WO2021035682A1 - 可移动平台及其行驶控制方法和系统、控制设备 - Google Patents

可移动平台及其行驶控制方法和系统、控制设备 Download PDF

Info

Publication number
WO2021035682A1
WO2021035682A1 PCT/CN2019/103672 CN2019103672W WO2021035682A1 WO 2021035682 A1 WO2021035682 A1 WO 2021035682A1 CN 2019103672 W CN2019103672 W CN 2019103672W WO 2021035682 A1 WO2021035682 A1 WO 2021035682A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
movable platform
control system
driving
error
Prior art date
Application number
PCT/CN2019/103672
Other languages
English (en)
French (fr)
Inventor
应佳行
商志猛
周长兴
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/103672 priority Critical patent/WO2021035682A1/zh
Priority to CN201980031520.XA priority patent/CN112384872B/zh
Publication of WO2021035682A1 publication Critical patent/WO2021035682A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions

Definitions

  • This specification relates to the field of automatic control technology, and in particular to a movable platform and its driving control method and system, and control equipment.
  • this specification provides a movable platform and its driving control method and system, and control equipment.
  • a driving control method of a movable platform including:
  • the control information is generated according to the first control amount and the second control amount, and the control information is output to the actuator.
  • the step of generating control information according to the first control amount and the second control amount includes:
  • the control information is generated according to the weighted average value.
  • the method further includes:
  • control information is generated according to the first control quantity.
  • a driving control method of a movable platform including:
  • the travel path of the movable platform is planned, and the planned path is sent to the first control system, so that the first control system can make the first control system according to the current travel path of the movable platform and the planned path.
  • the second control quantity is sent to the first control system, so that the first control system generates control information according to the first control quantity and the second control quantity, and outputs the control information to the mobile platform Executive agency.
  • a control device including a memory, a processor, and a computer program stored in the memory and capable of running on the processor, and the processor implements the following method when the program is executed:
  • the control information is generated according to the first control amount and the second control amount, and the control information is output to the actuator.
  • the step of the processor generating control information according to the first control variable and the second control variable includes:
  • the control information is generated according to the weighted average value.
  • the processor further implements the following method when executing the program:
  • control information is generated according to the first control quantity.
  • a control device including a processor and a memory, the memory stores a computer executable program, and when the program is executed by the processor, the following method is implemented:
  • the second control quantity is sent to the first control system, so that the first control system generates control information according to the first control quantity and the second control quantity, and outputs the control information to the mobile platform Executive agency.
  • a movable platform on which a control device is installed, and the control device is used for:
  • the control information is generated according to the first control amount and the second control amount, and the control information is output to the actuator.
  • the step of the control device generating control information according to the first control amount and the second control amount includes:
  • the control information is generated according to the weighted average value.
  • control device is further used for:
  • control information is generated according to the first control quantity.
  • the movable platform further includes:
  • the actuator is used to receive the control information and control the driving parameters of the movable platform according to the control information.
  • control information includes at least one of the following: rudder angle, steering angle, throttle control, and brake control;
  • the actuator includes at least one of the following: rudder blade, steering gear, throttle and brake.
  • a second control system is also installed on the movable platform, and the second control system is used for:
  • the travel path of the movable platform is planned, and the planned path is sent to the first control system, so that the first control system can make the first control system according to the current travel path of the movable platform and the planned path.
  • the second control quantity is sent to the first control system, so that the first control system generates control information according to the first control quantity and the second control quantity, and outputs the control information to the mobile platform Executive agency.
  • a travel control system for a movable platform which is characterized in that it includes:
  • the first control system and
  • At least one second control system communicatively connected with the first control system
  • the second control system is used to plan the travel path of the movable platform during the travel of the movable platform, obtain the travel error between the current travel path of the movable platform and the planned path, and calculate according to the travel error
  • the second control quantity, and the planned path and the second control quantity are sent to the first control system
  • the first control system is used to calculate a first control quantity according to the travel error between the current travel path of the movable platform and the planned route, generate control information according to the first control quantity and the second control quantity, and combine the control The information is output to the actuator of the movable platform.
  • the first control system includes:
  • the first error calculation unit the first control unit, the instruction fusion unit and the instruction output unit;
  • the first error calculation unit, the first control unit, the instruction fusion unit and the instruction output unit are connected in sequence, and the instruction output unit is communicatively connected with the actuator of the movable platform;
  • the first error calculation unit obtains the travel error between the current travel path and the planned path of the movable platform, and sends the travel error to the first control unit;
  • the first control unit calculates a first control quantity according to the driving error, and sends the first control quantity to an instruction fusion unit;
  • the instruction fusion unit receives a second control quantity sent by at least one second control system, generates control information according to the first control quantity and the second control quantity, and sends the control information to the instruction output unit;
  • the instruction output unit outputs the control information to the execution mechanism of the movable platform.
  • the second control system includes:
  • a path planning unit a second error solving unit and a second control unit
  • the path planning unit, the second error calculation unit, and the second control unit are connected in sequence, the path planning unit is also connected to the first error calculation unit of the first control system, and the second control unit is also connected to the first error calculation unit of the first control system.
  • a command fusion unit of the control system is connected;
  • the path planning unit plans the travel path of the movable platform during the travel of the movable platform, and sends the planned path to the second error calculation unit and the first error calculation unit of the first control system;
  • the second error calculation unit obtains the driving error between the current driving path and the planned path of the movable platform, and sends the driving error to the second control unit;
  • the second control unit calculates a second control quantity based on the driving error, and sends the second control quantity to the instruction fusion unit of the first control system.
  • the step of the instruction fusion unit generating control information according to the first control variable and the second control variable includes:
  • the control information is generated according to the weighted average value.
  • the step of the instruction fusion unit generating control information according to the first control variable and the second control variable further includes:
  • control information is generated according to the first control quantity.
  • the reliability of the first control system is higher than that of the second control system, and the accuracy of the second control system is higher than that of the first control system.
  • the first on-board control system is an ECU; and/or
  • the second control system is a PC or an industrial computer.
  • the first control unit is a PID controller; and/or the second control unit is an MPC controller.
  • the first control quantity is calculated first, and then the first control quantity is merged with the second control quantity of the second control system, and the first control is realized through the second control quantity of the second control system The amount of redundant backup, while improving the accuracy and reliability of the driving control of the movable platform.
  • Fig. 1 is a flow chart of a driving control method of a movable platform according to an embodiment of this specification.
  • Fig. 2 is a program flow diagram of fusion output of the first control quantity and the second control quantity according to an embodiment of the present specification.
  • Fig. 3 is a flowchart of a driving control method of a movable platform according to another embodiment of the present specification.
  • Fig. 4 is a schematic structural diagram of a control device according to an embodiment of this specification.
  • Fig. 5 is an interactive sequence diagram of the first control system and the second control system according to an embodiment of this specification.
  • Fig. 6 is a schematic diagram of a travel control system of a movable platform according to an embodiment of the present specification.
  • Fig. 7 is a schematic diagram of a driving control system of a movable platform in an actual application scenario of this specification.
  • Figure 8 is a flow chart of instruction fusion output in an actual application scenario of this specification.
  • Fig. 9 is a schematic diagram of the driving trajectory of the movable platform in an actual application scenario of this specification.
  • Fig. 10 is a schematic diagram of the driving control process of the movable platform in an actual application scenario of this specification.
  • first, second, third, etc. may be used in this specification to describe various information, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • word “if” as used herein can be interpreted as "when” or “when” or "in response to determination”.
  • FIG. 1 it is a flow chart of a driving control method of a movable platform according to an embodiment of this specification.
  • the method may include:
  • Step S101 During the driving of the movable platform, obtain the driving error between the current driving path and the planned path of the movable platform;
  • Step S102 Calculate a first control variable according to the driving error, and receive a second control variable sent by at least one second control system; wherein the first control variable and the second control variable are used to control the movable platform Executive agency;
  • Step S103 Generate control information according to the first control quantity and the second control quantity, and output the control information to the execution mechanism.
  • the movable platform may be a vehicle, a drone, a movable robot, or the like.
  • the second control system can plan and predict the traveling path of the movable platform, obtain the target path point sequence of the movable platform, and use the target path point sequence as the planned path of the movable platform.
  • the first control amount can be calculated according to the lateral error and the longitudinal error to control the actuator of the movable platform.
  • the actuator refers to the mechanical structure that can complete the specified execution actions according to the control instructions given by the control system to achieve the control goal.
  • the actuator can include but is not limited to at least one of the accelerator, brake and steering gear on the vehicle; taking the movable platform as an example of a ship, the actuator can include but is not limited to Rudder blade.
  • the first control amount may include, but is not limited to, at least one of the control amount of the accelerator, the control amount of the brake, the steering angle of the steering gear, and the rudder angle. At least one first control quantity can be calculated to control at least one actuator on the movable platform.
  • the second control system can also calculate the second control amount based on the lateral error and the longitudinal error.
  • the second control quantity may be the same control quantity as the first control quantity.
  • both the first control quantity and the second control quantity may include the control quantity of the accelerator, the control quantity of the brake, and the rotation angle of the steering gear. Because the second control system may not be able to calculate all the second control variables in time, or there are some actuators on the movable platform that do not need to be controlled by the first control variables and the second control variables, or for other reasons, the second control variables It may also be the same control quantity as the first control quantity.
  • the first control quantity includes the control quantity of the accelerator, the control quantity of the brake and the rudder angle
  • the second control quantity includes the control quantity of the brake and the steering gear. Corner.
  • the second control quantity can be obtained, and the first control quantity and the second control quantity can be combined to control the driving process of the movable platform.
  • the first control quantity and the second control quantity can be merged to generate control information in a certain instruction format.
  • the command format of the control information can be generated according to the adopted communication protocol.
  • the second control variables can be received from multiple second control systems. For example, there can be three second control systems, and the three second control systems can generate the second control variables C1, C2, and C3, respectively.
  • the final control value can be generated according to C1, C2, C3 and the first control value.
  • the generated control information can be output to the actuator, so that the actuator executes the corresponding action, so as to realize the control of the driving parameters of the movable platform.
  • the control information includes the control information for the throttle
  • the control information for the throttle can be output to the throttle so that the throttle can be refueled, thereby increasing the traveling speed of the movable platform.
  • the above-mentioned embodiment first calculates the first control quantity, and then merges the first control quantity with the second control quantity of the second control system, and realizes the redundancy of the first control quantity through the second control quantity of the second control system Backup, while improving the accuracy and reliability of the driving control of the movable platform.
  • the second control system may adopt a highly accurate control system, for example, a PC (Personal Computer, personal computer) system or an industrial computer system.
  • the first control quantity can be obtained by using a first control system with high reliability.
  • the first control system can be, for example, a control system that comes with a movable platform.
  • the first control system can be an ECU. (Electronic Control Unit) system.
  • the first control system may use an algorithm with higher reliability and lower system computing power requirements to calculate the first control value, and the second control system may use a higher accuracy algorithm to calculate the second control value.
  • the first control system and the second control system can operate independently of each other and calculate their respective control variables. If multiple second control systems are used, the type of each second control system and the algorithm used on each second control system may all be the same, or may be partially the same or completely different.
  • the step of generating control information according to the first control variable and the second control variable includes: detecting the validity of the second control variable; if the second control variable is valid, calculating the first control variable A weighted average value of the control quantity and the second control quantity; generating control information according to the weighted average value.
  • a weighted average method is used to fuse the two control variables to generate control information.
  • the validity of the second control amount can be detected.
  • the validity of each second control variable can be tested separately, and when the weighted average of the first control variable and the second control variable is subsequently calculated, only the effective each The second control amount and the first control amount are weighted averaged.
  • the validity detection may include detecting whether the value of the second control quantity is valid, and if the value of the second control quantity is within a preset numerical range, then it is determined that the second control quantity is valid; otherwise, it is determined that the second control quantity is invalid.
  • the numerical range can be preset according to the physical characteristics of the movable platform actuator, for example, the turning angle of the vehicle steering wheel is between -360° and +360°.
  • the validity detection may also include detecting whether the second control amount matches the first control amount.
  • the first control quantity is the control quantity of the accelerator
  • the second control quantity is the control quantity of the brake
  • the first control quantity controls the steering angle of the steering gear as a positive steering angle
  • the second control quantity controls the steering angle of the steering gear It is a negative turning angle, that is, the second control quantity contradicts the first control quantity and does not match. In this case, it can be determined that the second control quantity is invalid.
  • Validity testing can also include other testing items, which will not be listed here.
  • the first control quantity and the second control quantity can be weighted average to obtain the weighted average of the first control quantity and the second control quantity.
  • the weight used in the weighted average can be set in advance, for example, the weights of the first control quantity and the second control quantity are set to the same value (such as 0.5); or a larger weight is set for the first control quantity to be the second control quantity Set a smaller weight; or set a smaller weight for the first control quantity and a larger weight for the second control quantity.
  • a certain calculation method may be used to first calculate the weight, and then perform a weighted average based on the calculated weight.
  • the weight used by the weighted average can be dynamically set according to the difference between the first control quantity and the second control quantity. For example, since the first control quantity is acquired by the first control system with higher reliability, when the difference between the first control quantity and the second control quantity is within the preset range, it indicates that the second control quantity is reliable at this time. Because the second control quantity is acquired by the second control system with higher accuracy, the accuracy of the second control quantity is generally higher than that of the first control quantity. At this time, the second control quantity can be used first. Control the actuator.
  • the weight of the second control amount can be set to a value greater than the first control amount.
  • the first control quantity is preferentially used to control the actuator. Therefore, in this case, the weight of the second control amount can be set to a value smaller than the first control amount.
  • control information is generated according to the first control quantity. If the second control quantity is invalid, only control information is generated according to the first control quantity to control the actuator of the movable platform, so as to avoid the decrease of control reliability caused by the invalid second control quantity.
  • the second control system continuously calculates the second control variable during the traveling of the movable platform. If the value of the second control variable at the current moment is not calculated, the second control variable will be transmitted The value at the previous moment. The value of the second control variable can be refreshed every preset time interval, and if it is detected that the value of the second control variable is updated, its validity is re-tested. If the second control quantity is not updated, the actuator of the movable platform is controlled only according to the first control quantity, so as to avoid the reduction of control reliability caused by the unresolved second control quantity at the current moment.
  • step S201 first detect whether the second control variable is updated. If it is not updated, then perform step S203 to generate control information only based on the first control variable; if updated, perform step S202 to detect whether the second control variable is in the effective range Inside. If the second control variable is within the effective range, step S204 is executed to generate control information based on the weighted average of the first control variable and the second control variable; if the second control variable is not within the effective range, step S203 is executed, and only according to The first control amount generates control information.
  • FIG. 3 it is a flow chart of a driving control method for a movable platform according to another embodiment of this specification.
  • the method may include:
  • Step S301 During the traveling of the movable platform, plan the traveling path of the movable platform, and send the planned path to the first control system, so that the first control system can make the first control system according to the current traveling path and the planned path of the movable platform Calculate the first control variable between the driving error;
  • Step S302 Obtain the driving error between the current driving path and the planned path of the movable platform, and calculate the second control variable according to the driving error;
  • Step S303 Send the second control quantity to the first control system, so that the first control system generates control information according to the first control quantity and the second control quantity, and outputs the control information to the The actuator of the mobile platform.
  • the driving path of the movable platform can be planned and predicted, and the target path point sequence of the movable platform is obtained.
  • the target path point sequence is used as the planned path of the movable platform and sent to the first control system .
  • the first control system can obtain the target path point sequence of the movable platform, and obtain the current actual driving path point sequence of the movable platform, and then calculate the driving error between the current driving path and the planned path of the movable platform according to these two sequences , Including the lateral error and longitudinal error of the current driving of the movable platform.
  • the first control system can calculate the first control amount based on the lateral error and the longitudinal error to control the actuator of the movable platform.
  • the actuator can include but is not limited to at least one of the accelerator, brake and steering gear on the vehicle; taking the movable platform as an example of a ship, the actuator can include but is not limited to Rudder blade.
  • the first control amount may include, but is not limited to, at least one of the control amount of the accelerator, the control amount of the brake, the steering angle of the steering gear, and the rudder angle.
  • the first control system can calculate at least one first control quantity so as to control at least one actuator on the movable platform.
  • the second control amount can also be calculated based on the lateral error and the longitudinal error.
  • the second control quantity may be the same control quantity as the first control quantity.
  • both the first control quantity and the second control quantity may include the control quantity of the accelerator, the control quantity of the brake, and the rotation angle of the steering gear. Since it may not be possible to calculate all the second control variables in time, or there are some actuators on a movable platform that do not need to be jointly controlled by the first control variables and the second control variables, or for other reasons, the second control variables can also be The first control quantity is part of the same control quantity.
  • the first control quantity includes the control quantity of the accelerator, the control quantity of the brake, and the steering angle of the steering gear
  • the second control quantity includes the control quantity of the brake and the steering angle of the steering gear.
  • the first control system can obtain the second control quantity, and integrate the first control quantity and the second control quantity to control the driving process of the movable platform.
  • the first control system can merge the two control quantities to generate control information in a certain instruction format.
  • the command format of the control information can be generated according to the adopted communication protocol.
  • the generated control information can be output to the actuator, so that the actuator executes the corresponding action, so as to realize the control of the driving parameters of the movable platform.
  • the control information includes the control information for the throttle
  • the control information for the throttle can be output to the throttle so that the throttle can be refueled, thereby increasing the traveling speed of the movable platform.
  • the above embodiment first calculates the second control quantity, and then sends the second control quantity to the first control system, so that the first control system can merge the second control quantity and the first control quantity generated by the system to jointly control the movable
  • the driving process of the platform is controlled, and the second control quantity is used to realize the redundant backup of the first control quantity, and at the same time, the accuracy and reliability of the driving control of the movable platform are improved.
  • the embodiment of this specification also provides a control device, and the embodiment of the method of this specification can be implemented by the control device.
  • control device may include a memory, a processor, and a computer program stored in the memory and capable of running on the processor, and the processor implements the following method when the program is executed: In the process, obtaining the driving error between the current driving path and the planned path of the movable platform;
  • the control information is generated according to the first control amount and the second control amount, and the control information is output to the actuator.
  • the step of the processor generating control information according to the first control variable and the second control variable includes: detecting the validity of the second control variable; if the second control variable is valid, calculating The weighted average value of the first control amount and the second control amount; and control information is generated according to the weighted average value.
  • the processor further implements the following method when executing the program: if the second control variable is invalid, generating control information according to the first control variable.
  • the processor further implements the following method when executing the program: detecting whether the second control variable is updated, and if so, performing the step of detecting the validity of the second control variable.
  • the processor further implements the following method when executing the program: detecting whether the second control variable is updated, and if not, generating control information according to the first control variable.
  • the control device of the above embodiment first calculates the first control quantity, and then merges the first control quantity with the second control quantity of the second control system, and realizes the control of the first control quantity through the second control quantity of the second control system.
  • the redundancy backup of the mobile platform at the same time improves the accuracy and reliability of the driving control of the movable platform.
  • the embodiment of this specification also provides a control device, and the embodiment of the method of this specification can be implemented by the control device.
  • control device may include a memory, a processor, and a computer program stored in the memory and capable of running on the processor, and the processor implements the following method when the program is executed:
  • the travel path of the movable platform is planned, and the planned path is sent to the first control system, so that the first control system can make the first control system according to the current travel path of the movable platform and the planned path.
  • the second control quantity is sent to the first control system, so that the first control system generates control information according to the first control quantity and the second control quantity, and outputs the control information to the mobile platform Executive agency.
  • the control device of the above embodiment first calculates the second control quantity, and then sends the second control quantity to the first control system, so that the first control system can merge the second control quantity with the first control quantity generated by the system.
  • the driving process of the movable platform is controlled, the second control quantity is used to realize the redundant backup of the first control quantity, and the accuracy and reliability of the driving control of the movable platform are improved at the same time.
  • the control device in the embodiment of this specification may be, for example, a server or a terminal device.
  • the method embodiments can be implemented by software, or can be implemented by hardware or a combination of software and hardware. Taking software implementation as an example, as a logical device, it is formed by reading the corresponding computer program instructions in the non-volatile memory into the memory by the processor that processes the file where it is located. From a hardware perspective, as shown in FIG. 4, it is a hardware structure diagram of a control device that implements the method of this specification, except for the processor 401, memory 402, network interface 403, and non-volatile memory shown in FIG. In addition to 404, the control device used to implement the method of this specification in the embodiment usually may also include other hardware according to the actual function of the control device, which will not be repeated here.
  • the embodiment of this specification also provides a movable platform on which a control device is installed, and the control device is used for:
  • the movable platform obtain the driving error between the current driving path and the planned path of the movable platform; calculate the first control amount according to the driving error, and receive the second control sent by at least one second control system Volume; wherein the first control volume and the second control volume are used to control the actuator of the movable platform; the control information is generated according to the first control volume and the second control volume, and the control information is output To the implementing agency.
  • the movable platform may be a vehicle, an unmanned aerial vehicle, or a movable robot.
  • the method of this embodiment can be implemented by a first control system on a movable platform.
  • the first control system can be a control system on a movable platform.
  • the first control system can be a vehicle-mounted control system. system.
  • the second control system may be a control system external to the movable platform, or it may be integrated on the movable platform.
  • the second control system can plan and predict the traveling path of the movable platform on the movable platform, obtain the target path point sequence of the movable platform, and use the target path point sequence as the movable platform
  • the planned path is sent to the first control system.
  • the first control system can obtain the current actual driving path point sequence of the movable platform, and then calculate the driving error between the current driving path and the planned path of the movable platform according to these two sequences, including the current lateral error and the current driving path of the movable platform Longitudinal error, where the horizontal is the direction perpendicular to the direction of travel of the movable platform, and the longitudinal direction is the direction parallel to the direction of travel of the movable platform.
  • the planned path can also be obtained by the first control system on the movable platform or other systems with path planning functions on the movable platform.
  • the first control system can calculate the first control amount based on the lateral error and the longitudinal error to control the actuator of the movable platform.
  • the actuator refers to the mechanical structure that can complete the specified execution actions according to the control instructions given by the control system to achieve the control goal.
  • the actuator can include but is not limited to at least one of the accelerator, brake and steering gear on the vehicle; taking the movable platform as an example of a ship, the actuator can include but is not limited to Rudder blade.
  • the first control amount may include, but is not limited to, at least one of the control amount of the accelerator, the control amount of the brake, the steering angle of the steering gear, and the rudder angle.
  • the first control system can calculate at least one first control quantity so as to control at least one actuator on the movable platform.
  • the second control system may also calculate the second control quantity based on the lateral error and the longitudinal error, and send the second control quantity to the first control system.
  • the second control quantity may be the same control quantity as the first control quantity.
  • both the first control quantity and the second control quantity may include the control quantity of the accelerator, the control quantity of the brake, and the rotation angle of the steering gear. Because the second control system may not be able to calculate all the second control variables in time, or there are some actuators on the movable platform that do not need to be controlled by the first control variables and the second control variables, or for other reasons, the second control variables It may also be the same control amount as the first control amount.
  • the first control amount includes the control amount of the accelerator, the control amount of the brake and the rudder angle
  • the second control amount includes the control amount of the brake and the steering gear. Corner.
  • the first control system can obtain the second control quantity, and integrate the first control quantity and the second control quantity to control the driving process of the movable platform.
  • the first control system can merge the two control quantities to generate control information in a certain instruction format.
  • the command format of the control information can be generated according to the communication protocol adopted by the first control system.
  • the first control system may receive the second control quantity from multiple second control systems. For example, there may be three second control systems, and the three second control systems may send their respective control values to the first control system.
  • the first control system receives C1, C2, and C3, respectively, and generates control information according to the first control variables and C1, C2, and C3.
  • the generated control information can be output to the actuator, so that the actuator executes the corresponding action, so as to realize the control of the driving parameters of the movable platform.
  • the control information includes the control information for the throttle
  • the control information for the throttle can be output to the throttle so that the throttle can be refueled, thereby increasing the traveling speed of the movable platform.
  • the first control system may be a control system with higher reliability
  • the second control system may be a control system with higher accuracy
  • the first control system may be an ECU (Electronic Control Unit, electronic control unit) system
  • the second control system may be a vehicle-mounted PC (Personal Computer, personal computer) system or an industrial computer system.
  • the first control system and the second control system can also be the same system using different algorithms.
  • the first control system can use algorithms with higher reliability and lower requirements for system computing power to calculate the first control quantity.
  • the control system can use a highly accurate algorithm to calculate the second control quantity.
  • the reliability of the second control system may be lower than that of the first control system.
  • the first control system For example, when the movable platform jolts during driving, the parts are loosened, the temperature of the components is too high or too low due to the harsh environment, the external power supply is abnormal, the software and hardware failure of the second control system itself, the system is stuck or disconnected, etc.
  • the reasons may lead to the failure of the second control system.
  • the structure of the first control system is often relatively simple, the performance is relatively stable, and the failure probability is often lower than that of the second control system. Therefore, the embodiment of this specification adopts the first control system with higher reliability and the higher accuracy control system.
  • the second control system performs redundant backup for each other.
  • the actuator is controlled, so it can not only meet the high-precision control of the movable platform, but also meet the requirements for safety and redundancy.
  • the first control amount and the second control amount may also be partly the same or completely different.
  • the first control quantity includes the control quantity of the accelerator and the control quantity of the brake
  • the second control quantity includes the control quantity of the accelerator and the steering angle of the steering gear.
  • the first control quantity includes the control quantity of the accelerator and the control quantity of the brake
  • the second control quantity is the steering angle of the steering gear.
  • the second control system with higher accuracy can be used.
  • the first control with higher reliability can be used. System to get it.
  • the step of the control device generating control information according to the first control quantity and the second control quantity includes: detecting the validity of the second control quantity; if the second control quantity is valid, calculating The weighted average value of the first control amount and the second control amount; and control information is generated according to the weighted average value.
  • control device is further configured to: if the second control quantity is invalid, generate control information according to the first control quantity. In an embodiment, the control device is further configured to detect whether the second control variable is updated, and if so, perform the step of detecting the validity of the second control variable. In an embodiment, the control device is further configured to detect whether the second control variable is updated, and if not, generate control information according to the first control variable.
  • the movable platform further includes: an executive mechanism for receiving the control information, and controlling the driving parameters of the movable platform according to the control information.
  • a second control system is also installed on the movable platform, and the second control system is used to plan the travel path of the movable platform during the travel of the movable platform, and Send the planned path to the first control system, so that the first control system calculates the first control amount according to the travel error between the current travel path of the movable platform and the planned path; obtains the difference between the current travel path of the movable platform and the planned path Driving error, calculating a second control quantity based on the driving error; sending the second control quantity to the first control system so that the first control system generates control information according to the first control quantity and the second control quantity, And output the control information to the actuator of the movable platform.
  • step S501 the second control system first obtains the planned route; in step S502, the second control system sends the planned route to the first control system; in step S503, the first control system according to the planned route
  • step S504 the second control system calculates the travel error based on the planned path and the actual travel path; in step S505, the first control system calculates the first control variable based on the travel error; in step S506 , The second control system calculates the second control quantity according to the travel error; in step S507, the second control system sends the second control quantity to the first control system; in step S508, the first control system calculates the second control quantity according to the first control quantity and The second control quantity generates control information and outputs it to the actuator of the movable platform.
  • the second control system may adopt a control system with higher accuracy, for example, a PC system or an industrial computer system.
  • the first control quantity can be obtained by using a first control system with high reliability.
  • the first control system can be, for example, a control system that comes with a movable platform. When the movable platform is a vehicle, the first control system can be an ECU. system.
  • the first control system may use an algorithm with higher reliability and lower system computing power requirements to calculate the first control value, and the second control system may use a higher accuracy algorithm to calculate the second control value.
  • the first control system and the second control system can operate independently of each other and calculate their respective control variables. If multiple second control systems are used, the type of each second control system and the algorithm used on each second control system may all be the same, or may be partially the same or completely different.
  • the high-performance control system controls the movable platform, so it can not only meet the high-performance control system for high-precision control, but also meet the safety and redundancy requirements through the high-reliability control system.
  • the embodiment of the present specification also provides a driving control system of a movable platform, and the driving control system may include:
  • the first control system 601 The first control system 601; and
  • At least one second control system 602 communicatively connected with the first control system
  • the second control system 602 is used to plan the driving path of the movable platform during the driving process of the movable platform, and obtain the driving error between the current driving path and the planned path of the movable platform, and according to the driving error Calculate the second control quantity, and send the planned path and the second control quantity to the first control system 601;
  • the first control system 601 is used to calculate a first control quantity according to the travel error between the current travel path of the movable platform and the planned route, generate control information according to the first control quantity and the second control quantity, and combine the The control information is output to the actuator of the movable platform.
  • the first control system 601 includes:
  • the first error calculation unit 601a, the first control unit 601b, the instruction fusion unit 601c, and the instruction output unit 601d are connected in sequence, and the instruction output unit is communicatively connected with the actuator of the movable platform;
  • the first error calculation unit 601a obtains the travel error between the current travel path of the movable platform and the planned path, and sends the travel error to the first control unit 601b;
  • the first control unit 601b calculates a first control quantity according to the driving error, and sends the first control quantity to the instruction fusion unit 601c;
  • the instruction fusion unit 601c receives the second control quantity sent by at least one second control system, generates control information according to the first control quantity and the second control quantity, and sends the control information to the instruction output unit 601d;
  • the instruction output unit 601d outputs the control information to the execution mechanism of the movable platform.
  • the second control system 602 includes:
  • the path planning unit 602a, the second error calculation unit 602b, and the second control unit 602c are connected in sequence, and the path planning unit 602a is also connected to the first error calculation unit 601a of the first control system 601.
  • the second control unit 602c is also connected to the instruction fusion unit 601c of the first control system 601;
  • the path planning unit 602a plans the travel path of the movable platform during the travel of the movable platform, and sends the planned path to the second error calculation unit 602b and the first error solution of the first control system 601 Calculating unit 601a;
  • the second error calculation unit 602b obtains the travel error between the current travel path of the movable platform and the planned path, and sends the travel error to the second control unit 602c;
  • the second control unit 602c calculates a second control amount according to the driving error, and sends the second control amount to the instruction fusion unit 601c of the first control system 601.
  • the step of the instruction fusion unit 601c generating control information according to the first control variable and the second control variable includes: detecting the validity of the second control variable; if the second control variable is valid Calculate the weighted average value of the first control quantity and the second control quantity; generate control information according to the weighted average value.
  • the step of the instruction fusion unit 601c generating control information according to the first control quantity and the second control quantity further includes: if the second control quantity is invalid, generating control information according to the first control quantity information. In one embodiment, the step of the instruction fusion unit 601c generating control information according to the first control quantity and the second control quantity further includes: detecting whether the second control quantity is updated, and if so, executing the detection of the second control quantity. Steps to control the effectiveness of the quantity. In one embodiment, the step of the instruction fusion unit 601c generating control information according to the first control quantity and the second control quantity further includes: detecting whether the second control quantity is updated, if not, according to the first control quantity The control amount generates control information.
  • the reliability of the first control system is higher than that of the second control system, and the accuracy of the second control system is higher than that of the first control system.
  • This embodiment adopts a control system with higher reliability as the first control system, adopts a control system with higher accuracy as the second control system, and realizes mutual redundancy backup through at least two sets of different systems that operate independently.
  • the second control system with higher accuracy cannot calculate instructions or is disconnected or stuck due to various reasons, it can rely on the first control system with higher reliability to control the movable platform, so it can satisfy
  • the high-performance control system performs high-precision control, and can also meet the safety and redundancy requirements through a highly reliable control system.
  • the first vehicle-mounted control system is an ECU.
  • the second control system is a PC or an industrial computer.
  • the first control unit is a PID (Proportion Integral Differential, proportional-integral-derivative) controller.
  • the second control unit is an MPC (Model predictive control, model predictive control) controller.
  • the movable platform is a vehicle
  • the second control system can be a processor or processing chip with strong processing capability, such as a vehicle-mounted PC
  • the first control system is a processor ECU with strong real-time performance
  • the second control system The unit is a high-precision controller, such as MPC (Model Predictive Control) controller
  • the first control unit is a high-reliability controller, such as PID (Proportion-Integral-Differential, proportional-integral- Differential) controller
  • the executable mechanism is the accelerator and brake on the vehicle chassis.
  • the PID controller cannot realize precise control when the lateral overload of the movable platform is large.
  • MPC controllers can only be designed and run on intelligent control systems with sufficiently powerful computing performance.
  • the optimization problem needs to be solved online, it is very likely that the optimal solution cannot be obtained or the result diverges.
  • the PID controller and the MPC controller are redundantly backed up.
  • the accuracy of the control is ensured by the MPC controller with higher accuracy; on the other hand, when the MPC controller fails
  • the PID controller ensures the reliability of the control. Therefore, the embodiments of the present specification can simultaneously take into account the reliability and accuracy.
  • FIG. 8 it is a flowchart of the command fusion module in the driving control system shown in FIG. 7.
  • the driving control system of the movable platform includes ECU 702 and PC 701.
  • the Planning module 702a in the PC plans the driving path of the movable platform during the driving of the movable platform and sends the planned path To the Trajectory module 702b in the PC and the Trajectory module 701a in the ECU 701;
  • the Trajectory module 702b in the PC 702 obtains the driving error between the current driving path and the planned path of the movable platform, and sends the driving error to the MPC controller 702c;
  • the Trajectory module 701a in the ECU 701 obtains the travel error between the current travel path of the movable platform and the planned path, and sends the travel error to the PID controller 701b;
  • the MPC controller 702c calculates the second travel error according to the travel error Control quantity, and send the second control quantity to the command fusion unit 701c of ECU 701;
  • PID controller 701b calculates the first control quantity according to the driving error,
  • the instruction fusion unit 701c first detects whether the PC instruction (PC instruction carries the second control quantity) is updated, and if it is not updated, it directly uses the instruction calculated by the ECU (the instruction calculated by the ECU carries the first control quantity). Control the throttle and brake; if updated, check whether the PC command is within the effective range. If it is not in the effective range, the commands calculated by the ECU are directly used to control the throttle and brake; if it is in the effective range, the PC and MCU commands are weighted and averaged to obtain the final control value.
  • FIG. 9 it is a schematic diagram of the driving trajectory of the movable platform in an actual application scenario of this specification.
  • the driving control system on the movable platform can plan the driving trajectory of the movable platform, and obtain the target path point sequence of the movable platform. Each point on the target path point sequence is shown as each point on the solid line in the figure.
  • the solid lines connected by the points in the figure constitute the planned path of the movable platform.
  • the actual driving trajectory may deviate from the planned path. This deviation is the driving error.
  • the actual driving path is shown by the dotted line in the figure.
  • the driving control system continuously controls the actuator of the movable platform during the driving of the movable platform, so that the actual driving trajectory of the movable platform is corrected to the planned path.
  • Perception modules for example, lidar or binocular vision image positioning system, etc.
  • Perception modules can perceive the environmental information during the driving of the movable platform, for example, the lane information in the driving area, the information of other movable platforms in the driving area, etc., and The perceived environment information is sent to the Planning module.
  • the sensor module for example, VINS/RTK/GPS
  • the Planning module plans the driving path of the movable platform according to the environmental information and driving status information.
  • the Planning module plans a curved driving path.
  • the planned target driving path is sent to the Trajectory module, and the Trajectory module calculates the driving error between the current driving path of the movable platform and the target driving path.
  • the Trajectory module then outputs the driving error to the MPC controller and PID controller respectively;
  • the sensor module on the movable platform for example, VINS/RTK/GPS
  • the weights of the MPC controller and PID controller can be dynamically calculated.
  • the control variables output by the MPC controller and PID controller are weighted and averaged, and then the final control variables are output to the MU.
  • Module executor to control the driving process of the movable platform.
  • the control quantity calculated by the MPC controller is T MPC
  • the control quantity calculated by the PID controller is T PID
  • the weights of the MPC controller and the PID controller at the current moment are k 1 and k 2 respectively
  • the final output at the current moment The control quantity T OUT is:
  • T OUT k 1 *T MPC +k 2 *T PID ;
  • e 1 is the current travel error
  • e max is the maximum travel error
  • the Planning module can refresh the planned route at a lower refresh frequency (for example, every 5 seconds) during the driving of the movable platform, and the MPC controller and the PID controller can be compared with each other.
  • a high refresh frequency (for example, refresh once a second) refreshes the control amount of the movable platform.
  • the embodiments of this specification may adopt the form of a computer program product implemented on one or more storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing program codes.
  • Computer usable storage media include permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be computer-readable instructions, data structures, program modules, or other data.
  • Examples of computer storage media include, but are not limited to: phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage, Magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other memory technology
  • CD-ROM compact disc
  • DVD digital versatile disc
  • Magnetic cassettes magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices.

Abstract

一种可移动平台及其行驶控制方法和系统、控制设备,先计算出第一控制量,再将第一控制量与第二控制系统的第二控制量相融合,通过第二控制系统的第二控制量来实现对第一控制量的冗余备份,同时提高了对可移动平台的行驶控制的精确度和可靠性。

Description

可移动平台及其行驶控制方法和系统、控制设备 技术领域
本说明书涉及自动控制技术领域,尤其涉及可移动平台及其行驶控制方法和系统、控制设备。
背景技术
在对可移动平台进行行驶控制时,一般难以兼顾可靠性和精确度,如果采用可靠性较高的控制器,则由于算力不足,通常无法获得较高的控制精确度;而如果采用精确度较高的控制器,则无法保证控制的可靠性。
发明内容
基于此,本说明书提供了可移动平台及其行驶控制方法和系统、控制设备。
根据本说明书实施例的第一方面,提供一种可移动平台的行驶控制方法,所述方法包括:
在可移动平台行驶过程中,获取所述可移动平台当前行驶路径与规划路径之间的行驶误差;
根据所述行驶误差计算第一控制量,并接收至少一个第二控制系统发送的第二控制量;其中,所述第一控制量和第二控制量用于控制所述可移动平台的执行机构;
根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述执行机构。
可选地,根据所述第一控制量和第二控制量生成控制信息的步骤包括:
检测所述第二控制量的有效性;
若所述第二控制量有效,计算所述第一控制量和第二控制量的加权平均值;
根据所述加权平均值生成控制信息。
可选地,所述方法还包括:
若所述第二控制量无效,根据所述第一控制量生成控制信息;和/或
检测所述第二控制量是否更新,若是,执行检测所述第二控制量的有效性的步骤;和/或
检测所述第二控制量是否更新,若否,根据所述第一控制量生成控制信息。
根据本说明书实施例的第二方面,提供一种可移动平台的行驶控制方法,所述方法包括:
在可移动平台行驶过程中,对所述可移动平台的行驶路径进行规划,并将规划路径发送至第一控制系统,以使第一控制系统根据可移动平台当前行驶路径与规划路径之间的行驶误差计算第一控制量;
获取可移动平台当前行驶路径与规划路径之间的行驶误差,根据所述行驶误差计算第二控制量;
将所述第二控制量发送至第一控制系统,以使第一控制系统根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述可移动平台的执行机构。
根据本说明书实施例的第三方面,提供一种控制设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现以下方法:
在可移动平台行驶过程中,获取所述可移动平台当前行驶路径与规划路径之间的行驶误差;
根据所述行驶误差计算第一控制量,并接收至少一个第二控制系统发送的第二控制量;其中,所述第一控制量和第二控制量用于控制所述可移动平台的执行机构;
根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述执行机构。
可选地,所述处理器根据所述第一控制量和第二控制量生成控制信息的步骤包括:
检测所述第二控制量的有效性;
若所述第二控制量有效,计算所述第一控制量和第二控制量的加权平均值;
根据所述加权平均值生成控制信息。
可选地,所述处理器执行所述程序时还实现以下方法:
若所述第二控制量无效,根据所述第一控制量生成控制信息;和/或
检测所述第二控制量是否更新,若是,执行检测所述第二控制量的有效性的步骤;和/或
检测所述第二控制量是否更新,若否,根据所述第一控制量生成控制信息。
根据本说明书实施例的第四方面,提供一种控制设备,包括处理器和存储器,所述存储器存储有计算机可执行程序,该程序被处理器执行时实现以下方法:
对所述可移动平台的行驶路径进行规划,并将规划路径发送至第一控制系统,以使第一控制系统根据可移动平台当前行驶路径与规划路径之间的行驶误差计算第一控制量;
获取可移动平台当前行驶路径与规划路径之间的行驶误差,根据所述行驶误差计算第二控制量;
将所述第二控制量发送至第一控制系统,以使第一控制系统根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述可移动平台的执行机构。
根据本说明书实施例的第五方面,提供一种可移动平台,所述可移动平台上安装有控制设备,所述控制设备用于:
在可移动平台行驶过程中,获取所述可移动平台当前行驶路径与规划路径之间的行驶误差;
根据所述行驶误差计算第一控制量,并接收至少一个第二控制系统发送的第二控制量;其中,所述第一控制量和第二控制量用于控制所述可移动平台的执行机构;
根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述执行机构。
可选地,所述控制设备根据所述第一控制量和第二控制量生成控制信息的步骤包括:
检测所述第二控制量的有效性;
若所述第二控制量有效,计算所述第一控制量和第二控制量的加权平均值;
根据所述加权平均值生成控制信息。
可选地,所述控制设备还用于:
若所述第二控制量无效,根据所述第一控制量生成控制信息;和/或
检测所述第二控制量是否更新,若是,执行检测所述第二控制量的有效性的步骤;和/或
检测所述第二控制量是否更新,若否,根据所述第一控制量生成控制信息。
可选地,所述可移动平台还包括:
执行机构,用于接收所述控制信息,并根据所述控制信息控制所述可移动平台的行驶参数。
可选地,所述控制信息包括以下至少一者:舵角、转向机的转角、油门的控制量和刹车的控制量;
所述执行机构包括以下至少一者:舵叶、转向机、油门和刹车。
可选地,所述可移动平台上还安装有第二控制系统,所述第二控制系统用于:
在可移动平台行驶过程中,对所述可移动平台的行驶路径进行规划,并将规划路径发送至第一控制系统,以使第一控制系统根据可移动平台当前行驶路径与规划路径之间的行驶误差计算第一控制量;
获取可移动平台当前行驶路径与规划路径之间的行驶误差,根据所述行驶误差计算第二控制量;
将所述第二控制量发送至第一控制系统,以使第一控制系统根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述可移动平台的执行机构。
根据本说明书实施例的第六方面,提供一种可移动平台的行驶控制系统,其特征在于,包括:
第一控制系统;以及
与所述第一控制系统通信连接的至少一个第二控制系统;
所述第二控制系统用于在可移动平台行驶过程中,对所述可移动平台的行驶路径进行规划,获取可移动平台当前行驶路径与规划路径之间的行驶误差,根据所述行驶误差计算第二控制量,并将规划路径和第二控制量发送至第一控制系统;
所述第一控制系统用于根据可移动平台当前行驶路径与规划路径之间的行驶误差计算第一控制量,根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述可移动平台的执行机构。
可选地,所述第一控制系统包括:
第一误差解算单元,第一控制单元,指令融合单元和指令输出单元;
所述第一误差解算单元,第一控制单元,指令融合单元和指令输出单元依次连接,所述指令输出单元与可移动平台的执行机构通信连接;
所述第一误差解算单元获取可移动平台当前行驶路径与规划路径之间的行驶误差,并将所述行驶误差发送至第一控制单元;
所述第一控制单元根据所述行驶误差计算第一控制量,并将所述第一控制量发送至指令融合单元;
所述指令融合单元接收至少一个第二控制系统发送的第二控制量,根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息发送至指令输出单元;
所述指令输出单元将所述控制信息输出至所述可移动平台的执行机构。
可选地,所述第二控制系统包括:
路径规划单元,第二误差解算单元和第二控制单元;
所述路径规划单元,第二误差解算单元和第二控制单元依次连接,所述路径规划单元还与第一控制系统的第一误差解算单元相连接,所述第二控制单元还与第一控制系统的指令融合单元相连接;
所述路径规划单元在可移动平台行驶过程中,对所述可移动平台的行驶路径进行规划,并将规划路径发送至第二误差解算单元和第一控制系统的第一误差解算单元;
所述第二误差解算单元获取可移动平台当前行驶路径与规划路径之间的行驶误差,并将所述行驶误差发送至第二控制单元;
所述第二控制单元根据所述行驶误差计算第二控制量,并将所述第二控制量发送至第一控制系统的指令融合单元。
可选地,所述指令融合单元根据所述第一控制量和第二控制量生成控制信息的步骤包括:
检测所述第二控制量的有效性;
若所述第二控制量有效,计算所述第一控制量和第二控制量的加权平均值;
根据所述加权平均值生成控制信息。
可选地,所述指令融合单元根据所述第一控制量和第二控制量生成控制信息的步骤还包括:
若所述第二控制量无效,根据所述第一控制量生成控制信息;和/或
检测所述第二控制量是否更新,若是,执行检测所述第二控制量的有效性的步骤;和/或
检测所述第二控制量是否更新,若否,根据所述第一控制量生成控制信息。
可选地,所述第一控制系统的可靠性高于第二控制系统,第二控制系统的精确度高于第一控制系统。
可选地,所述第一车载控制系统为ECU;和/或
所述第二控制系统为PC或者工控机。
可选地,所述第一控制单元为PID控制器;和/或所述第二控制单元为MPC控制器。
应用本说明书实施例方案,先计算出第一控制量,再将第一控制量与第二控制系统的第二控制量相融合,通过第二控制系统的第二控制量来实现对第一控制量的冗余备份,同时提高了对可移动平台的行驶控制的精确度和可靠性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本说明书。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本说明书一个实施例的可移动平台的行驶控制方法流程图。
图2是本说明书一个实施例的对第一控制量和第二控制量进行融合输出的程序流图。
图3是本说明书另一个实施例的可移动平台的行驶控制方法流程图。
图4是本说明书一个实施例的控制设备的结构示意图。
图5是本说明书一个实施例的第一控制系统和第二控制系统的交互时序图。
图6是本说明书一个实施例的可移动平台的行驶控制系统的示意图。
图7是本说明书一个实际应用场景下的可移动平台的行驶控制系统的示意图。
图8是本说明书一个实际应用场景下的指令融合输出的流程图。
图9是本说明书一个实际应用场景下的可移动平台的行驶轨迹的示意图。
图10是本说明书一个实际应用场景下的可移动平台的行驶控制过程示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本说明书相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本说明书的一些方面相一致的装置和方法的例子。
在本说明书使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本说明书。在本说明书和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本说明书可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本说明书范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
如图1所示,是本说明书一个实施例的可移动平台的行驶控制方法流程图。所述方法可包括:
步骤S101:在可移动平台行驶过程中,获取所述可移动平台当前行驶路径与规划路径之间的行驶误差;
步骤S102:根据所述行驶误差计算第一控制量,并接收至少一个第二控制系统发送的第二控制量;其中,所述第一控制量和第二控制量用于控制所述可移动平台的执行机构;
步骤S103:根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述执行机构。
在本实施例中,可移动平台可以是车辆、无人机、可移动机器人等。在可移动平台行驶过程中,第二控制系统可以对可移动平台的行驶路径进行规划预测,得到可移动平台行驶的目标路径点序列,并将目标路径点序列作为可移动平台的规划路径。可以获取可移动平台的目标路径点序列,并获取可移动平台当前的实际行驶路径点序列,然后根据这两个序列来计算可移动平台当前行驶路径与规划路径之间的行驶误差,包括可移动平台当前行驶的横向误差和纵向误差,其中,横向即为与可移动平台行驶方向相垂直的方向,纵向即为与可移动平台行驶方向平行的方向。
然后,可以根据横向误差和纵向误差计算第一控制量,以控制可移动平台的执行机构。其中,执行机构是指可以根据控制系统给出的控制指令完成规定的执行动作,以达到控制目标的机械结构。以可移动平台是车辆为例,执行机构可以包括但不限于车辆上的油门、刹车和转向机中的至少一者;以可移动平台是船只为例,执行机构可以包括但不限于船只上的舵叶。相应地,第一控制量可以包括但不限于对油门的控制量、对刹车的控制量、转向机的转角和舵角中的至少一者。可以计算出至少一种第一控制量,以便控制可移动平台上的至少一种执行机构。
此外,第二控制系统还可以根据横向误差和纵向误差计算第二控制量。第二控制量可以是与第一控制量相同的控制量,例如,第一控制量和第二控制量都可以包括对油门的控制量、对刹车的控制量以及转向机的转角。由于第二控制系统可能无法及时解算出全部的第二控制量,或者存在可移动平台的部分执行机构不需要由第一控制量和第二控制量共同控制,或者由于其他原因,第二控制量也可以是与第一控制量部分相同的控制量,例如,第一控制量包括对油门的控制量、对刹车的控制量以及舵角, 第二控制量包括对刹车的控制量以及转向机的转角。可以获取第二控制量,并融合第一控制量和第二控制量来对可移动平台的行驶过程进行控制。
在得到第一控制量和第二控制量之后,可以对第一控制量和第二控制量进行融合,以生成一定指令格式的控制信息。控制信息的指令格式可以根据所采用的通信协议来生成。应当说明的是,可以从多个第二控制系统分别接收第二控制量,例如,第二控制系统可以有3个,3个第二控制系统分别生成第二控制量C1、C2和C3,因此,可以根据C1、C2、C3以及第一控制量来生成最终的控制量。
生成的控制信息可以输出给执行机构,以使执行机构执行相应的动作,从而实现对可移动平台的行驶参数进行控制。例如,当控制信息中包括对油门的控制信息时,可以将对油门的控制信息输出至油门,以使油门加油,从而使可移动平台的行驶速度提高。
上述实施例先计算出第一控制量,再将第一控制量与第二控制系统的第二控制量相融合,通过第二控制系统的第二控制量来实现对第一控制量的冗余备份,同时提高了对可移动平台的行驶控制的精确度和可靠性。
在上述实施例中,第二控制系统可以采用精确度较高的控制系统,例如,PC(Personal Computer,个人电脑)系统或者工控机系统。第一控制量可以采用可靠性较高的第一控制系统来获取,第一控制系统例如可以是可移动平台上自带的控制系统,当可移动平台是车辆时,第一控制系统可以是ECU(Electronic Control Unit,电子控制单元)系统。第一控制系统可以采用可靠性较高,且对系统算力要求较低的算法来计算第一控制量,第二控制系统可以采用精确度较高的算法来计算第二控制量。第一控制系统和第二控制系统可以互相独立运行,分别计算出各自的控制量。如果采用了多个第二控制系统,则各个第二控制系统的类型,以及各个第二控制系统上所采用的算法均可以相同,也可以部分相同或者完全不同。
因为设计了至少两套独立运行的不同系统来实现互相冗余备份,当其中精确度较高的控制系统因各种原因计算不出来指令或者断连或者卡死的时候,都可以依靠可靠性较高的控制系统来对可移动平台进行控制,所以既能满足高性能控制系统进行高精度的控制,也能通过可靠性较高的控制系统来满足安全性和冗余性的要求。
在一个实施例中,根据所述第一控制量和第二控制量生成控制信息的步骤包括:检测所述第二控制量的有效性;若所述第二控制量有效,计算所述第一控制量和 第二控制量的加权平均值;根据所述加权平均值生成控制信息。本实施例采用加权平均的方式对两个控制量进行融合,以生成控制信息。
在本实施例中,可以对第二控制量的有效性进行检测。当第二控制量的数量为多个时,可以分别对每个第二控制量的有效性进行检测,并在后续计算第一控制量和第二控制量的加权平均时,仅将有效的各个第二控制量与第一控制量进行加权平均。
其中,有效性检测可以包括检测第二控制量的取值是否有效,若第二控制量的值在预设的数值范围内,则判定第二控制量有效;否则,判定第二控制量无效。其中,所述数值范围可以根据可移动平台执行机构的物理特性预先设置,例如,车辆方向盘的转角在-360°至+360°之间。有效性检测还可以包括检测第二控制量与第一控制量是否匹配。例如,第一控制量为对油门的控制量,而第二控制量为对刹车的控制量;或者第一控制量控制转向机的转角为正向转角,而第二控制量控制转向机的转角为负向转角,即第二控制量与第一控制量相矛盾,并不匹配,在这种情况下,可以判定第二控制量无效。有效性检测还可以包括其他检测项目,此处不再一一列举。
若第二控制量有效,则可以对第一控制量和第二控制量进行加权平均,获取第一控制量和第二控制量的加权平均值。加权平均所采用的权重可以预先设置,例如,第一控制量和第二控制量的权重设为相同的值(如0.5);或者为第一控制量设置较大的权重,为第二控制量设置较小的权重;或者为第一控制量设置较小的权重,为第二控制量设置较大的权重。
此外,也可以采用某种计算方式先计算出权重,再根据计算出的权重进行加权平均。例如,加权平均采用的权值可以根据第一控制量与第二控制量的差异动态设置。例如,由于第一控制量是由可靠性较高的第一控制系统获取的,当第一控制量与第二控制量的差值在预设范围内时,表明此时第二控制量的可靠性较高,又因为第二控制量是由精确度较高的第二控制系统获取的,从而第二控制量的精确度一般高于第一控制量,此时可以优先采用第二控制量来控制执行机构。因此,在这种情况下,可以将第二控制量的权值设置为大于第一控制量的值。而当第一控制量与第二控制量的差值超出预设范围内时,表明此时第二控制系统可能由于种种原因而失效,第二控制量的可靠性可能较低,此时,可以优先采用第一控制量来控制执行机构。因此,在这种情况下,可以将第二控制量的权值设置为小于第一控制量的值。
在一个实施例中,若所述第二控制量无效,根据所述第一控制量生成控制信息。如果第二控制量无效,则仅根据第一控制量生成控制信息来对可移动平台的执行机构 进行控制,从而避免因第二控制量无效导致的控制可靠性降低。
在一个实施例中,在检测所述第二控制量的有效性之前,还可以检测所述第二控制量是否更新,如果第二控制量更新了,则检测更新后的第二控制量的有效性;如果第二控制量未更新,则仅根据第一控制量生成控制信息。在本实施例中,第二控制系统在可移动平台的行驶过程中不断对第二控制量进行解算,如果未解算出当前时刻第二控制量的取值,则会传第二控制量在上一时刻的取值。可以每隔预设的时间间隔对第二控制量的取值进行刷新,如果检测到第二控制量的取值更新了,则重新对其有效性进行检测。如果第二控制量未更新,则仅根据第一控制量来对可移动平台的执行机构进行控制,以避免因未解算出当前时刻的第二控制量而导致的控制可靠性降低。
一个实施例的对第一控制量和第二控制量进行融合输出的程序流图如图2所示。在步骤S201中,先检测第二控制量是否更新,如果未更新,则执行步骤S203,仅根据第一控制量生成控制信息;如果更新,则执行步骤S202,检测第二控制量是否在有效范围内。如果第二控制量在有效范围内,则执行步骤S204,根据第一控制量和第二控制量的加权平均值生成控制信息;如果第二控制量不在有效范围内,则执行步骤S203,仅根据第一控制量生成控制信息。
如图3所示,是本说明书另一个实施例的可移动平台的行驶控制方法流程图所述方法可包括:
步骤S301:在可移动平台行驶过程中,对所述可移动平台的行驶路径进行规划,并将规划路径发送至第一控制系统,以使第一控制系统根据可移动平台当前行驶路径与规划路径之间的行驶误差计算第一控制量;
步骤S302:获取可移动平台当前行驶路径与规划路径之间的行驶误差,根据所述行驶误差计算第二控制量;
步骤S303:将所述第二控制量发送至第一控制系统,以使第一控制系统根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述可移动平台的执行机构。
在可移动平台行驶过程中,可以对可移动平台的行驶路径进行规划预测,得到可移动平台行驶的目标路径点序列,将目标路径点序列作为可移动平台的规划路径并发送至第一控制系统。第一控制系统可以获取可移动平台的目标路径点序列,并获取可移动平台当前的实际行驶路径点序列,然后根据这两个序列来计算可移动平台当前 行驶路径与规划路径之间的行驶误差,包括可移动平台当前行驶的横向误差和纵向误差。
然后,第一控制系统可以根据横向误差和纵向误差计算第一控制量,以控制可移动平台的执行机构。以可移动平台是车辆为例,执行机构可以包括但不限于车辆上的油门、刹车和转向机中的至少一者;以可移动平台是船只为例,执行机构可以包括但不限于船只上的舵叶。相应地,第一控制量可以包括但不限于对油门的控制量、对刹车的控制量、转向机的转角和舵角中的至少一者。第一控制系统可以计算出至少一个第一控制量,以便控制可移动平台上的至少一个执行机构。
此外,还可以根据横向误差和纵向误差计算第二控制量。第二控制量可以是与第一控制量相同的控制量,例如,第一控制量和第二控制量都可以包括对油门的控制量、对刹车的控制量以及转向机的转角。由于可能无法及时解算出全部的第二控制量,或者存在可移动平台的部分执行机构不需要由第一控制量和第二控制量共同控制,或者由于其他原因,第二控制量也可以是与第一控制量部分相同的控制量,例如,第一控制量包括对油门的控制量、对刹车的控制量以及转向机的转角,第二控制量包括对刹车的控制量以及转向机的转角。第一控制系统可以获取第二控制量,并融合第一控制量和第二控制量来对可移动平台的行驶过程进行控制。
第一控制系统在得到第一控制量和第二控制量之后,可以对这两个控制量进行融合,以生成一定指令格式的控制信息。控制信息的指令格式可以根据所采用的通信协议来生成。生成的控制信息可以输出给执行机构,以使执行机构执行相应的动作,从而实现对可移动平台的行驶参数进行控制。例如,当控制信息中包括对油门的控制信息时,可以将对油门的控制信息输出至油门,以使油门加油,从而使可移动平台的行驶速度提高。
上述实施例先计算出第二控制量,再将第二控制量发送至第一控制系统,以使第一控制系统可以融合第二控制量与本系统生成的第一控制量来共同对可移动平台的行驶过程进行控制,通过第二控制量来实现对第一控制量的冗余备份,同时提高了对可移动平台的行驶控制的精确度和可靠性。
在本实施例中,第一控制系统的其他实施例与前述可移动平台的行驶控制方法的实施例相同,此处不再赘述。
本说明书实施例还提供一种控制设备,本说明书方法的实施例可以由所述控制 设备来实施。
在一个实施例中,所述控制设备可包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现以下方法:在可移动平台行驶过程中,获取所述可移动平台当前行驶路径与规划路径之间的行驶误差;
根据所述行驶误差计算第一控制量,并接收至少一个第二控制系统发送的第二控制量;其中,所述第一控制量和第二控制量用于控制所述可移动平台的执行机构;
根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述执行机构。
在一个实施例中,所述处理器根据所述第一控制量和第二控制量生成控制信息的步骤包括:检测所述第二控制量的有效性;若所述第二控制量有效,计算所述第一控制量和第二控制量的加权平均值;根据所述加权平均值生成控制信息。
在一个实施例中,所述处理器执行所述程序时还实现以下方法:若所述第二控制量无效,根据所述第一控制量生成控制信息。
在一个实施例中,所述处理器执行所述程序时还实现以下方法:检测所述第二控制量是否更新,若是,执行检测所述第二控制量的有效性的步骤。
在一个实施例中,所述处理器执行所述程序时还实现以下方法:检测所述第二控制量是否更新,若否,根据所述第一控制量生成控制信息。
所述处理器执行的方法的其他实施例与前述可移动平台的行驶控制方法实施例中由第一控制系统实施的方法的实施例相同,此处不再赘述。
上述实施例的控制设备先计算出第一控制量,再将第一控制量与第二控制系统的第二控制量相融合,通过第二控制系统的第二控制量来实现对第一控制量的冗余备份,同时提高了对可移动平台的行驶控制的精确度和可靠性。
本说明书实施例还提供一种控制设备,本说明书方法的实施例可以由所述控制设备来实施。
在一个实施例中,所述控制设备可包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现以下方法:
在可移动平台行驶过程中,对所述可移动平台的行驶路径进行规划,并将规划路径发送至第一控制系统,以使第一控制系统根据可移动平台当前行驶路径与规划路 径之间的行驶误差计算第一控制量;
获取可移动平台当前行驶路径与规划路径之间的行驶误差,根据所述行驶误差计算第二控制量;
将所述第二控制量发送至第一控制系统,以使第一控制系统根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述可移动平台的执行机构。
所述处理器执行的方法的其他实施例与前述可移动平台的行驶控制方法实施例中由第二控制系统实施的方法的实施例相同,此处不再赘述。
上述实施例的控制设备先计算出第二控制量,再将第二控制量发送至第一控制系统,以使第一控制系统可以融合第二控制量与本系统生成的第一控制量来共同对可移动平台的行驶过程进行控制,通过第二控制量来实现对第一控制量的冗余备份,同时提高了对可移动平台的行驶控制的精确度和可靠性。
本说明书实施例的控制设备例如可以是服务器或终端设备。方法实施例可以通过软件实现,也可以通过硬件或者软硬件结合的方式实现。以软件实现为例,作为一个逻辑意义上的装置,是通过其所在文件处理的处理器将非易失性存储器中对应的计算机程序指令读取到内存中运行形成的。从硬件层面而言,如图4所示,为实施本说明书方法的控制设备的一种硬件结构图,除了图4所示的处理器401、内存402、网络接口403、以及非易失性存储器404之外,实施例中用于实施本说明书方法的控制设备,通常根据该控制设备的实际功能,还可以包括其他硬件,对此不再赘述。
本说明书实施例还提供一种可移动平台,所述可移动平台上安装有控制设备,所述控制设备用于:
在可移动平台行驶过程中,获取所述可移动平台当前行驶路径与规划路径之间的行驶误差;根据所述行驶误差计算第一控制量,并接收至少一个第二控制系统发送的第二控制量;其中,所述第一控制量和第二控制量用于控制所述可移动平台的执行机构;根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述执行机构。
在本实施例中,可移动平台可以是车辆、无人机、可移动机器人。本实施例的方法可以由可移动平台上的第一控制系统实现,第一控制系统可以是可移动平台上的控制系统,例如,当可移动平台是车辆时,第一控制系统可以是车载控制系统。第二控制系统可以是可移动平台外接的控制系统,也可以集成在可移动平台上。
在可移动平台行驶过程中,第二控制系统可以对可移动平台可以对可移动平台的行驶路径进行规划预测,得到可移动平台行驶的目标路径点序列,并将目标路径点序列作为可移动平台的规划路径发送至第一控制系统。第一控制系统可以获取可移动平台当前的实际行驶路径点序列,然后根据这两个序列来计算可移动平台当前行驶路径与规划路径之间的行驶误差,包括可移动平台当前行驶的横向误差和纵向误差,其中,横向即为与可移动平台行驶方向相垂直的方向,纵向即为与可移动平台行驶方向平行的方向。在实际应用过程中,规划路径也可以由可移动平台上的第一控制系统或者可移动平台上的其他具有路径规划功能的系统来获取。
然后,第一控制系统可以根据横向误差和纵向误差计算第一控制量,以控制可移动平台的执行机构。其中,执行机构是指可以根据控制系统给出的控制指令完成规定的执行动作,以达到控制目标的机械结构。以可移动平台是车辆为例,执行机构可以包括但不限于车辆上的油门、刹车和转向机中的至少一者;以可移动平台是船只为例,执行机构可以包括但不限于船只上的舵叶。相应地,第一控制量可以包括但不限于对油门的控制量、对刹车的控制量、转向机的转角中和舵角的至少一者。第一控制系统可以计算出至少一个第一控制量,以便控制可移动平台上的至少一个执行机构。
此外,第二控制系统还可以根据横向误差和纵向误差计算第二控制量,并将第二控制量发送给第一控制系统。第二控制量可以是与第一控制量相同的控制量,例如,第一控制量和第二控制量都可以包括对油门的控制量、对刹车的控制量以及转向机的转角。由于第二控制系统可能无法及时解算出全部的第二控制量,或者存在可移动平台的部分执行机构不需要由第一控制量和第二控制量共同控制,或者由于其他原因,第二控制量也可以是与第一控制量部分相同的控制量,例如,第一控制量包括对油门的控制量、对刹车的控制量以及舵角,第二控制量包括对刹车的控制量以及转向机的转角。第一控制系统可以获取第二控制量,并融合第一控制量和第二控制量来对可移动平台的行驶过程进行控制。
在得到第一控制量和第二控制量之后,第一控制系统可以对这两个控制量进行融合,以生成一定指令格式的控制信息。控制信息的指令格式可以根据第一控制系统所采用的通信协议来生成。
应当说明的是,第一控制系统可以从多个第二控制系统分别接收第二控制量,例如,第二控制系统可以有3个,3个第二控制系统分别向第一控制系统发送各自的第二控制量C1、C2和C3,第一控制系统分别接收C1、C2和C3,并根据第一控制量 和C1、C2和C3生成控制信息。
生成的控制信息可以输出给执行机构,以使执行机构执行相应的动作,从而实现对可移动平台的行驶参数进行控制。例如,当控制信息中包括对油门的控制信息时,可以将对油门的控制信息输出至油门,以使油门加油,从而使可移动平台的行驶速度提高。
在上述实施例中,第一控制系统可以是可靠性较高的控制系统,第二控制系统可以是准确性较高的控制系统。例如,第一控制系统可以是ECU(Electronic Control Unit,电子控制单元)系统,第二控制系统可以是车载PC(Personal Computer,个人电脑)系统或者工控机系统。第一控制系统和第二控制系统也可以是采用不同算法的同一个系统,第一控制系统可以采用可靠性较高,且对系统算力要求较低的算法来计算第一控制量,第二控制系统可以采用精确度较高的算法来计算第二控制量。
由于第二控制系统往往是结构复杂、算力较强的控制系统,因此,第二控制系统的可靠性相对于第一控制系统可能较低。例如,可移动平台在行驶过程中发生颠簸导致零件松动,因恶劣环境导致的元器件温度过高或者过低,外部供电异常以及第二控制系统本身的软硬件故障、系统卡死或者断连等原因,都可能会导致第二控制系统失效。而第一控制系统的结构往往比较简单,性能较为稳定,失效概率与第二控制系统相比往往较低,因此,本说明书实施例通过可靠性较高的第一控制系统和精确度较高的第二控制系统互相做冗余备份,当其中的高性能控制系统因各种原因无法计算出控制量、断连或者卡死的时候,都可以依靠可靠性较高的控制系统来对可移动平台的执行机构进行控制,所以既能满足对可移动平台进行高精度的控制,又能满足对安全性和冗余性的要求。
在某些情况下,第一控制量和第二控制量也可以部分相同,或者完全不同。例如,第一控制量包括对油门的控制量和对刹车的控制量,第二控制量包括对油门的控制量和转向机的转角。又例如,第一控制量包括对油门的控制量和对刹车的控制量,第二控制量为转向机的转角。对于精确度要求较高的控制量,可以采用精确度较高的第二控制系统来获取,对于精确度要求较低但可靠性要求较高的控制量,可以采用可靠性较高的第一控制系统来获取。
在一个实施例中,所述控制设备根据所述第一控制量和第二控制量生成控制信息的步骤包括:检测所述第二控制量的有效性;若所述第二控制量有效,计算所述第一控制量和第二控制量的加权平均值;根据所述加权平均值生成控制信息。
在一个实施例中,所述控制设备还用于:若所述第二控制量无效,根据所述第一控制量生成控制信息。在一个实施例中,所述控制设备还用于:检测所述第二控制量是否更新,若是,执行检测所述第二控制量的有效性的步骤。在一个实施例中,所述控制设备还用于:检测所述第二控制量是否更新,若否,根据所述第一控制量生成控制信息。
在一个实施例中,所述可移动平台还包括:执行机构,用于接收所述控制信息,并根据所述控制信息控制所述可移动平台的行驶参数。
在一个实施例中,所述可移动平台上还安装有第二控制系统,所述第二控制系统用于:在可移动平台行驶过程中,对所述可移动平台的行驶路径进行规划,并将规划路径发送至第一控制系统,以使第一控制系统根据可移动平台当前行驶路径与规划路径之间的行驶误差计算第一控制量;获取可移动平台当前行驶路径与规划路径之间的行驶误差,根据所述行驶误差计算第二控制量;将所述第二控制量发送至第一控制系统,以使第一控制系统根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述可移动平台的执行机构。
一个实施例的第一控制系统和第二控制系统之间的交互时序图如图5所示。如图所示,在步骤S501中,第二控制系统先获取规划路径;在步骤S502中,第二控制系统将规划路径发送至第一控制系统;在步骤S503中,第一控制系统根据规划路径和实际行驶路径计算行驶误差;在步骤S504中,第二控制系统根据规划路径和实际行驶路径计算行驶误差;在步骤S505中,第一控制系统根据行驶误差计算第一控制量;在步骤S506中,第二控制系统根据行驶误差计算第二控制量;在步骤S507中,第二控制系统将第二控制量发送至第一控制系统;在步骤S508中,第一控制系统根据第一控制量和第二控制量生成控制信息并输出至可移动平台的执行机构。
在上述实施例中,第二控制系统可以采用精确度较高的控制系统,例如,PC系统或者工控机系统。第一控制量可以采用可靠性较高的第一控制系统来获取,第一控制系统例如可以是可移动平台上自带的控制系统,当可移动平台是车辆时,第一控制系统可以是ECU系统。第一控制系统可以采用可靠性较高,且对系统算力要求较低的算法来计算第一控制量,第二控制系统可以采用精确度较高的算法来计算第二控制量。第一控制系统和第二控制系统可以互相独立运行,分别计算出各自的控制量。如果采用了多个第二控制系统,则各个第二控制系统的类型,以及各个第二控制系统上所采用的算法均可以相同,也可以部分相同或者完全不同。
因为可移动平台上设计了至少两套独立运行的不同系统来实现互相冗余备份,当其中的高性能控制系统因各种原因计算不出来指令或者断连或者卡死的时候,都可以依靠可靠性较高的控制系统来对可移动平台进行控制,所以既能满足高性能控制系统进行高精度的控制,也能通过可靠性较高的控制系统来满足安全性和冗余性的要求。
如图6所示,本说明书实施例还提供一种可移动平台的行驶控制系统,所述行驶控制系统可包括:
第一控制系统601;以及
与所述第一控制系统通信连接的至少一个第二控制系统602;
所述第二控制系统602用于在可移动平台行驶过程中,对所述可移动平台的行驶路径进行规划,获取可移动平台当前行驶路径与规划路径之间的行驶误差,根据所述行驶误差计算第二控制量,并将规划路径和第二控制量发送至第一控制系统601;
所述第一控制系统601用于根据可移动平台当前行驶路径与规划路径之间的行驶误差计算第一控制量,根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述可移动平台的执行机构。
在一个实施例中,所述第一控制系统601包括:
第一误差解算单元601a,第一控制单元601b,指令融合单元601c和指令输出单元601d;
所述第一误差解算单元601a,第一控制单元601b,指令融合单元601c和指令输出单元601d依次连接,所述指令输出单元与可移动平台的执行机构通信连接;
所述第一误差解算单元601a获取可移动平台当前行驶路径与规划路径之间的行驶误差,并将所述行驶误差发送至第一控制单元601b;
所述第一控制单元601b根据所述行驶误差计算第一控制量,并将所述第一控制量发送至指令融合单元601c;
所述指令融合单元601c接收至少一个第二控制系统发送的第二控制量,根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息发送至指令输出单元601d;
所述指令输出单元601d将所述控制信息输出至所述可移动平台的执行机构。
在一个实施例中,所述第二控制系统602包括:
路径规划单元602a,第二误差解算单元602b和第二控制单元602c;
所述路径规划单元602a,第二误差解算单元602b和第二控制单元602c依次连接,所述路径规划单元602a还与第一控制系统601的第一误差解算单元601a相连接,所述第二控制单元602c还与第一控制系统601的指令融合单元601c相连接;
所述路径规划单元602a在可移动平台行驶过程中,对所述可移动平台的行驶路径进行规划,并将规划路径发送至第二误差解算单元602b和第一控制系统601的第一误差解算单元601a;
所述第二误差解算单元602b获取可移动平台当前行驶路径与规划路径之间的行驶误差,并将所述行驶误差发送至第二控制单元602c;
所述第二控制单元602c根据所述行驶误差计算第二控制量,并将所述第二控制量发送至第一控制系统601的指令融合单元601c。
在一个实施例中,所述指令融合单元601c根据所述第一控制量和第二控制量生成控制信息的步骤包括:检测所述第二控制量的有效性;若所述第二控制量有效,计算所述第一控制量和第二控制量的加权平均值;根据所述加权平均值生成控制信息。
在一个实施例中,所述指令融合单元601c根据所述第一控制量和第二控制量生成控制信息的步骤还包括:若所述第二控制量无效,根据所述第一控制量生成控制信息。在一个实施例中,所述指令融合单元601c根据所述第一控制量和第二控制量生成控制信息的步骤还包括:检测所述第二控制量是否更新,若是,执行检测所述第二控制量的有效性的步骤。在一个实施例中,所述指令融合单元601c根据所述第一控制量和第二控制量生成控制信息的步骤还包括:检测所述第二控制量是否更新,若否,根据所述第一控制量生成控制信息。
在一个实施例中,所述第一控制系统的可靠性高于第二控制系统,第二控制系统的精确度高于第一控制系统。本实施例采用可靠性较高的控制系统作为第一控制系统,采用精确度较高的控制系统作为第二控制系统,通过至少两套独立运行的不同系统来实现互相冗余备份,当其中的精确度较高的第二控制系统因各种原因计算不出来指令或者断连或者卡死的时候,都可以依靠可靠性较高的第一控制系统来对可移动平台进行控制,所以既能满足高性能控制系统进行高精度的控制,也能通过可靠性较高的控制系统来满足安全性和冗余性的要求。
在一个实施例中,所述第一车载控制系统为ECU。在另一个实施例中,所述第 二控制系统为PC或者工控机。在一个实施例中,所述第一控制单元为PID(Proportion Integral Differential,比例-积分-微分)控制器。在另一个实施例中,所述第二控制单元为MPC(Model predictive control,模型预测控制)控制器。
如图7所示,是本说明书一个实际应用场景下的可移动平台的行驶控制系统。在本实施例中,可移动平台为车辆,第二控制系统可以为处理能力较强的处理器或处理芯片,例如车载PC;第一控制系统为实时性较强的处理器ECU,第二控制单元为精确度较高的控制器,如MPC(Model Predictive Control,模型预测控制)控制器,第一控制单元为可靠性较高的控制器,如PID(Proportion-Integral-Differential,比例-积分-微分)控制器,可执行机构为车辆底盘上的油门和刹车。
PID控制器在可移动平台横侧向过载较大时,不能实现精确的控制。MPC控制器只能在计算性能足够强大的智能控制系统上设计和运行。同时因为需要在线解优化问题,很有可能无法得到最优解或者结果发散。而采用本说明书实施例的方案,将PID控制器与MPC控制器进行冗余备份,一方面通过精确度较高的MPC控制器保证了控制的精确度,另一方面,在MPC控制器失效时通过PID控制器保证了控制的可靠性,因此,本说明书实施例能够同时兼顾可靠性和精确度。如图8所示,是图7所示的行驶控制系统中指令融合模块的流程图。
在图7中,可移动平台的行驶控制系统包括ECU 702和PC 701,PC中的Planning模块702a在可移动平台行驶过程中,对所述可移动平台的行驶路径进行规划,并将规划路径发送至PC中的Trajectory模块702b和ECU 701中的Trajectory模块701a;PC 702中的Trajectory模块702b获取可移动平台当前行驶路径与规划路径之间的行驶误差,并将所述行驶误差发送至MPC控制器702c;ECU 701中的Trajectory模块701a获取可移动平台当前行驶路径与规划路径之间的行驶误差,并将所述行驶误差发送至PID控制器701b;MPC控制器702c根据所述行驶误差计算第二控制量,并将所述第二控制量发送至ECU 701的指令融合单元701c;PID控制器701b根据所述行驶误差计算第一控制量,并将所述第一控制量发送至ECU 701的指令融合单元701c;指令融合单元701c对第一控制量和第二控制量进行融合,并输出控制指令至指令输出单元701d;输出单元701d输出控制信息至油门和刹车,以对油门的控制量和刹车的控制量进行控制。
在图8中,指令融合单元701c先检测PC指令(PC指令中携带第二控制量)是否更新,如果未更新,则直接采用ECU计算的指令(ECU计算的指令中携带第一 控制量)来控制油门和刹车;如果更新,则检测PC指令是否在有效范围内。如果不在有效范围内,则直接采用ECU计算的指令来控制油门和刹车;如果在有效范围内,则将PC指令和MCU指令进行加权平均,得到最终的控制量。
如图9所示,是本说明书一个实际应用场景下的可移动平台的行驶轨迹的示意图。可移动平台上的行驶控制系统可以对可移动平台的行驶轨迹进行规划,得到可移动平台行驶的目标路径点序列,目标路径点序列上的各个点如图中实线上的各个点所示,图中各个点所连成的实线构成可移动平台的规划路径。可移动平台在行驶过程中,实际的行驶轨迹与规划路径可能会有偏差,这个偏差即行驶误差,实际行驶路径如图中虚线所示。行驶控制系统通过在可移动平台行驶过程中不断对可移动平台的执行机构进行控制,以使可移动平台的实际行驶轨迹校正到规划路径。
如图10所示,是本说明书一个实际应用场景下的可移动平台的行驶控制过程示意图。感知模块(例如,激光雷达或者双目视觉图像定位系统等)可以感知可移动平台行驶过程中的环境信息,例如,行驶区域内的车道信息,行驶区域内其他可移动平台的信息等,并将感知到的环境信息发送给Planning模块。可移动平台上的传感器模块(例如,VINS/RTK/GPS)可以获取可移动平台的行驶状态信息,并发送给Planning模块。Planning模块根据环境信息和行驶状态信息对可移动平台的行驶路径进行规划,例如,当环境信息指示可移动平台即将进入弯道时,Planning模块规划出一条曲线行驶路径。规划出的目标行驶路径发送给Trajectory模块,由Trajectory模块计算出可移动平台的当前行驶路径与目标行驶路径之间的行驶误差。Trajectory模块再将行驶误差分别输出到MPC控制器和PID控制器;另外,可移动平台上的传感器模块(例如,VINS/RTK/GPS)还可以检测可移动平台的行驶状态,并输出控制参数,根据该控制参数与Trajectory模块输出的误差可以动态计算出MPC控制器和PID控制器的权重,根据该权重对MPC控制器和PID控制器输出的控制量进行加权平均后输出最终的控制量至MU模块(执行机构),从而对可移动平台的行驶过程进行控制。假设MPC控制器计算出的控制量为T MPC,PID控制器计算出的控制量为T PID,当前时刻MPC控制器和PID控制器的权重分别为k 1和k 2,则当前时刻最终的输出控制量T OUT为:
T OUT=k 1*T MPC+k 2*T PID
其中,k 1+k 2=1。
在一个实施例中,
Figure PCTCN2019103672-appb-000001
式中,e 1为当前时刻的行驶误差,e max为最大行驶误差。
此外,在上述行驶控制过程中,Planning模块在可移动平台的行驶过程中可以以较低的刷新频率(例如5秒钟刷新一次)对规划路径进行刷新,MPC控制器和PID控制器可以以较高的刷新频率(例如,1秒钟刷新一次)对可移动平台的控制量进行刷新。
以上实施例中的各种技术特征可以任意进行组合,只要特征之间的组合不存在冲突或矛盾,但是限于篇幅,未进行一一描述,因此上述实施方式中的各种技术特征的任意进行组合也属于本说明书公开的范围。
本说明书实施例可采用在一个或多个其中包含有程序代码的存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机可用存储介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括但不限于:相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
本领域技术人员在考虑说明书及实践这里公开的说明书后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的 精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开保护的范围之内。

Claims (26)

  1. 一种可移动平台的行驶控制方法,其特征在于,所述方法包括:
    在可移动平台行驶过程中,获取所述可移动平台当前行驶路径与规划路径之间的行驶误差;
    根据所述行驶误差计算第一控制量,并接收至少一个第二控制系统发送的第二控制量;其中,所述第一控制量和第二控制量用于控制所述可移动平台的执行机构;
    根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述执行机构。
  2. 根据权利要求1所述的方法,其特征在于,根据所述第一控制量和第二控制量生成控制信息的步骤包括:
    检测所述第二控制量的有效性;
    若所述第二控制量有效,计算所述第一控制量和第二控制量的加权平均值;
    根据所述加权平均值生成控制信息。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    若所述第二控制量无效,根据所述第一控制量生成控制信息;和/或
    检测所述第二控制量是否更新,若是,执行检测所述第二控制量的有效性的步骤;和/或
    检测所述第二控制量是否更新,若否,根据所述第一控制量生成控制信息。
  4. 根据权利要求1所述的方法,其特征在于,所述可移动平台为车辆、无人机或者可移动机器人。
  5. 一种可移动平台的行驶控制方法,其特征在于,所述方法包括:
    在可移动平台行驶过程中,对所述可移动平台的行驶路径进行规划,并将规划路径发送至第一控制系统,以使第一控制系统根据可移动平台当前行驶路径与规划路径之间的行驶误差计算第一控制量;
    获取可移动平台当前行驶路径与规划路径之间的行驶误差,根据所述行驶误差计算第二控制量;
    将所述第二控制量发送至第一控制系统,以使第一控制系统根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述可移动平台的执行机构。
  6. 一种控制设备,其特征在于,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现以下方法:
    在可移动平台行驶过程中,获取所述可移动平台当前行驶路径与规划路径之间的 行驶误差;
    根据所述行驶误差计算第一控制量,并接收至少一个第二控制系统发送的第二控制量;其中,所述第一控制量和第二控制量用于控制所述可移动平台的执行机构;
    根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述执行机构。
  7. 根据权利要求6所述的控制设备,其特征在于,所述处理器根据所述第一控制量和第二控制量生成控制信息的步骤包括:
    检测所述第二控制量的有效性;
    若所述第二控制量有效,计算所述第一控制量和第二控制量的加权平均值;
    根据所述加权平均值生成控制信息。
  8. 根据权利要求7所述的控制设备,其特征在于,所述处理器执行所述程序时还实现以下方法:
    若所述第二控制量无效,根据所述第一控制量生成控制信息;和/或
    检测所述第二控制量是否更新,若是,执行检测所述第二控制量的有效性的步骤;和/或
    检测所述第二控制量是否更新,若否,根据所述第一控制量生成控制信息。
  9. 根据权利要求6所述的控制设备,其特征在于,所述可移动平台为车辆、无人机或者可移动机器人。
  10. 一种控制设备,包括处理器和存储器,所述存储器存储有计算机可执行程序,其特征在于,该程序被处理器执行时实现以下方法:
    对所述可移动平台的行驶路径进行规划,并将规划路径发送至第一控制系统,以使第一控制系统根据可移动平台当前行驶路径与规划路径之间的行驶误差计算第一控制量;
    获取可移动平台当前行驶路径与规划路径之间的行驶误差,根据所述行驶误差计算第二控制量;
    将所述第二控制量发送至第一控制系统,以使第一控制系统根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述可移动平台的执行机构。
  11. 一种可移动平台,其特征在于,所述可移动平台上安装有控制设备,所述控制设备用于:
    在可移动平台行驶过程中,获取所述可移动平台当前行驶路径与规划路径之间的行驶误差;
    根据所述行驶误差计算第一控制量,并接收至少一个第二控制系统发送的第二控制量;其中,所述第一控制量和第二控制量用于控制所述可移动平台的执行机构;
    根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述执行机构。
  12. 根据权利要求11所述的可移动平台,其特征在于,所述控制设备根据所述第一控制量和第二控制量生成控制信息的步骤包括:
    检测所述第二控制量的有效性;
    若所述第二控制量有效,计算所述第一控制量和第二控制量的加权平均值;
    根据所述加权平均值生成控制信息。
  13. 根据权利要求12所述的可移动平台,其特征在于,所述控制设备还用于:
    若所述第二控制量无效,根据所述第一控制量生成控制信息;和/或
    检测所述第二控制量是否更新,若是,执行检测所述第二控制量的有效性的步骤;和/或
    检测所述第二控制量是否更新,若否,根据所述第一控制量生成控制信息。
  14. 根据权利要求11所述的可移动平台,其特征在于,所述可移动平台还包括:
    执行机构,用于接收所述控制信息,并根据所述控制信息控制所述可移动平台的行驶参数。
  15. 根据权利要求14所述的可移动平台,其特征在于,所述控制信息包括以下至少一者:舵角、转向机的转角、油门的控制量和刹车的控制量;
    所述执行机构包括以下至少一者:舵叶、转向机、油门和刹车。
  16. 根据权利要求11所述的可移动平台,其特征在于,所述可移动平台上还安装有第二控制系统,所述第二控制系统用于:
    在可移动平台行驶过程中,对所述可移动平台的行驶路径进行规划,并将规划路径发送至第一控制系统,以使第一控制系统根据可移动平台当前行驶路径与规划路径之间的行驶误差计算第一控制量;
    获取可移动平台当前行驶路径与规划路径之间的行驶误差,根据所述行驶误差计算第二控制量;
    将所述第二控制量发送至第一控制系统,以使第一控制系统根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述可移动平台的执行机构。
  17. 根据权利要求11所述的可移动平台,其特征在于,所述可移动平台为车辆、无人机或者可移动机器人。
  18. 一种可移动平台的行驶控制系统,其特征在于,包括:
    第一控制系统;以及
    与所述第一控制系统通信连接的至少一个第二控制系统;
    所述第二控制系统用于在可移动平台行驶过程中,对所述可移动平台的行驶路径进行规划,获取可移动平台当前行驶路径与规划路径之间的行驶误差,根据所述行驶误差计算第二控制量,并将规划路径和第二控制量发送至第一控制系统;
    所述第一控制系统用于根据可移动平台当前行驶路径与规划路径之间的行驶误差计算第一控制量,根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息输出至所述可移动平台的执行机构。
  19. 根据权利要求18所述的可移动平台的行驶控制系统,其特征在于,所述第一控制系统包括:
    第一误差解算单元,第一控制单元,指令融合单元和指令输出单元;
    所述第一误差解算单元,第一控制单元,指令融合单元和指令输出单元依次连接,所述指令输出单元与可移动平台的执行机构通信连接;
    所述第一误差解算单元获取可移动平台当前行驶路径与规划路径之间的行驶误差,并将所述行驶误差发送至第一控制单元;
    所述第一控制单元根据所述行驶误差计算第一控制量,并将所述第一控制量发送至指令融合单元;
    所述指令融合单元接收至少一个第二控制系统发送的第二控制量,根据所述第一控制量和第二控制量生成控制信息,并将所述控制信息发送至指令输出单元;
    所述指令输出单元将所述控制信息输出至所述可移动平台的执行机构。
  20. 根据权利要求19所述的可移动平台的行驶控制系统,其特征在于,所述第二控制系统包括:
    路径规划单元,第二误差解算单元和第二控制单元;
    所述路径规划单元,第二误差解算单元和第二控制单元依次连接,所述路径规划单元还与第一控制系统的第一误差解算单元相连接,所述第二控制单元还与第一控制系统的指令融合单元相连接;
    所述路径规划单元在可移动平台行驶过程中,对所述可移动平台的行驶路径进行规划,并将规划路径发送至第二误差解算单元和第一控制系统的第一误差解算单元;
    所述第二误差解算单元获取可移动平台当前行驶路径与规划路径之间的行驶误差,并将所述行驶误差发送至第二控制单元;
    所述第二控制单元根据所述行驶误差计算第二控制量,并将所述第二控制量发送至第一控制系统的指令融合单元。
  21. 根据权利要求20所述的可移动平台的行驶控制系统,其特征在于,所述指令融合单元根据所述第一控制量和第二控制量生成控制信息的步骤包括:
    检测所述第二控制量的有效性;
    若所述第二控制量有效,计算所述第一控制量和第二控制量的加权平均值;
    根据所述加权平均值生成控制信息。
  22. 根据权利要求21所述的可移动平台的行驶控制系统,其特征在于,所述指令融合单元根据所述第一控制量和第二控制量生成控制信息的步骤还包括:
    若所述第二控制量无效,根据所述第一控制量生成控制信息;和/或
    检测所述第二控制量是否更新,若是,执行检测所述第二控制量的有效性的步骤;和/或
    检测所述第二控制量是否更新,若否,根据所述第一控制量生成控制信息。
  23. 根据权利要求20所述的可移动平台的行驶控制系统,其特征在于,所述第一控制系统的可靠性高于第二控制系统,第二控制系统的精确度高于第一控制系统。
  24. 根据权利要求23所述的可移动平台的行驶控制系统,其特征在于,所述第一车载控制系统为ECU;和/或
    所述第二控制系统为PC或者工控机。
  25. 根据权利要求24所述的可移动平台的行驶控制系统,其特征在于,所述第一控制单元为PID控制器;和/或所述第二控制单元为MPC控制器。
  26. 根据权利要求18所述的可移动平台的行驶控制系统,其特征在于,所述可移动平台为车辆、无人机或者可移动机器人。
PCT/CN2019/103672 2019-08-30 2019-08-30 可移动平台及其行驶控制方法和系统、控制设备 WO2021035682A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/103672 WO2021035682A1 (zh) 2019-08-30 2019-08-30 可移动平台及其行驶控制方法和系统、控制设备
CN201980031520.XA CN112384872B (zh) 2019-08-30 2019-08-30 可移动平台及其行驶控制方法和系统、控制设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103672 WO2021035682A1 (zh) 2019-08-30 2019-08-30 可移动平台及其行驶控制方法和系统、控制设备

Publications (1)

Publication Number Publication Date
WO2021035682A1 true WO2021035682A1 (zh) 2021-03-04

Family

ID=74586598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103672 WO2021035682A1 (zh) 2019-08-30 2019-08-30 可移动平台及其行驶控制方法和系统、控制设备

Country Status (2)

Country Link
CN (1) CN112384872B (zh)
WO (1) WO2021035682A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105159306A (zh) * 2015-08-12 2015-12-16 山东劳动职业技术学院 一种基于全局稳定的四旋翼飞行器滑模控制方法
CN106774341A (zh) * 2017-01-20 2017-05-31 四方继保(武汉)软件有限公司 无人船运动控制系统及运动控制方法
CN108037754A (zh) * 2017-11-07 2018-05-15 河北科技大学 一种室内地面运输车超声波定位控制系统
CN108646758A (zh) * 2018-03-20 2018-10-12 南京邮电大学 一种多移动机器人预设性能编队控制器结构及设计方法
CN108762260A (zh) * 2018-05-16 2018-11-06 南京理工大学 基于差分gps的履带式自主导航机器人及其导航方法
CN109154817A (zh) * 2016-05-30 2019-01-04 株式会社久保田 自动行驶作业车辆
US20190118829A1 (en) * 2017-10-19 2019-04-25 Uber Technologies, Inc. Systems and Methods for a Vehicle Controller Robust to Time Delays
US20190220022A1 (en) * 2015-04-24 2019-07-18 Autonomous Solutions Inc. System and method for controlling a vehicle
US20190243359A1 (en) * 2016-10-24 2019-08-08 Bae Systems Plc Control of autonomous vehicles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102785166B (zh) * 2012-07-18 2014-08-27 华中科技大学 一种基于运动学变换的数控砂轮磨削加工方法
CN109747651B (zh) * 2018-12-27 2021-08-06 东软睿驰汽车技术(沈阳)有限公司 一种车辆控制方法、装置及系统
CN109765888B (zh) * 2018-12-27 2021-12-31 东软睿驰汽车技术(沈阳)有限公司 一种车辆控制方法、装置及系统
CN109866752B (zh) * 2019-03-29 2020-06-05 合肥工业大学 基于预测控制的双模式并行车辆轨迹跟踪行驶系统的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190220022A1 (en) * 2015-04-24 2019-07-18 Autonomous Solutions Inc. System and method for controlling a vehicle
CN105159306A (zh) * 2015-08-12 2015-12-16 山东劳动职业技术学院 一种基于全局稳定的四旋翼飞行器滑模控制方法
CN109154817A (zh) * 2016-05-30 2019-01-04 株式会社久保田 自动行驶作业车辆
US20190243359A1 (en) * 2016-10-24 2019-08-08 Bae Systems Plc Control of autonomous vehicles
CN106774341A (zh) * 2017-01-20 2017-05-31 四方继保(武汉)软件有限公司 无人船运动控制系统及运动控制方法
US20190118829A1 (en) * 2017-10-19 2019-04-25 Uber Technologies, Inc. Systems and Methods for a Vehicle Controller Robust to Time Delays
CN108037754A (zh) * 2017-11-07 2018-05-15 河北科技大学 一种室内地面运输车超声波定位控制系统
CN108646758A (zh) * 2018-03-20 2018-10-12 南京邮电大学 一种多移动机器人预设性能编队控制器结构及设计方法
CN108762260A (zh) * 2018-05-16 2018-11-06 南京理工大学 基于差分gps的履带式自主导航机器人及其导航方法

Also Published As

Publication number Publication date
CN112384872A (zh) 2021-02-19
CN112384872B (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
WO2020187257A1 (zh) 车辆异常换道控制方法、装置及系统
CN111923905B (zh) 对轨迹进行估计的系统和方法
US20200139989A1 (en) Vehicle Control Method, Apparatus, and Device
CN113183975B (zh) 自动驾驶车辆的控制方法、装置、设备以及存储介质
CN110413007B (zh) 无人机飞行路径的控制方法、系统、电子设备及介质
Karimoddini et al. Hierarchical hybrid modelling and control of an unmanned helicopter
CN111045433B (zh) 一种机器人的避障方法、机器人及计算机可读存储介质
Lu et al. Constrained anti-disturbance control for a quadrotor based on differential flatness
CN115617051A (zh) 车辆控制方法、装置、设备和计算机可读介质
Min et al. Design and implementation of an intelligent vehicle system for autonomous valet parking service
CN116301058B (zh) 一种无人飞行反馈非线性偏航控制方法、系统和设备
WO2021035682A1 (zh) 可移动平台及其行驶控制方法和系统、控制设备
CN116279410A (zh) 航向误差补偿方法、系统、装置和存储介质
CN116750013A (zh) 一种驾校学习车辆监控方法、装置、设备及介质
CN114987607B (zh) 一种车辆的转向控制方法、装置、设备及存储介质
US11834066B2 (en) Vehicle control using neural network controller in combination with model-based controller
CN114919661A (zh) 一种泊车控制方法、装置、设备和存储介质
CN114721438A (zh) 一种无人机编队协同避障的搜索方法、装置及电子设备
Tominaga et al. GNSS-Based Lane Keeping Assist System Using Model Predictive Control and Time Delay Compensation
CN115384490B (zh) 车辆横向控制方法、装置、电子设备及计算机程序产品
Xu et al. Safeguard protected preview lane keeping control for automated vehicles
WO2021237469A1 (zh) 无人机的飞行控制方法、无人机、电子设备及介质
US20230391350A1 (en) Systems and methods for hybrid open-loop and closed-loop path planning
EP2579118B1 (en) Aircraft guidance method and system
US20230267717A1 (en) Method for searching a path by using a three-dimensional reconstructed map

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943041

Country of ref document: EP

Kind code of ref document: A1