WO2019239645A1 - 観察光学系 - Google Patents

観察光学系 Download PDF

Info

Publication number
WO2019239645A1
WO2019239645A1 PCT/JP2019/007475 JP2019007475W WO2019239645A1 WO 2019239645 A1 WO2019239645 A1 WO 2019239645A1 JP 2019007475 W JP2019007475 W JP 2019007475W WO 2019239645 A1 WO2019239645 A1 WO 2019239645A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
lens group
lens
observation optical
conditional expression
Prior art date
Application number
PCT/JP2019/007475
Other languages
English (en)
French (fr)
Inventor
哲 福本
Original Assignee
株式会社ニコンビジョン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコンビジョン filed Critical 株式会社ニコンビジョン
Priority to JP2020525251A priority Critical patent/JP7015389B2/ja
Priority to EP19820171.7A priority patent/EP3809183A4/en
Priority to CN201980038299.0A priority patent/CN112236704B/zh
Priority to US17/251,813 priority patent/US20210149153A1/en
Publication of WO2019239645A1 publication Critical patent/WO2019239645A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/001Eyepieces

Definitions

  • the present invention relates to an observation optical system used for a telescope, binoculars, and the like.
  • An observation optical system includes an objective optical system and an eyepiece optical system for observing an image formed by the objective optical system, which are arranged in order from the object side.
  • the group is moved along the optical axis to perform focusing, and the third lens group is moved in a direction perpendicular to the optical axis to correct image blur.
  • the following conditional expression is satisfied. 0.70 ⁇ f1 / f12 ⁇ 1.50
  • f1 focal length of the first lens group
  • f12 combined focal length of the first lens group and the second lens group
  • FIG. 6 is a diagram illustrating various aberrations in a state where image blur correction of the observation optical system according to the first example is not performed.
  • FIG. 4 is a diagram illustrating various aberrations in a state where image blur correction of the observation optical system according to the first example is performed.
  • A illustrates various aberrations corresponding to a positive field angle
  • B illustrates a negative field angle. The corresponding aberrations are shown.
  • It is a lens block diagram of the observation optical system which concerns on 2nd Example.
  • FIG. 12 is a diagram illustrating various aberrations in a state where correction of image blur in the observation optical system according to Example 2 is not performed.
  • FIG. 6A is a diagram illustrating various aberrations of the observation optical system according to Example 2 in a state where image blur correction is performed.
  • FIG. 6A illustrates various aberrations corresponding to a positive angle of view, and FIG. The corresponding aberrations are shown.
  • It is a lens block diagram of the observation optical system which concerns on 3rd Example.
  • It is a spherical aberration diagram of the observation optical system (afocal system) according to the third example.
  • FIG. 12 is a diagram illustrating various aberrations in a state where correction of image blur in the observation optical system according to Example 2 is not performed.
  • FIG. 6A is a diagram illustrating various aberrations of the observation optical system according to Example 2 in a state where image blur correction is performed.
  • FIG. 6A illustrates various aberrations corresponding to a positive angle of view,
  • FIG. 12 is a diagram illustrating various aberrations in a state where image blur correction of the observation optical system according to the third example is not performed.
  • FIG. 9A is a diagram illustrating various aberrations of the observation optical system according to Example 3 in a state where image blur correction is performed.
  • FIG. 9A illustrates various aberrations corresponding to a positive field angle, and FIG. The corresponding aberrations are shown.
  • It is a lens block diagram of the observation optical system concerning a 4th example.
  • It is a spherical aberration diagram of the observation optical system (afocal system) according to the fourth example.
  • FIG. 12 is a diagram illustrating various aberrations in a state where image blur correction of the observation optical system according to the fourth example is not performed.
  • FIG. 9A is a diagram illustrating various aberrations of the observation optical system according to Example 3 in a state where image blur correction is performed.
  • FIG. 9A illustrates various aberrations corresponding to a positive field angle, and FIG.
  • FIG. 7A is a diagram illustrating various aberrations of the observation optical system according to the fourth example in a state where image blur correction is performed.
  • FIG. 9A illustrates various aberrations corresponding to a positive field angle, and FIG. The corresponding aberrations are shown.
  • It is a lens block diagram of the observation optical system concerning a 5th example.
  • It is a spherical aberration diagram of the observation optical system (afocal system) according to Example 5.
  • FIG. 11 is a diagram illustrating various aberrations in a state where image blur correction of the observation optical system according to Example 5 is not performed.
  • FIG. 6A is a diagram illustrating various aberrations of the observation optical system according to Example 5 in a state where image blur correction is performed.
  • FIG. 5A illustrates various aberrations corresponding to a positive field angle, and FIG. The corresponding aberrations are shown.
  • It is a lens block diagram of the observation optical system concerning a 6th example.
  • It is a spherical aberration diagram of the observation optical system (afocal system) according to the sixth example.
  • FIG. 11 is a diagram illustrating various aberrations in a state where correction of image blur in the observation optical system according to Example 6 is not performed.
  • FIG. 9A is a diagram illustrating various aberrations of the observation optical system according to Example 6 in a state where image blur correction is performed.
  • FIG. 9A illustrates various aberrations corresponding to a positive angle of view, and FIG. The corresponding aberrations are shown.
  • the observation optical system of the present embodiment is a vibration proof optical system having a vibration proof function, and is used for optical instruments such as a telescope, binoculars, and a laser range finder, for example.
  • the observation optical system is provided in a pair of left and right to constitute a binocular optical system.
  • the observation optical system LS (1) as an example of the observation optical system LS according to this embodiment is an objective optical system that transmits light from an object (not shown) arranged in order from the object side.
  • light from the object passes through the objective optical system OB and the erecting optical system PR, and forms an image of the object (an erecting image) on the imaging plane I.
  • the image of the object imaged on the image plane I is magnified by the eyepiece optical system EP. Thereby, the observer can observe the image of the object as an erect image through the eyepiece lens EP.
  • the observation optical system LS may be the observation optical system LS (2) shown in FIG. 5 or the observation optical system LS (3) shown in FIG. 9, or the observation optical system LS (4) shown in FIG.
  • the observation optical system LS (5) shown in FIG. 17 or the observation optical system LS (6) shown in FIG. 21 may be used.
  • the lenses of the observation optical systems LS (2) to LS (6) shown in FIGS. 5, 9, 13, 17, and 21 are configured in the same manner as the observation optical system LS (1) shown in FIG. Is done.
  • the objective optical system OB includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive or negative refractive power, and a third lens having a negative refractive power, which are arranged in order from the object side. And a group G3. Focusing is performed by moving the second lens group G2 as the focusing lens group along the optical axis. When the second lens group G2 has a positive refractive power, the second lens group G2 moves toward the object side along the optical axis when focusing from an infinitely focused state to a short distance (finitely far) focused state. Moving. When the second lens group G2 has a negative refractive power, the second lens group G2 moves to the image side along the optical axis when focusing from the infinite focus state to the short distance focus state.
  • image blur is corrected by changing the image position. It has become.
  • An interval between the lens groups is set.
  • the ratio of the image blur correction amount on the image plane to the shift amount (movement amount in the direction perpendicular to the optical axis) of the image stabilizing lens group is preferably about 1 to 2. If this ratio is small, it is necessary to increase the shift amount of the anti-vibration lens group in order to sufficiently correct image blur caused by camera shake and the like, and the vibration-proof mechanism becomes large. On the other hand, if this ratio is too large, aberration fluctuations during image blur correction increase, and the decentering sensitivity (relative to the optical axis) of the vibration-proof lens group during assembly increases, which is not preferable.
  • focusing can be performed in a range from infinity to a short distance of about 3 m. If the amount of movement of the focusing lens group in the focusing range is small, the sensitivity to the displacement of the focusing lens group increases, and the focusing position changes even if the focusing lens group is slightly displaced. For this reason, the focusing mechanism is highly accurate and complicated. In the case of an observation optical system used for binoculars, a difference in focus position occurs between the left and right observation optical systems.
  • the lens barrel that supports the focusing lens becomes short, and the focusing lens group becomes unstable and easily decentered, resulting in poor imaging performance.
  • Invite On the other hand, if the amount of movement of the focusing lens group in the focusing range is large, it is difficult to secure a moving space for the focusing lens group in the observation optical system.
  • the observation optical system LS according to the present embodiment satisfies the following conditional expression (1).
  • F1 Focal length of the first lens group G1 f12: Composite focal length of the first lens group G1 and the second lens group G2
  • Conditional expression (1) is a conditional expression that defines the ratio between the focal length of the first lens group G1 and the combined focal length of the first lens group G1 and the second lens group G2.
  • the lower limit value of conditional expression (1) may be preferably 0.80.
  • conditional expression (1) When the corresponding value of conditional expression (1) exceeds the upper limit value, the sensitivity of decentration of the third lens group G3 (anti-vibration lens group) increases, and the second lens group G2 (focusing lens group) in the focusing range. Less travel. Therefore, it is difficult to satisfy both the image blur correction amount with respect to camera shake and the like and the appropriate amount of movement of the focusing lens group, which is not preferable.
  • the upper limit value of conditional expression (1) may be preferably 1.40.
  • the observation optical system LS according to this embodiment may satisfy the following conditional expressions (2) to (3).
  • Conditional expression (2) is a conditional expression that defines the ratio between the focal length of the first lens group G1 and the focal length of the second lens group G2.
  • the corresponding value of the conditional expression (2) is below the lower limit value, the focal length of the second lens group G2 becomes long, and the amount of movement of the second lens group G2 (focusing lens group) increases, and the observation optical system LS. It is difficult to secure a moving space for the second lens group G2 inside.
  • the lower limit value of conditional expression (2) may be preferably 0.10.
  • conditional expression (2) exceeds the upper limit value, the amount of movement of the second lens group G2 (focusing lens group) decreases, so that stable focusing becomes difficult, which is not preferable.
  • the upper limit value of conditional expression (2) may be preferably 0.50.
  • Conditional expression (3) is a conditional expression that defines the ratio between the focal length of the third lens group G3 and the focal length of the entire objective optical system OB.
  • the back focus is controlled by conditional expression (3). If the corresponding value of the conditional expression (3) is less than the lower limit value, the back focus is shortened, which makes it difficult to secure the arrangement space for the erecting optical system PR, which is not preferable.
  • the lower limit value of conditional expression (3) may preferably be set to ⁇ 0.40.
  • the third lens group G3 moves away from the image plane I as the back focus becomes longer.
  • the diameter of the third lens group G3 (anti-vibration lens group) is increased, leading to an increase in the size of the anti-vibration mechanism, which is disadvantageous in reducing the size of the observation optical system LS.
  • the upper limit value of conditional expression (3) may preferably be set to ⁇ 0.19.
  • the observation optical system LS according to this embodiment may satisfy the following conditional expression (4).
  • Conditional expression (4) is a conditional expression that defines the ratio between the combined focal length of the first lens group G1 and the second lens group G2 and the focal length of the entire objective optical system OB. If the corresponding value of the conditional expression (4) is below the lower limit value, the decentering sensitivity of the third lens group G3 (anti-vibration lens group) increases, and therefore when the assembly adjustment of the observation optical system LS or image blur correction is performed. This is not preferable because it is difficult to control lens shift. In order to ensure the effect of the present embodiment, the lower limit value of conditional expression (4) may preferably be set to 0.30.
  • the upper limit value of conditional expression (4) may be preferably 0.50.
  • the third lens group G3 includes a single lens, and may satisfy the following conditional expression (5).
  • ⁇ d3 Abbe number based on the d-line of a single lens in the third lens group G3
  • Conditional expression (5) is a conditional expression that defines the Abbe number of the single lenses constituting the third lens group G3.
  • the third lens group G3 as an anti-vibration lens group moves in a direction perpendicular to the optical axis (that is, decentered with respect to the optical axis)
  • the chromatic aberration of magnification changes.
  • the lower limit value of conditional expression (5) may preferably be 50.
  • the third lens group G3 may be composed of one cemented lens. Thereby, a change in lateral chromatic aberration due to the eccentricity of the third lens group G3 can be minimized.
  • the third lens group G3 is not limited to a configuration including one cemented lens or a single lens, and may include a plurality of lenses.
  • the second lens group G2 may have a positive refractive power.
  • the second lens group G2 when focusing from the infinite focus state to the short distance (finite distance) focus state, the second lens group G2 is located on the object side along the optical axis, that is, the third lens which is the anti-vibration lens group. Move to the side away from the group G3. Therefore, the movement space of the second lens group G2 can be secured relatively easily in the observation optical system LS.
  • the second lens group G2 is not limited to a positive refractive power, and may have a negative refractive power.
  • the second lens group G2 may be composed of a single lens. From the relationship between the power balance with the first lens group G1 and the chromatic aberration balance, the second lens group G2 can be configured simply with a single lens.
  • the second lens group G2 is not limited to a configuration including a single lens, and may include a plurality of lenses.
  • FIG. 5, FIG. 9, FIG. 13, FIG. 17, and FIG. 21 are cross-sectional views showing the configurations of the observation optical systems LS ⁇ LS (1) to LS (6) ⁇ according to the first to sixth examples. is there.
  • each lens group is a combination of a symbol G and a number
  • each lens is a combination of a symbol L and a number
  • each prism is represented by a combination of a symbol P and a number.
  • each lens is represented by a combination of a symbol E and a number.
  • symbols and numbers are represented using combinations of codes and numbers independently for each embodiment. For this reason, even if the combination of the same code
  • Tables 1 to 6 are shown below. Of these, Table 1 is the first example, Table 2 is the second example, Table 3 is the third example, Table 4 is the fourth example, and Table 5 is the first example. 5 Example, Table 6 is a table
  • f represents the focal length of the entire objective optical system OB
  • f1 represents the focal length of the first lens group G1
  • f2 represents the focal length of the second lens group G2
  • f3 represents The focal length of the third lens group G3 is shown
  • f12 is the combined focal length of the first lens group G1 and the second lens group G2.
  • the surface number indicates the order of the lens surfaces from the object side
  • R is a radius of curvature corresponding to each surface number (a positive value in the case of a lens surface convex on the object side)
  • D is the lens thickness or air spacing on the optical axis corresponding to each surface number
  • ⁇ d corresponds to each surface number.
  • the Abbe numbers based on the d-line of the optical material to be used are shown.
  • the table corresponding to the conditional expressions (1) to (5) shows the values corresponding to the conditional expressions (1) to (5).
  • mm is generally used for the focal length f, curvature radius R, surface interval D, and other lengths, etc. unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, the same optical performance can be obtained even by proportional reduction, and the present invention is not limited to this.
  • FIG. 1 is a cross-sectional view showing a configuration of an observation optical system according to the first example of the present embodiment.
  • the observation optical system LS (1) according to the first example includes an objective optical system OB that transmits light from an object (not shown) arranged in order from the object side, and an image formed by the objective optical system OB. It is composed of an erecting optical system PR that erects and an eyepiece optical system EP for observing an image erecting by the erecting optical system PR.
  • the objective optical system OB includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a negative refractive power, which are arranged in order from the object side. It consists of.
  • the first lens group G1 includes a cemented lens composed of a negative meniscus lens L11 having a convex surface directed toward the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface directed toward the object side. It consists of.
  • the second lens group G2 includes a positive meniscus lens L21 having a convex surface directed toward the object side.
  • the second lens group G2 is composed of a single lens having a positive refractive power.
  • the third lens group G3 is composed of a biconcave negative lens L31. That is, the third lens group G3 is composed of a single lens having negative refractive power.
  • the erecting optical system PR is composed of an erecting prism using an auxiliary prism P1 and a roof prism P2.
  • the eyepiece optical system EP includes a cemented lens made up of a biconcave negative lens E1 and a biconvex positive lens E2 arranged in order from the object side, a planoconcave negative lens E3 with a plane facing the object side, and both
  • the lens includes a cemented lens including a convex positive lens E4, and a plano-convex positive lens E5 having a flat surface facing the eye point.
  • An imaging plane I is disposed between the erecting optical system PR and the eyepiece optical system EP.
  • the auxiliary prism P1 and the roof prism P2 are schematically shown in FIG.
  • the second lens group G2 as the focusing lens group moves to the object side along the optical axis.
  • the third lens group G3 as an anti-vibration lens group moves in a direction perpendicular to the optical axis, whereby image blur correction on the image plane I is performed.
  • the movement amount (shift amount) of the third lens group G3 in the direction perpendicular to the optical axis is 0.6 mm, and the image blur correction amount (anti-shake correction angle) is 0.48 °.
  • Table 1 below lists values of specifications of the observation optical system according to the first example.
  • the surface interval from the 21st surface is the distance (eye relief) from the last lens surface (21st surface) to the eye point Eye.
  • FIG. 2 is a spherical aberration diagram of the observation optical system (afocal system) according to Example 1.
  • FIG. FIG. 3 is a diagram of various aberrations (astigmatism diagram and lateral aberration diagram) in a state where image blur correction of the observation optical system according to the first example is not performed.
  • (A) shows various aberrations corresponding to a positive field angle
  • (B) shows various aberrations corresponding to a negative field angle.
  • h represents the height from the optical axis.
  • represents a half angle of view.
  • the solid line indicates the sagittal image plane for each wavelength
  • the broken line indicates the meridional image plane for each wavelength.
  • the observation optical system according to the first example has excellent image forming performance in which various aberrations are corrected well both in the case where image blur correction is not performed and in the case where image blur correction is performed. You can see that it has.
  • FIG. 5 is a cross-sectional view showing the configuration of the observation optical system according to the second example of the present embodiment.
  • the observation optical system LS (2) according to the second example includes an objective optical system OB that is arranged in order from the object side and transmits light from an object (not shown), and an image formed by the objective optical system OB. It is composed of an erecting optical system PR that erects and an eyepiece optical system EP for observing an image erecting by the erecting optical system PR.
  • the objective optical system OB includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a negative refractive power, which are arranged in order from the object side. It consists of.
  • the first lens group G1 includes a cemented lens composed of a negative meniscus lens L11 having a convex surface directed toward the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface directed toward the object side. It consists of.
  • the second lens group G2 includes a positive meniscus lens L21 having a convex surface directed toward the object side.
  • the second lens group G2 is composed of a single lens having a positive refractive power.
  • the third lens group G3 is composed of a biconcave negative lens L31. That is, the third lens group G3 is composed of a single lens having negative refractive power.
  • the erecting optical system PR is composed of an erecting prism using an auxiliary prism P1 and a roof prism P2.
  • the eyepiece optical system EP includes a cemented lens made up of a biconcave negative lens E1 and a biconvex positive lens E2 arranged in order from the object side, a planoconcave negative lens E3 with a plane facing the object side, and both
  • the lens includes a cemented lens including a convex positive lens E4, and a plano-convex positive lens E5 having a flat surface facing the eye point.
  • An imaging plane I is disposed between the erecting optical system PR and the eyepiece optical system EP.
  • the auxiliary prism P1 and the roof prism P2 are schematically shown in FIG.
  • the second lens group G2 as the focusing lens group moves to the object side along the optical axis.
  • the third lens group G3 as an anti-vibration lens group moves in a direction perpendicular to the optical axis, whereby image blur correction on the image plane I is performed.
  • the movement amount (shift amount) of the third lens group G3 in the direction perpendicular to the optical axis is 0.6 mm, and the image blur correction amount (anti-shake correction angle) is 0.42 °.
  • Table 2 below lists values of specifications of the observation optical system according to the second example.
  • the surface interval from the 21st surface is the distance (eye relief) from the last lens surface (21st surface) to the eye point Eye.
  • FIG. 6 is a spherical aberration diagram of the observation optical system (afocal system) according to Example 2.
  • FIG. 7 is a diagram illustrating various aberrations (astigmatism diagram and lateral aberration diagram) in a state where image blur correction of the observation optical system according to Example 2 is not performed.
  • (A) shows various aberrations corresponding to a positive field angle
  • (B) shows various aberrations corresponding to a negative field angle. From the respective aberration diagrams, the observation optical system according to the second example has excellent image forming performance in which various aberrations are satisfactorily corrected both when image blur correction is not performed and when image blur correction is performed. You can see that it has.
  • FIG. 9 is a cross-sectional view showing a configuration of an observation optical system according to the third example of the present embodiment.
  • the observation optical system LS (3) according to the third example includes an objective optical system OB that transmits light from an object (not shown) arranged in order from the object side, and an image formed by the objective optical system OB. It is composed of an erecting optical system PR that erects and an eyepiece optical system EP for observing an image erecting by the erecting optical system PR.
  • the objective optical system OB includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group G3 having a negative refractive power, which are arranged in order from the object side. It consists of.
  • the first lens group G1 includes a cemented lens composed of a negative meniscus lens L11 having a convex surface directed toward the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface directed toward the object side. It consists of.
  • the second lens group G2 includes a negative meniscus lens L21 having a convex surface directed toward the object side.
  • the second lens group G2 is composed of a single lens having negative refractive power.
  • the third lens group G3 is composed of a biconcave negative lens L31. That is, the third lens group G3 is composed of a single lens having negative refractive power.
  • the erecting optical system PR is composed of an erecting prism using an auxiliary prism P1 and a roof prism P2.
  • the eyepiece optical system EP includes a cemented lens made up of a biconcave negative lens E1 and a biconvex positive lens E2 arranged in order from the object side, a planoconcave negative lens E3 with a plane facing the object side, and both
  • the lens includes a cemented lens including a convex positive lens E4, and a plano-convex positive lens E5 having a flat surface facing the eye point.
  • An imaging plane I is disposed between the erecting optical system PR and the eyepiece optical system EP.
  • the auxiliary prism P1 and the roof prism P2 are schematically shown in FIG.
  • the second lens group G2 as the focusing lens group moves to the image side along the optical axis. For example, it is possible to focus from infinity to a short distance of 3 m.
  • the amount of movement of the second lens group G2 (when the amount of movement toward the object side is minus ( ⁇ )) + 3.00 mm It is.
  • the third lens group G3 as an anti-vibration lens group moves in a direction perpendicular to the optical axis, whereby image blur correction on the image plane I is performed.
  • the movement amount (shift amount) of the third lens group G3 in the direction perpendicular to the optical axis is 0.6 mm
  • the image blur correction amount (anti-shake correction angle) is 0.52 °.
  • Table 3 below lists values of specifications of the observation optical system according to the third example.
  • the surface interval from the 21st surface is the distance (eye relief) from the last lens surface (21st surface) to the eye point Eye.
  • FIG. 10 is a spherical aberration diagram of the observation optical system (afocal system) according to the third example.
  • FIG. 11 is a diagram of various aberrations (astigmatism diagram and lateral aberration diagram) in a state where image blur correction of the observation optical system according to the third example is not performed.
  • (A) shows various aberrations corresponding to a positive field angle
  • (B) shows various aberrations corresponding to a negative field angle. From the respective aberration diagrams, the observation optical system according to the third example has excellent image forming performance in which various aberrations are well corrected both in the case where image blur correction is not performed and in the case where image blur correction is performed. You can see that it has.
  • FIG. 13 is a cross-sectional view showing a configuration of an observation optical system according to the fourth example of the present embodiment.
  • the observation optical system LS (4) according to the fourth example has an objective optical system OB arranged in order from the object side through which light from an object (not shown) passes, and an image formed by the objective optical system OB. It is composed of an erecting optical system PR that erects and an eyepiece optical system EP for observing an image erecting by the erecting optical system PR.
  • the objective optical system OB includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a negative refractive power, which are arranged in order from the object side. It consists of.
  • the first lens group G1 includes a cemented lens composed of a negative meniscus lens L11 having a convex surface directed toward the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface directed toward the object side. It consists of.
  • the second lens group G2 includes a positive meniscus lens L21 having a convex surface directed toward the object side.
  • the second lens group G2 is composed of a single lens having a positive refractive power.
  • the third lens group G3 is composed of a biconcave negative lens L31. That is, the third lens group G3 is composed of a single lens having negative refractive power.
  • the erecting optical system PR is composed of an erecting prism using an auxiliary prism P1 and a roof prism P2.
  • the eyepiece optical system EP includes, in order from the object side, a cemented lens including a positive meniscus lens E1 having a concave surface facing the object side and a plano-concave negative lens E2 having a flat surface facing the eyepoint side, and a concave surface facing the object side.
  • a positive meniscus lens E3 a cemented lens made up of a plano-concave negative lens E4 and a biconvex positive lens E5 facing the object side, and a biconvex positive lens E6.
  • An imaging plane I is disposed between the negative lens E2 (of the cemented lens) and the positive meniscus lens E3 in the eyepiece optical system EP.
  • a cemented lens a positive meniscus lens E1 and a negative lens E2 having negative refractive power between the erecting optical system PR and the imaging surface I, a distance from the final lens surface to the eye point Eye (eye Relief) can be lengthened, and a so-called high eye point eyepiece optical system can be obtained.
  • the auxiliary prism P1 and the roof prism P2 are schematically shown in FIG.
  • the second lens group G2 as the focusing lens group moves to the object side along the optical axis.
  • the third lens group G3 as an anti-vibration lens group moves in a direction perpendicular to the optical axis, whereby image blur correction on the image plane I is performed.
  • the movement amount (shift amount) of the third lens group G3 in the direction perpendicular to the optical axis is 0.6 mm, and the image blur correction amount (anti-shake correction angle) is 0.42 °.
  • Table 4 below lists values of specifications of the observation optical system according to the fourth example.
  • the surface distance from the 23rd surface is the distance (eye relief) from the last lens surface (23rd surface) to the eye point Eye.
  • FIG. 14 is a spherical aberration diagram of the observation optical system (afocal system) according to Example 4.
  • FIG. 15 is a diagram illustrating various aberrations (astigmatism diagram and lateral aberration diagram) in a state where image blur correction of the observation optical system according to Example 4 is not performed.
  • (A) shows various aberrations corresponding to a positive field angle
  • (B) shows various aberrations corresponding to a negative field angle. From the respective aberration diagrams, the observation optical system according to the fourth example has excellent image forming performance in which various aberrations are well corrected both in the case where image blur correction is not performed and in the case where image blur correction is performed. You can see that it has.
  • FIG. 17 is a cross-sectional view showing a configuration of an observation optical system according to the fifth example of the present embodiment.
  • the observation optical system LS (5) according to the fifth example includes an objective optical system OB that transmits light from an object (not shown) arranged in order from the object side, and an image formed by the objective optical system OB. It is composed of an erecting optical system PR that erects and an eyepiece optical system EP for observing an image erecting by the erecting optical system PR.
  • the objective optical system OB includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a negative refractive power, which are arranged in order from the object side. It consists of.
  • the first lens group G1 includes a cemented lens composed of a biconvex positive lens L11 and a negative meniscus lens L12 having a concave surface facing the object side, and a biconvex positive lens L13, which are arranged in order from the object side.
  • the second lens group G2 includes a positive meniscus lens L21 having a convex surface directed toward the object side.
  • the second lens group G2 is composed of a single lens having a positive refractive power.
  • the third lens group G3 includes a cemented lens including a positive meniscus lens L31 having a concave surface directed toward the object side and a biconcave negative lens L32. That is, the third lens group G3 is composed of one cemented lens having negative refractive power.
  • the erecting optical system PR is composed of an erecting prism using an auxiliary prism P1 and a roof prism P2.
  • the eyepiece optical system EP includes a biconcave negative lens E1 arranged in order from the object side, a positive meniscus lens E2 having a concave surface facing the object side, a biconcave negative lens E3, and a biconvex positive lens E4. And a biconvex positive lens E5.
  • An imaging plane I is disposed between the negative lens E1 and the positive meniscus lens E2 in the eyepiece optical system EP.
  • auxiliary prism P1 and the roof prism P2 are schematically shown in FIG.
  • the second lens group G2 as the focusing lens group moves to the object side along the optical axis.
  • the third lens group G3 as an anti-vibration lens group moves in a direction perpendicular to the optical axis, whereby image blur correction on the image plane I is performed.
  • the movement amount (shift amount) of the third lens group G3 in the direction perpendicular to the optical axis is 0.6 mm, and the image blur correction amount (anti-shake correction angle) is 0.50 °.
  • Table 5 below lists values of specifications of the observation optical system according to the fifth example.
  • the surface distance from the 23rd surface is the distance (eye relief) from the last lens surface (23rd surface) to the eye point Eye.
  • FIG. 18 is a spherical aberration diagram of the observation optical system (afocal system) according to Example 5.
  • FIG. 19 is a diagram of various aberrations (astigmatism diagram and lateral aberration diagram) in a state where image blur correction of the observation optical system according to Example 5 is not performed.
  • (A) shows various aberrations corresponding to a positive field angle
  • (B) shows various aberrations corresponding to a negative field angle. From the respective aberration diagrams, the observation optical system according to the fifth example has excellent image forming performance with various aberrations corrected well both when image blur correction is not performed and when image blur correction is performed. You can see that it has.
  • FIG. 21 is a cross-sectional view showing a configuration of an observation optical system according to the sixth example of the present embodiment.
  • the observation optical system LS (6) according to the sixth example includes an objective optical system OB that transmits light from an object (not shown) arranged in order from the object side, and an image formed by the objective optical system OB. It is composed of an erecting optical system PR that erects and an eyepiece optical system EP for observing an image erecting by the erecting optical system PR.
  • the objective optical system OB includes a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a negative refractive power, which are arranged in order from the object side. It consists of.
  • the first lens group G1 includes a cemented lens composed of a negative meniscus lens L11 having a convex surface directed toward the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface directed toward the object side. It consists of.
  • the second lens group G2 includes a positive meniscus lens L21 having a convex surface directed toward the object side.
  • the second lens group G2 is composed of a single lens having a positive refractive power.
  • the third lens group G3 is composed of a biconcave negative lens L31. That is, the third lens group G3 is composed of a single lens having negative refractive power.
  • the erecting optical system PR is composed of an erecting prism using an auxiliary prism P1 and a roof prism P2.
  • the eyepiece optical system EP includes, in order from the object side, a cemented lens including a positive meniscus lens E1 having a concave surface facing the object side and a plano-concave negative lens E2 having a flat surface facing the eyepoint side, and a concave surface facing the object side.
  • a positive meniscus lens E3 a cemented lens made up of a plano-concave negative lens E4 and a biconvex positive lens E5 facing the object side, and a biconvex positive lens E6.
  • An imaging plane I is disposed between the negative lens E2 (of the cemented lens) and the positive meniscus lens E3 in the eyepiece optical system EP.
  • a cemented lens a positive meniscus lens E1 and a negative lens E2 having negative refractive power between the erecting optical system PR and the imaging surface I, a distance from the final lens surface to the eye point Eye (eye Relief) can be lengthened, and a so-called high eye point eyepiece optical system can be obtained.
  • the auxiliary prism P1 and the roof prism P2 are schematically shown in FIG.
  • the second lens group G2 as the focusing lens group moves to the object side along the optical axis.
  • the third lens group G3 as an anti-vibration lens group moves in a direction perpendicular to the optical axis, whereby image blur correction on the image plane I is performed.
  • the movement amount (shift amount) of the third lens group G3 in the direction perpendicular to the optical axis is 0.6 mm, and the image blur correction amount (anti-shake correction angle) is 0.31 °.
  • Table 6 below lists values of specifications of the observation optical system according to the sixth example.
  • the surface distance from the 23rd surface is the distance (eye relief) from the last lens surface (23rd surface) to the eye point Eye.
  • FIG. 22 is a spherical aberration diagram of the observation optical system (afocal system) according to Example 6.
  • FIG. 23 is a diagram of various aberrations (astigmatism diagram and lateral aberration diagram) in a state where image blur correction of the observation optical system according to Example 6 is not performed.
  • (A) shows various aberrations corresponding to a positive field angle
  • (B) shows various aberrations corresponding to a negative field angle. From the respective aberration diagrams, the observation optical system according to the sixth example has excellent image forming performance with various aberrations corrected satisfactorily both when image blur correction is not performed and when image blur correction is performed. You can see that it has.
  • each embodiment it is possible to obtain both an image blur correction amount with respect to camera shake and the like and an appropriate movement amount of the focusing lens group in a small configuration, and image blur correction. It is possible to realize an observation optical system LS that can reduce the decentration aberration that occurs at the time.
  • each of the above examples shows a specific example of the present embodiment, and the present embodiment is not limited thereto.

Abstract

観察光学系(LS)を構成する対物光学系(OB)が、物体側から順に並んだ、正の屈折力を有する第1レンズ群(G1)と、正または負の屈折力を有する第2レンズ群(G2)と、負の屈折力を有する第3レンズ群(G3)とからなり、第2レンズ群(G2)を光軸に沿って移動させて合焦を行い、第3レンズ群(G3)を光軸と垂直な方向に移動させて像ブレの補正を行う構成であり、以下の条件式を満足する。 0.70≦f1/f12≦1.50 但し、f1:第1レンズ群(G1)の焦点距離 f12:第1レンズ群(G1)と第2レンズ群(G2)との合成焦点距離

Description

観察光学系
 本発明は、望遠鏡や双眼鏡等に用いられる観察光学系に関する。
 手振れ等の振動によって引き起こされる像ブレを補正するために、所定のレンズを光軸に対して偏心させることが可能な光学系が種々提案されている。望遠鏡や双眼鏡、レーザレンジファインダ等に用いられる観察光学系では、対物光学系に像ブレの補正を行う機構を設けたものが提案されている(例えば、特許文献1を参照)。しかしながら、従来の観察光学系には、防振機能とフォーカシング機能の両方について十分な性能を有するものが存在しなかった。
特開2003-057537号公報
 本願の態様に係る観察光学系は、物体側から順に並んだ、対物光学系と、前記対物光学系により形成される像を観察するための接眼光学系とを備え、前記対物光学系は、物体側から順に並んだ、正の屈折力を有する第1レンズ群と、正または負の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群とからなり、前記第2レンズ群を光軸に沿って移動させて合焦を行い、前記第3レンズ群を光軸と垂直な方向に移動させて像ブレの補正を行う構成であり、以下の条件式を満足する。
 0.70≦f1/f12≦1.50
 但し、f1:前記第1レンズ群の焦点距離
    f12:前記第1レンズ群と前記第2レンズ群との合成焦点距離
第1実施例に係る観察光学系のレンズ構成図である。 第1実施例に係る観察光学系(アフォーカル系)の球面収差図である。 第1実施例に係る観察光学系の像ブレの補正を行わない状態での諸収差図である。 第1実施例に係る観察光学系の像ブレの補正を行う状態での諸収差図であり、(A)はプラスの画角に対応した諸収差を示し、(B)はマイナスの画角に対応した諸収差を示す。 第2実施例に係る観察光学系のレンズ構成図である。 第2実施例に係る観察光学系(アフォーカル系)の球面収差図である。 第2実施例に係る観察光学系の像ブレの補正を行わない状態での諸収差図である。 第2実施例に係る観察光学系の像ブレの補正を行う状態での諸収差図であり、(A)はプラスの画角に対応した諸収差を示し、(B)はマイナスの画角に対応した諸収差を示す。 第3実施例に係る観察光学系のレンズ構成図である。 第3実施例に係る観察光学系(アフォーカル系)の球面収差図である。 第3実施例に係る観察光学系の像ブレの補正を行わない状態での諸収差図である。 第3実施例に係る観察光学系の像ブレの補正を行う状態での諸収差図であり、(A)はプラスの画角に対応した諸収差を示し、(B)はマイナスの画角に対応した諸収差を示す。 第4実施例に係る観察光学系のレンズ構成図である。 第4実施例に係る観察光学系(アフォーカル系)の球面収差図である。 第4実施例に係る観察光学系の像ブレの補正を行わない状態での諸収差図である。 第4実施例に係る観察光学系の像ブレの補正を行う状態での諸収差図であり、(A)はプラスの画角に対応した諸収差を示し、(B)はマイナスの画角に対応した諸収差を示す。 第5実施例に係る観察光学系のレンズ構成図である。 第5実施例に係る観察光学系(アフォーカル系)の球面収差図である。 第5実施例に係る観察光学系の像ブレの補正を行わない状態での諸収差図である。 第5実施例に係る観察光学系の像ブレの補正を行う状態での諸収差図であり、(A)はプラスの画角に対応した諸収差を示し、(B)はマイナスの画角に対応した諸収差を示す。 第6実施例に係る観察光学系のレンズ構成図である。 第6実施例に係る観察光学系(アフォーカル系)の球面収差図である。 第6実施例に係る観察光学系の像ブレの補正を行わない状態での諸収差図である。 第6実施例に係る観察光学系の像ブレの補正を行う状態での諸収差図であり、(A)はプラスの画角に対応した諸収差を示し、(B)はマイナスの画角に対応した諸収差を示す。
 以下、本実施形態の観察光学系について図を参照して説明する。本実施形態では、小型の構成でありながら、手振れ等に対する十分な像ブレの補正量と、合焦レンズ群の適切な移動量の両方を得ることができ、像ブレの補正の際に生じる偏心収差を小さくすることも可能な観察光学系について説明する。本実施形態の観察光学系は、防振機能を有する防振光学系であり、例えば、望遠鏡や双眼鏡、レーザレンジファインダ等の光学機器に使用される。なお、双眼鏡に使用される場合、観察光学系は左右一対で設けられて双眼鏡光学系を構成する。
 本実施形態に係る観察光学系LSの一例としての観察光学系LS(1)は、図1に示すように、物体側から順に並んだ、物体(図示せず)からの光が透過する対物光学系OBと、対物光学系OBにより形成される像を正立化する正立光学系PRと、正立光学系PRにより正立化される像を観察するための接眼光学系EPとを備えている。このような観察光学系LSにおいて、物体からの光は、対物光学系OBおよび正立光学系PRを透過し、結像面Iで物体の像(正立像)を結像する。結像面Iで結像された物体の像は、接眼光学系EPにより拡大される。これにより、観察者は、接眼レンズEPを介して物体の像を正立像として観察することができる。
 本実施形態に係る観察光学系LSは、図5に示す観察光学系LS(2)でも良く、図9に示す観察光学系LS(3)でも良く、図13に示す観察光学系LS(4)でも良く、図17に示す観察光学系LS(5)でも良く、図21に示す観察光学系LS(6)でも良い。なお、図5、図9、図13、図17、図21に示す観察光学系LS(2)~LS(6)の各レンズは、図1に示す観察光学系LS(1)と同様に構成される。
 対物光学系OBは、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正または負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成される。合焦レンズ群として第2レンズ群G2を光軸に沿って移動させることにより、合焦(フォーカシング)を行うようになっている。第2レンズ群G2が正の屈折力を有する場合、無限遠合焦状態から近距離(有限遠)合焦状態への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動する。第2レンズ群G2が負の屈折力を有する場合、無限遠合焦状態から近距離合焦状態への合焦の際、第2レンズ群G2が光軸に沿って像側に移動する。
 また、防振レンズ群として第3レンズ群G3を光軸と垂直な方向に移動させる(すなわち、光軸に対して偏心させる)ことにより、像位置を変化させて像ブレの補正を行うようになっている。像ブレの補正を行うための防振機構の設置スペースと、合焦を行うための合焦機構の設置スペースと、合焦の際の第2レンズ群G2の移動スペースを確保できるように、各レンズ群同士の間隔が設定される。
 通常、防振レンズ群のシフト量(光軸と垂直な方向への移動量)に対する、像面における像ブレの補正量の比率は、1~2程度であることが好ましい。この比率が小さいと、手振れ等に起因する像ブレを十分に補正するために、防振レンズ群のシフト量を大きくする必要があり、防振機構が大型化する。一方、この比率が大きすぎると、像ブレの補正の際の収差変動が増加し、組み立ての際の防振レンズ群の(光軸に対する)偏心敏感度が高くなるため、好ましくない。
 また、双眼鏡等に使用される観察光学系では、無限遠から3m程度の近距離までの範囲で合焦を行うことができるようになっている。この合焦範囲における合焦レンズ群の移動量が少ないと、合焦レンズ群の変位に対する敏感度が高くなるため、合焦レンズ群が僅かに変位しても合焦位置が変化してしまう。そのため、合焦機構の高精度化および複雑化を招く。双眼鏡に使用される観察光学系の場合、左右の観察光学系で合焦位置の差が生じてしまう。また、合焦範囲における合焦レンズ群の移動量が少ないと、合焦レンズを支持する鏡筒が短くなるため、合焦レンズ群が不安定になって偏心し易くなり、結像性能の低下を招く。一方、合焦範囲における合焦レンズ群の移動量が多いと、観察光学系内において合焦レンズ群の移動スペースを確保することが難しくなる。
 これらの理由から、手振れ等に対する十分な防振補正角(像ブレの補正量)と、合焦レンズ群の適切な移動量について、両方とも満足することが重要になる。そこで、本実施形態に係る観察光学系LSは、次の条件式(1)を満足することが好ましい。
 0.70≦f1/f12≦1.50 ・・・(1)
 但し、f1:第1レンズ群G1の焦点距離
    f12:第1レンズ群G1と第2レンズ群G2との合成焦点距離
 条件式(1)は、第1レンズ群G1の焦点距離と、第1レンズ群G1と第2レンズ群G2との合成焦点距離との比を規定する条件式である。条件式(1)を満足することで、手振れ等に対する十分な像ブレの補正量と、合焦レンズ群(第2レンズ群G2)の適切な移動量の両方を得ることができる。
 条件式(1)の対応値が下限値を下回ると、第1レンズ群G1の焦点距離が短くなるため、特に球面収差の補正が困難になる。本実施形態の効果を確実にするために、条件式(1)の下限値を好ましくは0.80としてもよい。
 条件式(1)の対応値が上限値を上回ると、第3レンズ群G3(防振レンズ群)の偏心敏感度が高くなるとともに、合焦範囲における第2レンズ群G2(合焦レンズ群)の移動量が少なくなる。そのため、手振れ等に対する十分な像ブレの補正量と、合焦レンズ群の適切な移動量について、両方とも満足することが困難になり、好ましくない。本実施形態の効果を確実にするために、条件式(1)の上限値を好ましくは1.40としてもよい。
 本実施形態に係る観察光学系LSは、次の条件式(2)~(3)を満足してもよい。
 0.07≦|f1/f2|≦0.70 ・・・(2)
 -0.50≦f3/f≦-0.15 ・・・(3)
 但し、f:対物光学系OBの焦点距離
    f2:第2レンズ群G2の焦点距離
    f3:第3レンズ群G3の焦点距離
 条件式(2)は、第1レンズ群G1の焦点距離と、第2レンズ群G2の焦点距離との比を規定する条件式である。条件式(2)の対応値が下限値を下回ると、第2レンズ群G2の焦点距離が長くなるため、第2レンズ群G2(合焦レンズ群)の移動量が多くなり、観察光学系LS内において第2レンズ群G2の移動スペースを確保することが難しくなる。本実施形態の効果を確実にするために、条件式(2)の下限値を好ましくは0.10としてもよい。
 条件式(2)の対応値が上限値を上回ると、第2レンズ群G2(合焦レンズ群)の移動量が少なくなるため、安定した合焦(フォーカシング)が困難になり、好ましくない。本実施形態の効果を確実にするために、条件式(2)の上限値を好ましくは0.50としてもよい。
 条件式(3)は、第3レンズ群G3の焦点距離と、対物光学系OB全体の焦点距離との比を規定する条件式である。条件式(3)によりバックフォーカスをコントロールしている。条件式(3)の対応値が下限値を下回ると、バックフォーカスが短くなるため、正立光学系PRの配置スペースを確保することが難しくなり、好ましくない。本実施形態の効果を確実にするために、条件式(3)の下限値を好ましくは-0.40としてもよい。
 条件式(3)の対応値が上限値を上回ると、バックフォーカスが長くなるのに従って、第3レンズ群G3が結像面Iから離れる。これにより、第3レンズ群G3(防振レンズ群)の直径が大きくなって防振機構の大型化を招き、観察光学系LSの小型化に不利となるため、好ましくない。本実施形態の効果を確実にするために、条件式(3)の上限値を好ましくは-0.19としてもよい。
 本実施形態に係る観察光学系LSは、次の条件式(4)を満足してもよい。
 0.22≦f12/f≦0.62 ・・・(4)
 但し、f:対物光学系OBの焦点距離
 条件式(4)は、第1レンズ群G1と第2レンズ群G2との合成焦点距離と、対物光学系OB全体の焦点距離との比を規定する条件式である。条件式(4)の対応値が下限値を下回ると、第3レンズ群G3(防振レンズ群)の偏心敏感度が高くなるため、観察光学系LSの組み立て調整や、像ブレを補正する際のレンズシフト制御等が難しくなり、好ましくない。本実施形態の効果を確実にするために、条件式(4)の下限値を好ましくは0.30としてもよい。
 条件式(4)の対応値が上限値を上回ると、像ブレの補正量(防振補正角)が小さくなるため、十分な防振機能を得ることができない。本実施形態の効果を確実にするために、条件式(4)の上限値を好ましくは0.50としてもよい。
 本実施形態に係る観察光学系LSにおいて、第3レンズ群G3は単レンズからなり、次の条件式(5)を満足してもよい。
 νd3≧45 ・・・(5)
 但し、νd3:第3レンズ群G3における単レンズのd線を基準とするアッベ数
 条件式(5)は、第3レンズ群G3を構成する単レンズのアッベ数を規定する条件式である。防振レンズ群として第3レンズ群G3が光軸と垂直な方向に移動する(すなわち、光軸に対して偏心する)と、倍率色収差が変化する。条件式(5)を満足することで、第3レンズ群G3の偏心による倍率色収差の変化を最小限に抑えることができる。本実施形態の効果を確実にするために、条件式(5)の下限値を好ましくは50としてもよい。
 本実施形態に係る観察光学系LSにおいて、第3レンズ群G3は1個の接合レンズから構成されてもよい。これにより、第3レンズ群G3の偏心による倍率色収差の変化を最小限に抑えることができる。なお、第3レンズ群G3は、1個の接合レンズもしくは単レンズからなる構成に限らず、複数のレンズから構成されてもよい。
 本実施形態に係る観察光学系LSにおいて、第2レンズ群G2は正の屈折力を有してもよい。この場合、無限遠合焦状態から近距離(有限遠)合焦状態への合焦の際、第2レンズ群G2が光軸に沿って物体側に、すなわち防振レンズ群である第3レンズ群G3から離れる側に移動する。そのため、観察光学系LS内において第2レンズ群G2の移動スペースを比較的容易に確保することができる。なお、第2レンズ群G2は、正の屈折力に限らず、負の屈折力を有してもよい。
 本実施形態に係る観察光学系LSにおいて、第2レンズ群G2は単レンズから構成されてもよい。第1レンズ群G1とのパワーバランスおよび、色収差バランスの関係から、第2レンズ群G2を単レンズからなる簡単な構成にすることが可能である。なお、第2レンズ群G2は、単レンズからなる構成に限らず、複数のレンズから構成されてもよい。
 以下、本実施形態の実施例に係る観察光学系LSを図面に基づいて説明する。図1、図5、図9、図13、図17、図21は、第1~第6実施例に係る観察光学系LS{LS(1)~LS(6)}の構成を示す断面図である。これら図1、図5、図9、図13、図17、図21において、対物光学系OBについては、各レンズ群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。正立光学系PRについては、各プリズムを符号Pと数字の組み合わせにより表している。接眼光学系EPについては、各レンズを符号Eと数字の組み合わせにより表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。
 以下に表1~表6を示すが、この内、表1は第1実施例、表2は第2実施例、表3は第3実施例、表4は第4実施例、表5は第5実施例、表6は第6実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、C線(波長λ=656.3nm)、d線(波長λ=587.6nm)、F線(波長λ=486.1nm)を選んでいる。
 [全体諸元]の表において、fは対物光学系OB全体の焦点距離を示し、f1は第1レンズ群G1の焦点距離を示し、f2は第2レンズ群G2の焦点距離を示し、f3は第3レンズ群G3の焦点距離を示し、f12は第1レンズ群G1と第2レンズ群G2との合成焦点距離を示す。
 [レンズデータ]の表において、面番号は物体側からのレンズ面の順序を示し、Rは各面番号に対応する曲率半径(物体側に凸のレンズ面の場合を正の値としている)、Dは各面番号に対応する光軸上のレンズ厚もしくは空気間隔、ndは各面番号に対応する光学材料のd線(波長λ=587.6nm)に対する屈折率、νdは各面番号に対応する光学材料のd線を基準とするアッベ数を、それぞれ示す。曲率半径の「∞」は平面又は開口を示す。また、空気の屈折率nd=1.00000の記載は省略している。
 [条件式対応値]の表には、上記の条件式(1)~(5)に対応する値を示す。
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。
 ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。
 (第1実施例)
 第1実施例について、図1~図4および表1を用いて説明する。図1は、本実施形態の第1実施例に係る観察光学系の構成を示す断面図である。第1実施例に係る観察光学系LS(1)は、物体側から順に並んだ、物体(図示せず)からの光が透過する対物光学系OBと、対物光学系OBにより形成される像を正立化する正立光学系PRと、正立光学系PRにより正立化される像を観察するための接眼光学系EPとから構成される。
 対物光学系OBは、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成される。第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および両凸形状の正レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL21から構成される。すなわち、第2レンズ群G2は、正の屈折力を有する単レンズから構成される。第3レンズ群G3は、両凹形状の負レンズL31から構成される。すなわち、第3レンズ群G3は、負の屈折力を有する単レンズから構成される。
 正立光学系PRは、補助プリズムP1とダハプリズムP2とを用いた正立プリズムから構成される。接眼光学系EPは、物体側から順に並んだ、両凹形状の負レンズE1および両凸形状の正レンズE2からなる接合レンズと、物体側に平面を向けた平凹形状の負レンズE3および両凸形状の正レンズE4からなる接合レンズと、アイポイント側に平面を向けた平凸形状の正レンズE5とから構成される。正立光学系PRと接眼光学系EPとの間に、結像面Iが配置される。なお、説明容易化のため、図1において、補助プリズムP1およびダハプリズムP2を模式的に記載している。
 本実施例では、無限遠合焦状態から近距離(有限遠)合焦状態への合焦の際、合焦レンズ群として第2レンズ群G2が光軸に沿って物体側に移動する。例えば、無限遠から3mの近距離まで合焦を行うことが可能であり、このときの第2レンズ群G2の移動量は(物体側への移動量をマイナス(-)とした場合)-2.9mmである。また、防振レンズ群として第3レンズ群G3が光軸と垂直な方向に移動することで、結像面Iにおける像ブレの補正が行われる。第3レンズ群G3の光軸と垂直な方向への移動量(シフト量)は0.6mmであり、像ブレの補正量(防振補正角)は0.48°である。
 以下の表1に、第1実施例に係る観察光学系の諸元の値を掲げる。なお、第21面からの面間隔は最終レンズ面(第21面)からアイポイントEyeまでの距離(アイレリーフ)である。
(表1)
[全体諸元]
 f=130.8
 f1=53.5
 f2=265.3
 f3=-29.3
 f12=46.6
[レンズデータ]
 面番号   R     D    nd    νd
  1    105.6   1.5    1.8061   33.3
  2     37.9   4.5    1.5891   61.2
  3    -130.6   0.5
  4     28    3.8    1.4875   70.3
  5     93    14.1
  6     39.8   2.4    1.5174   52.2
  7     54.9   9.3
  8    -200.8   1.2    1.6968   55.5
  9     22.8   6.4
  10    ∞    20.2    1.5688   56
  11    ∞    0.4
  12    ∞    32.5    1.5168   64.1
  13    ∞    15.8
  14    -25.2   1.3    1.8052   25.4
  15    107    5.7    1.5891   61.2
  16    -14.3   0.2
  17    ∞    1.2    1.8467   23.8
  18    18.4   6     1.5891   61.2
  19    -23.5   0.2
  20    15.7   4.3    1.6968   55.5
  21    ∞    14
[条件式対応値]
 条件式(1) f1/f12=1.15
 条件式(2) |f1/f2|=0.20
 条件式(3) f3/f=-0.22
 条件式(4) f12/f=0.36
 条件式(5) νd3=55.5
 図2は、第1実施例に係る観察光学系(アフォーカル系)の球面収差図である。図3は、第1実施例に係る観察光学系の像ブレの補正を行わない状態での諸収差図(非点収差図および横収差図)である。図4は、第1実施例に係る観察光学系の像ブレの補正を行う状態(第3レンズ群G3のシフト量=0.6mm、防振補正角=0.48°)での諸収差図であり、(A)はプラスの画角に対応した諸収差を示し、(B)はマイナスの画角に対応した諸収差を示す。各収差図において、CはC線(波長λ=656.3nm)、dはd線(波長λ=587.6nm)、FはF線(波長λ=486.1nm)に対する諸収差をそれぞれ示す。球面収差図において、hは光軸からの高さを示す。非点収差図および横収差図において、ωは半画角を示す。非点収差図において、実線は各波長に対するサジタル像面を示し、破線は各波長に対するメリジオナル像面を示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。
 各収差図より、第1実施例に係る観察光学系は、像ブレの補正を行わない場合と像ブレの補正を行う場合の両方において、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
 (第2実施例)
 第2実施例について、図5~図8および表2を用いて説明する。図5は、本実施形態の第2実施例に係る観察光学系の構成を示す断面図である。第2実施例に係る観察光学系LS(2)は、物体側から順に並んだ、物体(図示せず)からの光が透過する対物光学系OBと、対物光学系OBにより形成される像を正立化する正立光学系PRと、正立光学系PRにより正立化される像を観察するための接眼光学系EPとから構成される。
 対物光学系OBは、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成される。第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および両凸形状の正レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL21から構成される。すなわち、第2レンズ群G2は、正の屈折力を有する単レンズから構成される。第3レンズ群G3は、両凹形状の負レンズL31から構成される。すなわち、第3レンズ群G3は、負の屈折力を有する単レンズから構成される。
 正立光学系PRは、補助プリズムP1とダハプリズムP2とを用いた正立プリズムから構成される。接眼光学系EPは、物体側から順に並んだ、両凹形状の負レンズE1および両凸形状の正レンズE2からなる接合レンズと、物体側に平面を向けた平凹形状の負レンズE3および両凸形状の正レンズE4からなる接合レンズと、アイポイント側に平面を向けた平凸形状の正レンズE5とから構成される。正立光学系PRと接眼光学系EPとの間に、結像面Iが配置される。なお、説明容易化のため、図5において、補助プリズムP1およびダハプリズムP2を模式的に記載している。
 本実施例では、無限遠合焦状態から近距離(有限遠)合焦状態への合焦の際、合焦レンズ群として第2レンズ群G2が光軸に沿って物体側に移動する。例えば、無限遠から3mの近距離まで合焦を行うことが可能であり、このときの第2レンズ群G2の移動量は(物体側への移動量をマイナス(-)とした場合)-2.86mmである。また、防振レンズ群として第3レンズ群G3が光軸と垂直な方向に移動することで、結像面Iにおける像ブレの補正が行われる。第3レンズ群G3の光軸と垂直な方向への移動量(シフト量)は0.6mmであり、像ブレの補正量(防振補正角)は0.42°である。
 以下の表2に、第2実施例に係る観察光学系の諸元の値を掲げる。なお、第21面からの面間隔は最終レンズ面(第21面)からアイポイントEyeまでの距離(アイレリーフ)である。
(表2)
[全体諸元]
 f=130.8
 f1=59.5
 f2=230
 f3=-32.5
 f12=50.3
[レンズデータ]
 面番号   R     D    nd    νd
  1     91    1.5    1.8061   33.3
  2     36.4   4.5    1.5891   61.2
  3    -135    0.5
  4     28.9   3.8    1.4875   70.3
  5     64.2   14.9
  6     50    2.4    1.5174   52.2
  7     84.8   11.1
  8    -500    1.2    1.6968   55.5
  9     23.8   6.4
  10    ∞    20.2    1.5688   56
  11    ∞    0.4
  12    ∞    32.5    1.5168   64.1
  13    ∞    14.6
  14    -24.3   1.3    1.8052   25.4
  15    107    5.7    1.5891   61.2
  16    -14.2   0.2
  17    ∞    1.2    1.8467   23.8
  18    18.9   6     1.5891   61.2
  19    -23.5   0.2
  20    15.7   4.3    1.6968   55.5
  21    ∞    14.1
[条件式対応値]
 条件式(1) f1/f12=1.18
 条件式(2) |f1/f2|=0.26
 条件式(3) f3/f=-0.25
 条件式(4) f12/f=0.38
 条件式(5) νd3=55.5
 図6は、第2実施例に係る観察光学系(アフォーカル系)の球面収差図である。図7は、第2実施例に係る観察光学系の像ブレの補正を行わない状態での諸収差図(非点収差図および横収差図)である。図8は、第2実施例に係る観察光学系の像ブレの補正を行う状態(第3レンズ群G3のシフト量=0.6mm、防振補正角=0.42°)での諸収差図であり、(A)はプラスの画角に対応した諸収差を示し、(B)はマイナスの画角に対応した諸収差を示す。各収差図より、第2実施例に係る観察光学系は、像ブレの補正を行わない場合と像ブレの補正を行う場合の両方において、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
 (第3実施例)
 第3実施例について、図9~図12および表3を用いて説明する。図9は、本実施形態の第3実施例に係る観察光学系の構成を示す断面図である。第3実施例に係る観察光学系LS(3)は、物体側から順に並んだ、物体(図示せず)からの光が透過する対物光学系OBと、対物光学系OBにより形成される像を正立化する正立光学系PRと、正立光学系PRにより正立化される像を観察するための接眼光学系EPとから構成される。
 対物光学系OBは、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成される。第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および両凸形状の正レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL21から構成される。すなわち、第2レンズ群G2は、負の屈折力を有する単レンズから構成される。第3レンズ群G3は、両凹形状の負レンズL31から構成される。すなわち、第3レンズ群G3は、負の屈折力を有する単レンズから構成される。
 正立光学系PRは、補助プリズムP1とダハプリズムP2とを用いた正立プリズムから構成される。接眼光学系EPは、物体側から順に並んだ、両凹形状の負レンズE1および両凸形状の正レンズE2からなる接合レンズと、物体側に平面を向けた平凹形状の負レンズE3および両凸形状の正レンズE4からなる接合レンズと、アイポイント側に平面を向けた平凸形状の正レンズE5とから構成される。正立光学系PRと接眼光学系EPとの間に、結像面Iが配置される。なお、説明容易化のため、図9において、補助プリズムP1およびダハプリズムP2を模式的に記載している。
 本実施例では、無限遠合焦状態から近距離(有限遠)合焦状態への合焦の際、合焦レンズ群として第2レンズ群G2が光軸に沿って像側に移動する。例えば、無限遠から3mの近距離まで合焦を行うことが可能であり、このときの第2レンズ群G2の移動量は(物体側への移動量をマイナス(-)とした場合)+3.00mmである。また、防振レンズ群として第3レンズ群G3が光軸と垂直な方向に移動することで、結像面Iにおける像ブレの補正が行われる。第3レンズ群G3の光軸と垂直な方向への移動量(シフト量)は0.6mmであり、像ブレの補正量(防振補正角)は0.52°である。
 以下の表3に、第3実施例に係る観察光学系の諸元の値を掲げる。なお、第21面からの面間隔は最終レンズ面(第21面)からアイポイントEyeまでの距離(アイレリーフ)である。
(表3)
[全体諸元]
 f=129.8
 f1=39.7
 f2=-260
 f3=-27
 f12=44
[レンズデータ]
 面番号   R     D    nd    νd
  1     60    1.5    1.7205   34.7
  2     28    4.8    1.603    65.4
  3    -480    0.5
  4     26.8   4.5    1.4875   70.3
  5    315    7.1
  6    250.8   2.4    1.5174   52.2
  7     87.3   10.5
  8    -180    1.2    1.6968   55.5
  9     21.1   6.4
  10    ∞    20.2    1.5688   56
  11    ∞    0.4
  12    ∞    32.5    1.5168   64.1
  13    ∞    15.5
  14    -28.4   1.3    1.8052   25.4
  15    107    5.5    1.5891   61.2
  16    -14.6   0.2
  17    ∞    1.2    1.8467   23.8
  18    16.8   6     1.5891   61.2
  19    -23.5   0.2
  20    15.3   4.4    1.6968   55.5
  21    ∞    13.8
[条件式対応値]
 条件式(1) f1/f12=0.90
 条件式(2) |f1/f2|=0.15
 条件式(3) f3/f=-0.21
 条件式(4) f12/f=0.34
 条件式(5) νd3=55.5
 図10は、第3実施例に係る観察光学系(アフォーカル系)の球面収差図である。図11は、第3実施例に係る観察光学系の像ブレの補正を行わない状態での諸収差図(非点収差図および横収差図)である。図12は、第3実施例に係る観察光学系の像ブレの補正を行う状態(第3レンズ群G3のシフト量=0.6mm、防振補正角=0.52°)での諸収差図であり、(A)はプラスの画角に対応した諸収差を示し、(B)はマイナスの画角に対応した諸収差を示す。各収差図より、第3実施例に係る観察光学系は、像ブレの補正を行わない場合と像ブレの補正を行う場合の両方において、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
 (第4実施例)
 第4実施例について、図13~図16および表4を用いて説明する。図13は、本実施形態の第4実施例に係る観察光学系の構成を示す断面図である。第4実施例に係る観察光学系LS(4)は、物体側から順に並んだ、物体(図示せず)からの光が透過する対物光学系OBと、対物光学系OBにより形成される像を正立化する正立光学系PRと、正立光学系PRにより正立化される像を観察するための接眼光学系EPとから構成される。
 対物光学系OBは、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成される。第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および両凸形状の正レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL21から構成される。すなわち、第2レンズ群G2は、正の屈折力を有する単レンズから構成される。第3レンズ群G3は、両凹形状の負レンズL31から構成される。すなわち、第3レンズ群G3は、負の屈折力を有する単レンズから構成される。
 正立光学系PRは、補助プリズムP1とダハプリズムP2とを用いた正立プリズムから構成される。接眼光学系EPは、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズE1およびアイポイント側に平面を向けた平凹形状の負レンズE2からなる接合レンズと、物体側に凹面を向けた正メニスカスレンズE3と、物体側に平面を向けた平凹形状の負レンズE4および両凸形状の正レンズE5からなる接合レンズと、両凸形状の正レンズE6とから構成される。接眼光学系EPにおける(接合レンズの)負レンズE2と正メニスカスレンズE3との間に、結像面Iが配置される。正立光学系PRと結像面Iとの間に負の屈折力を有する接合レンズ(正メニスカスレンズE1および負レンズE2)を配置することで、最終レンズ面からアイポイントEyeまでの距離(アイレリーフ)を長くすることができ、いわゆるハイアイポイントの接眼光学系にすることが可能になる。なお、説明容易化のため、図13において、補助プリズムP1およびダハプリズムP2を模式的に記載している。
 本実施例では、無限遠合焦状態から近距離(有限遠)合焦状態への合焦の際、合焦レンズ群として第2レンズ群G2が光軸に沿って物体側に移動する。例えば、無限遠から3mの近距離まで合焦を行うことが可能であり、このときの第2レンズ群G2の移動量は(物体側への移動量をマイナス(-)とした場合)-5.73mmである。また、防振レンズ群として第3レンズ群G3が光軸と垂直な方向に移動することで、結像面Iにおける像ブレの補正が行われる。第3レンズ群G3の光軸と垂直な方向への移動量(シフト量)は0.6mmであり、像ブレの補正量(防振補正角)は0.42°である。
 以下の表4に、第4実施例に係る観察光学系の諸元の値を掲げる。なお、第23面からの面間隔は最終レンズ面(第23面)からアイポイントEyeまでの距離(アイレリーフ)である。
(表4)
[全体諸元]
 f=135.8
 f1=54.8
 f2=520
 f3=-34.5
 f12=50.8
[レンズデータ]
 面番号   R     D    nd    νd
  1     90.2   2     1.8061   33.3
  2     36.2   5.6    1.5891   61.2
  3    -222.7   0.5
  4     31.3   5     1.4875   70.3
  5    174.1   12.3
  6     83.6   2.4    1.5174   52.2
  7    120    10.6
  8    -200    1.2    1.603    65.4
  9     23.3   10
  10    ∞    21.9    1.5688   56
  11    ∞    0.4
  12    ∞    36.4    1.5168   64.1
  13    ∞    5
  14    -21    2.5    1.8052   25.4
  15    -12    1     1.5168   64.1
  16    ∞    9.5
  17   -191    4.4    1.5891   61.2
  18    -21    0.2
  19    ∞    1.3    1.8467   23.8
  20    17.6   7.5    1.5891   61.2
  21    -29.5   0.2
  22    20.4   5     1.6968   55.5
  23    -91.6   15.2
[条件式対応値]
 条件式(1) f1/f12=1.08
 条件式(2) |f1/f2|=0.11
 条件式(3) f3/f=-0.25
 条件式(4) f12/f=0.37
 条件式(5) νd3=65.4
 図14は、第4実施例に係る観察光学系(アフォーカル系)の球面収差図である。図15は、第4実施例に係る観察光学系の像ブレの補正を行わない状態での諸収差図(非点収差図および横収差図)である。図16は、第4実施例に係る観察光学系の像ブレの補正を行う状態(第3レンズ群G3のシフト量=0.6mm、防振補正角=0.42°)での諸収差図であり、(A)はプラスの画角に対応した諸収差を示し、(B)はマイナスの画角に対応した諸収差を示す。各収差図より、第4実施例に係る観察光学系は、像ブレの補正を行わない場合と像ブレの補正を行う場合の両方において、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
 (第5実施例)
 第5実施例について、図17~図20および表5を用いて説明する。図17は、本実施形態の第5実施例に係る観察光学系の構成を示す断面図である。第5実施例に係る観察光学系LS(5)は、物体側から順に並んだ、物体(図示せず)からの光が透過する対物光学系OBと、対物光学系OBにより形成される像を正立化する正立光学系PRと、正立光学系PRにより正立化される像を観察するための接眼光学系EPとから構成される。
 対物光学系OBは、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成される。第1レンズ群G1は、物体側から順に並んだ、両凸形状の正レンズL11および物体側に凹面を向けた負メニスカスレンズL12からなる接合レンズと、両凸形状の正レンズL13とから構成される。第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL21から構成される。すなわち、第2レンズ群G2は、正の屈折力を有する単レンズから構成される。第3レンズ群G3は、物体側に凹面を向けた正メニスカスレンズL31および両凹形状の負レンズL32からなる接合レンズから構成される。すなわち、第3レンズ群G3は、負の屈折力を有する1個の接合レンズから構成される。
 正立光学系PRは、補助プリズムP1とダハプリズムP2とを用いた正立プリズムから構成される。接眼光学系EPは、物体側から順に並んだ、両凹形状の負レンズE1と、物体側に凹面を向けた正メニスカスレンズE2と、両凹形状の負レンズE3および両凸形状の正レンズE4からなる接合レンズと、両凸形状の正レンズE5とから構成される。接眼光学系EPにおける負レンズE1と正メニスカスレンズE2との間に、結像面Iが配置される。正立光学系PRと結像面Iとの間に負の屈折力を有する単レンズ(負レンズE1)を配置することで、最終レンズ面からアイポイントEyeまでの距離(アイレリーフ)を長くすることができ、いわゆるハイアイポイントの接眼光学系にすることが可能になる。なお、説明容易化のため、図17において、補助プリズムP1およびダハプリズムP2を模式的に記載している。
 本実施例では、無限遠合焦状態から近距離(有限遠)合焦状態への合焦の際、合焦レンズ群として第2レンズ群G2が光軸に沿って物体側に移動する。例えば、無限遠から3mの近距離まで合焦を行うことが可能であり、このときの第2レンズ群G2の移動量は(物体側への移動量をマイナス(-)とした場合)-3.18mmである。また、防振レンズ群として第3レンズ群G3が光軸と垂直な方向に移動することで、結像面Iにおける像ブレの補正が行われる。第3レンズ群G3の光軸と垂直な方向への移動量(シフト量)は0.6mmであり、像ブレの補正量(防振補正角)は0.50°である。
 以下の表5に、第5実施例に係る観察光学系の諸元の値を掲げる。なお、第23面からの面間隔は最終レンズ面(第23面)からアイポイントEyeまでの距離(アイレリーフ)である。
(表5)
[全体諸元]
 f=135.8
 f1=51
 f2=300
 f3=-29
 f12=45.4
[レンズデータ]
 面番号   R     D    nd    νd
  1     84    6     1.5168   64.1
  2    -42.1   1.5    1.7205   34.7
  3    -188.4   0.5
  4     36.8   5.2    1.5168   64.1
  5    -599    13.2
  6     44.9   2.4    1.5168   64.1
  7     62    7
  8    -213.2   1.3    1.8052   25.3
  9    -118.3   1     1.717    48
  10    22.9   10
  11    ∞    21.9    1.5688   56
  12    ∞    0.4
  13    ∞    36.4    1.5168   64.1
  14    ∞    4.7
  15    -33    1.5    1.5168   64.1
  16    160    10.6
  17   -143.6   5     1.6968   55.5
  18    -17.8   0.2
  19   -258.5   1.5    1.8467   23.8
  20    15.3   8     1.603    65.5
  21    -36.5   0.2
  22    16.5   5.7    1.6204   60.1
  23   -149.1   14.4
[条件式対応値]
 条件式(1) f1/f12=1.12
 条件式(2) |f1/f2|=0.17
 条件式(3) f3/f=-0.21
 条件式(4) f12/f=0.33
 図18は、第5実施例に係る観察光学系(アフォーカル系)の球面収差図である。図19は、第5実施例に係る観察光学系の像ブレの補正を行わない状態での諸収差図(非点収差図および横収差図)である。図20は、第5実施例に係る観察光学系の像ブレの補正を行う状態(第3レンズ群G3のシフト量=0.6mm、防振補正角=0.50°)での諸収差図であり、(A)はプラスの画角に対応した諸収差を示し、(B)はマイナスの画角に対応した諸収差を示す。各収差図より、第5実施例に係る観察光学系は、像ブレの補正を行わない場合と像ブレの補正を行う場合の両方において、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
 (第6実施例)
 第6実施例について、図21~図24および表6を用いて説明する。図21は、本実施形態の第6実施例に係る観察光学系の構成を示す断面図である。第6実施例に係る観察光学系LS(6)は、物体側から順に並んだ、物体(図示せず)からの光が透過する対物光学系OBと、対物光学系OBにより形成される像を正立化する正立光学系PRと、正立光学系PRにより正立化される像を観察するための接眼光学系EPとから構成される。
 対物光学系OBは、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成される。第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および両凸形状の正レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成される。第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL21から構成される。すなわち、第2レンズ群G2は、正の屈折力を有する単レンズから構成される。第3レンズ群G3は、両凹形状の負レンズL31から構成される。すなわち、第3レンズ群G3は、負の屈折力を有する単レンズから構成される。
 正立光学系PRは、補助プリズムP1とダハプリズムP2とを用いた正立プリズムから構成される。接眼光学系EPは、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズE1およびアイポイント側に平面を向けた平凹形状の負レンズE2からなる接合レンズと、物体側に凹面を向けた正メニスカスレンズE3と、物体側に平面を向けた平凹形状の負レンズE4および両凸形状の正レンズE5からなる接合レンズと、両凸形状の正レンズE6とから構成される。接眼光学系EPにおける(接合レンズの)負レンズE2と正メニスカスレンズE3との間に、結像面Iが配置される。正立光学系PRと結像面Iとの間に負の屈折力を有する接合レンズ(正メニスカスレンズE1および負レンズE2)を配置することで、最終レンズ面からアイポイントEyeまでの距離(アイレリーフ)を長くすることができ、いわゆるハイアイポイントの接眼光学系にすることが可能になる。なお、説明容易化のため、図21において、補助プリズムP1およびダハプリズムP2を模式的に記載している。
 本実施例では、無限遠合焦状態から近距離(有限遠)合焦状態への合焦の際、合焦レンズ群として第2レンズ群G2が光軸に沿って物体側に移動する。例えば、無限遠から3mの近距離まで合焦を行うことが可能であり、このときの第2レンズ群G2の移動量は(物体側への移動量をマイナス(-)とした場合)-3.11mmである。また、防振レンズ群として第3レンズ群G3が光軸と垂直な方向に移動することで、結像面Iにおける像ブレの補正が行われる。第3レンズ群G3の光軸と垂直な方向への移動量(シフト量)は0.6mmであり、像ブレの補正量(防振補正角)は0.31°である。
 以下の表6に、第6実施例に係る観察光学系の諸元の値を掲げる。なお、第23面からの面間隔は最終レンズ面(第23面)からアイポイントEyeまでの距離(アイレリーフ)である。
(表6)
[全体諸元]
 f=136
 f1=78
 f2=200
 f3=-47
 f12=61
[レンズデータ]
 面番号   R     D    nd    νd
  1    127.7   2     1.8061   33.3
  2     44.5   5     1.5891   61.2
  3    -200    0.5
  4     36.9   4     1.5168   64.1
  5     90.2   18.2
  6     68.9   2.4    1.5168   64.1
  7    204.5   14.7
  8    -200    1.2    1.5891   61.2
  9     32.2   10
  10    ∞    21.9    1.5688   56
  11    ∞    0.4
  12    ∞    36.4    1.5168   64.1
  13    ∞    5.2
  14    -20.1   2.5    1.8052   25.4
  15    -12    1     1.5168   64.1
  16    ∞    9.5
  17   -183.8   4.4    1.5891   61.2
  18    -22.6   0.2
  19    ∞    1.3    1.8467   23.8
  20    18.1   7.5    1.5891   61.2
  21    -27.7   0.2
  22    19.4   5     1.6968   55.5
  23   -141.9   15.9
[条件式対応値]
 条件式(1) f1/f12=1.28
 条件式(2) |f1/f2|=0.39
 条件式(3) f3/f=-0.35
 条件式(4) f12/f=0.45
 条件式(5) νd3=61.2
 図22は、第6実施例に係る観察光学系(アフォーカル系)の球面収差図である。図23は、第6実施例に係る観察光学系の像ブレの補正を行わない状態での諸収差図(非点収差図および横収差図)である。図24は、第6実施例に係る観察光学系の像ブレの補正を行う状態(第3レンズ群G3のシフト量=0.6mm、防振補正角=0.31°)での諸収差図であり、(A)はプラスの画角に対応した諸収差を示し、(B)はマイナスの画角に対応した諸収差を示す。各収差図より、第6実施例に係る観察光学系は、像ブレの補正を行わない場合と像ブレの補正を行う場合の両方において、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
 以上、各実施例によれば、小型の構成でありながら、手振れ等に対する十分な像ブレの補正量と、合焦レンズ群の適切な移動量の両方を得ることができ、像ブレの補正の際に生じる偏心収差を小さくすることも可能な観察光学系LSを実現することができる。
 ここで、上記各実施例は本実施形態の一具体例を示しているものであり、本実施形態はこれらに限定されるものではない。
 LS 観察光学系
 OB 対物光学系            G1 第1レンズ群
 G2 第2レンズ群           G3 第3レンズ群
 PR 正立光学系            EP 接眼光学系

Claims (9)

  1.  物体側から順に並んだ、対物光学系と、前記対物光学系により形成される像を観察するための接眼光学系とを備え、
     前記対物光学系は、物体側から順に並んだ、正の屈折力を有する第1レンズ群と、正または負の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群とからなり、
     前記第2レンズ群を光軸に沿って移動させて合焦を行い、
     前記第3レンズ群を光軸と垂直な方向に移動させて像ブレの補正を行う構成であり、
     以下の条件式を満足する観察光学系。
     0.70≦f1/f12≦1.50
     但し、f1:前記第1レンズ群の焦点距離
        f12:前記第1レンズ群と前記第2レンズ群との合成焦点距離
  2.  前記対物光学系と前記接眼光学系との間に配置されて前記対物光学系により形成される像を正立化する正立光学系を備え、
     前記接眼光学系は、前記正立光学系により正立化される像を観察するための接眼光学系である請求項1に記載の観察光学系。
  3.  以下の条件式を満足する請求項1または2に記載の観察光学系。
     0.07≦|f1/f2|≦0.70
     -0.50≦f3/f≦-0.15
     但し、f:前記対物光学系の焦点距離
        f2:前記第2レンズ群の焦点距離
        f3:前記第3レンズ群の焦点距離
  4.  以下の条件式を満足する請求項1~3のいずれか一項に記載の観察光学系。
     0.22≦f12/f≦0.62
     但し、f:前記対物光学系の焦点距離
  5.  前記第3レンズ群は単レンズからなり、
     以下の条件式を満足する請求項1~4のいずれか一項に記載の観察光学系。
     νd3≧45
     但し、νd3:前記第3レンズ群における前記単レンズのd線を基準とするアッベ数
  6.  前記第3レンズ群は接合レンズからなる請求項1~4のいずれか一項に記載の観察光学系。
  7.  前記第2レンズ群は正の屈折力を有する請求項1~6のいずれか一項に記載の観察光学系。
  8.  前記第2レンズ群は負の屈折力を有する請求項1~6のいずれか一項に記載の観察光学系。
  9.  前記第2レンズ群は単レンズからなる請求項1~8のいずれか一項に記載の観察光学系。
PCT/JP2019/007475 2018-06-14 2019-02-27 観察光学系 WO2019239645A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020525251A JP7015389B2 (ja) 2018-06-14 2019-02-27 観察光学系
EP19820171.7A EP3809183A4 (en) 2018-06-14 2019-02-27 OPTICAL OBSERVATION SYSTEM
CN201980038299.0A CN112236704B (zh) 2018-06-14 2019-02-27 观察光学系统
US17/251,813 US20210149153A1 (en) 2018-06-14 2019-02-27 Observation optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-113760 2018-06-14
JP2018113760 2018-06-14

Publications (1)

Publication Number Publication Date
WO2019239645A1 true WO2019239645A1 (ja) 2019-12-19

Family

ID=68843142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007475 WO2019239645A1 (ja) 2018-06-14 2019-02-27 観察光学系

Country Status (5)

Country Link
US (1) US20210149153A1 (ja)
EP (1) EP3809183A4 (ja)
JP (1) JP7015389B2 (ja)
CN (1) CN112236704B (ja)
WO (1) WO2019239645A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020107356A1 (de) * 2019-05-24 2020-11-26 Swarovski-Optik Kg. Beobachtungsfernrohr
CN113835212B (zh) * 2021-09-30 2024-02-20 湖南华南光电(集团)有限责任公司 一种超轻型数字化瞄具光学系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133312A (ja) * 1997-10-31 1999-05-21 Tochigi Nikon:Kk 無限遠物体から近接物体まで合焦可能な観察光学系
JP2001116989A (ja) * 1999-10-20 2001-04-27 Canon Inc 防振機能を有した対物レンズおよびそれを用いた双眼鏡
JP2003057537A (ja) 2001-08-21 2003-02-26 Pentax Corp 像ブレ補正系を備えた観察用光学系
JP2008040065A (ja) * 2006-08-04 2008-02-21 Canon Inc 観察光学系
JP2008089659A (ja) * 2006-09-29 2008-04-17 Fujinon Corp 防振機能を有する対物レンズ、ならびにそれを用いた望遠鏡および双眼鏡
JP2013114133A (ja) * 2011-11-30 2013-06-10 Canon Inc 光学系及びそれを有する光学機器
JP2013186458A (ja) * 2012-03-12 2013-09-19 Olympus Imaging Corp インナーフォーカスレンズ系及びそれを備えた撮像装置
JP2017215491A (ja) * 2016-06-01 2017-12-07 キヤノン株式会社 光学系及びそれを有する撮像装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4138324B2 (ja) * 2001-11-28 2008-08-27 松下電器産業株式会社 ズームレンズ及びそれを用いたビデオカメラ
JP4857576B2 (ja) * 2005-03-23 2012-01-18 株式会社ニコン ズームレンズ
DE102012200519A1 (de) * 2012-01-13 2013-07-18 Carl Zeiss Sports Optics Gmbh Optisches System zur Abbildung eines Objekts
JP2016166907A (ja) * 2013-07-11 2016-09-15 株式会社 ニコンビジョン 防振光学系

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133312A (ja) * 1997-10-31 1999-05-21 Tochigi Nikon:Kk 無限遠物体から近接物体まで合焦可能な観察光学系
JP2001116989A (ja) * 1999-10-20 2001-04-27 Canon Inc 防振機能を有した対物レンズおよびそれを用いた双眼鏡
JP2003057537A (ja) 2001-08-21 2003-02-26 Pentax Corp 像ブレ補正系を備えた観察用光学系
JP2008040065A (ja) * 2006-08-04 2008-02-21 Canon Inc 観察光学系
JP2008089659A (ja) * 2006-09-29 2008-04-17 Fujinon Corp 防振機能を有する対物レンズ、ならびにそれを用いた望遠鏡および双眼鏡
JP2013114133A (ja) * 2011-11-30 2013-06-10 Canon Inc 光学系及びそれを有する光学機器
JP2013186458A (ja) * 2012-03-12 2013-09-19 Olympus Imaging Corp インナーフォーカスレンズ系及びそれを備えた撮像装置
JP2017215491A (ja) * 2016-06-01 2017-12-07 キヤノン株式会社 光学系及びそれを有する撮像装置

Also Published As

Publication number Publication date
CN112236704B (zh) 2023-06-06
CN112236704A (zh) 2021-01-15
JP7015389B2 (ja) 2022-02-02
EP3809183A1 (en) 2021-04-21
JPWO2019239645A1 (ja) 2021-04-22
US20210149153A1 (en) 2021-05-20
EP3809183A4 (en) 2022-03-02

Similar Documents

Publication Publication Date Title
JP5423190B2 (ja) 変倍光学系、及び、この変倍光学系を備える光学機器
JP3524408B2 (ja) 観察光学系及びそれを有する光学機器
JP3541283B2 (ja) 内焦式望遠レンズ
US6377399B1 (en) Image stabilizing optical system
JPH06337354A (ja) ズームレンズ
US20230359005A1 (en) Zoom optical system, optical apparatus and imaging apparatus using the zoom optical system, and method for manufacturing the zoom optical system
JP5544926B2 (ja) 撮影レンズ、この撮影レンズを有する光学機器、及び、撮影レンズの製造方法
WO2010004806A1 (ja) ズームレンズ、これを有する光学機器及びズームレンズの製造方法
JP5660311B2 (ja) 変倍光学系、光学機器、及び、変倍光学系の製造方法
WO2017057662A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
WO2019239645A1 (ja) 観察光学系
WO2015005326A1 (ja) 防振光学系
JP2008040065A (ja) 観察光学系
JP5277178B2 (ja) 望遠鏡光学系
JP2000019398A (ja) 大口径比内焦式望遠ズームレンズ
JPH0727975A (ja) 防振機能を備えたリアコンバージョンレンズ
JPH11174345A (ja) 広視野接眼レンズ
JP5028009B2 (ja) 観察光学系
JPH085907A (ja) 望遠レンズ光学系
JPH08190052A (ja) 近距離合焦可能なズームレンズ
JP4799003B2 (ja) 接眼ズームレンズおよびフィールドスコープ
WO2015125480A1 (ja) 変倍光学系
JP6881603B2 (ja) 光学系および光学機器
JP2021056263A (ja) 回折面を有した像振れ補正機能を有する観察光学機器
JPH0792390A (ja) ズームレンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525251

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019820171

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019820171

Country of ref document: EP

Effective date: 20210114