
  5. 根据权利要求3或4所述的电连接组件,其特征在于,所述第一导电子部为导电泡棉或导电胶;所述第二导电子部为金属片或导电薄膜。
  6. 根据权利要求3-5任一项所述的电连接组件,其特征在于,所述第二导电子部的第二表面的面积为9mm 2~100mm 2
  7. 根据权利要求1-6任一项所述的电连接组件,其特征在于,所述第一绝缘层包括绝缘胶和绝缘麦拉,所述绝缘胶和所述第一部件的导电面相接触,所述绝缘麦拉和所述导电部相接触。
  8. 根据权利要求1所述的电连接组件,其特征在于,所述第二部件的导电面上设置有第二绝缘层。
  9. 根据权利要求8所述的电连接组件,其特征在于,所述导电部包括电连接的第一导电子部、第二导电子部以及第三导电子部;
    所述第一导电子部、所述第二导电子部和所述第三导电子部各包括第一表面和第二表面;
    其中,所述第一导电子部的第一表面和所述第二导电子部的第二表面相接触;
    所述第二导电子部的第一表面所述第一绝缘层相接触;
    所述第一导电子部的第二表面和所述第三导电子部的第一表面相接触;
    所述第三导电子部的第二表面和所述第二绝缘层相接触。
  10. 根据权利要求9所述的电连接组件,其特征在于,
    所述第一导电子部的第一表面和所述第二导电子部的第二表面的接触面位于所述第二导电子部的第二表面的边缘以内;
    所述第一导电子部的第二表面和所述第三导电子部的第一表面的接触面位于所述第三导电子部的第一表面的边缘以内。
  11. 根据权利要求9或10所述的电连接组件,其特征在于,所述第一导电子部为导电泡棉或导电胶;
    所述第二导电子部、所述第三导电子部为金属片或导电薄膜。
  12. 根据权利要求9-11任一项所述的电连接组件,其特征在于,所述第二导电子部的第二表面的面积为9mm 2~100mm 2
    所述第三导电子部的第一表面的面积为9mm 2~100mm 2
  13. 根据权利要求8-12任一项所述的电连接组件,其特征在于,
    所述第一绝缘层包括第一绝缘胶和第一绝缘麦拉;所述第一绝缘胶和所述第一部件的导电面相接触,所述第一绝缘麦拉和所述导电部相接触;
    所述第二绝缘层包括第二绝缘胶和第二绝缘麦拉;所述第二绝缘胶和所述第二部件的导电面相接触,所述第二绝缘麦拉和所述导电部相接触。
  14. 根据权利要求8-12任一项所述的电连接组件,其特征在于,
    所述第一绝缘层包括第一绝缘胶和第一绝缘麦拉;所述第一绝缘胶和所述第一部件的导电面相接触,所述第一绝缘麦拉和所述导电部相接触;
    所述第二绝缘层包括绝缘薄膜和第二绝缘胶;所述绝缘薄膜覆盖所述第二部件的导电面,所述第二绝缘胶位于所述绝缘薄膜和所述导电部之间,所述第二绝缘胶与所述绝缘薄膜和所述导电部相接触。
  15. 根据权利要求1、2或8所述的电连接组件,其特征在于,
    所述导电部包括支撑部以及导电本体,所述支撑部的至少三个表面覆盖有所述导电本体。
  16. 根据权利要求15所述的电连接组件,其特征在于,
    所述第一绝缘层包括第一绝缘胶和第一绝缘麦拉;所述第一绝缘胶和所述第一部件的导电面相接触,所述第一绝缘麦拉和所述导电部相接触;
    所述第二部件的导电面上设置有第二绝缘层;
    所述第二绝缘层包括第二绝缘胶和第二绝缘麦拉;所述第二绝缘胶和所述第二部件的导电面相接触,所述第二绝缘麦拉和所述导电部相接触。
  17. 根据权利要求15所述的电连接组件,其特征在于,
    所述第一绝缘层包括第一绝缘胶和第一绝缘麦拉;所述第一绝缘胶和所述第一部件的导电面相接触,所述第一绝缘麦拉和所述导电部相接触;
    所述第二部件的导电面上设置有第二绝缘层;所述第二绝缘层包括绝缘薄膜和第二绝缘胶;所述绝缘薄膜覆盖所述第二部件的导电面,所述第二绝缘胶位于所述绝缘薄膜和所述导电部之间,所述第二绝缘胶与所述绝缘薄膜和所述导电部相接触。
  18. 根据权利要求17所述的电连接组件,其特征在于,所述导电部还包括与所述导电本体相连接的导电延伸部;所述导电本体在所述第二部件上的垂直投影与所述导电延伸部在所述第二部件上的垂直投影无交叠;
    至少所述导电延伸部与所述第二绝缘胶相接触。
  19. 根据权利要求18所述的电连接组件,其特征在于,所述导电部还包括第四导 电子部;所述第四导电子部包括第一表面和第二表面;
    所述第四导电子部的第一表面与所述第一绝缘麦拉相接触;
    所述第四导电子部的第二表面与所述导电本体相接触。
  20. 根据权利要求1所述的电连接组件,其特征在于,
    所述导电部包括支撑部以及导电本体;所述第一绝缘层包括绝缘胶以及绝缘麦拉;
    所述支撑部的至少三个表面依次覆盖有所述导电本体和所述绝缘麦拉。
  21. 根据权利要求15-20任一项所述的电连接组件,其特征在于,所述支撑部为泡棉;
    所述导电本体为金属片或导电薄膜。
  22. 根据权利要求15-21任一项所述的电连接组件,其特征在于,所述支撑部靠近所述第一部件或所述第二部件一侧表面的面积为9mm 2~100mm 2
  23. 根据权利要求1所述的电连接组件,其特征在于,所述第一绝缘层的厚度为0.01mm~0.05mm。
  24. 根据权利要求8所述的电连接组件,其特征在于,
    所述导电部与所述第一部件构成第一电容;
    所述导电部与所述第二部件构成第二电容。
  25. 一种移动终端,其特征在于,包括如权利要求1-24任一项所述的电连接组件。
PCT/CN2018/093817 2018-06-29 2018-06-29 电连接组件以及移动终端 WO2020000421A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202110535143.2A CN113410709B (zh) 2018-06-29 2018-06-29 移动终端
EP18924952.7A EP3789818A4 (en) 2018-06-29 2018-06-29 ELECTRICAL CONNECTION KIT AND MOBILE TERMINAL
PCT/CN2018/093817 WO2020000421A1 (zh) 2018-06-29 2018-06-29 电连接组件以及移动终端
CN202110536888.0A CN113473825B (zh) 2018-06-29 2018-06-29 电连接组件以及移动终端
CN201880055328.XA CN111051971B (zh) 2018-06-29 2018-06-29 电连接组件以及移动终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093817 WO2020000421A1 (zh) 2018-06-29 2018-06-29 电连接组件以及移动终端

Publications (2)

Publication Number Publication Date
WO2020000421A1 true WO2020000421A1 (zh) 2020-01-02
WO2020000421A9 WO2020000421A9 (zh) 2021-04-29

Family

ID=68985681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093817 WO2020000421A1 (zh) 2018-06-29 2018-06-29 电连接组件以及移动终端

Country Status (3)

Country Link
EP (1) EP3789818A4 (zh)
CN (3) CN113410709B (zh)
WO (1) WO2020000421A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112134000A (zh) * 2020-09-04 2020-12-25 Oppo广东移动通信有限公司 移动终端的导电组件和移动终端

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114080145B (zh) * 2020-08-17 2023-07-11 华为技术有限公司 导电泡棉、包含其的电子设备及导电泡棉的制备方法
CN114976683B (zh) * 2021-02-26 2023-10-20 华为技术有限公司 电连接件及设备
CN114338877B (zh) * 2021-12-30 2024-02-27 维沃移动通信有限公司 电子设备
CN115036717B (zh) * 2022-08-10 2023-01-10 荣耀终端有限公司 电连接单元、制造方法及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100123846A1 (en) * 2008-11-18 2010-05-20 Kim Young-Kwang Display substrate and display device having the same
CN103197463A (zh) * 2013-03-26 2013-07-10 京东方科技集团股份有限公司 一种彩膜基板及其制作方法、触摸屏、显示装置
CN104135817A (zh) * 2014-06-17 2014-11-05 京东方科技集团股份有限公司 柔性电路板及其制作方法以及电容式触摸显示装置
CN107221765A (zh) * 2017-06-23 2017-09-29 上海传英信息技术有限公司 电子元件接地结构
CN207529067U (zh) * 2017-11-29 2018-06-22 维沃移动通信有限公司 一种液晶屏的接地结构及移动终端
CN108235673A (zh) * 2017-12-29 2018-06-29 广州视声智能科技有限公司 一种提高显示屏接地可靠性的装置及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI277386B (en) * 2006-03-31 2007-03-21 Asustek Comp Inc Electromagnetic shielding device
CN101384157B (zh) * 2007-09-05 2010-08-11 佳世达科技股份有限公司 电子装置
TW201006079A (en) * 2008-07-25 2010-02-01 Inventec Corp Electrostatic discharge guide where anodic oxidation of metal is applied
JP5846995B2 (ja) * 2012-03-30 2016-01-20 株式会社ジャパンディスプレイ 液晶表示装置
US10290934B2 (en) * 2014-04-30 2019-05-14 Tdk Corporation Antenna device
CN203934275U (zh) * 2014-06-27 2014-11-05 福建联迪商用设备有限公司 一种板卡防静电及接地装置
US9799845B2 (en) * 2015-06-27 2017-10-24 Intel Corporation Method and device for coupling multiple ground planes
KR20170068953A (ko) * 2015-12-10 2017-06-20 삼성전자주식회사 전기적 연결 장치 및 그것을 포함하는 전자 장치
TWI602000B (zh) * 2015-12-30 2017-10-11 友達光電股份有限公司 導電貼材、面板裝置以及導電貼材的貼合方法
CN205406725U (zh) * 2016-02-29 2016-07-27 广东小天才科技有限公司 移动终端及其天线接地结构
KR20170127762A (ko) * 2016-05-12 2017-11-22 주식회사 아모텍 기능성 컨택터 및 이를 구비한 휴대용 전자장치
WO2017196116A1 (ko) * 2016-05-12 2017-11-16 주식회사 아모텍 기능성 컨택터
KR20170133733A (ko) * 2016-05-26 2017-12-06 주식회사 모다이노칩 감전 보호 컨택터
CN206490708U (zh) * 2017-03-09 2017-09-12 广东欧珀移动通信有限公司 移动终端
CN106952836B (zh) * 2017-05-12 2019-06-07 京东方科技集团股份有限公司 一种面板及其测试方法、显示装置
CN207337803U (zh) * 2017-07-11 2018-05-08 广州视源电子科技股份有限公司 显示装置及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100123846A1 (en) * 2008-11-18 2010-05-20 Kim Young-Kwang Display substrate and display device having the same
CN103197463A (zh) * 2013-03-26 2013-07-10 京东方科技集团股份有限公司 一种彩膜基板及其制作方法、触摸屏、显示装置
CN104135817A (zh) * 2014-06-17 2014-11-05 京东方科技集团股份有限公司 柔性电路板及其制作方法以及电容式触摸显示装置
CN107221765A (zh) * 2017-06-23 2017-09-29 上海传英信息技术有限公司 电子元件接地结构
CN207529067U (zh) * 2017-11-29 2018-06-22 维沃移动通信有限公司 一种液晶屏的接地结构及移动终端
CN108235673A (zh) * 2017-12-29 2018-06-29 广州视声智能科技有限公司 一种提高显示屏接地可靠性的装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3789818A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112134000A (zh) * 2020-09-04 2020-12-25 Oppo广东移动通信有限公司 移动终端的导电组件和移动终端

Also Published As

Publication number Publication date
CN111051971A (zh) 2020-04-21
EP3789818A4 (en) 2021-09-22
CN113410709A (zh) 2021-09-17
EP3789818A1 (en) 2021-03-10
CN113473825A (zh) 2021-10-01
CN113473825B (zh) 2023-03-24
CN111051971B (zh) 2021-05-18
WO2020000421A9 (zh) 2021-04-29
CN113410709B (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
WO2020000421A1 (zh) 电连接组件以及移动终端
TWI405322B (zh) 內藏電容基板模組
CN101345331A (zh) 电子设备及其制造方法
US11139566B2 (en) Electronic device
US20130063311A1 (en) Multiband printed antenna
US9179537B2 (en) Methods for forming metallized dielectric structures
TWI689130B (zh) 可攜式電子裝置及其堆疊式天線模組
TW202213298A (zh) 顯示器模組
CN115332786A (zh) 一种天线装置和电子设备
CN109390696B (zh) 可携式电子装置及其堆叠式天线模块
WO2022116290A1 (zh) 天线模组及移动终端
US20230363087A1 (en) Printed circuit board assembly and electronic device
CN209981458U (zh) 一种nfc天线
WO2021164499A1 (zh) 电子设备
CN113540788B (zh) 一种电子设备
US11757173B2 (en) Electronic display device
US11355847B2 (en) Antenna structure
CN216055120U (zh) 基于金属罩的耦合片
CN206595390U (zh) 一种基于多层设计的移动终端三合一天线
CN218548785U (zh) 一种带有涂刷天线的天线罩
CN220122105U (zh) 一种手机终端的天线装置
CN215934901U (zh) 一种触控模组和移动终端
CN213879783U (zh) 一种超薄型石英晶体谐振器
US20230402757A1 (en) Antenna module and electronic device
JPWO2018235260A1 (ja) アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924952

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018924952

Country of ref document: EP

Effective date: 20201204

NENP Non-entry into the national phase

Ref country code: DE