TW202213298A - 顯示器模組 - Google Patents
顯示器模組 Download PDFInfo
- Publication number
- TW202213298A TW202213298A TW110119645A TW110119645A TW202213298A TW 202213298 A TW202213298 A TW 202213298A TW 110119645 A TW110119645 A TW 110119645A TW 110119645 A TW110119645 A TW 110119645A TW 202213298 A TW202213298 A TW 202213298A
- Authority
- TW
- Taiwan
- Prior art keywords
- conductor
- transparent
- periodic structure
- layer
- amc
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Electromagnetism (AREA)
- Support Of Aerials (AREA)
Abstract
顯示器模組1具備:顯示器220;透明天線100,其配置於顯示器220之上側,具有透明基板101及形成於該透明基板101上之天線圖案110;以及人工磁導體400,其配置於較透明天線100更靠下層。人工磁導體400包含可選擇特定之頻率之週期結構層、及背襯導體301,透明天線100之天線圖案110、及人工磁導體400之週期結構層410係由網目狀導體構成,前述網目狀導體之配線寬度w81、w82為5 μm以下,且由以於可見光下可獲得70%以上之透過率之方式來決定配線節距p81、p82之透明導體構成,於將自透明天線100之天線圖案110至人工磁導體400之週期結構層410之距離設為h1、將人工磁導體之自週期結構層410至背襯導體301之距離設為h2時,具有h1<h2之關係。
Description
本發明係關於一種具備天線及人工磁導體之顯示器模組。
近年來,作為智慧型手機、平板、行動電話、筆記本型個人電腦等移動式通信機器之通信技術,正在開發第5代移動通信系統(5G)、或第6代移動通信系統(6G)等。
此處,5G之頻帶即毫米波之指向性強、到達距離相對較短、易於被金屬等屏蔽,因此提議在顯示器(OLED、LCD、LED)、或觸控面板(亦包含顯示器一體型金屬細線面板)之上配置透明天線來作為5G用之天線之技術。
然而,若顯示器或觸控面板等電阻大之金屬導體接近天線,則該金屬導體對電波不進行反射而是吸收,天線成為窄頻帶,收發信號之增益之損失變大,而放射效率下降。因此,如圖1所示般,提議在天線與顯示器或觸控面板之間,設置如將天線之反射相位設為零之人工磁導體(AMC:Artificial Magnetic Conductor)(專利文獻1)。
專利文獻1中之AMC包含週期結構層。此處,於AMC中,具有僅藉由週期結構構成之AMC、以及包含週期結構層及背襯層之正反之2層之AMC。已知悉與僅藉由週期結構構成之AMC相比,包含週期結構層與背襯層之2層之AMC,作為磁壁之天線之反射性能更佳。
[先前技術文獻]
[專利文獻]
[專利文獻1]美國專利第10326196號公報
[發明所欲解決之課題]
包含週期結構層與背襯層之2層之AMC,有將週期結構層與背襯層予以磁性連接之有導通部之上下導通結構、及無導通部之上下非導通結構。然而,已知悉上下貫通結構之AMC之製造複雜,製造工時花費較多。
又,即便在使用包含週期結構層與背襯層之2層之AMC之情形下,亦有包含AMC、天線、顯示器之總厚度變大之傾向,而存在抑制總厚度等之課題。
因此,本發明鑒於上述事態而完成,其目的在於提供一種顯示器模組,該顯示器模組可大幅抑制天線之增益損失,含有製造不複雜之人工磁導體,且將因人工磁導體所致之積層厚度之增加設為最小限度。
[解決問題之技術手段]
為了解決上述課題,本發明之一態樣之顯示器模組具備:
顯示器;
透明天線,其配置於前述顯示器之上側,具有透明基板及形成於該透明基板上之天線圖案;以及
人工磁導體,其配置於較前述透明天線更靠下層;且
前述人工磁導體包含
週期結構層、及
背襯導體,
前述透明天線之前述天線圖案、及前述人工磁導體之前述週期結構層係由網目狀導體構成,前述網目狀導體之配線寬度為5 μm以下,且由以於可見光下可獲得70%以上之透過率之方式來決定配線節距之透明導體構成,
於將自前述透明天線之前述天線圖案至前述人工磁導體之前述週期結構層之距離設為h1、
將前述人工磁導體之自前述週期結構層至前述背襯導體之距離設為h2時,具有h1<h2之關係。
[發明之效果]
根據一態樣,於顯示器模組中,可大幅抑制天線之增益損失,含有製造不複雜之人工磁導體,且將因人工磁導體所致之積層厚度之增加設為最小限度。
以下,參照圖式對於用於實施本發明之形態進行說明。在下述各圖式中,有對於同一構成部分賦予同一符號,且省略重複之說明之情形。以下,對於應用本發明之透明天線之實施形態進行說明。
搭載於本發明之顯示器模組之透明天線,作為一例可應用於第5代移動通信系統(5G)。
於5G之頻率中,1個頻帶為24.2~29.5 Ghz,第2個頻帶為37.3~40 GHz,第3個頻帶為被稱為所謂Sub6頻帶(5G之6 Ghz以下頻帶)之1.0~5.0 GHz。因此,本發明之顯示器模組所含之透明天線以於5G頻帶內,在上述3個頻帶中之至少1個中共振之方式設定。
再者,對於本發明之顯示器模組,以如下所示之順序進行說明。
1.搭載有顯示器模組之電子機器
2-1.本發明之第1實施形態之顯示器模組1
2-2.於下表面設置有週期結構層之透明天線之構成
2-3.透明導體之構成
2-4.AMC之構成例
2-5.觸控面板之構成
3-1.疑似AMC最小單位之測定模型構成與特性1
3-2.疑似AMC最小單位之測定模型構成與特性2
3-3.天線單體、附AMC疑似顯示器模組、比較例之疑似顯示器模組之測定模型構成與特性
4.本發明之第1實施形態之變化例之顯示器模組1A
5-1.本發明之第2實施形態之顯示器模組2
5-2.顯示器面板之構成
5-3.本發明之第2實施形態之變化例之顯示器模組2A
6-1.本發明之第3實施形態之顯示器模組3
6-2.本發明之第3實施形態之變化例1之顯示器模組3A
6-3.本發明之第3實施形態之變化例2之顯示器模組3B
6-4.本發明之第3實施形態之變化例3之顯示器模組3C
7-1.本發明之第4實施形態之顯示器模組4
7-2.本發明之第4實施形態之變化例之顯示器模組4A
8.本發明之第5實施形態之顯示器模組5
(1.搭載有顯示器模組之電子機器)
使用圖2及圖3對於搭載有包含本發明之透明天線100之顯示器模組1之通信裝置之一例即電子機器200之構成進行說明。圖2係顯示搭載本發明之顯示器模組1之電子機器200之整體圖及透明天線100之位置之圖。圖3係圖2之電子機器200之A面剖面圖。
於圖2、圖3中,X方向係指電子機器200之橫方向,Y方向係指電子機器200之縱方向,Z方向係指電子機器200之高度方向。以下,定義XYZ座標系來進行說明。又,於下文中,為了便於說明,所謂俯視係指觀察XY面,並使用以+Z方向側為上側、以-Z方向側為下側之上下方向、及相對於上下方向之橫方向(側方)來說明,而非表示普遍性之上下方向及橫方向。
又,於平行、直角、正交、水平、垂直、上下、左右等之方向上,容許無損實施形態之揭示之效果程度之偏移。又,X方向、Y方向、Z方向分別表示與X軸平行之方向、與Y軸平行之方向、與Z軸平行之方向。X方向與Y方向及Z方向相互正交。XY平面、YZ平面、ZX平面分別表示與X方向及Y方向平行之假想平面、與Y方向及Z方向平行之假想平面、與Z方向及X方向平行之假想平面。
電子機器200例如係智慧型手機、平板電腦、筆記本型PC(Personal Computer)等資訊處理終端機。又,電子機器200並不限於該等,例如亦可為包含柱或壁等之結構物、數位標牌、電車內之顯示器面板之電子機器、或包含車輛中之各種顯示器面板之電子機器等。
如圖2及圖3所示般,電子機器200之上表面整體、或上表面之至少一部分配置有可執行顯示功能之顯示器模組1。而且,本發明之透明天線100配置於顯示器面板220上之觸控面板230之上側。本發明之透明天線100為透明,以便可自電子機器200之外經由透明蓋240觀察到,而可經由透明天線100自外側視認顯示器面板220。
參照圖3,於電子機器200中,將顯示器面板220、觸控面板230、透明天線100、及透明蓋240總稱為顯示器模組1(亦稱為顯示模組)。
電子機器200除了顯示器模組1以外,亦包含殼體210、配線基板250、電子零件260A、260B、260C、260D、及電池270等。
於圖2、圖3中,搭載有透明天線100之電子機器200示出為智慧型手機之例,但搭載有本發明之透明天線之電子機器若為包含殼體210、透明蓋240、及顯示器面板220之電子機器,則亦可為其他構成。又,電子機器200亦可為不設置觸控面板230之機器。
殼體210例如金屬製及/或樹脂製之外殼,覆蓋電子機器200之下表面側及側面側。殼體210具有成為周壁之上端之開口端211,於開口端211安裝有透明蓋240。殼體210具有與開口端211連通之內部空間即收納部212,於收納部212,收納有配線基板250、電子零件260A~260D、及電池270等。
作為保護玻璃之一例之透明蓋240係設置於最上表面之透明之玻璃板,具有在俯視下與殼體210之開口端211相配之尺寸。透明蓋240於本例中示出大部分為平面、橫方向(+-Y方向)之兩端部和緩地朝下側彎曲之形狀之玻璃板之例,但亦可為在橫方向上係平板狀之玻璃板。或者,透明蓋240亦可為在電子機器200之縱方向(+-X方向)上兩端部亦和緩地朝下側彎曲之形狀。此處,對於透明蓋240係玻璃製之形態進行了說明,但透明蓋240亦可為樹脂製。
藉由透明蓋240安裝於殼體210之開口端211,而將殼體210之收納部212密封。
透明蓋240之上表面係透明蓋240之外表面之一例,透明蓋240之下表面係透明蓋240之內表面之一例。於透明蓋240之內表面側,設置有透明天線100及觸控面板230。由於透明蓋240為透明,因此可自電子機器200之外部經由透明蓋240觀察到設置於內部之觸控面板230及顯示器面板220。
於配線基板250安裝有電子零件260A~260C。於配線基板250,連接有自透明天線之饋電部分伸出之饋電線路等。配線基板250、與透明天線100之饋電部分可使用連接器或ACF(Anisotropic Conductive Film,異方性導電膠膜)等連接,亦可使用其他之構成要素連接。
電子零件260A作為一例係如下之通信模組,即:經由配線基板250之配線與透明天線100之饋電部分連接,進行經由透明天線100發送或接收到之信號之處理。又,中央之電子零件260B例如係相機。
電子零件260C、260D作為一例係進行與電子機器200之動作相關連之資訊處理等之零件,例如藉由包含CPU(Central Processing Unit,中央處理單元)、RAM(Random Access Memory,隨機存取記憶體)、ROM(Read Only Memory,唯讀記憶體)、HDD(Hard Disk Drive,硬碟機)、輸入輸出介面、及內部匯流排等之電腦來實現。
電池270係可充電之二次電池,供給顯示器模組1、及電子零件260A~260D等之動作所需之電力。
(2-1.第1實施形態之顯示器模組)
接著,對於第1實施形態之顯示器模組1之構成進行說明。圖4係顯示器模組1之剖面分解圖。
雖然在圖3中省略記載,但如圖4所示般,顯示器模組1在觸控面板230與透明蓋240之間具有第1接著層281、偏光板291、及第2接著層282。第1接著層281及第2接著層282係由透明光學黏著劑OCA(Optical Clear Adhesive,光學膠)構成。
而且,本實施形態之透明天線100設置於第1接著層281與偏光板291之間。透明天線100具有:透明基板101、及形成於透明基板101之上表面之天線圖案110。又,於透明基板101之下表面形成有週期結構層410。
於本構成中,將觸控面板230之一部分即電極層301視為AMC之背襯層。根據該構成,於圖4中,由夾著第1接著層281之週期結構層410與作為背襯層發揮功能之觸控面板230之電極層301構成人工磁導體(AMC)400。
此處,通常之金屬導體如圖5A般使電磁波之相位反轉180度地反射。於將如此之通常之金屬導體接近天線地配置之情形下,天線之放射與由金屬反射之反射波干擾,而電波之強度下降。
另一方面,人工磁導體(AMC)如圖5B所示般,係使電磁波以相位約0度地反射(亦即同相位地反射)、並使反射波在反射面附近放大之導體層。因此,當將具有週期結構層之AMC接近天線地設置時,可抑制金屬導體對天線特性之惡劣影響。
又,觸控面板230係「內嵌式觸控面板用金屬細線層」。此處所謂「內嵌式」,係指不是貼附與顯示器面板220獨立之形成於基板上之觸控面板,而是在顯示器面板220之表面上直接形成電極層之結構。或者,觸控面板230亦可為將形成於獨立之基板上之觸控面板接著於顯示器面板220之非內嵌式之觸控面板用金屬細線(配線層)。
觸控面板230包含電極層301,電極層301作為AMC400之背襯導體發揮功能。
顯示器面板(顯示器)220例如係液晶顯示器面板、有機EL(Electro-luminescence,電致發光)、或OLED(Organic Light Emitting Diode,有機發光二極體)顯示器面板,於任一構成中皆配置於顯示器模組1之最下側。
再者,於顯示器模組1中,週期結構層410及天線圖案110只要相對於透明基板101設置於一部分處即可。又,週期結構層以在垂直觀察下至少包含天線圖案110之天線部之方式設置。透明基板101在垂直觀察下,可遍及顯示器之全面,亦可局部地設置。於透明基板遍及顯示器之全面之情形下,可將厚度均一化,而可抑制因階差所致之空氣路徑之產生等。
於局部地設置在下表面形成有週期結構層410之透明天線100之情形下,可將供設置透明天線100之區域設為與其他部分相比減薄觸控面板230、第1接著層281、偏光板291、或/及第2接著層282之結構,或者不設置第1接著層281、偏光板291、或/及第2接著層282之結構。藉此,於顯示器模組1中,可防止僅透明天線100之部分隆起。
然而,當透明天線100過厚時,可知除了裝置整體之厚度變厚以外,還會產生可視認到透明天線之邊緣部,或空氣易於混入與接著層281、282邊界等之課題。透明天線100之厚度較佳為300 μm以下,更佳為150 μm以下,尤佳為100 μm以下。又,基於操作之容易性之觀點,透明天線100之厚度較佳為10 μm以上,更佳為50 μm以上。
又,於圖2、圖3中,示出顯示器模組1之+-Y方向之兩端部為和緩之曲面形狀之例,但顯示器模組1亦可為端部不彎曲之平面形狀。該情形下,透明天線100亦可為平面形狀。再者,於透明天線100局部地成為曲面之情形下,後述之饋電區域成為曲面形狀。
此處,發明人等深入研究之結果發現:在人工磁導體(AMC)中,週期結構層與背襯導體愈遠離則電性愈佳。又,亦判明天線與AMC之週期結構層即便與天線接近地設置亦幾乎無惡劣影響。
因此,於本構成中,在將自透明天線100之天線圖案110至AMC(人工磁導體)400之週期結構層410之距離設為h1、將AMC400之自週期結構層410至背襯導體301之距離設為h2時,設定為h1<h2之關係。於本構成中,h1相當於透明天線100之透明基板101之厚度。關於h2,與圖13一起將於後述。
於本構成中,AMC400之週期結構層形成於天線基板(透明基板101)之背面,AMC400之背襯導體係金屬細線層之觸控面板230之一部分(電極層301)。如此般,將既有之觸控面板230之電極層301用作AMC400之背襯導體,因此僅藉由在透明天線100之下設置週期結構層410而可在不追加基板下於顯示器模組1中附加AMC400之功能。因此,於本實施形態之顯示器模組1中,可含有可抑制天線之增益損失之人工磁導體(AMC),且避免積層厚度之增加。
(2-2.於下表面設置有週期結構層之透明天線之構成)
接著,使用圖6~圖8對於本發明之第1實施形態之設置有週期結構層410之透明天線100之構成進行說明。圖6係本發明之第1實施形態之於下表面設置有AMC之週期結構層之透明天線100之立體圖。圖7A、圖7B係第1實施形態之透明天線100之說明圖,圖7A係自+Z方向觀察之俯視圖,圖7B係自-Z方向觀察之仰視圖。再者,即便如圖2般透明天線100之一部分沿著曲線配置之情形下,於圖6中,亦與XY平面平行地示出將透明天線100折彎前之狀態。
透明天線100具有透明基板101,於透明基板101上設置有天線圖案110。本構成之天線圖案110係偶極型之天線之一例。再者,於本形態中關於天線饋電線路並未圖示,理想而言設為經饋電之理想之天線單體模型。
透明基板(亦稱為透明基材、透明基體)101作為一例係聚醯亞胺製之撓性基板,可朝Z方向及/或X方向折彎。又,透明基板101係無色透明且為絕緣材基板。
參照圖6、圖7A,本構成之天線圖案110係由通過Y方向之中央、於Y方向上延伸之1條線性元件構成。於本構成中,天線圖案110設置於透明基板101之上表面側即+Z側。
此處,將天線圖案110之導體長設為L110、將透明天線100之共振頻率f1(28 GHz)之透明基板101上之波長設為λ
01,將L110設為約0.5 λ
01之奇數倍。因此,在企圖提高頻帶f1之天線增益之情形下,將天線圖案110之線性元件之導體長L110例如調整為約4.0 mm之±10%以內即可。
又,參照圖6、圖7B,於透明基板101之下表面,週期性地設置複數個導電圖案P1~P9,如此般週期性設置之導電圖案P1~P9作為週期性之浮動導體(共振元件)成為AMC400之週期結構層410。
於本實施形態中,可藉由將一個基板(透明基板101)多層化,而將AMC400之週期結構層410、與透明天線100之天線圖案110一併形成。
(2-3.透明導體之構成)
圖8係本發明之透明導體80之說明圖。透明導體80形成於透明基板101之表面(上表面及下表面),作為一例用作構成圖6、圖7A、圖7B所示之天線圖案110及週期結構層410者。透明導體80係光透過性高為藉由人之視力難以確認之程度之導體。
詳細而言,透明導體80為了提高光透過性,作為一例係形成為網目狀之導電線路之層、亦即金屬細線層。如圖8所示般,於網目狀之金屬細線層中,以於一個方向上延伸之複數條金屬細線81與於另一方向上延伸之複數條金屬細線82交叉之方式設置,而空開網目狀之間隙(篩目)即開口部(透孔)83。
於透明導體80形成為網目狀之情形下,網目之開口部83可為方形,亦可為菱形。於將網目之開口部83形成為方形之情形下,網目之眼較佳為正方形,而設計性良好。又,網目之開口部83可為根據自組織化法之隨機形狀,藉由如此設置,而可抑制波紋。構成網目之金屬細線81、82各者之線寬(配線寬度)w81、w82較佳為1~10 μm,更佳為1~5 μm,尤佳為1~3 μm。又,網目之複數條金屬細線81間、及複數條金屬細線82間之線間隔(亦稱為篩目、配線節距)p81、p82較佳為300~500 μm。
透明導體80中之開口部83相對於網目整體之面積之比例即開口率較佳為80%以上,更佳為90%以上。愈增大透明導體80之開口率,則可愈提高透明導體80之可見光透過率。
透明導體之薄片電阻較佳為5 Ω/sq以下,更佳為3 Ω/sq,尤佳為1 Ω/sq。
於透明導體80形成為網目狀之情形下,透明導體80之厚度可為1~40 μm。藉由透明導體80形成為網目狀,即便透明導體80厚,仍可提高可見光透過率。透明導體80之厚度更佳為5 μm以上,尤佳為8 μm以上。又,透明導體80之厚度更佳為30 μm以下,尤佳為20 μm以下,特佳為15 μm以下。
再者,於透明導體80中,與網目狀之細線之線寬(導體幅)w81、w82相比,導體厚度t設為更小。此係緣於若縱橫比超過1,則結構性上成為不平衡,易於損壞,且亦難以製造之故。然而,導體厚度t愈厚則可愈減小薄片電阻值,因此作為天線之效率而導體厚t大者為佳,故t較佳為小於w、且儘量大之值。
再者,作為透明導體80之金屬細線81、82之導體材料而舉出銅,此外,亦可使用金、銀、白金、鋁、鉻、錫、鐵、鎳等金屬材料,又,並不限於該等材料。
藉由如此之透明導體80而實現之天線圖案110與週期結構層410為透明、且光透過性高為在人之視力下不易確認之程度、並且可作為導體而發揮功能。
(2-4.AMC之構成例)
如上述般,人工磁導體(AMC)係將電磁波以相位約0度進行反射者,係將反射波在反射面附近予以放大之導體。
將具有如此之特性之AMC大致分類,而具有圖9A、圖9B所示之2種類。圖9A、圖9B係一般性之2種類之AMC之說明圖。圖9A顯示上下導通型之AMC之例,圖9B顯示上下非導通型之AMC之例。
(1)上下導通型之AMC如圖9A所示般,下側之背襯導體(背襯板)46、與上側之週期結構層45之浮動導體47經由導通部49而上下連接。複數個浮動導體47被狹隙48分離。將如此之結構亦稱為蕈狀型。
(2)上下非導通型之AMC如圖9B所示般,由背襯導體(背襯板)42、及與背襯導體連接之週期結構層41構成。週期結構層41具有由狹隙44分離之複數個浮動導體43。
週期結構層係將特定之頻率選擇性地進行反射之所謂之被稱為FSR(Frequency Selective Reflector,頻率敏感反射器)或FSS(Frequent Selective Surface,頻率選擇表面)或EBG(Electromagnetic Band Gap,電磁帶隙)或超表面之空間濾波器。
於(1)之構成之情形下,上下之層經由導通部連接,因此週期結構層、與背襯導體如圖9A所示般需要在同一基板之上表面與下表面構成。相對於此,於(2)之構成之情形下,由於週期結構層41與背襯導體42不連接,因此可形成於不同之基板。
於本發明中,對於應用(2)之上下非導通型之AMC,進而,AMC之週期結構層41與背襯導體42之功能藉由不同之基板而實現之構成進行說明。
於上述(2)之上下非導通型之AMC中,大致分類而具有2種類之週期結構層。圖10A、圖10B係上下非導通之AMC之說明圖,圖10A顯示週期結構為膜片型之AMC,圖10B顯示週期結構為孔型之AMC。
於圖10A所示之AMC之上層之膜片型之週期結構層中,同一形狀之金屬(共振元件)膜片週期性地配列。圖6所示之設置於透明天線100之下表面之週期結構層410亦為膜片型之週期結構層之一例。於具有膜片型之FSR之週期結構之AMC中,於共振元件完全共振之情形下,作為反射係數為-1之帶止濾波器發揮功能。
於圖10B所致之AMC之上層之孔型之週期結構層中,於金屬層,週期性地形成同一形狀之孔(共振元件)。於具有孔型FSR之週期結構之AMC中,於共振元件完全地共振之情形下,作為透過係數為1之帶通濾光器發揮功能。
於圖6、圖7B及下述之模擬例中,顯示AMC之週期結構層410為膜片型之構成之例,但本發明之AMC之週期結構層亦可如圖10B般為孔型之週期結構層。
於週期結構層中,圖10A之複數個膜片之部分、圖10B之複數個孔之部分成為共振元件。
於圖7B中顯示共振元件為正方形之例,於圖10A、圖10B中顯示共振元件為圓形之例,但膜片型FSR之膜片部、或孔型FSR之孔部之構成亦可為其他形狀。
圖11係顯示本發明之AMC之週期結構層之共振元件之變化例之圖。例如,共振元件如圖11所示般,可採用方形環狀、圓環狀、雙重方形環、十字形狀、四端呈T字形之十字形狀、帶有電容器之長方形環、長方形狀之偶極、三極、3分支偶極、4分支偶極、心形狀等。再者,圖11之例為一例,如圖9B所示之浮動導體43般,週期結構層之共振元件進而可為另外之形狀。
(2-5.觸控面板之構成)
接著,使用圖12、圖13對於在第1實施形態中,一部分兼為AMC400之背襯導體之觸控面板230之構成進行說明。作為觸控面板230之一例,下文中對於投影型靜電電容方式之觸控面板(亦稱為觸控感測器)之感測器圖案之構成進行說明。圖12係一般性之投影型靜電電容方式之觸控面板230之感測器圖案之示意圖。
參照圖12,觸控面板230於基板上設置有複數個第1電極31、及複數個第2電極32,並具備與複數個第1電極31連接之複數條第1配線38、及與複數個第2電極32連接之複數條第2配線39。
如圖12所示般,於投影型靜電電容方式之觸控面板230之感測器圖案中,複數個電極31、32配置成矩陣狀,相鄰之電極彼此電容結合。當手指等導電性物質靠近電極時,在手指與電極間之間產生電容結合,而將電極間彼此之電容結合值發生變化之部分檢測為接觸位置。於如此之投影型靜電電容方式中,可同時檢測觸控面板230上之複數個位置。
再者,於觸控面板230中,有第1電極31與第2電極32設置於不同之面或不同之層之情形、及設置於同一面之情形。具體例如下所示。例如:
(1)針對1個玻璃基板,於一個面設置第1電極31,於另一面設置第2電極32。
(2)於將玻璃(印刷基板)重疊2層之結構中,在上層之玻璃基板設置第1電極31,在下層之玻璃基板設置第2電極32。
(3)針對1個膜,於一個面設置第1電極31,於另一面設置第2電極32。
(4)於將膜重疊2層之結構中,於上層之膜設置第1電極31,於下層之膜設置第2電極32。
(5)於與第2電極32的同一面內設置第1電極31之菱形電極部,藉由設置於菱形電極間不同之層之橋接電極而連接。
(1)~(4)係設置於不同之面或不同之層之情形,(5)係設置於同一層之情形。
如圖12所示般,第1電極31在橫方向(X方向)上串狀相連,第2電極32在縱方向(Y方向)上串狀相連。而且,第1電極31及第2電極32之輪廓係由共通之第1直線L1、和與第1直線正交之第2直線形成之菱形、或正方形形狀。
而且,於使用複數條平行之直線L1與複數條平行之直線L2來構成四邊之第1電極31與第2電極32中,相鄰之邊離開距離d。
雖然在距離d愈小則愈不易視認到電極間之間隙之點上為較佳,但若距離d之部分過寬,則可能會視認為不存在電極31或電極32之區域。然而,愈縮減距離d,則愈難以進行在不同之層間之位置調整,而製造步驟變得複雜。作為間隔d之大小,例如可設為大於0且10 mm以下,較佳為1 μm以上5 mm以下,更佳為3 μm以上1 mm以下,尤佳為5 μm以上500 μm以下等。
圖13係觸控面板230之剖面圖之一例。於圖13中,顯示上述之(5)之情形下之構成例,即:於與第2電極32的同一面內設置第1電極31之菱形電極部,藉由設置於菱形電極間不同之層之橋接電極而連接。
於圖13之例中,觸控面板230具有電極層301、絕緣層302、橋接層303、絕緣保護層304。電極層301被絕緣孔306區劃,構成電極31與電極32。於本例中,將電極31與電極32予以劃分之絕緣孔306相當於狹隙S1、S2。絕緣孔306與絕緣保護層304一體地形成。
於絕緣層302形成有上下貫通之通孔305,經由通孔305而電極層301與橋接層303導電。橋接層303及通孔305作為跨接部35發揮功能。
電極層301、橋接層303、及通孔305例如構成為包含Ti、Al等金屬。絕緣層302例如由SiNx構成。絕緣保護層304及絕緣孔306不具有導體,例如由丙烯酸構成。
如上述般,於第1實施形態中,觸控面板230之電極層301作為AMC400之背襯導體發揮功能。因此,圖4之AMC400之自週期結構層410至背襯導體之距離h2,準確而言為第1接著層281與觸控面板230之電極層301之上之絕緣保護層304之厚度之合計。
因此,於圖4中,為了實現h1<h2,只要使第1接著層281與觸控面板230之絕緣保護層304之厚度之合計較透明天線100之透明基板101之厚度更厚即可。
h2較佳為100 μm以上,更佳為150 μm以上,尤佳為300 μm以上。藉由如此般設定,可獲得有效地對電磁波進行反射之功能。又,h2較佳為2000 μm以下,更佳為1000 μm以下,尤佳為600 μm以下。藉由如此般設置,可抑制積層厚度顯著增大,且維持特性。
h1較佳為5 μm以上,更佳為15 μm以上,尤佳為50 μm以上。藉由如此般設定,可維持對電磁波進行反射之功能,且防止積層厚度之增大。又,h1較佳為300 μm以下,更佳為200 μm以下,尤佳為100 μm以下。
<模擬例>
(3-1.疑似AMC最小單位之測定模型構成與特性1)
本申請案之發明人等為了確認AMC之舉動,而對於模仿本申請案之AMC之疑似AMC進行了各種模擬。
圖14係由1個浮動導體、接著層、模仿觸控面板之金屬導體構成之疑似AMC之示意圖。於圖14所示之疑似AMC之測定模型61中,於接著層281之上設置較該接著層小且成為週期結構層之重複單位之浮動導體P,於接著層281之下設置有金屬導體M。再者,該金屬導體M作為AMC之背襯導體發揮功能。
於本模擬中,一面變更最下層之電阻體即金屬導體M之電阻值,一面對反射振幅、及反射相位之參數進行了測定。對該參數進行測定時之圖14所示之疑似AMC之各部分尺寸為:
浮動導體P之一邊:3 mm
接著層281、金屬導體M之一邊:4.7 mm。
又,疑似AMC中之各層之厚度為:
浮動導體P之厚度:1 μm
接著層281之厚度:150 μm。
再者,由於將設定有表面電阻之表面阻抗設為邊界條件,因此關於金屬導體M,為不存在厚度之設定。
於圖15A、圖15B中,顯示在圖14之疑似AMC中在變更金屬導體M之電阻值時之反射振幅之參數之特性值。於圖16A、圖16B中,顯示在圖14之疑似AMC中在變更金屬導體M之電阻值時之反射相位之參數之特性值。
於該測定中,於圖14所示之疑似AMC中,使金屬導體M之電阻值(薄片電阻值)23階段地變化為0.00001、0.1、0.2、0.6、0.8、1.0、1.2、1.4、1.6、1.8、2.1、2.4、2.8、3.2、3.7、4.2、4.9、5.6、6.4、7.4、8.4、9.7、10 Ω/sq,求出各者之反射振幅、反射相位之參數。
為了說明所測定出之參數之變化之傾向,而於圖15A、圖16A中,顯示金屬導體M之電阻值為0~2.4 Ω/sq之情形,於圖15B、圖16B中,顯示金屬導體M之電阻值為2.8~10 Ω/sq之情形。
如圖15A所示般,於金屬導體M之電阻值為0~2.4 Ω/sq之情形下,於29 GHz中,電阻值愈大,則反射振幅之極點之值之絕對值愈大。相反地,如圖15B所示般,於金屬導體M之電阻值為2.8~10 Ω/sq之情形下,於29GHz中,電阻值愈大,則反射振幅之極點之值之絕對值愈小。再者,出現朝下凸出之極點之部分係在AMC中電磁波被吸收之部分,值愈小(絕對值愈大),則吸收量愈多。
於圖16A所示之金屬導體M之電阻值為0~2.4 Ω/sq之情形下,於29GHz中,反射相位具有特定之斜率地通過相位0。該等之波形係所謂之與於一般性之AMC之反射相位中顯現之波形類似之波形形狀,於如此之波形中,可在反射相位為-90°~0°~90°之範圍內用作AMC。亦即,可謂在該電阻值之範圍內,圖14之疑似AMC之測定模型61作為AMC發揮功能。
相對於此,於圖16B所示之金屬導體M之電阻值為2.8~10 Ω/sq之情形下,相對於頻率之變化,在通過相位0之位置處相位之正負一下改變,而反射相位瞬間大幅變化。若如此般瞬間性地相位自0起變化,則不作為AMC發揮功能。
因此,於浮動導體P與金屬導體M藉由使電磁波透過之接著層281而離開150 μm設置之情形下,因金屬導體M未達2.8 Ω/sq,故可實現作為AMC之功能。
又,若將圖15A、圖15B、與圖16A、圖16B進行比較,則在圖15A、圖15B中成為朝下凸出之極點之頻率下,在圖16A、圖16B中相位為零。因此,如上述般,在圖15A、圖15B中朝下凸出之部分之值愈小(絕對值愈大),則電磁波愈被AMC吸收,而相應地成為電磁波之損失,故根據圖15A,金屬導體M在未達2.8 Ω/sq之範圍內,更佳的是在未達2.4 Ω/sq之範圍內,電阻值愈為儘量接近於0之小之值愈佳。
再者,浮動導體P與金屬導體M之間隔愈擴開,則金屬導體M之影響愈小,因此亦可相應於浮動導體P與金屬導體M之間隔,適宜設定金屬導體M之電阻值。例如,於浮動導體P與金屬導體M之間隔分開大於如圖14所示之0.15 mm之情形下,作為AMC發揮功能之金屬導體之電阻值大至2.8 Ω/sq以上,於浮動導體P與金屬導體M之間隔較近之情形下,作為AMC發揮功能之金屬導體之電阻值小於2.8 Ω/sq。
例如,於浮動導體P與金屬導體M之間隔為0.30 mm之情形下,較佳的是作為AMC發揮功能之金屬導體M之電阻值未達5.6 Ω/sq,更佳為5.0 Ω/sq以下。
具體而言,在圖4所示之距離h2為0.15 mm之情形下,為了使觸控面板230之電極層301作為AMC400之背襯導體發揮功能,較佳的是電極層301之薄片電阻值小於2.8 Ω/sq。又,在h2為0.30 mm之情形下,較佳的是作為AMC之背襯導體發揮功能之電極層301之薄片電阻值未達5.6 Ω/sq,更佳為5.0 Ω/sq以下。
於本例中,對於在觸控面板230中,電極層301為具有小的薄片電阻值之構件且作為背襯導體發揮功能之例進行了說明,但亦可藉由將觸控面板之電極層301之配線圖案根據既有者進行設計,而對薄片電阻值進行調整。具體而言,可藉由日本專利申請案第2020-078661號之段落[0082]~[0106]中所記載之對電極層301之細線圖案之狹隙之長度、電極之輪廓邊之長度、跨接部之有無進行調整,而構成具有低的薄片電阻值之觸控面板。
或者,將觸控面板230之電極層301之上之絕緣保護層304改變為一般性之絕緣材即玻璃、膜、丙烯酸等,而由包含具有與丙烯酸不同之介電常數之樹脂材料、例如聚碳酸酯樹脂或氟樹脂之材料來構成。藉此,可減小觸控面板之薄片電阻值。
進而,亦可以將觸控面板230之電極層301之導體厚度加厚之方式構成。藉此,可減小觸控面板230之薄片電阻值。
(3-2.疑似AMC最小單位之測定模型構成與特性2)
圖17係由1個浮動導體、接著層、模仿觸控面板之金屬導體構成之疑似AMC之示意圖。於圖17所示之疑似AMC之測定模型62中,與圖14同樣地,於接著層281之上設置較接著層小且成為週期結構層之重複單位之浮動導體P,於接著層281之下設置有金屬導體M。再者,該金屬導體M作為AMC之背襯導體發揮功能。
於本模擬中,以如圖17之以虛線所示般一面變更最上層之浮動導體P之大小,一面對反射振幅、及反射相位之參數進行了測定。對該參數進行測定時之圖17所示之疑似AMC之各部分之尺寸除了浮動導體P之大小以外,與圖14相同。再者,於本模擬中,最下層之金屬導體M之電阻值固定為1.0 Ω/sq。
圖18顯示在圖17之疑似AMC中,對浮動導體P之大小進行變更時之反射振幅之參數之特性值。圖19顯示在圖17之疑似AMC中,對浮動導體之大小進行變更時之反射相位之參數之特性值。
於該測定中,於圖17所示之疑似AMC中,使正方形之浮動導體P之大小之一邊5階段地變化為2.0、2.5、2.7、3.0、3.5 mm,求出各者之反射振幅、反射相位之參數。
如圖18所示般,在使浮動導體P之大小變化時,於反射振幅中,成為極點之頻率發生變化。形成朝下凸出之極點之頻帶,為浮動導體P愈小則頻率愈高,且浮動導體P愈大則頻率愈低。
於圖19中,在使浮動導體P之大小變化時,通過相位0之反射相位之頻率發生變化。形成相位0之帶域為浮動導體P愈小則頻率愈高,且浮動導體P愈大則頻率愈低。
為了應對在5G之通信中所使用之29GHz,作為在圖18中靠近極點之部分、在圖19中電磁波在相位零+-90°返回之結構,於所測定之結果中,3×3 mm尺寸之浮動導體為最佳。
根據上述之圖15A、圖15B、圖16A、圖16B,即便金屬導體之電阻值變化但反射振幅之極點或反射相位為0之頻帶不變化,因此於本發明之AMC之週期性結構中,在設置四角形之膜片型之浮動導體時,為了應對在5G之通信中所使用之29 Ghz,較佳的是將浮動導體之大小設為3×3 mm左右(例如,將一邊設為2.8~3.4 mm左右)。
(3-3.天線單體、附AMC疑似顯示器模組、比較例之疑似顯示器模組之測定模型構成與特性)
本發明人等進行了天線單體、將模擬例2中所選定之大小之浮動導體設為週期結構層之疑似顯示器模組、及不設置浮動導體之測定模型之性能之比較實驗。
圖20係由本發明之透明天線100與接著層281構成之測定模型63之示意圖。於本測定模型63中,具有不設置浮動導體之透明天線100、及接著層281。接著層281使電磁波透過,因此該測定模型63之天線之特性可考量為與天線單體大致同等。
對該參數進行測定時之圖20所示之測定模型63之各部分之尺寸為:
L110:4.0 mm
W110:0.2 mm
基板101、接著層281之一邊:20 mm
又,測定模型63中之各層之厚度為:
天線圖案110之厚度:1 μm
透明基板101之厚度:75 μm
接著層281之厚度:150 μm。
圖21係由本發明之透明天線、形成於透明天線之下表面之週期結構層41、接著層281、模仿觸控面板之金屬導體構成之疑似顯示器模組之示意圖。於本測定模型64中,於透明基板101之下表面設置週期性之複數個浮動導體即週期結構層410,於透明導體之下側之接著層281之下設置有金屬導體M。再者,最下層之金屬導體M之電阻值固定為1.0 Ω/sq。
於對該參數進行測定時之圖21所示之疑似顯示器模組之各部分尺寸中,天線圖案110與圖20相同,且其他尺寸為:
基板101、接著層281之一邊:20 mm
浮動導體之一邊:3mm
相鄰之浮動導體之間隔:1.7mm
又,測定模型64中之各層之厚度為:
天線圖案110之厚度:1 μm
透明基板101之厚度:75 μm
週期結構層410之厚度:1 μm
接著層281之厚度:150 μm。
亦即,h1為75 μm,h2為150 μm。
再者,由於將設定有表面電阻之表面阻抗設為邊界條件,因此關於金屬導體M,為不存在厚度之設定。
圖22係由透明天線、接著層、模仿觸控面板之金屬導體構成之比較例之疑似顯示器模組之測定模型之示意圖。本測定模型65於在透明天線100之透明基板101之下表面未設置圖21所示之週期結構層之點上與圖21不同,其他構成與圖21相同。
圖23係顯示圖20、圖21、圖22之測定模型中之最大增益之表。
若對圖23之表之最大增益進行比較,則在圖20之天線單體中,最大增益為+1.9 dB,但若如圖22般在接著層之下設置金屬導體,則最大增益大幅下降至-5.3 dB。相對於此,若除了圖22之結構之外,亦如圖21般設置週期結構層,則最大增益為-3.1 dB,而增益自圖21之結構之下降幅度變小。
因此,可知與將金屬導體以單體設置之情形相比,於設置週期結構層之情形下,最大增益提高,且天線之性能提高。
再者,於本模擬例中,對於收發信號所使用之頻率為29 Ghz(24.2~29.5 GHz)之例進行了說明,但本發明之顯示器模組中所含有之透明天線100可為應對5G下所使用之其他頻帶、例如37.3~40 Ghz、或1.0~5.0 GHz之天線。如此般在天線之使用頻率變化之情形下,如圖17所示般,較佳的是例如藉由改變AMC400之週期結構層410之浮動導體即膜片之大小,而將AMC設計成適宜於該頻帶之結構。
又,於本模擬例中,對於收發信號所使用之頻率為29 GHz之1個頻帶之例進行了說明,但在本發明之顯示器模組中所含有之透明天線100亦可為在5G下使用之其他頻帶下亦可進行收發信號之雙頻帶對應構成。該情形下,較佳的是以AMC可在雙頻帶下使用之複數個頻帶下反射之方式,適宜設定週期結構層之浮動導體之形狀。
(4.本發明之第1實施形態之變化例之顯示器模組1A)
圖24顯示第1實施形態之變化例之顯示器模組1A。於圖4中,對於在構成AMC之週期結構層與背襯導體即觸控面板230之電極層301之間,僅設置第1接著層381之例進行了說明,但於本變化例中,如圖24所示般,於週期結構層與背襯導體之間,設置第1接著層281及偏光板292。
亦即,於圖24所示之構成中,由夾著偏光板292及第1接著層281之週期結構層410、與作為背襯導體發揮功能之觸控面板230之電極層301,構成人工磁導體(AMC)400α。
於本構成中亦然,AMC400α之週期結構層410形成於天線基板(透明基板101)之下表面,AMC400α之背襯導體係金屬細線層之觸控面板之電極層301。而且,於本構成中,被AMC之週期結構層與背襯導體夾著之偏光板一般而言使電磁波透過,因此可考量對AMC、或天線之特性不帶來影響。
而且,於本構成中亦然,在將自透明天線100之天線圖案110至AMC400α之週期結構層410之距離設為h1、將AMC400α之自週期結構層410至背襯導體之距離設為h2α時,具有h1<h2α之關係。於圖24中,h2α為偏光板292之厚度與第1接著層281之厚度及觸控面板之絕緣保護層304之厚度之合計,因此藉由使該厚度之合計較透明天線100之透明基板101更厚,而實現上述之h1<h2α之關係。
於圖24之構成中,無需追加之基板。藉此,可在不增加顯示器模組1A之積層厚度下,與僅設置金屬板即觸控面板之情形相比使天線之性能提高。
進而,於本變化例中,偏光板292亦可用作構成AMC400α之h2α之厚度,因此無需在天線之上設置偏光板,即便與圖4相比偏光板292或接著層281更薄,仍可使h1>h2α之關係成立。因此,可進一步抑制顯示器模組1A之厚度。
(5-1.本發明之第2實施形態之顯示器模組2)
圖25顯示本發明之第2實施形態之顯示器模組2。於本實施形態中,AMC之週期結構層410與上述同樣地形成於天線基板之背面,但AMC之背襯導體係由顯示器面板220之一部分構成。
於圖25所示之構成中,由夾著第1接著層281之週期結構層410、作為背襯導體發揮功能之顯示器面板220之透明電極(陰極)26構成人工磁導體(AMC)400β。
(5-2.顯示器面板之構成說明)
圖26係一般性之顯示器面板之一例即OLED顯示器面板220之示意圖。於圖26中,上圖係剖面圖,下圖係平面圖(俯視圖)。
如圖26所示般,OLED顯示器面板220具備:基板21、底板22、下側反射電極23、開口絕緣膜24、發光層25R、25G、25B、及透明電極26。基板21例如係玻璃,底板22係TFT(Thin Film Transistor,薄膜電晶體)。
25R、25G、25B係包含發光層之積層薄膜,下側反射電極23、開口絕緣膜24、包含發光層之積層薄膜25R、25G、25B、以及透明電極26成為紅、綠、藍各色之OLED元件(organic light-emitting diode,有機發光二極體)27R、27G、27B。
最上側之透明電極26係將Al或者Mg與Ag之合金等金屬減薄至透光之程度而構成,或由ITO等金屬氧化物構成。
於本構成中,顯示器面板220之最上層之透明電極26之部分作為AMC400之下側之背襯導體發揮功能。
因此,於圖26所示之本構成中,在將自透明天線之天線圖案110至AMC400之週期結構層410之距離即透明基板101之厚度設為h1、將AMC400β之自週期結構層410至背襯導體即顯示器面板220之透明電極26之距離設為h2β時,具有h1>h2β之關係。
如圖26所示般,透明電極26為顯示器面板220之最上層,因此圖25之h2β為第1接著層281之厚度,故藉由使該第1接著層281之厚度較透明天線100之透明基板101更厚,而實現上述之h1<h2β之關係。
又,若參照上述之圖14~圖16B之圖表,則在圖25之h2β為0.15 mm之情形下,為了使顯示器面板220之透明電極26作為AMC400之背襯導體發揮功能,而較佳的是透明電極26之薄片電阻值小於2.8 Ω/sq。又,於h2β為0.30 mm之情形下,較佳的是作為AMC發揮功能之透明電極26之薄片電阻值未達5.6 Ω/sq,更佳為5.0 Ω/sq以下。
再者,於本例中,對於在顯示器面板220中位於顯示面之上之透明電極26作為具有較小之薄片電阻值之背襯導體發揮功能之例進行了說明,但作為顯示器面板220之構成要素之一部分,亦可在透明電極26之上更設置用於專用之背襯導體之構件(例如圖案電極)。具體而言,可將日本專利申請案第2020-078661號之段落[0124]~[0127]中所記載之顯示器面板之圖案電極用作AMC之背襯導體。
為了在顯示器面板220中實現薄片電阻值之低電阻化,而在透明電極26之上設置圖案電極之情形亦然,圖案電極於顯示器面板220中位於最上層,因此圖25所示之實現上述之h1>h2β之關係之距離h2β為第1接著層281之厚度。
於本構成例中,於天線基板(透明基板101)之下表面側藉由透明導體形成週期結構層410,且將顯示器面板220之一部用作AMC之背襯導體,藉此無需追加之基板。藉此,可在不增加顯示器模組2之積層厚度下,與僅設置金屬板即觸控面板之情形相比使天線之性能提高。
(5-3.本發明之第2實施形態之變化例之顯示器模組2A)
圖27顯示第2實施形態之變化例之顯示器模組2A。於圖25中,對於在AMC之週期結構層與背襯導體之間僅設置接著層之例進行了說明,但於本變化例中,如圖26所示般,於週期結構層與背襯導體之間設置接著層281與偏光板292。
於圖27所示之構成中,由夾著偏光板292與第1接著層281之週期結構層410、作為背襯導體發揮功能之顯示器面板220之透明電極(陰極)26構成人工磁導體(AMC)400γ。
而且,於本構成中,在將自透明天線之天線圖案至AMC之週期結構層410之距離設為h1、將AMC之自週期結構層410至背襯導體26之距離設為h2γ之情形下,具有h1>h2γ之關係。於圖27中,由於h2γ為偏光板292之厚度與第1接著層281之厚度之合計,因此藉由使該合計之厚度較透明天線100之透明基板101更厚,而實現上述之h1>h2γ之關係。
於本變化例中亦然,無需追加之基板。藉此,可在不增加顯示器模組2A之積層厚度下,與僅設置金屬板即觸控面板之情形相比使天線之性能提高。
進而,於本變化例中,偏光板292亦可用作構成AMC400γ之h2γ之厚度,因此無需在天線之上設置偏光板,即便與圖26相比偏光板292或接著層281更薄,仍可使h1>h2γ之關係成立。因此,可進一步抑制顯示器模組2A之厚度。
(6-1.本發明之第3實施形態之顯示器模組3)
圖28係顯示本發明之第3實施形態之顯示器模組3之剖面分解圖。於本構成中,AMC之週期結構層設置於天線基板(透明基板101)之背面,但背襯導體與觸控面板230別體地設置於作為設置在觸控面板之上側之專用基板之AMC用基板401。又,為了將基板彼此密接地積層,而於觸控面板230與AMC用基板401之間設置第3接著層(OCA)283。
於本構成中,用於AMC400δ之背襯導體之專用基板即AMC用基板401,設置於觸控面板230之上方。AMC用基板401係第2透明基板,作為一例為聚醯亞胺製之撓性基板,且為可在Z方向及/或X方向上折彎之無色透明之絕緣材基板。
又,AMC用基板401為了作為AMC400δ之背襯導體發揮功能,而由如圖8所示之網目狀之細線狀之透明導體80構成之背襯導體420,形成於基板之背面整體。AMC用基板401及構成背襯導體420之透明導體80為透明,因此不對觸控面板230之下之顯示器面板220之視認性帶來惡劣影響。
於圖28所示之構成中,由夾著第1接著層281之週期結構層410與設置於AMC用基板401之背襯導體420構成人工磁導體(AMC)400δ。
於本構成中,在將自透明天線100之天線圖案110至AMC400δ之週期結構層410之距離設為h1、將AMC400δ之自週期結構層410至背襯導體420之距離設為h2δ時,具有h1<h2δ之關係。於圖28中,由於h2δ為第1接著層281之厚度與AMC用基板401之厚度之合計,因此藉由使該合計之厚度較透明天線100之透明基板101更厚,而實現上述之h1<h2δ之關係。
於本構成中,如上述般,作為AMC之背襯導體發揮功能之專用基板即AMC用基板401與觸控面板230單獨設置,因此可減小AMC用基板401之背襯導體420之薄片電阻值等而將AMC用基板401與觸控面板230之性能獨立地自由設計。
又,與圖1所示之先前例之構成相比,本構成之AMC400δ具有週期結構層與背襯導體,因此作為磁壁之性能良好。進而,AMC用基板401隔著接著層281形成於與週期結構層410不同之基板,因此擴寬背襯導體與週期結構層之距離,而可使AMC之性能提高。
(6-2.本發明之第3實施形態之變化例1之顯示器模組3A)
圖29係顯示本發明之第3實施形態之變化例1之顯示器模組3A之剖面分解圖。於圖28中,對於在觸控面板之上設置用於AMC之背襯之專用基板之例進行了說明,但如本實施形態般具有專用之背襯基板之AMC之構成,如圖29所示般,可適用於不具有觸控面板之顯示器模組。
於本變化例中,與圖28之構成同樣地,由夾著第1接著層281之週期結構層410與設置於AMC用基板401之背襯導體420,構成人工磁導體(AMC)400δ。
圖29之構成除了不具有觸控面板以外,包含AMC400δ之構成而與圖28為大致相同之構成。於本構成中,作為AMC之背襯導體發揮功能之專用基板即AMC用基板與顯示器面板220單獨設置,因此可減小AMC用基板401之背襯導體之薄片電阻值等而將AMC用基板401與顯示器面板220之性能獨立地自由設計。
(6-3.本發明之第3實施形態之變化例2之顯示器模組3B)
圖30係顯示本發明之第3實施形態之變化例2之顯示器模組3B之剖面分解圖。於圖28中,對於在構成AMC之週期結構層與AMC用基板之間僅設置接著層之例進行了說明,但於本變化例中,如圖30所示般,在週期結構層與AMC用基板之間設置有接著層282與偏光板292。
於本變化例中,由夾著偏光板292及第1接著層281之週期結構層410與設置於AMC用基板401之背襯導體420構成人工磁導體(AMC)400ε。於本構成中亦然,AMC400ε之週期結構層410形成於天線基板(透明基板101)之背面,AMC400ε之背襯導體420設置於AMC用基板401之下表面。
於本構成中,在將自透明天線100之天線圖案110至AMC400ε之週期結構層410之距離設為h1、將AMC400ε之自週期結構層410至背襯導體之距離設為h2ε時,具有h1>h2ε之關係。於圖30中,h2ε為偏光板292之厚度與第1接著層281之厚度與AMC用基板401之厚度之合計,因此藉由使該合計之厚度較透明天線100之透明基板101更厚,而實現上述之h1>h2ε之關係。
於本變化例中,由於偏光板292亦作為構成AMC400ε之h2ε之厚度而使用,因此無需在天線之上設置偏光板,即便與圖28相比偏光板292或接著層281更薄,仍可使h1>h2ε之關係成立。因此,可進一步抑制顯示器模組3B之厚度。
(6-4.本發明之第3實施形態之變化例3之顯示器模組3C)
圖31係顯示本發明之第3實施形態之變化例3之顯示器模組3C之剖面分解圖。於圖30中,對於在觸控面板之上設置用於背襯導體之AMC用基板401之例進行了說明,但具有專用之AMC用基板401之構成,如圖31所示般,亦可適用於不具有觸控面板之顯示器模組。
於本變化例中,與圖30同樣地,由夾著偏光板292及第1接著層281之週期結構層410與設置於AMC用基板401之背襯導體420構成人工磁導體(AMC)400ε。
圖31之構成除了不具有觸控面板以外,包含AMC400ε之構成而與圖30為大致相同之構成。由於偏光板292亦作為構成AMC400ε之h2ε之厚度而使用,因此無需在天線之上設置偏光板,即便與圖29相比偏光板292或接著層282更薄,仍可使h1>h2ε之關係成立。因此,可進一步抑制顯示器模組3C之厚度。
(7-1.本發明之第4實施形態之顯示器模組4)
圖32係顯示本發明之第4實施形態之顯示器模組4之剖面分解圖。於本構成中,AMC之週期結構層設置於與透明天線之透明基板為別體之AMC專用基板之上表面。而且,觸控面板之一部分作為AMC之背襯導體發揮功能。又,為了將基板彼此密接地積層,而於觸控面板230與專用之AMC用基板501之間設置第3接著層(OCA)284。
於本構成中,用於AMC500之週期結構層510之專用基板即AMC用基板501設置於觸控面板230之上方。AMC用基板501係第2透明基板,作為一例為聚醯亞胺製之撓性基板,且為可在Z方向及/或X方向上折彎之無色透明之絕緣材基板。
於圖32之構成中,由夾著第3接著層284之形成於AMC用基板501之上表面之週期結構層510與作為背襯導體發揮功能之觸控面板230之電極層301構成人工磁導體(AMC)500。
於本構成中,在將自透明天線100之天線圖案110至AMC500之週期結構層510之距離設為h3,將AMC500之自週期結構層510至作為背襯導體之電極層301之距離設為h4時,具有h3<h4之關係。
於圖32中,h3為透明天線100之透明基板101之厚度與第1接著層281之厚度之合計,h4為AMC用基板501之厚度與第3接著層284之厚度及觸控面板230之絕緣保護層304之厚度之合計。藉由使AMC用基板501之厚度與第3接著層284之厚度及觸控面板230之絕緣保護層304之厚度之合計h4較透明基板101之厚度與第1接著層281之厚度之合計h3更厚,而實現上述之h3<h4之關係。
於本構成中,與圖1所示之先前例之構成相比,本構成之AMC500具有週期結構層及背襯導體,因此作為磁壁之性能良好。進而,AMC500隔著接著層284積層而構成,因此擴寬背襯導體與週期結構層之距離,而可使AMC之性能提高。
此處,於本構成中,與圖4同樣地,為了使觸控面板作為背襯導體發揮功能。例如,在圖32所示之距離h4為0.15 mm之情形下,較佳的是觸控面板230之電極層301之薄片電阻值小於2.8 Ω/sq。又,在h4為0.30 mm之情形下,較佳的是觸控面板230之電極層301之薄片電阻值未達5.6 Ω/sq,更佳為5.0 Ω/sq以下。
於本例中,對於在觸控面板230中,電極層301為具有小的薄片電阻值之構件且作為背襯導體發揮功能之例進行了說明,但亦可藉由將觸控面板230之電極層301之配線圖案、電極層301之厚度、或絕緣保護層304之素材如上述般根據既有者進行設計,而對觸控面板230之薄片電阻值進行調整。
又,於本例中,對於在AMC用基板501中,週期結構層510設置於上側之例進行了說明,但週期結構層510亦可形成於AMC用基板501之下側。該情形下,較佳的是以透明天線100之透明基板101之厚度與第1接著層281之厚度及AMC用基板501之厚度之合計,較第3接著層284之厚度與觸控面板230之絕緣保護層304之厚度之合計更薄之方式設計。
(7-2.本發明之第4實施形態之變化例之顯示器模組4A)
圖33係顯示本發明之第4實施形態之變化例之顯示器模組4A之剖面分解圖。於圖32中,對於在觸控面板之上設置用於AMC之週期結構層之專用之AMC用基板501之例進行了說明,但如本實施形態般具有用於週期結構層之AMC用基板501之AMC之構成,如圖33所示般,亦可適用於不具有觸控面板之顯示器模組。
於圖33之構成中,由夾著第3接著層284之形成於AMC用基板501之上表面之週期結構層510與作為背襯導體發揮功能之顯示器面板220之透明電極26構成人工磁導體(AMC)500ζ。
於本構成中,在將自透明天線之天線圖案110至AMC之週期結構層510之距離設為h3,將AMC之自週期結構層510至背襯導體之距離設為h4ζ時,具有h3<h4ζ之關係。
於圖33中,h3為透明天線100之透明基板101之厚度與第1接著層281之厚度之合計,h4ζ為AMC用基板501之厚度與第3接著層284之厚度之合計。藉由使AMC用基板501之厚度與第3接著層284之厚度之合計h4ζ較透明基板101之厚度與第1接著層281之厚度之合計h3更厚,而實現上述之h3<h4ζ之關係。
於本構成中,如上述般,AMC500ζ隔著接著層284積層而構成,因此擴寬背襯導體與週期結構層之距離,而可使AMC之性能提高。
此處,於本構成中,與圖25同樣地,為了使顯示器面板220作為背襯導體發揮功能,例如在h4ζ為0.15 mm之情形下,較佳的是透明電極26之薄片電阻值小於2.8 Ω/sq。又,於h4ζ為0.30 mm之情形下,較佳的是作為AMC發揮功能之透明電極26之薄片電阻值未達5.6 Ω/sq,更佳為5.0 Ω/sq以下。
再者,於本例中,對於顯示器面板220之透明電極26作為AMC之背襯導體發揮功能之例進行了說明,但亦可如上述般,作為顯示器面板220之構成要素之一部分而於透明電極26之上更設置用於AMC用之背襯導體之專用構件(例如圖案電極)。
再者,於本例中,對於在AMC用基板501中,週期結構層510設置於上側之例進行了說明,但週期結構層510亦可形成於AMC用基板501之下側。該情形下,較佳的是以透明天線100之透明基板101之厚度與第1接著層281之厚度及AMC用基板501之厚度之合計較第3接著層284之厚度更薄之方式設計。
(8.本發明之第5實施形態之顯示器模組5)
圖34係顯示本發明之第5實施形態之顯示器模組5之剖面分解圖。於本構成中,AMC之週期結構層設置於與透明天線之透明基板為別體之專用之AMC基板之上表面,AMC之背襯導體設置於AMC用基板之下表面。又,為了將基板彼此密接地積層,而於觸控面板230與專用之AMC用基板501之間設置第3接著層(OCA)284。
於本構成中,於上表面設置有週期結構層510、於下表面設置有背襯導體520之AMC用基板501,設置於觸控面板230之上方。AMC用基板501係第2透明基板,作為一例為聚醯亞胺製之撓性基板,且為可在Z方向及/或X方向上折彎之無色透明之絕緣材基板。
於圖34之構成中,由形成於AMC用基板501之上表面之週期結構層510與形成於下表面之背襯導體520構成人工磁導體(AMC)500η。
於本構成中,在將自透明天線100之天線圖案110至AMC500η之週期結構層510之距離設為h3,將AMC500η之自週期結構層510至背襯導體520之距離設為h5時,具有h3<h5之關係。
於圖34中,h3為透明天線100之透明基板101之厚度與第1接著層281之厚度之合計,h5為AMC用基板501之厚度。藉由使AMC用基板501之厚度h5較透明基板101之厚度與第1接著層281之厚度之合計h3更厚,而實現上述之h3<h5之關係。
於本構成中,與圖1所示之先前例之構成相比,AMC500η在同一基板內設置週期結構層與背襯導體,因此與不具有背襯導體之AMC相比,可大幅抑制天線之增益損失。又,於本構成中,AMC500η係由1個基板來實現,但不具有上下導通之導通部,而可避免製造之複雜化。
於本例中,對於在觸控面板230之上設置具有專用之AMC基板之AMC500η之例進行了說明,但於顯示器模組中,亦可不設置觸控面板230,而於顯示器面板220之上設置本構成之AMC500η。
又,本發明之透明天線即便為1個亦可實現作為天線之功能,但為了更加提高特性,亦可以彙集複數個透明天線之陣列狀態(天線陣列)來配置。於設置有複數個透明天線之情形下,較佳的是在所有之天線之透明基板之下表面、或下側設置週期結構層,且設置與透明天線同數目之AMC。
以上,對於本發明之例示性之實施形態之透明天線進行了說明,但本發明並不限定於具體性地揭示之實施形態,在不脫離申請專利範圍下,可進行各種變化或變更。
本國際申請案係基於2020年6月12日申請之日本專利申請案第2020-102629號並主張其優先權者,且將2020-102629號之全部內容引用於本國際申請案中。
1, 1A, 2, 2A, 3, 3A, 3B, 3C, 4, 4A, 5:顯示器模組
21:基板
22:底板
23:下側反射電極
24:開口絕緣膜
25B, 25G, 25R:發光層
27B, 27G, 27R:OLED元件
26:陰極(AMC用之背襯導體)
31:電極(第1電極)
32:電極(第2電極)
38:第1配線
39:第2配線
41:週期結構層
42:背襯導體(背襯板)
43:浮動導體
44:狹隙
45:週期結構層
46:背襯導體(背襯板)
47:浮動導體
48:狹隙
49:導通部
61:疑似AMC之測定模型
62:疑似AMC之測定模型
63:天線單體(測定模型)
64:附AMC疑似顯示器模組(測定模型)
65:比較例之疑似顯示器模組(測定模型)
80:透明導體
81:金屬細線
82:金屬細線
83:開口部
100:透明天線
101:透明基板(天線基板)
110:天線圖案(透明導體、金屬細線層)
200:電子機器
210:殼體
211:開口端
212:收納部
220:顯示器面板(OLED顯示器面板、顯示器)
230:觸控面板(內嵌式觸控面板用金屬細線層)
240:透明蓋(保護玻璃)
250:配線基板
260A, 260B, 260C, 260D:電子零件
270:電池
281:第1接著層(OCA、接著層)
282:第2接著層(OCA)
283, 284:第3接著層(OCA)
291:偏光板
292:偏光板
300:內嵌式金屬細線層
301:電極層/AMC用之背襯導體
302:絕緣層
303:橋接層
304:絕緣保護層
305:通孔
306:絕緣孔
400, 400α, 400β, 400γ, 400δ, 400ε:AMC(人工磁導體)
401:AMC用基板(第2透明基板)
410:週期結構層
420:AMC用背襯導體
500, 500ζ, 500η:AMC(人工磁導體)
501:AMC用基板(第2透明基板)
510:週期結構層
520:背襯導體
h1:透明導體之厚度(自天線圖案至週期結構層之距離)
h2, h2α, h2β, h2γ, h2δ, h2ε:自週期結構層至背襯導體之距離
h3:透明導體與第3接著層之厚度之合計(自天線圖案至週期結構層之距離)
h4, h4ζ:自週期結構層至背襯導體之距離
h5:自週期結構層至背襯導體之距離(AMC用基板之厚度)
A:面
d:距離
L1:直線(第1直線)
L110:導體長(尺寸)
M:金屬導體
P:浮動導體
P1~P9:導電圖案
p81, p82:金屬細線間之線間隔(配線節距)
W110:尺寸
w81, w82:構成網目之金屬細線各者之線寬(配線寬度)
X:軸(方向)
Y:軸(方向)
Z:軸(方向)
圖1係先前例之AMC搭載顯示器模組之剖面分解圖。
圖2係顯示本發明之搭載顯示器之電子機器之整體圖及透明天線之位置之圖。
圖3係圖2之電子機器之AA面剖面圖。
圖4係顯示本發明之第1實施形態之顯示器模組之剖面分解圖。
圖5A係金屬導體之電磁波之反射之說明圖。
圖5B係AMC之電磁波之反射之說明圖。
圖6係本發明之設置有第1實施形態之週期結構層之透明天線之說明圖。
圖7A係本發明之透明天線之俯視圖。
圖7B係本發明之設置有週期結構層之透明天線之仰視圖。
圖8係本發明之構成天線圖案及週期結構層之透明導體之說明圖。
圖9A係一般性之上下導通型之AMC之說明圖。
圖9B係一般性之上下非導通型之AMC之說明圖。
圖10A係在上下非導通型下週期結構為膜片型之AMC之說明圖。
圖10B係在上下非導通型下週期結構為孔型之AMC之說明圖。
圖11係顯示本發明之AMC之週期結構層之共振元件之變化例之圖。
圖12係一般性之投影型靜電電容方式之觸控面板之感測器圖案之示意圖。
圖13係顯示觸控面板之剖面圖之一例之圖。
圖14係由1個浮動導體、接著層、及模仿觸控面板之金屬導體構成之疑似AMC之示意圖。
圖15A係顯示在圖14之疑似AMC中,使金屬導體之電阻值變化0~2.4 Ω/sq時之反射振幅之參數之特性值之圖。
圖15B係顯示在圖14之疑似AMC中,使金屬導體之電阻值變化2.8~10 Ω/sq時之反射振幅之參數之特性值之圖。
圖16A係顯示在圖14之疑似AMC中,使金屬導體之電阻值變化成0~2.4 Ω/sq時之反射相位之參數之特性值之圖。
圖16B係顯示在圖14之疑似AMC中,使金屬導體之電阻值變化成2.8~10 Ω/sq時之反射相位之參數之特性值之圖。
圖17係由1個浮動導體、接著層、及模仿觸控面板之金屬導體構成之疑似AMC之示意圖。
圖18係顯示在圖17之疑似AMC中,對浮動導體之大小進行變更時之反射振幅之參數之特性值之圖。
圖19係顯示在圖17之疑似AMC中,對浮動導體之大小進行變更時之反射相位之參數之特性值之圖。
圖20係由本發明之透明天線與接著層構成之測定模型之示意圖。
圖21係由本發明之透明天線、設置於透明天線之下表面之週期結構層、接著層、模仿觸控面板之金屬導體構成之疑似顯示器模組之示意圖。
圖22係由透明天線、接著層、模仿觸控面板之金屬導體構成之比較例之測定模型之示意圖。
圖23係顯示圖20、圖21、圖22之測定模型中之最大增益之表。
圖24係顯示本發明之第1實施形態之變化例之顯示器模組之剖面分解圖。
圖25係顯示本發明之第2實施形態之顯示器模組之剖面分解圖。
圖26係第2實施形態之顯示器面板之剖面圖。
圖27係顯示本發明之第2實施形態之變化例之顯示器模組之剖面分解圖。
圖28係顯示本發明之第3實施形態之顯示器模組之剖面分解圖。
圖29係顯示本發明之第3實施形態之變化例1之顯示器模組之剖面分解圖。
圖30係顯示本發明之第3實施形態之變化例2之顯示器模組之剖面分解圖。
圖31係顯示本發明之第3實施形態之變化例3之顯示器模組之剖面分解圖。
圖32係顯示本發明之第4實施形態之顯示器模組之剖面分解圖。
圖33係顯示本發明之第4實施形態之變化例之顯示器模組之剖面分解圖。
圖34係顯示本發明之第5實施形態之顯示器模組之剖面分解圖。
1:顯示器模組
100:透明天線
101:透明基板(天線基板)
110:天線圖案(透明導體、金屬細線層)
220:顯示器面板(OLED顯示器面板、顯示器)
230:觸控面板(內嵌式觸控面板用金屬細線層)
240:透明蓋(保護玻璃)
281:第1接著層(OCA、接著層)
282:第2接著層(OCA)
291:偏光板
301:電極層/AMC用之背襯導體
304:絕緣保護層
400:AMC(人工磁導體)
410:週期結構層
h1:透明導體之厚度(自天線圖案至週期結構層之距離)
h2:自週期結構層至背襯導體之距離
X:軸(方向)
Y:軸(方向)
Z:軸(方向)
Claims (14)
- 一種顯示器模組,其具備:顯示器; 透明天線,其配置於前述顯示器之上側,具有透明基板及形成於該透明基板上之天線圖案;以及 人工磁導體,其配置於較前述透明天線更靠下層;且 前述人工磁導體包含: 週期結構層、及 背襯導體, 前述透明天線之前述天線圖案、及前述人工磁導體之前述週期結構層係由網目狀導體構成,前述網目狀導體之配線寬度為5 μm以下,且由以於可見光下可獲得70%以上之透過率之方式來決定配線節距之透明導體構成, 於將自前述透明天線之前述天線圖案至前述人工磁導體之前述週期結構層之距離設為h1、 將前述人工磁導體之自前述週期結構層至前述背襯導體之距離設為h2時,具有h1<h2之關係。
- 如請求項1之顯示器模組,其中前述背襯導體之薄片電阻值為5 Ω/sq以下。
- 如請求項1或2之顯示器模組,其中前述人工磁導體之前述週期結構層設置於前述透明天線之前述透明基板之下表面。
- 如請求項3之顯示器模組,其具備觸控面板,該觸控面板設置於前述週期結構層之下側且為前述顯示器之上側,於上表面直接形成有金屬細線層,且 前述觸控面板之前述金屬細線層係前述人工磁導體之前述背襯導體。
- 如請求項3之顯示器模組,其中前述顯示器包含發光層與下表面側之陽極及上表面側之陰極,且 前述顯示器之前述陰極係前述人工磁導體之前述背襯導體。
- 如請求項3之顯示器模組,其具備第2透明基板,該第2透明基板設置於前述透明天線之下側且為前述顯示器之上側,且 前述人工磁導體之前述背襯導體設置於前述第2透明基板之下表面。
- 如請求項1或2之顯示器模組,其具備第2透明基板,該第2透明基板設置於前述透明天線之下側且為前述顯示器之上側,且 前述人工磁導體之前述週期結構層設置於前述第2透明基板之上表面。
- 如請求項7之顯示器模組,其包含觸控面板,該觸控面板設置於前述週期結構層之下側且為前述顯示器之上側,於上表面直接形成有金屬細線層,且 前述觸控面板之前述金屬細線層係前述人工磁導體之前述背襯導體。
- 如請求項7之顯示器模組,其中前述顯示器包含發光層與下表面側之陽極及上表面側之陰極,且 前述顯示器之前述陰極係前述人工磁導體之前述背襯導體。
- 如請求項1至9中任一項之顯示器模組,其具備接著層,該接著層設置於前述人工磁導體之前述週期結構層與前述背襯導體之間。
- 如請求項10之顯示器模組,其更具備供電波透過之偏光板,該偏光板設置於前述人工磁導體之前述週期結構層與前述背襯導體之間。
- 如請求項1之顯示器模組,其具備第2透明基板,該第2透明基板設置於前述透明天線之下側且為前述顯示器之上側,且 前述人工磁導體之前述週期結構層設置於前述第2透明基板之上表面, 前述人工磁導體之前述背襯導體設置於前述第2透明基板之下表面。
- 如請求項1至12中任一項之顯示器模組,其中於前述人工磁導體中,前述週期結構層與前述背襯導體不導通。
- 如請求項1至13中任一項之顯示器模組,其中前述透明天線在24.2~29.5 GHz下收發電波, h2=0.15 mm, 藉由週期性地配置複數個正方形之浮動導體而構成前述週期結構層, 將浮動導體之一邊構成為2.8~3.4 mm, 將浮動導體間之間隔構成為0.5~1.5 mm。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020102629 | 2020-06-12 | ||
JP2020-102629 | 2020-06-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202213298A true TW202213298A (zh) | 2022-04-01 |
Family
ID=78845567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110119645A TW202213298A (zh) | 2020-06-12 | 2021-05-31 | 顯示器模組 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2021251169A1 (zh) |
TW (1) | TW202213298A (zh) |
WO (1) | WO2021251169A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI798118B (zh) * | 2022-06-24 | 2023-04-01 | 華碩電腦股份有限公司 | 寬頻毫米波天線裝置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024062780A1 (ja) * | 2022-09-22 | 2024-03-28 | 株式会社ジャパンディスプレイ | 表示パネル一体型電波反射装置 |
WO2024087018A1 (zh) * | 2022-10-25 | 2024-05-02 | 京东方科技集团股份有限公司 | 毫米波天线及其制作方法、电子设备及其驱动方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103675956B (zh) * | 2012-08-31 | 2016-08-17 | 深圳光启创新技术有限公司 | 一种透明超材料及其制备方法 |
US9647325B2 (en) * | 2014-08-29 | 2017-05-09 | GM Global Technology Operations LLC | Flexible artificial impedance surface antennas for automotive radar sensors |
WO2019107514A1 (ja) * | 2017-12-01 | 2019-06-06 | Agc株式会社 | アンテナユニット、およびアンテナ付きガラス板 |
-
2021
- 2021-05-27 WO PCT/JP2021/020288 patent/WO2021251169A1/ja active Application Filing
- 2021-05-27 JP JP2022530131A patent/JPWO2021251169A1/ja active Pending
- 2021-05-31 TW TW110119645A patent/TW202213298A/zh unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI798118B (zh) * | 2022-06-24 | 2023-04-01 | 華碩電腦股份有限公司 | 寬頻毫米波天線裝置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021251169A1 (zh) | 2021-12-16 |
WO2021251169A1 (ja) | 2021-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11239562B2 (en) | Antenna module and electronic device | |
US10990234B2 (en) | Touch sensor including antenna | |
US10147998B2 (en) | Interface and communication device | |
TWI602091B (zh) | 具透明天線之觸控面板及觸控顯示裝置 | |
US11056771B2 (en) | Antenna module and electronic device | |
TW202213298A (zh) | 顯示器模組 | |
US9270267B2 (en) | Touch panel and method of manufacturing the same | |
US20130154979A1 (en) | Touch panel having electrostatic protection structure | |
US10734469B2 (en) | Display device | |
WO2021220778A1 (ja) | 透明アンテナ、アンテナアレイ、及びディスプレイモジュール | |
CN210072572U (zh) | 触控模组、显示装置及终端设备 | |
US20190163306A1 (en) | Touch panel and touch display device and method for fabricating the same, touch display device (as amended) | |
US20240072415A1 (en) | Patch Antenna and Electronic Device | |
KR20120115935A (ko) | 터치 패널 및 이것을 구비한 휴대 단말장치 | |
CN216958496U (zh) | 天线元件、天线封装和显示装置 | |
TW202215709A (zh) | 透明天線及顯示器模組 | |
TW201709032A (zh) | 具天線模組之金屬網格觸控薄膜及內嵌式觸控顯示模組 | |
US11573668B2 (en) | Touch-sensing panel | |
CN114498053A (zh) | 毫米波超材料混合透明天线及使用其的显示单元 | |
WO2021027534A1 (zh) | 一种触摸屏及电子设备 | |
CN112117313A (zh) | 显示屏及电子设备 | |
CN112947780A (zh) | 触控屏、触控显示器及电子设备 | |
TWM514605U (zh) | 具天線模組之金屬網格觸控薄膜及內嵌式觸控顯示模組 | |
CN113540788B (zh) | 一种电子设备 | |
KR20220011480A (ko) | 안테나 소자 및 이를 포함하는 디스플레이 장치 |