WO2019242718A1 - 一种车辆变道控制方法和装置 - Google Patents

一种车辆变道控制方法和装置 Download PDF

Info

Publication number
WO2019242718A1
WO2019242718A1 PCT/CN2019/092238 CN2019092238W WO2019242718A1 WO 2019242718 A1 WO2019242718 A1 WO 2019242718A1 CN 2019092238 W CN2019092238 W CN 2019092238W WO 2019242718 A1 WO2019242718 A1 WO 2019242718A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
coefficient
vehicle
speed
steering wheel
Prior art date
Application number
PCT/CN2019/092238
Other languages
English (en)
French (fr)
Inventor
鲁宁
高健
和林
葛建勇
王天培
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP19822877.7A priority Critical patent/EP3798746B1/en
Priority to US17/255,215 priority patent/US11919518B2/en
Publication of WO2019242718A1 publication Critical patent/WO2019242718A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0008Feedback, closed loop systems or details of feedback error signal
    • B60W2050/0009Proportional differential [PD] controller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/20Steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/06Direction of travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects

Definitions

  • the invention relates to the technical field of automatic control, in particular to a method and device for controlling lane change of a vehicle.
  • the lane change control method is usually: designing a control algorithm based on the vehicle kinematics and dynamic model to make the vehicle run along a known trajectory, as shown in the process shown in FIG. 1x ;
  • the vehicle changes lanes use a high-precision positioning system to locate the vehicle's position, and determine whether the vehicle has completed the lane change based on the position. For example, if the vehicle reaches the preset position, it is determined that the vehicle has completed the lane change, indicating that the vehicle is running normally; If it is determined that the vehicle has not reached the preset position, it is determined that the vehicle has not completed the lane change, and the lane change operation is continued.
  • the present invention aims to propose a method and device for vehicle lane change control, in order to solve or partially solve the problem of reliance on a high-precision positioning system during lane change control, causing a high cost of the lane change control device.
  • a vehicle lane change control method includes:
  • the lane change instruction includes a target driving lane
  • the lane change control includes: obtaining a position deviation parameter and a heading angle parameter of the vehicle; when the position deviation parameter is greater than or equal to a first threshold value, or when the heading angle parameter is greater than or equal to a second threshold value, according to the A control coefficient, the position deviation parameter and the heading angle parameter to determine a target steering wheel steering angle of the vehicle; and controlling the vehicle to perform a lane changing operation according to the target steering wheel steering angle;
  • the position deviation parameter is a lateral distance between the current position of the vehicle and the target driving lane; and the heading angle is an angle between the current heading of the vehicle and the target driving lane.
  • step of determining a control coefficient of a preset controller according to the speed parameter includes:
  • the step of determining a target steering wheel steering angle of the vehicle according to the control coefficient, the position deviation parameter, and the heading angle parameter includes:
  • the method further includes:
  • the fuzzy universe of the preset vehicle speed includes: a fuzzy subset of the vehicle speed and a membership function of the vehicle speed;
  • a fuzzy universe of proportionality coefficients and a fuzzy universe of differential coefficients at different preset vehicle speeds are determined; wherein the fuzzy universe of proportional coefficients includes: fuzzy fuzzy coefficients A subset, a membership coefficient function of the proportional coefficients; the fuzzy universe of the differential coefficients includes: a fuzzy subset of the differential coefficients, a membership coefficient function of the differential coefficients;
  • the vehicle speed fuzzy subset According to the vehicle speed fuzzy subset, the vehicle speed membership degree function, the proportional coefficient fuzzy subset, the proportional coefficient membership degree function, the differential coefficient fuzzy subset, and the differential coefficient membership degree function.
  • the first parameter table is established.
  • the step of determining the first proportional coefficient and the first differential coefficient corresponding to the speed parameter according to the matching relationship between the speed parameter and a preset first parameter table includes:
  • Determining the first membership coefficient includes: dividing a difference between the first speed end value and the speed parameter by a difference between the second speed end value and the first speed end value to determine a first A membership coefficient
  • Determining the second membership coefficient includes: determining the difference between the second speed end value and the first speed end value according to a difference between the second speed end value and the speed parameter, and determining Second membership coefficient
  • Determining the first proportionality factor includes: multiplying a product of the first membership degree coefficient and the first end value proportionality factor by a product of the second membership degree coefficient and the second end value proportionality factor. Sum, and divide by the sum of the first membership coefficient and the second membership coefficient to determine the first proportionality coefficient;
  • Determining the first differential coefficient includes: multiplying a product of the first membership coefficient and the first end value differential coefficient with a product of the second membership coefficient and the second end value differential coefficient. The sum is divided by the sum of the first membership coefficient and the second membership coefficient to determine the first differential coefficient.
  • determining a first steering wheel rotation angle through a proportional differential control algorithm includes:
  • Calculating the first steering wheel angle and the second steering wheel angle according to a preset rule to obtain a target steering wheel angle includes:
  • the first steering wheel angle and the second steering wheel angle at each time are calculated according to a preset rule to obtain the target steering wheel angle at each time.
  • a vehicle lane changing control device includes:
  • a lane change instruction receiving module for receiving a lane change instruction; the lane change instruction includes a target driving lane;
  • a speed parameter obtaining module configured to obtain a speed parameter of the vehicle
  • a control coefficient determining module configured to determine a control coefficient of a preset controller according to the speed parameter
  • the lane change control module is configured to obtain a position deviation parameter and a heading angle parameter of the vehicle; when the position deviation parameter is greater than or equal to a first threshold value, or when the heading angle parameter is greater than or equal to a second threshold value, The control coefficient, the position deviation parameter, and the heading angle parameter to determine a target steering wheel steering angle of the vehicle; controlling the vehicle to change lanes according to the target steering wheel steering angle; until the position deviation parameter is low At the first threshold and the heading angle parameter is lower than the second threshold; wherein the position deviation parameter is a lateral distance between the current position of the vehicle and the target driving lane; the heading The angle is the angle between the current heading of the vehicle and the target lane.
  • the determining module according to the control coefficient includes:
  • a first determining submodule configured to determine a first proportional coefficient and a first differential coefficient corresponding to the speed parameter according to a matching relationship between the speed parameter and a preset first parameter table;
  • a second determining submodule configured to determine a second proportionality coefficient corresponding to the speed parameter according to a matching relationship between the speed parameter and a preset second parameter table
  • the lane change control module includes:
  • a first steering wheel angle determination submodule configured to determine a first steering wheel angle based on the position deviation parameter, the first proportional coefficient, and the first differential coefficient through a proportional differential control algorithm
  • a second steering wheel angle determination submodule configured to determine a second steering wheel angle through a proportional control algorithm according to the heading angle parameter and the second scaling coefficient
  • the target steering wheel angle determination submodule is configured to calculate the first steering wheel angle and the second steering wheel angle in accordance with a preset rule to obtain the target steering wheel angle.
  • a vehicle speed fuzzy module is used to obfuscate a preset vehicle speed to obtain a fuzzy universe of the preset vehicle speed; wherein the fuzzy universe of the preset vehicle speed includes: a fuzzy subset of the vehicle speed and a vehicle speed membership function;
  • the fuzzy universe determination module is configured to determine a fuzzy universe of proportionality coefficients and a fuzzy universe of differential coefficients at different preset vehicle speeds according to the fuzzy subset of vehicle speeds and the membership function of the vehicle speed;
  • the fuzzy universe includes: fuzzy subsets of proportional coefficients, membership coefficient function of the proportional coefficient;
  • the fuzzy universe of differential coefficients includes: fuzzy subsets of differential coefficient, membership coefficient function of differential coefficients;
  • a first parameter table establishing module is configured to, according to the vehicle speed fuzzy subset, the vehicle speed membership function, the proportional coefficient fuzzy subset, the proportional coefficient membership function, the differential coefficient fuzzy subset, and The correspondence relationship between the membership coefficient functions of the differential coefficients is described, and the first parameter table is established.
  • the first steering wheel angle determination sub-module includes:
  • a position deviation parameter component determining unit configured to determine a position deviation parameter component at each time within the preset duration according to a preset duration, a preset configuration rule, and the position deviation parameter;
  • a first steering wheel angle determining unit configured to determine a first steering wheel at each time according to the first proportional coefficient, the first differential coefficient, and a position deviation parameter component at each time by a proportional differential control algorithm
  • the target steering wheel angle determination sub-module includes:
  • the target steering wheel angle determining unit is configured to calculate the first steering wheel angle and the second steering wheel angle at each time according to a preset rule, to obtain the target steering wheel angle at each time.
  • a vehicle includes any of the vehicle lane change control devices.
  • a computer program includes computer-readable code that, when the computer-readable code runs on a computing processing device, causes the computing processing device to execute the vehicle lane change control method according to any one of the above.
  • the vehicle lane change control method of the present invention has the following advantages:
  • Lane change control via controller.
  • the control parameters of the preset controller are determined according to the speed parameter, and the preset controller determines the vehicle ’s position based on the two variables: the position deviation parameter and the heading angle parameter of the vehicle.
  • the target steering wheel steering angle can be used to control the vehicle to change lanes.
  • the position deviation parameter and the heading angle parameter are continuously obtained, and the lane changing operation is performed until the position deviation parameter is lower than the first threshold, and the heading angle parameter is lower than
  • the second threshold can be considered that the vehicle is traveling on the target driving lane in the direction of the target driving lane, that is, the vehicle lane change is completed.
  • the speed change, position deviation parameter, and heading angle are used to control the lane change of the vehicle and determine whether the lane change is completed.
  • the speed parameter, position deviation parameter, and heading angle can be obtained through the speed sensor and the on-board camera without relying on high
  • the accurate positioning system can greatly reduce the cost required for vehicle lane changes and the occupation of controller resources.
  • FIG. 1x is a schematic diagram of a vehicle lane change trajectory in the prior art
  • FIG. 1 is a flowchart of steps of a method for controlling lane change of a vehicle according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a control system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of path planning according to an embodiment of the present invention.
  • FIG. 4 is a lane change trajectory diagram of different vehicle speeds according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of position deviation according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a heading angle according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a lane change control method of a vehicle lane change control method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of specific steps of a method for controlling a lane change of a vehicle according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a lane change control design according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a vehicle speed membership function according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a membership coefficient function of a proportional coefficient according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a membership function of a differential coefficient according to an embodiment of the present invention.
  • FIG. 13 is a flowchart of a control algorithm for eliminating a position deviation parameter according to an embodiment of the present invention.
  • 15 is a schematic diagram of a specific lane changing process according to an embodiment of the present invention.
  • 16 is a structural block diagram of a vehicle lane changing control device according to an embodiment of the present invention.
  • FIG. 17 is a specific structural block diagram of a vehicle lane changing control device according to an embodiment of the present invention.
  • FIG. 18 schematically shows a block diagram of a computing processing device for performing a method according to the present invention.
  • FIG. 19 schematically shows a storage unit for holding or carrying a program code implementing the method according to the invention.
  • FIG. 1 shows a flowchart of steps of a method for controlling lane change of a vehicle according to an embodiment of the present invention.
  • the embodiments of the present invention can be used in unmanned vehicles.
  • the design and development of unmanned systems can be roughly divided into four key technologies: environmental perception, data fusion, decision planning, and motion control.
  • environmental perception For a driverless car to achieve autonomous driving, it is necessary to fully "understand" the surrounding environment like a person, including surrounding vehicles, pedestrians, road markings, road surfaces, weather, and all other factors that affect driving behavior.
  • Environmental information that is, environmental awareness.
  • the control system processes all the collected sensor information, including: extraction, screening, filtering, and comparison, and finally obtains a stable signal that can truly reflect the surrounding information of the vehicle, that is, data fusion.
  • control system makes corresponding "judgment and planning" based on the fused information, including: maintaining the current road driving, lane changing, driving trajectory, driving speed, etc., ie decision planning.
  • control system controls the vehicle to complete corresponding actions according to the received decision instructions, including: keeping driving in the current lane, changing lanes, driving at a prescribed speed, following the vehicle in front, etc., that is, motion control.
  • Vehicle motion control is the key technology of automatic driving systems. Motion control can usually be divided into two parts: horizontal control and vertical control. As shown in FIG. 3, the lateral control mainly realizes the steering of the vehicle, the purpose is to control the vehicle to follow a certain trajectory (path); the longitudinal control mainly implements the control of the vehicle speed, the purpose is to control the vehicle to travel at a certain speed. After the horizontal and vertical control are coupled, the system automatically controls the vehicle.
  • the vehicle lane change control method includes:
  • Step 101 Receive a lane change instruction; the lane change instruction includes a target driving lane.
  • the lane change instruction can be issued by the control system. Specifically, when the control system performs environment awareness and data fusion, it makes a lane change decision plan and issues a lane change instruction.
  • the lane change instruction includes With the target travel lane information, the target travel lane may be a lane traveled by the vehicle after the lane change is completed.
  • Step 102 Obtain a speed parameter of the vehicle.
  • the current speed parameter of the vehicle can be obtained by the vehicle speed sensor, and the controller reads the speed parameter through the bus.
  • the controller reads the speed parameter through the bus.
  • those skilled in the art can also obtain the speed parameter of the vehicle in other ways according to the actual application scenario.
  • the embodiment of the invention does not specifically limit this.
  • Step 103 Determine a control coefficient of the preset controller according to the speed parameter.
  • the preset controller may be a PID (proportion integration differentiation) controller.
  • the PID controller is composed of a proportional unit (P), an integrating unit (I), and a differential unit (D).
  • P proportional unit
  • I integrating unit
  • D differential unit
  • the relationship between its input e (t) and its output u (t) is:
  • the upper and lower limits of the integral in this formula are 0 and t, respectively.
  • the transfer function of the PID controller is:
  • kp is the proportionality factor
  • TI is the integration time constant
  • TD is the differential time constant
  • the speed of the vehicle will affect the trajectory when changing lanes. As shown in FIG. 4, at low speed, the vehicle finally reaches the position after changing lanes to the left is a; at high speed, the vehicle finally reaches the position after changing lanes to the left is c; different motion trajectories A and B are generated, respectively. Similarly, if the vehicle changes lanes to the right at a certain time, it may reach the b position, but the vertical position of the b point also depends on the speed of the vehicle. Therefore, the speed parameter of the vehicle is used as an important parameter for vehicle lane change control, and the control coefficient of the preset controller is determined according to the speed parameter. Compared with the deviation and the rate of change of the deviation as the input of the PID controller under normal circumstances, It can conform to the current lane changing state of the vehicle, and can make the control of the lane changing process simple and easy.
  • Step 104 The lane change control includes: obtaining a position deviation parameter and a heading angle parameter of the vehicle; when the position deviation parameter is greater than or equal to a first threshold value, or when the heading angle parameter is greater than or equal to a second threshold value, Determining a target steering wheel steering angle of the vehicle according to the control coefficient, the position deviation parameter, and the heading angle parameter; controlling the vehicle to change lanes according to the target steering wheel steering angle; and repeating the lane change Control step until the position deviation parameter is lower than the first threshold value and the heading angle parameter is lower than the second threshold value; wherein the position deviation parameter is the current position of the vehicle and the target driving The lateral distance between lanes; the heading angle is the angle between the current heading of the vehicle and the target driving lane.
  • a standard for a vehicle to change lanes is generally that a lateral position is in a target driving lane, and a vehicle heading is consistent with the target driving lane.
  • the controller can calculate the position deviation parameter based on the vehicle's current position and the target driving lane position; perform PID calculations based on the position deviation parameter to obtain the steering angle control amount and output it to the vehicle's electric power steering control unit (EPS) Controls the steering of the vehicle.
  • EPS electric power steering control unit
  • the control The controller can determine the heading angle parameter according to the current driving direction of the vehicle and the direction of the target travel lane; the heading angle parameter is introduced as the controlled amount of the controller, and the target angle between the vehicle direction and the road direction is set to 0; the controller eliminates After the heading deviation, the vehicle direction is consistent with the road direction, so that the vehicle is driving along the lane.
  • Step 1041 Obtain a position deviation parameter and a heading angle parameter of the vehicle; wherein the position deviation parameter is a lateral distance between the current position of the vehicle and the target driving lane; the heading angle is the vehicle And the angle between the current heading of the vehicle and the target driving lane.
  • Step 1042 Determine whether the position deviation parameter is lower than the first threshold and the heading angle parameter is lower than the second threshold. If yes, end, if not, then execute steps 1043 and 1044.
  • Step 1043 Determine a target steering wheel steering angle of the vehicle according to the control coefficient, the position deviation parameter, and the heading angle parameter.
  • Step 1044 Control the vehicle to perform a lane change operation according to the target steering wheel steering angle.
  • the steering angle of the target steering wheel may be an angle that the controller will control the steering wheel to steer, and the vehicle is controlled to perform lane changing operations by turning the steering wheel.
  • the vehicle lane change control method of the embodiment of the present invention after receiving a lane change instruction, according to the speed parameter of the vehicle, the lateral position distance between the vehicle and the target driving lane and the heading of the vehicle and the target lane
  • the angle can be changed by the controller.
  • the control parameters of the preset controller are determined according to the speed parameter, and the preset controller determines the vehicle ’s position based on the two variables: the position deviation parameter and the heading angle parameter of the vehicle.
  • the target steering wheel steering angle The target steering wheel steering angle can be used to control the vehicle to change lanes.
  • the position deviation parameter and the heading angle parameter are continuously obtained, and the lane changing operation is performed until the position deviation parameter is lower than the first threshold.
  • the second threshold can be considered that the vehicle is traveling on the target driving lane in the direction of the target driving lane, that is, the vehicle lane change is completed.
  • the speed change, position deviation parameter, and heading angle are used to control the lane change of the vehicle and determine whether the lane change is completed.
  • the speed parameter, position deviation parameter, and heading angle can be obtained through a speed sensor and an on-board camera without relying on The accurate positioning system can greatly reduce the cost required for vehicle lane changes and the occupation of controller resources.
  • FIG. 8 shows a flowchart of specific steps of a method for controlling lane change of a vehicle according to an embodiment of the present invention.
  • the method specifically includes:
  • Step 201 Obfuscate the preset vehicle speed to obtain the fuzzy universe of the preset vehicle speed.
  • the fuzzy universe of the preset vehicle speed includes: a fuzzy subset of the vehicle speed and a membership function of the vehicle speed.
  • Step 202 According to the fuzzy subset of the vehicle speed and the membership function of the vehicle speed, determine a fuzzy universe of proportionality coefficients and a fuzzy universe of differential coefficients at different preset vehicle speeds, wherein the fuzzy universe of proportionality coefficients include: A fuzzy subset of proportional coefficients, a membership function of the proportional coefficients; the fuzzy universe of the differential coefficients includes: a fuzzy subset of differential coefficients, and a membership function of the differential coefficients.
  • Step 203 According to the vehicle speed fuzzy subset, the vehicle speed membership function, the ratio coefficient fuzzy subset, the ratio coefficient membership function, the differential coefficient fuzzy subset, and the differential coefficient membership function Correspondence between them, establish a first parameter table.
  • the control amount output by the lane change controller is different at different vehicle speeds.
  • the driver needs to make a larger steering wheel angle to control the vehicle to change lanes; when the vehicle speed is high, the driver only needs to make a small steering wheel angle to control the vehicle lane change. Therefore, when designing the PID controller, different P, I, and D parameters need to be adjusted according to changes in vehicle speed, so as to achieve the controller's self-adaptation to the vehicle speed and thus the system's adaptive control of the vehicle.
  • a closed-loop control system based on a controller, a vehicle, a sensor, and an execution unit may be built in the test system in advance.
  • a design idea shown in FIG. 9 different threshold vehicle speeds are preset in the test system.
  • the fuzzy PID control theory determines the first parameter table.
  • the first parameter table may be determined through steps 201 to 203 in advance.
  • the fuzzy control module usually has four components: fuzzy input interface, clear output interface, fuzzy reasoning, and knowledge base.
  • the preset vehicle speed is used as the input of the fuzzy control module, and the coefficients KP and KD of P and D are used as the output of the fuzzy control.
  • a triangle function is simply selected as the membership function of the input and output fuzzy subsets.
  • the fuzzy domain of input includes: a fuzzy subset of vehicle speed and a membership function of vehicle speed.
  • the fuzzy speed subset can be a continuous subset with a fixed endpoint difference. Taking the endpoint difference value as an example, the fuzzy speed subset can be the following subset:
  • the fuzzy universe of the output proportional coefficient KP includes: fuzzy subsets of proportional coefficients, membership function of proportional coefficients.
  • the fuzzy coefficient of the proportional coefficient can be:
  • the fuzzy universe of the output differential coefficient KD includes: a fuzzy subset of differential coefficients, and a membership function of differential coefficients.
  • the differential coefficient fuzzy subset can be:
  • the first A parameter table serves as the knowledge base.
  • the first parameter table may specifically be Table 1:
  • Step 204 Receive a lane change instruction; the lane change instruction includes a target driving lane.
  • Step 205 Obtain a speed parameter of the vehicle.
  • Step 206 Determine a first proportional coefficient and a first differential coefficient corresponding to the speed parameter according to a matching relationship between the speed parameter and a preset first parameter table.
  • PID control has deep foundation, wide application, simple design, and strong feasibility. Compared with modern control methods such as MPC (Model Predictive Control), neural network control, and sliding mode control, it is more feasible and popularizable.
  • MPC Model Predictive Control
  • neural network control neural network control
  • sliding mode control it is more feasible and popularizable.
  • the algorithm designed by applying PID control has high operating efficiency in the controller and can reduce the load on the CPU.
  • the first proportional coefficient and the first differential coefficient obtained according to the first parameter table may be used to eliminate the position deviation parameter.
  • the vehicle speed parameters of the first parameter table are discontinuous, and the vehicle speed is continuously changed during the actual driving process, so there will always be situations where the obtained speed parameters cannot be found in the first parameter table.
  • the closest parameter value of the obtained vehicle speed parameter in the first parameter table may be determined, and the first proportional coefficient and the first differential coefficient corresponding to the speed parameter are determined by using the parameter value.
  • the method of determining the closest parameter value of the obtained vehicle speed parameter in the first parameter table and using the parameter value to determine the first proportional coefficient and the first differential coefficient corresponding to the speed parameter is because it is an estimated parameter
  • the determined first proportionality coefficient and first differential coefficient are not accurate enough, and affect the accuracy of the lane change process control.
  • the step of determining the first proportional coefficient and the first differential coefficient corresponding to the speed parameter according to the matching relationship between the speed parameter and a preset first parameter table includes:
  • Step A1 Determine a first fuzzy subset of vehicle speed that matches the speed parameter.
  • Step A2 Determine a first speed end value and a second speed end value of the first fuzzy subset of the vehicle speed.
  • Step A3 Determine a first end value proportional coefficient and a first end value differential coefficient corresponding to the first speed end value in the first parameter table.
  • Step A4 Determine a second end value proportional coefficient and a second end value differential coefficient corresponding to the second speed end value in the first parameter table.
  • Step A5 determining a first membership coefficient, comprising: dividing a difference between the first speed end value and the speed parameter by a difference between the second speed end value and the first speed end value, Determine the first membership coefficient.
  • Step A6 Determine the second membership coefficient, comprising: dividing the difference between the second speed end value and the speed parameter by the difference between the second speed end value and the first speed end value. To determine the second membership coefficient.
  • Step A7 determining the first proportionality coefficient includes: multiplying a product of the first membership degree coefficient and the first end value proportionality factor, and the second membership degree coefficient and the second end value proportionality factor. The sum of the products of is divided by the sum of the first membership coefficient and the second membership coefficient to determine the first proportionality coefficient.
  • Step A8 Determining the first differential coefficient includes: multiplying a product of the first membership coefficient and the first end value differential coefficient with the second membership coefficient and the second end value differential coefficient. The sum of the products of is divided by the sum of the first membership coefficient and the second membership coefficient to determine the first differential coefficient.
  • steps A1 to A8 can be implemented as follows:
  • the first speed end value is 15 and the second speed end value is 20; and the first speed end ratio corresponding to the first speed end value 15
  • the coefficient KP is 27, the first end value differential coefficient KD does not exist, the second speed end value 20 corresponds to the first end value proportional coefficient KP of 24, and the second end value differential coefficient KD does not exist.
  • the first proportionality coefficient can be further determined by a weighted average method.
  • the first membership coefficient k1 is: (20-16) / (20-15), and 0.8 is obtained;
  • the first proportional coefficient KP of the output is: (0.8 * 27 + 0.2 * 24) / (0.8 + 0.2), and 26.4 is obtained.
  • the first differential coefficient and the second end value differential coefficient do not exist, it is determined that the first differential coefficient does not exist, and it is not necessary to perform differential control.
  • the first differential coefficient can be determined in a manner similar to the above-mentioned determination of the first proportional coefficient, which is not described in this embodiment of the present invention .
  • FIG. 13 a flowchart of a control algorithm for eliminating a position deviation parameter according to the first proportional coefficient and the first differential coefficient according to the first parameter table in the embodiment of the present invention may be shown in FIG. 13.
  • Step 207 Determine a second proportionality coefficient corresponding to the speed parameter according to a matching relationship between the speed parameter and a preset second parameter table.
  • the second scaling coefficient obtained according to the second parameter table may be used to eliminate the heading angle parameter. Similar to the design idea of fuzzy-PID controller used to eliminate position deviation parameters (transverse position deviation), PID controller used to eliminate heading angle parameters (heading deviation) also needs to adjust multiple sets of PID parameters according to different vehicle speeds. During the control, the parameters are adjusted automatically according to the change of vehicle speed. The difference is that the accuracy of heading control in lane change control is not very high, so the determination of PID parameters uses a table lookup method and P control.
  • the second parameter table may be determined through a test in advance, or may be obtained in the prior art, which is not specifically limited in the embodiment of the present invention.
  • a corresponding approximate or accurate second proportionality coefficient KP can be found in Table 2 according to the obtained speed parameters.
  • FIG. 14 a flowchart of a control algorithm for eliminating the heading angle parameter based on the second proportional coefficient obtained according to the second parameter table in the embodiment of the present invention may be shown in FIG. 14.
  • Step 208 Obtain a position deviation parameter and a heading angle parameter of the vehicle, wherein the position deviation parameter is a lateral distance between the current position of the vehicle and the target driving lane; the heading angle is the vehicle And the angle between the current heading of the vehicle and the target driving lane.
  • Step 209 Determine whether the position deviation parameter is lower than the first threshold and the heading angle parameter is lower than the second threshold. If yes, end, if not, then execute steps 1043 and 1044.
  • Step 210 According to the position deviation parameter, the first proportional coefficient, and the first differential coefficient, a proportional steering control algorithm is used to determine a first steering wheel rotation angle.
  • Step 211 Determine a second steering wheel rotation angle through a proportional control algorithm according to the heading angle parameter and the second scaling coefficient.
  • Step 212 Calculate the first steering wheel angle and the second steering wheel angle according to a preset rule to obtain a target steering wheel angle.
  • the real-time driving condition of the vehicle can be determined through the on-board camera.
  • the vehicle position deviation parameter can be determined by the difference between the vehicle lateral position and the lateral target position of the target driving lane. Steps 208 to 212 can be implemented in the following ways:
  • the vehicle's lateral position can be detected by the on-board camera and fitted to the curve by the controller, and output as a cubic polynomial.
  • the formula is as follows:
  • left_y left_c3 * x ⁇ 3 + left_c2 * x ⁇ 2 + left_c1 * x + left_c0
  • right_y right_c3 * x ⁇ 3 + right_c2 * x ⁇ 2 + right_c1 * x + right_c0
  • the heading angle parameter (HeadingAngle) can also be read in the vehicle camera as arctan (left_c1) or arctan (right_c0).
  • Right lane change a negative value for the lane width.
  • Deviation calculation: position deviation parameter target lateral position-real-time lateral position
  • Heading angle parameter -HeadingAngle
  • PID parameter acquisition PID controller parameters used to eliminate lateral position deviation: obtained through the first parameter table; PID controller parameters used to eliminate heading deviation: obtained through the second parameter table.
  • the target corner output can also be processed: for example, change rate limit: determine the upper and lower limits according to the EPS maximum response rate; determine the maximum and minimum limits: determine according to the limit corner value of the vehicle steering mechanism; first-order lag filtering: according to the response of the actuator The lag time determines the filter coefficient filtering.
  • FIG. 15 This technical solution has been verified by hundreds of tests on real vehicles, and the control has good robustness and comfort, and the algorithm designed by applying PID control has high operating efficiency in the controller, which can reduce the load of the CPU.
  • an implementation manner of step 210 is: determining a position deviation parameter at each time within the preset duration according to a preset duration, a preset configuration rule, and the position deviation parameter.
  • a component determining a first steering wheel rotation angle at each time according to the first proportionality coefficient, the first differential coefficient, and a position deviation parameter component at each time point through a proportional differential control algorithm.
  • the implementation of step 212 is: calculating the first steering wheel angle and the second steering wheel angle at each time according to a preset rule to obtain the target steering wheel angle at each time.
  • the position deviation parameter when changing lanes, it is considered that due to the long distance between the vehicle and the target course, the position deviation parameter is large. If the position deviation parameter is directly used as the input of the controller, it will cause changes at the beginning. When the road is off, the vehicle acquires a large target steering wheel steering angle, causing the vehicle to be unstable. In order to eliminate this instability, in the embodiment of the present invention, after obtaining the position deviation parameter, the position deviation parameter at each time within the preset duration is determined according to a preset duration, a preset configuration rule, and the position deviation parameter. Component; and then, according to the first proportionality coefficient, the first differential coefficient, and the position deviation parameter component at each time, a first steering wheel rotation angle at each time is determined through a proportional differential control algorithm.
  • the position deviation parameter is first divided according to time. This division may be continuous or interval.
  • the embodiment of the present invention does not specifically limit this, and then obtains the first steering wheel angle at each time point; then it can be achieved later According to the target steering wheel steering angle at each time point, the vehicle is gradually controlled to change lanes to maintain the stability of the vehicle lane changing process.
  • the vehicle lane change control method of the embodiment of the present invention after receiving a lane change instruction, according to the speed parameter of the vehicle, the lateral position distance between the vehicle and the target driving lane and the heading of the vehicle and the target lane
  • the angle can be changed by the controller.
  • the control parameters of the preset controller are determined according to the speed parameter, and the preset controller determines the vehicle ’s position based on the two variables: the position deviation parameter and the heading angle parameter of the vehicle.
  • the target steering wheel steering angle The target steering wheel steering angle can be used to control the vehicle to change lanes.
  • the position deviation parameter and the heading angle parameter are continuously obtained, and the lane changing operation is performed until the position deviation parameter is lower than the first threshold.
  • the second threshold can be considered that the vehicle is traveling on the target driving lane in the direction of the target driving lane, that is, the vehicle lane change is completed.
  • the speed change, position deviation parameter, and heading angle are used to control the lane change of the vehicle and determine whether the lane change is completed.
  • the speed parameter, position deviation parameter, and heading angle can be obtained through a speed sensor and an on-board camera without relying on The accurate positioning system can greatly reduce the cost required for vehicle lane changes and the occupation of controller resources.
  • FIG. 16 shows a structural block diagram of a vehicle lane change control device according to an embodiment of the present invention.
  • the device specifically includes:
  • a lane change instruction receiving module 310 is configured to receive a lane change instruction; the lane change instruction includes a target driving lane;
  • a speed parameter obtaining module 320 configured to obtain a speed parameter of the vehicle
  • a control coefficient determining module 330 configured to determine a control coefficient of a preset controller according to the speed parameter
  • the lane change control module 340 is configured to obtain a position deviation parameter and a heading angle parameter of the vehicle; when the position deviation parameter is greater than or equal to a first threshold value, or the heading angle parameter is greater than or equal to a second threshold value, The control coefficient, the position deviation parameter, and the heading angle parameter determine a target steering wheel steering angle of the vehicle; according to the target steering wheel steering angle, control the vehicle to perform lane changing operations; until the position deviation parameter Lower than the first threshold, and the heading angle parameter is lower than the second threshold; wherein the position deviation parameter is a lateral distance between the current position of the vehicle and the target driving lane; the The heading angle is an angle between the current heading of the vehicle and the target lane.
  • FIG. 17 shows a specific structural block diagram of a vehicle lane change control device provided by an embodiment of the present invention. Based on FIG. 16, the device includes:
  • the determining module 330 according to the control coefficient includes:
  • a first determining submodule 3301 is configured to determine a first proportional coefficient and a first differential coefficient corresponding to the speed parameter according to a matching relationship between the speed parameter and a preset first parameter table.
  • a second determining submodule 3302 is configured to determine a second proportionality coefficient corresponding to the speed parameter according to a matching relationship between the speed parameter and a preset second parameter table.
  • the lane change control module 340 includes:
  • a first steering wheel angle determination sub-module 3401 is configured to determine a first steering wheel angle through a proportional differential control algorithm according to the position deviation parameter, the first proportional coefficient, and the first differential coefficient.
  • a second steering wheel angle determination submodule 3402 is configured to determine a second steering wheel angle through a proportional control algorithm according to the heading angle parameter and the second scaling coefficient.
  • the target steering wheel angle determination submodule 3403 is configured to calculate the first steering wheel angle and the second steering wheel angle according to a preset rule to obtain the target steering wheel angle.
  • the device further includes:
  • the vehicle speed fuzzy module 350 is used for fuzzifying a preset vehicle speed to obtain a fuzzy universe of the preset vehicle speed; wherein the fuzzy universe of the preset vehicle speed includes: a fuzzy subset of vehicle speed and a vehicle speed membership function.
  • a fuzzy universe determination module 360 is configured to determine a fuzzy universe of proportionality coefficients and a fuzzy universe of differential coefficients at different preset vehicle speeds according to the fuzzy subset of vehicle speeds and the membership function of the vehicle speed;
  • the fuzzy universe of knowledge includes: fuzzy subsets of proportionality coefficients, membership coefficient functions of the proportional coefficients;
  • the fuzzy universe of differential coefficients includes: fuzzy subsets of differential coefficients, membership coefficient functions of differential coefficients.
  • a first parameter table establishing module 370 is configured to, according to the vehicle speed fuzzy subset, the vehicle speed membership function, the proportional coefficient fuzzy subset, the proportional coefficient membership function, and the differential coefficient fuzzy subset, and The corresponding relationship between the membership coefficient functions of the differential coefficients establishes the first parameter table.
  • the first steering wheel angle determination submodule 3401 includes:
  • a position deviation parameter component determining unit 34011 configured to determine a position deviation parameter component at each time within the preset duration according to a preset duration, a preset configuration rule, and the position deviation parameter;
  • a first steering wheel angle determination unit 34012 is configured to determine, based on the first proportionality coefficient, the first differential coefficient, and a position deviation parameter component of each time, a first differential value at each time through a proportional differential control algorithm.
  • the target steering wheel angle determination submodule 3403 includes:
  • the target steering wheel angle determining unit 34041 is configured to calculate the first steering wheel angle and the second steering wheel angle at each time according to a preset rule, to obtain the target steering wheel angle at each time.
  • a vehicle includes any of the vehicle lane change control devices.
  • the lane change control can be implemented by the controller. Specifically, after receiving the lane change instruction, the control parameters of the preset controller are determined according to the speed parameter, and the preset controller determines the vehicle ’s position based on the two variables: the position deviation parameter and the heading angle parameter of the vehicle.
  • the target steering wheel steering angle can be used to control the vehicle to change lanes.
  • the position deviation parameter and the heading angle parameter are continuously obtained, and the lane changing operation is performed until the position deviation parameter is lower than the first threshold.
  • the second threshold can be considered that the vehicle is traveling on the target driving lane in the direction of the target driving lane, that is, the vehicle lane change is completed.
  • the speed change, position deviation parameter, and heading angle are used to control the lane change of the vehicle and determine whether the lane change is completed.
  • the speed parameter, position deviation parameter, and heading angle can be obtained through a speed sensor and an on-board camera without relying on The accurate positioning system can greatly reduce the cost required for vehicle lane changes and the occupation of controller resources.
  • the device embodiments described above are only schematic, and the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located One place, or it can be distributed across multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the objective of the solution of this embodiment. Those of ordinary skill in the art can understand and implement without creative labor.
  • the various component embodiments of the present invention may be implemented by hardware, or by software modules running on one or more processors, or by a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some or all components in a computing processing device according to an embodiment of the present invention.
  • the invention may also be implemented as a device or device program (e.g., a computer program and a computer program product) for performing part or all of the method described herein.
  • Such a program that implements the present invention may be stored on a computer-readable medium or may have the form of one or more signals. Such signals can be downloaded from an Internet website, provided on a carrier signal, or provided in any other form.
  • FIG. 18 shows a computing processing device that can implement the method according to the present invention.
  • the computing processing device traditionally includes a processor 1010 and a computer program product or computer-readable medium in the form of a memory 1020.
  • the memory 1020 may be an electronic memory such as a flash memory, an EEPROM (Electrically Erasable Programmable Read Only Memory), an EPROM, a hard disk, or a ROM.
  • the memory 1020 has a storage space 1030 of program code 1031 for performing any of the method steps in the above method.
  • the storage space 1030 for program code may include respective program codes 1031 respectively for implementing various steps in the above method. These program codes can be read from or written into one or more computer program products.
  • Such computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks.
  • Such a computer program product is typically a portable or fixed storage unit as described with reference to FIG. 19.
  • the storage unit may have a storage section, a storage space, and the like arranged similarly to the memory 1020 in the computing processing device of FIG. 18.
  • the program code may be compressed, for example, in a suitable form.
  • the storage unit includes computer-readable code 1031 ', that is, code that can be read by, for example, a processor such as 1010, and these codes, when run by a computing processing device, cause the computing processing device to execute the method described above Steps.
  • one embodiment means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Also, please note that the word examples "in one embodiment” herein do not necessarily refer to the same embodiment.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the invention can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In the unit claim listing several devices, several of these devices may be embodied by the same hardware item.
  • the use of the words first, second, and third does not imply any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

一种车辆变道控制方法,包括:接收变道指令(步骤101);获取车辆的速度参数(步骤102);根据速度参数确定预设控制器的控制系数(步骤103);获取车辆的位置偏差参数和航向角参数;当位置偏差参数大于或等于第一阈值,或,航向角参数大于或等于第二阈值时,根据控制系数、位置偏差参数和航向角参数,确定车辆的目标方向盘转向角;根据目标方向盘转向角,控制车辆进行变道操作;直到位置偏差参数低于第一阈值,且航向角参数低于第二阈值(步骤104)。其中速度参数、位置偏差参数和航向角通过速度传感器、车载摄像头就可以获取,而不需要依赖高精度的定位系统,能大大减少车辆变道所需的成本和对控制器资源的占用。

Description

一种车辆变道控制方法和装置
本申请要求在2018年06月22日提交中国专利局、申请号为201810652866.9、发明名称为“一种车辆变道控制方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及自动控制技术领域,特别涉及一种车辆变道控制方法和装置。
背景技术
随着自动控制技术的发展,无人驾驶车辆得到越来越高的关注度。在无人驾驶车辆中,变道控制作为一项基础的车辆控制指标,也存在着较多的研究方案。
现有技术在接到变道控制指令后,进行的变道控制方法通常是:根据车辆运动学和动力学模型设计控制算法,使车辆沿着已知轨迹行驶,具体如图1x所示的过程;在车辆变道时,通过高精度的定位系统来定位车辆的位置,通过位置判断车辆是否完成变道,例如,定位到车辆到达预设位置,则判定车辆完成变道,指示车辆正常行驶;定位到车辆没有到达预设位置,则判定车辆没有完成变道,继续执行变道操作。
但是,申请人在研究上述方案时发现:现有技术中依靠高精度的定位系统来实现变道控制,一方面,高精度定位系统的成本较高,提升了车辆变道控制成本;另一方面,通过高精度定位系统实现变道控制中,需要频繁的将实时位置与车辆模型结合进行计算,对控制器运算能力要求很高,对控制器的资源占用也很大。
发明内容
有鉴于此,本发明旨在提出一种车辆变道控制方法和装置,以解决或部分解决变道控制时对高精度定位系统的依赖,造成变道控制装置的成本高的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种车辆变道控制方法,包括:
接收变道指令;所述变道指令包括目标行驶车道;
获取所述车辆的速度参数;
根据所述速度参数确定预设控制器的控制系数;
变道控制,包括:获取所述车辆的位置偏差参数和航向角参数;当所述位置偏差参数大于或等于第一阈值,或,所述航向角参数大于或等于第二阈值时,根据所述控制系数、所述位置偏差参数和所述航向角参数,确定所述车辆的目标方向盘转向角;根据所述目标方向盘转向角,控制所述车辆进行变道操作;
重复所述变道控制步骤,直到所述位置偏差参数低于所述第一阈值,且所述航向角参数低于所述第二阈值;
其中,所述位置偏差参数为所述车辆的当前位置与所述目标行驶车道之间的横向距离;所述航向角为所述车辆的当前航向与所述目标行驶车道的夹角。
进一步的,所述根据所述速度参数确定预设控制器的控制系数的步骤,包括:
根据所述速度参数与预设的第一参数表的匹配关系,确定所述速度参数对应的第一比例系数和第一微分系数;
根据所述速度参数与预设的第二参数表的匹配关系,确定所述速度参数对应的第二比例系数;
所述根据所述控制系数、所述位置偏差参数和所述航向角参数确定所述车辆的目标方向盘转向角的步骤包括:
根据所述位置偏差参数、所述第一比例系数和所述第一微分系数,通过比例微分控制算法,确定出第一方向盘转角;
根据所述航向角参数、所述第二比例系数,通过比例控制算法,确定出第二方向盘转角;
按照预设规则对所述第一方向盘转角和所述第二方向盘转角进行计算,得到目标方向盘转角。
进一步的,在所述根据所述速度参数确定预设控制器的控制系数之前,还包括:
将预置车速进行模糊化,得到所述预置车速的模糊论域;其中,所述预置车速的模糊论域包括:车速模糊子集,车速隶属度函数;
根据所述车速模糊子集和所述车速隶属度函数,确定不同预置车速下比例系数的模糊论域、微分系数的模糊论域;其中,所述比例系数的模糊论域包括:比例系数模糊子集,比例系数隶属度函数;所述微分系数的模糊论域包括:微分系数模糊子集,微分系数隶属度函数;
根据所述车速模糊子集,所述车速隶属度函数,所述比例系数模糊子集、所述比例系数隶属度函数、所述微分系数模糊子集,及所述微分系数隶属度函数之间的对应关系,建立所述第一参数表。
进一步的,所述根据所述速度参数与预设的第一参数表的匹配关系,确定所述速度参数对应的第一比例系数和第一微分系数的步骤包括:
确定与所述速度参数匹配的第一车速模糊子集;
确定所述第一车速模糊子集的第一速度端值和第二速度端值;
确定所述第一速度端值在所述第一参数表中对应的第一端值比例系数、第一端值微分系数;
确定所述第二速度端值在所述第一参数表中对应的第二端值比例系数、第二端值微分系数;
确定第一隶属度系数,包括:将所述第一速度端值与所述速度参数的差值,除以所述第二速度端值与所述第一速度端值的差值,确定出第一隶属度系数;
确定第二隶属度系数,包括:将根据所述第二速度端值与所述速度参数的差值,除以所述第二速度端值与所述第一速度端值的差值,确定出第二隶属度系数;
确定所述第一比例系数,包括:将所述第一隶属度系数与所述第一端值比例系数的乘积,与所述第二隶属度系数与所述第二端值比例系数的乘积的和,除以所述第一隶属度系数与所述第二隶属度系数的和,确定出所述第一比例系数;
确定所述第一微分系数,包括:将所述第一隶属度系数与所述第一端值微分系数的乘积,与所述第二隶属度系数与所述第二端值微分系数的乘积的和,除以所述第一隶属度系数与所述第二隶属度系数的和,确定出所述第一微分系数。
进一步的,所述根据所述位置偏差参数、所述第一比例系数和所述第一微分系数,通过比例微分控制算法,确定出第一方向盘转角,包括:
根据预设时长、预设配置规律及所述位置偏差参数,确定在所述预设时长内各时刻的位置偏差参数分量;
根据所述第一比例系数、所述第一微分系数及所述各时刻的位置偏差参数分量,通过比例微分控制算法,确定出所述各时刻的第一方向盘转角;
所述按照预设规则对所述第一方向盘转角和所述第二方向盘转角进行计算,得到目标方向盘转角,包括:
按照预设规则对所述各时刻的第一方向盘转角和所述第二方向盘转角进行计算,得到所述各时刻的目标方向盘转角。
一种车辆变道控制装置,包括:
变道指令接收模块,用于接收变道指令;所述变道指令包括目标行驶车道;
速度参数获取模块,用于获取所述车辆的速度参数;
控制系数确定模块,用于根据所述速度参数确定预设控制器的控制系数;
变道控制模块,用于获取所述车辆的位置偏差参数和航向角参数;当所述位置偏差参数大于或等于第一阈值,或,所述航向角参数大于或等于第二阈值时,根据所述控制系数、所述位置偏差参数和所述航向角参数,确定所述车辆的目标方向盘转向角;根据所述目标方向盘转向角,控制所述车辆进行变道操作;直到所述位置偏差参数低于所述第一阈值,且所述航向角参数低于所述第二阈值;其中,所述位置偏差参数为所述车辆的当前位置与所述目标行驶车道之间的横向距离;所述航向角为所述车辆的当前航向与所述目标行驶车道的夹角。
进一步的,所述根据控制系数确定模块包括:
第一确定子模块,用于根据所述速度参数与预设的第一参数表的匹配关系,确定所述速度参数对应的第一比例系数和第一微分系数;
第二确定子模块,用于根据所述速度参数与预设的第二参数表的匹配关系,确定所 述速度参数对应的第二比例系数;
所述变道控制模块包括:
第一方向盘转角确定子模块,用于根据所述位置偏差参数、所述第一比例系数和所述第一微分系数,通过比例微分控制算法,确定出第一方向盘转角;
第二方向盘转角确定子模块,用于根据所述航向角参数、所述第二比例系数,通过比例控制算法,确定出第二方向盘转角;
目标方向盘转角确定子模块,用于按照预设规则对所述第一方向盘转角和所述第二方向盘转角进行计算,得到目标方向盘转角。
进一步的,还包括:
车速模糊模块,用于将预置车速进行模糊化,得到所述预置车速的模糊论域;其中,所述预置车速的模糊论域包括:车速模糊子集,车速隶属度函数;
模糊论域确定模块,用于根据所述车速模糊子集和所述车速隶属度函数,确定不同预置车速下比例系数的模糊论域、微分系数的模糊论域;其中,所述比例系数的模糊论域包括:比例系数模糊子集,比例系数隶属度函数;所述微分系数的模糊论域包括:微分系数模糊子集,微分系数隶属度函数;
第一参数表建立模块,用于根据所述车速模糊子集,所述车速隶属度函数,所述比例系数模糊子集、所述比例系数隶属度函数、所述微分系数模糊子集,及所述微分系数隶属度函数之间的对应关系,建立所述第一参数表。
进一步的,所述第一方向盘转角确定子模块包括:
位置偏差参数分量确定单元,用于根据预设时长、预设配置规律及所述位置偏差参数,确定在所述预设时长内各时刻的位置偏差参数分量;
第一方向盘转角确定单元,用于根据所述第一比例系数、所述第一微分系数及所述各时刻的位置偏差参数分量,通过比例微分控制算法,确定出所述各时刻的第一方向盘转角;
所述目标方向盘转角确定子模块包括:
目标方向盘转角确定单元,用于按照预设规则对所述各时刻的第一方向盘转角和所述第二方向盘转角进行计算,得到所述各时刻的目标方向盘转角。
一种车辆,所述车辆包括任一所述的车辆变道控制装置。
一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据上述任一所述的车辆变道控制方法。
一种计算机可读介质,其中存储了上述的计算机程序。
相对于现有技术,本发明所述的车辆变道控制方法具有以下优势:
本发明实施例的一种车辆变道控制方法,在接收到变道指令后,根据车辆的速度参数,车辆与目标行驶车道的横向位置距离以及车辆的航向与目标行驶车道的夹角,就可 以通过控制器实现变道控制。具体来说,在接收到变道指令后,先根据速度参数确定出预设控制器的控制参数,预设控制器再分别根据两个变量:车辆的位置偏差参数和航向角参数,确定车辆的目标方向盘转向角,通过目标方向盘转向角可以控制车辆进行变道操作,持续获取位置偏差参数和航向角参数,进行变道操作,直到位置偏差参数低于第一阈值,和,航向角参数低于第二阈值,可以认为该车辆在目标行驶车道上,沿着目标行驶车道的方向行驶,即完成了车辆变道。本发明实施例通过速度参数、位置偏差参数和航向角来控制车辆变道和判定是否完成变道,速度参数、位置偏差参数和航向角通过速度传感器、车载摄像头就可以获取,而不需要依赖高精度的定位系统,能大大减少车辆变道所需的成本和对控制器资源的占用。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1x为现有技术的一种车辆变道轨迹示意图;
图1为本发明实施例的一种车辆变道控制方法的步骤流程图;
图2为本发明实施例的一种控制系统示意图;
图3为本发明实施例的一种路径规划示意图;
图4为本发明实施例的一种不同车速的变道轨迹图;
图5为本发明实施例的一种位置偏差示意图;
图6为本发明实施例的一种航向角示意图;
图7为本发明实施例的一种车辆变道控制方法的变道控制步骤流程图;
图8为本发明实施例的一种车辆变道控制方法的具体步骤流程图;
图9为本发明实施例的一种变道控制设计示意图;
图10为本发明实施例的一种车速隶属度函数示意图;
图11为本发明实施例的一种比例系数隶属度函数示意图;
图12为本发明实施例的一种微分系数隶属度函数示意图;
图13为本发明实施例的一种消除位置偏差参数的控制算法流程图;
图14为本发明实施例的一种消除航向角参数的控制算法流程图;
图15为本发明实施例的一种具体变道流程示意图;
图16为本发明实施例的一种车辆变道控制装置的结构框图;
图17为本发明实施例的一种车辆变道控制装置的具体结构框图;
图18示意性地示出了用于执行根据本发明的方法的计算处理设备的框图;以及
图19示意性地示出了用于保持或者携带实现根据本发明的方法的程序代码的存储单元。
具体实施例
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本发明。
如图1所示,其示出了本发明实施例提供的一种车辆变道控制方法的步骤流程图。
本发明实施例可以用于无人驾驶车辆中,无人驾驶系统的设计与开发大致可分为四个部分的关键技术:环境感知、数据融合、决策规划和运动控制。如图2所示,一辆无人驾驶车要实现自动行驶,首先需要像人一样充分“了解”周围的环境,包括:周围车辆、行人、道路标示、道路路面、天气等一切影响驾驶行为的环境信息,即环境感知。其次,控制系统将采集到的所有传感器信息进行处理,包括:提取、筛选、过滤、对比,最终得到稳定的可真实反映车辆周围环境信息的信号,即数据融合。进而,控制系统根据融合后的信息作出相应的“判断和规划”,包括:保持当前道路行驶、换道、行驶轨迹、行驶速度等内容,即决策规划。最后,控制系统根据接收的决策指令控制车辆完成相应的动作,包括:保持在当前车道内行驶、换道、按规定速度行驶、跟随前车行驶等,即运动控制。
车辆的运动控制是自动驾驶系统的关键技术,运动控制通常可以分为横向控制和纵向控制两部分。如图3所示,横向控制主要实现对车辆转向的控制,目的是控制车辆按照一定轨迹(路径)行驶;纵向控制主要实现对车辆速度的控制,目的是控制车辆按照一定速度行驶。横纵向控制耦合后就实现了系统对车辆的自动控制。
该车辆变道控制方法包括:
步骤101,接收变道指令;所述变道指令包括目标行驶车道。
具体应用中,变道指令可以由控制系统发出,具体来说,当控制系统在进行环境感知、数据融合后,做出变道的决策规划,发出变道指令,在该变道指令中,包含着目标行驶车道信息,该目标行驶车道可以是车辆完成变道后所行驶的车道。
步骤102,获取所述车辆的速度参数。
本发明实施例中,可以通过车辆的车速传感器获取车辆当前的速度参数,控制器通过总线读取速度参数,当然本领域技术人员也可以根据实际应用场景采用其他的方式获取车辆的速度参数,本发明实施例对此不做具体限制。
步骤103,根据所述速度参数确定预设控制器的控制系数。
本发明实施例中,预设控制器可以是PID(proportion integration differentiation,比例积分微分)控制器。
通常情况下,PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。其输入e(t)与输出u(t)的关系为:
Figure PCTCN2019092238-appb-000001
该公式中积分的上下限分别是0和t。
PID控制器的传递函数为:
Figure PCTCN2019092238-appb-000002
其中kp为比例系数;TI为积分时间常数;TD为微分时间常数。
具体应用中,车辆的行驶速度会影响变道时的行驶轨迹。如图4所示,低速时,车辆向左换道后最终到达的位置为a;高速时,车辆向左换道后最终到达的位置为c;分别产生不同的运动轨迹A和B。同理,若在某一时刻车辆向右换道,则可能到达b位置,但是b点的纵向位置也根据车速的不同而定。因此,将车辆的速度参数作为车辆变道控制的一种重要参数,根据速度参数确定预设控制器的控制系数,相较于通常情况下以偏差和偏差变化率作为PID控制器的输入,更能符合车辆的当前变道状态,能使得变道过程的控制简单易行。
步骤104,变道控制,包括:获取所述车辆的位置偏差参数和航向角参数;当所述位置偏差参数大于或等于第一阈值,或,所述航向角参数大于或等于第二阈值时,根据所述控制系数、所述位置偏差参数和所述航向角参数,确定所述车辆的目标方向盘转向角;根据所述目标方向盘转向角,控制所述车辆进行变道操作;重复所述变道控制步骤,直到所述位置偏差参数低于所述第一阈值,且所述航向角参数低于所述第二阈值;其中,所述位置偏差参数为所述车辆的当前位置与所述目标行驶车道之间的横向距离;所述航向角为所述车辆的当前航向与所述目标行驶车道的夹角。
本发明实施例中,考虑到车辆完成变道的标准通常是:横向位置在目标行驶车道中,且,车辆航向与目标行驶车道保持一致。在横向控制中,如图5所示,控制器可以根据车辆自身的当前位置和目标行驶车道位置计算得到位置偏差参数;根据位置偏差参数作 PID运算得到转角控制量输出给车辆电动助力转向控制单元(EPS)控制车辆转向,随着车辆的移动会逐渐消除位置偏差,当位置偏差完全消除时,车辆就到达了横向目标位置从而实现了换道;在航向控制中,如图6所示,控制器可以根据车辆当前行驶方向与目标行程车道的方向确定出航向角参数;将航向角参数作为控制器的被控量引入,将车辆方向与道路方向的夹角目标值设置为0;控制器消除航向偏差后车辆方向就和道路方向一致,从而使车辆沿着车道行驶。
具体应用中,完成变道的步骤如图7所示,具体为:
步骤1041,获取所述车辆的位置偏差参数和航向角参数;其中,所述位置偏差参数为所述车辆的当前位置与所述目标行驶车道之间的横向距离;所述航向角为所述车辆的当前航向与所述目标行驶车道的夹角。
步骤1042,判断是否达到:所述位置偏差参数低于所述第一阈值,且所述航向角参数低于所述第二阈值。若是则结束,若否,则执行步骤1043和步骤1044。
步骤1043,根据所述控制系数、所述位置偏差参数和所述航向角参数,确定所述车辆的目标方向盘转向角。
步骤1044,根据所述目标方向盘转向角,控制所述车辆进行变道操作。
本发明实施例中,目标方向盘转向角可以是控制器将要控制方向盘进行转向的角度,通过方向盘的转动控制车辆进行变道操作。
综上所述,本发明实施例的一种车辆变道控制方法,在接收到变道指令后,根据车辆的速度参数,车辆与目标行驶车道的横向位置距离以及车辆的航向与目标行驶车道的夹角,就可以通过控制器实现变道控制。具体来说,在接收到变道指令后,先根据速度参数确定出预设控制器的控制参数,预设控制器再分别根据两个变量:车辆的位置偏差参数和航向角参数,确定车辆的目标方向盘转向角,通过目标方向盘转向角可以控制车辆进行变道操作,持续获取位置偏差参数和航向角参数,进行变道操作,直到位置偏差参数低于第一阈值,和,航向角参数低于第二阈值,可以认为该车辆在目标行驶车道上,沿着目标行驶车道的方向行驶,即完成了车辆变道。本发明实施例通过速度参数、位置偏差参数和航向角来控制车辆变道和判定是否完成变道,速度参数、位置偏差参数和航向角通过速度传感器、车载摄像头就可以获取,而不需要依赖高精度的定位系统,能大大减少车辆变道所需的成本和对控制器资源的占用。
如图8所示,其示出了本发明实施例提供的一种车辆变道控制方法的具体步骤流程图,该方法具体包括:
步骤201:将预置车速进行模糊化,得到所述预置车速的模糊论域;其中,所述预置车速的模糊论域包括:车速模糊子集,车速隶属度函数。
步骤202:根据所述车速模糊子集和所述车速隶属度函数,确定不同预置车速下比例系数的模糊论域、微分系数的模糊论域;其中,所述比例系数的模糊论域包括:比例 系数模糊子集,比例系数隶属度函数;所述微分系数的模糊论域包括:微分系数模糊子集,微分系数隶属度函数。
步骤203:根据所述车速模糊子集,所述车速隶属度函数,所述比例系数模糊子集、所述比例系数隶属度函数、所述微分系数模糊子集,及所述微分系数隶属度函数之间的对应关系,建立第一参数表。
由于车辆在接收到变道指令时车速是不确定的,不同的车速下变道控制器输出的控制量是不同的。通俗的讲就是当车速较低时,驾驶员需要打出较大的方向盘转角才能控制车辆完成换道;当车速较高时,驾驶员只需打出很小的方向盘转角就能控制车辆换道。因此,在设计PID控制器时就需要根据车速变化调整不同的P、I、D参数,这样才能实现控制器对车速的自适应,从而实现系统对车辆的自适应控制。
本发明实施例中,可以预先在测试系统中构建基于控制器、车辆、传感器、执行单元的闭环控制系统,采用如图9所示的设计思路,在测试系统中预设不同的阈值车速,通过模糊PID控制理论确定出第一参数表。
具体应用中,可以预先通过步骤201至步骤203确定出第一参数表。
模糊控制模块通常有四个组成部分:输入量模糊化接口、输出量清晰化接口、模糊推理、知识库。本发明实施例中,将预置车速作为模糊控制模块的输入,将P、D的系数KP、KD作为模糊控制的输出。
举例来说,为了数学表达和运算简单选择三角形函数作为输入、输出模糊子集的隶属度函数。
输入(预置车速)的模糊论域包括:车速模糊子集,车速隶属度函数。
车速模糊子集可以为,具有固定端点差值的连续子集,以端点差值为5为例,车速模糊子集可以为下述子集:
[0,5];[5,10];[10,15];[15,20];[20,25];[25,30];[30,35];[35,40];
[40,45];[45,50];[50,55];[55,60];[60,65];[65,70];[70,75];[75,80];
[80,85];[85,90];[90,95];[95,100];[105,110];[110,115];[115,120]。
相应的车速隶属度函数如图10所示,速度越接近端值,隶属度越高。
输出的比例系数KP的模糊论域包括:比例系数模糊子集,比例系数隶属度函数。
以上述车辆模糊子集为输入,经过测试,比例系数模糊子集可以是:
[1.3,1.3];[1.3,1.4];[1.4,1.5];[1.5,1.6];[1.6,1.73];[1.73,1.8];[1.8,2];[2,2.3];[2.3,2.6];[2.6,2.8];[2.8,3.0];[3.0,3.3];[3.3,4.3];[4.3,5.0];[5.0,6.5];[6.5,8.0];[8.0,11];[11,13];[13,17];[17,24];[24,27];[27,38];[38,45]。
相应的比例系数隶属度函数如图11所示。
输出的微分系数KD的模糊论域包括:微分系数模糊子集,微分系数隶属度函数。
以上述车辆模糊子集为输入,经过测试,微分系数模糊子集可以是:
[0,0];[0,0.7];[0.7,0.9];[0.9,0.95];[0.95,1];[1,1.1];
[1.1,1.2.];[1.2,1.3];[1.3,2];[2,2.5];[2.5,3]。
相应的微分系数隶属度函数如图12所示。
根据车速模糊子集,车速隶属度函数,比例系数模糊子集、比例系数隶属度函数、微分系数模糊子集,及微分系数隶属度函数之间的对应关系,可以通过不同的预制车速整定出第一参数表作为知识库。第一参数表具体可以为表1:
表1
Figure PCTCN2019092238-appb-000003
表1如果用模糊语言描述模糊规则,可以是:
If speed is 5,then kp is 40 and kd is 0;
If speed is 10,then kp is 38 and kd is 0;
If speed is 120,then kp is 1.3 and kd is 0.9。
依次可以确定出24条模糊规则。对于不同的速度参数,可以通过查取表1的参数,确定出对应的比例系数和微分系数。
步骤204:接收变道指令;所述变道指令包括目标行驶车道。
步骤205:获取所述车辆的速度参数。
步骤206:根据所述速度参数与预设的第一参数表的匹配关系,确定所述速度参数对应的第一比例系数和第一微分系数。
PID控制作为经典的控制理论底蕴深厚、应用广泛、设计简单、可行性强,较MPC(模型预测控制)、神经网络控制、滑模控制等现代控制方法的工程可行性和可推广性强,且应用PID控制设计的算法在控制器中的运行效率高,可降低CPU的负载。
本发明实施例中,根据第一参数表的到的第一比例系数和第一微分系数可以用于消除位置偏差参数。实际应用中,第一参数表的车速参数是不连续的,而实际驾驶过程中车速是连续变化的,所以总会遇到获取的速度参数在第一参数表中查寻不到的情况,在该情况下可以确定获取的车速参数在第一参数表中最接近的参数值,用该参数值确定出该速度参数对应的第一比例系数和第一微分系数。
可以理解,采用确定获取的车速参数在第一参数表中最接近的参数值,用该参数值确定出该速度参数对应的第一比例系数和第一微分系数的方式,因为是预估的参数值,会导致确定的第一比例系数和第一微分系数不够精确,影响变道过程控制的准度,为了解决该问题。
优选的,本发明实施例中,所述根据所述速度参数与预设的第一参数表的匹配关系,确定所述速度参数对应的第一比例系数和第一微分系数的步骤包括:
步骤A1:确定与所述速度参数匹配的第一车速模糊子集。
步骤A2:确定所述第一车速模糊子集的第一速度端值和第二速度端值。
步骤A3:确定所述第一速度端值在所述第一参数表中对应的第一端值比例系数、第一端值微分系数。
步骤A4:确定所述第二速度端值在所述第一参数表中对应的第二端值比例系数、第二端值微分系数。
步骤A5:确定第一隶属度系数,包括:将所述第一速度端值与所述速度参数的差值,除以所述第二速度端值与所述第一速度端值的差值,确定出第一隶属度系数。
步骤A6:确定第二隶属度系数,包括:将根据所述第二速度端值与所述速度参数的差值,除以所述第二速度端值与所述第一速度端值的差值,确定出第二隶属度系数。
步骤A7:确定所述第一比例系数,包括:将所述第一隶属度系数与所述第一端值比例系数的乘积,与所述第二隶属度系数与所述第二端值比例系数的乘积的和,除以所 述第一隶属度系数与所述第二隶属度系数的和,确定出所述第一比例系数。
步骤A8:确定所述第一微分系数,包括:将所述第一隶属度系数与所述第一端值微分系数的乘积,与所述第二隶属度系数与所述第二端值微分系数的乘积的和,除以所述第一隶属度系数与所述第二隶属度系数的和,确定出所述第一微分系数。
具体应用中,以第一参数表为表1,速度参数值为16为例,步骤A1-步骤A8,具体实现可以是:
首先确定速度参数16在第一车速模糊子集[15,20]中,第一速度端值为15,第二速度端值为20;且该第一速度端值15对应的第一端值比例系数KP为27,第一端值微分系数KD不存在,该第二速度端值20对应的第一端值比例系数KP为24,第二端值微分系数KD不存在。
则可以进一步通过加权平均法确定出第一比例系数。
具体来说:
可以确定第一隶属度系数k1为:(20-16)/(20-15),得到0.8;
确定第二隶属度系数k2为:(16-15)/(20-15),得到0.2;
进而确定输出的第一比例系数KP为:(0.8*27+0.2*24)/(0.8+0.2),得到26.4。
在该例子中,因为第一端值微分系数和第二端值微分系数不存在,所以确定出第一微分系数不存在,不需要进行微分控制。在其他的例子中,假设存在第一端值微分系数和第二端值微分系数,可以用类似上述确定第一比例系数的方式,确定出第一微分系数,本发明实施例在此不做赘述。
以输出为z0,端值为zi,各端值对应的隶属度系数为ki为例,上述过程可以用公式表示为:
Figure PCTCN2019092238-appb-000004
实际应用中,本发明实施例的根据第一参数表的到的第一比例系数和第一微分系数消除位置偏差参数的控制算法流程图可以如图13所示。
步骤207:根据所述速度参数与预设的第二参数表的匹配关系,确定所述速度参数对应的第二比例系数。
本发明实施例中,根据第二参数表得到的第二比例系数可以用于消除航向角参数。与用于消除位置偏差参数(横向位置偏差)的模糊-PID控制器设计思想相似,用于消除航向角参数(航向偏差)的PID控制器也需要根据不同的车速调节多组PID参数,在实际控制中根据车速的变化来自动调节参数。不同之处在于换道控制中对航向控制精度要求不是很高,因此PID参数的确定采用查表法且采用P控制。第二参数表可以通过预先测试确定,也可以在现有技术中获取,本发明实施例对此不作具体限定。
举例来说,以第二参数表为表2为例,可以根据获取的速度参数,在表2中查到相 对应的近似的或精确的第二比例系数KP。
表2
Speed KP
<15 8
15 7.5
20 6.5
25 6.3
30 5.8
35 5
40 4.3
45 3.8
50 3.3
55 3
60 2.9
65 2.7
70 2.7
75 2.6
80 2.5
85 2.5
90 2.4
95 2.35
100 2.3
105 2.1
110 2
>115 2
实际应用中,本发明实施例的根据第二参数表得到的第二比例系数消除航向角参数的控制算法流程图可以如图14所示。
步骤208:获取所述车辆的位置偏差参数和航向角参数,其中,所述位置偏差参数为所述车辆的当前位置与所述目标行驶车道之间的横向距离;所述航向角为所述车辆的当前航向与所述目标行驶车道的夹角。
步骤209:判断是否达到:所述位置偏差参数低于所述第一阈值,且所述航向角参数低于所述第二阈值。若是则结束,若否,则执行步骤1043和步骤1044。
步骤210:根据所述位置偏差参数、所述第一比例系数和所述第一微分系数,通过比例微分控制算法,确定出第一方向盘转角。
步骤211:根据所述航向角参数、所述第二比例系数,通过比例控制算法,确定出第二方向盘转角。
步骤212:按照预设规则对所述第一方向盘转角和所述第二方向盘转角进行计算,得到目标方向盘转角。
具体应用中,以车辆安装了车载摄像头为例,通过车载摄像头可以确定车辆的实时行驶状况。车辆的位置偏差参数可以通过车辆横向位置和目标行驶车道的横向目标位置的差值确定。步骤208至步骤212可以通过下述方式实现:
确定车辆横向位置:车辆横向位置可以由车载摄像头检测车道线并通过控制器拟合曲线,以三次多项式的形式输出,公式表示如下:
左侧车道线:left_y=left_c3*x^3+left_c2*x^2+left_c1*x+left_c0
右侧车道线:right_y=right_c3*x^3+right_c2*x^2+right_c1*x+right_c0
根据多项式的定义,车辆在本车道内时:横向位置=车道宽/2-left_c0,或横向位置=right_c0-车道宽/2
进入相邻车道后:横向位置=3*车道宽/2-left_c0,或横向位置=right_c0+车道宽/2
航向角参数(HeadingAngle)也可以在车载摄像头中读取为:arctan(left_c1)或arctan(right_c0)。
确定横向目标位置:左换道:一个车道宽(标准车道为3.75m);
右换道:一个车道宽的负值。
偏差计算:位置偏差参数=目标横向位置-实时横向位置
航向角参数=-HeadingAngle
PID参数获取:用于消除横向位置偏差的PID控制器参数:通过第一参数表获取;用于消除航向偏差的PID控制器参数:通过第二参数表获取。
PID运算:对横向位置偏差作PD运算:y1=kp*e(t)+kd*de(t)/dt
对航向偏差作P运算:y2=kp*e(t)
目标控制量:目标方向盘转角=y1+y2
优选的,还可以对目标转角输出处理:例如变化率限制:根据EPS最大响应速率确定上下限;确定最大最小值限制:根据车辆转向机构的极限转角值确定;一阶滞后滤波:根据执行机构响应滞后时间确定滤波系数滤波。
以上过程可用图15表示。本技术方案已经在实车上经过上百次测试验证,控制的鲁棒性、舒适性均很好,且应用PID控制设计的算法在控制器中的运行效率高,可降低CPU的负载。
作为本发明实施例的一种优选方案,步骤210的一种实现方式是:根据预设时长、 预设配置规律及所述位置偏差参数,确定在所述预设时长内各时刻的位置偏差参数分量;根据所述第一比例系数、所述第一微分系数及所述各时刻的位置偏差参数分量,通过比例微分控制算法,确定出所述各时刻的第一方向盘转角。此时,步骤212的实现方式是:按照预设规则对所述各时刻的第一方向盘转角和所述第二方向盘转角进行计算,得到所述各时刻的目标方向盘转角。
具体应用中,考虑到在进行变道操作时,初始时由于车辆到目标行驶航道的距离较远,位置偏差参数较大,如果将位置偏差参数直接作为控制器的输入,将会导致在开始变道时,车辆获取一个较大的目标方向盘转向角,引起车辆的不稳定。为了消除该不稳定,本发明实施例中,在获取到位置偏差参数后,根据预设时长、预设配置规律及所述位置偏差参数,确定在所述预设时长内各时刻的位置偏差参数分量;然后根据第一比例系数、所述第一微分系数及所述各时刻的位置偏差参数分量,通过比例微分控制算法,确定出所述各时刻的第一方向盘转角。也就是首先把位置偏差参量按时间划分,这个划分可以是连续的,也可以是间隔的,本发明实施例对此不作具体限定,然后得到各时间点的第一方向盘转角;那么后续就可以实现按照各时间点的目标方向盘转向角,逐步去控制车辆进行变道,保持车辆变道过程的稳定性。
综上所述,本发明实施例的一种车辆变道控制方法,在接收到变道指令后,根据车辆的速度参数,车辆与目标行驶车道的横向位置距离以及车辆的航向与目标行驶车道的夹角,就可以通过控制器实现变道控制。具体来说,在接收到变道指令后,先根据速度参数确定出预设控制器的控制参数,预设控制器再分别根据两个变量:车辆的位置偏差参数和航向角参数,确定车辆的目标方向盘转向角,通过目标方向盘转向角可以控制车辆进行变道操作,持续获取位置偏差参数和航向角参数,进行变道操作,直到位置偏差参数低于第一阈值,和,航向角参数低于第二阈值,可以认为该车辆在目标行驶车道上,沿着目标行驶车道的方向行驶,即完成了车辆变道。本发明实施例通过速度参数、位置偏差参数和航向角来控制车辆变道和判定是否完成变道,速度参数、位置偏差参数和航向角通过速度传感器、车载摄像头就可以获取,而不需要依赖高精度的定位系统,能大大减少车辆变道所需的成本和对控制器资源的占用。
如图16所示,其示出了本发明实施例提供的一种车辆变道控制装置的结构框图,该装置具体包括:
变道指令接收模块310,用于接收变道指令;所述变道指令包括目标行驶车道;
速度参数获取模块320,用于获取所述车辆的速度参数;
控制系数确定模块330,用于根据所述速度参数确定预设控制器的控制系数;
变道控制模块340,用于获取所述车辆的位置偏差参数和航向角参数;当所述位置偏差参数大于或等于第一阈值,或,所述航向角参数大于或等于第二阈值时,根据所述 控制系数、所述位置偏差参数和所述航向角参数,确定所述车辆的目标方向盘转向角;根据所述目标方向盘转向角,控制所述车辆进行变道操作;直到所述位置偏差参数低于所述第一阈值,且所述航向角参数低于所述第二阈值;其中,所述位置偏差参数为所述车辆的当前位置与所述目标行驶车道之间的横向距离;所述航向角为所述车辆的当前航向与所述目标行驶车道的夹角。
如图17所示,其示出了本发明实施例提供的一种车辆变道控制装置的具体结构框图,在图16的基础上,所述装置中:
所述根据控制系数确定模块330包括:
第一确定子模块3301,用于根据所述速度参数与预设的第一参数表的匹配关系,确定所述速度参数对应的第一比例系数和第一微分系数。
第二确定子模块3302,用于根据所述速度参数与预设的第二参数表的匹配关系,确定所述速度参数对应的第二比例系数。
所述变道控制模块340包括:
第一方向盘转角确定子模块3401,用于根据所述位置偏差参数、所述第一比例系数和所述第一微分系数,通过比例微分控制算法,确定出第一方向盘转角。
第二方向盘转角确定子模块3402,用于根据所述航向角参数、所述第二比例系数,通过比例控制算法,确定出第二方向盘转角。
目标方向盘转角确定子模块3403,用于按照预设规则对所述第一方向盘转角和所述第二方向盘转角进行计算,得到目标方向盘转角。
所述装置还包括:
车速模糊模块350,用于将预置车速进行模糊化,得到所述预置车速的模糊论域;其中,所述预置车速的模糊论域包括:车速模糊子集,车速隶属度函数。
模糊论域确定模块360,用于根据所述车速模糊子集和所述车速隶属度函数,确定不同预置车速下比例系数的模糊论域、微分系数的模糊论域;其中,所述比例系数的模糊论域包括:比例系数模糊子集,比例系数隶属度函数;所述微分系数的模糊论域包括:微分系数模糊子集,微分系数隶属度函数。
第一参数表建立模块370,用于根据所述车速模糊子集,所述车速隶属度函数,所述比例系数模糊子集、所述比例系数隶属度函数、所述微分系数模糊子集,及所述微分系数隶属度函数之间的对应关系,建立所述第一参数表。
所述第一方向盘转角确定子模块3401包括:
位置偏差参数分量确定单元34011,用于根据预设时长、预设配置规律及所述位置偏差参数,确定在所述预设时长内各时刻的位置偏差参数分量;
第一方向盘转角确定单元34012,用于根据所述第一比例系数、所述第一微分系数及所述各时刻的位置偏差参数分量,通过比例微分控制算法,确定出所述各时刻的第一方向盘转角;
所述目标方向盘转角确定子模块3403包括:
目标方向盘转角确定单元34031,用于按照预设规则对所述各时刻的第一方向盘转角和所述第二方向盘转角进行计算,得到所述各时刻的目标方向盘转角。
一种车辆,车辆包括任一所述的车辆变道控制装置。
本发明实施例在接收到变道指令后,根据车辆的速度参数,车辆与目标行驶车道的横向位置距离以及车辆的航向与目标行驶车道的夹角,就可以通过控制器实现变道控制。具体来说,在接收到变道指令后,先根据速度参数确定出预设控制器的控制参数,预设控制器再分别根据两个变量:车辆的位置偏差参数和航向角参数,确定车辆的目标方向盘转向角,通过目标方向盘转向角可以控制车辆进行变道操作,持续获取位置偏差参数和航向角参数,进行变道操作,直到位置偏差参数低于第一阈值,和,航向角参数低于第二阈值,可以认为该车辆在目标行驶车道上,沿着目标行驶车道的方向行驶,即完成了车辆变道。本发明实施例通过速度参数、位置偏差参数和航向角来控制车辆变道和判定是否完成变道,速度参数、位置偏差参数和航向角通过速度传感器、车载摄像头就可以获取,而不需要依赖高精度的定位系统,能大大减少车辆变道所需的成本和对控制器资源的占用。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图18示出了可以实现根据本发明的方法的计算处理设备。该计算处理设备 传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图19所述的便携式或者固定存储单元。该存储单元可以具有与图18的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本发明的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (12)

  1. 一种车辆变道控制方法,其特征在于,包括:
    接收变道指令;所述变道指令包括目标行驶车道;
    获取所述车辆的速度参数;
    根据所述速度参数确定预设控制器的控制系数;
    变道控制,包括:获取所述车辆的位置偏差参数和航向角参数;当所述位置偏差参数大于或等于第一阈值,或,所述航向角参数大于或等于第二阈值时,根据所述控制系数、所述位置偏差参数和所述航向角参数,确定所述车辆的目标方向盘转向角;根据所述目标方向盘转向角,控制所述车辆进行变道操作;
    重复所述变道控制步骤,直到所述位置偏差参数低于所述第一阈值,且所述航向角参数低于所述第二阈值;
    其中,所述位置偏差参数为所述车辆的当前位置与所述目标行驶车道之间的横向距离;所述航向角为所述车辆的当前航向与所述目标行驶车道的夹角。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述速度参数确定预设控制器的控制系数的步骤,包括:
    根据所述速度参数与预设的第一参数表的匹配关系,确定所述速度参数对应的第一比例系数和第一微分系数;
    根据所述速度参数与预设的第二参数表的匹配关系,确定所述速度参数对应的第二比例系数;
    所述根据所述控制系数、所述位置偏差参数和所述航向角参数确定所述车辆的目标方向盘转向角的步骤包括:
    根据所述位置偏差参数、所述第一比例系数和所述第一微分系数,通过比例微分控制算法,确定出第一方向盘转角;
    根据所述航向角参数、所述第二比例系数,通过比例控制算法,确定出第二方向盘转角;
    按照预设规则对所述第一方向盘转角和所述第二方向盘转角进行计算,得到目标方向盘转角。
  3. 根据权利要求2所述的方法,其特征在于,在所述根据所述速度参数确定预设控制器的控制系数之前,还包括:
    将预置车速进行模糊化,得到所述预置车速的模糊论域;其中,所述预置车速的模糊论域包括:车速模糊子集,车速隶属度函数;
    根据所述车速模糊子集和所述车速隶属度函数,确定不同预置车速下比例系数的模糊论域、微分系数的模糊论域;其中,所述比例系数的模糊论域包括:比例系数模糊子集,比例系数隶属度函数;所述微分系数的模糊论域包括:微分系数模糊子集,微分系 数隶属度函数;
    根据所述车速模糊子集,所述车速隶属度函数,所述比例系数模糊子集、所述比例系数隶属度函数、所述微分系数模糊子集,及所述微分系数隶属度函数之间的对应关系,建立所述第一参数表。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述速度参数与预设的第一参数表的匹配关系,确定所述速度参数对应的第一比例系数和第一微分系数的步骤包括:
    确定与所述速度参数匹配的第一车速模糊子集;
    确定所述第一车速模糊子集的第一速度端值和第二速度端值;
    确定所述第一速度端值在所述第一参数表中对应的第一端值比例系数、第一端值微分系数;
    确定所述第二速度端值在所述第一参数表中对应的第二端值比例系数、第二端值微分系数;
    确定第一隶属度系数,包括:将所述第一速度端值与所述速度参数的差值,除以所述第二速度端值与所述第一速度端值的差值,确定出第一隶属度系数;
    确定第二隶属度系数,包括:将根据所述第二速度端值与所述速度参数的差值,除以所述第二速度端值与所述第一速度端值的差值,确定出第二隶属度系数;
    确定所述第一比例系数,包括:将所述第一隶属度系数与所述第一端值比例系数的乘积,与所述第二隶属度系数与所述第二端值比例系数的乘积的和,除以所述第一隶属度系数与所述第二隶属度系数的和,确定出所述第一比例系数;
    确定所述第一微分系数,包括:将所述第一隶属度系数与所述第一端值微分系数的乘积,与所述第二隶属度系数与所述第二端值微分系数的乘积的和,除以所述第一隶属度系数与所述第二隶属度系数的和,确定出所述第一微分系数。
  5. 根据权利要求2所述的方法,其特征在于,所述根据所述位置偏差参数、所述第一比例系数和所述第一微分系数,通过比例微分控制算法,确定出第一方向盘转角,包括:
    根据预设时长、预设配置规律及所述位置偏差参数,确定在所述预设时长内各时刻的位置偏差参数分量;
    根据所述第一比例系数、所述第一微分系数及所述各时刻的位置偏差参数分量,通过比例微分控制算法,确定出所述各时刻的第一方向盘转角;
    所述按照预设规则对所述第一方向盘转角和所述第二方向盘转角进行计算,得到目标方向盘转角,包括:
    按照预设规则对所述各时刻的第一方向盘转角和所述第二方向盘转角进行计算,得到所述各时刻的目标方向盘转角。
  6. 一种车辆变道控制装置,其特征在于,包括:
    变道指令接收模块,用于接收变道指令;所述变道指令包括目标行驶车道;
    速度参数获取模块,用于获取所述车辆的速度参数;
    控制系数确定模块,用于根据所述速度参数确定预设控制器的控制系数;
    变道控制模块,用于获取所述车辆的位置偏差参数和航向角参数;当所述位置偏差参数大于或等于第一阈值,或,所述航向角参数大于或等于第二阈值时,根据所述控制系数、所述位置偏差参数和所述航向角参数,确定所述车辆的目标方向盘转向角;根据所述目标方向盘转向角,控制所述车辆进行变道操作;直到所述位置偏差参数低于所述第一阈值,且所述航向角参数低于所述第二阈值;其中,所述位置偏差参数为所述车辆的当前位置与所述目标行驶车道之间的横向距离;所述航向角为所述车辆的当前航向与所述目标行驶车道的夹角。
  7. 根据权利要求6所述的装置,其特征在于,所述根据控制系数确定模块包括:
    第一确定子模块,用于根据所述速度参数与预设的第一参数表的匹配关系,确定所述速度参数对应的第一比例系数和第一微分系数;
    第二确定子模块,用于根据所述速度参数与预设的第二参数表的匹配关系,确定所述速度参数对应的第二比例系数;
    所述变道控制模块包括:
    第一方向盘转角确定子模块,用于根据所述位置偏差参数、所述第一比例系数和所述第一微分系数,通过比例微分控制算法,确定出第一方向盘转角;
    第二方向盘转角确定子模块,用于根据所述航向角参数、所述第二比例系数,通过比例控制算法,确定出第二方向盘转角;
    目标方向盘转角确定子模块,用于按照预设规则对所述第一方向盘转角和所述第二方向盘转角进行计算,得到目标方向盘转角。
  8. 根据权利要求7所述的装置,其特征在于,还包括:
    车速模糊模块,用于将预置车速进行模糊化,得到所述预置车速的模糊论域;其中,所述预置车速的模糊论域包括:车速模糊子集,车速隶属度函数;
    模糊论域确定模块,用于根据所述车速模糊子集和所述车速隶属度函数,确定不同预置车速下比例系数的模糊论域、微分系数的模糊论域;其中,所述比例系数的模糊论域包括:比例系数模糊子集,比例系数隶属度函数;所述微分系数的模糊论域包括:微分系数模糊子集,微分系数隶属度函数;
    第一参数表建立模块,用于根据所述车速模糊子集,所述车速隶属度函数,所述比例系数模糊子集、所述比例系数隶属度函数、所述微分系数模糊子集,及所述微分系数隶属度函数之间的对应关系,建立所述第一参数表。
  9. 根据权利要求7所述的装置,其特征在于,所述第一方向盘转角确定子模块包括:
    位置偏差参数分量确定单元,用于根据预设时长、预设配置规律及所述位置偏差参 数,确定在所述预设时长内各时刻的位置偏差参数分量;
    第一方向盘转角确定单元,用于根据所述第一比例系数、所述第一微分系数及所述各时刻的位置偏差参数分量,通过比例微分控制算法,确定出所述各时刻的第一方向盘转角;
    所述目标方向盘转角确定子模块包括:
    目标方向盘转角确定单元,用于按照预设规则对所述各时刻的第一方向盘转角和所述第二方向盘转角进行计算,得到所述各时刻的目标方向盘转角。
  10. 一种车辆,其特征在于,所述车辆包括权利要求6至9任一所述的车辆变道控制装置。
  11. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-5中的任一个所述的车辆变道控制方法。
  12. 一种计算机可读介质,其中存储了如权利要求11所述的计算机程序。
PCT/CN2019/092238 2018-06-22 2019-06-21 一种车辆变道控制方法和装置 WO2019242718A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19822877.7A EP3798746B1 (en) 2018-06-22 2019-06-21 Vehicle lane change control method and device
US17/255,215 US11919518B2 (en) 2018-06-22 2019-06-21 Vehicle lane change control method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810652866.9A CN110018632B (zh) 2018-06-22 2018-06-22 一种车辆变道控制方法和装置
CN201810652866.9 2018-06-22

Publications (1)

Publication Number Publication Date
WO2019242718A1 true WO2019242718A1 (zh) 2019-12-26

Family

ID=67188389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092238 WO2019242718A1 (zh) 2018-06-22 2019-06-21 一种车辆变道控制方法和装置

Country Status (4)

Country Link
US (1) US11919518B2 (zh)
EP (1) EP3798746B1 (zh)
CN (1) CN110018632B (zh)
WO (1) WO2019242718A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112148016A (zh) * 2020-09-30 2020-12-29 深兰人工智能(深圳)有限公司 基于模型预测控制算法横纵向解耦的车辆控制方法和装置
CN112874536A (zh) * 2021-01-19 2021-06-01 英博超算(南京)科技有限公司 一种智能车辆拨杆换道方法
CN113515038A (zh) * 2021-09-07 2021-10-19 西南交通大学 一种车辆换道方法、装置、设备及可读存储介质
CN113771871A (zh) * 2020-06-05 2021-12-10 广州汽车集团股份有限公司 一种车辆偏离车道的预警方法及其系统、介质、车辆

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111016891B (zh) * 2019-11-06 2022-03-22 国汽(北京)智能网联汽车研究院有限公司 一种车辆行驶的路线跟踪控制方法及装置
CN112672942B (zh) * 2020-03-23 2022-01-14 华为技术有限公司 一种车辆换道方法及相关设备
CN114137948A (zh) * 2020-08-13 2022-03-04 长沙智能驾驶研究院有限公司 编队车辆行驶方法、装置、计算机设备和存储介质
JP7276282B2 (ja) * 2020-08-24 2023-05-18 トヨタ自動車株式会社 物体検出装置、物体検出方法及び物体検出用コンピュータプログラム
CN112235377B (zh) * 2020-09-30 2024-04-02 深圳市元征科技股份有限公司 车辆位置信息的上报方法、装置、设备及存储介质
CN113428141B (zh) * 2021-07-15 2022-12-09 东风汽车集团股份有限公司 一种前车紧急切入及时响应的智能检测方法及系统
CN113624520B (zh) * 2021-07-29 2023-05-16 东风汽车集团股份有限公司 一种基于机器视觉技术的实时计算车辆不足转向梯度系数的系统、方法及介质
CN113848899A (zh) * 2021-09-22 2021-12-28 中国第一汽车股份有限公司 车辆横向控制方法、装置、设备及存储介质
CN113715816B (zh) * 2021-09-30 2023-06-30 岚图汽车科技有限公司 车道居中功能控制方法、装置、设备及可读存储介质
CN113885498B (zh) * 2021-10-08 2023-10-20 湖南三一华源机械有限公司 压路机的避障控制方法、控制装置和控制系统
CN114103957B (zh) * 2021-12-22 2024-02-06 阿波罗智联(北京)科技有限公司 变道控制方法、装置、电子设备和存储介质
CN114506342B (zh) * 2022-03-03 2023-12-05 东风悦享科技有限公司 一种自动驾驶变道决策的方法、系统及车辆
CN114940210B (zh) * 2022-04-02 2023-10-31 中汽创智科技有限公司 一种方向盘转角信号的确定方法及装置
CN115240426B (zh) * 2022-07-26 2024-03-26 东软睿驰汽车技术(沈阳)有限公司 一种变道数据的自动定位方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102358287A (zh) * 2011-09-05 2012-02-22 北京航空航天大学 一种用于车辆自动驾驶机器人的轨迹跟踪控制方法
US8428843B2 (en) * 2008-06-20 2013-04-23 GM Global Technology Operations LLC Method to adaptively control vehicle operation using an autonomic vehicle control system
CN104097637A (zh) * 2013-04-11 2014-10-15 现代自动车株式会社 用于控制车道变换的方法和系统
CN104360687A (zh) * 2014-11-06 2015-02-18 北京矿冶研究总院 一种地下铲运机多模式自主行驶控制方法
CN106080941A (zh) * 2016-08-04 2016-11-09 清华大学 一种实现变速平衡控制的无人驾驶自行车

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8170739B2 (en) * 2008-06-20 2012-05-01 GM Global Technology Operations LLC Path generation algorithm for automated lane centering and lane changing control system
US8849515B2 (en) * 2012-07-24 2014-09-30 GM Global Technology Operations LLC Steering assist in driver initiated collision avoidance maneuver
KR101398223B1 (ko) * 2012-11-06 2014-05-23 현대모비스 주식회사 차량의 차선 변경 제어 장치 및 그 제어 방법
US9174672B2 (en) * 2013-10-28 2015-11-03 GM Global Technology Operations LLC Path planning for evasive steering maneuver in presence of target vehicle and surrounding objects
US9229453B1 (en) * 2014-08-29 2016-01-05 GM Global Technology Operations LLC Unified motion planner for autonomous driving vehicle in avoiding the moving obstacle
US9499197B2 (en) * 2014-10-15 2016-11-22 Hua-Chuang Automobile Information Technical Center Co., Ltd. System and method for vehicle steering control
KR102036050B1 (ko) * 2014-12-30 2019-10-24 주식회사 만도 차선 변경 장치 및 방법
JP6768787B2 (ja) * 2016-03-15 2020-10-14 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
US10150474B2 (en) * 2017-01-04 2018-12-11 Robert Bosch Gmbh Reducing lateral position deviation during an automated lane change
CN108082185B (zh) * 2017-03-30 2021-01-01 长城汽车股份有限公司 一种车辆的行驶控制方法、装置和车辆
CA3059862A1 (en) * 2017-04-12 2018-10-18 Nissan Motor Co., Ltd. Driving control method and driving control device
CN107323450B (zh) * 2017-06-08 2019-08-13 广州汽车集团股份有限公司 车辆变道的控制方法及装置、存储介质
JP2019003234A (ja) * 2017-06-09 2019-01-10 トヨタ自動車株式会社 運転支援装置
JP6897349B2 (ja) * 2017-06-09 2021-06-30 トヨタ自動車株式会社 運転支援装置
CN111033593B (zh) * 2017-08-30 2021-04-27 日产自动车株式会社 驾驶辅助车辆的位置误差校正方法及位置误差校正装置
US10953881B2 (en) * 2017-09-07 2021-03-23 Tusimple, Inc. System and method for automated lane change control for autonomous vehicles
US10586455B2 (en) * 2017-10-19 2020-03-10 Veoneer Us, Inc. Systems and methods for vehicle lane change detection
US10377383B2 (en) * 2017-12-11 2019-08-13 Ford Global Technologies, Llc Vehicle lane change
US11572099B2 (en) * 2018-04-27 2023-02-07 Honda Motor Co., Ltd. Merge behavior systems and methods for merging vehicles
US11117584B2 (en) * 2018-04-27 2021-09-14 Honda Motor Co., Ltd. Merge behavior systems and methods for mainline vehicles
US11260849B2 (en) * 2018-05-23 2022-03-01 Baidu Usa Llc Method for determining lane changing trajectories for autonomous driving vehicles
US20190389470A1 (en) * 2018-06-22 2019-12-26 GM Global Technology Operations LLC System and method for controlling a vehicle based on an anticipated lane departure
KR20200075915A (ko) * 2018-12-07 2020-06-29 현대자동차주식회사 차량의 주행 제어 장치 및 그 방법
US11186282B2 (en) * 2018-12-11 2021-11-30 Alpine Electronics, Inc. Automated lane change system and methods
CN113826153B (zh) * 2019-05-15 2024-01-02 日产自动车株式会社 车辆的行驶控制方法及行驶控制装置
US11292470B2 (en) * 2020-01-06 2022-04-05 GM Global Technology Operations LLC System method to establish a lane-change maneuver
US11685398B2 (en) * 2020-02-27 2023-06-27 Baidu Usa Llc Lane based routing system for autonomous driving vehicles
US11472435B2 (en) * 2020-11-30 2022-10-18 Automotive Research & Testing Center Trajectory determination method for a vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8428843B2 (en) * 2008-06-20 2013-04-23 GM Global Technology Operations LLC Method to adaptively control vehicle operation using an autonomic vehicle control system
CN102358287A (zh) * 2011-09-05 2012-02-22 北京航空航天大学 一种用于车辆自动驾驶机器人的轨迹跟踪控制方法
CN104097637A (zh) * 2013-04-11 2014-10-15 现代自动车株式会社 用于控制车道变换的方法和系统
CN104360687A (zh) * 2014-11-06 2015-02-18 北京矿冶研究总院 一种地下铲运机多模式自主行驶控制方法
CN106080941A (zh) * 2016-08-04 2016-11-09 清华大学 一种实现变速平衡控制的无人驾驶自行车

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113771871A (zh) * 2020-06-05 2021-12-10 广州汽车集团股份有限公司 一种车辆偏离车道的预警方法及其系统、介质、车辆
CN112148016A (zh) * 2020-09-30 2020-12-29 深兰人工智能(深圳)有限公司 基于模型预测控制算法横纵向解耦的车辆控制方法和装置
CN112148016B (zh) * 2020-09-30 2024-05-10 深兰人工智能(深圳)有限公司 基于模型预测控制算法横纵向解耦的车辆控制方法和装置
CN112874536A (zh) * 2021-01-19 2021-06-01 英博超算(南京)科技有限公司 一种智能车辆拨杆换道方法
CN112874536B (zh) * 2021-01-19 2023-09-12 英博超算(南京)科技有限公司 一种智能车辆拨杆换道方法
CN113515038A (zh) * 2021-09-07 2021-10-19 西南交通大学 一种车辆换道方法、装置、设备及可读存储介质
CN113515038B (zh) * 2021-09-07 2021-11-26 西南交通大学 一种车辆换道方法、装置、设备及可读存储介质

Also Published As

Publication number Publication date
US11919518B2 (en) 2024-03-05
EP3798746B1 (en) 2023-08-30
CN110018632B (zh) 2020-10-09
US20210269038A1 (en) 2021-09-02
CN110018632A (zh) 2019-07-16
EP3798746A1 (en) 2021-03-31
EP3798746A4 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
WO2019242718A1 (zh) 一种车辆变道控制方法和装置
CN111731289B (zh) 跟车控制方法、装置、车辆及存储介质
WO2020187257A1 (zh) 车辆异常换道控制方法、装置及系统
JP6668375B2 (ja) 比例、積分及び微分(pid)コントローラを用いた自律走行車のステアリング制御方法及びシステム
CN110789528B (zh) 一种车辆行驶轨迹预测方法、装置、设备及存储介质
US20180164810A1 (en) Speed control parameter estimation method for autonomous driving vehicles
CN107031655B (zh) 确定复杂路段的方差因子
WO2015084406A1 (en) Pre-alert of lcc&#39;s steering torque limit exceed
CN106054893A (zh) 智能车的控制系统和方法
US11024178B2 (en) System and method for autonomously steering a vehicle
CN110398963A (zh) 无轨导航纠偏控制方法、装置、存储介质及控制器
Tian et al. Switched model predictive controller for path tracking of autonomous vehicle considering rollover stability
CN110688920A (zh) 一种无人驾驶控制方法、装置及服务器
CN112415999B (zh) 自动驾驶路径点的处理方法、装置、设备及存储介质
CN113552888B (zh) 应用于无人车的行驶轨迹控制方法、装置、设备及介质
CN114852085A (zh) 基于路权侵入度的车辆自动驾驶轨迹规划方法
CN113848899A (zh) 车辆横向控制方法、装置、设备及存储介质
Li et al. Fuzzy control for platooning systems based on v2v communication
Wei et al. Driver-centred autonomous vehicle motion control within a blended corridor
CN115257730A (zh) 车辆控制方法、装置、设备及介质
Korus et al. Robust design of a complex, perturbed lateral control system for automated driving
JP6599817B2 (ja) 演算装置、演算方法およびプログラム
CN112327620B (zh) 兼顾绕障的移动机器人鲁棒控制方法及系统
CN115123219B (zh) 一种基于模糊pid的车道保持控制方法及装置
WO2021035682A1 (zh) 可移动平台及其行驶控制方法和系统、控制设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019822877

Country of ref document: EP

Effective date: 20201224