WO2019239574A1 - 超電導線材、積層超電導線材、超電導コイル及び超電導ケーブル - Google Patents

超電導線材、積層超電導線材、超電導コイル及び超電導ケーブル Download PDF

Info

Publication number
WO2019239574A1
WO2019239574A1 PCT/JP2018/022883 JP2018022883W WO2019239574A1 WO 2019239574 A1 WO2019239574 A1 WO 2019239574A1 JP 2018022883 W JP2018022883 W JP 2018022883W WO 2019239574 A1 WO2019239574 A1 WO 2019239574A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
layer
superconducting wire
wire
substrate
Prior art date
Application number
PCT/JP2018/022883
Other languages
English (en)
French (fr)
Inventor
永石 竜起
高史 山口
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2020525053A priority Critical patent/JP7074190B2/ja
Priority to KR1020207035416A priority patent/KR102518606B1/ko
Priority to CN201880094607.7A priority patent/CN112262444B/zh
Priority to US16/973,643 priority patent/US12046393B2/en
Priority to DE112018007737.3T priority patent/DE112018007737T5/de
Priority to PCT/JP2018/022883 priority patent/WO2019239574A1/ja
Publication of WO2019239574A1 publication Critical patent/WO2019239574A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/68Connections to or between superconductive connectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present disclosure relates to a superconducting wire, a laminated superconducting wire, a superconducting coil, and a superconducting cable.
  • Patent Document 1 a superconducting wire described in JP 2012-156048 A (Patent Document 1) is known.
  • the superconducting wire described in Patent Document 1 includes a substrate, an intermediate layer disposed on the substrate, an oxide superconductor layer disposed on the intermediate layer, and a stable disposed on the oxide superconductor layer. It has a chemical layer.
  • the intermediate layer is made of an insulating material.
  • the superconducting wire includes a first member and a second member.
  • the first member is disposed on the first substrate composed of a conductive material, the first intermediate layer disposed on the first substrate and composed of the conductive material, and the first intermediate layer, And a first superconducting layer made of a superconducting material.
  • the second member is disposed on the second substrate composed of a conductive material, the second intermediate layer disposed on the second substrate and composed of the conductive material, and the second intermediate layer, And a second superconducting layer made of a superconducting material.
  • the first member and the second member are stacked along the thickness direction of the superconducting wire such that the first superconducting layer and the second superconducting layer face each other.
  • the first superconducting layer is electrically connected to the second superconducting layer.
  • FIG. 1 is a top view of a superconducting wire 10 according to the embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is a cross-sectional view parallel to the longitudinal direction at the first end 10a of the superconducting wire 10 according to the first modification of the embodiment.
  • FIG. 5 is a cross-sectional view parallel to the longitudinal direction at the first end portion 10a of the superconducting wire 10 according to the second modification of the embodiment.
  • FIG. 6 is a cross-sectional view of a superconducting wire 10 according to a third modification of the embodiment.
  • FIG. 1 is a top view of a superconducting wire 10 according to the embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is a cross
  • FIG. 7 is a cross-sectional view of a superconducting wire 10 according to a fourth modification of the embodiment.
  • FIG. 8 is a top view of the laminated superconducting wire 20 according to the embodiment.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG.
  • FIG. 10 is a cross-sectional view of the laminated superconducting wire 20 according to the first modification of the embodiment.
  • FIG. 11 is a cross-sectional view of a laminated superconducting wire 20 according to a second modification of the embodiment.
  • FIG. 12 is a cross-sectional view of the laminated superconducting wire 20 according to the third modification of the embodiment.
  • FIG. 13 is a perspective view of the superconducting coil 30 according to the embodiment.
  • FIG. 14 is a cross-sectional view orthogonal to the central axis A of the superconducting coil 30 according to the embodiment.
  • FIG. 15 is a side view of the superconducting cable 40 according to the embodiment.
  • 16 is a cross-sectional view taken along the line XVI-XVI of FIG.
  • the present disclosure provides a superconducting wire that can improve quench resistance.
  • the superconducting wire according to the present disclosure can improve quench resistance.
  • a superconducting wire includes a first member and a second member.
  • the first member is disposed on the first substrate composed of a conductive material, the first intermediate layer disposed on the first substrate and composed of the conductive material, and the first intermediate layer, And a first superconducting layer made of a superconducting material.
  • the second member is disposed on the second substrate composed of a conductive material, the second intermediate layer disposed on the second substrate and composed of the conductive material, and the second intermediate layer, And a second superconducting layer made of a superconducting material.
  • the first member and the second member are stacked along the thickness direction of the superconducting wire such that the first superconducting layer and the second superconducting layer face each other.
  • the first superconducting layer is electrically connected to the second superconducting layer.
  • the current flowing through the first superconducting layer (second superconducting layer) is the second superconducting layer ( It flows to the first superconducting layer) and the first substrate (second substrate). That is, in the superconducting wire of (1) above, there are two paths through which current is bypassed when quenching occurs. Therefore, according to the superconducting wire of (1) above, the quench resistance can be improved.
  • the first superconducting layer and the second superconducting layer are arranged near the neutral line of the superconducting wire. Therefore, according to the superconducting wire of (1) above, bending stress applied to the first superconducting layer and the second superconducting layer when the superconducting wire is bent can be reduced.
  • the first superconducting layer may be superconductingly joined to the second superconducting layer.
  • the superconducting wire of (2) above when quenching occurs in the first superconducting layer (second superconducting layer), the current flowing in the first superconducting layer (second superconducting layer) is passed through the normal conductor. Without this, the second superconducting layer (first superconducting layer) can be bypassed. Further, according to the superconducting wire of (2) above, since the thickness of the superconducting layer is substantially increased by superconducting the first superconducting layer and the second superconducting layer, local deterioration in characteristics of the superconducting layer occurs. Is less likely to occur.
  • the first member may further include a first protective layer disposed on the first superconducting layer and made of silver or a silver alloy.
  • the second member may further have a second protective layer disposed on the second superconducting layer and made of silver or a silver alloy.
  • the first protective layer may be directly joined to the second protective layer.
  • the current flowing through the first superconducting layer is relatively reduced in resistance value. Can be bypassed to the second superconducting layer (first superconducting layer) without going through a high material.
  • the superconducting wire of (1) may further include a bonding layer.
  • the first member may further include a first protective layer that is disposed on the first superconducting layer and made of a conductive material.
  • the second member may further include a second protective layer that is disposed on the second superconducting layer and is made of a conductive material. The first protective layer may be bonded to the second protective layer via the bonding layer.
  • quench resistance can be improved.
  • the first protective layer and the second protective layer may be made of silver or a silver alloy.
  • the joining layer may be made of solder.
  • the bonding layer is exposed by removing one of the first member and the second member at the end in the longitudinal direction of the superconducting wire. Also good.
  • the thickness of the first protective layer and the thickness of the second protective layer may be 5 ⁇ m or less.
  • the first protective layer is a layer through which current is bypassed to the second superconducting layer (first superconducting layer) when quenching occurs in the first superconducting layer (second superconducting layer). Therefore, even if the first protective layer and the second protective layer are formed relatively thin, the influence on the quench resistance is small. On the other hand, since the first protective layer and the second protective layer are formed relatively thin, the first superconducting layer and the second superconducting layer are disposed closer to the neutral line of the superconducting wire. When bending is applied, bending stress applied to the first superconducting layer and the second superconducting layer can be further reduced. From the above, according to the superconducting wire of (7) above, the bending stress applied to the first superconducting layer and the second superconducting layer can be further reduced while improving the quench resistance.
  • the first substrate is disposed between the first base layer, the first base layer and the first intermediate layer, and constitutes the first base layer And a first conductive layer made of a material having a lower resistivity than the material to be made.
  • the second substrate is disposed between the second base layer, the second base layer, and the second intermediate layer, and is made of a material having a resistivity lower than that of the material constituting the second base layer. And two conductive layers.
  • the current flowing in the first superconducting layer is also bypassed to the first substrate (second substrate).
  • the bypassed current flows through the first conductive layer (second conductive layer) having a relatively low resistance value, according to the superconducting wire of (8), the resistance value when the current is bypassed. Can be reduced.
  • the first conductive layer may be exposed by removing the first base layer at the end in the longitudinal direction.
  • the superconducting wire (9) is electrically connected to an external power source via the first conductive layer having a relatively low resistivity. Therefore, according to the superconducting wire (9), the connection resistance with the external power source can be reduced.
  • the second conductive layer may be exposed by removing the second base layer at the end in the longitudinal direction.
  • the superconducting wire of (10) is electrically connected to an external power source through a second conductive layer having a relatively low resistivity. Therefore, according to the superconducting wire of (10) above, the connection resistance with the external power source can be reduced.
  • the first conductive layer and the second conductive layer may be made of copper or a copper alloy.
  • the first substrate and the second substrate may be made of stainless steel or hastelloy.
  • the resistance value when this current is bypassed can be reduced.
  • the first member and the second member may be separated from each other at the end in the longitudinal direction of the superconducting wire.
  • a laminated superconducting wire includes a plurality of superconducting wires (1) to (12). Each of the superconducting wires is superposed along the thickness direction of the laminated superconducting wire. The value obtained by dividing the thickness of the laminated superconducting wire by the width of the laminated superconducting wire in the direction orthogonal to the longitudinal direction of the laminated superconducting wire is 0.5 or more and 2.0 or less.
  • a superconducting coil according to an aspect of the present disclosure includes the superconducting wires (1) to (12) and an insulating material.
  • the superconducting wire is wound around the central axis of the superconducting coil and impregnated with an insulating material.
  • the tensile stress in the direction of peeling off the superconducting layer acts on the superconducting wire due to the difference in thermal expansion coefficient from the insulating material. This tensile stress causes the superconducting layer to peel from the superconducting wire.
  • the superconducting wires (1) to (12) have a structure in which the superconducting layer is sandwiched between the first substrate and the second substrate, so that tensile stress is unlikely to act on the superconducting layer.
  • the superconducting coil of (14) it is possible to suppress the superconducting layers (the first superconducting layer and the second superconducting layer) from being peeled off due to the tensile stress resulting from the difference in thermal expansion coefficient between the superconducting wire and the insulating material.
  • the superconducting wire may have a routing portion drawn from a portion wound around the central axis of the superconducting coil.
  • the minimum value of the radius of curvature of the superconducting wire in the routing portion may be 20 mm or less.
  • the first superconducting layer and the second superconducting layer are disposed near the neutral line of the superconducting wire, and the superconducting wire is bent. Further, bending stress applied to the first superconducting layer and the second superconducting layer can be reduced. Therefore, according to the superconducting coil of the above (15), it is possible to configure a superconducting coil in which the minimum value of the radius of curvature at the routing portion is 20 mm or less.
  • a superconducting cable includes the superconducting wires (1) to (12) and a former.
  • the superconducting wire is wound in a spiral around the central axis of the former on the outer peripheral surface of the former.
  • the minimum value of the radius of curvature of the superconducting wire is 20 mm or less.
  • the first superconducting layer and the second superconducting layer are disposed near the neutral line of the superconducting wire, and the superconducting wire is bent. Further, bending stress applied to the first superconducting layer and the second superconducting layer can be reduced. Therefore, according to the superconducting cable of (16), it is possible to configure a superconducting cable in which the minimum value of the radius of curvature is 20 mm or less.
  • FIG. 1 is a top view of a superconducting wire 10 according to an embodiment.
  • the superconducting wire 10 has a first end portion 10a and a second end portion 10b.
  • the first end portion 10 a is an end portion in the longitudinal direction of the superconducting wire 10.
  • the second end portion 10b is an end portion of the superconducting wire 10 on the opposite side to the first end portion 10a.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. As shown in FIG. 2, the superconducting wire 10 has a first member 11, a second member 12, and a bonding layer 13.
  • the first member 11 includes a first substrate 11a, a first intermediate layer 11b, a first superconducting layer 11c, and a first protective layer 11d.
  • the first substrate 11a is made of a conductive material.
  • the first substrate 11a has a first base layer 11aa and a first conductive layer 11ab.
  • the first base layer 11aa and the first conductive layer 11ab are made of a conductive material.
  • the resistivity of the first conductive layer 11ab is lower than the resistivity of the first base layer 11aa.
  • the first conductive layer 11ab is disposed on the first base layer 11aa.
  • the first base layer 11aa is made of, for example, stainless steel or Hastelloy (registered trademark).
  • the first conductive layer 11ab is made of, for example, copper (Cu) or a copper alloy.
  • materials constituting the first base layer 11aa and the first conductive layer 11ab are not limited to these.
  • the first intermediate layer 11b is disposed on the first substrate 11a. More specifically, the first intermediate layer 11b is disposed on the first conductive layer 11ab.
  • the first intermediate layer 11b is made of a conductive material.
  • the first intermediate layer 11b is made of, for example, strontium titanate (SrTiO 3 ) doped with niobium (Nb).
  • Nb niobium
  • middle layer 11b is not restricted to this.
  • the first superconducting layer 11c is composed of a superconductor.
  • the first superconducting layer 11c is made of, for example, an oxide superconductor.
  • the oxide superconductor constituting the first superconducting layer 11c is, for example, REBaCu 3 O x (x: 6 to 8, RE: yttrium (Y), gadolin (Gd), samarium (Sm), Ho (holmium). Rare earth elements).
  • the first superconducting layer 11c is disposed on the first intermediate layer 11b.
  • the material constituting the first superconducting layer 11c is not limited to this.
  • the first intermediate layer 11b is made of a conductive material
  • the first superconducting layer 11c and the first substrate 11a are electrically connected.
  • the first protective layer 11 d is arranged so as to surround the first member 11. More specifically, the first protective layer 11d is formed on the upper surface of the first superconducting layer 11c, on the side surfaces of the first base layer 11aa, the first conductive layer 11ab, the first intermediate layer 11b, and the first superconducting layer 11c, and Arranged on the bottom surface of the first base layer 11aa.
  • the first protective layer 11d is made of a conductive material.
  • the first protective layer 11d is made of, for example, silver (Ag) or a silver alloy. However, the material constituting the first protective layer 11d is not limited to this.
  • the thickness T1 of the first protective layer 11d on the first superconducting layer 11c is, for example, 10 ⁇ m or less.
  • the thickness T1 is preferably 5 ⁇ m or less.
  • the thickness T1 is, for example, 1 ⁇ m or more.
  • the second member 12 includes a second substrate 12a, a second intermediate layer 12b, a second superconducting layer 12c, and a second protective layer 12d.
  • the second substrate 12a is made of a conductive material.
  • the second substrate 12a has a second base layer 12aa and a second conductive layer 12ab.
  • the second base layer 12aa and the second conductive layer 12ab are made of a conductive material.
  • the resistivity of the second conductive layer 12ab is lower than the resistivity of the second base layer 12aa.
  • the second conductive layer 12ab is disposed on the second base layer 12aa.
  • the first substrate 11a has the first base layer 11aa and the first conductive layer 11ab
  • the second substrate 12a has the second base layer 12aa and the second conductive layer 12ab.
  • at least one of the first substrate 11a and the second substrate 12a may be composed of only the base layer.
  • the second base layer 12aa is made of, for example, stainless steel or Hastelloy (registered trademark).
  • the second conductive layer 12ab is made of, for example, copper or a copper alloy.
  • the materials constituting the second base layer 12aa and the second conductive layer 12ab are not limited to these.
  • the second intermediate layer 12b is disposed on the second substrate 12a. More specifically, the second intermediate layer 12b is disposed on the second conductive layer 12ab.
  • the second intermediate layer 12b is made of a conductive material.
  • the second intermediate layer 12b is made of, for example, strontium titanate doped with niobium.
  • middle layer 12b is not restricted to this.
  • the second superconducting layer 12c is composed of a superconductor.
  • the second superconducting layer 12c is made of, for example, an oxide superconductor.
  • the oxide superconductor constituting the second superconducting layer 12c is, for example, REBaCu 3 O x .
  • the material constituting the second superconducting layer 12c is not limited to this.
  • the second superconducting layer 12c is disposed on the second intermediate layer 12b.
  • the second intermediate layer 12b is made of a conductive material, the second superconducting layer 12c and the second substrate 12a (second conductive layer 12ab) are electrically connected.
  • the second protective layer 12d is arranged so as to surround the periphery of the second member 12. More specifically, the second protective layer 12d is formed on the upper surface of the second superconducting layer 12c, on the side surfaces of the second base layer 12aa, the second conductive layer 12ab, the second intermediate layer 12b, and the second superconducting layer 12c, and The second base layer 12aa is disposed on the bottom surface.
  • the second protective layer 12d is made of a conductive material.
  • the second protective layer 12d is made of, for example, silver or a silver alloy. However, the material constituting the second protective layer 12d is not limited to this.
  • a thickness T2 of the second protective layer 12d on the second superconducting layer 12c is, for example, 10 ⁇ m or less.
  • the thickness T2 is preferably 5 ⁇ m or less.
  • the thickness T2 is, for example, 1 ⁇ m or more.
  • the thickness of the superconducting wire 10 is such that the first member 11 and the second member 12 are opposed to each other with the first superconducting layer 11c and the second superconducting layer 12c interposed between the first protective layer 11d and the second protective layer 12d. It is stacked along the direction.
  • the bonding layer 13 is disposed between the first member 11 and the second member 12. Specifically, the bonding layer 13 is disposed between the first protective layer 11d on the first superconducting layer 11c and the second protective layer 12d on the second superconducting layer 12c. The bonding layer 13 bonds the first protective layer 11d on the first superconducting layer 11c and the second protective layer 12d on the second superconducting layer 12c. The bonding layer 13 may be disposed so as to reach the side surface of the first member 11 and the side surface of the second member 12. The bonding layer 13 is made of a conductive material. The bonding layer 13 is, for example, solder. The thickness T3 of the bonding layer 13 is, for example, 10 ⁇ m or less.
  • the first protective layer 11d, the second protective layer 12d, and the bonding layer 13 are made of a conductive material, the first superconducting layer 11c and the second superconducting layer 12c are electrically connected. Has been.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG.
  • the first conductive layer 11ab is exposed at the first end 10a by removing the first base layer 11aa.
  • the second conductive layer 12ab is exposed by removing the second base layer 12aa.
  • the superconducting wire 10 is connected to an external power source at the first end portion 10a through the exposed first conductive layer 11ab and second conductive layer 12ab.
  • At least one of the first base layer 11aa and the second base layer 12aa is removed at the second end 10b, so that at least one of the first conductive layer 11ab and the second conductive layer 12ab is Exposed.
  • FIG. 4 is a cross-sectional view parallel to the longitudinal direction of the first end portion 10a of the superconducting wire 10 according to the first modification of the embodiment.
  • the second member 12 may be removed at the first end 10a.
  • the bonding layer 13 is exposed at the first end portion 10a.
  • the bonding layer 13 may be exposed by removing the first member 11.
  • the superconducting wire 10 is connected to an external power source.
  • the bonding layer 13 may be exposed by removing either the first member 11 or the second member 12 at the second end 10b.
  • FIG. 5 is a cross-sectional view parallel to the longitudinal direction at the first end portion 10a of the superconducting wire 10 according to the second modification of the embodiment.
  • the first member 11 and the second member 12 may be separated from each other at the first end 10 a.
  • the first member 11 and the second member 12 are separated from each other by, for example, melting the bonding layer 13 at the first end 10a.
  • a lead 15 may be sandwiched between the first member 11 and the second member 12 at the first end 10a.
  • the lead 15 is made of, for example, copper.
  • Superconducting wire 10 is connected to an external power source via leads 15.
  • FIG. 6 is a cross-sectional view of a superconducting wire 10 according to a third modification of the embodiment.
  • the superconducting wire 10 may not have the bonding layer 13. That is, in the superconducting wire 10, the first protective layer 11d on the first superconducting layer 11c may be directly joined to the second protective layer 12d on the second superconducting layer 12c.
  • the first member 11 and the second member are the first member 11 and The second member 12 is heated to a predetermined temperature and joined together by pressurizing both members.
  • This predetermined temperature is, for example, 500 ° C. or more and 600 ° C. or less.
  • FIG. 7 is a cross-sectional view of a superconducting wire 10 according to a fourth modification of the embodiment.
  • the superconducting wire 10 does not have the first protective layer 11 d and the second protective layer 12 d, and may have a bonding layer 14 instead of the bonding layer 13.
  • the bonding layer 14 is composed of a superconductor constituting the first superconducting layer 11c and the second superconducting layer 12c. That is, the first superconducting layer 11c and the second superconducting layer 12c may be superconducting bonded.
  • the superconducting junction between the first superconducting layer 11c and the second superconducting layer 12c is achieved by the following method.
  • the organic compound film contains a constituent element of the superconductor constituting the bonding layer 14.
  • the organic compound film becomes a precursor of a superconductor constituting the bonding layer 14 (hereinafter, the organic compound film on which the pre-baking has been performed is referred to as a pre-baked film).
  • the temporary firing is performed at a temperature lower than the generation temperature of the material constituting the bonding layer 14.
  • heat treatment is performed on the calcined film after calcining.
  • membrane is decomposed
  • the first member 11 and the second member 12 are heated and pressurized in a state where the first superconducting layer 11c and the second superconducting layer 12c are overlapped with each other with the microcrystalline film interposed therebetween. .
  • the superconductors constituting the first superconducting layer 11c and the second superconducting layer 12c included in the microcrystalline film are epitaxially grown on the first superconducting layer 11c and the second superconducting layer 12c.
  • the superconducting junction between the first superconducting layer 11c and the second superconducting layer 12c is achieved.
  • FIG. 8 is a top view of the laminated superconducting wire 20 according to the embodiment.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG.
  • the laminated superconducting wire 20 has a plurality of superconducting wires 10.
  • the laminated superconducting wire 20 is formed by superposing a plurality of superconducting wires 10 along the thickness direction.
  • each superconducting wire 10 is bonded to each other using a bonding layer made of, for example, solder.
  • the laminated superconducting wire 20 has a thickness T4 and a width W in a cross section orthogonal to the longitudinal direction.
  • the thickness T4 is measured at the portion where the thickness of the laminated superconducting wire 20 is maximum, and the width W is measured at the portion where the width of the laminated superconducting wire 20 is maximized.
  • a value obtained by dividing the thickness T4 by the width W is not less than 0.5 and not more than 2.0.
  • the value obtained by dividing the thickness T4 by the width W is preferably 0.75 or more and 1.25 or less.
  • the first base layer 11aa (second base layer 12aa) has a thickness of about 50 ⁇ m to 100 ⁇ m
  • the first conductive layer 11ab (second conductive layer 12ab) has a thickness of about 10 ⁇ m to 50 ⁇ m
  • the first intermediate layer The thickness of 11b (second intermediate layer 12b) is about 0.1 ⁇ m to 0.5 ⁇ m
  • the thickness of the first superconducting layer 11c (second superconducting layer 12c) is 2 to 4 ⁇ m
  • the first protective layer 11d (first 2
  • the thickness T4 is about 150 ⁇ m to 300 ⁇ m
  • the width W is about 1 mm. In this case, if several superconducting wires 10 are laminated, the thickness is within the range of 0.5 ⁇ thickness T4 / width W ⁇ 2.0.
  • FIG. 10 is a cross-sectional view of the laminated superconducting wire 20 according to the first modification of the embodiment.
  • the cross-sectional shape orthogonal to the longitudinal direction of the laminated superconducting wire 20 may have a circular shape, for example. .
  • FIG. 11 is a cross-sectional view of a laminated superconducting wire 20 according to a second modification of the embodiment. As shown in FIG. 11, the cross-sectional shape orthogonal to the longitudinal direction of the laminated superconducting wire 20 may be, for example, a rhombus.
  • FIG. 12 is a cross-sectional view of a laminated superconducting wire 20 according to a third modification of the embodiment.
  • the cross-sectional shape orthogonal to the longitudinal direction of the laminated superconducting wire 20 may be a regular hexagonal shape, for example.
  • the cross-sectional shape orthogonal to the longitudinal direction of the laminated superconducting wire 20 is not limited to that shown in FIGS. 10 to 12, and may be other polygonal shapes or elliptical shapes.
  • the laminated superconducting wire 20 having the structure shown in FIGS. 10 to 12 is formed by performing machining such as cutting after superposing the plurality of superconducting wires 10 along the thickness direction. In any of the cross-sectional shapes shown in FIGS. 10 to 12, the relationship of 0.5 ⁇ thickness T4 / width W ⁇ 2.0 is satisfied.
  • FIG. 13 is a perspective view of the superconducting coil 30 according to the embodiment.
  • FIG. 14 is a cross-sectional view orthogonal to the central axis A of the superconducting coil 30 according to the embodiment.
  • the superconducting coil 30 is, for example, a pancake coil.
  • the superconducting coil 30 is not limited to this.
  • the superconducting coil 30 may be a solenoid coil, for example.
  • the superconducting coil 30 has a central axis A.
  • the superconducting coil 30 is formed by winding the superconducting wire 10 around the central axis A.
  • the shape of the superconducting wire 10 is fixed by being impregnated with an insulating material 31 such as an epoxy resin while being wound around the central axis A.
  • superconducting wire 10 is drawn from a portion wound around central axis A to be connected to an external power source (drawn from a portion wound around central axis A).
  • the portion of the superconducting wire 10 is called the handling portion 32).
  • the minimum value R min of the radius of curvature at the handling portion 32 of the superconducting coil 30 is, for example, 20 mm or less.
  • FIG. 15 is a side view of the superconducting cable 40 according to the embodiment.
  • the superconducting cable 40 includes a former 41 and a superconducting wire 10.
  • the superconducting wire 10 is wound on the outer peripheral surface of the former 41 in a spiral shape around the central axis of the former 41.
  • the minimum value R min of the radius of curvature of the superconducting wire 10 is 20 mm or less when wound on the outer peripheral surface of the former 41.
  • the first superconducting layer 11c is electrically connected to the first substrate 11a made of a conductive material via the first intermediate layer 11b made of a conductive material. Yes.
  • the first superconducting layer 11c is also electrically connected to the second superconducting layer 12c. Therefore, when quenching occurs in the first superconducting layer 11c, the current flowing through the first superconducting layer 11c is bypassed to the first substrate 11a and the second superconducting layer 12c. Similarly, when quenching occurs in the second superconducting layer 12c, the current flowing through the second superconducting layer 12c is bypassed to the second substrate 12a and the first superconducting layer 11c.
  • the first member 11 and the second member 12 are overlapped along the thickness direction so that the first superconducting layer 11c and the second superconducting layer 12c face each other.
  • the 2nd superconducting layer 12c is arrange
  • the first protective layer 11d and the second protective layer 12d are made of silver or a silver alloy
  • the first protective layer 11d and the second protective layer 12d are relatively easily deformed.
  • the first protective layer 11d and the second protective layer 12d can be directly joined.
  • silver or silver alloy has a lower resistivity than the material (typically tin (Sn) alloy) constituting the bonding layer 13, in this case, the first superconducting layer 11c (second superconducting layer 12c)
  • the resistance at the time of bypassing the current flowing through the second superconducting layer 12c (first superconducting layer 11c) can be reduced.
  • the silver or the silver alloy is excellent in bondability with the material constituting the bonding layer 13 (typically, a tin alloy). Therefore, good bonding is achieved between the first protective layer 11d and the second protective layer 12d and the bonding layer 13.
  • the first protective layer 11d causes the current to flow through the second superconducting layer 12c (first superconducting layer 11c) when the first superconducting layer 11c (second superconducting layer 12c) is quenched. It is only a layer that goes through on the way to bypass. Therefore, even if the first protective layer 11d and the second protective layer 12d are formed relatively thin, the influence on the quenching resistance is small. On the other hand, since the first protective layer 11d and the second protective layer 12d are formed relatively thin, the first superconducting layer 11c and the second superconducting layer 12c are disposed closer to the neutral wire of the superconducting wire 10. Therefore, the bending stress applied to the first superconducting layer 11c and the second superconducting layer 12c when the superconducting wire 10 is bent can be further reduced.
  • the current flowing in the first superconducting layer 11c is the first substrate 11a (second substrate). 12a) is also bypassed.
  • the bypassed current has a relatively low resistance value. Since the first conductive layer 11ab (second conductive layer 12ab) flows, the resistance value when the current is bypassed can be further reduced.
  • At least one of the first conductive layer 11ab and the second conductive layer 12ab is exposed by removing at least one of the first base layer 11aa and the second base layer 12aa at the first end 10a (second end 10b).
  • connection to an external power source can be performed through the first conductive layer 11ab and the second conductive layer 12ab having a relatively low resistivity.
  • both the first base layer 11aa and the second base layer 12aa are removed, so that both the first conductive layer 11ab and the second conductive layer 12ab are exposed.
  • first end portion 10a (second end portion 10b) only one of the first conductive layer 11ab and the second conductive layer 12ab is exposed by removing only one of the first base layer 11aa and the second base layer 12aa.
  • the second base layer 12aa (first base layer 12aa) can be connected to the external power source via the first conductive layer 11ab (second conductive layer 12ab) having a relatively low resistivity.
  • the rigidity of the first end portion 10a (second end portion 10b) can be maintained by the layer 11aa). As a result, the handling property of the superconducting wire 10 can be improved.
  • the width may be several tens of times the thickness.
  • Such a superconducting wire may have a problem in handling properties due to such dimensions.
  • the laminated superconducting wire 20 by stacking a plurality of superconducting wires 10 in the thickness direction, 0.5 ⁇ thickness T4 / width W ⁇ 2.0, so that the handling property can be improved.
  • the superconducting wire 10 has a structure in which the first superconducting layer 11c and the second superconducting layer 12c are sandwiched between the first substrate 11a and the second substrate 12a, the first superconducting layer 11c and the second superconducting layer 12c are connected to each other.
  • the acting tensile stress is reduced. Therefore, according to the superconducting coil 30, it is possible to suppress the separation of the first superconducting layer 11c and the second superconducting layer 12c due to the tensile stress caused by the difference in thermal expansion coefficient between the superconducting wire 10 and the insulating material 31.
  • the radius of curvature at the handling portion 32 tends to be relatively small.
  • the first superconducting layer 11 c and the second superconducting layer 12 c are disposed near the neutral line of the superconducting wire 10. Therefore, when the superconducting wire 10 is bent, the first superconducting layer 11 c And the bending stress which acts on the 2nd superconducting layer 12c can be reduced. Therefore, by using the superconducting wire 10, it is possible to configure the superconducting coil 30 such that the minimum value R min of the radius of curvature in the routing portion 32 is 20 mm or less.
  • 10 superconducting wire 10a first end, 10b second end, 11 first member, 11a first substrate, 11aa first base layer, 11ab first conductive layer, 11b first intermediate layer, 11c first superconducting layer, 11d first protective layer, 12 second member, 12a second substrate, 12aa second base layer, 12ab second conductive layer, 12b second intermediate layer, 12c second superconducting layer, 12d second protective layer, 13 bonding layer, 14 bonding layer, 15 lead, minimum value of R min radius of curvature, T1, T2, T3, T4 thickness, W width, 20 laminated superconducting wire, 30 superconducting coil, 31 insulating material, 32 routing part, 40 superconducting cable, 41 Forma.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

本開示の一態様に係る超電導線材は、第1部材と、第2部材とを備える。第1部材は、導電性の材料で構成される第1基板と、第1基板上に配置され、かつ導電性の材料で構成される第1中間層と、第1中間層上に配置され、かつ超電導材料で構成される第1超電導層とを有する。第2部材は、導電性の材料で構成される第2基板と、第2基板上に配置され、かつ導電性の材料で構成される第2中間層と、第2中間層上に配置され、かつ超電導材料で構成される第2超電導層とを有する。第1部材と第2部材とは、第1超電導層と第2超電導層とが対向するように超電導線材の厚さ方向に沿って重ねられる。第1超電導層は、第2超電導層と電気的に接続されている。

Description

超電導線材、積層超電導線材、超電導コイル及び超電導ケーブル
 本開示は、超電導線材、積層超電導線材、超電導コイル及び超電導ケーブルに関する。
 従来から、例えば、特開2012-156048号公報(特許文献1)に記載の超電導線材が知られている。
 特許文献1に記載の超電導線材は、基材と、基材上に配置される中間層と、中間層上に配置される酸化物超電導体層と、酸化物超電導体層上に配置される安定化層とを有している。中間層は、絶縁性の材料で構成されている。
特開2012-156048号公報
 本開示の一態様に係る超電導線材は、第1部材と、第2部材とを備える。第1部材は、導電性の材料で構成される第1基板と、第1基板上に配置され、かつ導電性の材料で構成される第1中間層と、第1中間層上に配置され、かつ超電導材料で構成される第1超電導層とを有する。第2部材は、導電性の材料で構成される第2基板と、第2基板上に配置され、かつ導電性の材料で構成される第2中間層と、第2中間層上に配置され、かつ超電導材料で構成される第2超電導層とを有する。第1部材と第2部材とは、第1超電導層と第2超電導層とが対向するように超電導線材の厚さ方向に沿って重ねられる。第1超電導層は、第2超電導層と電気的に接続されている。
図1は、実施形態に係る超電導線材10の上面図である。 図2は、図1のII-IIにおける断面図である。 図3は、図1のIII-IIIにおける断面図である。 図4は、実施形態の第1変形例に係る超電導線材10の第1端部10aにおける長手方向に平行な断面図である。 図5は、実施形態の第2変形例に係る超電導線材10の第1端部10aにおける長手方向に平行な断面図である。 図6は、実施形態の第3変形例に係る超電導線材10の断面図である。 図7は、実施形態の第4変形例に係る超電導線材10の断面図である。 図8は、実施形態に係る積層超電導線材20の上面図である。 図9は、図8のIX-IXにおける断面図である。 図10は、実施形態の第1変形例に係る積層超電導線材20の断面図である。 図11は、実施形態の第2変形例に係る積層超電導線材20の断面図である。 図12は、実施形態の第3変形例に係る積層超電導線材20の断面図である。 図13は、実施形態に係る超電導コイル30の斜視図である。 図14は、実施形態に係る超電導コイル30の中心軸Aに直交する断面図である。 図15は、実施形態に係る超電導ケーブル40の側面図である。 図16は、図15のXVI-XVIにおける断面図である。
 [本開示が解決しようとする課題]
 特許文献1に記載の超電導線材においては、酸化物超電導体層に局所的な特性劣化に起因するクエンチ(超電導状態から常電導状態へと移行する現象)が生じた場合に、酸化物超電導体層に流れていた電流が、安定化層にバイパスされる。すなわち、特許文献1に記載の超電導線材においては、クエンチが生じた場合に電流がバイパスされる経路は、1つしかない。そのため、特許文献1に記載の超電導線材において耐クエンチ性を確保するために安定化層を厚く形成する必要があり、コスト増を招いてしまう。このように、特許文献1に記載の超電導線材は、耐クエンチ性に関して、改善の余地がある。
 本開示は、上記のような従来技術の問題点に鑑みてなされたものである。より具体的には、本開示は、耐クエンチ性を改善することができる超電導線材を提供する。
 [本開示の効果]
 本開示に係る超電導線材によると、耐クエンチ性を改善することができる。
 [本開示の実施形態の説明]
 まず、本開示の実施態様を列記する。
 (1)本開示の一態様に係る超電導線材は、第1部材と、第2部材とを備える。第1部材は、導電性の材料で構成される第1基板と、第1基板上に配置され、かつ導電性の材料で構成される第1中間層と、第1中間層上に配置され、かつ超電導材料で構成される第1超電導層とを有する。第2部材は、導電性の材料で構成される第2基板と、第2基板上に配置され、かつ導電性の材料で構成される第2中間層と、第2中間層上に配置され、かつ超電導材料で構成される第2超電導層とを有する。第1部材と第2部材とは、第1超電導層と第2超電導層とが対向するように超電導線材の厚さ方向に沿って重ねられる。第1超電導層は、第2超電導層と電気的に接続されている。
 上記(1)の超電導線材においては、第1超電導層(第2超電導層)にクエンチが生じた場合に、第1超電導層(第2超電導層)を流れていた電流は、第2超電導層(第1超電導層)及び第1基板(第2基板)に流れる。すなわち、上記(1)の超電導線材においては、クエンチが生じた場合に電流のバイパスされる経路が、2つとなる。ぞのため、上記(1)の超電導線材によると、耐クエンチ性を改善することができる。なお、上記(1)の超電導線材においては、第1超電導層及び第2超電導層が、超電導線材の中立線近くに配置されることになる。したがって、上記(1)の超電導線材によると、超電導線材に曲げが加わった際に第1超電導層及び第2超電導層に加わる曲げ応力を低減することができる。
 (2)上記(1)の超電導線材において、第1超電導層は、第2超電導層と超電導接合されていてもよい。
 上記(2)の超電導線材によると、第1超電導層(第2超電導層)にクエンチが生じた場合に、第1超電導層(第2超電導層)に流れていた電流を、常電導体を経由することなく、第2超電導層(第1超電導層)にバイパスさせることができる。また、上記(2)の超電導線材によると、第1超電導層と第2超電導層とが超電導接合されることにより超電導層の厚さが実質的に大きくなるため、超電導層に局所的な特性劣化が生じにくくなる。
 (3)上記(1)の超電導線材において、第1部材は、第1超電導層上に配置され、かつ銀又は銀合金で構成される第1保護層をさらに有していてもよい。第2部材は、第2超電導層上に配置され、かつ銀又は銀合金で構成される第2保護層をさらに有していてもよい。第1保護層は、第2保護層と直接接合されていてもよい。
 上記(3)の超電導線材によると、第1超電導層(第2超電導層)にクエンチが生じた場合に、第1超電導層(第2超電導層)に流れていた電流を、相対的に抵抗値が高い材料を経由することなく、第2超電導層(第1超電導層)にバイパスさせることができる。
 (4)上記(1)の超電導線材は、接合層をさらに備えていてもよい。第1部材は、第1超電導層上に配置され、かつ導電性の材料で構成される第1保護層をさらに有していてもよい。第2部材は、第2超電導層上に配置され、かつ導電性の材料で構成される第2保護層をさらに有していてもよい。第1保護層は、接合層を介して第2保護層に接合されていてもよい。
 上記(4)の超電導線材においては、クエンチが生じた場合の電流がバイパスされる経路が2つとなるため、耐クエンチ性を改善することができる。
 (5)上記(4)の超電導線材において、第1保護層及び第2保護層は、銀又は銀合金で構成されていてもよい。接合層は、はんだで構成されていてもよい。
 上記(5)の超電導線材によると、耐クエンチ性を改善しつつ、接合層による第1部材と第2部材との接合性を改善することができる。
 (6)上記(4)又は(5)の超電導線材において、超電導線材の長手方向における端部では、第1部材及び第2部材のいずれか一方が除去されることにより接合層が露出していてもよい。
 上記(6)の超電導線材によると、接合層を利用して外部電源との接続を行うことができる。
 (7)上記(4)~(6)の超電導線材において、第1保護層の厚さ及び第2保護層の厚さは、5μm以下であってもよい。
 第1保護層(第2保護層)は、第1超電導層(第2超電導層)にクエンチが生じた際に電流を第2超電導層(第1超電導層)へとバイパスさせる途中に経由する層に過ぎないため、第1保護層及び第2保護層を相対的に薄く形成したとしても、耐クエンチ性に対する影響は小さい。他方で、第1保護層及び第2保護層が相対的に薄く形成されることで、第1超電導層及び第2超電導層が超電導線材の中立線のより近くに配置されるため、超電導線材に曲げが加わった際に第1超電導層及び第2超電導層に加わる曲げ応力をさらに低減することができる。以上から、上記(7)の超電導線材によると、耐クエンチ性を改善しつつ、第1超電導層及び第2超電導層に加わる曲げ応力をさらに低減することができる。
 (8)上記(1)~(7)の超電導線材において、第1基板は、第1ベース層と、第1ベース層と第1中間層との間に配置され、かつ第1ベース層を構成する材料よりも抵抗率が低い材料で構成される第1導電層とを含んでいてもよい。また、第2基板は、第2ベース層と、第2ベース層と第2中間層との間に配置され、かつ第2ベース層を構成する材料よりも抵抗率が低い材料で構成される第2導電層とを含んでいてもよい。
 上記のとおり、第1超電導層(第2超電導層)にクエンチが生じた場合、第1超電導層(第2超電導層)に流れていた電流は、第1基板(第2基板)にもバイパスされる。このバイパスされた電流は、相対的に抵抗値が低い第1導電層(第2導電層)を流れることになるため、上記(8)の超電導線材によると、この電流をバイパスさせる際の抵抗値を低減することができる。
 (9)上記(8)の超電導線材において、長手方向における端部では、第1ベース層が除去されることにより第1導電層が露出していてもよい。
 上記(9)の超電導線材は、相対的に抵抗率が低い第1導電層を介して、外部電源と電気的に接続される。そのため、上記(9)の超電導線材によると、外部電源との接続抵抗を低減することができる。
 (10)上記(8)又は(9)の超電導線材において、長手方向における端部では、第2ベース層が除去されることにより第2導電層が露出していてもよい。
 上記(10)の超電導線材は、相対的に抵抗率が低い第2導電層を介して、外部電源と電気的に接続される。そのため、上記(10)の超電導線材によると、外部電源との接続抵抗を低減することができる。
 (11)上記(8)~(10)の超電導線材において、第1導電層及び第2導電層は、銅又は銅合金で構成されていてもよい。第1基板及び第2基板は、ステンレス鋼又はハステロイで構成されていてもよい。
 上記(11)の超電導線材によると、この電流をバイパスさせる際の抵抗値を低減することができる。
 (12)上記(1)の超電導線材において、超電導線材の長手方向における端部では、第1部材及び第2部材が互いに離間していてもよい。
 上記(12)の超電導線材によると、第1部材及び第2部材の間にリードを挿入することにより、外部電源との接続を行うことができる。
 (13)本開示の一態様に係る積層超電導線材は、上記(1)~(12)の超電導線材を複数備える。超電導線材の各々は、積層超電導線材の厚さ方向に沿って重ねられる。積層超電導線材の厚さを積層超電導線材の長手方向に直交する方向での積層超電導線材の幅で除した値は、0.5以上2.0以下である。
 上記(13)の積層超電導線材によると、長手方向に直交する方向での幅に対する厚さの比率が相対的に大きくなるため、線材の取り扱いが容易になる。
 (14)本開示の一態様に係る超電導コイルは、上記(1)~(12)の超電導線材と絶縁材料とを備える。超電導線材は、超電導コイルの中心軸周りに巻き回され、かつ絶縁材料に含浸される。
 超電導線材には、絶縁材料との熱膨張係数の違いに起因して、超電導層を引き剥がす方向の引張応力が作用する。この引張応力は、超電導層が超電導線材から剥離する原因となる。しかしながら、上記(1)~(12)の超電導線材においては、超電導層が第1基板及び第2基板に挟み込まれた構造となっているため、超電導層には、引張応力が作用しにくい。そのため、上記(14)の超電導コイルによると、超電導線材と絶縁材料との熱膨張係数差に起因した引張応力により超電導層(第1超電導層及び第2超電導層)が剥離することを抑制できる。
 (15)上記(14)の超電導コイルにおいて、超電導線材は、超電導コイルの中心軸周りに巻き回された部分から引き出された取り回し部を有していてもよい。取り回し部における超電導線材の曲率半径の最小値は、20mm以下であってもよい。
 上記のとおり、上記(1)~(12)の超電導線材においては、第1超電導層及び第2超電導層が超電導線材の中立線近くに配置されることになり、超電導線材に曲げが加わった際に第1超電導層及び第2超電導層に加わる曲げ応力を低減することができる。そのため、上記(15)の超電導コイルによると、取り回し部における曲率半径の最小値が20mm以下となるような超電導コイルを構成することができる。
 (16)本開示の一態様に係る超電導ケーブルは、上記(1)~(12)の超電導線材と、フォーマとを備える。超電導線材は、フォーマの外周面上において、フォーマの中心軸周りのらせん状に巻き回される。超電導線材の曲率半径の最小値は、20mm以下である。
 上記のとおり、上記(1)~(12)の超電導線材においては、第1超電導層及び第2超電導層が超電導線材の中立線近くに配置されることになり、超電導線材に曲げが加わった際に第1超電導層及び第2超電導層に加わる曲げ応力を低減することができる。そのため、上記(16)の超電導ケーブルによると、曲率半径の最小値が20mm以下となるような超電導ケーブルを構成することができる。
 [本開示の実施形態の詳細]
 次に、本開示の実施形態の詳細を、図面を参照しながら説明する。なお、以下の図面においては、同一又は相当する部分に同一の参照符号を付し、重複する説明は繰り返さないものとする。
 (実施形態に係る超電導線材の構成)
 以下に、実施形態に係る超電導線材10の構成を説明する。
 図1は、実施形態に係る超電導線材10の上面図である。図1に示されるように、超電導線材10は、第1端部10aと、第2端部10bとを有している。第1端部10aは、超電導線材10の長手方向における端部である。第2端部10bは、第1端部10aとは反対側の超電導線材10の端部である。
 図2は、図1のII-IIにおける断面図である。図2に示されるように、超電導線材10は、第1部材11と、第2部材12と、接合層13とを有している。
 第1部材11は、第1基板11aと、第1中間層11bと、第1超電導層11cと、第1保護層11dとを有している。
 第1基板11aは、導電性の材料で構成されている。第1基板11aは、第1ベース層11aaと、第1導電層11abとを有している。第1ベース層11aa及び第1導電層11abは、導電性の材料で構成されている。第1導電層11abの抵抗率は、第1ベース層11aaの抵抗率よりも低い。第1導電層11abは、第1ベース層11aa上に配置されている。
 第1ベース層11aaは、例えば、ステンレス鋼、ハステロイ(登録商標)で構成されている。第1導電層11abは、例えば、銅(Cu)、銅合金で構成されている。但し、第1ベース層11aa及び第1導電層11abを構成する材料は、これらに限られるものではない。
 第1中間層11bは、第1基板11a上に配置されている。より具体的には、第1中間層11bは、第1導電層11ab上に配置されている。第1中間層11bは、導電性の材料で構成されている。第1中間層11bは、例えば、ニオブ(Nb)がドープされたチタン酸ストロンチウム(SrTiO)で構成されている。但し、第1中間層11bを構成する材料は、これに限られるものではない。
 第1超電導層11cは、超電導体で構成されている。第1超電導層11cは、例えば、酸化物超電導体で構成されている。第1超電導層11cを構成する酸化物超電導体は、例えばREBaCuである(x:6以上8以下、RE:イットリウム(Y)、ガドリウム(Gd)、サマリウム(Sm)、Ho(ホルミウム)等の希土類元素)。第1超電導層11cは、第1中間層11b上に配置されている。但し、第1超電導層11cを構成する材料は、これに限られるものではない。
 上記のとおり、第1中間層11bは、導電性の材料で構成されているため、第1超電導層11cと第1基板11a(第1導電層11ab)とは、電気的に接続されている。
 第1保護層11dは、第1部材11の周囲を取り囲むように配置されている。より具体的には、第1保護層11dは、第1超電導層11cの上面上、第1ベース層11aa、第1導電層11ab、第1中間層11b及び第1超電導層11cの側面上、並びに第1ベース層11aaの底面上に配置されている。第1保護層11dは、導電性の材料で構成されている。第1保護層11dは、例えば、銀(Ag)又は銀合金で構成されている。但し、第1保護層11dを構成する材料は、これに限られるものではない。第1超電導層11c上にある第1保護層11dの厚さT1は、例えば、10μm以下である。厚さT1は、好ましくは、5μm以下である。厚さT1は、例えば、1μm以上である。
 第2部材12は、第2基板12aと、第2中間層12bと、第2超電導層12cと、第2保護層12dとを有している。
 第2基板12aは、導電性の材料で構成されている。第2基板12aは、第2ベース層12aaと、第2導電層12abとを有している。第2ベース層12aa及び第2導電層12abは、導電性の材料で構成されている。第2導電層12abの抵抗率は、第2ベース層12aaの抵抗率よりも低い。第2導電層12abは、第2ベース層12aa上に配置されている。なお、上記の例では、第1基板11aが第1ベース層11aa及び第1導電層11abを有し、第2基板12aが第2ベース層12aa及び第2導電層12abを有するものとして説明しているが、第1基板11a及び第2基板12aの少なくとも一方は、ベース層のみで構成されていてもよい。
 第2ベース層12aaは、例えば、ステンレス鋼、ハステロイ(登録商標)で構成されている。第2導電層12abは、例えば銅、銅合金で構成されている。但し、第2ベース層12aa及び第2導電層12abを構成する材料は、これらに限られるものではない。
 第2中間層12bは、第2基板12a上に配置されている。より具体的には、第2中間層12bは、第2導電層12ab上に配置されている。第2中間層12bは、導電性の材料で構成されている。第2中間層12bは、例えば、ニオブがドープされたチタン酸ストロンチウムで構成されている。但し、第2中間層12bを構成する材料は、これに限られるものではない。
 第2超電導層12cは、超電導体で構成されている。第2超電導層12cは、例えば、酸化物超電導体で構成されている。第2超電導層12cを構成する酸化物超電導体は、例えばREBaCuである。但し、第2超電導層12cを構成する材料は、これに限られるものではない。第2超電導層12cは、第2中間層12b上に配置されている。
 上記のとおり、第2中間層12bは、導電性の材料で構成されているため、第2超電導層12cと第2基板12a(第2導電層12ab)とは、電気的に接続されている。
 第2保護層12dは、第2部材12の周囲を取り囲むように配置されている。より具体的には、第2保護層12dは、第2超電導層12cの上面上、第2ベース層12aa、第2導電層12ab、第2中間層12b及び第2超電導層12cの側面上、並びに第2ベース層12aaの底面上に配置されている。第2保護層12dは、導電性の材料で構成されている。第2保護層12dは、例えば、銀又は銀合金で構成されている。但し、第2保護層12dを構成する材料は、これに限られるものではない。第2超電導層12c上にある第2保護層12dの厚さT2は、例えば10μm以下である。厚さT2は、好ましくは、5μm以下である。厚さT2は、例えば1μm以上である。
 第1部材11と第2部材12とは、第1保護層11d及び第2保護層12dを介して第1超電導層11c及び第2超電導層12cが互いに対向するように、超電導線材10の厚さ方向に沿って重ねられている。
 接合層13は、第1部材11と第2部材12との間に配置されている。具体的には、接合層13は、第1超電導層11c上にある第1保護層11dと第2超電導層12c上にある第2保護層12dとの間に配置されている。接合層13は、第1超電導層11c上にある第1保護層11dと第2超電導層12c上にある第2保護層12dとを接合している。接合層13は、第1部材11の側面上及び第2部材12の側面上に達するように配置されていてもよい。接合層13は、導電性の材料で構成されている。接合層13は、例えば、はんだである。接合層13の厚さT3は、例えば10μm以下である。
 上記のとおり、第1保護層11d、第2保護層12d及び接合層13は、導電性の材料で構成されているため、第1超電導層11cと第2超電導層12cとは、電気的に接続されている。
 図3は、図1のIII-IIIにおける断面図である。図3に示されるように、第1端部10aでは、第1ベース層11aaが除去されることにより、第1導電層11abが露出している。第1端部10aでは、第2ベース層12aaが除去されることにより、第2導電層12abが露出している。第1端部10aでは、第1ベース層11aa及び第2ベース層12aaの少なくとも一方が除去されることにより、第1導電層11ab及び第2導電層12abの少なくとも一方が露出していればよい。なお、超電導線材10は、第1端部10aにおいて、露出している第1導電層11ab及び第2導電層12abを介して外部電源と接続されている。
 図示されていないが、第2端部10bにおいても、第1ベース層11aa及び第2ベース層12aaの少なくとも一方が除去されることにより、第1導電層11ab及び第2導電層12abの少なくとも一方が露出している。
 図4は、実施形態の第1変形例に係る超電導線材10の第1端部10aにおける長手方向に平行な断面図である。図4に示されるように、第1端部10aにおいては、第2部材12が除去されていてもよい。これにより、第1端部10aにおいては、接合層13が露出している。なお、第1端部10aにおいては、第1部材11が除去されることにより、接合層13が露出していてもよい。第2部材12(第1部材11)が除去されることにより露出している接合層13において、超電導線材10は、外部電源に接続される。図示されていないが、第2端部10bにおいても、第1部材11及び第2部材12のいずれか一方が除去されることにより、接合層13が露出していてもよい。
 図5は、実施形態の第2変形例に係る超電導線材10の第1端部10aにおける長手方向に平行な断面図である。図5に示されるように、第1端部10aにおいては、第1部材11及び第2部材12が互いに離間していてもよい。第1部材11及び第2部材12は、例えば、第1端部10aにある接合層13を溶融させることにより、互いに離間される。第1端部10aにある第1部材11及び第2部材12の間には、リード15が挟み込まれていてもよい。リード15は、例えば、銅で形成されている。超電導線材10は、リード15を介して、外部電源に接続される。
 図6は、実施形態の第3変形例に係る超電導線材10の断面図である。図6に示されるように、超電導線材10は、接合層13を有していなくてもよい。すなわち、超電導線材10において、第1超電導層11c上にある第1保護層11dは、第2超電導層12c上にある第2保護層12dと直接接合されていてもよい。
 この場合、第1部材11と第2部材とは(第1超電導層11c上にある第1保護層11dと第2超電導層12c上にある第2保護層12dとは)、第1部材11及び第2部材12を所定の温度に加熱するとともに、両部材を相互に加圧することで接合される。この所定の温度は、例えば500℃以上600℃以下である。
 図7は、実施形態の第4変形例に係る超電導線材10の断面図である。図7に示されるように、超電導線材10は、第1保護層11d及び第2保護層12dを有しておらず、接合層13に代えて、接合層14を有していてもよい。接合層14は、第1超電導層11c及び第2超電導層12cを構成する超電導体で構成されている。すなわち、第1超電導層11cと第2超電導層12cとが、超電導接合されていてもよい。
 この場合、第1超電導層11cと第2超電導層12cとの超電導接合は、以下の方法により達成される。第1に、第1超電導層11c及び第2超電導層12cのいずれか一方の上に、有機化合物膜が形成される。有機化合物膜は、接合層14を構成する超電導体の構成元素を含有している。
 第2に、有機化合物膜に対する仮焼成が行われる。仮焼成により、有機化合物膜は、接合層14を構成する超電導体の前駆体となる(以下においては、仮焼成が行われた有機化合物膜を、仮焼膜という)。仮焼成は、接合層14を構成する材料の生成温度未満の温度で行われる。第3に、仮焼成の後に、仮焼膜に対する熱処理が行われる。これにより、仮焼膜に含まれる炭化物が分解されて、第1超電導層11c及び第2超電導層12cを構成する超電導体の微結晶を含む微結晶膜が形成される。
 第4に、第1部材11と第2部材12とが、第1超電導層11c及び第2超電導層12cが微結晶膜を挟んで対向するように重ね合わされた状態で、加熱・加圧される。これにより、微結晶膜に含まれる第1超電導層11c及び第2超電導層12cを構成する超電導体が、第1超電導層11c上及び第2超電導層12c上にエピタキシャル成長する。以上により、第1超電導層11cと第2超電導層12cとの超電導接合が達成される。
 (実施形態に係る積層超電導線材の構成)
 以下に、実施形態に係る積層超電導線材20の構成を説明する。
 図8は、実施形態に係る積層超電導線材20の上面図である。図9は、図8のIX-IXにおける断面図である。図8及び図9に示されるように、積層超電導線材20は、複数の超電導線材10を有している。積層超電導線材20は、複数の超電導線材10を厚さ方向に沿って重ね合わせることで形成されている。図示されていないが、各々の超電導線材10は、例えばはんだ等で構成される接合層を用いて互いに接合されている。
 積層超電導線材20は、長手方向に直交する断面において、厚さT4と、幅Wとを有している。なお、厚さT4は、積層超電導線材20の厚さが最大となる部分で測定され、幅Wは、積層超電導線材20の幅が最大となる部分で測定される。厚さT4を幅Wで除した値は、0.5以上2.0以下である。厚さT4を幅Wで除した値は、0.75以上1.25以下であることが好ましい。
 なお、第1ベース層11aa(第2ベース層12aa)の厚さを50μmから100μm程度とし、第1導電層11ab(第2導電層12ab)の厚さを10μmから50μm程度とし、第1中間層11b(第2中間層12b)の厚さを0.1μmから0.5μm程度とし、第1超電導層11c(第2超電導層12c)の厚さを2μmから4μmとし、第1保護層11d(第2保護層12d)の厚さを1μmから10μm程度とし、接合層13の厚さを10μm程度とした場合、厚さT4は、150μmから300μm程度の値となるため、幅Wを1mm程度である場合、超電導線材10を数枚程度積層すれば、0.5≦厚さT4/幅W≦2.0の範囲に収まる。
 図10は、実施形態の第1変形例に係る積層超電導線材20の断面図である。図10に示されるように、積層超電導線材20の長手方向に直交する断面形状は、例えば、円形形状を有していてもよい。
 図11は、実施形態の第2変形例に係る積層超電導線材20の断面図である。図11に示されるように、積層超電導線材20の長手方向に直交する断面形状は、例えば、菱形であってもよい。
 図12は、実施形態の第3変形例に係る積層超電導線材20の断面図である。図12に示されるように、積層超電導線材20の長手方向に直交する断面形状は、例えば、正六角形形状であってもよい。
 なお、積層超電導線材20の長手方向に直交する断面形状は、図10~図12に示されるものに限定されず、その他の多角形形状や、楕円形状であってもよい。図10~図12に示される構造の積層超電導線材20は、複数の超電導線材10を厚さ方向に沿って重ね合わせた後に切削等の機械加工を行うことで形成される。また、図10~図12に示されるいずれの断面形状においても、0.5≦厚さT4/幅W≦2.0との関係は充足されている。
 (実施形態に係る超電導コイル)
 以下に、実施形態に係る超電導コイル30の構成を説明する。
 図13は、実施形態に係る超電導コイル30の斜視図である。図14は、実施形態に係る超電導コイル30の中心軸Aに直交する断面図である。図13及び図14に示されるように、超電導コイル30は、例えば、パンケーキコイルである。但し、超電導コイル30は、これに限られるものではない。超電導コイル30は、例えば、ソレノイドコイルであってもよい。
 超電導コイル30は、中心軸Aを有している。超電導コイル30は、中心軸A回りに超電導線材10を巻き回すことにより形成されている。なお、超電導線材10は、中心軸A周りに巻き回された状態でエポキシ樹脂等の絶縁材料31に含浸されることにより、形状が固定されている。
 超電導コイル30においては、超電導線材10が、外部の電源と接続するために中心軸A周りに巻き回されている部分から引き出されている(中心軸A周りに巻き回されている部分から引き出された超電導線材10の部分を、取り回し部32という)。超電導コイル30の取り回し部32における曲率半径の最小値Rminは、例えば20mm以下である。
 (実施形態に係る超電導ケーブル)
 以下に、実施形態に係る超電導ケーブル40の構成を説明する。
 図15は、実施形態に係る超電導ケーブル40の側面図である。図15に示されるように、超電導ケーブル40は、フォーマ41と、超電導線材10とを有している。超電導線材10は、フォーマ41の外周面上において、フォーマ41の中心軸周りのらせん状に巻き回されている。
 図16は、図15のXVI-XVIにおける断面図である。図16に示すように、超電導線材10の曲率半径の最小値Rminは、フォーマ41の外周面上に巻き回された状態において、20mm以下である。
 (実施形態に係る超電導線材、積層超電導線材、超電導コイル及び超電導ケーブルの効果)
 以下に、実施形態に係る超電導線材10、積層超電導線材20、超電導コイル30及び超電導ケーブル40の効果を説明する。
 <実施形態に係る超電導線材の効果>
 まず、超電導線材10の基本的な効果を説明する。
 超電導線材10において、第1超電導層11cは、導電性の材料で構成されている第1中間層11bを介して、導電性の材料で構成されている第1基板11aに電気的に接続されている。また、第1超電導層11cは、第2超電導層12cにも、電気的に接続されている。そのため、第1超電導層11cにクエンチが発生した場合、第1超電導層11cを流れていた電流は、第1基板11a及び第2超電導層12cにバイパスされる。同様にして、第2超電導層12cにクエンチが発生した場合、第2超電導層12cを流れていた電流は、第2基板12a及び第1超電導層11cにバイパスされる。
 このように、超電導線材10は、第1超電導層11c(第2超電導層12c)にクエンチが発生した場合に、2つの経路によって第1超電導層11c(第2超電導層12c)を流れていた電流がバイパスされる。そのため、超電導線材10によると、耐クエンチ性が改善される。
 超電導線材10においては、第1部材11及び第2部材12が、第1超電導層11c及び第2超電導層12cが対向するように厚さ方向に沿って重ね合わされているため、第1超電導層11c及び第2超電導層12cが、超電導線材10の中立線に相対的に近い位置に配置されている。
 曲げ応力δ、曲げモーメントM、断面二次モーメントI及び中立線からの距離yの関係は、δ=(M/I)×yとなる。すなわち、超電導線材10の中立線に相対的に近い部分は、上記のyの値が小さくなるため、作用する曲げ応力が小さくなる。したがって、超電導線材10においては、第1超電導層11c及び第2超電導層12cに作用する曲げ応力を低減することができ、その結果として、第1超電導層11c及び第2超電導層12cの破損を抑制することができる。
 次に、超電導線材10の付随的な効果を説明する。
 第1超電導層11cと第2超電導層12cとが超電導接合されている場合、第1超電導層11c(第2超電導層12c)にクエンチが生じた場合に、第1超電導層11c(第2超電導層12c)に流れていた電流を、常電導体(第1保護層11d及び第2保護層12d)を経由することなく、第2超電導層12c(第1超電導層11c)にバイパスさせることができる。また、この場合には、超電導層の厚さが実質的に大きくなるため、超電導層(第1超電導層11c及び第2超電導層12c)に特性の局所的な劣化が生じにくくなる。
 第1保護層11d及び第2保護層12dが銀又は銀合金で構成されている場合、第1保護層11d及び第2保護層12dが相対的に変形しやすいため、加熱・加圧を行うことで第1保護層11dと第2保護層12dとが直接接合することができる。銀又は銀合金は、接合層13を構成する材料(典型的には、スズ(Sn)合金)よりも抵抗率が低いため、この場合には、第1超電導層11c(第2超電導層12c)を流れていた電流を第2超電導層12c(第1超電導層11c)にバイパスさせる際の抵抗を低減することができる。
 第1保護層11d及び第2保護層12dが銀又は銀合金で構成されている場合、銀又は銀合金は、接合層13を構成する材料(典型的には、スズ合金)と良好な接合性を示すため、第1保護層11d及び第2保護層12dと接合層13との間で良好な接合が達成される。
 上記のとおり、第1保護層11d(第2保護層12d)は、第1超電導層11c(第2超電導層12c)にクエンチが生じた場合に電流を第2超電導層12c(第1超電導層11c)へとバイパスさせる途中に経由する層に過ぎない。そのため、第1保護層11d及び第2保護層12dを相対的に薄く形成したとしても、耐クエンチ性に対する影響は小さい。他方で、第1保護層11d及び第2保護層12dが相対的に薄く形成されることにより、第1超電導層11c及び第2超電導層12cが超電導線材10の中立線のより近くに配置されるため、超電導線材10に曲げが加わった際に第1超電導層11c及び第2超電導層12cに加わる曲げ応力をさらに低減することができる。
 上記のとおり、第1超電導層11c(第2超電導層12c)にクエンチが生じた場合、第1超電導層11c(第2超電導層12c)に流れていた電流は、第1基板11a(第2基板12a)にもバイパスされる。第1基板11aが第1導電層11abを有している場合(第2基板12aが第2導電層12abを有している場合)、このバイパスされた電流は、相対的に抵抗値が低い第1導電層11ab(第2導電層12ab)を流れることになるため、電流をバイパスさせる際の抵抗値をさらに低減することができる。
 第1端部10a(第2端部10b)において、第1ベース層11aa及び第2ベース層12aaの少なくとも一方が除去されることで第1導電層11ab及び第2導電層12abの少なくとも一方が露出している場合、相対的に抵抗率が低い第1導電層11ab、第2導電層12abを介して外部電源との接続を行うことができる。
 第1端部10a(第2端部10b)において、第1ベース層11aa及び第2ベース層12aaの双方が除去されることで第1導電層11ab及び第2導電層12abの双方が露出している場合、相対的に抵抗率が低い第1導電層11ab及び第2導電層12abの双方を介して外部電源との接続を行うことができる。すなわち、この場合には、外部電源との接続抵抗をさらに低減することができる。
 第1端部10a(第2端部10b)において、第1ベース層11aa及び第2ベース層12aaの一方のみが除去されることで第1導電層11ab及び第2導電層12abの一方のみが露出している場合には、相対的に抵抗率が低い第1導電層11ab(第2導電層12ab)を介して外部電源との接続を行うことができるとともに、第2ベース層12aa(第1ベース層11aa)により第1端部10a(第2端部10b)の剛性を維持することができる。その結果、超電導線材10のハンドリング性を改善できる。
 <実施形態に係る積層超電導線材の効果>
 通常の超電導線材において、幅が厚さの数十倍に及ぶことがある。このような超電導線材は、このような寸法に起因して、ハンドリング性に問題がある場合がある。積層超電導線材20においては、超電導線材10を厚さ方向に複数枚積層することにより、0.5≦厚さT4/幅W≦2.0となるため、ハンドリング性を改善することができる。
 <実施形態に係る超電導コイルの効果>
 中心軸A周りに巻き回された状態で超電導線材10が絶縁材料31に含浸されると、超電導線材10と絶縁材料31との間の熱膨張係数の違いに起因して、超電導層を引き剥がす方向の引張応力が加わる。このような引張応力は、超電導線材から超電導層が剥離する原因となりうる。
 超電導線材10においては、第1超電導層11c及び第2超電導層12cが第1基板11a及び第2基板12aに挟み込まれた構造となっているため、第1超電導層11c及び第2超電導層12cに作用する引張応力が低減される。したがって、超電導コイル30によると、超電導線材10と絶縁材料31との熱膨張係数差に起因した引張応力による第1超電導層11c及び第2超電導層12cの剥離を抑制することができる。
 超電導コイル30においては、取り回し部32における曲率半径が相対的に小さくなりやすい。超電導線材10においては、第1超電導層11c及び第2超電導層12cが超電導線材10の中立線近くに配置されることになるため、超電導線材10に曲げが加わった際に、第1超電導層11c及び第2超電導層12cに作用する曲げ応力を低減することができる。そのため、超電導線材10を用いることにより、取り回し部32における曲率半径の最小値Rminが20mm以下となるような超電導コイル30を構成することが可能になる。
 <実施形態に係る超電導ケーブルの効果>
 上記のとおり、超電導線材10においては、超電導線材10に曲げが加わった際に第1超電導層11c及び第2超電導層12cに作用する曲げ応力を低減することができる。そのため、超電導線材10を用いることにより、曲率半径の最小値Rminが20mm以下となるような超電導ケーブル40を構成することが可能となる。
 今回開示された実施の形態は全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記の実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 10 超電導線材、10a 第1端部、10b 第2端部、11 第1部材、11a 第1基板、11aa 第1ベース層、11ab 第1導電層、11b 第1中間層、11c 第1超電導層、11d 第1保護層、12 第2部材、12a 第2基板、12aa 第2ベース層、12ab 第2導電層、12b 第2中間層、12c 第2超電導層、12d 第2保護層、13 接合層、14 接合層、15 リード、Rmin 曲率半径の最小値、T1,T2,T3,T4 厚さ、W 幅、20 積層超電導線材、30 超電導コイル、31 絶縁材料、32 取り回し部、40 超電導ケーブル、41 フォーマ。

Claims (16)

  1.  第1部材と、第2部材とを備える超電導線材であって、
     前記第1部材は、導電性の材料で構成される第1基板と、前記第1基板上に配置され、かつ、導電性の材料で構成される第1中間層と、前記第1中間層上に配置され、かつ、超電導材料で構成される第1超電導層とを有し、
     前記第2部材は、導電性の材料で構成される第2基板と、前記第2基板上に配置され、かつ、導電性の材料で構成される第2中間層と、前記第2中間層上に配置され、かつ、超電導材料で構成される第2超電導層とを有し、
     前記第1部材と前記第2部材とは、前記第1超電導層と前記第2超電導層とが対向するように前記超電導線材の厚さ方向に沿って重ねられ、
     前記第1超電導層は、前記第2超電導層と電気的に接続されている、超電導線材。
  2.  前記第1超電導層は、前記第2超電導層と超電導接合されている、請求項1に記載の超電導線材。
  3.  前記第1部材は、前記第1超電導層上に配置され、かつ、銀又は銀合金で構成される第1保護層をさらに有し、
     前記第2部材は、前記第2超電導層上に配置され、かつ、銀又は銀合金で構成される第2保護層をさらに有し、
     前記第1保護層は、前記第2保護層と直接接合されている、請求項1に記載の超電導線材。
  4.  接合層をさらに備え、
     前記第1部材は、前記第1超電導層上に配置され、かつ、導電性の材料で構成される第1保護層をさらに有し、
     前記第2部材は、前記第2超電導層上に配置され、かつ、導電性の材料で構成される第2保護層をさらに有し、
     前記第1保護層は、前記接合層を介して前記第2保護層に接合されている、請求項1に記載の超電導線材。
  5.  前記第1保護層及び前記第2保護層は、銀又は銀合金で構成され、
     前記接合層は、はんだで構成される、請求項4に記載の超電導線材。
  6.  前記超電導線材の長手方向における端部では、前記第1部材及び前記第2部材のいずれか一方が除去されることにより前記接合層が露出している、請求項4又は請求項5に記載の超電導線材。
  7.  前記第1保護層及び前記第2保護層の厚さは、5μm以下である、請求項4~請求項6のいずれか1項に記載の超電導線材。
  8.  前記第1基板は、第1ベース層と、前記第1ベース層と前記第1中間層との間に配置され、かつ、前記第1ベース層を構成する材料よりも抵抗率が低い材料で構成される第1導電層とを含み、
     前記第2基板は、第2ベース層と、前記第2ベース層と前記第2中間層との間に配置され、かつ、前記第2ベース層を構成する材料よりも抵抗率が低い材料で構成される第2導電層とを含む、請求項1~請求項6のいずれか1項に記載の超電導線材。
  9.  前記超電導線材の長手方向における端部では、前記第1ベース層が除去されることにより前記第1導電層が露出している、請求項8に記載の超電導線材。
  10.  前記超電導線材の長手方向における端部では、前記第2ベース層が除去されることにより前記第2導電層が露出している、請求項8又は請求項9に記載の超電導線材。
  11.  前記第1導電層及び前記第2導電層は、銅又は銅合金で構成され、
     前記第1基板及び前記第2基板は、ステンレス鋼又はハステロイで構成される、請求項8~請求項10のいずれか1項に記載の超電導線材。
  12.  前記超電導線材の長手方向における端部では、前記第1部材及び前記第2部材が互いに離間している、請求項1に記載の超電導線材。
  13.  複数の請求項1~請求項12のいずれか1項に記載の前記超電導線材を備える積層超電導線材であって、
     前記超電導線材の各々は、前記積層超電導線材の厚さ方向に沿って重ねられ、
     前記積層超電導線材の厚さを前記積層超電導線材の長手方向に直交する方向での前記積層超電導線材の幅で除した値は、0.5以上2.0以下である、積層超電導線材。
  14.  請求項1~請求項12のいずれか1項に記載の前記超電導線材と、絶縁材料とを備える超電導コイルであって、
     前記超電導線材は、前記超電導コイルの中心軸周りに巻き回され、かつ前記絶縁材料に含浸されている、超電導コイル。
  15.  前記超電導線材は、前記超電導コイルの中心軸周りに巻き回された部分から引き出された取り回し部を有しており、
     前記取り回し部における前記超電導線材の曲率半径の最小値は、20mm以下である、請求項14に記載の超電導コイル。
  16.  請求項1~請求項12のいずれか1項に記載の前記超電導線材と、フォーマとを備える超電導ケーブルであって、
     前記超電導線材は、前記フォーマの外周面上において、前記フォーマの中心軸周りのらせん状に巻き回され、
     前記超電導線材の曲率半径の最小値は、20mm以下である、超電導ケーブル。
PCT/JP2018/022883 2018-06-15 2018-06-15 超電導線材、積層超電導線材、超電導コイル及び超電導ケーブル WO2019239574A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020525053A JP7074190B2 (ja) 2018-06-15 2018-06-15 超電導線材、積層超電導線材、超電導コイル及び超電導ケーブル
KR1020207035416A KR102518606B1 (ko) 2018-06-15 2018-06-15 초전도 선재, 적층 초전도 선재, 초전도 코일 및 초전도 케이블
CN201880094607.7A CN112262444B (zh) 2018-06-15 2018-06-15 超导线、堆叠式超导线、超导线圈和超导电缆
US16/973,643 US12046393B2 (en) 2018-06-15 2018-06-15 Superconductive wire, stacked superconductive wire, superconductive coil and superconductive cable
DE112018007737.3T DE112018007737T5 (de) 2018-06-15 2018-06-15 Supraleitender Draht, geschichteter supraleitender Draht, supraleitende Spule und supraleitendes Kabel
PCT/JP2018/022883 WO2019239574A1 (ja) 2018-06-15 2018-06-15 超電導線材、積層超電導線材、超電導コイル及び超電導ケーブル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/022883 WO2019239574A1 (ja) 2018-06-15 2018-06-15 超電導線材、積層超電導線材、超電導コイル及び超電導ケーブル

Publications (1)

Publication Number Publication Date
WO2019239574A1 true WO2019239574A1 (ja) 2019-12-19

Family

ID=68843093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022883 WO2019239574A1 (ja) 2018-06-15 2018-06-15 超電導線材、積層超電導線材、超電導コイル及び超電導ケーブル

Country Status (6)

Country Link
US (1) US12046393B2 (ja)
JP (1) JP7074190B2 (ja)
KR (1) KR102518606B1 (ja)
CN (1) CN112262444B (ja)
DE (1) DE112018007737T5 (ja)
WO (1) WO2019239574A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021168350A (ja) * 2020-04-10 2021-10-21 株式会社東芝 バンドル巻き高温超電導コイル装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020128417A1 (de) 2020-10-29 2022-05-05 Karlsruher Institut für Technologie Bandleitervorrichtung und kabel, das die bandleitervorrichtung aufweist
CN112992420A (zh) * 2021-02-23 2021-06-18 东北大学 超导膜面向内封装的双芯超导带材

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080199A (ja) * 2008-09-25 2010-04-08 Sumitomo Electric Ind Ltd 超電導ケーブルの製造方法、超電導ケーブル、および薄膜超電導線材
JP2013543631A (ja) * 2010-09-15 2013-12-05 スーパーパワー インコーポレイテッド 電気メッキされた安定化層含有量を低減する構造
WO2016080524A1 (ja) * 2014-11-21 2016-05-26 株式会社フジクラ 超電導コイル
JP2016537611A (ja) * 2013-10-04 2016-12-01 ブルーカー バイオスピン ゲゼルシヤフト ミツト ベシユレンクテル ハフツングBruker BioSpin GmbH 直接的に連続したさらなるバンドセグメントによってそれぞれがオーバーラップした連結バンドセグメントを有する超伝導構造からなる巻線を有する超伝導マグネットコイルを含むnmr分光計
JP2017091681A (ja) * 2015-11-05 2017-05-25 住友電気工業株式会社 薄膜酸化物超電導線材およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816303B2 (en) * 2004-10-01 2010-10-19 American Superconductor Corporation Architecture for high temperature superconductor wire
CN1905081A (zh) * 2005-07-26 2007-01-31 中国科学院物理研究所 一种具有导电缓冲层的钇钡铜氧涂层导体及制备方法
WO2008118127A1 (en) * 2006-07-21 2008-10-02 American Superconductor Corporation Low resistance splice for high temperature superconductor wires
CN102473486B (zh) * 2009-07-17 2013-07-17 东洋钢钣株式会社 氧化物超导线材用金属叠层基板的制造方法及氧化物超导线材用金属叠层基板
JP5568361B2 (ja) * 2010-04-16 2014-08-06 株式会社フジクラ 超電導線材の電極部接合構造、超電導線材、及び超電導コイル
JP5695431B2 (ja) 2011-01-27 2015-04-08 株式会社フジクラ 酸化物超電導線材の製造方法
JP2013175293A (ja) * 2012-02-23 2013-09-05 Fujikura Ltd 超電導電流リードおよび電流リード装置と超電導マグネット装置
US20180358153A1 (en) 2015-11-05 2018-12-13 Sumitomo Electric Industries, Ltd. Oxide superconducting thin film wire and method for producing the same
US10804010B2 (en) * 2017-05-12 2020-10-13 American Superconductor Corporation High temperature superconducting wires having increased engineering current densities

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080199A (ja) * 2008-09-25 2010-04-08 Sumitomo Electric Ind Ltd 超電導ケーブルの製造方法、超電導ケーブル、および薄膜超電導線材
JP2013543631A (ja) * 2010-09-15 2013-12-05 スーパーパワー インコーポレイテッド 電気メッキされた安定化層含有量を低減する構造
JP2016537611A (ja) * 2013-10-04 2016-12-01 ブルーカー バイオスピン ゲゼルシヤフト ミツト ベシユレンクテル ハフツングBruker BioSpin GmbH 直接的に連続したさらなるバンドセグメントによってそれぞれがオーバーラップした連結バンドセグメントを有する超伝導構造からなる巻線を有する超伝導マグネットコイルを含むnmr分光計
WO2016080524A1 (ja) * 2014-11-21 2016-05-26 株式会社フジクラ 超電導コイル
JP2017091681A (ja) * 2015-11-05 2017-05-25 住友電気工業株式会社 薄膜酸化物超電導線材およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021168350A (ja) * 2020-04-10 2021-10-21 株式会社東芝 バンドル巻き高温超電導コイル装置
JP7438830B2 (ja) 2020-04-10 2024-02-27 株式会社東芝 バンドル巻き高温超電導コイル装置

Also Published As

Publication number Publication date
JPWO2019239574A1 (ja) 2021-07-26
US20210257128A1 (en) 2021-08-19
CN112262444A (zh) 2021-01-22
DE112018007737T5 (de) 2021-02-25
US12046393B2 (en) 2024-07-23
KR20210020894A (ko) 2021-02-24
KR102518606B1 (ko) 2023-04-05
JP7074190B2 (ja) 2022-05-24
CN112262444B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
JP4810268B2 (ja) 超電導線材の接続方法及び超電導線材
JP5123604B2 (ja) 超電導コイル
WO2019239574A1 (ja) 超電導線材、積層超電導線材、超電導コイル及び超電導ケーブル
KR100995907B1 (ko) 초전도 박막 선재를 이용한 원형 와이어의 제조방법 및 그 초전도 박막 선재를 이용한 원형 와이어
WO2018181561A1 (ja) 接続構造体
JP2005510843A (ja) 超伝導体ケーブルおよび磁気デバイス
KR102098005B1 (ko) 코일 권선들 및 접촉부들을 포함하는 초전도 코일 장치
JP6364502B2 (ja) 超電導コイル
JP5421170B2 (ja) 超電導電流リード
WO2011129252A1 (ja) 超電導線材の電極部接合構造、超電導線材、及び超電導コイル
WO2013165001A1 (ja) 超電導線材、超電導線材の接続構造、超電導線材の接続方法及び超電導線材の端末処理方法
JP6548916B2 (ja) 高温超電導コイル
JP6329736B2 (ja) 積層パンケーキ型超電導コイル及びそれを備えた超電導機器
JP2024020665A (ja) 超電導コイル
JP2013247011A (ja) 酸化物超電導線材及びその製造方法
JP6101490B2 (ja) 酸化物超電導線材の接続構造体及び超電導機器
JP6729303B2 (ja) 超電導線材及び超電導コイル
JP5701247B2 (ja) 酸化物超電導線材の接続構造体及び接続方法
JP4986291B2 (ja) 超電導ケーブル
JP6484658B2 (ja) 酸化物超電導線材及び超電導コイル
JP6106789B1 (ja) 酸化物超電導線材およびその製造方法、ならびに超電導コイル
JP2019040771A (ja) 超電導テープ線、この超電導テープ線を用いた超電導電流リード、永久電流スイッチおよび超電導コイル
JP7292257B2 (ja) 超電導線材の接続構造体および超電導線材の接続構造体の製造方法
JP2021132062A (ja) バンドル型超電導コイルの電極構造体、バンドル型超電導コイル
JP2012169058A (ja) 酸化物超電導線材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525053

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18922524

Country of ref document: EP

Kind code of ref document: A1