WO2024087018A1 - 毫米波天线及其制作方法、电子设备及其驱动方法 - Google Patents

毫米波天线及其制作方法、电子设备及其驱动方法 Download PDF

Info

Publication number
WO2024087018A1
WO2024087018A1 PCT/CN2022/127399 CN2022127399W WO2024087018A1 WO 2024087018 A1 WO2024087018 A1 WO 2024087018A1 CN 2022127399 W CN2022127399 W CN 2022127399W WO 2024087018 A1 WO2024087018 A1 WO 2024087018A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
millimeter wave
wave antenna
holes
Prior art date
Application number
PCT/CN2022/127399
Other languages
English (en)
French (fr)
Inventor
张亚飞
张旭东
张东东
贾孟文
于孟夏
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/127399 priority Critical patent/WO2024087018A1/zh
Publication of WO2024087018A1 publication Critical patent/WO2024087018A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set

Definitions

  • the present application relates to the field of display technology, and in particular to a millimeter wave antenna and a manufacturing method thereof, an electronic device and a driving method thereof.
  • AoD Antenna On Display
  • the antenna in AoD technology is located in the display area of the screen, it is crucial to ensure the antenna radiation performance while not affecting the display of the electronic device.
  • an embodiment of the present application provides a method for manufacturing a millimeter wave antenna, comprising:
  • An electrode layer is formed in each of the through holes of the defining layer; wherein the electrode layer includes a radiation pattern and a feed line, and both the radiation pattern and the feed line include a grid line structure.
  • forming a limiting layer on the first substrate includes:
  • the step of processing the defining layer so that the defining layer has a plurality of through holes comprises:
  • the forming of an electrode layer in each of the through holes in the defining layer comprises:
  • the electrode layer is formed at least in each of the through holes of the first planar layer.
  • forming at least a first planar layer on the first substrate comprises:
  • the step of processing at least the first planar layer so that the first planar layer has a plurality of through holes comprises:
  • the forming of the electrode layer at least in each of the through holes of the first planar layer comprises:
  • the electrode layer is formed in each of the through holes of the first planar layer.
  • forming at least a first planar layer on the first substrate comprises:
  • the step of processing at least the first planar layer so that the first planar layer has a plurality of through holes comprises:
  • the forming of the electrode layer at least in each of the through holes of the first planar layer comprises:
  • the electrode layer is formed at least in each of the through holes of the first buffer layer and each of the through holes of the first planar layer.
  • the step of processing at least two of the first buffer layer, the first planar layer and the mask layer simultaneously so that the first buffer layer, the first planar layer and the mask layer all have a plurality of through holes comprises:
  • the forming of the electrode layer at least in each of the through holes of the first buffer layer and each of the through holes of the first planar layer comprises:
  • the electrode layer is formed in each through hole of the mask layer, each through hole of the first planarization layer, and each through hole of the first buffer layer.
  • the material of the mask layer includes non-metal.
  • the step of processing at least two of the first buffer layer, the first planar layer and the mask layer simultaneously so that the first buffer layer, the first planar layer and the mask layer all have a plurality of through holes comprises:
  • the first planar layer and the first buffer layer are processed in sequence, so that both the first planar layer and the first buffer layer have a plurality of through holes;
  • the forming of the electrode layer at least in each of the through holes of the first buffer layer and each of the through holes of the first planar layer comprises:
  • the electrode layer is formed in each of the through holes of the first planarizing layer and each of the through holes of the first buffer layer.
  • the step of processing at least two of the first buffer layer, the first planar layer and the mask layer simultaneously so that the first buffer layer, the first planar layer and the mask layer all have a plurality of through holes comprises:
  • the mask layer, the first planar layer and the first buffer layer are processed in sequence, so that the mask layer, the first planar layer and the first buffer layer respectively have a plurality of through holes;
  • the forming of the electrode layer at least in each of the through holes of the first buffer layer and each of the through holes of the first planar layer comprises:
  • the electrode layer is formed in each of the through holes of the first planarizing layer and each of the through holes of the first buffer layer.
  • the material of the mask layer includes metal.
  • the manufacturing method further includes:
  • a surface seed layer is formed on the first substrate.
  • the manufacturing method further comprises:
  • a second planarization layer is formed on the electrode layer.
  • the manufacturing method further comprises:
  • a second substrate is formed on the second planar layer.
  • the manufacturing method further includes:
  • the manufacturing method further includes:
  • the release layer and the first substrate are removed.
  • the manufacturing method further comprises:
  • a second protective layer is formed on the second substrate.
  • an embodiment of the present application provides a millimeter wave antenna manufactured by the above-mentioned millimeter wave antenna manufacturing method, comprising:
  • a limiting layer disposed on the first substrate, wherein the limiting layer has a plurality of through holes
  • the electrode layer is arranged in each of the through holes of the defining layer; the electrode layer includes a radiation pattern and a feed line, and both the radiation pattern and the feed line include a grid line structure.
  • the defining layer comprises at least a first flat layer
  • the first planar layer has a plurality of through holes, and the electrode layer is at least disposed in each of the through holes of the first planar layer.
  • the defining layer comprises a first planar layer
  • the first planar layer has a plurality of through holes, and the electrode layer is disposed in each of the through holes of the first planar layer.
  • the limiting layer further includes a first buffer layer and a mask layer, wherein the first buffer layer is arranged between the first substrate and the first planar layer, and the mask layer is arranged on a side of the first planar layer away from the first substrate;
  • the first buffer layer, the first planar layer and the mask layer each have a plurality of through holes, and the electrode layer is disposed in each through hole of the mask layer, each through hole of the first planar layer and each through hole of the first buffer layer.
  • the limiting layer further includes a first buffer layer, and the first buffer layer is arranged between the first substrate and the first planar layer;
  • the first buffer layer and the first planar layer each have a plurality of through holes, and the electrode layer is disposed in each of the through holes of the first planar layer and each of the through holes of the first buffer layer.
  • an embodiment of the present application provides an electronic device, including the above-mentioned millimeter wave antenna.
  • the electronic device includes a display device, the display device includes a display panel, the display panel includes a display substrate and the above-mentioned millimeter wave antenna, and the millimeter wave antenna is arranged on the light emitting side of the display substrate.
  • the display panel further includes a touch layer, and the touch layer is arranged between the display substrate and the millimeter wave antenna;
  • the touch control layer is arranged on a side of the millimeter wave antenna away from the display substrate.
  • the display panel further includes a first polarization unit and a cover plate;
  • the first polarization unit is arranged on a side of the millimeter wave antenna away from the display substrate;
  • the cover plate is disposed on a side of the first polarizing unit away from the display substrate.
  • the display device further includes a first controller and a second controller, wherein the first controller is electrically connected to the display substrate and is configured to control the display substrate;
  • the second controller is electrically connected to the millimeter wave antenna and is configured to control the millimeter wave antenna.
  • the display panel includes a display area and a frame area connected to the display area, and the millimeter wave antenna and the display substrate are both located in the display area and the frame area;
  • the first controller is bound to the display substrate located in the frame area;
  • the millimeter wave antenna also extends along the border area of the display panel in a direction away from the display area, and the part of the millimeter wave antenna extending out of the display panel includes a bending area and a non-bending area, and the bending area is located between the non-bending area and the border area of the display panel; the second controller is located in the non-bending area and is bound to the millimeter wave antenna located in the non-bending area.
  • the display device further includes a ground layer, the ground layer is arranged on a side of the portion of the millimeter wave antenna extending out of the display panel close to the first substrate, and the ground layer is located in the non-bending area and the bending area;
  • the electrode layer in the millimeter wave antenna is also arranged on the second controller and on the side of the millimeter wave antenna extending out of the display panel away from the ground layer, and is located in the bending area and the non-bending area; the electrode layer is configured to be able to be bent in the bending area together with the ground layer.
  • the display panel includes a display area and a frame area connected to the display area, and the millimeter wave antenna and the display substrate are both located in the display area and the frame area;
  • the first controller is bound to the display substrate located in the frame area;
  • the second controller is partially located in the border area and is bound to the millimeter wave antenna located in the border area.
  • the remaining portion of the second controller extends along the border area of the display panel in a direction away from the display area, and includes a bending area and a non-bending area, and the bending area is located between the non-bending area and the border area of the display panel;
  • the display device further includes a ground layer, which is disposed on a side of the second controller close to the first substrate and has a gap with the frame area, and the ground layer is located in the non-bending area and a part of the bending area;
  • the electrode layer in the millimeter wave antenna is also arranged on a side of the second controller away from the ground layer, and is located in the bending area and the non-bending area.
  • the electrode layer in the millimeter wave antenna is configured to be able to be bent in the bending area together with the rest of the second controller and the ground layer.
  • an embodiment of the present application provides a driving method of the above electronic device, wherein the driving method includes:
  • the first controller controls the display substrate to perform display
  • the second controller controls the millimeter wave antenna to radiate.
  • 1a-1k are flow charts of a method for manufacturing a first millimeter wave antenna provided in an embodiment of the present application
  • FIGS. 2a-2n are flow charts of a method for manufacturing a second millimeter wave antenna provided in an embodiment of the present application.
  • 3a-3q are flow charts of a method for manufacturing a third millimeter wave antenna provided in an embodiment of the present application.
  • 4a-4p are flow charts of a method for manufacturing a fourth millimeter wave antenna provided in an embodiment of the present application.
  • FIG5 is a schematic structural diagram of a millimeter wave antenna shown in FIG2d provided in an embodiment of the present application without a first buffer layer;
  • FIG6 is a schematic diagram of the structure of a millimeter wave antenna shown in FIG2d provided in an embodiment of the present application;
  • FIG7 is a schematic diagram of the structure of a millimeter wave antenna shown in FIG2i provided in an embodiment of the present application;
  • FIG8 is a schematic diagram of a grid line structure of the millimeter wave antenna shown in FIG2i provided in an embodiment of the present application;
  • FIG9 is a schematic diagram of the structure of a millimeter wave antenna shown in FIG3h provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of a millimeter wave antenna provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of the inverted structure of the millimeter wave antenna shown in FIG10;
  • FIG12 is a schematic structural diagram of a first display panel provided in an embodiment of the present application.
  • FIG13 is a schematic diagram of the structure of a second display panel provided in an embodiment of the present application.
  • FIG14 is a schematic diagram of the structure of a third display panel provided in an embodiment of the present application.
  • FIG15 is a schematic structural diagram of a fourth display panel provided in an embodiment of the present application.
  • FIG16 is a schematic structural diagram of a fifth display panel provided in an embodiment of the present application.
  • FIG17 is a schematic diagram of the structure of an LCD integrated millimeter wave antenna provided in an embodiment of the present application.
  • FIG18 is a schematic diagram of the structure of an OLED integrated millimeter wave antenna provided in an embodiment of the present application.
  • FIG19 is a schematic diagram of a structure in which a millimeter wave antenna is located in a display area according to an embodiment of the present application
  • FIG20 is a schematic structural diagram of a first display device provided in an embodiment of the present application.
  • FIG21 is a schematic diagram of the structure of a second display device provided in an embodiment of the present application.
  • FIG22 is a top view of the display device shown in FIG21;
  • FIG23 is a schematic structural diagram of a third display device provided in an embodiment of the present application.
  • FIG. 24 is a top view of the display device shown in FIG. 23 .
  • plural means two or more; the orientation or positional relationship indicated by the term “on” and the like is based on the orientation or positional relationship shown in the accompanying drawings, and is only for the convenience of describing the present application and simplifying the description, rather than indicating or implying that the structure or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation on the present application.
  • the term “including” is to be interpreted as an open, inclusive meaning, that is, “including, but not limited to”.
  • the terms “one embodiment”, “some embodiments”, “exemplary embodiment”, “example”, “specific example” or “some examples” and the like are intended to indicate that specific features, structures, materials or characteristics associated with the embodiment or example are included in at least one embodiment or example of the present application.
  • the schematic representation of the above terms does not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics may be included in any one or more embodiments or examples in any appropriate manner.
  • Millimeter waves usually refer to radio waves with a frequency range of 30-300GHz and a wavelength range of 1-10mm. Of course, the frequency range of ordinary millimeter waves can be extended to 24-30GHz. Millimeter waves can better realize ultra-high-speed 5G (5th Generation Mobile Communication Technology) and have a wider bandwidth. However, due to the short wavelength of millimeter waves, they cannot effectively pass through some materials, such as metal materials, resulting in certain limitations in the application of millimeter waves, and it is impossible to better realize the high-speed, low-latency 5G experience.
  • 5G Fifth Generation Mobile Communication Technology
  • AiP Antenna In Package
  • AiP Advanced In Package
  • the antennas of electronic devices are mostly located in the border area or on the back of the screen.
  • the user's holding method will also block the signal during use, resulting in problems such as interruption of radio wave transmission and interruption of 5G stability.
  • AoD technology came into being. Based on AiP technology, AoD technology separates the antenna from the package substrate and transfers it to the display area of the screen to increase the antenna coverage area by sacrificing some losses. Since the antenna in AoD technology is located in the display area of the screen, it is particularly important to ensure good radiation performance of the antenna while not affecting the display of the screen.
  • an embodiment of the present application provides a method for manufacturing a millimeter wave antenna, including:
  • the first substrate can be a rigid substrate, and the material of the rigid substrate can include glass, PC (Polycarbonate), COP (Copolymers of Cycloolefin), PMMA (Polymethyl Methacrylate), PET (Polyethylene Terephthalate), etc.
  • the first substrate can be a flexible substrate, and the material of the flexible substrate can include PI (Polyimide), PEN (Polyethylene Naphthalate Two Formic Acid Glycol Ester), etc.
  • first substrate There is no specific limitation on the structure of the first substrate.
  • other film layers may be directly formed on the first substrate; or, the first substrate may include a substrate, and other film layers may be directly formed on the substrate, which depends on actual application.
  • the limiting layer may include only one layer, for example, the limiting layer shown in FIG1 includes a first flat layer 21; or, the limiting layer may include multiple layers, for example, the limiting layer shown in FIG2 includes a first buffer layer 22, a first flat layer 21 and a mask layer 23 stacked in sequence.
  • the limiting layer may also include other film layers, which shall be subject to actual application.
  • the manufacturing process, material, etc. of the limiting layer are not specifically limited here, and the manufacturing process, material, etc. of the limiting layer can be determined according to the structure of the limiting layer.
  • the above-mentioned process for processing the limiting layer is not specifically limited, and the process for processing the limiting layer can be determined according to the structure of the limiting layer.
  • a photoresist 3 can be coated on the first flat layer 21, and a mask plate (not shown in the figure) can be used to pattern the first flat layer 21 to form a plurality of through holes k1 of the first flat layer 21.
  • each through hole are not specifically limited here, and the shape, height, etc. of each through hole can be determined according to the process of processing the limiting layer.
  • the electrode layer includes a radiation pattern and a feed line, and both the radiation pattern and the feed line include a grid line structure.
  • the material of the electrode layer is not specifically limited here.
  • the material of the electrode layer can be a metal material, such as copper, titanium, magnesium, etc.; or, it can also be a glass fiber with a metal coating; or, it can also be a resin with a conductive carbon material coated on the surface, wherein the conductive carbon material includes graphene, carbon fiber, and carbon nanotubes.
  • the electrode layer can be formed by electroplating, deposition and other processes.
  • the advantages of the electroplating process are now explained by taking the material of the electrode layer as metal: due to the low deposition efficiency of sputtering, in order to achieve a high aspect ratio narrow line width thick metal, electroplating is required for rapid growth of metal. Since the limiting layer and other film layers have limited the electroplating area, that is, the previously patterned area, the electroplated metal can only grow along the inside of the through hole, and will not grow on the surface of the limiting layer and other film layers.
  • the number of the above feed lines is not specifically limited, and the specific number can be determined according to the type of the millimeter wave antenna, the specific situation, etc. For example, when the type of the millimeter wave antenna is a dual-polarized antenna, the number of feed lines is two; or, when the type of the millimeter wave antenna is a non-dual-polarized antenna, the number of feed lines can be one. Of course, the number of feed lines can also be three or more, which is subject to the actual application.
  • the above-mentioned radiation pattern and feeder both include a grid line structure, which can be a metal grid structure.
  • the line width of the metal grid lines of the radiation pattern and the feeder is not specifically limited here.
  • the line width range of the grid lines of the radiation pattern and the feeder can be 0.5-2 ⁇ m, specifically 0.5 ⁇ m, 0.8 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 1.7 ⁇ m or 2 ⁇ m, etc.
  • the thickness of the above-mentioned grid linear structure is not specifically limited here, and the thickness of the above-mentioned grid linear structure can be controlled by the thickness of the limiting layer.
  • the thickness range of the above-mentioned grid linear structure is now explained by assuming that the material of the electrode layer is metal: Taking into account the unevenness of electroplating, for example, the thickness of the electroplated metal can be 80-90% of the thickness of the limiting layer. This is because a thinner metal will affect the radiation efficiency; while a thicker metal will seriously affect the transmittance.
  • the ratio of the thickness of the above-mentioned grid linear structure in the direction perpendicular to the first substrate to the line width of the grid linear structure can be greater than or equal to 2, for example, the depth-to-width ratio of the grid linear structure can be 2, 3, 4, 5, 6 or 7, etc.
  • the spacing between adjacent grid lines in the above grid linear structure may be in the range of 20-250 ⁇ m, preferably 50-200 ⁇ m, specifically 50 ⁇ m, 100 ⁇ m or 200 ⁇ m, etc.
  • the transmittance of the above-mentioned grid linear structure can be greater than 80%, for example, the transmittance range is 86-92%, specifically 86%, 87%, 88%, 89%, 90%, 91% or 92%, etc.
  • the line width of the grid lines of the radiation pattern can be set smaller than the spacing between adjacent grid lines of the radiation pattern, and the thickness of the radiation pattern in a direction perpendicular to the first substrate can be set larger than the line width of the grid lines of the radiation pattern.
  • the line width of the grid lines of the feed line can be set smaller than the spacing between adjacent grid lines of the radiation pattern, and the thickness of the feed line in a direction perpendicular to the first substrate can be set larger than the line width of the grid lines of the radiation pattern.
  • both the radiation pattern and the feed line as a grid linear structure and combining it with a translucent first substrate, etc.
  • an electrode layer with good light transmittance can be obtained;
  • an electrode layer with a high aspect ratio can be obtained to ensure the radiation of the antenna, and the light transmittance of the electrode layer can be further improved without affecting the electrical properties of each radiation pattern, thereby improving the light transmittance of the millimeter wave antenna and allowing it to be better applied to the display area of electronic equipment.
  • the specific line widths of the grid lines of the radiation pattern and the feed line, the specific spacing between adjacent grid lines, and their specific thicknesses in a direction perpendicular to the first substrate may be the same or different.
  • the manufacturing method of the millimeter wave antenna includes: providing a first substrate; forming a defining layer on the first substrate; processing the defining layer so that the defining layer has a plurality of through holes; forming an electrode layer in each through hole of the defining layer; wherein the electrode layer includes a radiation pattern and a feed line, and both the radiation pattern and the feed line include a grid linear structure.
  • the thickness of the electrode layer in the direction perpendicular to the first substrate can be controlled by the thickness of the through hole of the defining layer in the direction perpendicular to the first substrate, and the width of the electrode layer in the direction parallel to the first substrate can be controlled by the through hole of the defining layer in the direction parallel to the first substrate, so as to obtain an electrode layer with a high aspect ratio, that is, the radiation pattern and the feed line in the millimeter wave antenna have a high aspect ratio, so that the millimeter wave antenna can effectively radiate; at the same time, the millimeter wave antenna with an extremely narrow line width is applied to electronic devices, for example, when integrated in a display device, the influence on the display function of the display device can be greatly reduced or even eliminated; on the other hand, setting the radiation pattern and the feed line as a grid linear structure can effectively improve the transmittance of the electrode layer, so that the millimeter wave antenna as a whole has a
  • S2 forming a limiting layer on the first substrate includes:
  • first flat layer 21 is formed on the first substrate 1; or, in addition to forming the first flat layer, other film layers may be formed on the first substrate, such as the first buffer layer and mask layer shown in Figures 2-4, which are not limited here.
  • the above-mentioned at least processing the first flat layer so that the first flat layer has a plurality of through holes means: only processing the first flat layer so that the first flat layer has a plurality of through holes; or, in addition to processing the first flat layer so that the first flat layer has a plurality of through holes, other film layers may also be processed so that both the first flat layer and the other film layers have a plurality of through holes, which is not limited here.
  • S4 forming an electrode layer in each through hole of the defining layer comprises:
  • the electrode layer is formed at least in each through hole of the first flat layer, which means that the electrode layer can be formed only in each through hole of the first flat layer; or the electrode layer can be formed in each through hole of the first flat layer and other film layers, which is not limited here.
  • an electrode layer is formed at least in each through hole of the first flat layer, so that the thickness of the electrode layer in a direction perpendicular to the first substrate can be controlled at least by the through hole of the first flat layer in a direction perpendicular to the first substrate, and the width of the electrode layer in a direction parallel to the first substrate can be controlled at least by the through hole of the first flat layer in a direction parallel to the first substrate, so as to obtain an electrode layer with a high aspect ratio, that is, the radiation pattern and the feed line in the millimeter wave antenna have a high aspect ratio, so that the millimeter wave antenna can radiate effectively; at the same time, the millimeter wave antenna with an extremely narrow line width is applied to electronic equipment, for example, when integrated in a display device, the influence on the display function of the display device can be greatly reduced or even eliminated.
  • S21 forming at least a first planar layer on the first substrate includes:
  • a first planar layer 21 is formed on the first substrate 1 .
  • the material of the first flat layer is not specifically limited here.
  • the material of the first flat layer may include a high temperature stable photoresist (OC), which has a transmittance of more than 90%.
  • the material of the first flat layer may include a highly transparent photoresist or an organic material.
  • the manufacturing process of the first planar layer is not specifically limited here.
  • a transparent photoresist may be deposited on the first substrate through a deposition process to form the first planar layer.
  • the antenna in the related art has a high aspect ratio, its structural stability is poor, especially when the aspect ratio is large.
  • the material of the electrode layer as metal as an example, the contact area between the metal and the bottom surface is limited, the center of gravity is high, and it is easy to collapse or break, and the uniformity of wet etching is poor, resulting in a low yield of the antenna. Therefore, in order to achieve a transparent antenna with a high aspect ratio, it is necessary to reinforce the metal grid lines of the electrode layer.
  • the role of the above-mentioned first flat layer is to improve the uniformity of wet etching and ensure that the electroplated metal can grow in the specified direction. Therefore, the width and thickness of the millimeter wave antenna provided in the embodiment of the present application can be controlled by the first flat layer.
  • the first planar layer 21 is processed so that the first planar layer 21 has a plurality of through holes k1 .
  • an electrode layer 4 is formed in each through hole of the first planar layer 21 .
  • the process of forming the electrode layer in each through hole of the first flat layer is not specifically limited.
  • the electrode layer may be formed in each through hole of the first flat layer by using an electroplating process.
  • an electrode layer is formed in each through hole of the first flat layer, so that the thickness of the electrode layer in a direction perpendicular to the first substrate can be controlled by the thickness of the through hole of the first flat layer in a direction perpendicular to the first substrate, and the width of the electrode layer in a direction parallel to the first substrate can be controlled by the through hole of the first flat layer in a direction parallel to the first substrate, so as to obtain an electrode layer with a high aspect ratio, that is, the radiation pattern and the feed line in the millimeter wave antenna have a high aspect ratio, so that the millimeter wave antenna can radiate effectively; at the same time, the millimeter wave antenna with an extremely narrow line width is applied to electronic equipment, for example, when integrated in a display device, the influence on the display function of the display device can be greatly reduced or even eliminated.
  • S21 forming at least a first planar layer on the first substrate includes:
  • the material of the first buffer layer is not specifically limited here.
  • the material of the first buffer layer may include silicon nitride (SiN), silicon oxide (SiO), silicon oxynitride (SiON), a stack of silicon nitride and silicon oxide (two or more layers of SiN/SiO), etc.
  • the manufacturing process of the first buffer layer is not specifically limited here.
  • the first buffer layer can be manufactured by PECVD (Plasma Enhanced Chemical Vapor Deposition) and deposition process.
  • the first substrate before depositing the material of the first buffer layer on the first substrate, the first substrate can be surface treated with ammonia (NH3).
  • NH3 ammonia
  • the film layers in contact with the first buffer layer can be surface treated with ammonia before depositing the material of the first buffer layer.
  • a mask layer 23 is formed on the first planar layer 21 .
  • the material of the mask layer is not specifically limited here.
  • the material of the mask layer may include metals, such as ITO (Indium Tin Oxides), molybdenum (Mo), molybdenum/aluminum/molybdenum (Mo/Al/Mo), titanium/aluminum/titanium (Ti/Al/Ti), etc.
  • the material of the mask layer may include non-metals, such as organic materials, etc.
  • the manufacturing process of the mask layer is not specifically limited here.
  • the mask layer can be manufactured by a deposition process.
  • the above-mentioned processing of at least two of the first buffer layer, the first flat layer and the mask layer at the same time so that the first buffer layer, the first flat layer and the mask layer all have multiple through holes means: processing the first buffer layer, the first flat layer and the mask layer at the same time so that the first buffer layer, the first flat layer and the mask layer all have multiple through holes; or, in addition to processing the first buffer layer, the first flat layer and the mask layer at the same time, other film layers, such as the mask layer, can also be processed at the same time so that the first buffer layer, the first flat layer and the mask layer all have multiple through holes.
  • an electrode layer is formed at least in each through hole of the first buffer layer and each through hole of the first flat layer, so that the thickness of the electrode layer in a direction perpendicular to the first substrate can be controlled by the thickness of the through holes of the first buffer layer and the first flat layer in a direction perpendicular to the first substrate, and the width of the electrode layer in a direction parallel to the first substrate can be controlled by the through holes of the first buffer layer and the first flat layer in a direction parallel to the first substrate, so as to obtain an electrode layer with a high aspect ratio, that is, the radiation pattern and the feed line in the millimeter wave antenna have a high aspect ratio, so that the millimeter wave antenna can radiate effectively; at the same time, the millimeter wave antenna with an extremely narrow line width is applied to electronic devices, for example, when integrated in a display device, the influence on the display function of the display device can be greatly reduced or even eliminated; and the first buffer layer can improve the adh
  • S312 processing at least two of the first buffer layer, the first planar layer, and the mask layer simultaneously so that the first buffer layer, the first planar layer, and the mask layer all have a plurality of through holes comprises:
  • the mask layer 23, the first planar layer 21 and the first buffer layer 22 are processed in sequence simultaneously, so that the mask layer 23, the first planar layer 21 and the first buffer layer 22 all have a plurality of through holes k2.
  • the above-mentioned process of processing the mask layer, the first flat layer and the first buffer layer simultaneously and sequentially is not specifically limited here.
  • the mask layer, the first flat layer and the first buffer layer can be processed simultaneously and sequentially by dry etching.
  • the mask layer, the first flat layer and the first buffer layer can be etched by the same equipment, and the etching time can be proportional to the thickness of each film layer.
  • the etching time is 30s/110s/80s. The etching time can be adjusted according to different equipment and different thicknesses of each film layer.
  • the etching time of the first buffer layer can be appropriately reduced, and the first buffer layer does not need to be completely etched to prevent the film layer between the first buffer layer and the first substrate from being over-etched, for example If the complete etching time of the first buffer layer is 40s, the etching time may be 30s, as long as the first buffer layer can be etched through, and the remaining unetched first buffer layer material will not affect the subsequent processes.
  • the etching process mentioned above is not specifically limited here.
  • the etching process mentioned above may include Reactive Ion Etching, ICP (Inductively Coupled Plasma Etching, inductively coupled plasma etching), etc.
  • Reactive ion etching is an isotropic etching. As the etching time increases, there will be a certain amount of side etching, so that the grid linear structure presents a trapezoidal shape that is wide at the top and narrow at the bottom, and the slope angle of the trapezoid is about 78°.
  • Inductively coupled plasma etching can etch a rectangular groove that is approximately 90°.
  • Figures 1 to 4 are all drawn with the shape of the through hole being a rectangular groove as an example.
  • forming an electrode layer at least in each through hole of the first buffer layer and each through hole of the first planar layer includes:
  • an electrode layer 4 is formed in each through hole of the mask layer 23 , each through hole of the first planar layer 21 , and each through hole of the first buffer layer 22 .
  • the process of forming the electrode layer in each through hole of the mask layer, each through hole of the first flat layer, and each through hole of the first buffer layer is not specifically limited here.
  • the electrode layer can be formed in each through hole of the mask layer, each through hole of the first flat layer, and each through hole of the first buffer layer by an electroplating process.
  • the above-mentioned mask layer may not be provided, but an additional mask plate may be used to pattern the first planar layer and the first buffer layer.
  • an electrode layer is formed at least in each through hole of the first buffer layer and each through hole of the first flat layer, so that, on the one hand, the thickness of the electrode layer in a direction perpendicular to the first substrate can be controlled by the thickness of the through holes of the first buffer layer and the first flat layer in a direction perpendicular to the first substrate, and the width of the electrode layer in a direction parallel to the first substrate can be controlled by the through holes of the first buffer layer and the first flat layer in a direction parallel to the first substrate, so as to obtain an electrode layer with a high aspect ratio, that is, the radiation pattern and the feed line in the millimeter wave antenna both have a high aspect ratio, so that the millimeter wave antenna can effectively radiate; when the millimeter wave antenna with an extremely narrow line width is applied to electronic devices, for example, when it is integrated in a display device, the influence on the display function of the display device can be greatly reduced or even eliminated; on the other hand
  • the material of the mask layer includes non-metal.
  • the non-metal is not specifically limited here.
  • the non-metal may include organic materials.
  • the materials of the first buffer layer, the first flat layer and the mask layer are all organic materials, they can be etched by the same equipment.
  • the electrode layer when the electrode layer is deposited in the patterned through-holes of the first buffer layer, the first flat layer and the mask layer, the electrode layer can be deposited only in the through-holes and not on the surfaces of the first buffer layer, the first flat layer and the mask layer, thereby forming a patterned structure of the antenna well.
  • S312 processing at least two of the first buffer layer, the first planar layer, and the mask layer simultaneously so that the first buffer layer, the first planar layer, and the mask layer all have a plurality of through holes comprises:
  • the mask layer 23 is processed so that the mask layer 23 has a plurality of through holes k3.
  • the material of the mask layer may include metals, such as ITO (Indium Tin Oxides), molybdenum (Mo), molybdenum/aluminum/molybdenum (Mo/Al/Mo), titanium/aluminum/titanium (Ti/Al/Ti), etc.
  • the metal mask layer is used here as a hard mask.
  • the mask layer can be processed by wet etching.
  • the metal mask layer is used as a hard mask, in order to ensure the line width accuracy of etching and reduce over-etching, it is necessary to refer to FIG. 3g and FIG. 3h, coat the mask layer 23 with photoresist 3, pattern the mask layer 23, and etch away a large area of metal area. At this time, a longer etching time can be used, for example, to completely etch away the metal area. If the mask layer 23 (material is Mo/Al/Mo) needs 90s, the etching time can be 90s or more, and over-etching has no effect.
  • the process of processing the first flat layer and the first buffer layer simultaneously and sequentially is not specifically limited.
  • the first flat layer and the first buffer layer can be processed by dry etching and wet etching.
  • first refer to FIG3i and the first flat layer 21 and the first buffer layer 22 are processed by dry etching.
  • the photoresist 3 is coated in the through holes of the dry-etched first flat layer 21 and the first buffer layer 22.
  • the first flat layer 21 and the first buffer layer 22 are wet-etched using a metal hard mask as a mask. At this time, patterning can be performed first, and the hard mask can be etched away using tetrafluoromethane (CF4).
  • CF4 tetrafluoromethane
  • the gas composition can be changed, and the photoresist of the first flat layer and the first buffer layer can be etched using oxygen (O2). Since O2 cannot etch the hard mask, the etched area of the first flat layer and the first buffer layer is the patterned area of the hard mask. Since the large area of metal is used as a hard mask, the mask layer will not be etched, so the etching time can be minimized, for example, 60s is used for etching to avoid wet etching affecting the line width of the grid linear structure.
  • oxygen oxygen
  • forming an electrode layer at least in each through hole of the first buffer layer and each through hole of the first planar layer includes:
  • the process for removing the mask layer is not specifically limited here.
  • the mask layer can be removed by wet etching. Due to the protection of the photoresist in the first planar layer and the first buffer layer through hole, the first substrate in the through hole and other film layers between the first substrate and the first buffer layer are retained, and the metal hard mask outside the through hole is etched away.
  • an electrode layer 4 is formed in each through hole of the first planar layer 21 and each through hole of the first buffer layer 22 .
  • the process of forming the electrode layer in each through hole of the first planar layer and each through hole of the first buffer layer is not specifically limited here.
  • the electrode layer may be formed by an electroplating process.
  • the thickness of the electrode layer along a direction perpendicular to the first substrate may be defined by the first planarization layer and the second buffer layer.
  • the mask layer is first etched by wet etching, and then the metal hard mask is used as a mask plate to wet-etch the first flat layer and the first buffer layer.
  • the metal hard mask As a mask plate to etch the first flat layer and the first buffer layer, in order to avoid the influence of the metal hard mask on the subsequent electroplating electrode layer, the metal hard mask needs to be etched away before the electroplating electrode layer, and at the same time, the first substrate in the etched through hole and other film layers between the first substrate and the first buffer layer need to be protected, and then the photoresist in the through hole is retained by exposure, and there is no photoresist outside the through hole, so that the electrode layer is well formed in the through hole of the first flat layer and the first buffer layer.
  • S312 processing at least two of the first buffer layer, the first planar layer, and the mask layer simultaneously so that the first buffer layer, the first planar layer, and the mask layer all have a plurality of through holes comprises:
  • the mask layer 23, the first planar layer 21 and the first buffer layer 22 are processed in sequence simultaneously, so that the mask layer 23, the first planar layer 21 and the first buffer layer 22 respectively have a plurality of through holes k5.
  • the process of processing the mask layer, the first planar layer and the first buffer layer simultaneously and sequentially is not specifically limited here.
  • dry etching can be used to process the mask layer, the first planar layer and the first buffer layer simultaneously and sequentially.
  • Metal materials can be dry-etched, but the dry etching of metal materials is different from that of organic materials. It needs to be performed in different chambers and has restrictions on metal materials. For example, molybdenum (Mo) and titanium/aluminum/titanium (Ti/Al/Ti) can be dry-etched. When dry-etching, first enter the metal chamber to etch the metal hard mask, and then enter the organic chamber to etch the first flat layer and the first buffer layer.
  • Mo molybdenum
  • Ti/Al/Ti titanium/aluminum/titanium
  • forming an electrode layer at least in each through hole of the first buffer layer and each through hole of the first planar layer includes:
  • the process for removing the mask layer is not specifically limited here.
  • the mask layer can be removed by wet etching. Due to the protection of the photoresist in the first planar layer and the first buffer layer through hole, the first substrate in the through hole and other film layers between the first substrate and the first buffer layer are retained, and the metal hard mask outside the through hole is etched away.
  • an electrode layer 4 is formed in each through hole of the first planar layer 21 and each through hole of the first buffer layer 22 .
  • the process of forming the electrode layer in each through hole of the first planar layer and each through hole of the first buffer layer is not specifically limited here.
  • the electrode layer may be formed by an electroplating process.
  • the thickness of the electrode layer along a direction perpendicular to the first substrate may be defined by the first planarization layer and the second buffer layer.
  • the mask layer, the first flat layer and the first buffer layer are etched simultaneously by dry etching, and then the first flat layer and the first buffer layer are wet etched by using a metal hard mask as a mask.
  • the metal hard mask In order to avoid the influence of the metal hard mask on the subsequent electroplating electrode layer, the metal hard mask needs to be etched away before the electroplating electrode layer, and at the same time, the first substrate in the etched through hole and other film layers between the first substrate and the first buffer layer need to be protected, and then the photoresist in the through hole is retained by exposure, and there is no photoresist outside the through hole, so that the electrode layer is well formed in the through hole of the first flat layer and the first buffer layer.
  • the material of the mask layer includes metal.
  • the above-mentioned metals are not specifically limited here.
  • the above-mentioned metals may include ITO, molybdenum (Mo), molybdenum/aluminum/molybdenum (Mo/Al/Mo), titanium/aluminum/titanium (Ti/Al/Ti), etc.
  • the manufacturing process of the mask layer is not specifically limited here.
  • the metal mask layer may be patterned by dry etching; or, the metal mask layer may be patterned by wet etching.
  • the first flat layer and the first buffer layer are patterned by using a metal hard mask as a mask plate, wherein the metal hard mask needs to be removed before the electrode layer is electroplated, thereby avoiding the metal hard mask from affecting the subsequent electroplating of the electrode layer.
  • the manufacturing method further includes:
  • a surface seed layer 6 is formed on the first substrate 1 .
  • the material of the surface seed layer is not specifically limited here.
  • the material of the surface seed layer may include metals or metal alloys or metal oxides such as copper (Cu), silver (Ag), molybdenum copper alloy (Mo/Cu), indium tin oxide and silver alloy (ITO/Ag), etc., as long as electroplating can be performed.
  • the material of the surface seed layer may be copper or silver.
  • the manufacturing process of the surface seed layer is not specifically limited here, and for example, the surface seed layer can be formed by sputtering. It should be noted that the surface seed layer may not be provided, in which case the manufacturing process of the electrode layer needs to be changed.
  • the method for manufacturing the millimeter wave antenna provided in the embodiment of the present application, by forming a surface seed layer before forming a limiting layer, it is beneficial to the subsequent manufacturing of the limiting layer, especially to the later electroplating of a thicker electrode layer metal.
  • the manufacturing method further comprises:
  • a second planar layer 7 is formed on the electrode layer 4 .
  • the material of the second planar layer is not specifically limited here.
  • the material of the second planar layer may include high temperature stable photoresist (OC).
  • a second flat layer is formed on the electrode layer to achieve a leveling effect. Due to the unevenness of the metal of the electroplated electrode layer, some through holes are not filled, and the metal surface morphology of the electrode layer after electroplating is uneven, so a second flat layer is required for further flattening to prevent the metal surface morphology of the electrode layer from affecting the transmittance.
  • the manufacturing method further includes:
  • a second substrate 8 is formed on the second planar layer 7 .
  • the material of the second substrate is not specifically limited here.
  • the material of the second substrate may include a rigid material, such as glass, COP, PET, etc.; or, the material of the second substrate may include a flexible material, such as PI, TAC (triacetate film), TPU (polyurethane elastomer), etc.
  • a second substrate is formed on the second flat layer, that is, a film is coated on the second flat layer, and the second substrate acts as a carrier.
  • the manufacturing method further includes:
  • a release layer 5 is formed on the first substrate 1 .
  • the material of the peeling layer is not specifically limited here.
  • the material of the peeling layer may include a material with high temperature stability, such as: a material based on ethylene glycol monobutyl ether, etc.; or, the material of the peeling layer may include a polymer material with high temperature stability (greater than 230°C), such as: polyurethane, polyacrylic material, etc.
  • the manufacturing process of the peeling layer is not specifically limited here.
  • the peeling layer can be formed by a coating process.
  • the manufacturing method further includes:
  • the process of removing the peeling layer and the first substrate is not specifically limited here.
  • the peeling layer and the first substrate may be removed by mechanical or laser sintering.
  • the peeling layer can be easily removed from the first substrate and is easy to separate.
  • first substrate may not be removed, in which case there is no need to provide a peeling layer between the first substrate and other film layers.
  • a first protective layer may be formed on a side of the first substrate away from other film layers.
  • the manufacturing method further includes:
  • the process for removing the surface seed layer is not specifically limited here.
  • the surface seed layer may be removed by an etching process.
  • the manufacturing method further includes:
  • a second protective layer 9 is formed on a second substrate 8 .
  • the second protective layer can be used to protect the highly transparent, high aspect ratio, narrow line width transparent antenna.
  • an adhesive layer (not shown in Figures 1 to 4) needs to be added between the first flat layer, the second flat layer, the second substrate and other layers to ensure that the above-mentioned film layers can be firmly adhered.
  • the material of the above-mentioned adhesive layer is not specifically limited here.
  • the material of the adhesive layer can include highly transparent glue, such as OCA (Optically Clear Adhesive), PMMA (Polymethyl Methacrylate), PSA (Pressure Sensitive Adhesive), etc.
  • the film layer that is finally retained needs to be a transparent film layer, and there is no limitation on wet transparency of other film layers, so that the millimeter wave antenna can be better applied to the display area of electronic devices, minimizing or even eliminating the impact on the display effect of electronic devices.
  • a first method for manufacturing a millimeter wave antenna is provided below.
  • ethylene glycol monobutyl ether is coated on the first substrate 1 to form a peeling layer 5 .
  • a transparent photoresist is deposited on the surface seed layer 6 to form a first planar layer 21 , and a photoresist 3 is coated on the first planar layer 21 .
  • a PI film is coated on the second planar layer 7 to form a second substrate 8 .
  • a second protective layer 9 is formed on the second substrate 8 .
  • the surface seed layer 6 is etched away to obtain a millimeter wave antenna.
  • the millimeter wave antenna may also include a first flat layer, an electrode layer, a second flat layer; or, the millimeter wave antenna may also include a first flat layer, an electrode layer, a second flat layer and a second substrate, which is not specifically limited here.
  • a second method for manufacturing a millimeter wave antenna is provided below.
  • ethylene glycol monobutyl ether is coated on the first substrate 1 to form a peeling layer 5 .
  • PECVD silicon nitride is formed on the surface seed layer 6 to form a first buffer layer 22 .
  • Figure 5 below is a diagram of the antenna structure without the first buffer layer, in which the dotted line is a through hole
  • Figure 6 is a diagram of the antenna structure with the first buffer layer.
  • the function of the first buffer layer is to protect the metal at the bottom to prevent it from being etched by oxygen. If there is no first buffer layer of silicon nitride, regardless of whether the material of the surface seed layer is copper or silver, it will be oxidized to varying degrees. As shown by the dotted line in Figure 5, after the copper seed layer is oxidized, the surface becomes loose and porous, the interface adhesion decreases, and it is easy to fall off in subsequent processes. Although the silver seed layer will not form the loose and porous structure shown by the dotted line in Figure 5, the local silver will be non-conductive due to severe oxidation.
  • a transparent photoresist is deposited on the first buffer layer 22 to form a first planarization layer 21 .
  • the mask layer 23 is dry-etched using CF4 ; then the first planar layer 21 and the first buffer layer 22 are dry-etched using O2 to form a through hole k2 on the mask layer 23 , the first planar layer 21 and the first buffer layer 22 .
  • FIG. 7 is a diagram of the antenna structure formed in the above step S0039
  • FIG. 8 is a schematic diagram of the metal grid structure.
  • the electrode layer 4 is leveled to form a second flat layer 7 on the electrode layer 4 .
  • a PI film is coated on the second planar layer 7 to form a second substrate 8 .
  • a second protective layer 9 is formed on the second substrate 8 .
  • the surface seed layer 6 is etched away to obtain a millimeter wave antenna.
  • the millimeter wave antenna may also include a first buffer layer, a first flat layer, a mask layer, an electrode layer, a second flat layer; or, the millimeter wave antenna may also include a first buffer layer, a first flat layer, a mask layer, an electrode layer, a second flat layer and a second substrate, which is not specifically limited here.
  • a third method for manufacturing a millimeter wave antenna is provided below.
  • ethylene glycol monobutyl ether is coated on the first substrate 1 to form a peeling layer 5 .
  • metal is deposited on the peeling layer 5 to form a surface seed layer 6 .
  • PECVD silicon nitride is formed on the surface seed layer 6 to form a first buffer layer 22 .
  • a transparent photoresist is deposited on the first buffer layer 22 to form a first planarization layer 21 .
  • metal is deposited on the first planar layer 21 to form a mask layer 23 .
  • FIG. 9 is a structural diagram of the antenna formed in step S0058 .
  • the electrode layer 4 is leveled to form a second flat layer 7 on the electrode layer 4 .
  • a PI film is coated on the second planar layer 7 to form a second substrate 8 .
  • a second protective layer 9 is formed on the second substrate 8 .
  • the surface seed layer 6 is etched away to obtain a millimeter wave antenna.
  • the millimeter wave antenna may also include a first buffer layer, a first flat layer, an electrode layer, a second flat layer; or, the millimeter wave antenna may also include a first buffer layer, a first flat layer, an electrode layer, a second flat layer and a second substrate, which is not limited here.
  • a fourth method for manufacturing a millimeter wave antenna is provided below.
  • ethylene glycol monobutyl ether is coated on the first substrate 1 to form a peeling layer 5 .
  • metal is deposited on the peeling layer 5 to form a surface seed layer 6 .
  • PECVD silicon nitride is formed on the surface seed layer 6 to form a first buffer layer 22 .
  • a transparent photoresist is deposited on the first buffer layer 22 to form a first planarization layer 21 .
  • metal is deposited on the first planar layer 21 to form a mask layer 23 .
  • the electrode layer 4 is leveled to form a second flat layer 7 on the electrode layer 4 .
  • a PI film is coated on the second planar layer 7 to form a second substrate 8 .
  • a second protective layer 9 is formed on the second substrate 8 .
  • a second protective layer 9 is formed on the second substrate 8 .
  • the surface seed layer 6 is etched away to obtain a millimeter wave antenna.
  • the millimeter wave antenna may also include a first buffer layer, a first flat layer, an electrode layer, a second flat layer; or, the millimeter wave antenna may also include a first buffer layer, a first flat layer, an electrode layer, a second flat layer and a second substrate, which is not limited here.
  • the embodiment of the present application further provides a millimeter wave antenna manufactured by the manufacturing method of the above-mentioned millimeter wave antenna, as shown in FIG10 , including:
  • a first substrate 1 A first substrate 1 .
  • the first substrate can be a rigid substrate, and the material of the rigid substrate can include glass, PC (Polycarbonate), COP (Copolymers of Cycloolefin), PMMA (Polymethyl Methacrylate), PET (Polyethylene Terephthalate), etc.
  • the first substrate can be a flexible substrate, and the material of the flexible substrate can include PI (Polyimide), PEN (Polyethylene Naphthalate Two Formic Acid Glycol Ester), etc.
  • first substrate There is no specific limitation on the structure of the first substrate.
  • other film layers may be directly formed on the first substrate; or, the first substrate may include a substrate, and other film layers may be directly formed on the substrate, which depends on actual application.
  • the limiting layer 2 is disposed on the first substrate 1 , and the limiting layer 2 has a plurality of through holes.
  • the limiting layer may include only one layer, for example, the limiting layer shown in FIG1 includes a first flat layer 21; or, the limiting layer may include multiple layers, for example, the limiting layer shown in FIG2 includes a first buffer layer 22, a first flat layer 21 and a mask layer 23 stacked in sequence.
  • the limiting layer may also include other film layers, which shall be subject to actual application.
  • the electrode layer 4 is arranged in each through hole of the defining layer 2; the electrode layer 4 includes a radiation pattern and a feed line, and both the radiation pattern and the feed line include a grid line structure.
  • the material of the electrode layer is not specifically limited here.
  • the material of the electrode layer can be a metal material, such as copper, titanium, magnesium, etc.; or, it can also be a glass fiber with a metal coating; or, it can also be a resin with a conductive carbon material coated on the surface, wherein the conductive carbon material includes graphene, carbon fiber, and carbon nanotubes.
  • the number of the above feed lines is not specifically limited, and the specific number can be determined according to the type of the millimeter wave antenna, the specific situation, etc. For example, when the type of the millimeter wave antenna is a dual-polarized antenna, the number of feed lines is two; or, when the type of the millimeter wave antenna is a non-dual-polarized antenna, the number of feed lines can be one. Of course, the number of feed lines can also be three or more, which is subject to the actual application.
  • the above-mentioned radiation pattern and feeder both include a grid line structure, and the grid line structure may be a metal grid structure as shown in FIG12.
  • the line width of the metal grid lines of the radiation pattern and the feeder is not specifically limited here.
  • the line width of the grid lines of the radiation pattern and the feeder may both be in the range of 0.5-2 ⁇ m, specifically 0.5 ⁇ m, 0.8 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 1.7 ⁇ m or 2 ⁇ m, etc.
  • the thickness of the above-mentioned grid linear structure can be controlled by the thickness of the limiting layer.
  • the thickness range of the above-mentioned grid linear structure is now explained as metal, assuming that the material of the electrode layer is metal: Taking into account the unevenness of electroplating, for example, the thickness of the electroplated metal can be 80-90% of the thickness of the limiting layer. This is because a thinner metal will affect the radiation efficiency; while a thicker metal will seriously affect the transmittance.
  • the ratio of the thickness of the above-mentioned grid linear structure in the direction perpendicular to the first substrate to the line width of the grid linear structure can be greater than or equal to 2, for example, the depth-to-width ratio of the grid linear structure can be 2, 3, 4, 5, 6 or 7, etc.
  • the spacing between adjacent grid lines in the above grid linear structure may be in the range of 20-250 ⁇ m, preferably 50-200 ⁇ m, specifically 50 ⁇ m, 100 ⁇ m or 200 ⁇ m, etc.
  • the transmittance of the above-mentioned grid linear structure can be greater than 80%, for example, the transmittance range is 86-92%, specifically 86%, 87%, 88%, 89%, 90%, 91% or 92%, etc.
  • the line width of the grid lines of the radiation pattern can be set smaller than the spacing between adjacent grid lines of the radiation pattern, and the thickness of the radiation pattern in a direction perpendicular to the first substrate can be set larger than the line width of the grid lines of the radiation pattern.
  • the line width of the grid lines of the feed line can be set smaller than the spacing between adjacent grid lines of the radiation pattern, and the thickness of the feed line in a direction perpendicular to the first substrate can be set larger than the line width of the grid lines of the radiation pattern.
  • both the radiation pattern and the feed line as a grid linear structure and combining it with a translucent first substrate, etc.
  • an electrode layer with good light transmittance can be obtained;
  • an electrode layer with a high aspect ratio can be obtained to ensure the radiation of the antenna, and the light transmittance of the electrode layer can be further improved without affecting the electrical properties of each radiation pattern, thereby improving the light transmittance of the millimeter wave antenna and allowing it to be better applied to the display area of electronic equipment.
  • the specific line widths of the grid lines of the radiation pattern and the feed line, the specific spacing between adjacent grid lines, and their specific thicknesses in a direction perpendicular to the first substrate may be the same or different.
  • the millimeter wave antenna provided in the embodiment of the present application includes a first substrate; a defining layer is arranged on the first substrate, and the defining layer has a plurality of through holes; an electrode layer is arranged in each through hole of the defining layer; the electrode layer includes a radiation pattern and a feed line, and the radiation pattern and the feed line both include a grid linear structure.
  • the thickness of the electrode layer in the direction perpendicular to the first substrate can be controlled by the thickness of the through hole of the defining layer in the direction perpendicular to the first substrate, and the width of the electrode layer in the direction parallel to the first substrate can be controlled by the through hole of the defining layer in the direction parallel to the first substrate, so as to obtain an electrode layer with a high aspect ratio, that is, the radiation pattern and the feed line in the millimeter wave antenna have a high aspect ratio, so that the millimeter wave antenna can effectively radiate; at the same time, the millimeter wave antenna with an extremely narrow line width is applied to electronic devices, for example, when integrated in a display device, the impact on the display function of the display device can be greatly reduced or even eliminated; on the other hand, the radiation pattern and the feed line are both grid linear structures, which can effectively improve the transmittance of the electrode layer, so that the millimeter wave antenna as a whole has a transparent
  • the defining layer includes at least a first planar layer; the first planar layer has a plurality of through holes, and the electrode layer is at least arranged in each through hole of the first planar layer.
  • the material of the first flat layer is not specifically limited here.
  • the material of the first flat layer may include a high temperature stable photoresist (OC), which has a transmittance of more than 90%.
  • the material of the first flat layer may include a highly transparent photoresist or an organic material.
  • the antenna in the related art has a high aspect ratio, its structural stability is poor, especially when the aspect ratio is large.
  • the material of the electrode layer as metal as an example, the contact area between the metal and the bottom surface is limited, the center of gravity is high, and it is easy to collapse or break, and the uniformity of wet etching is poor, resulting in a low yield of the antenna. Therefore, in order to achieve a transparent antenna with a high aspect ratio, it is necessary to reinforce the metal grid lines of the electrode layer.
  • the role of the above-mentioned first flat layer is to improve the uniformity of wet etching and ensure that the electroplated metal can grow in the specified direction. Therefore, the width and thickness of the millimeter wave antenna provided in the embodiment of the present application can be controlled by the first flat layer.
  • the limiting layer includes a first flat layer; the first flat layer has a plurality of through holes, and the electrode layer is disposed in each through hole of the first flat layer.
  • the width and thickness of the millimeter wave antenna provided in the embodiment of the present application can be controlled only by the first flat layer, which is simple and easy to implement.
  • the limiting layer also includes a first buffer layer and a mask layer, the first buffer layer is arranged between the first substrate and the first flat layer, and the mask layer is arranged on the side of the first flat layer away from the first substrate; the first buffer layer, the first flat layer and the mask layer all have multiple through holes, and the electrode layer is arranged in each through hole of the mask layer, each through hole of the first flat layer and each through hole of the first buffer layer.
  • the material of the first buffer layer is not specifically limited here.
  • the material of the first buffer layer may include silicon nitride (SiN), silicon oxide (SiO), silicon oxynitride (SiON), a stack of silicon nitride and silicon oxide (two or more layers of SiN/SiO), etc.
  • the material of the mask layer is not specifically limited here.
  • the material of the mask layer may include metals, such as ITO (Indium Tin Oxides), molybdenum (Mo), molybdenum/aluminum/molybdenum (Mo/Al/Mo), titanium/aluminum/titanium (Ti/Al/Ti), etc.
  • the material of the mask layer may include non-metals, such as organic materials, etc.
  • the millimeter wave antenna provided in the embodiment of the present application is configured to obtain an electrode layer with a high aspect ratio by arranging the electrode layer in each through hole of the mask layer, each through hole of the first flat layer and each through hole of the first buffer layer, so that the thickness of the electrode layer in a direction perpendicular to the first substrate can be controlled by the thickness of the first buffer layer, the first flat layer and the through holes of the mask layer in a direction perpendicular to the first substrate, and the width of the electrode layer in a direction parallel to the first substrate can be controlled by the width of the through holes of the first buffer layer and the first flat layer in a direction parallel to the first substrate, so that the electrode layer has a high aspect ratio, that is, the radiation pattern and the feed line in the millimeter wave antenna have a high aspect ratio, so that the millimeter wave antenna can radiate effectively; at the same time, the millimeter wave antenna with an extremely narrow line width is applied to electronic devices, for example, when integrated in a display device, the influence on the display function of the
  • the defining layer further includes a first buffer layer, which is disposed between the first substrate and the first planar layer; the first buffer layer and the first planar layer both have a plurality of through holes, and the electrode layer is disposed in each through hole of the first planar layer and each through hole of the first buffer layer.
  • the thickness of the electrode layer in a direction perpendicular to the first substrate can be controlled by the thickness of the through holes of the first buffer layer and the first flat layer in a direction perpendicular to the first substrate, and the width of the electrode layer in a direction parallel to the first substrate can be controlled by the width of the through holes of the first buffer layer and the first flat layer in a direction parallel to the first substrate, so as to obtain an electrode layer with a high aspect ratio, that is, the radiation pattern and the feed line in the millimeter wave antenna both have a high aspect ratio, so that the millimeter wave antenna can effectively radiate; when the millimeter wave antenna with an extremely narrow line width is applied to electronic devices, for example, when integrated in a display device, the influence on the display function of the display device can be greatly reduced or even eliminated; on the other hand, the first
  • the millimeter wave antenna further includes a first protective layer 10 disposed on the side of the first substrate 1 away from the limiting layer 2, and an encapsulation layer 12, an adhesive layer 11, a second substrate 8, and a second protective layer 9 disposed on the side of the limiting layer 2 away from the first substrate 1.
  • the encapsulation layer 12 is disposed between the limiting layer 2 and the adhesive layer 11, the adhesive layer 11 is disposed between the encapsulation layer 12 and the second substrate 8, and the second substrate 8 is disposed between the adhesive layer 11 and the second protective layer 9.
  • the first substrate 1 and the first protective layer 10 may also be removed.
  • the millimeter wave antenna shown in Figure 10 can be directly set in the display device, which also includes a display substrate.
  • the millimeter wave antenna shown in Figure 10 is located on the light-emitting side of the display substrate, and the electrode layer 4 is arranged close to the display substrate. At this time, the millimeter wave antenna is upright, and the distance between the electrode layer 4 and the display substrate is close, which may affect the electromagnetic waves radiated by the millimeter wave antenna.
  • the millimeter wave antenna shown in FIG10 can be rotated into the millimeter wave antenna shown in FIG11.
  • the millimeter wave antenna shown in FIG11 is located on the light-emitting side of the display substrate, and the electrode layer 4 is arranged away from the display substrate. In this case, the millimeter wave antenna is flipped. Since the distance between the electrode layer 4 and the display substrate is relatively far, the influence on the electromagnetic waves radiated by the millimeter wave antenna is very small.
  • An embodiment of the present application further provides an electronic device, comprising the above-mentioned millimeter wave antenna.
  • the above-mentioned electronic device is applicable to various circuit scenarios based on rigid substrates and flexible substrates, and is not specifically limited here.
  • the thickness of the electrode layer in the direction perpendicular to the first substrate can be controlled by the thickness of the through hole of the defining layer in the direction perpendicular to the first substrate, and the width of the electrode layer in the direction parallel to the first substrate can be controlled by the through hole of the defining layer in the direction parallel to the first substrate, so as to obtain an electrode layer with a high aspect ratio, that is, the radiation pattern and the feed line in the millimeter wave antenna have a high aspect ratio, so that the millimeter wave antenna can effectively radiate; at the same time, the millimeter wave antenna with an extremely narrow line width is applied to electronic devices, for example, when integrated in a display device, the influence on the display function of the display device can be greatly reduced or even eliminated; on the other hand, the radiation pattern and the feed line are both grid linear structures, which can effectively improve the transmittance of the electrode layer, so that the millimeter wave antenna
  • the electronic device includes a display device
  • the display device includes a display panel 20
  • the display panel 20 includes a display substrate 201 and the above-mentioned millimeter wave antenna TX
  • the millimeter wave antenna TX is arranged on the light emitting side of the display substrate 201 .
  • the above-mentioned display substrate may include an LCD (Liquid Crystal Display), or may include an OLED (Organic Light-Emitting Diode) display substrate, without specific limitation here.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • the millimeter wave antenna is arranged on the light-emitting side of the display substrate. Since the millimeter wave antenna is transparent, it will not affect the display of the display substrate.
  • the millimeter wave antenna has a high aspect ratio, so that the millimeter wave antenna can radiate effectively; at the same time, the millimeter wave antenna with an extremely narrow line width is applied to the light-emitting side of the display device, which can greatly reduce or even eliminate the impact on the display function of the display device.
  • the display panel 20 further includes a touch layer 202 , and the touch layer 202 is disposed between the display substrate 201 and the millimeter wave antenna TX.
  • the touch layer 202 is disposed on a side of the millimeter wave antenna TX away from the display substrate 201 .
  • the structure of the touch layer is not limited.
  • the touch layer can adopt a mutual capacitance touch structure or a self capacitance touch structure.
  • the mutual capacitance touch structure or the self capacitance touch structure can be obtained according to relevant technologies and will not be described in detail here.
  • the structure of the touch layer can include an FMLOC (Flexible Multi-Layer On Cell) touch structure, which can reduce the thickness of the screen and facilitate folding; at the same time, there is no fitting tolerance, which can reduce the frame width.
  • FMLOC Flexible Multi-Layer On Cell
  • the FMLOC structure can be obtained according to relevant technologies and will not be described in detail here.
  • the touch layer does not affect the normal operation of the antenna and can also realize the touch function.
  • the display panel 20 also includes a first polarization unit 203 and a cover plate 204; the first polarization unit 203 is arranged on the side of the millimeter wave antenna TX away from the display substrate 201; the cover plate 204 is arranged on the side of the first polarization unit 203 away from the display substrate 201.
  • the material and type of the first polarizing unit are not specifically limited here.
  • the material of the first polarizing unit may include PVA (polyvinyl alcohol) and PVC (polyvinyl chloride).
  • the type of the first polarizing unit may include a linear polarizer and a grating.
  • the material and structure of the cover plate are not specifically limited here.
  • the material of the cover plate may include glass.
  • the cover plate may include one layer; or, it may include multiple layers.
  • the electronic device provided in the embodiment of the present application has the first polarization unit, so that the polarization direction of the light can be changed to achieve better display.
  • the electronic device has the cover plate, which can protect the screen and prevent the screen from being scratched.
  • the display panel 20 further includes a first adhesive layer 202 between the touch layer 202 and the millimeter wave antenna TX, and a second adhesive layer 206 between the first polarizing unit 203 and the cover plate 204, so as to achieve a better bonding effect between two adjacent layers.
  • the materials of the first adhesive layer and the second adhesive layer are not specifically limited here.
  • the materials of the first adhesive layer and the second adhesive layer can both include highly transparent glue, such as OCA (Optically Clear Adhesive).
  • the first polarizing unit may also serve as a cover plate.
  • the display substrate 201 is an LCD, which may include a backlight source 31, a first glass substrate 32, a liquid crystal layer 33 and a second glass substrate 34 stacked in sequence, forming an antenna structure on the LCD screen, and the LCD may be a reflective LCD.
  • the display substrate 201 may include a metal heat dissipation film layer 35 , a first glass substrate 32 , an OLED 36 , and a second glass substrate 34 stacked in sequence, thereby forming a rigid OLED on-screen antenna structure.
  • the display substrate 201 may include a flexible substrate 37 and an OLED 36 stacked in sequence, and the OLED 36 is bonded to the touch layer 202 via a third bonding layer 207, thereby forming an antenna structure on a flexible OLED (external touch) screen.
  • the display substrate 201 may include a flexible substrate 37 and an OLED 38 with an integrated touch function stacked in sequence, thereby forming an antenna structure on a flexible OLED (with integrated touch function) screen.
  • an antenna structure on an OLED (external touch) screen is described in detail below.
  • a second polarizer 84 a first glass substrate 85, a gate electrode 62, a gate insulating layer 63, an active layer 64, a source and drain layer 65, a first planarization layer 66, a first ITO layer 86, a first alignment film 87, a liquid crystal 88 and a spacer 93, a second alignment film 89, a second ITO layer 90, a color filter layer 91 and a black matrix 92, a second glass substrate 93, a TSP touch layer 75, a first OCA layer 78, a transparent millimeter wave antenna layer 79, a polarizer 80, a second OCA layer 81 and a glass cover plate 82 are sequentially stacked on the backlight module 83.
  • the display device also includes a first controller 41 and a second controller 42, the first controller 41 is electrically connected to the display substrate 201 and is configured to control the display substrate 201; the second controller 42 is electrically connected to the millimeter wave antenna TX and is configured to control the millimeter wave antenna TX.
  • the first controller and the second controller may both include chips, such as FPC (Flexible Printed Circuit), PCB (Printed Circuit Boards), etc.
  • FPC Flexible Printed Circuit
  • PCB Printed Circuit Boards
  • first controller is electrically connected to the display substrate.
  • first controller and the display substrate may be directly electrically connected; or, the first controller and the display substrate may be electrically connected via other structures.
  • the second controller and the millimeter wave antenna are electrically connected.
  • the second controller and the millimeter wave antenna may be directly electrically connected; or, the second controller and the millimeter wave antenna may be electrically connected via other structures.
  • the first controller and the second controller can respectively control the operation of the display substrate and the millimeter wave antenna, so that the RF chip and the connecting board of the antenna can be used separately without being integrated with the display chip (process incompatibility), which is simple and easy to implement.
  • the display panel includes a display area AA and a border area BB connected to the display area, and the millimeter wave antenna TX and the display substrate 201 are both located in the display area AA and the border area BB; the first controller 41 is bound to the display substrate 201 located in the border area BB; the millimeter wave antenna TX also extends along the border area BB of the display panel in a direction away from the display area AA, and the part of the millimeter wave antenna TX extending out of the display panel includes a bending area CC and a non-bending area DD, and the bending area CC is located between the non-bending area DD and the border area BB of the display panel; the second controller 42 is located in the non-bending area DD and is bound to the millimeter wave antenna TX located in the non-bending area DD.
  • the above-mentioned display area refers to the area used to realize display, and the border area is generally used to set driving wiring and driving circuits, such as: GOA (Gate Driver on Array, array substrate row drive) driving circuit or for setting up an on-screen camera, earpiece or speaker, etc.
  • GOA Gate Driver on Array, array substrate row drive
  • first controller is bound to the display substrate in the border area.
  • first controller and the display substrate in the border area may be bound directly; or, the first controller and the display substrate in the border area may be bound through other structures.
  • the bending area refers to an area where the display device can be bent.
  • the transparent millimeter wave antenna is located on the light-emitting side of the display, the normal operation of the antenna requires a transmission line for feeding, so the transmission line must be bent.
  • the display and touch-related circuits are all made on the PI substrate, which can be easily bent to the back side of the display panel.
  • the transparent millimeter wave antenna provided in the embodiment of the present application is located on a different layer from the display substrate and the touch layer, so the transparent millimeter wave antenna needs to be bent separately.
  • the millimeter wave antenna adopts a flexible substrate, such as a substrate made of PI-type high-strength, high-flexibility, and high-transparency material, which can be bent at a small angle.
  • the manufacturing area of the millimeter wave antenna is much larger than the display area AA.
  • the grid linear structure gradually changes to a solid structure. Transparency is not required outside the display area AA. In this way, the transition from the antenna radiation area to the transmission area is completed, and binding can be performed outside the bending area to connect the transmission line to the second controller 42.
  • the millimeter wave antenna located in the display area AA is a highly transparent grid linear structure
  • the millimeter wave antenna in the border area BB is not limited, for example, it can be a grid linear structure or a solid structure.
  • the display device further includes a ground layer 44 , which is disposed on a side of the portion of the millimeter wave antenna extending out of the display panel close to the first substrate, and the ground layer is located in the non-bending area and the bending area.
  • the electrode layer 4 in the millimeter wave antenna TX is also arranged on the second controller 42 and on the side of the millimeter wave antenna TX extending out of the display panel away from the ground layer 4, and is located in the bending zone CC and the non-bending zone DD; the electrode layer 4 is configured to be able to be bent in the bending zone CC together with the ground layer 44.
  • the material of the grounding layer is not specifically limited here.
  • the material of the grounding layer can be metal.
  • the millimeter wave antenna gradually changes from a grid line structure to a solid structure, thus completing the transition from the antenna radiation area to the transmission area, and binding can be performed outside the bending area to connect the transmission line to the second controller.
  • grounding can also be achieved through a grounding layer.
  • the display panel includes a display area AA and a border area BB connected to the display area AA, the millimeter wave antenna TX and the display substrate 201 are both located in the display area AA and the border area BB; the first controller 41 is bound to the display substrate 201 located in the border area BB; the second controller 42 is partially located in the border area BB and is bound to the millimeter wave antenna TX located in the border area BB.
  • first controller is bound to the display substrate in the border area.
  • first controller and the display substrate in the border area may be bound directly; or, the first controller and the display substrate in the border area may be bound through other structures.
  • the above-mentioned second controller and the millimeter-wave antenna located in the border area there is no specific limitation here on the way of binding the above-mentioned second controller and the millimeter-wave antenna located in the border area.
  • the above-mentioned second controller and the millimeter-wave antenna located in the border area can be directly bound; or, the above-mentioned second controller and the millimeter-wave antenna located in the border area can be bound through other structures.
  • the millimeter wave antenna uses a rigid substrate, such as a substrate made of a COP-type brittle and difficult-to-bend material, which cannot be bent. In this case, no bending area is set when the millimeter wave antenna is manufactured. As shown in FIG23, the manufacturing area of the millimeter wave antenna is substantially the same size as the display area AA, and the grid linear structure gradually changes to a solid structure in the border area BB as a reserved binding pad.
  • the second controller 42 used for the transmission line is manufactured separately, and the second controller 42 is bound to the pad of the millimeter wave antenna in the binding area to complete the transition from the antenna area to the transmission line area.
  • the remaining portion of the second controller 42 extends along the border area BB of the display panel in a direction away from the display area AA and includes a bending area CC and a non-bending area DD, and the bending area CC is located between the non-bending area DD and the border area BB of the display panel.
  • the display device further includes a ground layer 44 , which is disposed on a side of the second controller 42 close to the first substrate and has a gap with the frame area BB.
  • the ground layer 44 is located in the non-bending area DD and a partial bending area CC.
  • the electrode layer 4 in the millimeter wave antenna TX is also arranged on the side of the second controller 42 away from the ground layer 44, and is located in the bending zone CC and the non-bending zone DD.
  • the electrode layer 4 in the millimeter wave antenna TX is configured to be able to be bent in the bending zone CC together with the rest of the second controller 42 and the ground layer 44.
  • the material of the grounding layer is not specifically limited here.
  • the material of the grounding layer can be metal.
  • the millimeter wave antenna gradually changes from a grid line structure to a solid structure, thereby completing the transition from the antenna radiation area to the transmission area.
  • Binding can be performed in the frame area BB to connect the transmission line to the second controller.
  • grounding can also be achieved through a grounding layer.
  • An embodiment of the present application further provides a driving method for the above electronic device.
  • the driving method includes:
  • a first controller controls a display substrate to perform display.
  • the second controller controls the millimeter wave antenna to radiate.
  • the driving method of the electronic device provided in the embodiment of the present application can respectively control the operation of the display substrate and the millimeter wave antenna, so that the RF chip and the connecting board of the antenna can be used separately without being integrated with the display chip (process incompatibility), which is simple and easy to implement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请提供了一种毫米波天线及其制作方法、电子设备及其驱动方法,涉及显示技术领域,该毫米波天线的制作方法包括:提供第一基板;在所述第一基板上形成限定层;对所述限定层进行处理,以使得所述限定层具有多个通孔;在所述限定层的各所述通孔内形成电极层;其中,所述电极层包括辐射图案和馈线,所述辐射图案和所述馈线均包括网格线状结构。本申请提供的毫米波天线的制作方法通过限定层控制毫米波天线的深宽比,从而可以得到高深宽比的毫米波天线。

Description

毫米波天线及其制作方法、电子设备及其驱动方法 技术领域
本申请涉及显示技术领域,尤其涉及一种毫米波天线及其制作方法、电子设备及其驱动方法。
背景技术
随着科技的发展,AoD(Antenna On Display,屏上天线)技术应运而生。AoD技术是将天线设置到电子设备的显示区域,以通过牺牲部分损耗来增加天线的覆盖范围,从而实现更好的辐射。
但是,由于AoD技术中的天线位于屏幕的显示区域,如何在保证天线辐射性能的同时,还不影响电子设备的显示就显得至关重要。
因此,亟需提供一种电子设备,以满足上述性能。
发明内容
本申请的实施例采用如下技术方案:
一方面,本申请的实施例提供了一种毫米波天线的制作方法,包括:
提供第一基板;
在所述第一基板上形成限定层;
对所述限定层进行处理,以使得所述限定层具有多个通孔;
在所述限定层的各所述通孔内形成电极层;其中,所述电极层包括辐射图案和馈线,所述辐射图案和所述馈线均包括网格线状结构。
可选地,所述在所述第一基板上形成限定层包括:
在所述第一基板上至少形成第一平坦层;
所述对所述限定层进行处理,以使得所述限定层具有多个通孔包括:
至少对所述第一平坦层进行处理,以使得所述第一平坦层具有多个通孔;
所述在所述限定层的各所述通孔内形成电极层包括:
至少在所述第一平坦层的各所述通孔内形成所述电极层。
可选地,所述在所述第一基板上至少形成第一平坦层包括:
在所述第一基板上形成所述第一平坦层;
所述至少对所述第一平坦层进行处理,以使得所述第一平坦层具有多个通孔包括:
对所述第一平坦层进行处理,以使得所述第一平坦层具有多个通孔;
所述至少在所述第一平坦层的各所述通孔内形成所述电极层包括:
在所述第一平坦层的各所述通孔内形成所述电极层。
可选地,所述在所述第一基板上至少形成第一平坦层包括:
在所述第一基板上形成第一缓冲层;
在所述第一缓冲层上形成所述第一平坦层;
在所述第一平坦层上形成掩膜层;
所述至少对所述第一平坦层进行处理,以使得所述第一平坦层具有多个通孔包括:
至少同时对所述第一缓冲层、所述第一平坦层和所述掩膜层中的两者进行处理,以使得所述第一缓冲层、所述第一平坦层和所述掩膜层均具有多个通孔;
所述至少在所述第一平坦层的各所述通孔内形成所述电极层包括:
至少在所述第一缓冲层的各所述通孔内和所述第一平坦层的各所述通孔内形成所述电极层。
可选地,所述至少同时对所述第一缓冲层、所述第一平坦层和所述掩膜层中的两者进行处理,以使得所述第一缓冲层、所述第一平坦层和所述掩膜层均具有多个通孔包括:
同时依次对所述掩膜层、所述第一平坦层和所述第一缓冲层进行处理,以使得所述掩膜层、所述第一平坦层和所述第一缓冲层均具有多个通孔;
所述至少在所述第一缓冲层的各所述通孔内和所述第一平坦层的各所述通孔内形成所述电极层包括:
在所述掩膜层的各通孔内、所述第一平坦层的各所述通孔内和所述第一缓冲层的各所述通孔内形成所述电极层。
可选地,所述掩膜层的材料包括非金属。
可选地,所述至少同时对所述第一缓冲层、所述第一平坦层和所述掩膜层中的两者进行处理,以使得所述第一缓冲层、所述第一平坦层和所述掩膜层均具有多个通孔包括:
对所述掩膜层进行处理,以使得所述掩膜层具有多个通孔;
同时依次对所述第一平坦层和所述第一缓冲层进行处理,以使得所述第一平坦层和所述第一缓冲层均具有多个通孔;
所述至少在所述第一缓冲层的各所述通孔内和所述第一平坦层的各所述通孔内形成所述电极层包括:
去除所述掩膜层;
在所述第一平坦层的各所述通孔内和所述第一缓冲层的各所述通孔内形成所述电极层。
可选地,所述至少同时对所述第一缓冲层、所述第一平坦层和所述掩膜层中的两者进行处理,以使得所述第一缓冲层、所述第一平坦层和所述掩膜层均具有多个通孔包括:
同时依次对所述掩膜层、所述第一平坦层和所述第一缓冲层进行处理,以使得所述掩膜层、所述第一平坦层和所述第一缓冲层分别具有多个通孔;
所述至少在所述第一缓冲层的各所述通孔内和所述第一平坦层的各所述通孔内形成所述电极层包括:
去除所述掩膜层;
在所述第一平坦层的各所述通孔内和所述第一缓冲层的各所述通孔内形成所述电极层。
可选地,所述掩膜层的材料包括金属。
可选地,在所述提供第一基板之后、且所述在所述第一基板上形成限定层之前,所述制作方法还包括:
在所述第一基板上形成面种子层。
可选地,所述在所述限定层的各所述通孔内形成电极层之后,所述制作方法还包括:
在所述电极层上形成第二平坦层。
可选地,所述在所述电极层上形成第二平坦层之后,所述制作方法还包括:
在所述第二平坦层上形成第二基板。
可选地,在所述提供第一基板之后、且所述在所述第一基板上形成面种子层之前,所述制作方法还包括:
在所述第一基板上形成剥离层;
所述在所述第二平坦层上形成第二基板之后,所述制作方法还包括:
去除所述剥离层和所述第一基板。
可选地,所述在所述第二平坦层上形成第二基板之后,所述制作方 法还包括:
在所述第二基板上形成第二保护层。
另一方面,本申请的实施例提供了一种上述毫米波天线的制作方法制作的毫米波天线,包括:
第一基板;
限定层,设置在所述第一基板上,所述限定层具有多个通孔;
电极层,设置在所述限定层的各所述通孔内;所述电极层包括辐射图案和馈线,所述辐射图案和所述馈线均包括网格线状结构。
可选地,所述限定层至少包括第一平坦层;
所述第一平坦层具有多个通孔,所述电极层至少设置在所述第一平坦层的各所述通孔内。
可选地,所述限定层包括第一平坦层;
所述第一平坦层具有多个通孔,所述电极层设置在所述第一平坦层的各所述通孔内。
可选地,所述限定层还包括第一缓冲层和掩膜层,所述第一缓冲层设置在所述第一基板和所述第一平坦层之间,所述掩膜层设置在所述第一平坦层远离所述第一基板的一侧;
所述第一缓冲层、所述第一平坦层和所述掩膜层均具有多个通孔,所述电极层设置在所述掩膜层的各通孔内、所述第一平坦层的各所述通孔内和所述第一缓冲层的各所述通孔内。
可选地,所述限定层还包括第一缓冲层,所述第一缓冲层设置在所述第一基板和所述第一平坦层之间;
所述第一缓冲层和所述第一平坦层均具有多个通孔,所述电极层设置在所述第一平坦层的各所述通孔内和所述第一缓冲层的各所述通孔内。
又一方面,本申请的实施例提供了一种电子设备,包括上述毫米波天线。
可选地,所述电子设备包括显示装置,所述显示装置包括显示面板,所述显示面板包括显示基板和上述毫米波天线,所述毫米波天线设置在所述显示基板的出光侧。
可选地,所述显示面板还包括触控层,所述触控层设置在所述显示基板和所述毫米波天线之间;
或者,所述触控层设置在所述毫米波天线远离所述显示基板的一侧。
可选地,所述显示面板还包括第一偏振单元和盖板;
所述第一偏振单元设置在所述毫米波天线远离所述显示基板的一侧;
所述盖板设置在所述第一偏振单元远离所述显示基板的一侧。
可选地,所述显示装置还包括第一控制器和第二控制器,所述第一控制器与所述显示基板电连接、且被配置为控制所述显示基板;
所述第二控制器与所述毫米波天线电连接、且被配置为控制所述毫米波天线。
可选地,所述显示面板包括显示区和与所述显示区相连的边框区,所述毫米波天线和所述显示基板均位于所述显示区和所述边框区;
所述第一控制器与位于所述边框区的所述显示基板绑定;
所述毫米波天线还沿所述显示面板的所述边框区向远离所述显示区的方向延伸,所述毫米波天线延伸出所述显示面板的部分包括弯折区和非弯折区,所述弯折区位于所述非弯折区和所述显示面板的所述边框区之间;所述第二控制器位于所述非弯折区、且与位于所述非弯折区的所述毫米波天线绑定。
可选地,所述显示装置还包括接地层,所述接地层设置在所述毫米波天线延伸出所述显示面板的所述部分靠近所述第一基板的一侧,所述接地层位于所述非弯折区和所述弯折区;
所述毫米波天线中的所述电极层还设置在所述第二控制器上和所述毫米波天线延伸出所述显示面板的所述部分远离所述接地层的一侧、且位于所述弯折区和所述非弯折区;所述电极层被配置为能够与所述接地层一起在所述弯折区进行弯折。
可选地,所述显示面板包括显示区和与所述显示区相连的边框区,所述毫米波天线和所述显示基板均位于所述显示区和所述边框区;
所述第一控制器与位于所述边框区的所述显示基板绑定;
所述第二控制器部分位于所述边框区、且与位于所述边框区的所述毫米波天线绑定。
可选地,所述第二控制器的其余部分沿所述显示面板的所述边框区向远离所述显示区的方向延伸、且包括弯折区和非弯折区,所述弯折区位于所述非弯折区和所述显示面板的所述边框区之间;
所述显示装置还包括接地层,所述接地层设置在所述第二控制器靠近所述第一基板的一侧、且与所述边框区之间具有间隙,所述接地层位于所述非弯折区和部分所述弯折区;
所述毫米波天线中的所述电极层还设置在所述第二控制器远离所述接地层的一侧、且位于所述弯折区和所述非弯折区,所述毫米波天线中的所述电极层被配置为能够与所述第二控制器的所述其余部分和所述接地层一起在所述弯折区进行弯折。
再一方面,本申请的实施例提供了一种上述电子设备的驱动方法,其中,所述驱动方法包括:
所述第一控制器控制所述显示基板进行显示;
所述第二控制器控制所述毫米波天线进行辐射。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1a-图1k为本申请实施例提供的第一种毫米波天线的制作方法流程图;
图2a-图2n为本申请实施例提供的第二种毫米波天线的制作方法流程图;
图3a-图3q为本申请实施例提供的第三种毫米波天线的制作方法流程图;
图4a-图4p为本申请实施例提供的第四种毫米波天线的制作方法流程图;
图5为本申请实施例提供的一种图2d所示的毫米波天线未设置第 一缓冲层的结构示意图;
图6为本申请实施例提供的一种图2d所示的毫米波天线的结构示意图;
图7为本申请实施例提供的一种图2i所示的毫米波天线的结构示意图;
图8为本申请实施例提供的一种图2i所示的毫米波天线的网格线状结构示意图;
图9为本申请实施例提供的一种图3h所示的毫米波天线的结构示意图;
图10为本申请实施例提供的一种毫米波天线的结构示意图;
图11为图10所示的毫米波天线倒置的结构示意图;
图12为本申请实施例提供的第一种显示面板的结构示意图;
图13为本申请实施例提供的第二种显示面板的结构示意图;
图14为本申请实施例提供的第三种显示面板的结构示意图;
图15为本申请实施例提供的第四种显示面板的结构示意图;
图16为本申请实施例提供的第五种显示面板的结构示意图;
图17为本申请实施例提供的一种LCD集成毫米波天线的结构示意图;
图18为本申请实施例提供的一种OLED集成毫米波天线的结构示意图;
图19为本申请实施例提供的一种毫米波天线位于显示区的结构示意图;
图20为本申请实施例提供的第一种显示装置的结构示意图;
图21为本申请实施例提供的第二种显示装置的结构示意图;
图22为图21所示的显示装置的俯视图;
图23为本申请实施例提供的第三种显示装置的结构示意图;
图24为图23所示的显示装置的俯视图。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本申请的示意性图解,并非一定是按比例绘制。
在本申请的实施例中,除非另有说明,“多个”的含义是两个或两个以上;术语“上”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的结构或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例”、“一些实施例”、“示例性实施例”、“示例”、“特定示例”或“一些示例”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本申请的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
在本申请的实施例中,采用“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,仅为了清楚描述本申请实施例的技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
毫米波(mmWave)通常是指频率范围为30-300GHz、波长范围为1-10mm的无线电波,当然通常的毫米波的频率范围还可以扩展到24-30GHz。毫米波能够较好的实现超高速5G(5th Generation Mobile Communication Technology,第五代移动通信技术),并具有较宽的带宽。然而,由于毫米波的波长较短,无法有效地通过一些材料,如金属材料等,导致毫米波的应用受到一定的局限性,无法较好的实现高速、低延时的5G体验。
目前出现了一种AiP(Antenna In Package,封装天线)技术,即将天线 与射频收发芯片集成在一起,以尽量减少毫米波的传输损耗。然而,AiP限制了天线的位置,例如相关技术中电子设备的天线大都位于边框区或屏幕的背面,导致使用时除了电子设备自身复杂的电磁环境外,用户的握持方式等也会对信号造成遮挡,导致出现无线电波传输中断、5G稳定性中断等问题。
为了解决上述问题,AoD技术应运而生。AoD技术是在AiP技术的基础上,将天线从封装载板上分离,并转移到屏幕的显示区域,以通过牺牲部分损耗来增加天线的覆盖区域。由于AoD技术中的天线位于屏幕的显示区域,那么如何在保证天线较好的辐射性能的同时,还不影响屏幕的显示就显得尤为重要。
基于上述,本申请的实施例提供了一种毫米波天线的制作方法,包括:
S1、提供第一基板。
上述第一基板的类型包括多种,可以根据实际需要选择设置。示例性的,上述第一基板可以为刚性基板,该刚性基板的材料例如可以包括玻璃、PC(Polycarbonate,聚碳酸酯)、COP(Copolymers of Cycloolefin,环烯烃聚合物)、PMMA(Polymethyl Methacrylate,聚甲基丙烯酸甲酯)、PET(Polyethylene Terephthalate,聚对苯二甲酸乙二酯)等。示例性的,该第一基板可以为柔性基板,该柔性基板的材料例如可以包括PI(Polyimide,聚酞亚胺)、PEN(Polyethylene Naphthalate Two Formic Acid Glycol Ester,聚萘二甲酸乙二醇酯)等。
对于上述第一基板的结构不做具体限定,示例的,可以直接在上述第一基板上形成其它膜层;或者,上述第一基板可以包括衬底,可以直接在衬底上形成其它膜层,具体以实际应用为准。
S2、在第一基板上形成限定层。
这里对于上述限定层的结构不做具体限定,示例的,上述限定层可以仅包括一层,例如图1所示的限定层包括第一平坦层21;或者,上述限定层可以包括多层,例如图2所述的限定层包括依次层叠设置的第一缓冲层22、第一平坦层21和掩膜层23,当然限定层还可以包括其它膜层,具体以实际应用为准。
这里对于上述限定层的制作工艺、材料等均不做具体限定,该限定层的制作工艺、材料等均可以根据限定层的结构确定。
S3、对限定层进行处理,以使得限定层具有多个通孔。
对于上述对限定层进行处理的工艺不做具体限定,对限定层进行处理的 工艺可以根据限定层的结构确定。示例的,参考图1所示,可以在第一平坦层21上涂覆光刻胶3,使用掩膜板(图中未示出)对第一平坦层21进行图案化,形成第一平坦层21的多个通孔k1。
这里对于上述各通孔的形状、深度等均不做具体限定,各通孔的形状、高度等均可以根据对限定层进行处理的工艺确定。
S4、在限定层的各通孔内形成电极层。
其中,电极层包括辐射图案和馈线,辐射图案和馈线均包括网格线状结构。
这里对于上述电极层的材料不做具体限定,示例的,上述电极层的材料可以为金属材料,例如铜、钛、镁等;或者,还可以是具有金属镀层的玻璃纤维;或者,还可以是表面贴覆有导电碳材料的树脂,其中,导电碳材料包括石墨烯、碳纤维、碳纳米管。
这里对于上述形成电极层的工艺不做具体限定,示例的,可以采用电镀、沉积等工艺形成上述电极层。现以电极层的材料为金属来说明电镀工艺的优势:由于溅射(sputter)的沉积效率低,为了实现高深宽比的窄线宽厚金属,需要使用电镀进行金属的快速生长。由于限定层等膜层已经限制了电镀的区域,即先前被图案化的区域,因此电镀的金属只能沿着通孔的内部生长,而不会在限定层等膜层的表面生长。
上述馈线的数量不做具体限定,其具体数量可以根据毫米波天线的类型、具体情况等确定。示例的,在毫米波天线的类型为双极化天线的情况下,馈线的数量为两条;或者,在毫米波天线的类型为非双极化天线的情况下,馈线的数量可以为一条。当然,馈线的数量还可以为三条及以上,具体以实际应用为准。
上述辐射图案和馈线均包括网格线状结构,该网格线状结构可以为金属网格结构。这里对于该辐射图案和馈线的金属网格线的线宽不做具体限定,示例的,该辐射图案和馈线的网格线的线宽范围可以均为0.5-2μm,具体为0.5μm、0.8μm、1μm、1.5μm、1.7μm或者2μm等等。
这里对于上述网格线状结构的厚度不做具体限定,上述网格线状结构的厚度可以由限定层的厚度控制。现以电极层的材料为金属来说明上述网格线状结构的厚度范围:考虑到电镀的不均匀性,示例的,电镀金属的厚度可以为限定层厚度的80-90%。这是因为金属偏薄会影响辐射效率;而金属偏厚会严重影响透过率。示例的,上述网格线状结构沿垂直于第一基板方向上的 厚度与网格线状结构的线宽的比值范围可以大于或等于2,例如网格线状结构的深宽比可以为2、3、4、5、6或者7等等。
这里对于上述网格线状结构中相邻的网格线之间的间距不做具体限定,示例的,网格线状结构中相邻网格线之间的间距范围可以均为20-250μm,优选为50-200μm,具体为50μm、100μm或者200μm等等。
这里对于上述网格线状结构的透光率不做具体限定,示例的,上述网格线状结构的透光率可以均大于80%,例如透光率范围为86-92%,具体为86%、87%、88%、89%、90%、91%或者92%等等。
可以设置辐射图案的网格线的线宽小于辐射图案的相邻的网格线之间的间距,可以设置辐射图案沿垂直于第一基板方向上的厚度大于辐射图案的网格线的线宽。可以设置馈线的网格线的线宽小于辐射图案的相邻的网格线之间的间距,可以设置馈线沿垂直于第一基板方向上的厚度大于辐射图案的网格线的线宽。
一方面,通过将辐射图案和馈线均设置为网格线状结构,结合透光的第一基板等,可以得到透光性较好的电极层;另一方面,通过调节网格线状结构的线宽和厚度,可以既得到高深宽比的电极层,保证天线的辐射,又在不影响各辐射图案电性能的情况下,进一步提高电极层的透光性能,从而提高毫米波天线的透光性能,使其可以更好的应用于电子设备的显示区域。
需要说明的是,上述辐射图案与馈线的网格线的具体线宽、相邻的网格线之间的具体间距尺寸、其各自沿垂直于第一基板方向上的具体厚度等可以相同,也可以不同。
本申请实施例提供的毫米波天线的制作方法包括:提供第一基板;在第一基板上形成限定层;对限定层进行处理,以使得限定层具有多个通孔;在限定层的各通孔内形成电极层;其中,电极层包括辐射图案和馈线,辐射图案和馈线均包括网格线状结构。这样一方面,由于将电极层设置在限定层的通孔内,可以通过限定层的通孔沿垂直于第一基板方向的厚度控制电极层沿垂直于第一基板方向的厚度、且通过限定层的通孔沿平行于第一基板方向的宽度控制电极层沿平行于第一基板方向的宽度,以得到具有高深宽比的电极层,即毫米波天线中辐射图案和馈线均具有高深宽比,从而使得毫米波天线能够进行有效的辐射;同时使得极窄线宽的毫米波天线应用于电子设备,例如集成在显示装置中时,可以大大减小甚至消除对显示装置的显示功能的影响;另一方面,将辐射图案和馈线均设置为网格线状结构,能够有效提高电 极层的透光率,使得该毫米波天线整体具有透光性优异的透明效果,透光率范围可以达到86-92%,更有利于应用在显示装置中。
可选地,S2、在第一基板上形成限定层包括:
S21、在第一基板上至少形成第一平坦层。
上述在第一基板上至少形成第一平坦层是指:参考图1所示,在第一基板1上仅形成第一平坦层21;或者,在第一基板上除了形成第一平坦层外,还可以形成其它膜层,例如图2-图4所示的第一缓冲层和掩膜层,这里不做限定。
S3、对限定层进行处理,以使得限定层具有多个通孔包括:
S31、至少对第一平坦层进行处理,以使得第一平坦层具有多个通孔。
上述至少对第一平坦层进行处理,以使得第一平坦层具有多个通孔是指:仅对第一平坦层进行处理,以使得第一平坦层具有多个通孔;或者,除了对第一平坦层进行处理,以使得第一平坦层具有多个通孔外,还可以对其它膜层进行处理,以使得第一平坦层和其它膜层均具有多个通孔,这里不做限定。
S4、在限定层的各通孔内形成电极层包括:
S41、至少在第一平坦层的各通孔内形成电极层。
上述至少在第一平坦层的各通孔内形成电极层是指:可以仅在第一平坦层的各通孔内形成电极层;或者,可以在第一平坦层和其它膜层的各通孔内形成电极层,这里不做限定。
本申请实施例提供的毫米波天线的制作方法中,通过至少在第一平坦层的各通孔内形成电极层,从而至少可以通过第一平坦层的通孔沿垂直于第一基板方向的厚度控制电极层沿垂直于第一基板方向的厚度、且至少通过第一平坦层的通孔沿平行于第一基板方向的宽度控制电极层沿平行于第一基板方向的宽度,以得到具有高深宽比的电极层,即毫米波天线中辐射图案和馈线均具有高深宽比,从而使得毫米波天线能够进行有效的辐射;同时使得极窄线宽的毫米波天线应用于电子设备,例如集成在显示装置中时,可以大大减小甚至消除对显示装置的显示功能的影响。
可选地,S21、在第一基板上至少形成第一平坦层包括:
S211、参考图1d所示,在第一基板1上形成第一平坦层21。
这里对于上述第一平坦层的材料不做具体限定,示例的,上述第一平坦层的材料可以包括高温稳定光刻胶(Photoetching,简称OC),该高温稳定光刻胶还具有90%以上的透过率。示例的,上述第一平坦层的材料可以包括 高透明的光刻胶或者有机材料等。
这里对于上述第一平坦层的制作工艺不做具体限定,示例的,可以通过沉积工艺在第一基板上沉积透明光刻胶,形成第一平坦层。
相关技术中的天线具有高深宽比时,其结构稳定性不佳,尤其当深宽比较大时,以电极层的材料为金属为例,金属与底面的接触面积有限,重心偏高,容易出现倒塌或者断线,且湿法刻蚀的均一性较差,导致天线的良率较低。那么,为了实现高深宽比的透明天线,需要对电极层的金属网格线进行加固,上述第一平坦层的作用就是提高湿法刻蚀的均一性,保证电镀金属能够按照指定的方向生长。由此,可以通过第一平坦层控制本申请实施例提供的毫米波天线的宽度和厚度。
S31、至少对第一平坦层进行处理,以使得第一平坦层具有多个通孔包括:
S311、参考图1e所示,对第一平坦层21进行处理,以使得第一平坦层21具有多个通孔k1。
S41、至少在第一平坦层的各通孔内形成电极层包括:
S411、参考图1f所示,在第一平坦层21的各通孔内形成电极层4。
对于上述在第一平坦层的各通孔内形成电极层的工艺不做具体限定,示例的,可以采用电镀工艺在第一平坦层的各通孔内形成电极层。
本申请实施例提供的毫米波天线的制作方法中,通过在第一平坦层的各通孔内形成电极层,从而可以通过第一平坦层的通孔沿垂直于第一基板方向的厚度控制电极层沿垂直于第一基板方向的厚度、且通过第一平坦层的通孔沿平行于第一基板方向的宽度控制电极层沿平行于第一基板方向的宽度,以得到具有高深宽比的电极层,即毫米波天线中辐射图案和馈线均具有高深宽比,从而使得毫米波天线能够进行有效的辐射;同时使得极窄线宽的毫米波天线应用于电子设备,例如集成在显示装置中时,可以大大减小甚至消除对显示装置的显示功能的影响。
可选地,S21、在第一基板上至少形成第一平坦层包括:
S212、参考图2d所示,在第一基板1上形成第一缓冲层22。
这里对于上述第一缓冲层的材料不做具体限定,示例的,第一缓冲层的材料可以包括氮化硅(SiN)、氧化硅(SiO)、氮氧化硅(SiON)、氮化硅和氧化硅的叠层(两层或三层以上的SiN/SiO)等。
这里对于上述第一缓冲层的制作工艺不做具体限定,示例的,可以采用 PECVD(Plasma Enhanced Chemical Vapor Deposition,等离子体增强化学气相沉积法)、沉积工艺等制作上述第一缓冲层。
需要说明的是,在第一基板上沉积第一缓冲层的材料之前,可以用氨气(NH3)对第一基板进行表面处理。当然若在第一基板和第一缓冲层之间设置有其它膜层时,在沉积第一缓冲层的材料之前,可以用氨气对第一缓冲层接触的膜层进行表面处理。
S213、参考图2e所示,在第一缓冲层22上形成第一平坦层21。
S214、参考图2f所示,在第一平坦层21上形成掩膜层23。
这里对于上述掩膜层的材料不做具体限定,示例的,上述掩膜层的材料可以包括金属,例如ITO(Indium Tin Oxides,铟锡氧化物)、钼(Mo)、钼/铝/钼(Mo/Al/Mo)、钛/铝/钛(Ti/Al/Ti)等。示例的,上述掩膜层的材料可以包括非金属,例如有机材料等。
这里对于上述掩膜层的制作工艺不做具体限定,示例的,可以采用沉积工艺制作上述掩膜层。
S31、至少对第一平坦层进行处理,以使得第一平坦层具有多个通孔包括:
S312、至少同时对第一缓冲层、第一平坦层和掩膜层中的两者进行处理,以使得第一缓冲层、第一平坦层和掩膜层均具有多个通孔。
上述至少同时对第一缓冲层、第一平坦层和掩膜层中的两者进行处理,以使得第一缓冲层、第一平坦层和掩膜层均具有多个通孔是指:同时对第一缓冲层、第一平坦层和掩膜层中的两者进行处理,以使得第一缓冲层、第一平坦层和掩膜层均具有多个通孔;或者,除了同时对第一缓冲层、第一平坦层和掩膜层中的两者进行处理,还可以同时对其它膜层,例如掩膜层三者进行处理,以使得第一缓冲层、第一平坦层和掩膜层均具有多个通孔。
S41、至少在第一平坦层的各通孔内形成电极层包括:
S412、至少在第一缓冲层的各通孔内和第一平坦层的各通孔内形成电极层。
本申请实施例提供的毫米波天线的制作方法中,通过至少在第一缓冲层的各通孔内和第一平坦层的各通孔内形成电极层,从而可以通过第一缓冲层和第一平坦层的通孔沿垂直于第一基板方向的厚度控制电极层沿垂直于第一基板方向的厚度、且通过第一缓冲层和第一平坦层的通孔沿平行于第一基板方向的宽度控制电极层沿平行于第一基板方向的宽度,以得到具有高深宽 比的电极层,即毫米波天线中辐射图案和馈线均具有高深宽比,从而使得毫米波天线能够进行有效的辐射;同时使得极窄线宽的毫米波天线应用于电子设备,例如集成于显示装置中时,可以大大减小甚至消除对显示装置的显示功能的影响;并且,第一缓冲层可以改善电极层与后续膜层的粘附性。
可选地,S312、至少同时对第一缓冲层、第一平坦层和掩膜层中的两者进行处理,以使得第一缓冲层、第一平坦层和掩膜层均具有多个通孔包括:
S3121、参考图2h所示,同时依次对掩膜层23、第一平坦层21和第一缓冲层22进行处理,以使得掩膜层23、第一平坦层21和第一缓冲层22均具有多个通孔k2。
这里对于上述同时依次对掩膜层、第一平坦层和第一缓冲层进行处理的工艺不做具体限定,示例的,可以采用干法刻蚀同时依次对掩膜层、第一平坦层和第一缓冲层进行处理。具体的,可以采用同一设备刻蚀,干法刻蚀掩膜层、第一平坦层和第一缓冲层,刻蚀时间可以与各膜层的厚度成正比,例如:对于
Figure PCTCN2022127399-appb-000001
的第一缓冲层/4μm的第一平坦层/
Figure PCTCN2022127399-appb-000002
的掩膜层来说,刻蚀时间为30s/110s/80s。根据不同的设备和不同厚度的各膜层,刻蚀时间可以调整。由于刻蚀的不均匀性,第一缓冲层的刻蚀时间可以适当减少,第一缓冲层可以不用完全刻蚀干净,以防止第一缓冲层和第一基板之间的膜层被过度刻蚀,例如
Figure PCTCN2022127399-appb-000003
的第一缓冲层的完全刻蚀时间为40s,则可以刻蚀30s,只要使得第一缓冲层能被刻穿即可,残留的未刻蚀的第一缓冲层材料不会影响后续工艺。
这里对于上述刻蚀工艺不做具体限定,示例的,上述刻蚀工艺可以包括Reactive Ion Etching(反应离子蚀刻)、ICP(Inductively Coupled Plasma Etching,电感耦合等离子体刻蚀)等。反应离子刻蚀是各向同性的刻蚀,那么随着刻蚀时间的增加,会有一定的侧刻,使得网格线状结构呈现上宽下窄的梯形,梯形的坡度角大概在78°左右。电感耦合等离子体刻蚀可以刻蚀出近似于90°的矩形槽。图1-图4均以通孔的形状为矩形槽为例进行绘示。
S412、至少在第一缓冲层的各通孔内和第一平坦层的各通孔内形成电极层包括:
S4121、参考图2i所示,在掩膜层23的各通孔内、第一平坦层21的各通孔内和第一缓冲层22的各通孔内形成电极层4。
这里对于上述在掩膜层的各通孔内、第一平坦层的各通孔内和第一缓冲层的各通孔内形成电极层的工艺不做具体限定,示例的,可以采用电镀工艺 在掩膜层的各通孔内、第一平坦层的各通孔内和第一缓冲层的各通孔内形成电极层。
需要说明的是,还可以不设置上述掩膜层,而是使用额外的掩膜版对第一平坦层和第一缓冲层进行图案化。
本申请实施例提供的毫米波天线的制作方法中,通过至少在第一缓冲层的各通孔内和第一平坦层的各通孔内形成电极层,从而使得一方面,可以通过第一缓冲层和第一平坦层的通孔沿垂直于第一基板方向的厚度控制电极层沿垂直于第一基板方向的厚度、且通过第一缓冲层和第一平坦层的通孔沿平行于第一基板方向的宽度控制电极层沿平行于第一基板方向的宽度,以得到具有高深宽比的电极层,即毫米波天线中辐射图案和馈线均具有高深宽比,从而使得毫米波天线能够进行有效的辐射;使得极窄线宽的毫米波天线应用于电子设备,例如集成在显示装置中时,可以大大减小甚至消除对显示装置的显示功能的影响;另一方面,第一缓冲层可以改善电极层与后续膜层的粘附性,同时可以防止电极层前膜层被过度刻蚀;又一方面,掩膜层主要作为掩膜版使用,可以无需额外使用其它掩膜版就实现膜层的图案化。
可选地,掩膜层的材料包括非金属。
这里对于上述非金属不做具体限定,示例的,上述非金属可以包括有机材料。
本申请实施例提供的毫米波天线的制作方法中,由于第一缓冲层、第一平坦层和掩膜层的材料均为有机材料,可以通过同一设备刻蚀。并且,将电极层沉积在第一缓冲层、第一平坦层和掩膜层图案化的通孔内时,电极层可以仅在通孔内而不会在第一缓冲层、第一平坦层和掩膜层的表面沉积,从而很好的形成了天线的图案化结构。
可选地,S312、至少同时对第一缓冲层、第一平坦层和掩膜层中的两者进行处理,以使得第一缓冲层、第一平坦层和掩膜层均具有多个通孔包括:
S3122、参考图3h所示,对掩膜层23进行处理,以使得掩膜层23具有多个通孔k3。
这里对于上述掩膜层的材料不做具体限定,示例的,上述掩膜层的材料可以包括金属,例如:ITO(Indium Tin Oxides,铟锡氧化物)、钼(Mo)、钼/铝/钼(Mo/Al/Mo)、钛/铝/钛(Ti/Al/Ti)等,此处使用金属掩膜层作为硬掩膜。
这里对于上述对掩膜层进行处理的工艺不做具体限定,示例的,可以采 用湿法刻蚀对掩膜层进行处理。具体的,由于使用金属掩膜层作为硬掩膜,为了保证刻蚀的线宽精度、且减少过刻,需要参考图3g和图3h所示,在掩膜层23上涂覆光刻胶3,图案化掩膜层23,刻蚀掉大面积的金属区域,此时可以使用较长的刻蚀时间,例如完全刻蚀掉
Figure PCTCN2022127399-appb-000004
的掩膜层23(材料为Mo/Al/Mo)需要90s,则刻蚀时间在90s及以上都行,过刻无影响。
S3123、参考图3i所示,同时依次对第一平坦层21和第一缓冲层22进行处理,以使得第一平坦层21和第一缓冲层22均具有多个通孔k4。
这里对于上述同时依次对第一平坦层和第一缓冲层进行处理的工艺不做具体限定,示例的,可以采用干法刻蚀和湿法刻蚀对第一平坦层和第一缓冲层进行处理。具体的,首先参考图3i所示,采用干法刻蚀对第一平坦层21和第一缓冲层22进行处理,再参考图3j所示,在干法刻蚀的第一平坦层21和第一缓冲层22的通孔内涂覆光刻胶3,使用金属硬掩膜作为掩膜版湿法刻蚀第一平坦层21和第一缓冲层22,此时可以先图案化,使用四氟甲烷(CF4)刻蚀掉硬掩膜,然后更换气体成分,使用氧气(O2)刻蚀第一平坦层和第一缓冲层的光刻胶,由于O2无法刻蚀硬掩膜,因此第一平坦层和第一缓冲层被刻蚀区域即为硬掩膜的图案化区域。由于大面积金属作为硬掩膜,掩膜层不会被刻蚀,由此刻蚀时间可以尽量减小,比如使用60s时间进行刻蚀,以避免湿法刻蚀影响网格线状结构的线宽。
S412、至少在第一缓冲层的各通孔内和第一平坦层的各通孔内形成电极层包括:
S4122、参考图3k所示,去除掩膜层。
这里对于上述去除掩膜层的工艺不做具体限定,示例的,可以采用湿法刻蚀将上述掩膜层去除。由于有了第一平坦层和第一缓冲层通孔内光刻胶的保护,通孔内的第一基板及第一基板与第一缓冲层之间的其它膜层得以保留,通孔外的金属硬掩膜被刻蚀掉了。
S4123、参考图3l所示,在第一平坦层21的各通孔内和第一缓冲层22的各通孔内形成电极层4。
这里对于上述在第一平坦层的各通孔内和第一缓冲层的各通孔内形成电极层的工艺不做具体限定,示例的,可以采用电镀工艺形成电极层。
上述电极层的沿垂直于第一基板方向的厚度可以由第一平坦层和第二缓冲层进行限定。
本申请实施例提供的毫米波天线的制作方法中,先使用湿法刻蚀对掩膜 层进行刻蚀,再采用金属硬掩膜作为掩膜版,湿法刻蚀第一平坦层和第一缓冲层。通过采用金属硬掩膜作为掩膜版对第一平坦层和第一缓冲层进行刻蚀,为了避免金属硬掩膜对后续电镀电极层的影响,需要在电镀电极层之前先将金属硬掩膜刻蚀掉,同时需要保护已经刻蚀通孔内的第一基板及第一基板与第一缓冲层之间的其它膜层,再通过曝光将通孔内的光刻胶保留、通孔外无光刻胶,从而使得在第一平坦层和第一缓冲层的通孔内很好的形成电极层。
可选地,S312、至少同时对第一缓冲层、第一平坦层和掩膜层中的两者进行处理,以使得第一缓冲层、第一平坦层和掩膜层均具有多个通孔包括:
S3124、参考图4h所示,同时依次对掩膜层23、第一平坦层21和第一缓冲层22进行处理,以使得掩膜层23、第一平坦层21和第一缓冲层22分别具有多个通孔k5。
这里对于上述同时依次对掩膜层、第一平坦层和第一缓冲层进行处理的工艺不做具体限定,示例的,可以采用干法刻蚀同时依次对掩膜层、第一平坦层和第一缓冲层进行处理。
金属材料可以被干法刻蚀,但金属材料的干法刻蚀与有机材料的干法刻蚀不同,需要在不同的腔室进行,且对金属材料有限制,例如可以对钼(Mo)、钛/铝/钛(Ti/Al/Ti)进行干法刻蚀。那么在干法刻蚀时,先进入金属腔室刻蚀金属硬掩膜,再进入有机腔室刻蚀第一平坦层和第一缓冲层。
S412、至少在第一缓冲层的各通孔内和第一平坦层的各通孔内形成电极层包括:
S4124、参考图4j所示,去除掩膜层23。
这里对于上述去除掩膜层的工艺不做具体限定,示例的,可以采用湿法刻蚀将上述掩膜层去除。由于有了第一平坦层和第一缓冲层通孔内光刻胶的保护,通孔内的第一基板及第一基板与第一缓冲层之间的其它膜层得以保留,通孔外的金属硬掩膜被刻蚀掉了。
S4125、参考图4k所示,在第一平坦层21的各通孔内和第一缓冲层22的各通孔内形成电极层4。
这里对于上述在第一平坦层的各通孔内和第一缓冲层的各通孔内形成电极层的工艺不做具体限定,示例的,可以采用电镀工艺形成电极层。
上述电极层的沿垂直于第一基板方向的厚度可以由第一平坦层和第二缓冲层进行限定。
本申请实施例提供的毫米波天线的制作方法中,先使用干法刻蚀同时刻 蚀掩膜层、第一平坦层和第一缓冲层,再采用金属硬掩膜作为掩膜版,湿法刻蚀第一平坦层和第一缓冲层。为了避免金属硬掩膜对后续电镀电极层的影响,需要在电镀电极层之前先将金属硬掩膜刻蚀掉,同时需要保护已经刻蚀通孔内的第一基板及第一基板与第一缓冲层之间的其它膜层,再通过曝光将通孔内的光刻胶保留、通孔外无光刻胶,从而使得在第一平坦层和第一缓冲层的通孔内很好的形成电极层。
可选地,掩膜层的材料包括金属。
这里对于上述金属不做具体限定,示例的,上述金属可以包括ITO、钼(Mo)、钼/铝/钼(Mo/Al/Mo)、钛/铝/钛(Ti/Al/Ti)等。
这里对于上述掩膜层的制作工艺不做具体限定,示例的,可以采用干法刻蚀对金属掩膜层进行图案化;或者,可以采用湿法刻蚀对金属掩膜层进行图案化。
本申请实施例提供的毫米波天线的制作方法中,通过采用金属硬掩膜作为掩膜版对第一平坦层、第一缓冲层进行图案化,其中金属硬掩膜需要被去除后,再电镀电极层,这样避免金属硬掩膜对后续电镀电极层产生影响。
可选地,在S1、提供第一基板之后、且在S2、第一基板上形成限定层之前,制作方法还包括:
S5、参考图1-图4所示,在第一基板1上形成面种子层6。
这里对于上述面种子层的材料不做具体限定,示例的,上述面种子层的材料可以包括铜(Cu)、银(Ag)、钼铜合金(Mo/Cu)、氧化铟锡和银合金(ITO/Ag)等金属或金属合金或金属氧化物等,只要可以进行电镀即可。进一步示例的,面种子层的材料可以为铜或者银。
这里对于上述面种子层的制作工艺不做具体限定,示例的,可以采用溅射形成面种子层。需要说明的是,也可以不设置面种子层,此时就需要改变电极层的制作工艺。
本申请实施例提供的毫米波天线的制作方法中,通过在形成限定层之前形成面种子层,有利于后续限定层的制作,尤其有利于后期电镀较厚的电极层金属。
可选地,S4、在限定层的各通孔内形成电极层之后,制作方法还包括:
S6、参考图1-图4所示,在电极层4上形成第二平坦层7。
这里对于上述第二平坦层的材料不做具体限定,示例的,上述第二平坦层的材料可以包括高温稳定的光刻胶(OC)。
本申请实施例提供的毫米波天线的制作方法中,通过在电极层上形成第二平坦层,可以起到流平的作用。这里由于电镀电极层金属的不均匀性,部分通孔未填满,电镀后的电极层金属表面形貌凹凸不平,因此需要使用第二平坦层进行再次的平坦化,避免电极层金属表面形貌影响透过率。
可选地,S6、在电极层上形成第二平坦层之后,制作方法还包括:
S7、参考图1-图4所示,在第二平坦层7上形成第二基板8。
这里对于上述第二基板的材料不做具体限定,示例的,上述第二基板的材料可以包括刚性材料,例如:玻璃、COP、PET等;或者,上述第二基板的材料可以包括柔性材料,例如:PI、TAC(三醋酸纤维薄膜)、TPU(聚氨酯弹性体)等。
本申请实施例提供的毫米波天线的制作方法中,通过在第二平坦层上形成第二基板,即在第二平坦层上覆膜,该第二基板起到载体作用。
可选地,在S1、提供第一基板之后、且在S5、第一基板上形成面种子层之前,制作方法还包括:
S8、参考图1-图4所示,在第一基板1上形成剥离层5。
这里对于上述剥离层的材料不做具体限定,示例的,上述剥离层的材料可以包括具有高温稳定性的材料,例如:基于乙二醇单丁基醚的材料等;或者,上述剥离层的材料可以包括具有高温稳定(大于230℃)的聚合物材料,例如:聚氨酯、聚丙烯酸类材料等。
这里对于上述剥离层的制作工艺不做具体限定,示例的,可以采用涂布工艺形成上述剥离层。
在S7、第二平坦层上形成第二基板之后,制作方法还包括:
S9、参考图1-图4所示,去除剥离层5和第一基板1。
这里对于上述去除剥离层和第一基板的工艺不做具体限定,示例的,可以采用机械或者激光烧结的方式去除剥离层和第一基板。
本申请实施例提供的毫米波天线的制作方法中,剥离层方便从第一基板上取下来,易于分离。
需要说明的是,还可以不去除第一基板,此时就不需要在第一基板与其它膜层之间设置剥离层。在不去除第一基板的情况下,还可以在第一基板远离其它膜层的一侧形成第一保护层。
可选地,在S9、去除剥离层和第一基板之后,制作方法还包括:
S10、参考图1-图4所示,去除面种子层6。
这里对于上述去除面种子层的工艺不做具体限定,示例的,可以采用刻蚀工艺去除面种子层。
本申请实施例提供的毫米波天线的制作方法中,由于使用了面电镀,因此在去除剥离层和第一基板后,还需要进行一次面种子层的刻蚀,刻蚀掉不透明且导电的面种子层,从而可以得到高透明、高深宽比的窄线宽透明天线。
可选地,在第二平坦层上形成第二基板之后,制作方法还包括:
S11、参考图1-图4所示,在第二基板8上形成第二保护层9。
本申请实施例提供的毫米波天线的制作方法中,可以通过第二保护层保护高透明、高深宽比的窄线宽透明天线。
需要说明的是,第一平坦层、第二平坦层、第二基板等层之间需要增加黏附层(图1-图4均未示出),以保证上述各膜层能够牢固的粘附。这里对于上述黏附层的材料不做具体限定,示例的,该黏附层的材料可以包括高透明胶水,例如OCA(Optically Clear Adhesive,光学胶)、PMMA(聚甲基丙烯酸甲酯)、PSA(Pressure Sensitive Adhesive,压敏胶)等。
在毫米波天线的制作中,最终保留的膜层需要是透明膜层,其它膜层湿法透明不做限定,以使得毫米波天线可以更好的应用于电子设备的显示区域,尽量减小甚至消除对电子设备的显示效果的影响。
下面参考图1,提供第一种毫米波天线的制作方法。
S0011、参考图1a所示,提供第一基板1。
S0012、参考图1b所示,在第一基板1上涂布乙二醇单丁基醚,形成剥离层5。
S0013、参考图1c所示,在剥离层5上溅射Cu,形成面种子层6。
S0014、参考图1d所示,在面种子层6上沉积透明光刻胶,形成第一平坦层21,并在第一平坦层21上涂覆光刻胶3。
S0015、参考图1e所示,图案化第一平坦层21,形成第一平坦层21的过孔k1。
S0016、参考图1f所示,在第一平坦层21的过孔k1内电镀金属,形成电极层4。
S0017、参考图1g所示,流平电极层4,在电极层4上形成第二平坦层7。
S0018、参考图1h所示,在第二平坦层7上覆膜PI,形成第二基板8。
S0019、参考图1i所示,在第二基板8上形成第二保护层9。
S0020、参考图1j所示,使用激光烧结法剥离面种子层6和剥离层5。
S0021、参考图1k所示,刻蚀掉面种子层6,得到毫米波天线。
需要说明的是,毫米波天线还可以包括第一平坦层、电极层和第二平坦层;或者,毫米波天线还可以包括第一平坦层、电极层、第二平坦层和第二基板,这里不做具体限定。
下面参考图2,提供第二种毫米波天线的制作方法。
S0031、参考图2a所示,提供第一基板1。
S0032、参考图2b所示,在第一基板1上涂布乙二醇单丁基醚,形成剥离层5。
S0033、参考图2c所示,在剥离层5上沉积Ag,形成面种子层6。
S0034、参考图2d所示,在面种子层6上PECVD氮化硅,形成第一缓冲层22。
下面图5为未设置第一缓冲层的天线结构图,其中虚线为通孔,图6为设置了第一缓冲层的天线结构图。第一缓冲层的作用为保护底部的金属,防止其被氧气刻蚀。如果没有氮化硅的第一缓冲层,不论面种子层的材料为铜或者银,都会不同程度的被氧化,如图5中的虚线所示,铜种子层被氧化后,表面疏松多孔,界面黏附力下降,在后续工艺中容易脱落。银种子层虽然不会形成图5中虚线所示的疏松多孔结构,但局部的银会因为氧化严重而不导电。
S0035、参考图2e所示,在第一缓冲层22上沉积透明光刻胶,形成第一平坦层21。
S0036、参考图2f所示,在第一平坦层21上沉积有机材料,形成掩膜层23。
S0037、参考图2g所示,在掩膜层23上涂覆光刻胶3。
S0038、参考图2h所示,使用CF4干法刻蚀掩膜层23;接着使用O2干法刻蚀第一平坦层21和第一缓冲层22,形成掩膜层23、第一平坦层21和第一缓冲层22上的通孔k2。
S0039、参考图2i所示,在掩膜层23、第一平坦层21和第一缓冲层22上的通孔k2内电镀金属,形成电极层4。
图7上述步骤S0039形成的天线结构图,图8为金属网格状结构的示意图。
S0040、参考图2j所示,流平电极层4,在电极层4上形成第二平坦层7。
S0041、参考图2k所示,在第二平坦层7上覆膜PI,形成第二基板8。
S0042、参考图2l所示,在第二基板8上形成第二保护层9。
S0043、参考图2m所示,使用激光烧结法剥离面种子层6和剥离层5。
S0044、参考图2n所示,刻蚀掉面种子层6,得到毫米波天线。
需要说明的是,毫米波天线还可以包括第一缓冲层、第一平坦层、掩膜层、电极层和第二平坦层;或者,毫米波天线还可以包括第一缓冲层、第一平坦层、掩膜层、电极层、第二平坦层和第二基板,这里不做具体限定。
下面参考图3,提供第三种毫米波天线的制作方法。
S0051、参考图3a所示,提供第一基板1。
S0052、参考图3b所示,在第一基板1上涂布乙二醇单丁基醚,形成剥离层5。
S0053、参考图3c所示,在剥离层5上沉积金属,形成面种子层6。
S0054、参考图3d所示,在面种子层6上PECVD氮化硅,形成第一缓冲层22。
S0055、参考图3e所示,在第一缓冲层22上沉积透明光刻胶,形成第一平坦层21。
S0056、参考图3f所示,在第一平坦层21上沉积金属,形成掩膜层23。
S0057、参考图3g所示,在掩膜层23上涂覆光刻胶3。
S0058、参考图3h所示,湿法刻蚀掩膜层23,形成掩膜层23上的通孔k3。
图9为步骤S0058形成的天线的结构图。
S0059、参考图3i所示,干法刻蚀第一平坦层21和第一缓冲层22,形成第一平坦层21和第一缓冲层22上的通孔k4。
S0060、参考图3j所示,在第一平坦层21和第一缓冲层22上的通孔内涂覆光刻胶3。
S0061、参考图3k所示,湿法刻蚀第一平坦层21和第一缓冲层22,形成第一平坦层21和第一缓冲层22上的通孔。
S0062、参考图3l所示,在第一平坦层21和第一缓冲层22上的通孔内电镀金属,形成电极层4。
S0063、参考图3m所示,流平电极层4,在电极层4上形成第二平坦层7。
S0064、参考图3n所示,在第二平坦层7上覆膜PI,形成第二基板8。
S0065、参考图3o所示,在第二基板8上形成第二保护层9。
S0066、参考图3p所示,使用激光烧结法剥离面种子层6和剥离层5。
S0067、参考图3q所示,刻蚀掉面种子层6,得到毫米波天线。
需要说明的是,毫米波天线还可以包括第一缓冲层、第一平坦层、电极层和第二平坦层;或者,毫米波天线还可以包括第一缓冲层、第一平坦层、电极层、第二平坦层和第二基板,这里不做限定。
下面参考图4,提供第四种毫米波天线的制作方法。
S0071、参考图4a所示,提供第一基板1。
S0072、参考图4b所示,在第一基板1上涂布乙二醇单丁基醚,形成剥离层5。
S0073、参考图4c所示,在剥离层5上沉积金属,形成面种子层6。
S0074、参考图4d所示,在面种子层6上PECVD氮化硅,形成第一缓冲层22。
S0075、参考图4e所示,在第一缓冲层22上沉积透明光刻胶,形成第一平坦层21。
S0076、参考图4f所示,在第一平坦层21上沉积金属,形成掩膜层23。
S0077、参考图4g所示,在掩膜层23上涂覆光刻胶3。
S0078、参考图4h所示,干法刻蚀掩膜层23、第一平坦层21和第一缓冲层22,形成掩膜层23、第一平坦层21和第一缓冲层22的通孔k5。
S0079、参考图4i所示,在第一平坦层21和第一缓冲层22的通孔内涂覆光刻胶3。
S0080、参考图4j所示,湿法刻蚀第一平坦层21和第一缓冲层22,形成第一平坦层21和第一缓冲层22的通孔,并去除掩膜层23。
S0081、参考图4k所示,在第一平坦层21和第一缓冲层22的通孔内电镀金属,形成电极层4。
S0082、参考图4l所示,流平电极层4,在电极层4上形成第二平坦层7。
S0083、参考图4m所示,在第二平坦层7上覆膜PI,形成第二基板8。
S0084、参考图4n所示,在第二基板8上形成第二保护层9。
S0085、参考图4o所示,在第二基板8上形成第二保护层9。
S0086、参考图4p所示,刻蚀掉面种子层6,得到毫米波天线。
需要说明的是,毫米波天线还可以包括第一缓冲层、第一平坦层、电极层和第二平坦层;或者,毫米波天线还可以包括第一缓冲层、第一平坦层、电极层、第二平坦层和第二基板,这里不做限定。
本申请的实施例另提供了一种上述毫米波天线的制作方法制作的毫米波天线,参考图10所示,包括:
第一基板1。
上述第一基板的类型包括多种,可以根据实际需要选择设置。示例性的,上述第一基板可以为刚性基板,该刚性基板的材料例如可以包括玻璃、PC(Polycarbonate,聚碳酸酯)、COP(Copolymers of Cycloolefin,环烯烃聚合物)、PMMA(Polymethyl Methacrylate,聚甲基丙烯酸甲酯)、PET(Polyethylene Terephthalate,聚对苯二甲酸乙二酯)等。示例性的,该第一基板可以为柔性基板,该柔性基板的材料例如可以包括PI(Polyimide,聚酞亚胺)、PEN(Polyethylene Naphthalate Two Formic Acid Glycol Ester,聚萘二甲酸乙二醇酯)等。
对于上述第一基板的结构不做具体限定,示例的,可以直接在上述第一基板上形成其它膜层;或者,上述第一基板可以包括衬底,可以直接在衬底上形成其它膜层,具体以实际应用为准。
限定层2,设置在第一基板1上,限定层2具有多个通孔。
这里对于上述限定层的结构不做具体限定,示例的,上述限定层可以仅包括一层,例如图1所示的限定层包括第一平坦层21;或者,上述限定层可以包括多层,例如图2所述的限定层包括依次层叠设置的第一缓冲层22、第一平坦层21和掩膜层23,当然限定层还可以包括其它膜层,具体以实际应用为准。
电极层4,设置在限定层2的各通孔内;电极层4包括辐射图案和馈线,辐射图案和馈线均包括网格线状结构。
这里对于上述电极层的材料不做具体限定,示例的,上述电极层的材料可以为金属材料,例如铜、钛、镁等;或者,还可以是具有金属镀层的玻璃纤维;或者,还可以是表面贴覆有导电碳材料的树脂,其中,导电碳材料包括石墨烯、碳纤维、碳纳米管。
上述馈线的数量不做具体限定,其具体数量可以根据毫米波天线的类型、具体情况等确定。示例的,在毫米波天线的类型为双极化天线的情况下,馈线的数量为两条;或者,在毫米波天线的类型为非双极化天线的情况下,馈线的数量可以为一条。当然,馈线的数量还可以为三条及以上,具体以实际应用为准。
上述辐射图案和馈线均包括网格线状结构,该网格线状结构可以为如图 12所示的金属网格结构。这里对于该辐射图案和馈线的金属网格线的线宽不做具体限定,示例的,该辐射图案和馈线的网格线的线宽范围可以均为0.5-2μm,具体为0.5μm、0.8μm、1μm、1.5μm、1.7μm或者2μm等等。
这里对于上述网格线状结构的厚度不做具体限定,上述网格线状结构的厚度可以由限定层的厚度控制。现以电极层的材料为金属来说明上述网格线状结构的厚度范围:考虑到电镀的不均匀性,示例的,电镀金属的厚度可以为限定层厚度的80-90%。这是因为金属偏薄会影响辐射效率;而金属偏厚会严重影响透过率。示例的,上述网格线状结构沿垂直于第一基板方向上的厚度与网格线状结构的线宽的比值范围可以大于或等于2,例如网格线状结构的深宽比可以为2、3、4、5、6或者7等等。
这里对于上述网格线状结构中相邻的网格线之间的间距不做具体限定,示例的,网格线状结构中相邻网格线之间的间距范围可以均为20-250μm,优选为50-200μm,具体为50μm、100μm或者200μm等等。
这里对于上述网格线状结构的透光率不做具体限定,示例的,上述网格线状结构的透光率可以均大于80%,例如透光率范围为86-92%,具体为86%、87%、88%、89%、90%、91%或者92%等等。
可以设置辐射图案的网格线的线宽小于辐射图案的相邻的网格线之间的间距,可以设置辐射图案沿垂直于第一基板方向上的厚度大于辐射图案的网格线的线宽。可以设置馈线的网格线的线宽小于辐射图案的相邻的网格线之间的间距,可以设置馈线沿垂直于第一基板方向上的厚度大于辐射图案的网格线的线宽。
一方面,通过将辐射图案和馈线均设置为网格线状结构,结合透光的第一基板等,可以得到透光性较好的电极层;另一方面,通过调节网格线状结构的线宽和厚度,可以既得到高深宽比的电极层,保证天线的辐射,又在不影响各辐射图案电性能的情况下,进一步提高电极层的透光性能,从而提高毫米波天线的透光性能,使其可以更好的应用于电子设备的显示区域。
需要说明的是,上述辐射图案与馈线的网格线的具体线宽、相邻的网格线之间的具体间距尺寸、其各自沿垂直于第一基板方向上的具体厚度等可以相同,也可以不同。
本申请实施例提供的毫米波天线包括第一基板;限定层设置在第一基板上,限定层具有多个通孔;电极层设置在限定层的各通孔内;电极层包括辐射图案和馈线,辐射图案和馈线均包括网格线状结构。这样一方面,由于电 极层位于限定层的通孔内,可以通过限定层的通孔沿垂直于第一基板方向的厚度控制电极层沿垂直于第一基板方向的厚度、且通过限定层的通孔沿平行于第一基板方向的宽度控制电极层沿平行于第一基板方向的宽度,以得到具有高深宽比的电极层,即毫米波天线中辐射图案和馈线均具有高深宽比,从而使得毫米波天线能够进行有效的辐射;同时使得极窄线宽的毫米波天线应用于电子设备,例如集成在显示装置中时,可以大大减小甚至消除对显示装置的显示功能的影响;另一方面,将辐射图案和馈线均为网格线状结构,能够有效提高电极层的透光率,使得该毫米波天线整体具有透光性优异的透明效果,透光率范围可以达到86-92%,更有利于应用在显示装置中。
可选地,限定层至少包括第一平坦层;第一平坦层具有多个通孔,电极层至少设置在第一平坦层的各通孔内。
这里对于上述第一平坦层的材料不做具体限定,示例的,上述第一平坦层的材料可以包括高温稳定光刻胶(Photoetching,简称OC),该高温稳定光刻胶还具有90%以上的透过率。示例的,上述第一平坦层的材料可以包括高透明的光刻胶或者有机材料等。
相关技术中的天线具有高深宽比时,其结构稳定性不佳,尤其当深宽比较大时,以电极层的材料为金属为例,金属与底面的接触面积有限,重心偏高,容易出现倒塌或者断线,且湿法刻蚀的均一性较差,导致天线的良率较低。那么,为了实现高深宽比的透明天线,需要对电极层的金属网格线进行加固,上述第一平坦层的作用就是提高湿法刻蚀的均一性,保证电镀金属能够按照指定的方向生长。由此,可以通过第一平坦层控制本申请实施例提供的毫米波天线的宽度和厚度。
可选地,限定层包括第一平坦层;第一平坦层具有多个通孔,电极层设置在第一平坦层的各通孔内。从而可以仅通过第一平坦层就控制本申请实施例提供的毫米波天线的宽度和厚度,简单易实现。
可选地,限定层还包括第一缓冲层和掩膜层,第一缓冲层设置在第一基板和第一平坦层之间,掩膜层设置在第一平坦层远离第一基板的一侧;第一缓冲层、第一平坦层和掩膜层均具有多个通孔,电极层设置在掩膜层的各通孔内、第一平坦层的各通孔内和第一缓冲层的各通孔内。
这里对于上述第一缓冲层的材料不做具体限定,示例的,第一缓冲层的材料可以包括氮化硅(SiN)、氧化硅(SiO)、氮氧化硅(SiON)、氮化硅和氧化硅的叠层(两层或三层以上的SiN/SiO)等。
这里对于上述掩膜层的材料不做具体限定,示例的,上述掩膜层的材料可以包括金属,例如ITO(Indium Tin Oxides,铟锡氧化物)、钼(Mo)、钼/铝/钼(Mo/Al/Mo)、钛/铝/钛(Ti/Al/Ti)等。示例的,上述掩膜层的材料可以包括非金属,例如有机材料等。
本申请实施例提供的毫米波天线通过将电极层设置在掩膜层的各通孔内、第一平坦层的各通孔内和第一缓冲层的各通孔内,从而可以通过第一缓冲层、第一平坦层和掩膜层的通孔沿垂直于第一基板方向的厚度控制电极层沿垂直于第一基板方向的厚度、且通过第一缓冲层和第一平坦层的通孔沿平行于第一基板方向的宽度控制电极层沿平行于第一基板方向的宽度,以得到具有高深宽比的电极层,即毫米波天线中辐射图案和馈线均具有高深宽比,从而使得毫米波天线能够进行有效的辐射;同时使得极窄线宽的毫米波天线应用于电子设备,例如集成于显示装置中时,可以大大减小甚至消除对显示装置的显示功能的影响;并且,第一缓冲层可以改善电极层与后续膜层的粘附性;掩膜层可以作为掩膜版使用,简单易实现。
可选地,限定层还包括第一缓冲层,第一缓冲层设置在第一基板和第一平坦层之间;第一缓冲层和第一平坦层均具有多个通孔,电极层设置在第一平坦层的各通孔内和第一缓冲层的各通孔内。
本申请实施例提供的毫米波天线的制作方法中,通过将电极层设置在第一平坦层的各通孔内和第一缓冲层的各通孔内,从而使得一方面,可以通过第一缓冲层和第一平坦层的通孔沿垂直于第一基板方向的厚度控制电极层沿垂直于第一基板方向的厚度、且通过第一缓冲层和第一平坦层的通孔沿平行于第一基板方向的宽度控制电极层沿平行于第一基板方向的宽度,以得到具有高深宽比的电极层,即毫米波天线中辐射图案和馈线均具有高深宽比,从而使得毫米波天线能够进行有效的辐射;使得极窄线宽的毫米波天线应用于电子设备,例如集成在显示装置中时,可以大大减小甚至消除对显示装置的显示功能的影响;另一方面,第一缓冲层可以改善电极层与后续膜层的粘附性,同时可以防止电极层前膜层被过度刻蚀;又一方面,掩膜层主要作为掩膜版使用,可以无需额外使用其它掩膜版就实现膜层的图案化。
需要说明的是,参考图10所示,毫米波天线还包括设置在第一基板1远离限定层2一侧的第一保护层10,以及限定层2远离第一基板1一侧的封装层12、黏附层11、第二基板8和第二保护层9,封装层12设置在限定层2和黏附层11之间,黏附层11设置在封装层12和第二基板8之间,第二基 板8设置在黏附层11和第二保护层9之间。当然还可以去除第一基板1和第一保护层10。
图10所示的毫米波天线可以直接设置在显示装置中,显示装置还包括显示基板,图10所示的毫米波天线位于显示基板的出光侧、且电极层4靠近显示基板设置,此时毫米波天线正装,电极层4与显示基板之间的距离较近,可能会对毫米波天线辐射的电磁波有影响。
为了减小甚至消除显示基板对毫米波天线辐射的电磁波的影响,可以将图10所示的毫米波天线旋转成图11所示的毫米波天线,图11所示的毫米波天线位于显示基板的出光侧、且电极层4远离显示基板设置,此时毫米波天线倒装。由于电极层4与显示基板之间的距离较远,对毫米波天线辐射的电磁波的影响非常小。
本申请的实施例又提供了一种电子设备,包括上述毫米波天线。
上述电子设备适用于基于刚性基板、基于柔性基板的多种电路场景,这里不做具体限定。
本申请实施例提供的电子设备,一方面,由于电极层位于限定层的通孔内,可以通过限定层的通孔沿垂直于第一基板方向的厚度控制电极层沿垂直于第一基板方向的厚度、且通过限定层的通孔沿平行于第一基板方向的宽度控制电极层沿平行于第一基板方向的宽度,以得到具有高深宽比的电极层,即毫米波天线中辐射图案和馈线均具有高深宽比,从而使得毫米波天线能够进行有效的辐射;同时使得极窄线宽的毫米波天线应用于电子设备,例如集成在显示装置中时,可以大大减小甚至消除对显示装置的显示功能的影响;另一方面,辐射图案和馈线均为网格线状结构,能够有效提高电极层的透光率,使得该毫米波天线整体具有透光性优异的透明效果,透光率范围可以达到86-92%,更有利于应用在显示装置中。
可选地,参考图13-图16所示,电子设备包括显示装置,显示装置包括显示面板20,显示面板20包括显示基板201和上述毫米波天线TX,毫米波天线TX设置在显示基板201的出光侧。
上述显示基板可以包括LCD(Liquid Crystal Display,液晶显示基板);或者,可以包括OLED(Organic Light-Emitting Diode,有机发光二极管)显示基板,这里不做具体限定。
上述毫米波天线设置在显示基板的出光侧,由于该毫米波天线是透明的,从而不会影响显示基板的显示。
本申请实施例提供的电子设备中,毫米波天线具有高深宽比,从而使得毫米波天线能够进行有效的辐射;同时使得极窄线宽的毫米波天线应用于显示装置的出光侧,可以大大减小甚至消除对显示装置的显示功能的影响。
可选地,参考图13-图16所示,显示面板20还包括触控层202,触控层202设置在显示基板201和毫米波天线TX之间。
或者,参考图13-图16所示,触控层202设置在毫米波天线TX远离显示基板201的一侧。
上述触控层的结构不做限定,示例的,该触控层可以采用互容式触控结构,或者自容式触控结构。互容式触控结构或者自容式触控结构可以根据相关技术获得,这里不再详细说明。示例的,上述触控层的结构可以包括FMLOC(Flexible Multi-Layer On Cell,柔性多层结构)触控结构,该触控结构可以减小屏幕厚度,进而有利于折叠;同时没有贴合公差,可减小边框宽度。FMLOC结构可以根据相关技术获得,这里不再详细说明。
本申请实施例提供的电子设备由于具有触控层,该触控层并不影响天线的正常工作,还可以实现触控功能。
可选地,参考图13-图16所示,显示面板20还包括第一偏振单元203和盖板204;第一偏振单元203设置在毫米波天线TX远离显示基板201的一侧;盖板204设置在第一偏振单元203远离显示基板201的一侧。
这里对于上述第一偏振单元的材料、类型等均不做具体限定,示例的,上述第一偏振单元的材料可以包括PVA(聚乙烯醇)、PVC(聚氯乙烯)。示例的,上述第一偏振单元的类型可以包括线偏光片、光栅。
这里对于上述盖板的材料、结构等均不做具体限定,示例的,上述盖板的材料可以包括玻璃。示例的,上述盖板可以包括一层;或者,还可以包括多层。
本申请实施例提供的电子设备由于具有第一偏振单元,从而可以改变光线的偏振方向,以更好的实现显示。同时电子设备由于具有盖板,能够起到保护屏幕的作用,防止屏幕划伤。
需要说明的是,参考图13-图16所示,显示面板20还包括触控层202与毫米波天线TX之间的第一粘结层202,以及第一偏振单元203和盖板204之间的第二粘结层206,以实现相邻两层之间更好的粘结作用。这里对于上述第一粘结层和第二粘结层的材料不做具体限定,示例的,第一粘结层和第二粘结层的材料可以均包括高透明胶水,例如OCA(Optically Clear Adhesive, 光学胶)等。
并且,第一偏振单元也可以用作盖板。
参考图13所示,显示基板201为LCD,此时可以包括依次层叠设置的背光源31、第一玻璃基板32、液晶层33和第二玻璃基板34,此时构成了LCD屏上天线结构,该LCD可以为反射式LCD。
参考图14所示,显示基板201可以包括依次层叠设置的金属散热膜层35、第一玻璃基板32、OLED36和第二玻璃基板34,此时构成了刚性OLED屏上天线结构。
参考图15所示,显示基板201可以包括依次层叠设置的柔性衬底37和OLED36,OLED36通过第三粘结层207与触控层202粘结,此时构成了柔性OLED(外挂触控)屏上天线结构。
参考图16所示,显示基板201可以包括依次层叠设置的柔性衬底37和集成触控功能的OLED38,此时构成了柔性OLED(集成触控)屏上天线结构。
这里仅介绍与发明点相关的内容,其余结构可以参考相关技术获取,这里不再详细说明。
下面参考图17,具体介绍一种OLED(外挂触控)屏上天线结构。
参考图17所示,在PI衬底61上依次层叠设置了栅极62、栅绝缘层63、有源层64、源漏层65、第一平坦化层66、阳极67、像素界定层68、有机功能层69、阴极70、第一有机封装层71、无机封装层72、第二有机封装层73、第二缓冲层74、TSP触控层75(包括第一金属76和第二金属77)、第一OCA层78、透明毫米波天线层79、偏光片80、第二OCA层81和玻璃盖板82。
下面参考图18,具体介绍一种LCD屏上天线结构。
参考图18所示,在背光模组83上依次层叠设置了第二偏光片84、第一玻璃衬底85、栅极62、栅绝缘层63、有源层64、源漏层65、第一平坦化层66、第一ITO层86、第一配向膜87、液晶88和隔垫物93、第二配向膜89、第二ITO层90、彩膜层91和黑矩阵92、第二玻璃衬底93、TSP触控层75、第一OCA层78、透明毫米波天线层79、偏光片80、第二OCA层81和玻璃盖板82。
可选地,参考图20、图21和图23所示,显示装置还包括第一控制器41和第二控制器42,第一控制器41与显示基板201电连接、且被配置为控 制显示基板201;第二控制器42与毫米波天线TX电连接、且被配置为控制毫米波天线TX。
这里对于上述第一控制器和第二控制器的类型不做具体限定,示例的,上述第一控制器和第二控制器可以均包括芯片,例如FPC(Flexible Printed Circuit,柔性电路板)、PCB(Printed Circuit Boards,印刷电路板)等。
这里对于上述第一控制器与显示基板电连接的方式不做具体限定,示例的,上述第一控制器与显示基板可以直接电连接;或者,上述第一控制器与显示基板可以通过其它结构电连接。
这里对于上述第二控制器与毫米波天线电连接的方式不做具体限定,示例的,上述第二控制器与毫米波天线可以直接电连接;或者,上述第二控制器与毫米波天线可以通过其它结构电连接。
本申请实施例提供的显示装置中,第一控制器和第二控制器可以分别控制显示基板和毫米波天线工作,从而使得天线的射频芯片和连接板可以单独使用,不用和显示芯片集成(工艺不兼容),简单易实现。
可选地,参考图21和图22所示,显示面板包括显示区AA和与显示区相连的边框区BB,毫米波天线TX和显示基板201均位于显示区AA和边框区BB;第一控制器41与位于边框区BB的显示基板201绑定;毫米波天线TX还沿显示面板的边框区BB向远离显示区AA的方向延伸,毫米波天线TX延伸出显示面板的部分包括弯折区CC和非弯折区DD,弯折区CC位于非弯折区DD和显示面板的边框区BB之间;第二控制器42位于非弯折区DD、且与位于非弯折区DD的毫米波天线TX绑定。
上述显示区是指用于实现显示的区域,边框区一般用于设置驱动走线、驱动电路,例如:GOA(Gate Driver on Array,阵列基板行驱动)驱动电路或者用于设置屏内摄像头、听筒或扬声器等。
这里对于上述第一控制器与位于边框区的显示基板绑定的方式不做具体限定,示例的,上述第一控制器与位于边框区的显示基板可以直接绑定;或者,上述第一控制器与位于边框区的显示基板可以通过其它结构绑定。
上述弯折区是指显示装置可以实现弯折的区域。
由于透明毫米波天线位于显示发光一侧,天线的正常工作需要传输线进行馈电,因此必须对传输线进行弯折。示例的,以柔性OLED为例,显示和触控相关的线路均做在PI衬底上,可以很容易的弯折到显示面板的背侧。而本申请实施例提供的透明毫米波天线与显示基板、触控层均位于不同层, 因此需要单独对透明毫米波天线进行弯折。
本申请实施例提供的显示装置中,毫米波天线采用柔性基板,例如PI类高强度、高柔性、高透明材料构成的基板,可以进行小角度弯折,则在毫米波天线制作时就将弯折区加上,如图21所示,毫米波天线的制作区域远大于显示区AA,从显示区AA到边框区BB,从网格线状结构渐变为实体结构,显示区AA以外不要求透明,如此完成天线辐射区到传输区的过渡,在弯折区以外的地方可以进行绑定,以将传输线连接到第二控制器42上。
需要说明的是,位于显示AA区的毫米波天线为高透明的网格线状结构,在边框区BB的毫米波天线不做限定,例如可以为网格线状结构,也可以为实体结构。
可选地,参考图21所示,显示装置还包括接地层44,接地层设置在毫米波天线延伸出显示面板的部分靠近第一基板的一侧,接地层位于非弯折区和弯折区。
参考图21所示,毫米波天线TX中的电极层4还设置在第二控制器42上和毫米波天线TX延伸出显示面板的部分远离接地层4的一侧、且位于弯折区CC和非弯折区DD;电极层4被配置为能够与接地层44一起在弯折区CC进行弯折。
这里对于上述接地层的材料,不做具体限定,示例的,上述接地层的材料可以为金属。
本申请实施例提供的显示装置中,从显示区AA到边框区BB,毫米波天线从网格线状结构渐变为实体结构,如此完成天线辐射区到传输区的过渡,在弯折区以外的地方可以进行绑定,以将传输线连接到第二控制器上。另外,还可以通过接地层实现接地。
可选地,参考图23和图24所示,显示面板包括显示区AA和与显示区AA相连的边框区BB,毫米波天线TX和显示基板201均位于显示区AA和边框区BB;第一控制器41与位于边框区BB的显示基板201绑定;第二控制器42部分位于边框区BB、且与位于边框区BB的毫米波天线TX绑定。
这里对于上述第一控制器与位于边框区的显示基板绑定的方式不做具体限定,示例的,上述第一控制器与位于边框区的显示基板可以直接绑定;或者,上述第一控制器与位于边框区的显示基板可以通过其它结构绑定。
这里对于上述第二控制器与位于边框区的毫米波天线绑定的方式不做具体限定,示例的,上述第二控制器与位于边框区的毫米波天线可以直接绑 定;或者,上述第二控制器与位于边框区的毫米波天线可以通过其它结构绑定。
本申请实施例提供的显示装置中,毫米波天线采用刚性基板,例如COP类脆性不易弯折的材料构成的基板,无法弯折,则在毫米波天线制作时就不设置弯折区,如图23所示,毫米波天线的制作区域与显示区AA的大小基本相同,在边框区BB从网格线状结构渐变为实体结构,作为预留的绑定pad。传输线所用的第二控制器42单独制作,在绑定区将第二控制器42与毫米波天线的pad进行绑定,完成天线区到传输线区的过渡。
可选地,参考图23所示,第二控制器42的其余部分沿显示面板的边框区BB向远离显示区AA的方向延伸、且包括弯折区CC和非弯折区DD,弯折区CC位于非弯折区DD和显示面板的边框区BB之间。
参考图23所示,显示装置还包括接地层44,接地层44设置在第二控制器42靠近第一基板的一侧、且与边框区BB之间具有间隙,接地层44位于非弯折区DD和部分弯折区CC。
参考图23所示,毫米波天线TX中的电极层4还设置在第二控制器42远离接地层44的一侧、且位于弯折区CC和非弯折区DD,毫米波天线TX中的电极层4被配置为能够与第二控制器42的其余部分和接地层44一起在弯折区CC进行弯折。
这里对于上述接地层的材料,不做具体限定,示例的,上述接地层的材料可以为金属。
本申请实施例提供的显示装置中,从显示区AA到边框区BB,毫米波天线从网格线状结构渐变为实体结构,如此完成天线辐射区到传输区的过渡。在边框区BB可以进行绑定,以将传输线连接到第二控制器上。另外,还可以通过接地层实现接地。
本申请的实施例再提供了一种上述电子设备的驱动方法。
该驱动方法包括:
S01、第一控制器控制显示基板进行显示。
S02、第二控制器控制毫米波天线进行辐射。
本申请实施例提供的电子设备的驱动方法,第一控制器和第二控制器可以分别控制显示基板和毫米波天线工作,从而使得天线的射频芯片和连接板可以单独使用,不用和显示芯片集成(工艺不兼容),简单易实现。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本 申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (29)

  1. 一种毫米波天线的制作方法,其中,包括:
    提供第一基板;
    在所述第一基板上形成限定层;
    对所述限定层进行处理,以使得所述限定层具有多个通孔;
    在所述限定层的各所述通孔内形成电极层;其中,所述电极层包括辐射图案和馈线,所述辐射图案和所述馈线均包括网格线状结构。
  2. 根据权利要求1所述的毫米波天线的制作方法,其中,所述在所述第一基板上形成限定层包括:
    在所述第一基板上至少形成第一平坦层;
    所述对所述限定层进行处理,以使得所述限定层具有多个通孔包括:
    至少对所述第一平坦层进行处理,以使得所述第一平坦层具有多个通孔;
    所述在所述限定层的各所述通孔内形成电极层包括:
    至少在所述第一平坦层的各所述通孔内形成所述电极层。
  3. 根据权利要求2所述的毫米波天线的制作方法,其中,所述在所述第一基板上至少形成第一平坦层包括:
    在所述第一基板上形成所述第一平坦层;
    所述至少对所述第一平坦层进行处理,以使得所述第一平坦层具有多个通孔包括:
    对所述第一平坦层进行处理,以使得所述第一平坦层具有多个通孔;
    所述至少在所述第一平坦层的各所述通孔内形成所述电极层包括:
    在所述第一平坦层的各所述通孔内形成所述电极层。
  4. 根据权利要求2所述的毫米波天线的制作方法,其中,所述在所述第一基板上至少形成第一平坦层包括:
    在所述第一基板上形成第一缓冲层;
    在所述第一缓冲层上形成所述第一平坦层;
    在所述第一平坦层上形成掩膜层;
    所述至少对所述第一平坦层进行处理,以使得所述第一平坦层具有多个通孔包括:
    至少同时对所述第一缓冲层、所述第一平坦层和所述掩膜层中的两者进行处理,以使得所述第一缓冲层、所述第一平坦层和所述掩膜层均 具有多个通孔;
    所述至少在所述第一平坦层的各所述通孔内形成所述电极层包括:
    至少在所述第一缓冲层的各所述通孔内和所述第一平坦层的各所述通孔内形成所述电极层。
  5. 根据权利要求4所述的毫米波天线的制作方法,其中,所述至少同时对所述第一缓冲层、所述第一平坦层和所述掩膜层中的两者进行处理,以使得所述第一缓冲层、所述第一平坦层和所述掩膜层均具有多个通孔包括:
    同时依次对所述掩膜层、所述第一平坦层和所述第一缓冲层进行处理,以使得所述掩膜层、所述第一平坦层和所述第一缓冲层均具有多个通孔;
    所述至少在所述第一缓冲层的各所述通孔内和所述第一平坦层的各所述通孔内形成所述电极层包括:
    在所述掩膜层的各通孔内、所述第一平坦层的各所述通孔内和所述第一缓冲层的各所述通孔内形成所述电极层。
  6. 根据权利要求5所述的毫米波天线的制作方法,其中,所述掩膜层的材料包括非金属。
  7. 根据权利要求4所述的毫米波天线的制作方法,其中,所述至少同时对所述第一缓冲层、所述第一平坦层和所述掩膜层中的两者进行处理,以使得所述第一缓冲层、所述第一平坦层和所述掩膜层均具有多个通孔包括:
    对所述掩膜层进行处理,以使得所述掩膜层具有多个通孔;
    同时依次对所述第一平坦层和所述第一缓冲层进行处理,以使得所述第一平坦层和所述第一缓冲层均具有多个通孔;
    所述至少在所述第一缓冲层的各所述通孔内和所述第一平坦层的各所述通孔内形成所述电极层包括:
    去除所述掩膜层;
    在所述第一平坦层的各所述通孔内和所述第一缓冲层的各所述通孔内形成所述电极层。
  8. 根据权利要求4所述的毫米波天线的制作方法,其中,所述至少同时对所述第一缓冲层、所述第一平坦层和所述掩膜层中的两者进行处理,以使得所述第一缓冲层、所述第一平坦层和所述掩膜层均具有多 个通孔包括:
    同时依次对所述掩膜层、所述第一平坦层和所述第一缓冲层进行处理,以使得所述掩膜层、所述第一平坦层和所述第一缓冲层分别具有多个通孔;
    所述至少在所述第一缓冲层的各所述通孔内和所述第一平坦层的各所述通孔内形成所述电极层包括:
    去除所述掩膜层;
    在所述第一平坦层的各所述通孔内和所述第一缓冲层的各所述通孔内形成所述电极层。
  9. 根据权利要求7或8所述的毫米波天线的制作方法,其中,所述掩膜层的材料包括金属。
  10. 根据权利要求1所述的毫米波天线的制作方法,其中,在所述提供第一基板之后、且所述在所述第一基板上形成限定层之前,所述制作方法还包括:
    在所述第一基板上形成面种子层。
  11. 根据权利要求10所述的毫米波天线的制作方法,其中,所述在所述限定层的各所述通孔内形成电极层之后,所述制作方法还包括:
    在所述电极层上形成第二平坦层。
  12. 根据权利要求11所述的毫米波天线的制作方法,其中,所述在所述电极层上形成第二平坦层之后,所述制作方法还包括:
    在所述第二平坦层上形成第二基板。
  13. 根据权利要求12所述的毫米波天线的制作方法,其中,在所述提供第一基板之后、且所述在所述第一基板上形成面种子层之前,所述制作方法还包括:
    在所述第一基板上形成剥离层;
    所述在所述第二平坦层上形成第二基板之后,所述制作方法还包括:
    去除所述剥离层和所述第一基板。
  14. 根据权利要求12所述的毫米波天线的制作方法,其中,所述在所述第二平坦层上形成第二基板之后,所述制作方法还包括:
    在所述第二基板上形成第二保护层。
  15. 一种如权利要求1-14任一项所述的毫米波天线的制作方法制作的毫米波天线,其中,包括:
    第一基板;
    限定层,设置在所述第一基板上,所述限定层具有多个通孔;
    电极层,设置在所述限定层的各所述通孔内;所述电极层包括辐射图案和馈线,所述辐射图案和所述馈线均包括网格线状结构。
  16. 根据权利要求15所述的毫米波天线,其中,所述限定层至少包括第一平坦层;
    所述第一平坦层具有多个通孔,所述电极层至少设置在所述第一平坦层的各所述通孔内。
  17. 根据权利要求16所述的毫米波天线,其中,所述限定层包括第一平坦层;
    所述第一平坦层具有多个通孔,所述电极层设置在所述第一平坦层的各所述通孔内。
  18. 根据权利要求16所述的毫米波天线,其中,所述限定层还包括第一缓冲层和掩膜层,所述第一缓冲层设置在所述第一基板和所述第一平坦层之间,所述掩膜层设置在所述第一平坦层远离所述第一基板的一侧;
    所述第一缓冲层、所述第一平坦层和所述掩膜层均具有多个通孔,所述电极层设置在所述掩膜层的各通孔内、所述第一平坦层的各所述通孔内和所述第一缓冲层的各所述通孔内。
  19. 根据权利要求16所述的毫米波天线,其中,所述限定层还包括第一缓冲层,所述第一缓冲层设置在所述第一基板和所述第一平坦层之间;
    所述第一缓冲层和所述第一平坦层均具有多个通孔,所述电极层设置在所述第一平坦层的各所述通孔内和所述第一缓冲层的各所述通孔内。
  20. 一种电子设备,其中,包括权利要求15-19任一项所述的毫米波天线。
  21. 根据权利要求20所述的电子设备,其中,所述电子设备包括显示装置,所述显示装置包括显示面板,所述显示面板包括显示基板和权利要求15-19任一项所述的毫米波天线,所述毫米波天线设置在所述显示基板的出光侧。
  22. 根据权利要求21所述的电子设备,其中,所述显示面板还包 括触控层,所述触控层设置在所述显示基板和所述毫米波天线之间;
    或者,所述触控层设置在所述毫米波天线远离所述显示基板的一侧。
  23. 根据权利要求21所述的电子设备,其中,所述显示面板还包括第一偏振单元和盖板;
    所述第一偏振单元设置在所述毫米波天线远离所述显示基板的一侧;
    所述盖板设置在所述第一偏振单元远离所述显示基板的一侧。
  24. 根据权利要求21所述的电子设备,其中,所述显示装置还包括第一控制器和第二控制器,所述第一控制器与所述显示基板电连接、且被配置为控制所述显示基板;
    所述第二控制器与所述毫米波天线电连接、且被配置为控制所述毫米波天线。
  25. 根据权利要求24所述的电子设备,其中,所述显示面板包括显示区和与所述显示区相连的边框区,所述毫米波天线和所述显示基板均位于所述显示区和所述边框区;
    所述第一控制器与位于所述边框区的所述显示基板绑定;
    所述毫米波天线还沿所述显示面板的所述边框区向远离所述显示区的方向延伸,所述毫米波天线延伸出所述显示面板的部分包括弯折区和非弯折区,所述弯折区位于所述非弯折区和所述显示面板的所述边框区之间;所述第二控制器位于所述非弯折区、且与位于所述非弯折区的所述毫米波天线绑定。
  26. 根据权利要求25所述的电子设备,其中,所述显示装置还包括接地层,所述接地层设置在所述毫米波天线延伸出所述显示面板的所述部分靠近所述第一基板的一侧,所述接地层位于所述非弯折区和所述弯折区;
    所述毫米波天线中的所述电极层还设置在所述第二控制器上和所述毫米波天线延伸出所述显示面板的所述部分远离所述接地层的一侧、且位于所述弯折区和所述非弯折区;所述电极层被配置为能够与所述接地层一起在所述弯折区进行弯折。
  27. 根据权利要求24所述的电子设备,其中,所述显示面板包括显示区和与所述显示区相连的边框区,所述毫米波天线和所述显示基板均位于所述显示区和所述边框区;
    所述第一控制器与位于所述边框区的所述显示基板绑定;
    所述第二控制器部分位于所述边框区、且与位于所述边框区的所述毫米波天线绑定。
  28. 根据权利要求27所述的电子设备,其中,所述第二控制器的其余部分沿所述显示面板的所述边框区向远离所述显示区的方向延伸、且包括弯折区和非弯折区,所述弯折区位于所述非弯折区和所述显示面板的所述边框区之间;
    所述显示装置还包括接地层,所述接地层设置在所述第二控制器靠近所述第一基板的一侧、且与所述边框区之间具有间隙,所述接地层位于所述非弯折区和部分所述弯折区;
    所述毫米波天线中的所述电极层还设置在所述第二控制器远离所述接地层的一侧、且位于所述弯折区和所述非弯折区,所述毫米波天线中的所述电极层被配置为能够与所述第二控制器的所述其余部分和所述接地层一起在所述弯折区进行弯折。
  29. 一种如权利要求21-28任一项所述的电子设备的驱动方法,其中,所述驱动方法包括:
    所述第一控制器控制所述显示基板进行显示;
    所述第二控制器控制所述毫米波天线进行辐射。
PCT/CN2022/127399 2022-10-25 2022-10-25 毫米波天线及其制作方法、电子设备及其驱动方法 WO2024087018A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/127399 WO2024087018A1 (zh) 2022-10-25 2022-10-25 毫米波天线及其制作方法、电子设备及其驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/127399 WO2024087018A1 (zh) 2022-10-25 2022-10-25 毫米波天线及其制作方法、电子设备及其驱动方法

Publications (1)

Publication Number Publication Date
WO2024087018A1 true WO2024087018A1 (zh) 2024-05-02

Family

ID=90829773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127399 WO2024087018A1 (zh) 2022-10-25 2022-10-25 毫米波天线及其制作方法、电子设备及其驱动方法

Country Status (1)

Country Link
WO (1) WO2024087018A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102292873A (zh) * 2008-12-12 2011-12-21 南洋理工大学 栅格阵列天线及其集成结构
US20190020114A1 (en) * 2017-07-14 2019-01-17 Apple Inc. Millimeter Wave Patch Antennas
CN110676578A (zh) * 2019-10-18 2020-01-10 Oppo广东移动通信有限公司 毫米波天线及电子设备
CN210270841U (zh) * 2019-08-05 2020-04-07 维沃移动通信有限公司 一种显示面板和终端设备
CN112993525A (zh) * 2021-02-03 2021-06-18 维沃移动通信有限公司 显示装置及电子设备
WO2021147945A1 (zh) * 2020-01-22 2021-07-29 京东方科技集团股份有限公司 天线单元及其制备方法、显示装置以及电子设备
WO2021251169A1 (ja) * 2020-06-12 2021-12-16 Agc株式会社 ディスプレイモジュール
CN114204286A (zh) * 2022-02-15 2022-03-18 云谷(固安)科技有限公司 集成天线的显示屏、显示装置和电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102292873A (zh) * 2008-12-12 2011-12-21 南洋理工大学 栅格阵列天线及其集成结构
US20190020114A1 (en) * 2017-07-14 2019-01-17 Apple Inc. Millimeter Wave Patch Antennas
CN210270841U (zh) * 2019-08-05 2020-04-07 维沃移动通信有限公司 一种显示面板和终端设备
CN110676578A (zh) * 2019-10-18 2020-01-10 Oppo广东移动通信有限公司 毫米波天线及电子设备
WO2021147945A1 (zh) * 2020-01-22 2021-07-29 京东方科技集团股份有限公司 天线单元及其制备方法、显示装置以及电子设备
WO2021251169A1 (ja) * 2020-06-12 2021-12-16 Agc株式会社 ディスプレイモジュール
CN112993525A (zh) * 2021-02-03 2021-06-18 维沃移动通信有限公司 显示装置及电子设备
CN114204286A (zh) * 2022-02-15 2022-03-18 云谷(固安)科技有限公司 集成天线的显示屏、显示装置和电子设备

Similar Documents

Publication Publication Date Title
US20190189639A1 (en) Substrate and manufacturing method thereof and display device
EP3680759A1 (en) Touch substrate and preparation method therefor, and display panel
WO2018000849A1 (zh) 触控基板及其制作方法、触摸屏
US10073572B2 (en) Conductive structure and preparation method therefor
US11415843B2 (en) Display panel and liquid crystal display device
KR20140014843A (ko) 터치 패널의 투명전극 필름 및 그 제조 방법, 터치 패널의 투명전극 필름을 포함하는 터치패널
KR102127545B1 (ko) 전도성 구조체, 이의 제조방법 및 전도성 구조체를 포함하는 전극
CN109065764A (zh) 显示面板的制造方法及显示面板
CN215989229U (zh) 天线堆叠结构和包括天线堆叠结构的显示装置
WO2022022094A1 (zh) 显示面板及显示装置
CN112505964B (zh) 发光基板及其制备方法、显示装置
WO2020199300A1 (zh) 一种显示面板及其制作方法、显示装置
US9899221B2 (en) Method for preparing electrode
WO2021051641A1 (zh) 显示面板及显示装置
US11428996B2 (en) Display device
WO2024087018A1 (zh) 毫米波天线及其制作方法、电子设备及其驱动方法
WO2021042573A1 (zh) 柔性发光面板、柔性发光面板的制备方法及显示设备
CN112909200A (zh) 显示面板及显示面板的制备方法
CN113093937A (zh) 触控模组及其制作方法、电子设备
CN110808268A (zh) 一种基板及其制备方法、显示面板、显示器
WO2024192547A1 (zh) 透明天线及其制作方法、电子设备及其驱动方法
CN210181570U (zh) 具有偏光和触控功能的显示屏
CN117099261A (zh) 图像显示装置用层叠体和图像显示装置
US20070008478A1 (en) Driving circuit, method, and display device having the same
CN112002704A (zh) 柔性显示面板及其制备方法与柔性显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963005

Country of ref document: EP

Kind code of ref document: A1