WO2021251169A1 - ディスプレイモジュール - Google Patents

ディスプレイモジュール Download PDF

Info

Publication number
WO2021251169A1
WO2021251169A1 PCT/JP2021/020288 JP2021020288W WO2021251169A1 WO 2021251169 A1 WO2021251169 A1 WO 2021251169A1 JP 2021020288 W JP2021020288 W JP 2021020288W WO 2021251169 A1 WO2021251169 A1 WO 2021251169A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
transparent
amc
periodic structure
antenna
Prior art date
Application number
PCT/JP2021/020288
Other languages
English (en)
French (fr)
Inventor
康夫 森本
健 茂木
翔 熊谷
文範 渡辺
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2022530131A priority Critical patent/JPWO2021251169A1/ja
Publication of WO2021251169A1 publication Critical patent/WO2021251169A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures

Definitions

  • the present invention relates to a display module including an antenna and an artificial magnetic conductor.
  • 5th generation mobile communication systems (5G), 6th generation mobile communication systems (6G), and the like have been developed as communication technologies for mobile communication devices such as smartphones, tablets, mobile phones, and laptop computers.
  • millimeter waves which are the 5G frequency band, have strong directivity, a relatively short reach, and are easily shielded by metal, etc. Therefore, as antennas for 5G, displays (OLED, LCD, LED) and touch panels (OLED, LCD, LED) and touch panels (A technique for arranging a transparent antenna on a display-integrated fine metal wire panel (including a display-integrated fine wire panel) has been proposed.
  • AMC Artificial Magnetic Conductor
  • AMC is composed of periodic structural layers.
  • the AMC includes an AMC composed of only a periodic structure and an AMC composed of two layers, one on the front and one on the back of the background layer. It is known that an AMC composed of two layers, a periodic structure layer and a background layer, has better reflection performance of an antenna as a magnetic wall than an AMC composed only of a periodic structure.
  • AMC composed of two layers, a periodic structure layer and a background layer, has a vertically conducting structure with vias that magnetically connects the periodic structure layer and the background layer, and a vertically non-conducting structure without vias.
  • the AMC having a vertical penetration structure is complicated to manufacture and requires a large number of manufacturing man-hours.
  • the total thickness including the AMC, the antenna, and the display tends to be large, and there is a problem that the total thickness is suppressed. was there.
  • the present invention provides a display module capable of significantly suppressing the gain loss of the antenna and minimizing the increase in the laminated thickness due to the artificial magnetic conductor while containing the artificial magnetic conductor which is not complicated to manufacture. With the goal.
  • the display module is With the display A transparent substrate arranged on the upper side of the display and a transparent antenna having an antenna pattern formed on the transparent substrate.
  • An artificial magnetic conductor placed in the layer below the transparent antenna, Equipped with The artificial magnetic conductor is Includes periodic structural layers and background conductors
  • the antenna pattern of the transparent antenna and the periodic structure layer of the artificial magnetic conductor are composed of a mesh-like conductor, and the mesh-like conductor has a wiring width of 5 ⁇ m or less and transmits 70% or more in visible light. It is composed of transparent conductors whose wiring pitch is determined so that the rate can be obtained.
  • the distance from the antenna pattern of the transparent antenna to the periodic structure layer of the artificial magnetic conductor is h1.
  • the distance from the periodic structure layer to the background conductor in the artificial magnetic conductor is h2, There is a relationship of h1 ⁇ h2.
  • the gain loss of the antenna can be significantly suppressed, and the increase in the stacking thickness due to the artificial magnetic conductor can be minimized while containing the artificial magnetic conductor which is not complicated to manufacture.
  • FIG. 2 is a sectional view taken along the line AA of the electronic device of FIG.
  • the cross-sectional exploded view which shows the display module which concerns on 1st Embodiment of this invention.
  • Explanatory diagram of the reflection of electromagnetic waves of a metal conductor Explanatory drawing of the reflection of the electromagnetic wave of AMC.
  • Explanatory drawing of the transparent antenna provided with the periodic structure layer which concerns on 1st Embodiment of this invention.
  • Explanatory drawing of the transparent conductor constituting the antenna pattern and the periodic structure layer of this invention Explanatory drawing of general vertical conduction type AMC. Explanatory drawing of general vertical non-conduction type AMC. Explanatory drawing of AMC which is a vertical non-conducting type and has a patch type periodic structure. Explanatory drawing of AMC which is a vertical non-conducting type and has a hole type periodic structure. The figure which shows the modification of the resonance element of the periodic structure layer of AMC of this invention. Schematic diagram of the sensor pattern of a general projection type capacitance type touch panel. The figure which shows an example of the sectional view of the touch panel.
  • FIG. 1 Schematic diagram of a pseudo AMC composed of one floating conductor, an adhesive layer, and a metal conductor imitating a touch panel. It is a figure which shows the characteristic value of the parameter of the reflection amplitude when the resistance value of a metal conductor is changed from 0 to 2.4 ⁇ / sq in the pseudo AMC of FIG. It is a figure which shows the characteristic value of the parameter of the reflection amplitude when the resistance value of a metal conductor is changed from 2.8 to 10 ⁇ / sq in the pseudo AMC of FIG. It is a figure which shows the characteristic value of the parameter of the reflection phase when the resistance value of a metal conductor is changed from 0 to 2.4 ⁇ / sq in the pseudo AMC of FIG.
  • the cross-sectional exploded view which shows the display module which concerns on the modification of 1st Embodiment of this invention.
  • the sectional view which shows the display module which concerns on 2nd Embodiment of this invention. Sectional drawing of the display panel which concerns on 2nd Embodiment.
  • FIG. 3 is an exploded cross-sectional view showing a display module according to a third embodiment of the present invention.
  • the cross-sectional exploded view which shows the display module which concerns on the modification 1 of the 3rd Embodiment of this invention.
  • the cross-sectional exploded view which shows the display module which concerns on the modification 2 of the 3rd Embodiment of this invention.
  • the cross-sectional exploded view which shows the display module which concerns on the modification 3 of the 3rd Embodiment of this invention.
  • the cross-sectional exploded view which shows the display module which concerns on 4th Embodiment of this invention.
  • the cross-sectional exploded view which shows the display module which concerns on the modification of 4th Embodiment of this invention.
  • FIG. 5 is an exploded cross-sectional view showing a display module according to a fifth embodiment of the present invention.
  • the transparent antenna mounted on the display module of the present invention is applicable to the 5th generation mobile communication system (5G) as an example.
  • one frequency band is 24.2 to 29.5GHz
  • the second frequency band is 37.3 to 40GHz
  • the third frequency band is the so-called Sub6 band (5G 6GHz or less band). It is 1.0 to 5.0 GHz called. Therefore, the transparent antenna included in the display module of the present invention is set to resonate in at least one of the above three frequency bands in the 5G band.
  • the display modules according to the present invention will be described in the order shown below.
  • 1. Electronic equipment equipped with a display module 2-1.
  • 3. Measurement model configuration and characteristics of the antenna alone, the pseudo display module with AMC, and the pseudo display module of the comparative example.
  • Display module 1A according to a modification of the first embodiment of the present invention. 5-1.
  • Display panel configuration 5-3 Display module 2A according to a modification of the second embodiment of the present invention. 6-1.
  • Display module 4A according to a modification of the fourth embodiment of the present invention. 8.
  • FIG. 2 is an overall view of the electronic device 200 mounted on the display module 1 of the present invention and a diagram showing the position of the transparent antenna 100.
  • FIG. 3 is a cross-sectional view taken along the A side of the electronic device 200 of FIG.
  • the X direction is the horizontal direction of the electronic device 200
  • the Y direction is the vertical direction of the electronic device 200
  • the Z direction is the height direction of the electronic device 200.
  • the XYZ coordinate system will be defined and described.
  • the plan view refers to the XY plane view, and the vertical direction with the + Z direction side as the upper side and the ⁇ Z direction side as the lower side and the lateral direction (side) with respect to the vertical direction are used. However, it does not represent the universal vertical and horizontal directions.
  • the X direction, the Y direction, and the Z direction represent a direction parallel to the X axis, a direction parallel to the Y axis, and a direction parallel to the Z axis, respectively.
  • the X, Y, and Z directions are orthogonal to each other.
  • the XY plane, the YZ plane, and the ZX plane represent a virtual plane parallel to the X direction and the Y direction, a virtual plane parallel to the Y direction and the Z direction, and a virtual plane parallel to the Z direction and the X direction, respectively.
  • the electronic device 200 is, for example, an information processing terminal such as a smartphone, a tablet computer, or a notebook type PC (Personal Computer). Further, the electronic device 200 is not limited to these, for example, a structure such as a pillar or a wall, a digital signage, an electronic device including a display panel in a train, an electronic device including various display panels in a vehicle, and the like. It may be.
  • an information processing terminal such as a smartphone, a tablet computer, or a notebook type PC (Personal Computer).
  • the electronic device 200 is not limited to these, for example, a structure such as a pillar or a wall, a digital signage, an electronic device including a display panel in a train, an electronic device including various display panels in a vehicle, and the like. It may be.
  • a display module 1 capable of executing a display function is arranged on the entire upper surface of the electronic device 200 or at least a part of the upper surface.
  • the transparent antenna 100 of the present invention is arranged on the upper side of the touch panel 230 on the display panel 220.
  • the transparent antenna 100 of the present invention is visible from the outside of the electronic device 200 through the transparent cover 240, and is transparent so that the display panel 220 can be visually recognized from the outside through the transparent antenna 100.
  • the display panel 220, the touch panel 230, the transparent antenna 100, and the transparent cover 240 are collectively referred to as a display module 1 (also referred to as a display module).
  • the electronic device 200 includes a housing 210, a wiring board 250, electronic components 260A, 260B, 260C, 260D, a battery 270, and the like.
  • the electronic device 200 on which the transparent antenna 100 is mounted is a smartphone, but the electronic device on which the transparent antenna of the present invention is mounted includes a housing 210, a transparent cover 240, and the like. And, as long as it is an electronic device including the display panel 220, other configurations may be used. Further, the electronic device 200 may be a device without the touch panel 230.
  • the housing 210 is, for example, a metal and / or resin case, and covers the lower surface side and the side surface side of the electronic device 200.
  • the housing 210 has an opening end 211 that is the upper end of the peripheral wall, and a transparent cover 240 is attached to the opening end 211.
  • the housing 210 has a storage portion 212 which is an internal space communicating with the opening end 211, and the storage portion 212 houses a wiring board 250, electronic components 260A to 260D, a battery 270, and the like.
  • the transparent cover 240 which is an example of the cover glass, is a transparent glass plate provided on the uppermost surface, and has a size matched to the open end 211 of the housing 210 in a plan view.
  • the transparent cover 240 is a glass plate having a shape in which most of the transparent cover 240 is flat and both ends in the lateral direction (+-Y direction) are gently curved downward, but the transparent cover 240 is flat in the lateral direction. It may be a glass plate.
  • the transparent cover 240 may have a shape in which both ends are gently curved downward even in the vertical direction (+ ⁇ X direction) of the electronic device 200.
  • the transparent cover 240 may be made of resin.
  • the transparent cover 240 By attaching the transparent cover 240 to the open end 211 of the housing 210, the storage portion 212 of the housing 210 is sealed.
  • the upper surface of the transparent cover 240 is an example of the outer surface of the transparent cover 240, and the lower surface of the transparent cover 240 is an example of the inner surface of the transparent cover 240.
  • a transparent antenna 100 and a touch panel 230 are provided on the inner surface side of the transparent cover 240. Since the transparent cover 240 is transparent, the touch panel 230 and the display panel 220 provided inside can be seen from the outside of the electronic device 200 via the transparent cover 240.
  • Electronic components 260A to 260C are mounted on the wiring board 250.
  • a feeding line or the like extending from the feeding portion of the transparent antenna is connected to the wiring board 250.
  • the wiring board 250 and the feeding portion of the transparent antenna 100 may be connected by using a connector, an ACF (Anisotropic Conductive Film), or the like, or may be connected by using other components.
  • the electronic component 260A is a communication module that is connected to the feeding portion of the transparent antenna 100 via the wiring of the wiring board 250 and processes a signal transmitted or received via the transparent antenna 100.
  • the central electronic component 260B is, for example, a camera.
  • the electronic parts 260C and 260D are, for example, parts that perform information processing related to the operation of the electronic device 200, and are, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like. It is realized by a computer including HDD (Hard Disk Drive), input / output interface, internal bus, etc.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • HDD Hard Disk Drive
  • the battery 270 is a rechargeable secondary battery and supplies electric power necessary for the operation of the display module 1, the electronic components 260A to 260D, and the like.
  • FIG. 4 is an exploded cross-sectional view of the display module 1.
  • the display module 1 has a first adhesive layer 281, a polarizing plate 291 and a second adhesive layer between the touch panel 230 and the transparent cover 240. Has 282.
  • the first adhesive layer 281 and the second adhesive layer 282 are composed of a transparent optical adhesive OCA (Optical Clear Adhesive).
  • the transparent antenna 100 of the present embodiment is provided between the first adhesive layer 281 and the polarizing plate 291.
  • the transparent antenna 100 has a transparent substrate 101 and an antenna pattern 110 formed on the upper surface of the transparent substrate 101. Further, a periodic structure layer 410 is formed on the lower surface of the transparent substrate 101.
  • the electrode layer 301 which is a part of the touch panel 230, is regarded as the background layer of the AMC.
  • the artificial magnetic conductor (AMC) 400 is configured by the periodic structure layer 410 sandwiching the first adhesive layer 281 and the electrode layer 301 of the touch panel 230 functioning as a background layer. There is.
  • a normal metal conductor reflects the electromagnetic wave by inverting the phase of the electromagnetic wave by 180 degrees as shown in FIG. 5A.
  • the radiation of the antenna and the reflected wave reflected by the metal interfere with each other, and the strength of the radio wave is lowered.
  • the artificial magnetic conductor is a conductor layer that reflects electromagnetic waves at a phase of about 0 degrees (that is, reflects them in the same phase) and amplifies the reflected waves in the vicinity of the reflecting surface, as shown in FIG. 5B. Therefore, if an AMC having a periodic structure layer is provided close to the antenna, the adverse effect of the antenna characteristics due to the metal conductor can be suppressed.
  • the touch panel 230 is a "metal thin wire layer for an on-cell touch panel".
  • "on-cell” refers to a structure in which an electrode layer is directly formed on the surface of the display panel 220, instead of attaching a touch panel formed on a substrate independent of the display panel 220.
  • the touch panel 230 may be a non-on-cell touch panel metal thin wire (wiring layer) in which a touch panel formed on an independent substrate is adhered to the display panel 220.
  • the touch panel 230 includes an electrode layer 301, and the electrode layer 301 functions as a background conductor of the AMC 400.
  • the display panel (display) 220 is, for example, a liquid crystal display panel, an organic EL (Electro-luminescence), or an OLED (Organic Light Emitting Diode) display panel, and is arranged at the bottom of the display module 1 in any configuration. Ru.
  • the periodic structure layer 410 and the antenna pattern 110 may be partially installed with respect to the transparent substrate 101. Further, the periodic structure layer is installed so as to include at least the antenna portion of the antenna pattern 110 in vertical view.
  • the transparent substrate 101 may extend over the entire surface of the display or may be partially provided in a vertical view. When the transparent substrate covers the entire surface of the display, the thickness can be made uniform and the generation of airlines due to the step can be suppressed.
  • the touch panel 230, the first adhesive layer 281 and the polarizing plate are more likely to be provided in the area where the transparent antenna 100 is provided than the other parts.
  • the 291 and / and the second adhesive layer 282 may be thinned, or the structure may be such that the first adhesive layer 281, the polarizing plate 291 and / and the second adhesive layer 282 are not provided. As a result, in the display module 1, it is possible to prevent only the portion of the transparent antenna 100 from rising.
  • the thickness of the transparent antenna 100 is preferably 300 ⁇ m or less, more preferably 150 ⁇ m or less, and particularly preferably 100 ⁇ m or less. Further, from the viewpoint of ease of handling, the thickness of the transparent antenna 100 is preferably 10 ⁇ m or more, more preferably 50 ⁇ m or more.
  • the display module 1 shows an example in which both ends in the + and Y directions are gently curved, but the display module 1 has a planar shape in which the ends do not bend. There may be. In that case, the transparent antenna 100 may also have a planar shape. When the transparent antenna 100 has a partially curved surface, the feeding region described later has a curved surface shape.
  • the inventors have found that in artificial magnetic conductors (AMCs), the distance between the periodic structure layer and the background conductor is electrically better. It was also found that even if the periodic structure layer of the antenna and the AMC is provided close to the antenna, there is not much adverse effect.
  • AMCs artificial magnetic conductors
  • the distance from the antenna pattern 110 of the transparent antenna 100 to the periodic structure layer 410 of the AMC (artificial magnetic conductor) 400 is h1
  • the distance from the periodic structure layer 410 to the background conductor 301 in the AMC 400 is h2.
  • the relationship of h1 ⁇ h2 is set.
  • h1 corresponds to the thickness of the transparent substrate 101 of the transparent antenna 100.
  • h2 will be described later together with FIG.
  • the periodic structure layer of AMC400 is formed on the back surface of the antenna substrate (transparent substrate 101), and the background conductor of AMC400 is a part (electrode layer 301) of the touch panel 230 of the metal thin wire layer.
  • the display module 1 simply provides the periodic structure layer 410 under the transparent antenna 100 without adding a substrate. , The function of AMC400 can be added. Therefore, the display module 1 according to the present embodiment can avoid an increase in the laminated thickness while containing an artificial magnetic conductor (AMC) capable of suppressing the gain loss of the antenna.
  • AMC artificial magnetic conductor
  • FIG. 6 is a perspective view of the transparent antenna 100 provided with the periodic structure layer of AMC on the lower surface according to the first embodiment of the present invention.
  • 7A and 7B are explanatory views of the transparent antenna 100 according to the first embodiment, FIG. 7A is a top view seen from the + Z direction, and FIG. 7B is a bottom view seen from the ⁇ Z direction. Even when a part of the transparent antenna 100 is arranged along the curve as shown in FIG. 2, FIG. 6 shows the state before the transparent antenna 100 is bent parallel to the XY plane.
  • the transparent antenna 100 has a transparent substrate 101, and an antenna pattern 110 is provided on the transparent substrate 101.
  • the antenna pattern 110 of this configuration is an example of a dipole type antenna.
  • the antenna feeding line is not shown, and the ideal antenna feeding line is ideally fed.
  • the transparent substrate (also referred to as a transparent substrate or a transparent substrate) 101 is a flexible substrate made of polyimide as an example, and can be bent in the Z direction and / or the X direction. Further, the transparent substrate 101 is colorless and transparent, and is an insulating material substrate.
  • the antenna pattern 110 of this configuration is composed of one linear element that passes through the center of the Y direction and extends in the Y direction.
  • the antenna pattern 110 is provided on the + Z side, which is the upper surface side of the transparent substrate 101.
  • the conductor length of the antenna pattern 110 is L110
  • the wavelength on the transparent substrate 101 at the resonance frequency f1 (28 GHz) of the transparent antenna 100 is ⁇ 01
  • L110 is set to an odd multiple of about 0.5 ⁇ 01. Therefore, when it is desired to improve the antenna gain in the frequency band f1, the conductor length L110 of the linear element of the antenna pattern 110 may be adjusted within ⁇ 10% of, for example, about 4.0 mm.
  • a plurality of conductive patterns P1 to P9 are periodically provided on the lower surface of the transparent substrate 101, and the conductive patterns P1 to P9 are periodically provided in this way.
  • the periodic structure layer 410 of AMC400 as a periodic floating conductor (resonant element).
  • the periodic structure layer 410 of the AMC 400 and the antenna pattern 110 of the transparent antenna 100 can be collectively formed.
  • FIG. 8 is an explanatory diagram of the transparent conductor 80 of the present invention.
  • the transparent conductor 80 is formed on the surface (upper surface and lower surface) of the transparent substrate 101, and is used as an example to constitute the antenna pattern 110 and the periodic structure layer 410 shown in FIGS. 6, 7A and 7B.
  • the transparent conductor 80 is a conductor whose light transmission is so high that it is difficult for human eyesight to confirm it.
  • the transparent conductor 80 is, for example, a layer of a conductive line formed in a mesh shape in order to increase light transmission, that is, a thin metal wire layer.
  • a thin metal wire layer As shown in FIG. 8, in the mesh-shaped thin metal wire layer, a plurality of thin metal wires 81 extending in one direction and a plurality of thin metal wires 82 extending in the other direction are provided so as to intersect each other.
  • the opening (through hole) 83 which is a mesh-like gap (opening), is open.
  • the opening 83 of the mesh may be square or rhombic.
  • the mesh is preferably square and has good design.
  • the mesh opening 83 may have a random shape by a self-organizing method, so that moire can be suppressed.
  • the line widths (wiring widths) w81 and w82 of the thin metal wires 81 and 82 constituting the mesh are preferably 1 to 10 ⁇ m, more preferably 1 to 5 ⁇ m, and even more preferably 1 to 3 ⁇ m.
  • the line spacing (also referred to as opening or wiring pitch) between the plurality of fine metal wires 81 of the mesh and between the plurality of fine metal wires 82 is preferably 300 to 500 ⁇ m.
  • the aperture ratio which is the ratio of the area of the opening 83 to the entire mesh of the transparent conductor 80, is preferably 80% or more, more preferably 90% or more. The larger the aperture ratio of the transparent conductor 80, the higher the visible light transmittance of the transparent conductor 80.
  • the sheet resistance of the transparent conductor is preferably 5 ⁇ / sq or less, more preferably 3 ⁇ / sq, and even more preferably 1 ⁇ / sq.
  • the thickness of the transparent conductor 80 may be 1 to 40 ⁇ m. Since the transparent conductor 80 is formed in a mesh shape, the visible light transmittance can be increased even if the transparent conductor 80 is thick.
  • the thickness of the transparent conductor 80 is more preferably 5 ⁇ m or more, further preferably 8 ⁇ m or more.
  • the thickness of the transparent conductor 80 is more preferably 30 ⁇ m or less, further preferably 20 ⁇ m or less, and particularly preferably 15 ⁇ m or less.
  • the conductor thickness t is set smaller than the line widths (conductor widths) w81 and w82 of the mesh-shaped thin wires. This is because when the aspect ratio exceeds 1, it becomes structurally unbalanced, fragile, and difficult to manufacture. However, since the thicker the conductor thickness t, the smaller the sheet resistance value can be, the larger the conductor thickness t is, the better the antenna efficiency is. Therefore, t is preferably smaller than w and as large as possible.
  • Copper is mentioned as the conductor material of the thin metal wires 81 and 82 of the transparent conductor 80, but other metal materials such as gold, silver, platinum, aluminum, chromium, tin, iron and nickel can also be used. , Not limited to these materials.
  • the antenna pattern 110 and the periodic structure layer 410 realized by such a transparent conductor 80 are transparent, have high light transmission so that it is difficult to confirm with human eyesight, and can function as a conductor.
  • the artificial magnetic conductor is a conductor that reflects an electromagnetic wave at a phase of about 0 degrees and amplifies the reflected wave in the vicinity of the reflecting surface.
  • FIGS. 9A and 9B are explanatory views of two general types of AMC.
  • FIG. 9A shows an example of a vertically conducting type AMC
  • FIG. 9B shows an example of a vertically conducting type AMC.
  • the vertically conducting type AMC As shown in FIG. 9A, the lower background conductor (ground plate) 46 and the floating conductor 47 of the upper periodic structure layer 45 are vertically connected via vias 49. Has been done. The plurality of floating conductors 47 are separated by a slit 48. Such a structure is also called a mushroom type.
  • the vertically non-conducting AMC is composed of a background conductor (ground plate) 42 and a periodic structure layer 41 not connected to the background conductor.
  • the periodic structure layer 41 has a plurality of floating conductors 43 separated by slits 44.
  • the periodic structure layer is a spatial filter called FSR (Frequency Selective Reflector) or FSS (Frequent Selective Surface) or EBG (Electromagnetic Band Gap) or metasurface that selectively reflects a specific frequency.
  • FSR Frequency Selective Reflector
  • FSS Frequent Selective Surface
  • EBG Electromagnetic Band Gap
  • the periodic structure layer and the background conductor are composed of the upper surface and the lower surface of the same substrate as shown in FIG. 9A. Needed to be.
  • the periodic structure layer 41 and the background conductor 42 are not connected, they may be formed on another substrate.
  • FIG. 10A and 10B are explanatory views of AMCs that are not conducting vertically, FIG. 10A shows an AMC having a patch-type periodic structure, and FIG. 10B shows an AMC having a hole-type periodic structure.
  • the periodic structure layer 410 provided on the lower surface of the transparent antenna 100 shown in FIG. 6 is also an example of the patch type periodic structure layer.
  • the AMC having a patch-type FSR periodic structure functions as a band blocking filter having a reflection coefficient of -1 when the resonant element completely resonates.
  • holes (resonant elements) having the same shape are periodically formed in the metal layer.
  • the AMC having the periodic structure of the Hall type FSR functions as a bandpass filter having a transmission coefficient of 1 when the resonance element completely resonates.
  • the periodic structure layer 410 of AMC has a patch-type configuration
  • the periodic structure layer in AMC of the present invention is a hole as shown in FIG. 10B. It may be a periodic structure layer of the type.
  • the portions of the plurality of patches in FIG. 10A and the portions of the plurality of holes in FIG. 10B serve as resonance elements.
  • FIG. 7B shows an example in which the resonant element is square
  • FIGS. 10A and 10B show an example in which the resonant element is circular, but the patch portion of the patch type FSR or the hole portion of the hole type FSR may have other shapes. There may be.
  • FIG. 11 is a diagram showing a modified example of the resonance element of the periodic structure layer of the AMC of the present invention.
  • the resonance element has a square loop shape, a ring shape, a double square loop, a cross shape, a cross shape with an arm, a rectangular loop with a capacitor, a rectangular dipole, a tripole, and three legs.
  • a dipole, a four-legged dipole, a heart shape, etc. can be taken.
  • the example of FIG. 11 is an example, and the resonance element in the periodic structure layer may have a different shape as in the floating conductor 43 shown in FIG. 9B.
  • FIG. 12 is a schematic diagram of a sensor pattern of a general projection type capacitance type touch panel 230.
  • the touch panel 230 is provided with a plurality of first electrodes 31 and a plurality of second electrodes 32 on a substrate, and a plurality of first wirings 38 and a plurality of connected to the plurality of first electrodes 31. It is provided with a plurality of second wirings 39 connected to the second electrode 32 of the above.
  • a plurality of electrodes 31 and 32 are arranged in a matrix, and adjacent electrodes are capacitively coupled to each other.
  • a conductive substance such as a finger approaches an electrode
  • a capacitive coupling occurs between the finger and the electrode, and a portion where the capacitive coupling value between the electrodes changes is detected as a contact position.
  • a plurality of positions on the touch panel 230 can be detected at the same time.
  • the first electrode 31 and the second electrode 32 may be provided on different surfaces or on the same surface as when they are provided on different layers. Specific examples are shown below. for example, (1) A first electrode 31 is provided on one surface and a second electrode 32 is provided on the other surface with respect to one glass substrate. (2) In a structure in which glass (printed circuit board) is stacked in two layers, a first electrode 31 is provided on an upper glass substrate and a second electrode 32 is provided on a lower glass substrate. (3) A first electrode 31 is provided on one surface and a second electrode 32 is provided on the other surface for one film. (4) In a structure in which films are stacked in two layers, a first electrode 31 is provided on the upper film and a second electrode 32 is provided on the lower film.
  • the diamond-shaped electrode portion of the first electrode 31 is provided in the same plane as the second electrode 32, and the diamond-shaped electrodes are connected by bridge electrodes provided in different layers.
  • (1) to (4) are cases where they are provided on different surfaces or different layers, and (5) are cases where they are provided on the same layer.
  • the first electrode 31 is connected in a skewer shape in the horizontal direction (X direction), and the second electrode 32 is connected in a skewer shape in the vertical direction (Y direction).
  • the contours of the first electrode 31 and the second electrode 32 are a rhombus or a square shape formed by a common first straight line L1 and a second straight line orthogonal to the first straight line.
  • the adjacent sides are separated by a distance d.
  • the size of the interval d may be, for example, larger than 0 and 10 mm or less, preferably 1 ⁇ m or more and 5 mm or less, more preferably 3 ⁇ m or more and 1 mm or less, and more preferably 5 ⁇ m or more and 500 ⁇ m or less.
  • FIG. 13 is an example of a cross-sectional view of the touch panel 230.
  • the rhombic electrode portion of the first electrode 31 is provided in the same plane as the above-mentioned (5) second electrode 32, and the rhombic electrodes are connected by bridge electrodes provided in different layers. An example is shown.
  • the touch panel 230 has an electrode layer 301, an insulating layer 302, a bridge layer 303, and an insulating protective layer 304.
  • the electrode layer 301 is partitioned by an insulating hole 306, and constitutes the electrode 31 and the electrode 32.
  • the insulating hole 306 that separates the electrode 31 and the electrode 32 corresponds to the slits S1 and S2.
  • the insulating hole 306 and the insulating protective layer 304 are integrally formed.
  • Through holes 305 that penetrate vertically are formed in the insulating layer 302, and the electrode layer 301 and the bridge layer 303 are conductive via the through holes 305.
  • the bridge layer 303 and the through hole 305 function as jumpers 35.
  • the electrode layer 301, the bridge layer 303, and the through hole 305 are configured to contain, for example, a metal such as Ti or Al.
  • the insulating layer 302 is made of, for example, SiNx.
  • the insulating protective layer 304 and the insulating hole 306 do not have a conductor and are made of, for example, acrylic.
  • the electrode layer 301 of the touch panel 230 functions as a background conductor of the AMC 400. Therefore, the distance h2 from the periodic structure layer 410 of the AMC 400 in FIG. 4 to the background conductor is, to be exact, the thickness of the first adhesive layer 281 and the insulating protective layer 304 on the electrode layer 301 in the touch panel 230. Is the total of.
  • the total thickness of the first adhesive layer 281 and the insulating protective layer 304 of the touch panel 230 is made thicker than the thickness of the transparent substrate 101 of the transparent antenna 100. do it.
  • H2 is preferably 100 ⁇ m or more, more preferably 150 ⁇ m or more, and even more preferably 300 ⁇ m or more. By setting in this way, it is possible to obtain a function of effectively reflecting electromagnetic waves. Further, h2 is preferably 2000 ⁇ m or less, more preferably 1000 ⁇ m or less, still more preferably 600 ⁇ m or less. By doing so, it is possible to maintain the characteristics while suppressing a significant increase in the laminated thickness.
  • H1 is preferably 5 ⁇ m or more, more preferably 15 ⁇ m or more, and even more preferably 50 ⁇ m or more. By setting in this way, it is possible to prevent an increase in the layer thickness while maintaining the function of reflecting electromagnetic waves. Further, h1 is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, still more preferably 100 ⁇ m or less.
  • ⁇ Simulation example> (3-1. Measurement model configuration and characteristics of pseudo AMC minimum unit 1)
  • the inventors of the present application performed various simulations on the pseudo AMC imitating the AMC of the present application.
  • FIG. 14 is a schematic diagram of a pseudo AMC composed of one floating conductor, an adhesive layer, and a metal conductor imitating a touch panel.
  • a floating conductor P which is smaller than the adhesive layer and is a repeating unit of the periodic structure layer, is provided on the adhesive layer 281, and a metal conductor M is provided under the adhesive layer 281. rice field.
  • the metal conductor M functions as a background conductor of the AMC.
  • the parameters of the reflection amplitude and the reflection phase were measured while changing the resistance value of the metal conductor M, which is the lowermost resistor.
  • the dimensions of each part of the pseudo AMC shown in FIG. 14 are One side of floating conductor P: 3 mm Adhesive layer 281, one side of metal conductor M: 4.7 mm Is.
  • each layer in the pseudo AMC is Thickness of floating conductor P: 1 ⁇ m
  • 15A and 15B show the characteristic values of the reflection amplitude parameters when the resistance value of the metal conductor M is changed in the pseudo AMC of FIG. 16A and 16B show the characteristic values of the reflection phase parameters when the resistance value of the metal conductor M is changed in the pseudo AMC of FIG.
  • the resistance value (sheet resistance value) of the metal conductor M is 0.00001, 0.1, 0.2, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.1, 2.4, 2.8. , 3.2, 3.7, 4.2, 4.9, 5.6, 6.4, 7.4, 8.4, 9.7, 10 ⁇ / sq, and the parameters of each reflection amplitude and reflection phase were obtained by changing in 23 steps.
  • FIGS. 15A and 16A show the case where the resistance value of the metal conductor M is 0 to 2.4 ⁇ / sq
  • FIGS. 15B and 16B show the resistance value of the metal conductor M. Shows the case of 2.8 to 10 ⁇ / sq.
  • the absolute value of the pole value of the reflection amplitude increases as the resistance value increases at 29 GHz.
  • the absolute value of the pole value of the reflection amplitude becomes smaller as the resistance value becomes larger at 29 GHz.
  • the portion where the downward convex pole is formed is the portion where the electromagnetic wave is absorbed by the AMC, and the smaller the value (the larger the absolute value), the larger the absorption amount.
  • the reflection phase passes through phase 0 with a predetermined inclination at 29 GHz.
  • These waveforms have a waveform shape similar to the waveform seen in the so-called general AMC reflection phase, and in such a waveform, the reflection phase is in the range of ⁇ 90 ° to 0 ° to 90 °, and the AMC is used. Can be used as. That is, within this resistance range, it can be said that the measurement model 61 of the pseudo AMC of FIG. 14 functions as an AMC.
  • the metal conductor M has a function as an AMC by being less than 2.8 ⁇ / sq. realizable.
  • the frequencies are the downwardly convex poles in FIGS. 15A and 15B, and the phase is zero in FIGS. 16A and 16B.
  • the metal conductor M preferably has a resistance value as small as possible in the range of less than 2.8 ⁇ / sq, more preferably in the range of less than 2.4 ⁇ / sq, as close to 0 as possible.
  • the resistance value of the metal conductor M can be appropriately set according to the distance between the floating conductor P and the metal conductor M. For example, when the distance between the floating conductor P and the metal conductor M is more than 0.15 mm shown in FIG. 14, the resistance value of the metal conductor functioning as an AMC becomes 2.8 ⁇ / sq or more, and the resistance value of the metal conductor becomes larger than that of the floating conductor P. When the distance between the metal conductors M is close, the resistance value of the metal conductor functioning as an AMC becomes smaller than 2.8 ⁇ / sq.
  • the resistance value of the metal conductor M functioning as an AMC is less than 5.6 ⁇ / sq, more preferably 5.0 ⁇ / sq or less. Suitable.
  • the sheet resistance value of the electrode layer 301 is 2.8 ⁇ / sq in order to make the electrode layer 301 of the touch panel 230 function as the background conductor of the AMC 400. It is preferable that it is smaller than.
  • the sheet resistance value of the electrode layer 301 that functions as the background conductor of the AMC is preferably less than 5.6 ⁇ / sq, more preferably 5.0 ⁇ / sq or less.
  • the electrode layer 301 is a member having a small sheet resistance value and functions as a background conductor.
  • the wiring pattern of the electrode layer 301 of the touch panel is devised from the existing one. By doing so, the sheet resistance value may be adjusted. Specifically, the length of the slit of the thin line pattern of the electrode layer 301, the length of the contour side of the electrode, and the length of the jumper described in paragraphs [802] to [0106] of Japanese Patent Application No. 2020-078661. By adjusting the presence or absence, a touch panel having a low sheet resistance value may be configured.
  • the insulating protective layer 304 on the electrode layer 301 of the touch panel 230 is replaced with a general insulating material such as glass, film, or acrylic, and a resin material having a dielectric constant different from that of acrylic, for example, a polycarbonate resin. Or a material containing a fluororesin may be used. As a result, the sheet resistance value of the touch panel can be reduced.
  • the conductor thickness of the electrode layer 301 of the touch panel 230 may be increased. As a result, the sheet resistance value of the touch panel 230 can be reduced.
  • FIG. 17 is a schematic diagram of a pseudo AMC composed of one floating conductor, an adhesive layer, and a metal conductor imitating a touch panel.
  • a floating conductor P which is smaller than the adhesive layer and is a repeating unit of the periodic structure layer, is provided on the adhesive layer 281 and a metal is provided under the adhesive layer 281.
  • a conductor M is provided.
  • the metal conductor M functions as a background conductor of the AMC.
  • the reflection amplitude and the reflection phase parameters were measured while changing the size of the floating conductor P in the uppermost layer as shown by the dotted line in FIG.
  • the dimensions of each part of the pseudo AMC shown in FIG. 17 are the same as those in FIG. 14 except for the size of the floating conductor P.
  • the resistance value of the metal conductor M in the lowermost layer was fixed at 1.0 ⁇ / sq.
  • FIG. 18 shows the characteristic values of the reflection amplitude parameters when the size of the floating conductor P is changed in the pseudo AMC of FIG.
  • FIG. 19 shows the characteristic values of the parameters of the reflection phase when the size of the floating conductor P is changed in the pseudo AMC of FIG.
  • one side of the size of the square floating conductor P is changed in 5 steps of 2.0, 2.5, 2.7, 3.0, 3.5 mm, and the reflection amplitude and the reflection phase of each are changed.
  • the parameters were calculated.
  • the frequency at which the floating conductor P becomes a pole changes in the reflection amplitude.
  • the downwardly convex pole band has a higher frequency as the floating conductor P is smaller, and a lower frequency as the floating conductor P is larger.
  • the frequency of the reflection phase passing through phase 0 changes.
  • the band having phase 0 is a higher frequency as the floating conductor P is smaller, and a lower frequency as the floating conductor P is larger.
  • the structure In order to correspond to 29GHz used for 5G communication, the structure is close to the pole part in Fig. 18 and the electromagnetic wave is returned at phase zero + -90 ° in Fig. 19, and it is 3 ⁇ 3mm in the measurement. Floating conductors of size are most suitable.
  • the size of the floating conductor should be around 3 x 3 mm (for example, 2.8 to one side, 2.8 to 2) in order to support 29 GHz used in 5G communication. It is preferable to set it to about 3.4 mm).
  • FIG. 20 is a schematic diagram of a measurement model 63 composed of the transparent antenna 100 of the present invention and the adhesive layer 281.
  • the measurement model 63 has a transparent antenna 100 without a floating conductor and an adhesive layer 281. Since the adhesive layer 281 transmits electromagnetic waves, the characteristics of the antenna of this measurement model 63 are considered to be substantially the same as those of the antenna alone.
  • each part of the measurement model 63 shown in FIG. 20 when this parameter is measured are L110: 4.0mm W110: 0.2mm
  • each layer in the measurement model 63 is Thickness of antenna pattern 110: 1 ⁇ m
  • Thickness of transparent substrate 101 75 ⁇ m
  • Thickness of adhesive layer 281 150 ⁇ m Is.
  • FIG. 21 is a schematic diagram of a pseudo display module composed of the transparent antenna of the present invention, a periodic structure layer 41 formed on the lower surface of the transparent antenna, an adhesive layer 281 and a metal conductor imitating a touch panel.
  • a periodic structure layer 410 which is a plurality of periodic floating conductors, is provided on the lower surface of the transparent substrate 101, and a metal conductor M is provided under the adhesive layer 281 under the transparent conductor.
  • the resistance value of the metal conductor M in the lowermost layer was fixed at 1.0 ⁇ / sq.
  • the antenna pattern 110 is the same as that in FIG. 20, and the other dimensions are as follows.
  • One side of the substrate 101 and the adhesive layer 281 20 mm
  • One side of floating conductor 3mm Spacing between adjacent floating conductors: 1.7 mm
  • each layer in the measurement model 64 is Thickness of antenna pattern 110: 1 ⁇ m Thickness of transparent substrate 101: 75 ⁇ m Thickness of periodic structure layer 410: 1 ⁇ m Thickness of adhesive layer 281: 150 ⁇ m Is. That is, h1 is 75 ⁇ m and h2 is 150 ⁇ m. Since the surface impedance at which the surface resistance is set is set as the boundary condition, the thickness of the metal conductor M is set to be nonexistent.
  • FIG. 22 is a schematic diagram of a measurement model of a pseudo display module according to a comparative example composed of a transparent antenna, an adhesive layer, and a metal conductor imitating a touch panel.
  • the measurement model 65 is different from FIG. 21 in that the periodic structure layer shown in FIG. 21 is not provided on the lower surface of the transparent substrate 101 of the transparent antenna 100, but other configurations are the same as those in FIG. 21.
  • FIG. 23 is a table showing the maximum gain in the measurement models of FIGS. 20, 21, and 22.
  • the maximum gain of the antenna alone of FIG. 20 was +1.9 dB, but when a metal conductor is provided under the adhesive layer as shown in FIG. 22, the maximum gain is increased. It drops significantly to -5.3dB.
  • the maximum gain becomes ⁇ 3.1 dB, and the amount of decrease in gain from the structure of FIG. 21 becomes small.
  • the maximum gain is improved and the antenna performance is improved when the periodic structure layer is provided as compared with the case where the metal conductor is provided alone.
  • the transparent antenna 100 included in the display module of the present invention has another frequency used in 5G. It may be an antenna corresponding to a band, for example, 37.3 to 40 GHz or 1.0 to 5.0 GHz.
  • the frequency used by the antenna changes in this way, as shown in FIG. 17, for example, by changing the size of the patch that is the floating conductor of the periodic structure layer 410 of the AMC 400, the AMC also has a structure suitable for that frequency band. It is suitable to design in.
  • the transparent antenna 100 included in the display module of the present invention may be in another frequency band used in 5G. It may be a dual band compatible configuration that can send and receive. In that case, it is preferable that the shape of the floating conductor of the periodic structure layer is appropriately set so that the AMC also reflects in a plurality of bands used in the dual band.
  • FIG. 24 shows a display module 1A according to a modified example of the first embodiment.
  • FIG. 4 has described an example in which only the first adhesive layer 381 is provided between the periodic structure layer constituting the AMC and the electrode layer 301 of the touch panel 230 which is a background conductor. However, in this modification, FIG. 24 is shown. As shown in the above, a first adhesive layer 281 and a polarizing plate 292 are provided between the periodic structure layer and the background conductor.
  • an artificial magnetic conductor is composed of a periodic structure layer 410 sandwiching a polarizing plate 292 and a first adhesive layer 281 and an electrode layer 301 of a touch panel 230 functioning as a background conductor. 400 ⁇ is configured.
  • the periodic structure layer 410 of the AMC400 ⁇ is formed on the lower surface of the antenna substrate (transparent substrate 101), and the background conductor of the AMC400 ⁇ is the electrode layer 301 of the touch panel of the metal fine wire layer.
  • the polarizing plate sandwiched between the periodic structure layer of AMC and the background conductor generally transmits electromagnetic waves, so that it can be considered that the characteristics of AMC and the antenna are not affected.
  • h2 ⁇ is the sum of the thickness of the polarizing plate 292, the thickness of the first adhesive layer 281 and the thickness of the insulating protective layer 304 of the touch panel.
  • the configuration according to FIG. 24 eliminates the need for an additional substrate. As a result, the performance of the antenna can be improved as compared with the case where only the touch panel, which is a metal plate, is provided without increasing the laminated thickness of the display module 1A.
  • the polarizing plate 292 can also be used as the thickness of h2 ⁇ constituting the AMC400 ⁇ , the polarizing plate 292 and the adhesive layer 281 are thinner than those in FIG. 4 without providing the polarizing plate on the antenna. , H1> h2 ⁇ can be established. Therefore, the thickness of the display module 1A can be further suppressed.
  • FIG. 25 shows the display module 2 according to the second embodiment of the present invention.
  • the periodic structure layer 410 of the AMC is formed on the back surface of the antenna substrate as described above, but the background conductor of the AMC is composed of a part of the display panel 220.
  • the artificial magnetic conductor (AMC) 400 ⁇ is formed by the periodic structure layer 410 sandwiching the first adhesive layer 281 and the transparent electrode (cathode) 26 of the display panel 220 functioning as a background conductor. It is configured.
  • FIG. 26 is a schematic diagram of an OLED display panel 220, which is an example of a general display panel.
  • the upper view is a cross-sectional view
  • the lower figure is a plan view (top view).
  • the OLED display panel 220 includes a substrate 21, a backplane 22, a lower reflective electrode 23, an aperture insulating film 24, a light emitting layer 25R, 25G, 25B, and a transparent electrode 26.
  • the substrate 21 is, for example, glass
  • the backplane 22 is a TFT (Thin Film Transistor).
  • the 25R, 25G, 25B are laminated thin films including a light emitting layer, and the lower reflective electrode 23, the open insulation film 24, the laminated thin films 25R, 25G, 25B including the light emitting layer, and the transparent electrode 26 are red, green, and red, green.
  • the uppermost transparent electrode 26 is made thin to the extent that light can pass through a metal such as Al or an alloy of Mg and Ag, or is made of a metal oxide such as ITO.
  • the portion of the transparent electrode 26 on the uppermost layer of the display panel 220 functions as a background conductor on the lower side of the AMC 400.
  • the thickness of the transparent substrate 101 which is the distance from the antenna pattern 110 of the transparent antenna to the periodic structure layer 410 of AMC400, is h1
  • the thickness of the transparent substrate 101 is the background conductor from the periodic structure layer 410 in AMC400 ⁇ .
  • the transparent electrode 26 is the uppermost layer of the display panel 220 as shown in FIG. 26, h2 ⁇ in FIG. 25 is the thickness of the first adhesive layer 281. Therefore, the thickness of the first adhesive layer 281 is transparent.
  • the antenna 100 thicker than the transparent substrate 101, the above-mentioned relationship of h1 ⁇ h2 ⁇ is realized.
  • the transparent electrode 26 is used. It is preferable that the sheet resistance value is smaller than 2.8 ⁇ / sq.
  • the sheet resistance value of the transparent electrode 26 functioning as an AMC is preferably less than 5.6 ⁇ / sq, more preferably 5.0 ⁇ / sq or less.
  • the transparent electrode 26 on the display surface functions as a background conductor having a small sheet resistance value, but as a part of the components of the display panel 220.
  • a member for a dedicated background conductor (for example, a pattern electrode) may be further provided on the transparent electrode 26.
  • the pattern electrode of the display panel described in paragraphs [0124] to [0127] of Japanese Patent Application No. 2020-078661 may be used as the background conductor of the AMC.
  • the pattern electrode is located on the uppermost layer in the display panel 220.
  • the distance h2 ⁇ that realizes the relationship of h1> h2 ⁇ is the thickness of the first adhesive layer 281.
  • an additional substrate is formed by forming a periodic structure layer 410 with a transparent conductor on the lower surface side of the antenna substrate (transparent substrate 101) and using a part of the display panel 220 as a background conductor of AMC. Is no longer needed. As a result, the performance of the antenna can be improved as compared with the case where only the touch panel, which is a metal plate, is provided without increasing the laminated thickness of the display module 2.
  • FIG. 27 shows a display module 2A according to a modified example of the second embodiment.
  • FIG. 25 an example in which only the adhesive layer is provided between the periodic structure layer of AMC and the background conductor has been described, but in this modification, as shown in FIG. 26, between the periodic structure layer and the background conductor. , The adhesive layer 281 and the polarizing plate 292 are provided.
  • an artificial magnetic conductor (an artificial magnetic conductor) is formed by a periodic structure layer 410 sandwiching a polarizing plate 292 and a first adhesive layer 281 and a transparent electrode (cathode) 26 of a display panel 220 functioning as a background conductor.
  • AMC 400 ⁇ is configured.
  • h1> h2 ⁇ when the distance from the antenna pattern of the transparent antenna to the periodic structure layer 410 of AMC is h1 and the distance from the periodic structure layer 410 to the background conductor 26 in AMC is h2 ⁇ .
  • h2 ⁇ is the sum of the thickness of the polarizing plate 292 and the thickness of the first adhesive layer 281. Therefore, by making the total thickness thicker than that of the transparent substrate 101 of the transparent antenna 100, The above relationship of h1> h2 ⁇ is realized.
  • the polarizing plate 292 can also be used as the thickness of h2 ⁇ constituting AMC400 ⁇ , even if the polarizing plate 292 and the adhesive layer 281 are thinner than in FIG. 26 without providing a polarizing plate on the antenna. , H1> h2 ⁇ can be established. Therefore, the thickness of the display module 2A can be further suppressed.
  • FIG. 28 is an exploded cross-sectional view showing the display module 3 according to the third embodiment of the present invention.
  • the periodic structure layer of the AMC is provided on the back surface of the antenna substrate (transparent substrate 101), but the background conductor is a dedicated substrate provided on the upper side of the touch panel separately from the touch panel 230. It is provided on a certain AMC substrate 401.
  • a third adhesive layer (OCA) 283 is provided between the touch panel 230 and the AMC substrate 401 in order to adhere the substrates to each other in close contact with each other.
  • the AMC substrate 401 which is a dedicated substrate for the background conductor of the AMC 400 ⁇ , is provided above the touch panel 230.
  • the AMC substrate 401 is a second transparent substrate, for example, a flexible substrate made of polyimide, which is a colorless and transparent insulating material substrate that can be bent in the Z direction and / or the X direction.
  • a background conductor 420 composed of a mesh-like fine wire-shaped transparent conductor 80 as shown in FIG. 8 is formed on the entire back surface of the substrate. Since the transparent conductor 80 constituting the AMC substrate 401 and the background conductor 420 is transparent, the visibility of the display panel 220 under the touch panel 230 is not adversely affected.
  • the artificial magnetic conductor (AMC) 400 ⁇ is composed of the periodic structure layer 410 sandwiching the first adhesive layer 281 and the background conductor 420 provided on the substrate 401 for AMC. ..
  • h1 ⁇ h2 ⁇ when the distance from the antenna pattern 110 of the transparent antenna 100 to the periodic structure layer 410 of AMC400 ⁇ is h1 and the distance from the periodic structure layer 410 to the background conductor 420 in AMC400 ⁇ is h2 ⁇ . It is in the relationship of. In FIG. 28, h2 ⁇ is the sum of the thickness of the first adhesive layer 281 and the thickness of the AMC substrate 401. Therefore, by making the total thickness thicker than that of the transparent substrate 101 of the transparent antenna 100. , The above-mentioned relationship of h1 ⁇ h2 ⁇ is realized.
  • the AMC substrate 401 which is a dedicated substrate that functions as the background conductor of the AMC, is provided separately from the touch panel 230, the sheet resistance of the background conductor 420 in the AMC substrate 401
  • the AMC substrate 401 can be freely designed independently of the performance of the touch panel 230, such as by lowering the value.
  • the AMC400 ⁇ of this configuration has a periodic structure layer and a background conductor, so that the performance as a magnetic wall is good. Further, since the substrate 401 for AMC is formed on a substrate different from the periodic structure layer 410 via the adhesive layer 281, the distance between the background conductor and the periodic structure layer can be widened and the performance of AMC can be improved. can.
  • FIG. 29 is an exploded cross-sectional view showing the display module 3A according to the first modification of the third embodiment of the present invention.
  • FIG. 28 an example in which a dedicated substrate for the background of the AMC is provided on the touch panel has been described, but the configuration of the AMC having the dedicated background substrate as in the present embodiment is as shown in FIG. 29. It can also be applied to display modules that do not have a touch panel.
  • the periodic structure layer 410 sandwiching the first adhesive layer 281 and the background conductor 420 provided on the AMC substrate 401 form an artificial magnetic conductor (AMC). 400 ⁇ is configured.
  • FIG. 29 is almost the same as that of FIG. 28, including the configuration of AMC400 ⁇ , except that it does not have a touch panel.
  • the AMC substrate which is a dedicated substrate that functions as the background conductor of the AMC, is provided separately from the display panel 220, the sheet resistance value of the background conductor in the AMC substrate 401 is further lowered.
  • the AMC substrate 401 can be freely designed independently of the performance of the display panel 220.
  • FIG. 30 is an exploded cross-sectional view showing the display module 3B according to the second modification of the third embodiment of the present invention.
  • FIG. 28 an example in which only an adhesive layer is provided between the periodic structure layer and the substrate for AMC constituting the AMC has been described, but in this modified example, as shown in FIG. 30, the periodic structure layer and the substrate for AMC are provided.
  • An adhesive layer 282 and a polarizing plate 292 are provided between the two.
  • the artificial magnetic conductor (AMC) 400 ⁇ is configured by the periodic structure layer 410 sandwiching the polarizing plate 292 and the first adhesive layer 281 and the background conductor 420 provided on the AMC substrate 401. ing. Also in this configuration, the periodic structure layer 410 of the AMC 400 ⁇ is formed on the back surface of the antenna substrate (transparent substrate 101), and the background conductor 420 of the AMC 400 ⁇ is provided on the lower surface of the substrate 401 for AMC.
  • h1> h2 ⁇ when the distance from the antenna pattern 110 of the transparent antenna 100 to the periodic structure layer 410 of AMC400 ⁇ is h1 and the distance from the periodic structure layer 410 to the background conductor in AMC400 ⁇ is h2 ⁇ .
  • h2 ⁇ is the total of the thickness of the polarizing plate 292, the thickness of the first adhesive layer 281 and the thickness of the AMC substrate 401. Therefore, the total thickness is referred to as the transparent substrate of the transparent antenna 100.
  • the polarizing plate 292 can also be used as the thickness of h2 ⁇ constituting the AMC 400 ⁇ , even if the polarizing plate 292 and the adhesive layer 281 are thinner than in FIG. 28 without providing the polarizing plate on the antenna, h1 The relationship of> h2 ⁇ can be established. Therefore, the thickness of the display module 3B can be further suppressed.
  • FIG. 31 is a cross-sectional exploded view showing the display module 3C according to the third modification of the third embodiment of the present invention.
  • FIG. 30 an example in which the AMC substrate 401 for the background conductor is provided on the touch panel has been described, but the configuration having the dedicated AMC substrate 401 does not have the touch panel as shown in FIG. 31. , Can also be applied to display modules.
  • the periodic structure layer 410 sandwiching the polarizing plate 292 and the first adhesive layer 281 and the background conductor 420 provided on the AMC substrate 401 form an artificial magnetic conductor ( AMC) 400 ⁇ is configured.
  • FIG. 31 is almost the same as that of FIG. 30, including the configuration of AMC400 ⁇ , except that it does not have a touch panel. Since the polarizing plate 292 can also be used as the thickness of h2 ⁇ constituting the AMC 400 ⁇ , the relationship of h1> h2 ⁇ is established even if the polarizing plate 292 and the adhesive layer 282 are thinner than in FIG. 29 without providing a polarizing plate on the antenna. Can be made to. Therefore, the thickness of the display module 3C can be further suppressed.
  • FIG. 32 is a cross-sectional exploded view showing the display module 4 according to the fourth embodiment of the present invention.
  • the periodic structure layer of AMC is provided on the upper surface of the AMC dedicated substrate separate from the transparent substrate of the transparent antenna. Then, a part of the touch panel functions as a background conductor of the AMC. Further, a third adhesive layer (OCA) 284 is provided between the touch panel 230 and the dedicated AMC substrate 501 in order to adhere the substrates to each other in close contact with each other.
  • OCA third adhesive layer
  • the AMC substrate 501 which is a dedicated substrate for the periodic structure layer 510 of the AMC 500, is provided above the touch panel 230.
  • the AMC substrate 501 is a second transparent substrate, for example, a flexible substrate made of polyimide, which is a colorless and transparent insulating material substrate that can be bent in the Z direction and / or the X direction.
  • an artificial magnetic conductor is composed of a periodic structure layer 510 formed on the upper surface of the AMC substrate 501 sandwiching the third adhesive layer 284 and an electrode layer 301 of the touch panel 230 functioning as a background conductor. (AMC) 500 is configured.
  • h3 is the sum of the thickness of the transparent substrate 101 of the transparent antenna 100 and the thickness of the first adhesive layer 281
  • h4 is the thickness of the substrate 501 for AMC and the thickness of the third adhesive layer 284. It is the total of the thickness and the thickness of the insulating protective layer 304 of the touch panel 230.
  • the sum of the thickness of the AMC substrate 501, the thickness of the third adhesive layer 284, and the thickness of the insulating protective layer 304 of the touch panel 230 is h4, and the sum of the thickness of the transparent substrate 101 and the thickness of the first adhesive layer 281.
  • the AMC500 of this configuration has a periodic structure layer and a background conductor, so that the performance as a magnetic wall is good. Further, since the AMC 500 is configured to be laminated via the adhesive layer 284, the distance between the background conductor and the periodic structure layer can be widened, and the performance of the AMC can be improved.
  • the sheet resistance value of the electrode layer 301 of the touch panel 230 is set. , 2.8 ⁇ / sq or less is preferable.
  • the sheet resistance value of the electrode layer 301 of the touch panel 230 is preferably less than 5.6 ⁇ / sq, more preferably 5.0 ⁇ / sq or less.
  • the touch panel 230 an example in which the electrode layer 301 is a member having a small sheet resistance value and functions as a background conductor has been described, but the wiring pattern of the electrode layer 301 of the touch panel 230 and the electrode layer 301 As described above, the sheet resistance value of the touch panel 230 may be adjusted by devising the thickness and the material of the insulating protective layer 304 from the existing ones.
  • the periodic structure layer 510 is provided on the upper side, but the periodic structure layer 510 may be formed on the lower side of the AMC substrate 501.
  • the sum of the thickness of the transparent substrate 101 of the transparent antenna 100, the thickness of the first adhesive layer 281 and the thickness of the AMC substrate 501 is the thickness of the third adhesive layer 284 and the insulating protective layer 304 of the touch panel 230. It is preferable to design it so that it is thinner than the total thickness of.
  • FIG. 33 is a cross-sectional exploded view showing the display module 4A according to the modified example of the fourth embodiment of the present invention.
  • FIG. 32 an example in which a dedicated AMC substrate 501 for the periodic structure layer of AMC is provided on the touch panel has been described, but the AMC having the AMC substrate 501 for the periodic structure layer as in the present embodiment has been described.
  • the configuration is also applicable to display modules that do not have a touch panel, as shown in FIG.
  • artificial magnetism is formed by a periodic structure layer 510 formed on the upper surface of the AMC substrate 501 sandwiching the third adhesive layer 284 and a transparent electrode 26 of the display panel 220 functioning as a background conductor.
  • a conductor (AMC) 500 ⁇ is configured.
  • h3 is the sum of the thickness of the transparent substrate 101 of the transparent antenna 100 and the thickness of the first adhesive layer 281
  • h4 ⁇ is the thickness of the AMC substrate 501 and the thickness of the third adhesive layer 284.
  • the total thickness By making the total h4 ⁇ of the thickness of the AMC substrate 501 and the thickness of the third adhesive layer 284 thicker than the total h3 of the thickness of the transparent substrate 101 and the thickness of the first adhesive layer 281, h3 ⁇ Realize the relationship of h4 ⁇ .
  • the AMC500 ⁇ is laminated via the adhesive layer 284, the distance between the background conductor and the periodic structure layer can be widened, and the performance of the AMC can be improved.
  • the sheet resistance value of the transparent electrode 26 is 2.8 ⁇ / sq. It is also preferable that the size is small.
  • the sheet resistance value of the transparent electrode 26 functioning as an AMC is preferably less than 5.6 ⁇ / sq, more preferably 5.0 ⁇ / sq or less.
  • the transparent electrode 26 of the display panel 220 functions as a background conductor of the AMC.
  • the transparent electrode 26 is placed on the transparent electrode 26.
  • a dedicated member for example, a pattern electrode
  • the background conductor for AMC may be provided.
  • the periodic structure layer 510 is provided on the upper side, but the periodic structure layer 510 may be formed on the lower side of the AMC substrate 501.
  • the total thickness of the transparent substrate 101 of the transparent antenna 100, the thickness of the first adhesive layer 281 and the thickness of the AMC substrate 501 is designed to be thinner than the thickness of the third adhesive layer 284. Suitable.
  • FIG. 34 is a cross-sectional exploded view showing the display module 5 according to the fifth embodiment of the present invention.
  • the periodic structure layer of AMC is provided on the upper surface of a dedicated AMC substrate separate from the transparent substrate of the transparent antenna, and the background conductor of AMC is provided on the lower surface of the substrate for AMC. ..
  • a third adhesive layer (OCA) 284 is provided between the touch panel 230 and the dedicated AMC substrate 501 in order to adhere the substrates to each other in close contact with each other.
  • the AMC substrate 501 having the periodic structure layer 510 provided on the upper surface and the background conductor 520 provided on the lower surface is provided above the touch panel 230.
  • the AMC substrate 501 is a second transparent substrate, for example, a flexible substrate made of polyimide, which is a colorless and transparent insulating material substrate that can be bent in the Z direction and / or the X direction.
  • an artificial magnetic conductor (AMC) 500 ⁇ is composed of a periodic structure layer 510 formed on the upper surface of the AMC substrate 501 and a background conductor 520 formed on the lower surface.
  • h3 is the total of the thickness of the transparent substrate 101 of the transparent antenna 100 and the thickness of the first adhesive layer 281
  • h5 is the thickness of the AMC substrate 501.
  • the AMC500 ⁇ has a periodic structure layer and a background conductor in the same substrate, so that the antenna is more than the AMC having no background conductor. Gain loss can be significantly suppressed. Further, in this configuration, the AMC 500 ⁇ is realized by a single substrate, but since it does not have vias that conduct vertically, it is possible to avoid complication of manufacturing.
  • the AMC 500 ⁇ having a dedicated AMC board may be provided on the display panel 220 without providing the touch panel 230. good.
  • the transparent antenna of the present invention can realize the function as an antenna by itself, but in order to further enhance the characteristics, it may be arranged in an array state (antenna array) in which a plurality of transparent antennas are collected.
  • an array state in which a plurality of transparent antennas are collected.
  • Display module 26 Cathode (background conductor for AMC) 61 Pseudo AMC measurement model 62 Pseudo AMC measurement model 63 Antenna unit (measurement model) 64 Pseudo-display module with AMC (measurement model) 65 Pseudo-display module of comparative example (measurement model) 80 Transparent conductor 81 Metal thin wire 82 Metal thin wire 83 Opening 100 Transparent antenna 101 Transparent substrate (antenna substrate) 110 Antenna pattern (transparent conductor, thin metal wire layer) 200 Electronic equipment 210 Housing 220 Display panel (OLED display panel, display) 230 Touch panel (metal thin wire layer for on-cell touch panel, on-cell metal fine wire layer) 240 transparent cover (cover glass) 250 Wiring board 260A, 260B, 260C, 260D Electronic component 270 Battery 281 First adhesive layer (OCA, adhesive layer) 282 Second Ad

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Support Of Aerials (AREA)

Abstract

ディスプレイモジュールはディスプレイ、ディスプレイの上側に配置され、透明基板及び透明基板上に形成されるアンテナパターンを有する透明アンテナ、透明アンテナより下層に配置される人工磁気導体を備える。人工磁気導体は特定の周波数を選択可能な周期構造層及びバックグラウンド導体を含み、透明アンテナのアンテナパターン及び人工磁気導体の周期構造層はメッシュ状導体で構成され、前記メッシュ状導体は配線幅w81、w82が5μm以下であり、可視光において70%以上の透過率が得られるように配線ピッチp81、p82が定められた透明導体で構成されており、透明アンテナのアンテナパターンから人工磁気導体の周期構造層までの距離をh1、人工磁気導体における周期構造層からバックグラウンド導体までの距離をh2とした場合にh1<h2の関係にある。

Description

ディスプレイモジュール
 本発明は、アンテナ及び人工磁気導体を備えるディスプレイモジュールに関する。
 近年、スマートフォン、タブレット、携帯電話、ノートパソコン等の移動式通信機器における通信技術として、第5世代移動通信システム(5G)、又は第6世代移動通信システム(6G)等が開発されている。
 ここで、5Gの周波数帯であるミリ波は指向性が強く、到達距離も比較的短く、金属等で遮蔽されやすいため、5G用のアンテナとして、ディスプレイ(OLED、LCD、LED)や、タッチパネル(ディスプレイ一体型金属細線パネルも含む)の上に透明アンテナを配置する技術が提案されている。
 しかし、アンテナに、ディスプレイやタッチパネル等の抵抗の大きい金属導体が近接すると、その金属導体が電波を反射せずに吸収してしまい、アンテナは狭帯域になり、送受信における利得の損失が大きくなり、放射効率が低下してしまう。そこで、図1に示すように、アンテナと、ディスプレイ又はタッチパネルとの間に、アンテナの反射位相をゼロにするような人工磁気導体(AMC:Artificial Magnetic Conductor)を設けることが提案されている(特許文献1)。
 特許文献1における、AMCは周期構造層によって構成されている。ここで、AMCには、周期構造だけで構成されるAMCと、周期構造層とバックグラウンド層の表裏の2層によって構成されるAMCとが存在する。周期構造だけで構成されるAMCよりも、周期構造層とバックグラウンド層の2層によって構成されるAMCの方が、より磁気壁としてのアンテナの反射性能が良いことが知られている。
米国特許第10326196号公報
 周期構造層とバックグラウンド層の2層によって構成されるAMCは、周期構造層とバックグラウンド層を磁気的に接続するビアありの上下導通構造と、ビアなしの上下非導通構造がある。しかし、上下貫通構造のAMCは製造が複雑で、製造工数が多くかかることが知られている。
 また、周期構造層とバックグラウンド層の2層によって構成されるAMCを用いる場合であっても、AMC、アンテナ、ディスプレイを含めた総厚みが大きくなる傾向があり、総厚みを抑制する、という課題があった。
 そこで、本発明は上記事情に鑑み、アンテナの利得損失を大幅に抑制でき、製造が複雑でない人工磁気導体を含有しつつ、人工磁気導体による積層厚の増加を最小限にできる、ディスプレイモジュールの提供を目的とする。
 上記課題を解決するため、本発明の一態様のディスプレイモジュールは、
 ディスプレイと、
 前記ディスプレイの上側に配置される、透明基板および該透明基板上に形成されるアンテナパターンを有する透明アンテナと、
 前記透明アンテナより下層に配置される人工磁気導体と、
を備え、
 前記人工磁気導体は、
  周期構造層、及び
  バックグラウンド導体を含み、
 前記透明アンテナの前記アンテナパターン、及び前記人工磁気導体の前記周期構造層は、メッシュ状導体で構成され、前記メッシュ状導体は配線幅が5μm以下であり、且つ、可視光において70%以上の透過率が得られるように配線ピッチが定められた透明導体で構成されており、
 前記透明アンテナの前記アンテナパターンから、前記人工磁気導体の前記周期構造層までの距離をh1、
 前記人工磁気導体における、前記周期構造層から前記バックグラウンド導体までの距離をh2とした場合に、
h1<h2の関係にある。
 一態様によれば、ディスプレイモジュールにおいて、アンテナの利得損失を大幅に抑制でき、製造が複雑でない人工磁気導体を含有しつつ、人工磁気導体による積層厚の増加を最小限にできる。
従来例に係る、AMC搭載ディスプレイモジュールの断面分解図。 本発明に係る、ディスプレイ搭載の電子機器の全体図と透明アンテナの位置を示す図。 図2の電子機器のAA面断面図。 本発明の第1実施形態に係るディスプレイモジュールを示す断面分解図。 金属導体の電磁波の反射の説明図。 AMCの電磁波の反射の説明図。 本発明の第1実施形態に係る周期構造層が設けられた透明アンテナの説明図。 本発明の透明アンテナの上面図。 本発明の周期構造層が設けられた透明アンテナの下面図。 本発明のアンテナパターン及び周期構造層を構成する透明導体の説明図。 一般的な上下導通型のAMCの説明図。 一般的な上下非導通型のAMCの説明図。 上下非導通型で周期構造がパッチ型のAMCの説明図。 上下非導通型で周期構造がホール型のAMCの説明図。 本発明のAMCの周期構造層の共振素子の変形例を示す図。 一般的な投影型静電容量方式のタッチパネルのセンサパターンの模式図。 タッチパネルの断面図の一例を示す図。 1つの浮遊導体と、接着層と、タッチパネルを模した金属導体で構成される疑似AMCの模式図。 図14の疑似AMCにおいて、金属導体の抵抗値を0~2.4Ω/sqに変化させた場合の反射振幅のパラメータの特性値を示す図。 図14の疑似AMCにおいて、金属導体の抵抗値を2.8~10Ω/sqに変化させた場合の反射振幅のパラメータの特性値を示す図。 図14の疑似AMCにおいて、金属導体の抵抗値を0~2.4Ω/sqに変化させた場合の反射位相のパラメータの特性値を示す図。 図14の疑似AMCにおいて、金属導体の抵抗値を2.8~10Ω/sqに変化させた場合の反射位相のパラメータの特性値を示す図。 1つの浮遊導体と、接着層と、タッチパネルを模した金属導体で構成される疑似AMCの模式図。 図17の疑似AMCにおいて、浮遊導体の大きさを変更した場合の反射振幅のパラメータの特性値を示す図。 図17の疑似AMCにおいて、浮遊導体の大きさを変更した場合の反射位相のパラメータの特性値を示す図。 本発明の透明アンテナと接着層で構成される測定モデルの模式図。 本発明の透明アンテナと、透明アンテナの下面に設けられる周期構造層と、接着層と、タッチパネルを模した金属導体で構成される疑似ディスプレイモジュールの模式図。 透明アンテナと、接着層と、タッチパネルを模した金属導体で構成される比較例の測定モデルの模式図。 図20、図21、図22の測定モデルでの最大利得を示す表。 本発明の第1実施形態の変形例に係るディスプレイモジュールを示す断面分解図。 本発明の第2実施形態に係るディスプレイモジュールを示す断面分解図。 第2実施形態に係るディスプレイパネルの断面図。 本発明の第2実施形態の変形例に係るディスプレイモジュールを示す断面分解図。 本発明の第3実施形態に係るディスプレイモジュールを示す断面分解図。 本発明の第3実施形態の変形例1に係るディスプレイモジュールを示す断面分解図。 本発明の第3実施形態の変形例2に係るディスプレイモジュールを示す断面分解図。 本発明の第3実施形態の変形例3に係るディスプレイモジュールを示す断面分解図。 本発明の第4実施形態に係るディスプレイモジュールを示す断面分解図。 本発明の第4実施形態の変形例に係るディスプレイモジュールを示す断面分解図。 本発明の第5実施形態に係るディスプレイモジュールを示す断面分解図。
 以下、図面を参照して本発明を実施するための形態について説明する。下記、各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。以下、本発明の透明アンテナを適用した実施の形態について説明する。
 本発明のディスプレイモジュールに搭載される透明アンテナは、一例として、第5世代移動通信システム(5G)に適用可能である。
 5Gの周波数において、1つの周波数帯は、24.2~29.5GHzであり、2つ目の周波数帯は、37.3~40GHzであり、3つ目の周波数帯は、所謂Sub6帯(5Gの6GHz以下帯)と呼ばれる1.0~5.0GHzである。そのため、本発明のディスプレイモジュールに含まれる透明アンテナは、5G帯において、上記の3つの周波数帯域のうちの少なくとも1つで共振するように設定される。
 なお、本発明に係るディスプレイモジュールについて、下記に示す順序で説明する。
1.ディスプレイモジュールが搭載される電子機器
2-1.本発明の第1実施形態に係るディスプレイモジュール1
2-2.下面に周期構造層が設けられた透明アンテナの構成
2-3.透明導体の構成
2-4.AMCの構成例
2-5.タッチパネルの構成
3-1.疑似AMC最小単位の測定モデル構成と特性1
3-2.疑似AMC最小単位の測定モデル構成と特性2
3-3.アンテナ単体、AMC付き疑似ディスプレイモジュール、比較例の疑似ディスプレイモジュールの測定モデル構成と特性
4.本発明の第1実施形態の変形例に係るディスプレイモジュール1A
5-1.本発明の第2実施形態に係るディスプレイモジュール2
5-2.ディスプレイパネルの構成
5-3.本発明の第2実施形態の変形例に係るディスプレイモジュール2A
6-1.本発明の第3実施形態に係るディスプレイモジュール3
6-2.本発明の第3実施形態の変形例1に係るディスプレイモジュール3A
6-3.本発明の第3実施形態の変形例2に係るディスプレイモジュール3B
6-4.本発明の第3実施形態の変形例3に係るディスプレイモジュール3C
7-1.本発明の第4実施形態に係るディスプレイモジュール4
7-2.本発明の第4実施形態の変形例に係るディスプレイモジュール4A
8.本発明の第5実施形態に係るディスプレイモジュール5
 (1.ディスプレイモジュールが搭載される電子機器)
 図2及び図3を用いて本発明の透明アンテナ100を含むディスプレイモジュール1が搭載される通信装置の一例である電子機器200の構成について説明する。図2は、本発明のディスプレイモジュール1搭載の電子機器200の全体図と透明アンテナ100の位置を示す図である。図3は、図2の電子機器200のA面断面図である。
 図2、図3では、X方向は電子機器200の横方向、Y方向は電子機器200の縦方向、Z方向は電子機器200の高さ方向を指している。以下では、XYZ座標系を定義して説明する。また、以下では、説明の便宜上、平面視とはXY面視をいい、+Z方向側を上側、-Z方向側を下側とする上下方向と、上下方向に対する横方向(側方)とを用いて説明するが、普遍的な上下方向と横方向を表すものではない。
 また、平行、直角、直交、水平、垂直、上下、左右等の方向には、実施の形態における開示の効果を損なわない程度のずれが許容される。また、X方向、Y方向、Z方向は、それぞれ、X軸に平行な方向、Y軸に平行な方向、Z軸に平行な方向を表す。X方向とY方向とZ方向は、互いに直交する。XY平面、YZ平面、ZX平面は、それぞれ、X方向及びY方向に平行な仮想平面、Y方向及びZ方向に平行な仮想平面、Z方向及びX方向に平行な仮想平面を表す。
 電子機器200は、例えば、スマートフォン、タブレットコンピュータ、ノートブック型PC(Personal Computer)等の情報処理端末機である。また、電子機器200は、これらに限られず、例えば、柱や壁等の構造物、デジタルサイネージ、電車内のディスプレイパネルを含む電子機器、又は、車両の中の様々なディスプレイパネルを含む電子機器等であってもよい。
 図2及び図3に示すように、電子機器200の上面全体、または上面の少なくとも一部は表示機能を実行可能なディスプレイモジュール1が配置されている。そして、本発明の透明アンテナ100は、ディスプレイパネル220上のタッチパネル230の上側に配置されている。本発明の透明アンテナ100は、透明カバー240を介して電子機器200の外から見えており、透明アンテナ100を介して外側からディスプレイパネル220を視認可能なように、透明である。
 図3を参照して、電子機器200において、ディスプレイパネル220、タッチパネル230、透明アンテナ100、及び透明カバー240を、合わせてディスプレイモジュール1(表示モジュールともいう)とする。
 電子機器200は、ディスプレイモジュール1の他に、筐体210、配線基板250、電子部品260A、260B、260C、260D、及びバッテリー270等を含む。
 図2、図3では、透明アンテナ100が搭載される電子機器200は、スマートフォンである例を示しているが、本発明の透明アンテナが搭載される電子機器は、筐体210、透明カバー240、及びディスプレイパネル220を含む電子機器であれば、他の構成であってもよい。また、電子機器200はタッチパネル230を設けない機器であってもよい。
 筐体210は、例えば金属製及び/又は樹脂製のケースであり、電子機器200の下面側及び側面側を覆っている。筐体210は、周壁の上端となる開口端211を有し、開口端211には、透明カバー240が取り付けられている。筐体210は、開口端211に連通する内部空間である収納部212を有し、収納部212には、配線基板250、電子部品260A~260D、及びバッテリー270等が収納されている。
 カバーガラスの一例である透明カバー240は、最上面に設けられる透明なガラス板であり、平面視で筐体210の開口端211に合わせられたサイズを有する。透明カバー240は、本例では、大半が平面で、横方向(+-Y方向)の両端部が緩やかに下側に湾曲した形状のガラス板である例を示すが、横方向において平板状のガラス板であってもよい。あるいは、透明カバー240は、電子機器200の縦方向(+-X方向)においても両端部が緩やかに下側に湾曲した形状であってもよい。ここでは、透明カバー240がガラス製である形態について説明するが、透明カバー240は樹脂製であってもよい。
 透明カバー240が筐体210の開口端211に取り付けられることにより、筐体210の収納部212は封止される。
 透明カバー240の上面は、透明カバー240の外表面の一例であり、透明カバー240の下面は、透明カバー240の内表面の一例である。透明カバー240の内表面側には、透明アンテナ100及びタッチパネル230が設けられる。透明カバー240は透明であるため、電子機器200の外部からは、透明カバー240を介して内部に設けられるタッチパネル230及びディスプレイパネル220が見える。
 配線基板250には、電子部品260A~260Cが実装される。配線基板250には、透明アンテナの給電部分から伸びる給電線路等が接続される。配線基板250と、透明アンテナ100の給電部分とは、コネクタやACF(Anisotropic Conductive Film)等を用いて接続されていてもよく、その他の構成要素を用いて接続されていてもよい。
 電子部品260Aは、一例として、配線基板250の配線を介して透明アンテナ100の給電部分に接続されており、透明アンテナ100を介して送信又は受信する信号の処理を行う通信モジュールである。また、中央の電子部品260Bは、例えば、カメラである。
 電子部品260C、260Dは、一例として、電子機器200の動作に関連する情報処理等を行う部品であり、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、入出力インターフェース、及び内部バス等を含むコンピュータによって実現される。
 バッテリー270は、充電可能な二次電池であり、ディスプレイモジュール1、及び電子部品260A~260D等の動作に必要な電力を供給する。
 (2-1.第1実施形態に係るディスプレイモジュール)
 次に、第1実施形態に係るディスプレイモジュール1の構成について説明する。図4は、ディスプレイモジュール1の断面分解図である。
 図3では記載を省略しているが、図4に示すようにディスプレイモジュール1は、タッチパネル230と透明カバー240との間に、第1の接着層281、偏光板291、及び第2の接着層282を有している。第1の接着層281及び第2の接着層282は、透明光学粘着剤OCA(Optical Clear Adhesive)で構成されている。
 そして、本実施形態の透明アンテナ100は、第1の接着層281と偏光板291の間に設けられている。透明アンテナ100は透明基板101と、透明基板101の上面に形成された、アンテナパターン110とを有している。また、透明基板101の下面には、周期構造層410が形成されている。
 本構成では、タッチパネル230の一部である電極層301をAMCのバックグラウンド層としてみなす。この構成により、図4では、第1の接着層281を挟んだ、周期構造層410と、バックグラウンド層として機能するタッチパネル230の電極層301とで、人工磁気導体(AMC)400が構成されている。
 ここで、通常の金属導体は、図5Aのように、電磁波の位相を180度反転させて反射する。このような通常の金属導体をアンテナに近接して配置した場合、アンテナの放射と、金属で反射した反射波が干渉して、電波の強度が下がってしまう。
 一方、人工磁気導体(AMC)は、図5Bに示すように、電磁波を位相約0度で反射させ(すなわち同位相で反射させ)、反射波を反射面近傍で増幅させる導体層である。そのため、周期構造層を有するAMCをアンテナに近接して設けると、金属導体によるアンテナ特性の悪影響を抑制することができる。
 また、タッチパネル230は「オンセルタッチパネル用金属細線層」である。ここで「オンセル」とは、ディスプレイパネル220と独立した基板上に形成したタッチパネルを貼り付けるのではなく、ディスプレイパネル220の表面上に電極層を直接形成した構造を指す。あるいは、タッチパネル230は、独立した基板上に形成したタッチパネルを、ディスプレイパネル220に接着した、オンセルではないタッチパネル用金属細線(配線層)でもよい。
 タッチパネル230は、電極層301を含んでおり、電極層301が、AMC400のバックグラウンド導体として機能する。
 ディスプレイパネル(ディスプレイ)220は、例えば、液晶ディスプレイパネル、有機EL(Electro-luminescence)、又は、OLED(Organic Light Emitting Diode)ディスプレイパネルであり、いずれの構成でもディスプレイモジュール1の最も下側に配置される。
 なお、ディスプレイモジュール1において、周期構造層410およびアンテナパターン110は、透明基板101に対して一部分に設置されていればよい。また、周期構造層は、垂直視において、少なくともアンテナパターン110のアンテナ部を含むように設置される。透明基板101は、垂直視において、ディスプレイの全面にわたっていてもよく、部分的に設けられていてもよい。透明基板がディスプレイの全面にわたっている場合は、厚みを均一化でき、段差によるエアラインの発生などを抑制することができる。
 周期構造層410が下面に形成された透明アンテナ100が部分的に設けられる場合は、透明アンテナ100が設けられる領域については、他の部分よりも、タッチパネル230、第1の接着層281、偏光板291、又は/及び第2の接着層282を薄くしたり、あるいは、第1の接着層281、偏光板291、又は/及び第2の接着層282を設けない構造にしたりしてもよい。これにより、ディスプレイモジュール1において、透明アンテナ100の部分だけ盛り上がることを防止することができる。
 しかし、透明アンテナ100が厚すぎると、装置全体の厚みが厚くなってしまうことに加えて、透明アンテナのエッジ部が視認できたり、接着層281,282との境界に空気が混入しやすくなる、という課題が生じることが分かった。透明アンテナ100の厚さは300μm以下が好ましく、150μm以下がさらに好ましく、100μm以下が特に好ましい。また、ハンドリングの容易性の観点から、透明アンテナ100の厚さは10μm以上が好ましく、50μm以上がさらに好ましい。
 また、図2、図3では、ディスプレイモジュール1は、+-Y方向の両端部が、緩やかに曲面の形状である例を示したが、ディスプレイモジュール1は、端部が曲がらない、平面形状であってもよい。その場合は、透明アンテナ100も平面形状であってもよい。なお、透明アンテナ100が部分的に曲面になる場合は、後述する給電領域が曲面形状になる。
 ここで、発明者らは鋭意検討の結果、人工磁気導体(AMC)では、周期構造層とバックグラウンド導体は、離れているほど、電気的に良好であることを見出した。また、アンテナとAMCの周期構造層は、アンテナと近接して設けても悪影響はあまりないことも判明した。
 そのため、本構成では、透明アンテナ100のアンテナパターン110から、AMC(人工磁気導体)400の周期構造層410までの距離をh1、AMC400における、周期構造層410からバックグラウンド導体301までの距離をh2とした場合に、h1<h2の関係に設定する。本構成では、h1は、透明アンテナ100の透明基板101の厚さに相当する。h2については、図13とともに後述する。
 本構成では、AMC400の周期構造層は、アンテナ基板(透明基板101)の背面に形成され、AMC400のバックグラウンド導体は、金属細線層のタッチパネル230の一部(電極層301)である。このように、既存のタッチパネル230の電極層301を、AMC400のバックグラウンド導体として使用しているため、透明アンテナ100の下に周期構造層410を設けるだけで、基板の追加なく、ディスプレイモジュール1において、AMC400の機能を付加することができる。そのため、本実施形態に係るディスプレイモジュール1では、アンテナの利得損失を抑制できる人工磁気導体(AMC)を含有しつつ、積層厚の増加を回避できる。
 (2-2.下面に周期構造層が設けられた透明アンテナの構成)
 次に図6~図8を用いて本発明の第1実施形態に係る周期構造層410が設けられた透明アンテナ100の構成について説明する。図6は、本発明の第1実施形態に係る、AMCの周期構造層が下面に設けられた透明アンテナ100の斜視図である。図7A、図7Bは、第1実施形態に係る透明アンテナ100の説明図であって、図7Aは+Z方向から見た上面図であり、図7Bは-Z方向から見た下面図である。なお、図2のように透明アンテナ100の一部がカーブに沿って配置される場合においても、図6では、透明アンテナ100を折り曲げる前の状態をXY平面に平行に示す。
 透明アンテナ100は、透明基板101を有し、透明基板101上にアンテナパターン110が設けられている。本構成のアンテナパターン110は、ダイポール型のアンテナの一例である。なお、本形態においてはアンテナ給電線路については図示しておらず、理想的に給電された理想的なアンテナ単体モデルとしている。
 透明基板(透明基材、透明基体ともいう)101は、一例としてポリイミド製のフレキシブル基板であって、Z方向及び/又はX方向に折り曲げ可能である。また、透明基板101は、無色透明であって、絶縁材基板である。
 図6、図7Aを参照して、本構成のアンテナパターン110は、Y方向の中央を通り、Y方向に延伸する、1本の線条エレメントで構成されている。本構成では、アンテナパターン110は、透明基板101の上面側である+Z側に設けられている。
 ここで、アンテナパターン110の導体長をL110、透明アンテナ100の共振周波数f1(28GHz)における透明基板101上での波長をλ01として、L110が約0.5λ01の奇数倍に設定される。したがって、周波数帯f1でのアンテナ利得を向上させたい場合、アンテナパターン110の線条エレメントの導体長L110を、例えば、約4.0mmの±10%以内に調整するとよい。
 また、図6、図7Bを参照して、透明基板101の下面には、複数の導電パターンP1~P9が周期的に設けられており、このように周期的に設けられた導電パターンP1~P9は、周期的な浮遊導体(共振素子)として、AMC400の周期構造層410となる。
 本実施形態では、一つの基板(透明基板101)を多層化することにより、AMC400の周期構造層410と、透明アンテナ100のアンテナパターン110とを、一括形成することができる。
 (2-3.透明導体の構成)
 図8は、本発明の透明導体80の説明図である。透明導体80は、透明基板101の表面(上面及び下面)に形成されており、一例として、図6、図7A、図7Bに示すアンテナパターン110及び周期構造層410を構成するものとして用いられる。透明導体80は、人間の視力では確認が難しいほど光透過性が高い導体である。
 詳しくは、透明導体80は、光透過性を高くするために、一例としてメッシュ状に形成されている導電線路の層、即ち金属細線層である。図8に示すように、メッシュ状の金属細線層では、一方の方向に延在する複数の金属細線81と、他方の方向に延在する複数の金属細線82が交差するように設けられて、網目状の隙間(目開き)である開口部(透孔)83が空いている。
 透明導体80がメッシュ状に形成される場合、メッシュの開口部83は方形であってもよく、菱形であってもよい。メッシュの開口部83を方形に形成する場合、メッシュの目は正方形が好ましく、意匠性が良い。また、メッシュの開口部83は、自己組織化法によるランダム形状でもよく、そうすることでモアレを抑制できる。メッシュを構成する金属細線81,82それぞれの線幅(配線幅)w81、w82は、1~10μmが好ましく、1~5μmがより好ましく、1~3μmがさらに好ましい。また、メッシュの複数の金属細線81間、及び複数の金属細線82間の線間隔(目開き、配線ピッチともいう)p81、p82は、300~500μmが好ましい。
 透明導体80におけるメッシュ全体に対する開口部83の面積の割合である開口率は、80%以上が好ましく、90%以上がより好ましい。透明導体80の開口率を大きくするほど、透明導体80の可視光透過率を高くできる。
 透明導体のシート抵抗は5Ω/sq以下であることが好ましく、3Ω/sqであることがより好ましく、1Ω/sqであることがさらに好ましい。
 透明導体80がメッシュ状に形成される場合、透明導体80の厚さは、1~40μmであってよい。透明導体80がメッシュ状に形成されることにより、透明導体80が厚くても、可視光透過率を高くできる。透明導体80の厚さは、5μm以上がより好ましく、8μm以上がさらに好ましい。また、透明導体80の厚さは、30μm以下がより好ましく、20μm以下がさらに好ましく、15μm以下が特に好ましい。
 なお、透明導体80において、メッシュ状の細線の線幅(導体幅)w81,w82よりも、導体厚tは小さく設定される。アスペクト比が1を超えると、構造的にアンバランスになり、壊れやすく、また製造も困難なためである。ただし、導体厚tは厚いほどシート抵抗値を小さくすることができるため、アンテナの効率として導体厚tは大きい方が良いため、tはwより小さく、かつなるべく大きい値が好適である。
 なお、透明導体80の金属細線81,82の導体材料としては銅が挙げられるが、他にも、金、銀、白金、アルミニウム、クロム、錫、鉄、ニッケル等の金属材料を使用でき、また、これらの材料に限られない。
 このような透明導体80で実現されるアンテナパターン110と周期構造層410は、透明であり、人間の視力では確認が難しいほど光透過性が高く、かつ導体として機能することができる。
 (2-4.AMCの構成例)
 上述のように、人工磁気導体(AMC)は、電磁波を位相約0度で反射するもので、反射波を反射面近傍で増幅する導体である。
 このような特性を有するAMCは、大きく分けて、図9A、図9Bに示す2種類が存在する。図9A、図9Bは、一般的な2種類のAMCの説明図である。図9Aは、上下導通型のAMCの例を示し、図9Bは、上下非導通型のAMCの例を示す。
(1)上下導通型のAMCは、図9Aに示すように、下側のバックグラウンド導体(グラウンド板)46と、上側の周期構造層45の浮遊導体47とがビア49を介して上下に接続されている。複数の浮遊導体47は、スリット48によって分離されている。このような構造は、マッシュルーム型とも呼ばれる。
(2)上下非導通型のAMCは、図9Bに示すように、バックグラウンド導体(グラウンド板)42と、バックグラウンド導体に接続されていない周期構造層41とで、構成されている。周期構造層41は、スリット44によって分離された複数の浮遊導体43を有している。
 周期構造層は、特定の周波数を選択的に反射する、いわゆる、FSR(Frequency Selective Reflector)又はFSS(Frequent Selective Surface)又はEBG(Electromagnetic Band Gap)又はメタサーフェイスと呼ばれる空間フィルタである。
 (1)の構成の場合は、ビアを介して上下の層が接続しているため、周期構造層と、バックグラウンド導体とは、図9Aに示すように同一の基板の上面と下面で構成される必要があった。これに対して、(2)の構成の場合は、周期構造層41と、バックグラウンド導体42とは接続されていないため、別の基板に形成されていてもよい。
 本発明では、(2)の上下非導通型のAMCを適用し、さらに、AMCの周期構造層41と、バックグラウンド導体42の機能が、別の基板で実現される構成について説明する。
 上記(2)の上下非導通型のAMCでは、大きく分けて2種類の周期構造層を有している。図10A、図10Bは、上下非導通なAMCの説明図であり、図10Aは、周期構造がパッチ型のAMCを示し、図10Bは、周期構造がホール型のAMCを示す。
 図10Aに示すAMCの上層の、パッチ型の周期構造層では、同一形状の金属(共振素子)パッチが周期的に配列されている。図6に示す透明アンテナ100の下面に設けられる、周期構造層410も、パッチ型の周期構造層の一例である。パッチ型のFSRの周期構造を有するAMCでは、共振素子が完全に共振する場合に、反射係数が-1となる、帯域阻止フィルタとして機能する。
 図10Bに示すAMCの上層の、ホール型の周期構造層では、金属層に、同一形状の穴(共振素子)が、周期的に形成されている。ホール型FSRの周期構造を有するAMCでは、共振素子が完全に共振する場合に、透過係数が1となる、帯域通過フィルタとして機能する。
 図6、図7Bや下記のシミュレーション例では、AMCの周期構造層410が、パッチ型の構成である例を示しているが、本発明のAMCにおける周期構造層は、図10Bのように、ホール型の周期構造層であってもよい。
 周期構造層において、図10Aの複数のパッチの部分、図10Bの複数の穴の部分が、共振素子となる。
 図7Bでは共振素子が正方形の例、図10A、図10Bでは共振素子が円形である例を示したが、パッチ型FSRのパッチ部又は、ホール型FSRの穴部の構成は、他の形状であってもよい。
 図11は、本発明のAMCの周期構造層の共振素子の変形例を示す図である。例えば、共振素子は、図11に示すように、四角ループ状や、リング状、二重スクエアループ、十字形状、腕付き十字形状、キャパシタを備えた長方形ループ、長方形状のダイポール、トリポール、3足ダイポール、4足ダイポール、ハート形状等がとりうる。なお、図11の例は一例であって、図9Bに示す浮遊導体43のように、周期構造層における共振素子は、さらに別の形状であってもよい。
 (2-5.タッチパネルの構成)
 次に、第1実施形態において、一部が、AMC400のバックグラウンド導体を兼ねる、タッチパネル230の構成について、図12、図13を用いて説明する。タッチパネル230の一例として、投影型静電容量方式のタッチパネル(タッチセンサともいう)におけるセンサパターンの構成について下記説明する。図12は、一般的な投影型静電容量方式のタッチパネル230のセンサパターンの模式図である。
 図12を参照して、タッチパネル230は、基板上に複数の第1電極31、及び複数の第2電極32が設けられ、複数の第1電極31と接続する複数の第1配線38、及び複数の第2電極32と接続する複数の第2配線39を備えている。
 図12に示すように、投影型静電容量方式のタッチパネル230のセンサパターンでは、複数の電極31,32は、マトリクス状に配置されており、隣接する電極同士は容量結合している。指などの導電性物質が電極に近づくと、指と電極間との間に容量結合が発生し、電極間同士の容量結合値が、変化した部分を、接触位置として検出する。このような投影型静電容量方式では、タッチパネル230上の複数の位置を同時に検出できる。
 なお、タッチパネル230において、第1電極31と第2電極32は、異なる面又は異なる層に設けられている場合と同一面に設けられている場合がある。具体例を下記に示す。例えば、
(1)1つのガラス基板に対して一方の面に第1電極31、他方の面に第2電極32が設けられている。
(2)ガラス(プリント基板)を2層に重ねた構造において上層のガラス基板に第1電極31、下層のガラス基板に第2電極32が設けられている。
(3)1つのフィルムに対して一方の面に第1電極31、他方の面に第2電極32が設けられている。
(4)フィルムを2層に重ねた構造において上層のフィルムに第1電極31、下層のフィルムに第2電極32が設けられている。
(5)第2電極32と同一面内に第1電極31の菱形電極部が設けられ、菱形電極間が異なる層に設けられたブリッジ電極によって接続されている。
(1)~(4)は異なる面又は異なる層に設けられている場合であり、(5)は同一層に設けられている場合である。
 図12に示すように、第1電極31は、横方向(X方向)に串状につながっており、第2電極32は、縦方向(Y方向)に串状につながっている。そして、第1電極31及び第2電極32の輪郭は、共通の第1の直線L1と、第1の直線と直交する第2の直線によって形成されたひし形、又は正方形形状である。
 そして、複数の平行な直線L1と、複数の平行な直線L2を使用して四辺が構成された第1電極31と第2電極32において、隣接する辺は、距離d離れている。
 距離dは、小さいほど電極間の隙間が視認できなくなる点では好ましいが、距離dの部分が広すぎると、電極31や電極32が存在しない領域が視認されてしまうこともありうる。しかし、距離dを小さくするほど、異なる層間での位置調整が難しく、製造工程が複雑になる。間隔dの大きさとしては、例えば0より大きく10mm以下、好ましくは1μm以上5mm以下、より好ましくは3μm以上1mm以下、より好ましくは5μm以上500μm以下などとすればよい。
 図13は、タッチパネル230の断面図の一例である。図13では、上述の(5)第2電極32と同一面内に第1電極31の菱形電極部が設けられ、菱形電極間が異なる層に設けられたブリッジ電極によって接続されている場合の構成例を示している。
 図13の例では、タッチパネル230は、電極層301、絶縁層302、ブリッジ層303、絶縁保護層304を有している。電極層301は、絶縁ホール306によって区画されて、電極31と電極32を構成している。本例では、電極31と電極32を分ける絶縁ホール306が、スリットS1、S2に相当する。絶縁ホール306と、絶縁保護層304は一体的に形成されている。
 絶縁層302には上下に貫通するスルーホール305が形成され、スルーホール305を介して、電極層301と、ブリッジ層303とが導電している。ブリッジ層303及びスルーホール305が、ジャンパー35として機能する。
 電極層301、ブリッジ層303、及びスルーホール305は、例えば、Ti、Al等の金属を含んで構成されている。絶縁層302は、例えば、SiNxで構成されている。絶縁保護層304及び絶縁ホール306は、導体を有しておらず、例えばアクリルで構成されている。
 上述のように、第1実施形態では、タッチパネル230の電極層301が、AMC400のバックグラウンド導体として機能する。そのため、図4のAMC400の周期構造層410からバックグラウンド導体までの距離h2は、正確には、第1の接着層281と、タッチパネル230における、電極層301の上の絶縁保護層304の厚さの合計となる。
 そのため、図4において、h1<h2を実現するには、第1の接着層281と、タッチパネル230の絶縁保護層304の厚さの合計を、透明アンテナ100の透明基板101の厚さよりも、厚くすればよい。
 h2は、100μm以上が好ましく、150μm以上がより好ましく、300μm以上がさらに好ましい。このように設定することで、有効に電磁波を反射する機能を得ることができる。また、h2は、2000μm以下が好ましく、1000μm以下がさらに好ましく、600μm以下がさらに好ましい。このようにすることで、積層厚が著しく増大することを抑制しながら、特性を維持することができる。
 h1は、5μm以上が好ましく、15μm以上がより好ましく、50μm以上がさらに好ましい。このように設定することで、電磁波を反射する機能を維持しながら、積層厚の増大を防止できる。また、h1は、300μm以下が好ましく、200μm以下がさらに好ましく、100μm以下がさらに好ましい。
 <シミュレーション例>
 (3-1.疑似AMC最小単位の測定モデル構成と特性1)
 本願の発明者らは、AMCの挙動を確認するため、本願のAMCを模した疑似AMCについて、各種シミュレーションを行った。
 図14は、1つの浮遊導体と、接着層と、タッチパネルを模した金属導体で構成される疑似AMCの模式図である。図14に示す疑似AMCの測定モデル61では、接着層281の上にその接着層よりも小さい、周期構造層の繰り返し単位となる浮遊導体Pを設け、接着層281の下に金属導体Mを設けた。なお、この金属導体Mは、AMCのバックグラウンド導体として機能する。
 本シミュレーションでは、最下層の抵抗体である金属導体Mの抵抗値を変更しながら、反射振幅と、反射位相のパラメータを測定した。このパラメータを測定した際の、図14に示す、疑似AMCの各部寸法は、
 浮遊導体Pの一辺:3mm
 接着層281、金属導体Mの一辺:4.7mm
である。
 また、疑似AMCにおける、各層の厚みは、
 浮遊導体Pの厚み:1μm
 接着層281の厚み:150μm
である。
なお、表面抵抗が設定される表面インピーダンスを境界条件として設定しているため、金属導体Mについては、厚みは存在しない設定である。
 図15A、図15Bに、図14の疑似AMCにおいて金属導体Mの抵抗値を変更した場合の、反射振幅のパラメータの特性値を示す。図16A、図16Bに、図14の疑似AMCにおいて、金属導体Mの抵抗値を変更した場合の、反射位相のパラメータの特性値を示す。
 この測定では、図14に示す疑似AMCにおいて、金属導体Mの抵抗値(シート抵抗値)を、0.00001、0.1、0.2、0.6、0.8、1.0、1.2、1.4、1.6、1.8、2.1、2.4、2.8、3.2、3.7、4.2、4.9、5.6、6.4、7.4、8.4、9.7、10Ω/sqと、23段階に変化させて、それぞれの反射振幅、反射位相のパラメータを求めた。
 測定したパラメータの変化の傾向を説明するため、図15A、図16Aでは、金属導体Mの抵抗値が0~2.4Ω/sqの場合を示し、図15B、図16Bでは、金属導体Mの抵抗値が2.8~10Ω/sqの場合を示している。
 図15Aに示すように、金属導体Mの抵抗値が0~2.4Ω/sqの場合、29GHzにおいて、抵抗値が大きくなるほど、反射振幅の極の値の絶対値が大きくなる。反対に、図15Bに示すように、金属導体Mの抵抗値が2.8~10Ω/sqの場合、29GHzにおいて、抵抗値が大きくなるほど、反射振幅の極の値の絶対値が小さくなる。なお、下に凸の極ができている部分は、AMCに電磁波が吸収されている部分であり、値が小さい(絶対値が大きい)ほど、吸収量が多くなる。
 図16Aに示す金属導体Mの抵抗値が0~2.4Ω/sqの場合、29GHzにおいて、反射位相は、所定の傾きをもって位相0を通過している。これらの波形は、いわゆる、一般的なAMCの反射位相にみられる波形と類似した波形形状であって、このような波形では、反射位相が-90°~0°~90°の範囲で、AMCとして使用できる。即ち、この抵抗値の範囲では、図14の疑似AMCの測定モデル61は、AMCとして機能しているといえる。
 これに対して、図16Bに示す金属導体Mの抵抗値が2.8~10Ω/sqの場合、周波数の変化に対して、位相0を通る位置で位相の正負が一気に切り変わって、反射位相が瞬間的に大きく変化している。このように瞬間的に、位相が0から変化してしまうと、AMCとして機能しない。
 よって、浮遊導体Pと、金属導体Mとが、電磁波を透過する接着層281によって150μm離間して設けられる場合は、金属導体Mは、2.8Ω/sq未満であることで、AMCとしての機能を実現できる。
 また、図15A、図15Bと、図16A、図16Bとを比較すると、図15A、図15Bで下に凸の極となる周波数で、図16A、図16Bで位相がゼロとなっている。ここで、上述のように、図15A、図15Bで下に凸のなる部分の値が小さい(絶対値が大きい)ほど、AMCに電磁波が吸収され、その分電磁波の損失となっているため、図15Aより、金属導体Mは、2.8Ω/sq未満の範囲で、より好ましくは2.4Ω/sq未満の範囲で、できるだけ抵抗値が0に近い小さい値であるほど好ましい。
 なお、浮遊導体Pと金属導体Mの間隔が開くほど、金属導体Mの影響が少なくなるため、浮遊導体Pと金属導体Mの間隔に応じて、金属導体Mの抵抗値も適宜設定できる。例えば、浮遊導体Pと金属導体Mの間隔が図14に示す0.15mmよりも離れている場合は、AMCとして機能する金属導体の抵抗値は、2.8Ω/sq以上に大きくなり、浮遊導体Pと金属導体Mの間隔が近い場合は、AMCとして機能する金属導体の抵抗値は、2.8Ω/sqよりも小さくなる。
 例えば、浮遊導体Pと金属導体Mの間隔が、0.30mmである場合は、AMCとして機能する金属導体Mの抵抗値は、5.6Ω/sq未満、より好ましくは、5.0Ω/sq以下であると好適である。
 具体的には、図4で示す距離h2が0.15mmの場合は、タッチパネル230の電極層301を、AMC400のバックグラウンド導体として機能させるために、電極層301のシート抵抗値は、2.8Ω/sqよりも小さいと好適である。また、h2が0.30mmである場合は、AMCのバックグラウンド導体として機能する電極層301のシート抵抗値は、5.6Ω/sq未満、より好ましくは、5.0Ω/sq以下であると好適である。
 本例では、タッチパネル230において、電極層301が、小さなシート抵抗値を有する部材であってバックグラウンド導体として機能する例を説明したが、タッチパネルの電極層301の配線パターンを、既存のものから工夫することで、シート抵抗値を調整してもよい。具体的には、日本国特許出願第2020-078661号の段落[0082]~[0106]に記載された、電極層301の細線パターンのスリットの長さ、電極の輪郭辺の長さ、ジャンパーの有無を調整することで、低いシート抵抗値を有する、タッチパネルを構成してもよい。
 あるいは、タッチパネル230の電極層301の上の絶縁保護層304を、一般的な絶縁材であるガラス、フィルム、アクリル等に変えて、アクリルとは異なる誘電率を持った樹脂材料、例えば、ポリカーボネート樹脂やフッ素樹脂を含んだ材料で構成してもよい。これにより、タッチパネルのシート抵抗値を小さくすることができる。
 さらには、タッチパネル230の電極層301の導体厚みを厚くするように構成してもよい。これにより、タッチパネル230のシート抵抗値を小さくすることができる。
 (3-2.疑似AMC最小単位の測定モデル構成と特性2)
 図17は、1つの浮遊導体と、接着層と、タッチパネルを模した金属導体で構成される疑似AMCの模式図である。図17に示す疑似AMCの測定モデル62では、図14同様に、接着層281の上に接着層よりも小さい、周期構造層の繰り返し単位となる浮遊導体Pを設け、接着層281の下に金属導体Mを設けた。なお、この金属導体Mは、AMCのバックグラウンド導体として機能する。
 本シミュレーションでは、図17の点線で示すように最上層の浮遊導体Pの大きさを変更しながら、反射振幅と、反射位相のパラメータを測定した。このパラメータを測定した際の、図17に示す疑似AMCの各部の寸法は、浮遊導体Pの大きさ以外、図14と同様である。なお、本シミュレーションでは、最下層の金属導体Mの抵抗値は、1.0Ω/sqと固定した。
 図18に、図17の疑似AMCにおいて、浮遊導体Pの大きさを変更した場合の反射振幅のパラメータの特性値を示す。図19に、図17の疑似AMCにおいて、浮遊導体Pの大きさを変更した場合の反射位相のパラメータの特性値を示す。
 この測定では、図17に示す疑似AMCにおいて、正方形の浮遊導体Pの大きさの一辺を、2.0、2.5、2.7、3.0、3.5mmと5段階に変化させて、それぞれの反射振幅、反射位相のパラメータを求めた。
 図18に示すように、浮遊導体Pの大きさを変化させると、反射振幅において、極となる周波数が変化する。下に凸の極となる帯域は、浮遊導体Pが小さいほど高い周波数で、浮遊導体Pが大きいほど低い周波数である。
 図19において、浮遊導体Pの大きさを変化させると、位相0を通過する、反射位相の周波数が変化する。位相0となる帯域は、浮遊導体Pが小さいほど高い周波数で、浮遊導体Pが大きいほど低い周波数である。
 5Gの通信で使用される29GHzに対応するために、図18で極の部分と近く、図19で電磁波が位相ゼロ+-90°で返ってくる構造として、測定した中では、3×3mmの寸法の浮遊導体が最も好適である。
 上述の図15A、図15B、図16A、図16Bにより、金属導体の抵抗値が変化しても反射振幅の極や反射位相が0になる周波数帯域は変化しないため、本発明のAMCの周期性構造において、四角形のパッチ型の浮遊導体を設ける場合であって、5Gの通信で使用される29GHzに対応するには、浮遊導体の大きさは、3×3mm前後(例えば、一辺を、2.8~3.4mm程度)に設定すると好適である。
 (3-3.アンテナ単体、AMC付き疑似ディスプレイモジュール、比較例の疑似ディスプレイモジュールの測定モデル構成と特性)
 本発明者らは、アンテナ単体と、シミュレーション例2で選定した大きさの浮遊導体を周期構造層にした疑似ディスプレイモジュールと、浮遊導体を設けない測定モデルの性能の比較実験を行った。
 図20は、本発明の透明アンテナ100と接着層281で構成される測定モデル63の模式図である。本測定モデル63では、浮遊導体を設けない、透明アンテナ100と、接着層281を有している。接着層281は、電磁波を透過するため、この測定モデル63のアンテナの特性は、アンテナ単体とほぼ同等と考えられる。
 このパラメータを測定した際の、図20に示す、測定モデル63の各部の寸法は、
 L110:4.0mm
 W110:0.2mm
 基板101、接着層281の一辺:20mm
 また、測定モデル63における、各層の厚みは、
 アンテナパターン110の厚み:1μm
 透明基板101の厚み:75μm
 接着層281の厚み:150μm
である。
 図21は、本発明の透明アンテナと、透明アンテナの下面に形成される周期構造層41と、接着層281と、タッチパネルを模した金属導体で構成される疑似ディスプレイモジュールの模式図である。本測定モデル64では、透明基板101の下面に周期的な複数の浮遊導体である周期構造層410を設け、透明導体の下側の接着層281の下に、金属導体Mを設けた。なお、最下層の金属導体Mの抵抗値は、1.0Ω/sqと固定した。
 このパラメータを測定した際の、図21に示す、疑似ディスプレイモジュールの各部寸法では、アンテナパターン110は図20と同様であって、その他の寸法は、
 基板101、接着層281の一辺:20mm
 浮遊導体の一辺:3mm
 隣接する浮遊導体の間隔:1.7mm
 また、測定モデル64における、各層の厚みは、
 アンテナパターン110の厚み:1μm
 透明基板101の厚み:75μm
 周期構造層410の厚み:1μm
 接着層281の厚み:150μm
である。
すなわち、h1が75μm、h2が150μmである。
なお、表面抵抗が設定される表面インピーダンスを境界条件として設定しているため、金属導体Mについては、厚みは存在しない設定である。
 図22は、透明アンテナと、接着層と、タッチパネルを模した金属導体で構成される比較例に係る疑似ディスプレイモジュールの測定モデルの模式図である。本測定モデル65は、透明アンテナ100の透明基板101の下面に図21に示す周期構造層を設けられていない点が、図21とは異なるが、その他の構成は、図21と同様である。
 図23は、図20、図21、図22の測定モデルでの、最大利得を示す表である。
 図23の表の最大利得を比較すると、図20のアンテナ単体では、最大利得が、+1.9dBであったが、図22のように接着層の下に金属導体を設けると、最大利得が、-5.3dBと大幅に下がる。これに対して、図22の構造に加えて、図21のように周期構造層を設けると、最大利得が、-3.1dBとなり、図21の構造からの利得の下がり幅が小さくなる。
 よって、金属導体を単体で設ける場合と比較し、周期構造層を設ける場合の方が、最大利得が向上し、アンテナの性能が向上することがわかる。
 なお、本シミュレーション例では、送受信に使用する周波数として、29GHz(24.2~29.5GHz)である例を説明したが、本発明のディスプレイモジュールに含有される透明アンテナ100は、5Gで使用する他の周波数帯である、例えば、37.3~40GHzや、1.0~5.0GHzに対応するアンテナであってもよい。そのようにアンテナの使用周波数が変わる場合は、図17で示したように、例えばAMC400の周期構造層410の浮遊導体であるパッチの大きさを変えることで、AMCもその周波数帯に適した構造に設計すると好適である。
 また、本シミュレーション例では、送受信に使用する周波数として、29GHzの1つの帯域である例を説明したが、本発明のディスプレイモジュールに含有される透明アンテナ100は、5Gで使用する他の周波数帯でも送受信可能な、デュアルバンド対応構成であってもよい。その場合は、AMCも、デュアルバンドで使用する複数の帯域で反射するように、周期構造層の浮遊導体の形状を適宜設定すると好適である。
 (4.本発明の第1実施形態の変形例に係るディスプレイモジュール1A)
 図24は、第1実施形態の変形例に係るディスプレイモジュール1Aを示す。図4では、AMCを構成する、周期構造層と、バックグラウンド導体であるタッチパネル230の電極層301の間に、第1接着層381のみを設ける例を説明したが、本変形例では、図24に示すように、周期構造層とバックグラウンド導体の間に、第1の接着層281と偏光板292とを設ける。
 即ち、図24に示す構成では、偏光板292及び第1の接着層281を挟んだ、周期構造層410と、バックグラウンド導体として機能するタッチパネル230の電極層301とで、人工磁気導体(AMC)400αが構成されている。
 本構成においても、AMC400αの周期構造層410は、アンテナ基板(透明基板101)の下面に形成され、AMC400αのバックグラウンド導体は、金属細線層のタッチパネルの電極層301である。そして、本構成においてAMCの周期構造層とバックグラウンド導体に挟まれる、偏光板は一般的に、電磁波を透過させるため、AMCや、アンテナの特性に影響は与えないと考えることができる。
 そして、本構成においても、透明アンテナ100のアンテナパターン110から、AMC400αの周期構造層410までの距離をh1、AMC400αにおける、周期構造層410からバックグラウンド導体までの距離をh2αとした場合に、h1<h2αの関係にある。図24では、h2αは、偏光板292の厚さと、第1の接着層281の厚さと、タッチパネルの絶縁保護層304の厚さの合計となるため、この厚さの合計を、透明アンテナ100の透明基板101よりも厚くすることで、上記のh1<h2αの関係を実現する。
 図24に係る構成では、追加の基板が不要になる。これにより、ディスプレイモジュール1Aの積層厚みを増やすことなく、金属板であるタッチパネルだけを設ける場合よりもアンテナの性能を向上させることができる。
 さらに、本変形例においては、偏光板292もAMC400αを構成するh2αの厚みとして使用できるため、アンテナの上に偏光板を設けることなく、図4よりも偏光板292や接着層281が薄くても、h1>h2αの関係を成立させることができる。そのため、ディスプレイモジュール1Aの厚みをさらに抑制することができる。
 (5-1.本発明の第2実施形態に係るディスプレイモジュール2)
 図25に本発明の第2実施形態に係るディスプレイモジュール2を示す。本実施形態では、AMCの周期構造層410は、上述同様に、アンテナ基板の背面に形成されるが、AMCのバックグラウンド導体は、ディスプレイパネル220の一部で構成される。
 図25に示す構成では、第1の接着層281を挟んだ、周期構造層410と、バックグラウンド導体として機能するディスプレイパネル220の透明電極(陰極)26とで、人工磁気導体(AMC)400βが構成されている。
 (5-2.ディスプレイパネルの構成説明)
 図26は、一般的なディスプレイパネルの一例であるOLEDディスプレイパネル220の模式図である。図26において、上の図は断面図であり、下の図は平面図(上面図)である。
 図26に示すようにOLEDディスプレイパネル220は、基板21、バックプレーン22、下側反射電極23、開口絶縁膜24、発光層25R,25G,25B、及び透明電極26を備えている。基板21は、例えばガラスであって、バックプレーン22は、TFT(Thin Film Transistor)である。
 25R,25G,25Bは、発光層を含む積層薄膜であって、下側反射電極23、開口絶縁膜24、発光層を含む積層薄膜25R,25G,25B、及び透明電極26が、赤、緑、青の各色のOLED素子(organic light-emitting diode)27R,27G,27Bとなる。
 最も上側の透明電極26は、Al或いはMgとAgの合金などの金属を光が透過する程度まで薄く構成したり、ITOなどの金属酸化物で構成されている。
 本構成では、ディスプレイパネル220の最上層の透明電極26の部分が、AMC400の下側のバックグラウンド導体として、機能する。
 そのため、図26に示す本構成では、透明アンテナのアンテナパターン110から、AMC400の周期構造層410までの距離である透明基板101の厚みをh1、AMC400βにおける、周期構造層410からバックグラウンド導体であるディスプレイパネル220の透明電極26までの距離をh2βとした場合に、h1>h2βの関係にある。
 図26のように透明電極26はディスプレイパネル220の最上層のため、図25のh2βは、第1の接着層281の厚さであるため、この第1の接着層281の厚さを、透明アンテナ100の透明基板101よりも厚くすることで、上記のh1<h2βの関係を実現する。
 また、上述の図14~図16Bのグラフを参照すると、図25のh2βが0.15mmの場合は、ディスプレイパネル220の透明電極26を、AMC400のバックグラウンド導体として機能させるために、透明電極26のシート抵抗値は、2.8Ω/sqよりも小さいと好適である。また、h2βが0.30mmである場合は、AMCとして機能する透明電極26のシート抵抗値は、5.6Ω/sq未満、より好ましくは、5.0Ω/sq以下であると好適である。
 なお、本例では、ディスプレイパネル220において、表示面の上にある透明電極26が、小さなシート抵抗値を有するバックグラウンド導体として機能する例を説明したが、ディスプレイパネル220の構成要素の一部として、透明電極26の上にさらに専用のバックグラウンド導体のための部材(例えばパターン電極)を設けてもよい。具体的には、日本国特許出願第2020-078661号の段落[0124]~[0127]に記載された、ディスプレイパネルのパターン電極を、AMCのバックグラウンド導体として、使用してもよい。
 ディスプレイパネル220においてシート抵抗値の低抵抗化を実現するために、透明電極26の上にパターン電極を設ける場合でも、パターン電極はディスプレイパネル220において最上層に位置するため、図25に示す、上記のh1>h2βの関係を実現する距離h2βは、第1の接着層281の厚さになる。
 本構成例では、アンテナ基板(透明基板101)の下面側に、透明導体によって周期構造層410を形成し、ディスプレイパネル220の一部を、AMCのバックグラウンド導体として使用することで、追加の基板が不要になる。これにより、ディスプレイモジュール2の積層厚みを増やすことなく、金属板であるタッチパネルだけを設ける場合よりもアンテナの性能を向上させることができる。
 (5-3.本発明の第2実施形態の変形例に係るディスプレイモジュール2A)
 図27は、第2実施形態の変形例に係るディスプレイモジュール2Aを示す。図25では、AMCの周期構造層とバックグラウンド導体の間に、接着層のみを設ける例を説明したが、本変形例では、図26に示すように、周期構造層とバックグラウンド導体の間に、接着層281と偏光板292とを設ける。
 図27に示す構成では、偏光板292と第1の接着層281を挟んだ、周期構造層410と、バックグラウンド導体として機能するディスプレイパネル220の透明電極(陰極)26とで、人工磁気導体(AMC)400γが構成されている。
 そして、本構成では、透明アンテナのアンテナパターンからAMCの周期構造層410までの距離をh1、AMCにおける、周期構造層410からバックグラウンド導体26までの距離をh2γとした場合に、h1>h2γの関係にある。図27では、h2γは、偏光板292の厚さと、第1の接着層281の厚さの合計であるため、この合計の厚さを、透明アンテナ100の透明基板101よりも厚くすることで、上記のh1>h2γの関係を実現する。
 本変形例においても、追加の基板が不要になる。これにより、ディスプレイモジュール2Aの積層厚みを増やすことなく、金属板であるタッチパネルだけを設ける場合よりもアンテナの性能を向上させることができる。
 さらに、本変形例においては、偏光板292もAMC400γを構成するh2γの厚みとして使用できるため、アンテナの上に偏光板を設けることなく、図26よりも偏光板292や接着層281が薄くても、h1>h2γの関係を成立させることができる。そのため、ディスプレイモジュール2Aの厚みをさらに抑制することができる。
 (6-1.本発明の第3実施形態に係るディスプレイモジュール3)
 図28は、本発明の第3実施形態に係るディスプレイモジュール3を示す断面分解図である。本構成では、AMCの周期構造層は、アンテナ基板(透明基板101)の背面に設けられているが、バックグラウンド導体が、タッチパネル230と別体に、タッチパネルの上側に設けられている専用基板であるAMC用基板401に設けられている。また、基板同士を密着して積層するため、タッチパネル230と、AMC用基板401との間には第3の接着層(OCA)283が設けられている。
 本構成では、AMC400δのバックグラウンド導体のための専用基板であるAMC用基板401は、タッチパネル230の上方に設けられる。AMC用基板401は、第2の透明基板であって、一例としてポリイミド製のフレキシブル基板であり、Z方向及び/又はX方向に折り曲げ可能な、無色透明の絶縁材基板である。
 また、AMC用基板401は、AMC400δのバックグラウンド導体として機能するために、図8に示すようなメッシュ状の細線状の透明導体80で構成されるバックグラウンド導体420が、基板の背面全体に形成されている。AMC用基板401及び、バックグラウンド導体420を構成する透明導体80は透明のため、タッチパネル230の下の、ディスプレイパネル220の視認性には、悪影響は与えない。
 図28に示す構成では、第1の接着層281を挟んだ、周期構造層410と、AMC用基板401に設けられたバックグラウンド導体420とで、人工磁気導体(AMC)400δが構成されている。
 本構成では、透明アンテナ100のアンテナパターン110から、AMC400δの周期構造層410までの距離をh1、AMC400δにおける、周期構造層410からバックグラウンド導体420までの距離をh2δとした場合に、h1<h2δの関係にある。図28では、h2δは、第1の接着層281の厚さと、AMC用基板401の厚さの合計であるため、この合計の厚さを、透明アンテナ100の透明基板101よりも厚くすることで、上記のh1<h2δの関係を実現する。
 本構成では、上述のように、AMCのバックグラウンド導体として機能する専用基板であるAMC用基板401が、タッチパネル230とは別に設けられているため、AMC用基板401におけるバックグラウンド導体420のシート抵抗値を低くするなど、AMC用基板401を、タッチパネル230の性能とは独立して自由に設計することができる。
 また、図1に示す従来例の構成と比較して、本構成のAMC400δは、周期構造層とバックグラウンド導体を有しているため、磁気壁としての性能が良い。さらに、AMC用基板401は、接着層281を介して周期構造層410とは別の基板に形成されているため、バックグラウンド導体と周期構造層の距離を広げ、AMCの性能を向上させることができる。
 (6-2.本発明の第3実施形態の変形例1に係るディスプレイモジュール3A)
 図29は、本発明の第3実施形態の変形例1に係るディスプレイモジュール3Aを示す断面分解図である。図28では、タッチパネルの上にAMCのバックグラウンドのための専用基板を設ける例を説明したが、本実施形態のように専用のバックグラウンド基板を有するAMCの構成は、図29に示すように、タッチパネルを有していない、ディスプレイモジュールに対しても適用できる。
 本変形例では、図28の構成と同様に、第1の接着層281を挟んだ、周期構造層410と、AMC用基板401に設けられたバックグラウンド導体420とで、人工磁気導体(AMC)400δが構成されている。
 図29の構成は、タッチパネルを有さない以外は、AMC400δの構成を含めて図28とほぼ同様の構成である。本構成においては、AMCのバックグラウンド導体として機能する専用基板であるAMC用基板が、ディスプレイパネル220とは別に設けられているため、AMC用基板401におけるバックグラウンド導体のシート抵抗値をより低くするなど、AMC用基板401を、ディスプレイパネル220の性能とは独立して自由に設計することができる。
 (6-3.本発明の第3実施形態の変形例2に係るディスプレイモジュール3B)
 図30は、本発明の第3実施形態の変形例2に係るディスプレイモジュール3Bを示す断面分解図である。図28では、AMCを構成する、周期構造層とAMC用基板の間に、接着層のみを設ける例を説明したが、本変形例では、図30に示すように、周期構造層とAMC用基板の間に、接着層282と偏光板292とを設ける。
 本変形例では、偏光板292及び第1の接着層281を挟んだ、周期構造層410と、AMC用基板401に設けられたバックグラウンド導体420とで、人工磁気導体(AMC)400εが構成されている。本構成においても、AMC400εの周期構造層410は、アンテナ基板(透明基板101)の背面に形成され、AMC400εのバックグラウンド導体420は、AMC用基板401の下面に設けられている。
 本構成では、透明アンテナ100のアンテナパターン110から、AMC400εの周期構造層410までの距離をh1、AMC400εにおける、周期構造層410からバックグラウンド導体までの距離をh2εとした場合に、h1>h2εの関係にある。図30では、h2εは、偏光板292の厚さと、第1の接着層281の厚さと、AMC用基板401の厚さの合計であるため、この合計の厚さを、透明アンテナ100の透明基板101よりも厚くすることで、上記のh1>h2εの関係を実現する。
 本変形例においては、偏光板292もAMC400εを構成するh2εの厚みとして使用できるため、アンテナの上に偏光板を設けることなく、図28よりも偏光板292や接着層281が薄くても、h1>h2εの関係を成立させることができる。そのため、ディスプレイモジュール3Bの厚みをさらに抑制することができる。
 (6-4.本発明の第3実施形態の変形例3に係るディスプレイモジュール3C)
 図31は、本発明の第3実施形態の変形例3に係るディスプレイモジュール3Cを示す断面分解図である。図30では、タッチパネルの上にバックグラウンド導体のためのAMC用基板401を設ける例を説明したが、専用のAMC用基板401を有する構成は、図31に示すように、タッチパネルを有していない、ディスプレイモジュールに対しても適用できる。
 本変形例では、図30と同様に、偏光板292及び第1の接着層281を挟んだ、周期構造層410と、AMC用基板401に設けられたバックグラウンド導体420とで、人工磁気導体(AMC)400εが構成されている。
 図31の構成は、タッチパネルを有さない以外は、AMC400εの構成を含めて図30とほぼ同様の構成である。偏光板292もAMC400εを構成するh2εの厚みとして使用できるため、アンテナの上に偏光板を設けることなく、図29よりも偏光板292や接着層282が薄くても、h1>h2εの関係を成立させることができる。そのため、ディスプレイモジュール3Cの厚みをさらに抑制することができる。
 (7-1.本発明の第4実施形態に係るディスプレイモジュール4)
 図32は、本発明の第4実施形態に係るディスプレイモジュール4を示す断面分解図である。本構成では、AMCの周期構造層は、透明アンテナの透明基板とは別体のAMC専用基板の上面に設けられている。そして、タッチパネルの一部が、AMCのバックグラウンド導体として機能する。また、基板同士を密着して積層するため、タッチパネル230と、専用のAMC用基板501との間には第3の接着層(OCA)284が設けられている。
 本構成では、AMC500の周期構造層510のための専用基板であるAMC用基板501は、タッチパネル230の上方に設けられる。AMC用基板501は、第2の透明基板であって、一例としてポリイミド製のフレキシブル基板であり、Z方向及び/又はX方向に折り曲げ可能な、無色透明の絶縁材基板である。
 図32の構成では、第3の接着層284を挟んだ、AMC用基板501の上面に形成された周期構造層510と、バックグラウンド導体として機能するタッチパネル230の電極層301とで、人工磁気導体(AMC)500が構成されている。
 本構成では、透明アンテナ100のアンテナパターン110から、AMC500の周期構造層510までの距離をh3、AMC500における、周期構造層510からバックグラウンド導体である電極層301までの距離をh4とした場合に、h3<h4の関係にある。
 図32では、h3は、透明アンテナ100の透明基板101の厚さと、第1の接着層281の厚さの合計であり、h4は、AMC用基板501の厚さと、第3の接着層284の厚さと、タッチパネル230の絶縁保護層304の厚さの合計である。AMC用基板501の厚さと、第3の接着層284の厚さと、タッチパネル230の絶縁保護層304の厚さの合計h4を、透明基板101の厚さと第1の接着層281の厚さの合計h3よりも厚くすることで、上記のh3<h4の関係を実現する。
 本構成では、図1に示す従来例の構成と比較して、本構成のAMC500は、周期構造層と、バックグラウンド導体を有しているため、磁気壁としての性能が良い。さらに、AMC500は、接着層284を介して積層して構成しているため、バックグラウンド導体と、周期構造層の距離を広げ、AMCの性能を向上させることができる。
 ここで、本構成では、図4同様に、タッチパネルを、バックグラウンド導体として機能させるために、例えば、図32で示す距離h4が0.15mmの場合は、タッチパネル230の電極層301のシート抵抗値は、2.8Ω/sqよりも小さいと好適である。また、h4が0.30mmである場合は、タッチパネル230の電極層301のシート抵抗値は、5.6Ω/sq未満、より好ましくは、5.0Ω/sq以下であると好適である。
 本例では、タッチパネル230において、電極層301が、小さなシート抵抗値を有する部材であってバックグラウンド導体として機能する例を説明したが、タッチパネル230の電極層301の配線パターンや、電極層301の厚みや、絶縁保護層304の素材を、上述のように、既存のものから工夫することで、タッチパネル230のシート抵抗値を調整してもよい。
 また、本例では、AMC用基板501において、周期構造層510は、上側に設けられる例を説明したが、周期構造層510は、AMC用基板501の下側に形成されてもよい。この場合は、透明アンテナ100の透明基板101の厚さと第1の接着層281の厚さとAMC用基板501の厚さの合計が、第3の接着層284の厚さとタッチパネル230の絶縁保護層304の厚さの合計よりも薄くなるように設計すると好適である。
 (7-2.本発明の第4実施形態の変形例に係るディスプレイモジュール4A)
 図33は、本発明の第4実施形態の変形例に係るディスプレイモジュール4Aを示す断面分解図である。図32では、タッチパネルの上にAMCの周期構造層のための専用のAMC用基板501を設ける例を説明したが、本実施形態のように周期構造層のためのAMC用基板501を有するAMCの構成は、図33に示すように、タッチパネルを有していない、ディスプレイモジュールに対しても適用できる。
 図33の構成では、第3の接着層284を挟んだ、AMC用基板501の上面に形成された周期構造層510と、バックグラウンド導体として機能するディスプレイパネル220の透明電極26とで、人工磁気導体(AMC)500ζが構成されている。
 本構成では、透明アンテナのアンテナパターン110から、AMCの周期構造層510までの距離をh3、AMCにおける、周期構造層510からバックグラウンド導体までの距離をh4ζとした場合に、h3<h4ζの関係にある。
 図33では、h3は、透明アンテナ100の透明基板101の厚さと、第1の接着層281の厚さの合計であり、h4ζは、AMC用基板501の厚さと、第3の接着層284の厚さの合計である。AMC用基板501の厚さと第3の接着層284の厚さの合計h4ζを、透明基板101の厚さと第1の接着層281の厚さの合計h3よりも厚くすることで、上記のh3<h4ζの関係を実現する。
 本構成では、上述のように、AMC500ζは、接着層284を介して積層して構成しているため、バックグラウンド導体と、周期構造層の距離を広げ、AMCの性能を向上させることができる。
 ここで、本構成では、図25同様に、ディスプレイパネル220を、バックグラウンド導体として機能させるために、例えば、h4ζが0.15mmの場合は、透明電極26のシート抵抗値は、2.8Ω/sqよりも小さいと好適である。また、h4ζが0.30mmである場合は、AMCとして機能する透明電極26のシート抵抗値は、5.6Ω/sq未満、より好ましくは、5.0Ω/sq以下であると好適である。
 なお、本例において、ディスプレイパネル220の透明電極26がAMCのバックグラウンド導体として機能する例を説明したが、上述のように、ディスプレイパネル220の構成要素の一部として、透明電極26の上に、さらにAMC用のバックグラウンド導体のための専用部材(例えばパターン電極)を設けてもよい。
 なお、本例では、AMC用基板501において、周期構造層510は上側に設けられる例を説明したが、周期構造層510はAMC用基板501の下側に形成されてもよい。この場合は、透明アンテナ100の透明基板101の厚さと第1の接着層281の厚さとAMC用基板501の厚さの合計が、第3の接着層284の厚さよりも薄くなるように設計すると好適である。
 (8.本発明の第5実施形態に係るディスプレイモジュール5)
 図34は、本発明の第5実施形態に係るディスプレイモジュール5を示す断面分解図である。本構成では、AMCの周期構造層は、透明アンテナの透明基板とは別体の専用のAMC基板の上面に設けられており、AMCのバックグラウンド導体は、AMC用基板の下面に設けられている。また、基板同士を密着して積層するため、タッチパネル230と、専用のAMC用基板501との間には第3の接着層(OCA)284が設けられている。
 本構成では、上面に周期構造層510が設けられ、下面にバックグラウンド導体520が設けられるAMC用基板501は、タッチパネル230の上方に設けられる。AMC用基板501は、第2の透明基板であって、一例としてポリイミド製のフレキシブル基板であり、Z方向及び/又はX方向に折り曲げ可能な、無色透明の絶縁材基板である。
 図34の構成では、AMC用基板501の上面に形成された周期構造層510と、下面に形成されたバックグラウンド導体520とで、人工磁気導体(AMC)500ηが構成されている。
 本構成では、透明アンテナ100のアンテナパターン110から、AMC500ηの周期構造層510までの距離をh3、AMC500ηにおける、周期構造層510からバックグラウンド導体520までの距離をh5とした場合に、h3<h5の関係にある。
 図34では、h3は、透明アンテナ100の透明基板101の厚さと、第1の接着層281の厚さの合計であり、h5は、AMC用基板501の厚さである。AMC用基板501の厚さh5を、透明基板101の厚さと第1の接着層281の厚さの合計h3よりも厚くすることで、上記のh3<h5の関係を実現する。
 本構成では、図1に示す従来例の構成と比較して、AMC500ηは、同一基板内に周期構造層と、バックグラウンド導体を設けているため、バックグラウンド導体を有さないAMCよりも、アンテナの利得損失を大幅に抑制できる。また、本構成では、AMC500ηは、1枚の基板によって実現されるが、上下に導通するビアを有していないため、製造の複雑化を回避することができる。
 本例では、タッチパネル230の上に専用のAMC基板を有するAMC500ηを設ける例を説明したが、ディスプレイモジュールにおいて、タッチパネル230を設けずに、ディスプレイパネル220の上に、本構成のAMC500ηを設けてもよい。
 また、本発明の透明アンテナは、1つでもアンテナとしての機能を実現できるが、より特性を高めるために、複数の透明アンテナを集めたアレイ状態(アンテナアレイ)で配置されてもよい。複数の透明アンテナを設ける場合は、全てのアンテナの透明基板の下面、又は下側に、周期構造層を設け、透明アンテナと同数のAMCも設けると好適である。
 以上、本発明の例示的な実施の形態の透明アンテナについて説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
 本国際出願は2020年6月12日に出願された日本国特許出願第2020-102629号に基づく優先権を主張するものであり、2020-102629号の全内容を本国際出願に援用する。
1,1A,2,2A,3,3A,3B,3C,4,4A,5 ディスプレイモジュール
26 陰極(AMC用のバックグラウンド導体)
61 疑似AMCの測定モデル
62 疑似AMCの測定モデル
63 アンテナ単体(測定モデル)
64 AMC付き疑似ディスプレイモジュール(測定モデル)
65 比較例の疑似ディスプレイモジュール(測定モデル)
80 透明導体
81 金属細線
82 金属細線
83 開口部
100 透明アンテナ
101 透明基板(アンテナ基板)
110 アンテナパターン(透明導体、金属細線層)
200 電子機器
210 筐体
220 ディスプレイパネル(OLEDディスプレイパネル、ディスプレイ)
230 タッチパネル(オンセルタッチパネル用金属細線層、オンセル金属細線層)
240 透明カバー(カバーガラス)
250 配線基板
260A,260B,260C,260D 電子部品
270 バッテリー
281 第1の接着層(OCA、接着層)
282 第2の接着層(OCA)
283,284 第3の接着層(OCA)
291 偏光板
292 偏光板
300 オンセル金属細線層
301 電極層(AMC用のバックグラウンド導体)
304 絶縁保護層
400,400α,400β,400γ,400δ,400ε AMC(人工磁気導体)
401 AMC用基板(第2の透明基板)
410 周期構造層
420 AMC用バックグラウンド導体
500,500ζ,500η AMC(人工磁気導体)
501 AMC用基板(第2の透明基板)
510 周期構造層
520 バックグラウンド導体
P 浮遊導体
M 金属導体
h1 透明導体の厚み(アンテナパターンから周期構造層までの距離)
h2,h2α,h2β,h2γ,h2δ,h2ε (周期構造層からバックグラウンド導体までの距離)
h3 透明導体と第3の接着層の厚みの合計(アンテナパターンから周期構造層までの距離)
h4,h4ζ 周期構造層からバックグラウンド導体までの距離
h5 AMC基板の厚さ(周期構造層からバックグラウンド導体までの距離)
p81,p82 金属細線間の線間隔(配線ピッチ)
w81,w82 メッシュを構成する金属細線それぞれの線幅(配線幅)

Claims (14)

  1.  ディスプレイと、
     前記ディスプレイの上側に配置される、透明基板および該透明基板上に形成されるアンテナパターンを有する透明アンテナと、
     前記透明アンテナより下層に配置される人工磁気導体と、
    を備え、
     前記人工磁気導体は、
      周期構造層、及び
      バックグラウンド導体を含み、
     前記透明アンテナの前記アンテナパターン、及び前記人工磁気導体の前記周期構造層は、メッシュ状導体で構成され、前記メッシュ状導体は配線幅が5μm以下であり、且つ、可視光において70%以上の透過率が得られるように配線ピッチが定められた透明導体で構成されており、
     前記透明アンテナの前記アンテナパターンから、前記人工磁気導体の前記周期構造層までの距離をh1、
     前記人工磁気導体における、前記周期構造層から前記バックグラウンド導体までの距離をh2とした場合に、
    h1<h2の関係にある
     ディスプレイモジュール。
  2.  前記バックグラウンド導体のシート抵抗値が5Ω/sq以下である
     請求項1に記載のディスプレイモジュール。
  3.  前記人工磁気導体の前記周期構造層は、前記透明アンテナの前記透明基板の下面に設けられている
     請求項1又は2に記載のディスプレイモジュール。
  4.  前記周期構造層の下側であって、前記ディスプレイの上側に設けられる、金属細線層が上面に直接形成されたタッチパネル、を備え、
     前記タッチパネルの前記金属細線層が、前記人工磁気導体の前記バックグラウンド導体である
     請求項3に記載のディスプレイモジュール。
  5.  前記ディスプレイは、発光層と下面側の陽極と上面側の陰極とを含み、
     前記ディスプレイの前記陰極が、前記人工磁気導体の前記バックグラウンド導体である
     請求項3に記載のディスプレイモジュール。
  6.  前記透明アンテナの下側であって、前記ディスプレイの上側に設けられる、第2の透明基板を、備え、
     前記人工磁気導体の前記バックグラウンド導体は、前記第2の透明基板の下面に設けられている
     請求項3に記載のディスプレイモジュール。
  7.  前記透明アンテナの下側であって、前記ディスプレイの上側に設けられる、第2の透明基板を、備え、
     前記人工磁気導体の前記周期構造層は、前記第2の透明基板の上面に設けられている
     請求項1又は2に記載のディスプレイモジュール。
  8.  前記周期構造層の下側であって、前記ディスプレイの上側に設けられる、金属細線層が上面に直接形成されたタッチパネルを含み
     前記タッチパネルの前記金属細線層が、前記人工磁気導体の前記バックグラウンド導体である
     請求項7に記載のディスプレイモジュール。
  9.  前記ディスプレイは、発光層と下面側の陽極と上面側の陰極とを含み、
     前記ディスプレイの前記陰極が、前記人工磁気導体の前記バックグラウンド導体である
     請求項7に記載のディスプレイモジュール。
  10.  前記人工磁気導体の前記周期構造層と、前記バックグラウンド導体の間に設けられ、電波を透過する接着層を備える
     請求項1乃至9のいずれか一項に記載のディスプレイモジュール。
  11.  前記人工磁気導体の前記周期構造層と、前記バックグラウンド導体の間に設けられ、電波を透過する偏光板をさらに備える
     請求項10に記載のディスプレイモジュール。
  12.  前記透明アンテナの下側であって、前記ディスプレイの上側に設けられる、第2の透明基板を、備え、
     前記人工磁気導体の前記周期構造層は、前記第2の透明基板の上面に設けられ、
     前記人工磁気導体の前記バックグラウンド導体は、前記第2の透明基板の下面に設けられている
     請求項1に記載のディスプレイモジュール。
  13.  前記人工磁気導体において、前記周期構造層と、前記バックグラウンド導体は、導通されていない
     請求項1乃至12のいずれか一項に記載のディスプレイモジュール。
  14.  前記透明アンテナが、24.2~29.5GHzで電波を送受信し、
     h2=0.15mmであり、
     前記周期構造層を複数の正方形の浮遊導体を周期的に配置することで構成され、
     浮遊導体の一辺を2.8~3.4mm、
     浮遊導体間の間隔を0.5~1.5mmに構成する
     請求項1乃至13のいずれか一項に記載のディスプレイモジュール。
PCT/JP2021/020288 2020-06-12 2021-05-27 ディスプレイモジュール WO2021251169A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022530131A JPWO2021251169A1 (ja) 2020-06-12 2021-05-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-102629 2020-06-12
JP2020102629 2020-06-12

Publications (1)

Publication Number Publication Date
WO2021251169A1 true WO2021251169A1 (ja) 2021-12-16

Family

ID=78845567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020288 WO2021251169A1 (ja) 2020-06-12 2021-05-27 ディスプレイモジュール

Country Status (3)

Country Link
JP (1) JPWO2021251169A1 (ja)
TW (1) TW202213298A (ja)
WO (1) WO2021251169A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062780A1 (ja) * 2022-09-22 2024-03-28 株式会社ジャパンディスプレイ 表示パネル一体型電波反射装置
WO2024087018A1 (zh) * 2022-10-25 2024-05-02 京东方科技集团股份有限公司 毫米波天线及其制作方法、电子设备及其驱动方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI798118B (zh) * 2022-06-24 2023-04-01 華碩電腦股份有限公司 寬頻毫米波天線裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675956A (zh) * 2012-08-31 2014-03-26 深圳光启创新技术有限公司 一种透明超材料及其制备方法
US20160064806A1 (en) * 2014-08-29 2016-03-03 GM Global Technology Operations LLC Flexible artificial impedance surface antennas for automotive radar sensors
WO2019107514A1 (ja) * 2017-12-01 2019-06-06 Agc株式会社 アンテナユニット、およびアンテナ付きガラス板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675956A (zh) * 2012-08-31 2014-03-26 深圳光启创新技术有限公司 一种透明超材料及其制备方法
US20160064806A1 (en) * 2014-08-29 2016-03-03 GM Global Technology Operations LLC Flexible artificial impedance surface antennas for automotive radar sensors
WO2019107514A1 (ja) * 2017-12-01 2019-06-06 Agc株式会社 アンテナユニット、およびアンテナ付きガラス板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062780A1 (ja) * 2022-09-22 2024-03-28 株式会社ジャパンディスプレイ 表示パネル一体型電波反射装置
WO2024087018A1 (zh) * 2022-10-25 2024-05-02 京东方科技集团股份有限公司 毫米波天线及其制作方法、电子设备及其驱动方法

Also Published As

Publication number Publication date
JPWO2021251169A1 (ja) 2021-12-16
TW202213298A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2021251169A1 (ja) ディスプレイモジュール
US10990234B2 (en) Touch sensor including antenna
KR20210050435A (ko) 안테나 구조체 및 이를 포함하는 디스플레이 장치
CN217114774U (zh) 天线元件、包含其的天线装置和显示装置
US20240072415A1 (en) Patch Antenna and Electronic Device
CN211929692U (zh) 天线结构和包括该天线结构的显示设备
US20230063968A1 (en) Transparent antenna, antenna array, and display module
CN215869800U (zh) 天线装置和包括该天线装置的显示装置
WO2021157303A1 (ja) アンテナ装置
KR20200116672A (ko) 안테나 소자 및 이를 포함하는 디스플레이 장치
TW201523361A (zh) 觸控面板及其天線訊號控制方法
WO2022045084A1 (ja) 透明アンテナ及びディスプレイモジュール
KR20220105622A (ko) 안테나 어레이, 이를 포함하는 안테나 장치 및 디스플레이 장치
CN216958496U (zh) 天线元件、天线封装和显示装置
JP2023059266A (ja) アンテナパッケージおよびそれを含む画像表示装置
US20140227969A1 (en) Indium tin oxide loop antenna for near field communication
KR102390289B1 (ko) 안테나 구조체 및 이를 포함하는 화상 표시 장치
CN112181200B (zh) 触控显示模组以及触控显示装置
JP2023535899A (ja) アンテナ素子及びそれを含むディスプレイ装置
KR20220059026A (ko) 안테나 소자, 이를 포함하는 안테나 어레이 및 디스플레이 장치
WO2021220836A1 (ja) ディスプレイモジュール
JP6902064B2 (ja) ディスプレイ装置
CN215184526U (zh) 天线堆叠结构和包括所述天线堆叠结构的显示装置
WO2023199885A1 (ja) 配線基板、モジュール及び画像表示装置
US20230231294A1 (en) Antenna package and image display device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530131

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21821306

Country of ref document: EP

Kind code of ref document: A1