WO2019235461A1 - 太陽電池素子 - Google Patents

太陽電池素子 Download PDF

Info

Publication number
WO2019235461A1
WO2019235461A1 PCT/JP2019/022121 JP2019022121W WO2019235461A1 WO 2019235461 A1 WO2019235461 A1 WO 2019235461A1 JP 2019022121 W JP2019022121 W JP 2019022121W WO 2019235461 A1 WO2019235461 A1 WO 2019235461A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
layer
semiconductor
transparent electrode
solar cell
Prior art date
Application number
PCT/JP2019/022121
Other languages
English (en)
French (fr)
Inventor
浩孝 佐野
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2020523111A priority Critical patent/JP7042337B2/ja
Publication of WO2019235461A1 publication Critical patent/WO2019235461A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the solar cell element includes a transparent electrode, a transparent inorganic semiconductor layer, and a light absorption layer.
  • the inorganic semiconductor layer is located on the transparent electrode and has an electric resistance higher than that of the transparent electrode.
  • the light absorption layer is located on the inorganic semiconductor layer.
  • the inorganic semiconductor layer has a first region located on the transparent electrode side and a second region located on the light absorption layer side. The carrier density in the first region is higher than the carrier density in the second region.
  • FIG. 1 is a diagram schematically illustrating a cross-sectional configuration of an example of the solar cell element according to the first embodiment.
  • FIG. 2 is a diagram schematically illustrating an example of the relationship between the distance from the interface with the transparent electrode layer and the carrier density in the high resistance layer according to the first embodiment.
  • FIG. 3A is a diagram schematically illustrating an example of a method for forming a high resistance layer on a transparent electrode layer.
  • FIG. 3B is a diagram schematically illustrating an example of a state in which the first semiconductor layer is formed on the transparent electrode layer.
  • FIG. 3C is a diagram schematically illustrating an example of a state in which the second semiconductor layer is formed on the first semiconductor layer.
  • FIG. 7B is a diagram schematically illustrating a cross-sectional configuration of another example of the solar cell element according to the third embodiment.
  • Fig.8 (a) is a figure which shows typically the cross-sectional structure of an example of the solar cell element which concerns on 4th Embodiment.
  • FIG. 8B is a diagram schematically showing a cross-sectional configuration of another example of the solar cell element according to the fourth embodiment.
  • Fig.9 (a) is a figure which shows typically the cross-sectional structure of an example of the solar cell element which concerns on 5th Embodiment.
  • FIG. 9B is a diagram schematically showing a cross-sectional configuration of another example of the solar cell element according to the fifth embodiment.
  • Some solar cell elements have, for example, a structure in which a transparent electrode layer, a blocking layer, a light absorption layer, and a back electrode are laminated in this order on a transparent insulating support such as a glass substrate.
  • a hole transport layer may exist between the light absorption layer and the back electrode.
  • the blocking layer for example, a layer having a relatively high resistance (high resistance layer) made of a transparent n-type semiconductor material is used for the purpose of reducing electronic contact between the transparent electrode layer and the light absorption layer.
  • the blocking layer also has a role of blocking holes generated by photoelectric conversion in the light absorption layer, for example.
  • a solar cell element has a structure in which a transparent electrode layer, a hole transport layer, a light absorption layer, and a back electrode are laminated in this order on a transparent insulating support such as a glass substrate. is there.
  • a blocking layer may exist between the light absorption layer and the back electrode.
  • the hole transport layer includes, for example, a relatively high resistance layer (high resistance layer) made of a transparent p-type semiconductor material for the purpose of preventing electronic contact between the transparent electrode layer and the light absorption layer. Applied.
  • the hole transport layer also has a role of blocking electrons generated by photoelectric conversion in the light absorption layer, for example.
  • the above-mentioned high resistance layer can be formed by, for example, a vacuum process such as sputtering on a transparent electrode layer as an underlayer formed on a transparent insulating support.
  • the crystallinity in the region near the interface with the transparent electrode layer of the high resistance layer is different due to the difference in crystal structure and lattice constant between the transparent electrode layer and the high resistance layer. May decrease.
  • the contact resistance between the high resistance layer and the transparent electrode layer is excessively increased, and the photoelectric conversion efficiency in the solar cell element may be decreased.
  • the number of carriers becomes excessive, and the carriers generated by photoelectric conversion in the light absorption layer are regenerated. Bonding is likely to occur.
  • an excessively large number of carriers is, for example, an electron when the high resistance layer contains an n-type semiconductor material, and a hole when the high resistance layer contains a p-type semiconductor material. It is.
  • the overall electrical resistance of the high resistance layer is reduced, and a leak current is likely to occur between the transparent electrode layer and the light absorption layer. Therefore, there is a possibility that the original function of the high resistance layer that makes it difficult to cause problems such as generation of leakage current and carrier recombination may be deteriorated. As a result, the photoelectric conversion efficiency in the solar cell element may be reduced.
  • FIGS. 1, 3A to 4 and 6 to 9B a right-handed XYZ coordinate system is assigned.
  • the normal direction of the front surface F1 of the transparent substrate 1 is the + Z direction
  • one direction along the front surface F1 is the + X direction
  • the direction along the front surface F1 is the + X direction and the + Z direction.
  • the direction perpendicular to both of them is the + Y direction.
  • the solar cell element 100 has a light receiving surface (also referred to as a front surface) F1 on which light is mainly incident, and a back surface F2 located on the opposite side of the front surface F1.
  • the front surface F1 faces the + Z direction.
  • the back surface F2 faces the ⁇ Z direction.
  • the + Z direction is set to a direction toward the sun going south.
  • the solar cell element 100 includes, for example, a transparent substrate 1 and a photoelectric conversion element 10.
  • the photoelectric conversion element 10 includes, for example, a transparent electrode layer 2, a high resistance layer 3, a light absorption layer 4, a carrier transport layer 5, and a back electrode layer 6.
  • a transparent electrode layer 2, a high resistance layer 3, a light absorption layer 4, a carrier transport layer 5, and a back electrode layer 6 are laminated on the transparent substrate 1 in this order. Located in the state.
  • the transparent substrate 1 is an insulating substrate having translucency.
  • This transparent substrate 1 has translucency with respect to light in a specific wavelength range, for example.
  • This specific wavelength range includes, for example, a wavelength range of light that can be absorbed by the light absorption layer 4 to cause photoelectric conversion.
  • the light irradiated on the front surface F ⁇ b> 1 can pass through the transparent substrate 1 toward the light absorption layer 4.
  • the specific wavelength range includes the wavelength of light with high irradiation intensity constituting sunlight, the photoelectric conversion efficiency of the solar cell element 100 can be improved.
  • the material of the transparent substrate for example, glass, acrylic, polycarbonate, or the like is applied.
  • the thickness of the transparent substrate 1 is, for example, about 0.01 millimeter (mm) to 5 mm.
  • the transparent electrode layer 2 is located on the transparent substrate 1.
  • the transparent electrode layer 2 can collect carriers generated by photoelectric conversion in response to light irradiation to the light absorption layer 4.
  • the transparent electrode layer 2 has translucency
  • the light in the region can enter the high resistance layer 3 via the transparent substrate 1 and the transparent electrode layer 2.
  • a transparent conductive oxide (TCO) having translucency with respect to light in a specific wavelength range is employed.
  • the high resistance layer 3 is located on the transparent electrode layer 2.
  • a transparent inorganic material semiconductor layer also referred to as an inorganic semiconductor layer
  • a transparent n-type semiconductor also referred to as an n-type semiconductor
  • the high resistance layer 3 functions as, for example, a so-called hole blocking layer and an electron transport layer (ETL).
  • the electron transport layer is, for example, for collecting and outputting electrons.
  • the high resistance layer 3 has translucency with respect to the light of a specific wavelength range similarly to the transparent substrate 1 and the transparent electrode layer 2, for example. Thereby, light in a specific wavelength region can be incident on the light absorption layer 4 through the transparent substrate 1, the transparent electrode layer 2, and the high resistance layer 3.
  • the thickness of the high resistance layer 3 is, for example, about 1 nm to 200 nm.
  • the high resistance layer 3 includes, for example, a first region A1 located on the transparent electrode layer 2 side and a second region A2 located on the light absorption layer 4 side.
  • the first region A1 is located on the transparent electrode layer 2
  • the second region A2 is located on the first region A1.
  • the first region A1 and the second region A2 may be in contact with each other, or may be in a state of not being in contact by sandwiching another region.
  • the carrier density (also referred to as carrier density) in the first region A1 is higher than the carrier density in the second region A2. For this reason, the electrical resistance of the second region A2 tends to be higher than the electrical resistance of the first region A1.
  • the thickness of the first region A1 and the thickness of the second region A2 can be appropriately set according to the material of the high resistance layer 3, for example.
  • the carrier density in the first region A1 is 1 ⁇ 10 19 (1 / cm 3 ) or less, light absorption in the high resistance layer 3 hardly occurs, and light absorption in the light absorption layer 4 is inhibited. Hateful.
  • the high resistance layer 3 includes the first semiconductor layer 31 including the first region A1.
  • the second semiconductor layer 32 is located on the first semiconductor layer 31 in contact with the first semiconductor layer 31.
  • the thickness of the first semiconductor layer 31 is D1
  • the thickness of the second semiconductor layer 32 is D2.
  • the carrier density in the first semiconductor layer 31 is Cd1
  • the carrier density in the second semiconductor layer 32 is Cd2 lower than Cd1. In this case, as indicated by a thick line in the graph of FIG.
  • the first region A1 and the second region A2 contain the same semiconductor material.
  • the carrier density in the region A1 can be higher than the carrier density in the second region A2.
  • a configuration in which the first region A1 and the second region A2 contain ZnO as the same semiconductor material is conceivable.
  • a configuration in which at least one of an aluminum content and an oxygen deficiency amount as an impurity element in ZnO is different between the first region A1 and the second region A2 is conceivable.
  • an inorganic semiconductor layer including the first region A1 and the second region A2 having different carrier densities can be easily formed based on one semiconductor material.
  • the solar cell element 100 that can be easily manufactured can be realized.
  • a measurement method such as XPS (X-ray Photoelectron Spectroscopy), SIMS (Secondary Ion Mass Spectrometry), EDS (Energy Dispersive X-ray Spectroscopy) or the like. Can be used to measure the aluminum concentration in each of the first region A1 and the second region A2.
  • the carrier density in each of the first region A1 and the second region A2 can be estimated.
  • the carrier density is high or low between the first region A1 and the second region A2.
  • the peak intensity derived from oxygen deficiency in the spectrum which is a measurement result by a PL (PhotoLuminescence) method, a CL (CathodoLuminescence) method, a Raman spectroscopy, or the like.
  • the first region A1 and the second region A2 can be formed by a vacuum process such as sputtering.
  • the first region A1 can be formed on the transparent electrode layer 2 by sputtering using AZO as a target material.
  • the second region A2 can be formed on the first region A1 by sputtering using ZnO as a target material. For example, as shown in FIG.
  • the first semiconductor layer 31 can be formed on the transparent electrode layer 2 by sputtering using AZO as the material of the first target Tg1.
  • the first semiconductor layer 31 is located on the transparent electrode layer 2 located on the transparent substrate 1.
  • the second semiconductor layer 32 can be formed on the first semiconductor layer 31 by sputtering using ZnO as a material of the second target Tg2.
  • the second semiconductor layer 32 is positioned on the first semiconductor layer 31 further positioned on the transparent electrode layer 2 positioned on the transparent substrate 1. It becomes a state.
  • the first region A1 can be formed by sputtering using ZnO whose oxygen deficit amount is the first deficiency amount as a target material.
  • the second region A2 can be formed by sputtering using ZnO, which is a second deficit amount in which the oxygen deficit amount is smaller than the first deficit amount, as a target material.
  • the light absorption layer 4 is located on the high resistance layer 3.
  • the light absorption layer 4 can absorb light transmitted through the transparent substrate 1, the transparent electrode layer 2, and the high resistance layer 3.
  • an intrinsic semiconductor also referred to as i-type semiconductor
  • a semiconductor having a perovskite structure also referred to as a perovskite semiconductor
  • the perovskite semiconductor can include, for example, a halide organic-inorganic perovskite semiconductor.
  • the halide organic-inorganic perovskite semiconductor is a semiconductor having a perovskite structure having a composition of ABX 3 .
  • A includes, for example, one or more of methylammonium (CH 3 NH 3 ), formamidinium (CH (NH 2 ) 2 ), cesium (Cs), rubidium (Rb), and potassium (K) Of ions are applied.
  • one or more ions of lead (Pb) and tin (Sn) are applied to B.
  • Pb lead
  • Sn tin
  • X for example, one or more ions of iodine (I), bromine (Br), and chlorine (Cl) are applied.
  • a semiconductor having a perovskite structure having a composition of ABX 3 is composed of an organic perovskite such as CH 3 NH 3 PbI 3 or (CH (NH 2 ) 2 , Cs) Pb (I, Br) 3.
  • the organic perovskite can be formed, for example, by applying the first raw material liquid on the high resistance layer 3 located on the transparent substrate 1 and drying it.
  • the organic perovskite is a thin film having crystallinity.
  • the first raw material liquid can be generated, for example, by dissolving a halogenated alkylamine and a lead halide as raw materials in a solvent.
  • the thickness of the light absorption layer 4 is, for example, about 100 nm to 2000 nm.
  • the carrier transport layer 5 is located on the light absorption layer 4.
  • a hole transport layer (HTL) is applied to the carrier transport layer 5.
  • the HTL is, for example, for collecting and outputting holes.
  • a semiconductor having a p-type conductivity also referred to as a p-type semiconductor
  • spiro-OMeTAD which is a soluble diamine derivative
  • the HTL can be generated, for example, by applying the second raw material liquid on the perovskite semiconductor layer as the light absorption layer 4 and drying it.
  • the thickness of the carrier transport layer 5 is, for example, about 50 nm to 200 nm.
  • the carrier transport layer 5 as a p-type semiconductor, the light absorption layer 4 as an i-type semiconductor, and the high resistance layer 3 as an n-type semiconductor form a PIN junction region. is there. Electricity can be generated by photoelectric conversion in response to light irradiation by the PIN junction region.
  • the back electrode layer 6 is located on the carrier transport layer 5.
  • the back electrode layer 6 can collect carriers generated by photoelectric conversion in response to light irradiation to the light absorption layer 4.
  • the material of the back electrode layer 6 is, for example, a metal having excellent conductivity such as gold (Au) or TCO.
  • TCO includes, for example, ITO, FTO or ZnO.
  • the thickness of the back electrode layer 6 is, for example, about 10 nm to 1000 nm.
  • the back electrode layer 6 can be formed on the carrier transport layer 5 by, for example, a vacuum process such as sputtering.
  • the back electrode layer 6 has translucency with respect to light in a specific wavelength region.
  • the light applied to the back surface F ⁇ b> 2 can pass through the back electrode layer 6 toward the light absorption layer 4.
  • the solar cell element 100 not only the front surface F1 side but the double-sided side including the back surface F2 side can become a light-receiving surface.
  • a lead wire 9 is electrically connected to each of the transparent electrode layer 2 and the back electrode layer 6.
  • the first lead wire 91 is electrically connected to the transparent electrode layer 2
  • the second lead wire 92 is connected to the back electrode layer 6.
  • Each lead wire 9 can be joined to each of the transparent electrode layer 2 and the back electrode layer 6 by, for example, soldering.
  • the output obtained by photoelectric conversion in the solar cell element 100 can be taken out by the first lead wire 91 and the second lead wire 92.
  • the high resistance layer 3 that is a transparent inorganic semiconductor layer is positioned on the first region A1 positioned on the transparent electrode layer 2 side and on the light absorption layer 4 side.
  • the carrier density in the first region A1 is higher than the carrier density in the second region A2.
  • the photoelectric conversion efficiency in the solar cell element 100 can be improved.
  • the carrier density continuously changes from the first region A1 to the second region A2 in the thickness direction of the high resistance layer 3 as the inorganic semiconductor layer. You may be in a state. If such a configuration is adopted, for example, in the high resistance layer 3, an interface is hardly generated in the thickness direction. For this reason, for example, recombination of carriers due to the presence of an interface in the high resistance layer 3 and an increase in electrical resistance are unlikely to occur. As a result, for example, the photoelectric conversion efficiency in the solar cell element 100 can be improved.
  • the first region is a partial region as illustrated in FIG. 5A or the entire region as illustrated in FIG. A configuration in which the carrier density decreases from A1 to the second region A2 is conceivable.
  • the first target Tg1 and the second target Tg2 are arranged close to each other, and sputtering using the first target Tg1 and sputtering using the second target Tg2 are performed.
  • the transparent substrate 1 on which the transparent electrode layer 2 is formed is relative to the first target Tg1 and the second target Tg2 in one film forming apparatus.
  • the transparent substrate 1 is at the first position Po1
  • a material layer of the first target Tg1 is formed on the transparent electrode layer 2 by sputtering using the first target Tg1.
  • the transparent substrate 1 moves to the second position Po2
  • sputtering using the first target Tg1 and sputtering using the second target Tg2 are performed simultaneously.
  • a layer in which the material of the first target Tg1 and the material of the second target Tg2 are mixed is formed on the transparent electrode layer 2.
  • a layer of the material of the second target Tg2 is formed on the transparent electrode layer 2 by sputtering using the second target Tg2.
  • the high resistance layer 3 in a state in which the carrier density continuously changes from the first region A1 to the second region A2 in the thickness direction can be formed.
  • AZO is adopted as the material of the first target Tg1
  • ZnO is adopted as the material of the second target Tg2
  • the formation of AZO and the formation of ZnO are performed on the transparent electrode layer 2.
  • a time zone occurs simultaneously.
  • the ratio of ZnO to AZO gradually increases, and a gradation of carrier density occurs.
  • the high resistance layer 3 as the inorganic semiconductor layer can be formed with one film forming apparatus so that the carrier density continuously changes in the thickness direction.
  • the solar cell element 100 excellent in manufacturability can be realized.
  • the high resistance layer 3B can be formed by, for example, a vacuum process such as sputtering, like the high resistance layer 3 of the first embodiment and the second embodiment.
  • a vacuum process such as sputtering
  • the transparent electrode layer 2 side of the high resistance layer 3B is usually due to a difference in crystal structure and lattice constant between the transparent electrode layer 2 and the high resistance layer 3B.
  • the crystallinity tends to decrease in the region of.
  • the carrier density in the first region A1B located on the transparent electrode layer 2 side in the high resistance layer 3B is high, the contact resistance between the high resistance layer 3B and the transparent electrode layer 2 is high.
  • the first semiconductor layer 31B is formed on the transparent electrode layer 2 by sputtering using a semiconductor material having a first carrier density as the material of the first target Tg1. Can be formed. Thereby, as shown in FIG. 3B, the first semiconductor layer 31 ⁇ / b> B is positioned on the transparent electrode layer 2 positioned on the transparent substrate 1. Thereafter, for example, the second semiconductor layer 32B may be formed on the first semiconductor layer 31B by sputtering using a semiconductor material having a second carrier density lower than the first carrier density as the material of the second target Tg2. it can. Thereby, as shown in FIG. 3C, the second semiconductor layer 32B is positioned on the first semiconductor layer 31B further positioned on the transparent electrode layer 2 positioned on the transparent substrate 1. It becomes a state.
  • the carrier density can be adjusted by making at least one of the impurity element content and the oxygen deficiency amount different.
  • the carrier density can be adjusted by making at least one of the impurity element content and the metal element defect amount different.
  • the carrier density can be adjusted by the value of x in Cu (1-x) SCN (0 ⁇ x ⁇ 1) due to Cu deficiency. If such a configuration is adopted, for example, the high resistance layer 3B including the first region A1B and the second region A2B having different carrier densities can be easily formed based on one semiconductor material.
  • the carrier density is continuously changing from the first region A1B to the second region A2B in the thickness direction of the high resistance layer 3B. Also good. If such a configuration is adopted, for example, in the high resistance layer 3B, an interface is hardly generated in the thickness direction. For this reason, for example, in the high resistance layer 3B, recombination of carriers and increase in electrical resistance due to the presence of the interface are unlikely to occur. As a result, for example, the photoelectric conversion efficiency in the solar cell element 100 can be improved.
  • the first region is a partial region as illustrated in FIG. 5A or the entire region as illustrated in FIG. 5B.
  • a configuration in which the carrier density decreases from A1B to the second region A2B is conceivable.
  • the first target Tg1 and the second target Tg2 are arranged close to each other, and sputtering using the first target Tg1 and the second target Tg2 are used. It can be realized by performing time-sequentially so that sputtering is overlapped in some sections.
  • the high resistance layer 3 ⁇ / b> B as the inorganic semiconductor layer can be formed with one film forming apparatus so that the carrier density continuously changes in the thickness direction.
  • the solar cell element 100 excellent in manufacturability can be realized.
  • the light absorption layer 4 to which the i-type semiconductor is applied is applied to the p-type semiconductor.
  • the carrier transport layer 5 to which the p-type semiconductor is applied may be omitted.
  • a silicon-based or compound-based semiconductor can be applied to the p-type semiconductor applied to the light absorption layer 4C.
  • the silicon-based semiconductor for example, a semiconductor using amorphous silicon is used.
  • compound semiconductors include compound semiconductors having a chalcopyrite structure such as CIS semiconductors and CIGS semiconductors, II-VI group semiconductors such as cadmium telluride (CdTe), and III-V group semiconductors such as gallium arsenide (GaAs).
  • the CIS semiconductor is a compound semiconductor containing Cu, indium (In), and selenium (Se).
  • the CIGS semiconductor is a compound semiconductor containing Cu, In, gallium (Ga) and Se.
  • the semiconductor layer using amorphous silicon, the II-VI group semiconductor layer, and the III-V group semiconductor layer can be formed by, for example, a chemical vapor deposition (CVD) method.
  • the layers of the CIS semiconductor and the CIGS semiconductor can be formed by, for example, vapor deposition, sputtering, application of a raw material solution and baking.
  • the light absorption layer 4 to which the i-type semiconductor is applied is replaced with the light absorption layer 4D to which the n-type semiconductor is applied.
  • the carrier transport layer 5B to which the n-type semiconductor is applied may be omitted.
  • a silicon-based or compound-based semiconductor can be adopted as the n-type semiconductor applied to the light absorption layer 4D.
  • the silicon-based semiconductor for example, a semiconductor using amorphous silicon is used.
  • a III-V semiconductor such as GaAs is applied to the compound semiconductor.
  • the semiconductor layer using amorphous silicon and the III-V semiconductor layer can be formed by, for example, a CVD method.
  • a carrier density is obtained with an oxygen deficiency.
  • a conditioned oxide semiconductor other than ZnO may be applied.
  • indium oxide (In 2 O 3 ), SnO 2, or TiO 2 can be applied to the oxide semiconductor other than ZnO.
  • ITO other than AZO and TCO such as FTO may be employed as a transparent inorganic semiconductor material applied to the high resistance layer 3 as an n-type semiconductor.
  • the carrier density can be increased or decreased according to at least one of the impurity element content and the element deficiency in the TCO.
  • the second semiconductor material may or may not be included in the region on the transparent electrode layer 2 side of the first regions A1 and A1B.
  • the first semiconductor material may or may not be included in the regions of the second regions A2 and A2B on the side of the light absorption layers 4, 4C, and 4D.
  • the content ratio of the first semiconductor material decreases and the content ratio of the second semiconductor material increases, so that the carrier density decreases. You may be in a state.
  • the first region A1, A1B and the second region A2, A2B differ in at least one of the impurity element content and the element deficiency in the semiconductor material having the same crystal structure. If so, the carrier density in the first regions A1 and A1B can be higher than the carrier density in the second regions A2 and A2B. Specifically, for example, the carrier density in the first semiconductor material is higher than the carrier density in the second semiconductor material. In this case, for example, the carrier density in the semiconductor material can be adjusted by the addition amount of an impurity element such as Nb, Ta, Sb, or F or the deficiency amount of oxygen.
  • an impurity element such as Nb, Ta, Sb, or F or the deficiency amount of oxygen.
  • the lattice constant is substantially the same between the first semiconductor material and the second semiconductor material.
  • the high resistance layers 3 and 3B are less likely to be distorted.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

太陽電池素子(100)は、透明電極(2)と、透明な無機半導体層(3)と、光吸収層(4)と、を備えている。無機半導体層(3)は、透明電極(2)上に位置している。この無機半導体層(3)は、透明電極(2)よりも高い電気抵抗を有する。光吸収層(4)は、無機半導体層(3)上に位置している。無機半導体層(3)は、透明電極(2)側に位置している第1領域(A1)と、光吸収層(4)側に位置している第2領域(A2)と、を有する。第1領域(A1)におけるキャリア密度が、第2領域(A2)におけるキャリア密度よりも高い状態にある。

Description

太陽電池素子
 本開示は、太陽電池素子に関する。
 太陽電池素子には、例えば、ガラス基板などの透明絶縁支持体の上に、透明電極層、ブロッキング層、光吸収層および背面電極が、この記載の順に積層されている構造を有するものがある(例えば、特許第5005467号明細書および特開2017-066096号公報の記載を参照)。ここでは、例えば、光吸収層と背面電極との間には、ホール輸送層が存在していてもよい。ここで、ブロッキング層は、電気抵抗が比較的高い層(高抵抗層ともいう)で構成され、透明電極層と光吸収層との電子的なコンタクトを生じにくくする役割と、光吸収層における光電変換で発生した正孔をブロックする役割と、を有する。このブロッキング層の材料には、透明なn型の半導体材料などが適用される。
 また、太陽電池素子には、例えば、ガラス基板などの透明絶縁支持体の上に、透明電極層、ホール輸送層、光吸収層および背面電極が、この記載の順に積層されている構造を有するものがある。ここでは、例えば、光吸収層と背面電極との間には、ブロッキング層が存在していてもよい。ここで、ホール輸送層は、電気抵抗が比較的高い層(高抵抗層)で構成され、透明電極層と光吸収層との電子的なコンタクトを生じにくくする役割と、光吸収層における光電変換で発生した電子をブロックする役割と、を有する。このホール輸送層の材料には、透明なp型の半導体材料などが適用される。
 太陽電池素子が開示される。
 太陽電池素子の一態様は、透明電極と、透明な無機半導体層と、光吸収層と、を備えている。前記無機半導体層は、前記透明電極上に位置しており且つ該透明電極よりも高い電気抵抗を有する。前記光吸収層は、前記無機半導体層上に位置している。前記無機半導体層は、前記透明電極側に位置している第1領域と、前記光吸収層側に位置している第2領域と、を有する。前記第1領域におけるキャリア密度が、前記第2領域におけるキャリア密度よりも高い状態にある。
図1は、第1実施形態に係る太陽電池素子の一例の断面構成を模式的に示す図である。 図2は、第1実施形態に係る高抵抗層における透明電極層との界面からの距離とキャリア密度との関係の一例を模式的に示す図である。 図3(a)は、透明電極層上に高抵抗層を形成する方法の一例を模式的に示す図である。図3(b)は、透明電極層上に第1半導体層が形成された状態の一例を模式的に示す図である。図3(c)は、第1半導体層上に第2半導体層が形成された状態の一例を模式的に示す図である。 図4は、第2実施形態に係る太陽電池素子の一例の断面構成を模式的に示す図である。 図5(a)は、第2実施形態に係る高抵抗層における透明電極層との界面からの距離とキャリア密度との関係の一例を模式的に示す図である。図5(b)は、第2実施形態に係る高抵抗層における透明電極層との界面からの距離とキャリア密度との関係の他の一例を模式的に示す図である。 図6は、透明電極層上に高抵抗層を形成する方法の一例を示す図である。 図7(a)は、第3実施形態に係る太陽電池素子の一例の断面構成を模式的に示す図である。図7(b)は、第3実施形態に係る太陽電池素子の他の一例の断面構成を模式的に示す図である。 図8(a)は、第4実施形態に係る太陽電池素子の一例の断面構成を模式的に示す図である。図8(b)は、第4実施形態に係る太陽電池素子の他の一例の断面構成を模式的に示す図である。 図9(a)は、第5実施形態に係る太陽電池素子の一例の断面構成を模式的に示す図である。図9(b)は、第5実施形態に係る太陽電池素子の他の一例の断面構成を模式的に示す図である。
 太陽電池素子には、例えば、ガラス基板などの透明絶縁支持体の上に、透明電極層、ブロッキング層、光吸収層および背面電極が、この記載の順に積層された構造を有するものがある。ここでは、例えば、光吸収層と背面電極との間には、ホール輸送層が存在していてもよい。ブロッキング層には、例えば、透明電極層と光吸収層との電子的なコンタクトを低減する目的で、透明なn型の半導体材料などで構成された比較的抵抗が高い層(高抵抗層)が適用される。また、ブロッキング層は、例えば、光吸収層における光電変換で生じた正孔をブロックする役割も有する。
 また、太陽電池素子には、例えば、ガラス基板などの透明絶縁支持体の上に、透明電極層、ホール輸送層、光吸収層および背面電極が、この記載の順に積層された構造を有するものがある。ここでは、例えば、光吸収層と背面電極との間には、ブロッキング層が存在していてもよい。ホール輸送層には、例えば、透明電極層と光吸収層との電子的なコンタクトを防ぐ目的で、透明なp型の半導体材料などで構成された比較的抵抗が高い層(高抵抗層)が適用される。また、ホール輸送層は、例えば、光吸収層における光電変換で生じた電子をブロックする役割も有する。
 上記の高抵抗層は、例えば、透明絶縁支持体上に形成された下地層としての透明電極層の上に、スパッタリングなどの真空プロセスで形成され得る。
 ところで、例えば、高抵抗層の形成時には、透明電極層と高抵抗層との間における結晶構造および格子定数などの相違により、高抵抗層のうちの透明電極層との界面付近の領域において結晶性が低下する場合がある。この場合には、例えば、高抵抗層と透明電極層との間における接触抵抗が過度に上昇して、太陽電池素子における光電変換効率が低下するおそれがある。
 このような問題に対して、例えば、高抵抗層にキャリアをドーピングして、高抵抗層と透明電極層との間における接触抵抗の過度な上昇を低減することが考えられる。
 しかしながら、このような構成が採用されれば、例えば、高抵抗層のうちの光吸収層との界面付近の領域において、キャリアが過度に多くなり、光吸収層における光電変換で生じたキャリアが再結合を生じやすくなる。ここで、過度に多くなるキャリアは、例えば、高抵抗層がn型の半導体材料を含有する場合には、電子であり、高抵抗層がp型の半導体材料を含有する場合には、正孔である。また、例えば、高抵抗層の全体の電気抵抗が低下して、透明電極層と光吸収層との間におけるリーク電流が生じやすくなる。したがって、リーク電流の発生およびキャリアの再結合などの不具合を生じにくくする高抵抗層の本来の機能が低下するおそれがある。その結果、太陽電池素子における光電変換効率が低下するおそれがある。
 そこで、本発明者らは、光電変換効率を向上させることができる技術を創出した。
 これについて、以下、第1実施形態から第5実施形態のそれぞれについて図面を参照しつつ説明する。図面においては同様な構成および機能を有する部分に同じ符号が付されており、下記説明では重複説明が省略される。図面は模式的に示されたものである。図1、図3(a)から図4および図6から図9(b)には、それぞれ右手系のXYZ座標系が付されている。このXYZ座標系では、透明基板1の前面F1の法線方向が+Z方向とされ、前面F1に沿った一方向が+X方向とされ、前面F1に沿った方向であって、+X方向と+Z方向との両方に直交する方向が+Y方向とされている。
 <1.第1実施形態>
  <1-1.太陽電池素子>
 第1実施形態に係る太陽電池素子100について、図1および図2を参照しつつ説明する。
 図1で示されるように、太陽電池素子100は、主に光が入射する受光面(前面ともいう)F1と、この前面F1の逆側に位置する裏面F2と、を有する。第1実施形態では、前面F1が、+Z方向を向いている。裏面F2が、-Z方向を向いている。例えば、+Z方向は、南中している太陽に向く方向に設定される。
 図1で示されるように、太陽電池素子100は、例えば、透明基板1と、光電変換素子10と、を備えている。光電変換素子10は、例えば、透明電極層2と、高抵抗層3と、光吸収層4と、キャリア輸送層5と、裏面電極層6と、を備えている。第1実施形態では、透明基板1の上に、透明電極層2と、高抵抗層3と、光吸収層4と、キャリア輸送層5と、裏面電極層6と、がこの記載の順に積層されている状態で位置している。
 透明基板1は、透光性を有する絶縁性の基板である。この透明基板1は、例えば、特定波長域の光に対する透光性を有する。この特定波長域は、例えば、光吸収層4が吸収して光電変換を生じ得る光の波長域を含む。これにより、例えば、前面F1に照射される光が、透明基板1を光吸収層4に向けて透過し得る。ここで、例えば、特定波長域が、太陽光を構成する照射強度の高い光の波長を含んでいれば、太陽電池素子100の光電変換効率が向上し得る。透明基板1の材料には、例えば、ガラス、アクリルまたはポリカーボネートなどが適用される。透明基板1の形状としては、例えば、平板状、シート状またはフィルム状などが採用される。透明基板1の厚さは、例えば、0.01ミリメートル(mm)から5mm程度とされる。
 透明電極層2は、透明基板1の上に位置している。この透明電極層2は、光吸収層4に対する光の照射に応じて光電変換で生じたキャリアを集めることができる。ここで、例えば、透明電極層2が透光性を有する場合には、透明電極層2が、透明基板1と同様に、特定波長域の光に対する透光性を有していれば、特定波長域の光が透明基板1と透明電極層2とを介して高抵抗層3に入射し得る。透明電極層2の材料には、例えば、特定波長域の光に対して透光性を有する透明導電性酸化物(TCO)が採用される。TCOは、例えば、酸化インジウムスズ(ITO)、フッ素ドープ酸化スズ(FTO)、二酸化チタン(TiO)、酸化スズ(IV)(SnO)または酸化亜鉛(ZnO)などを含む。透明電極層2の厚さは、例えば、10ナノメートル(nm)から1000nm程度とされる。透明電極層2は、例えば、スパッタリングなどの真空プロセスによって、透明基板1上に形成され得る。
 高抵抗層3は、透明電極層2の上に位置している。この高抵抗層3には、例えば、透明電極層2よりも高い電気抵抗を有する透明な無機材料の半導体の層(無機半導体層ともいう)が適用される。これにより、例えば、透明電極層2と光吸収層4との電気的なコンタクトが生じにくい。第1実施形態では、透明な無機半導体の材料には、例えば、透明なn型の導電型を有する半導体(n型半導体ともいう)が適用される。この場合には、高抵抗層3は、例えば、いわゆるホールブロッキング層および電子輸送層(ETL)としての機能を有する。電子輸送層は、例えば、電子を収集して出力するためのものである。そして、高抵抗層3は、例えば、透明基板1および透明電極層2と同様に、特定波長域の光に対する透光性を有する。これにより、特定波長域の光が透明基板1と透明電極層2と高抵抗層3とを介して光吸収層4に入射し得る。高抵抗層3の厚さは、例えば、1nmから200nm程度とされる。
 ここでは、高抵抗層3は、例えば、透明電極層2側に位置している第1領域A1と、光吸収層4側に位置している第2領域A2と、を有する。換言すれば、例えば、透明電極層2の上に、第1領域A1が位置しており、この第1領域A1の上に第2領域A2が位置している。ここで、高抵抗層3では、例えば、第1領域A1と第2領域A2とが、接している状態にあってもよいし、他の領域を挟むことで接していない状態にあってもよい。第1実施形態では、第1領域A1におけるキャリアの密度(キャリア密度ともいう)が、第2領域A2におけるキャリア密度よりも高い状態にある。このため、第2領域A2の電気抵抗が、第1領域A1の電気抵抗よりも高くなりやすい。第1領域A1の厚さおよび第2領域A2の厚さは、例えば、高抵抗層3の材料などに応じて適宜設定され得る。ここで、例えば、第1領域A1におけるキャリア密度が、1×1019(1/cm)以下であれば、高抵抗層3における光吸収が生じにくく、光吸収層4における光吸収が阻害されにくい。
 高抵抗層3は、例えば、スパッタリングなどの真空プロセスで形成され得る。高抵抗層3を真空プロセスで形成する場合には、通常は、透明電極層2と高抵抗層3との結晶構造および格子定数などの相違によって、高抵抗層3のうちの透明電極層2側の領域で結晶性が低下しやすい。ところが、上述したように、例えば、高抵抗層3のうちの透明電極層2側に位置している第1領域A1におけるキャリア密度が高ければ、高抵抗層3と透明電極層2との接触抵抗の過度な上昇が生じにくい。また、例えば、高抵抗層3のうちの光吸収層4側にキャリア密度が第1領域A1よりも低い第2領域A2が存在していれば、高抵抗層3のうちの光吸収層4との界面付近の領域において、キャリアとしての電子が過度に増加しにくい。これにより、例えば、高抵抗層3におけるキャリアである電子と、光吸収層4における光電変換で生じた正孔と、が結合する、キャリアの再結合が生じにくい。また、例えば、第2領域A2の存在によって、高抵抗層3における電気抵抗がある程度確保される。これにより、例えば、透明電極層2と光吸収層4との間におけるリーク電流が生じにくい。したがって、例えば、太陽電池素子100の光電変換効率が向上し得る。
 また、ここでは、例えば、第1領域A1を形成した後に、この第1領域A1の上に第2領域A2を形成すれば、高抵抗層3は、第1領域A1を含む第1半導体層31と、第2領域A2を含む第2半導体層32と、を有する状態となる。ここでは、第2半導体層32は、第1半導体層31の上において、この第1半導体層31と接している状態で位置している。ここで、第1半導体層31の厚さをD1とし、第2半導体層32の厚さをD2とする。また、ここで、第1半導体層31におけるキャリア密度をCd1とし、第2半導体層32のキャリア密度をCd1よりも低いCd2とする。この場合には、図2のグラフにおいて太線で示されるように、例えば、高抵抗層3の厚さ方向におけるキャリア密度の変化は、第1半導体層31(図2中のD1で示す領域に相当)と第2半導体層32(図2中のD2で示す領域に相当)との界面で不連続である状態にある。このような構成が採用されれば、例えば、第1半導体層31と第2半導体層32とを単純に時間順に形成することができる。これにより、例えば、キャリア密度が相違する第1領域A1と第2領域A2とを含む無機半導体層である高抵抗層3を容易に形成することができる。その結果、例えば、容易に製造することが可能な太陽電池素子100が実現され得る。
 また、ここでは、例えば、第1領域A1と第2領域A2とが、同一の半導体材料を含有している構成が採用される。この場合には、例えば、第1領域A1と第2領域A2との間において、同一の半導体材料における不純物元素の含有量および元素の欠損量の少なくとも1つの量が相違していれば、第1領域A1におけるキャリア密度が、第2領域A2におけるキャリア密度よりも高い状態となり得る。具体的には、例えば、第1領域A1と第2領域A2とが、同一の半導体材料としてのZnOを含有している構成が考えられる。ここで、例えば、第1領域A1と第2領域A2との間において、ZnOにおける不純物元素としてアルミニウムの含有量および酸素の欠損量の少なくとも1つの量が相違している構成が考えられる。このような構成が採用されれば、例えば、1つの半導体材料をベースとして、キャリア密度が相違する第1領域A1と第2領域A2とを含む無機半導体層を容易に形成することができる。その結果、例えば、容易に製造することが可能な太陽電池素子100が実現され得る。なお、例えば、半導体材料における不純物元素(例えば、アルミニウム)の含有量に関しては、XPS(X-ray Photoelectron Spectroscopy)、SIMS(Secondary Ion Mass Spectrometry)またはEDS(Energy Dispersive X-ray Spectroscopy)等の測定方法を用いて第1領域A1および第2領域A2のそれぞれにおけるアルミニウム濃度を測定することができる。これにより、第1領域A1および第2領域A2のそれぞれにおけるキャリア密度を推定することができる。その結果、第1領域A1と第2領域A2との間におけるキャリア密度の高低の状態を確認することができる。また、例えば、半導体材料における酸素の欠損量に関しては、PL(PhotoLuminescence)法、CL(CathodoLuminescence)法またはラマン分光法等による測定結果であるスペクトルにおける酸素の欠損に由来するピークの強度を第1領域A1と第2領域A2との間で比較することで、第1領域A1と第2領域A2との間におけるキャリア密度の変化を推定することができる。その結果、第1領域A1と第2領域A2との間におけるキャリア密度の高低の状態を確認することができる。
 例えば、ZnOにおける不純物元素としてのアルミニウムの含有量を変化させる場合には、第1領域A1の材料には、例えば、アルミニウムがドープされた酸化亜鉛(AZO)が適用される。第2領域A2の材料には、例えば、ZnOが適用される。この場合には、第1領域A1および第2領域A2は、例えば、スパッタリングなどの真空プロセスによって形成され得る。例えば、ターゲットの材料としてAZOを用いたスパッタリングで、透明電極層2上に第1領域A1を形成することができる。その後、例えば、ターゲット材料としてZnOを用いたスパッタリングで、第1領域A1上に第2領域A2を形成することができる。例えば、図3(a)で示されるように、第1ターゲットTg1の材料としてAZOを用いたスパッタリングによって、透明電極層2上に第1半導体層31を形成することができる。これにより、図3(b)で示されるように、透明基板1上に位置している透明電極層2上に第1半導体層31が位置している状態となる。その後、例えば、第2ターゲットTg2の材料としてZnOを用いたスパッタリングで第1半導体層31上に第2半導体層32を形成することができる。これにより、図3(c)で示されるように、透明基板1上に位置している透明電極層2上にさらに位置している第1半導体層31上に第2半導体層32が位置している状態となる。
 また、例えば、ZnOにおける酸素の欠損量を変化させる場合には、酸素の欠損量が第1の欠損量であるZnOをターゲットの材料として用いたスパッタリングで第1領域A1を形成することができる。その後、酸素の欠損量が第1の欠損量よりも小さな第2の欠損量であるZnOをターゲットの材料として用いたスパッタリングで第2領域A2を形成することができる。
 光吸収層4は、高抵抗層3上に位置している。この光吸収層4は、透明基板1、透明電極層2および高抵抗層3を透過した光を吸収することができる。第1実施形態では、光吸収層4には、例えば、真性半導体(i型半導体ともいう)が適用される。i型半導体には、例えば、ペロブスカイト構造を有する半導体(ペロブスカイト半導体ともいう)が適用される。ペロブスカイト半導体は、例えば、ハライド系有機-無機ペロブスカイト半導体を含み得る。ハライド系有機-無機ペロブスカイト半導体は、ABXの組成のペロブスカイト構造を有する半導体である。ここで、Aには、例えば、メチルアンモニウム(CHNH)、ホルムアミジニウム(CH(NH)、セシウム(Cs)、ルビジウム(Rb)およびカリウム(K)のうちの1種以上のイオンが適用される。また、Bには、例えば、鉛(Pb)およびスズ(Sn)のうちの1種以上のイオンが適用される。また、Xには、例えば、ヨウ素(I)、臭素(Br)および塩素(Cl)のうちの1種以上のイオンが適用される。具体的には、ABXの組成のペロブスカイト構造を有する半導体は、例えば、CHNHPbIまたは(CH(NH、Cs)Pb(I、Br)などの有機ペロブスカイトによって構成され得る。有機ペロブスカイトは、例えば、透明基板1上に位置している高抵抗層3の上に第1原料液が塗布されて、乾燥されることで形成され得る。ここでは、有機ペロブスカイトは、結晶性を有する薄膜である。第1原料液は、例えば、原料であるハロゲン化アルキルアミンとハロゲン化鉛とが溶媒に溶かされることで生成され得る。光吸収層4の厚さは、例えば、100nmから2000nm程度とされる。
 キャリア輸送層5は、光吸収層4上に位置している。第1実施形態では、キャリア輸送層5には、正孔輸送層(HTL)が適用される。HTLは、例えば、正孔を収集して出力するためのものである。HTLには、例えば、p型の導電型を有する半導体(p型半導体ともいう)が適用される。HTLの材料には、例えば、可溶性ジアミン誘導体であるspiro-OMeTADなどが適用される。HTLは、例えば、光吸収層4としてのペロブスカイト半導体の層の上に第2原料液が塗布されて、乾燥されることで生成され得る。キャリア輸送層5の厚さは、例えば、50nmから200nm程度とされる。
 第1実施形態では、p型半導体としてのキャリア輸送層5と、i型半導体としての光吸収層4と、n型半導体としての高抵抗層3とが、PIN接合領域を形成している状態にある。PIN接合領域により、光の照射に応じた光電変換によって発電が行われ得る。
 裏面電極層6は、キャリア輸送層5の上に位置している。この裏面電極層6は、光吸収層4に対する光の照射に応じて光電変換で生じたキャリアを集めることができる。ここで、裏面電極層6の材料は、例えば、金(Au)などの導電性に優れた金属またはTCOが適用される。TCOには、例えば、ITO、FTOまたはZnOなどを含む。裏面電極層6の厚さは、例えば、10nmから1000nm程度とされる。裏面電極層6は、例えば、スパッタリングなどの真空プロセスによって、キャリア輸送層5上に形成され得る。ここで、例えば、裏面電極層6の材料にTCOが適用される場合には、裏面電極層6は、特定波長域の光に対する透光性を有する。この場合には、例えば、裏面F2に照射される光が、裏面電極層6を光吸収層4に向けて透過し得る。これにより、太陽電池素子100は、前面F1側だけでなく裏面F2側も含めた両面側が受光面となり得る。
 透明電極層2および裏面電極層6のそれぞれには、例えば、リード線9が電気的に接続されている状態にある。具体的には、例えば、透明電極層2に第1リード線91が電気的に接続され、裏面電極層6に第2リード線92が接続されている状態にある。各リード線9は、例えば、半田付けなどによって、透明電極層2および裏面電極層6のそれぞれに接合され得る。ここでは、例えば、第1リード線91および第2リード線92によって、太陽電池素子100における光電変換で得られる出力が取り出され得る。
  <1-2.第1実施形態のまとめ>
 第1実施形態に係る太陽電池素子100では、例えば、透明な無機半導体層である高抵抗層3が、透明電極層2側に位置している第1領域A1と、光吸収層4側に位置している第2領域A2と、を有する。そして、第1領域A1のキャリア密度が、第2領域A2のキャリア密度よりも高い状態にある。これにより、例えば、高抵抗層3では、透明電極層2との結晶構造および格子定数などの相違によって透明電極層2側の領域で結晶性が低下したとしても、第1領域A1におけるキャリア密度が高いため、透明電極層2との接触抵抗の過度な上昇が生じにくい。また、例えば、キャリア密度が第1領域A1よりも低い第2領域A2の存在によって、光吸収層4における光電変換で生じたキャリアの再結合が生じにくく、透明電極層2と光吸収層4との間におけるリーク電流が生じにくい。その結果、例えば、太陽電池素子100における光電変換効率が向上し得る。
 <2.他の実施形態>
 本開示は上述の第1実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更および改良などが可能である。
  <2-1.第2実施形態>
 上記第1実施形態において、例えば、図4で示されるように、無機半導体層としての高抵抗層3の厚さ方向において、第1領域A1から第2領域A2にかけてキャリア密度が連続的に変化している状態にあってもよい。このような構成が採用されれば、例えば、高抵抗層3内では、厚さ方向において界面が生じにくい。このため、例えば、高抵抗層3において界面の存在によるキャリアの再結合および電気抵抗の上昇などが生じにくい。その結果、例えば、太陽電池素子100における光電変換効率が向上し得る。ここでは、例えば、高抵抗層3のうちの厚さ方向において、図5(a)で示されるような一部の領域または図5(b)で示されるような全ての領域で、第1領域A1から第2領域A2にかけてキャリア密度が減少している状態にある構成が考えられる。
 このような構成は、例えば、図6で示されるように、第1ターゲットTg1と第2ターゲットTg2とを近づけて配置し、第1ターゲットTg1を用いたスパッタリングと、第2ターゲットTg2を用いたスパッタリングと、を一部の区間で重なるように時間順次に行うことで実現され得る。
 具体的には、例えば、図6で示されるように、1つの成膜装置内において、透明電極層2が形成された透明基板1を、第1ターゲットTg1および第2ターゲットTg2に対して相対的に移動させる。ここで、まず、例えば、透明基板1が第1ポジションPo1にある時点では、第1ターゲットTg1を用いたスパッタリングによって、透明電極層2上に第1ターゲットTg1の材料の層が形成される。次に、例えば、透明基板1が第2ポジションPo2まで移動した時点では、第1ターゲットTg1を用いたスパッタリングと第2ターゲットTg2を用いたスパッタリングとが同時に行われる。このとき、透明電極層2上に第1ターゲットTg1の材料と第2ターゲットTg2の材料とが混在している層が形成される。次に、例えば、透明基板1が第3ポジションPo3まで移動した時点では、第2ターゲットTg2を用いたスパッタリングによって、透明電極層2上に第2ターゲットTg2の材料の層が形成される。これにより、例えば、厚さ方向において、第1領域A1から第2領域A2にかけてキャリア密度が連続的に変化している状態にある高抵抗層3が形成され得る。
 ここで、例えば、第1ターゲットTg1の材料としてAZOを採用し、第2ターゲットTg2の材料としてZnOを採用した場合には、透明電極層2上に対して、AZOの形成とZnOの形成とが同時に行われる時間帯が生じる。これにより、例えば、厚さ方向において、透明電極層2との界面から離れるにつれて、AZOに対するZnOの比率が徐々に高まり、キャリア密度のグラデーションが生じる。
 このようにして、例えば、1つの成膜装置で、厚さ方向においてキャリア密度が連続的に変化するように無機半導体層としての高抵抗層3を形成することができる。これにより、例えば、製造性に優れた太陽電池素子100が実現され得る。
  <2-2.第3実施形態>
 上記第1実施形態および上記第2実施形態のそれぞれにおいて、例えば、図7(a)および図7(b)で示されるように、n型半導体の高抵抗層3を、p型半導体の高抵抗層3Bに変更し、p型半導体の正孔輸送層であるキャリア輸送層5を、n型半導体の電子輸送層であるキャリア輸送層5Bに変更してもよい。この場合には、高抵抗層3Bには、例えば、透明電極層2よりも高い電気抵抗を有する透明なp型の無機半導体層が適用される。
 ここでは、高抵抗層3Bは、例えば、図7(a)および図7(b)で示されるように、透明電極層2側に位置している第1領域A1Bと、光吸収層4側に位置している第2領域A2Bと、を有する。換言すれば、例えば、透明電極層2の上に、第1領域A1Bが位置しており、この第1領域A1Bの上に第2領域A2Bが位置している。ここで、高抵抗層3Bでは、例えば、第1領域A1Bと第2領域A2Bとが、接している状態にあってもよいし、他の領域を挟むことで接していない状態にあってもよい。第1領域A1Bにおけるキャリア密度は、例えば、第2領域A2Bにおけるキャリア密度よりも高い状態にある。
 高抵抗層3Bは、例えば、上記第1実施形態および上記第2実施形態の高抵抗層3と同様に、スパッタリングなどの真空プロセスで形成され得る。高抵抗層3Bを真空プロセスで形成する場合には、通常は、透明電極層2と高抵抗層3Bとの結晶構造および格子定数などの相違によって、高抵抗層3Bのうちの透明電極層2側の領域で結晶性が低下しやすい。ところが、上述したように、例えば、高抵抗層3Bのうちの透明電極層2側に位置している第1領域A1Bにおけるキャリア密度が高ければ、高抵抗層3Bと透明電極層2との接触抵抗の過度な上昇が生じにくい。また、例えば、高抵抗層3Bのうちの光吸収層4側に、キャリア密度が第1領域A1Bよりも低い第2領域A2Bが存在していれば、高抵抗層3Bのうちの光吸収層4との界面付近の領域において、キャリアとしての正孔が過度に増加しにくい。これにより、例えば、高抵抗層3Bにおけるキャリアである正孔と、光吸収層4における光電変換で生じた電子と、が結合する、キャリアの再結合が生じにくい。また、例えば、第2領域A2Bの存在によって、高抵抗層3Bにおける電気抵抗がある程度確保されるため、透明電極層2と光吸収層4との間におけるリーク電流が生じにくい。したがって、例えば、太陽電池素子100の光電変換効率が向上し得る。
 ここで、例えば、第1領域A1Bの形成後に、この第1領域A1Bの上に第2領域A2Bを形成すれば、図7(a)で示されるように、高抵抗層3Bは、第1領域A1Bを含む第1半導体層31Bと、第2領域A2Bを含む第2半導体層32Bと、を有する状態となる。ここでは、第2半導体層32Bは、第1半導体層31Bの上において、この第1半導体層31Bと接している状態で位置している。この場合には、図2で示されたように、例えば、高抵抗層3Bの厚さ方向におけるキャリア密度の変化は、第1半導体層31Bと第2半導体層32Bとの界面で不連続である状態となる。ここで、例えば、第1領域A1Bと第2領域A2Bとが、同一の半導体材料を含有している構成が採用される。そして、例えば、第1領域A1Bと第2領域A2Bとの間において、同一の半導体材料における不純物元素の含有量および元素の欠損量の少なくとも1つの量が相違していれば、第1領域A1Bにおけるキャリア密度が、第2領域A2Bにおけるキャリア密度よりも高い状態となり得る。
 ここでは、例えば、図3(a)で示されるように、第1ターゲットTg1の材料として、第1のキャリア密度を有する半導体材料を用いたスパッタリングによって、透明電極層2上に第1半導体層31Bを形成することができる。これにより、図3(b)で示されるように、透明基板1上に位置している透明電極層2上に第1半導体層31Bが位置している状態となる。その後、例えば、第2ターゲットTg2の材料として、第1のキャリア密度よりも低い第2のキャリア密度の半導体材料を用いたスパッタリングで第1半導体層31B上に第2半導体層32Bを形成することができる。これにより、図3(c)で示されるように、透明基板1上に位置している透明電極層2上にさらに位置している第1半導体層31B上に第2半導体層32Bが位置している状態となる。
 ここでは、第1領域A1Bおよび第2領域A2Bに適用される同一の半導体材料としては、例えば、チオシアン酸銅(I)(CuSCN)、ヨウ化銅(I)(CuI)、酸化銅(I)(CuO)、酸化ニッケル(II)(NiO)、酸化モリブデン(VI)(MoO)および酸化銀(I)(AgO)および酸化スズ(II)(SnO)などが挙げられる。ここで、酸化物については、例えば、不純物元素の含有量および酸素の欠損量の少なくとも1つの量を相違させることで、キャリア密度を調整することができる。例えば、NiOおよびSnOについては、不純物元素としてI価の金属であるリチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、銅(Cu)または銀(Ag)などが採用されてもよい。また、非酸化物については、例えば、不純物元素の含有量および金属元素の欠損量の少なくとも1つの量を相違させることで、キャリア密度を調整することができる。例えば、チオシアン酸銅(I)(CuSCN)については、Cuの欠損によって、Cu(1-x)SCN(0<x<1)におけるxの値によってキャリア密度が調整され得る。このような構成が採用されれば、例えば、1つの半導体材料をベースとして、キャリア密度が相違する第1領域A1Bと第2領域A2Bとを含む高抵抗層3Bを容易に形成することができる。
 ここで、例えば、図7(b)で示されるように、高抵抗層3Bの厚さ方向において、第1領域A1Bから第2領域A2Bにかけてキャリア密度が連続的に変化している状態にあってもよい。このような構成が採用されれば、例えば、高抵抗層3B内では、厚さ方向において界面が生じにくい。このため、例えば、高抵抗層3Bにおいて界面の存在によるキャリアの再結合および電気抵抗の上昇が生じにくい。その結果、例えば、太陽電池素子100における光電変換効率が向上し得る。ここでは、例えば、高抵抗層3Bのうちの厚さ方向において、図5(a)で示されるような一部の領域または図5(b)で示されるような全ての領域で、第1領域A1Bから第2領域A2Bにかけてキャリア密度が減少している状態にある構成が考えられる。このような構成は、例えば、図6で示されるように、第1ターゲットTg1と第2ターゲットTg2とを近づけて配置して、第1ターゲットTg1を用いたスパッタリングと、第2ターゲットTg2を用いたスパッタリングと、を一部の区間で重なるように時間順次に行うことで実現され得る。このようにして、例えば、1つの成膜装置で、厚さ方向においてキャリア密度が連続的に変化するように無機半導体層としての高抵抗層3Bを形成することができる。これにより、例えば、製造性に優れた太陽電池素子100が実現され得る。
  <2-3.第4実施形態>
 上記1実施形態および上記第2実施形態において、例えば、図8(a)および図8(b)で示されるように、i型半導体が適用された光吸収層4が、p型半導体が適用された光吸収層4Cに変更され、p型半導体が適用されたキャリア輸送層5が、省略されてもよい。この場合には、光吸収層4Cに適用されるp型半導体には、例えば、シリコン系または化合物系の半導体が適用され得る。シリコン系の半導体には、例えば、アモルファスシリコンを用いた半導体などが適用される。化合物系の半導体には、例えば、CIS半導体、CIGS半導体などのカルコパライト構造を有する化合物半導体、カドニウムテルル(CdTe)などのII-VI族半導体、またはガリウムヒ素(GaAs)などのIII-V族半導体が適用される。CIS半導体は、Cu、インジウム(In)およびセレン(Se)を含む化合物半導体である。CIGS半導体は、Cu、In、ガリウム(Ga)およびSeを含む化合物半導体である。ここで、アモルファスシリコンを用いた半導体の層、II-VI族半導体の層およびIII-V族半導体の層は、例えば、化学気相成長(CVD)法などで形成され得る。CIS半導体およびCIGS半導体の層は、例えば、蒸着、スパッタリングならびに原料溶液の塗布および焼成などで形成され得る。
  <2-4.第5実施形態>
 上記第3実施形態において、例えば、図9(a)および図9(b)で示されるように、i型半導体が適用された光吸収層4が、n型半導体が適用された光吸収層4Dに変更され、n型半導体が適用されたキャリア輸送層5Bが、省略されてもよい。この場合には、光吸収層4Dに適用されるn型半導体には、例えば、シリコン系または化合物系の半導体が採用され得る。シリコン系の半導体には、例えば、アモルファスシリコンを用いた半導体などが適用される。化合物系の半導体には、例えば、GaAsなどのIII-V族半導体が適用される。ここで、アモルファスシリコンを用いた半導体の層およびIII-V族半導体の層は、例えば、CVD法などで形成され得る。
 <3.その他>
 上記第1実施形態、上記第2実施形態および上記第4実施形態において、例えば、n型半導体としての高抵抗層3に適用される透明な無機半導体の材料として、酸素の欠損量でキャリア密度が調整された、ZnO以外の酸化物半導体が適用されてもよい。このZnO以外の酸化物半導体には、例えば、酸化インジウム(In)、SnOまたはTiOなどが適用され得る。また、例えば、n型半導体としての高抵抗層3に適用される透明な無機半導体の材料として、AZO以外のITOおよびFTOなどのTCOが採用されてもよい。この場合には、例えば、TCOにおける不純物元素の含有量および元素の欠損量の少なくとも1つの量に応じて、キャリア密度が増減し得る。
 上記第1実施形態から上記第5実施形態のそれぞれにおいて、例えば、透明な無機半導体層としての高抵抗層3,3Bが酸化物の層であり、この酸化物の層が、酸素ガスの導入を伴うスパッタリングで成膜される際に、導入される酸素ガスの濃度の増減によって酸化物における酸素の欠損量が調整されてもよい。ここでは、例えば、AZOなどの酸化物半導体の層が、主に不活性ガスが含有される雰囲気中におけるスパッタリングで成膜される場合に、雰囲気に含有される酸素ガスの濃度が低ければ、成膜される酸化物半導体の層における酸素の欠損量が増加し得る。
 上記第2実施形態から上記第5実施形態のそれぞれにおいて、例えば、第1領域A1,A1Bから第2領域A2,A2Bにかけてキャリア密度が連続的に変化している場合には、第1領域A1,A1Bの第1半導体材料と第2領域A2,A2Bの第2半導体材料とが、同一の半導体材料でなく、同一の結晶構造を有していてもよい。第1半導体材料は、第1領域A1,A1Bの主成分であり、第2半導体材料は、第2領域A2,A2Bの主成分である。主成分とは、含有成分のうち含有される比率(含有率ともいう)が最も大きい(高い)成分のことを意味する。ここでは、例えば、第1半導体材料の結晶の格子定数と第2半導体材料の結晶の格子定数との差が、高抵抗層3,3Bの厚さ方向で徐々にキャリア密度が変化している状態にある領域の厚さの1/100以下であれば、高抵抗層3,3Bにおいて歪みが生じにくい。
 ここでは、例えば、第1領域A1,A1Bの透明電極層2側の領域に、第2半導体材料が含まれていても、含まれていなくてもよい。また、例えば、第2領域A2,A2Bの光吸収層4,4C,4D側の領域に、第1半導体材料が含まれていても、含まれていなくてもよい。ここでは、例えば、第1領域A1,A1Bから第2領域A2,A2Bにかけて、第1半導体材料の含有比率が減少するとともに第2半導体材料の含有比率が増加することで、キャリア密度が低下している状態にあってもよい。
 第1半導体材料と第2半導体材料との組合せとしては、例えば、ともにルチル型の結晶構造を有するSnOとTiOとの組合せが考えられる。ここで、例えば、透明電極層2の材料と第1領域A1,A1Bの材料とが同一の半導体材料を含有していれば、透明電極層2と第1領域A1,A1Bとの間で結晶のミスマッチが小さくなり、第1領域A1,A1Bにおいて歪みが生じにくい。このため、例えば、第1半導体材料としてSnOが採用される場合には、ニオブ(Nb)、タンタル(Ta)またはアンチモン(Sb)などの不純物元素を添加したSnOなどの酸化スズ系の材料が透明電極層2の材料に適用される構成が考えられる。また、例えば、第1半導体材料としてTiOが採用される場合には、Nb、Ta、Sbおよびフッ素(F)などの不純物元素を添加したTiOなどの酸化チタン系の材料が透明電極層2の材料に適用される構成が考えられる。
 また、ここでは、例えば、第1領域A1,A1Bと第2領域A2,A2Bとの間において、同一の結晶構造の半導体材料における不純物元素の含有量および元素の欠損量の少なくとも1つの量が相違していれば、第1領域A1,A1Bにおけるキャリア密度が、第2領域A2,A2Bにおけるキャリア密度よりも高い状態になり得る。具体的には、例えば、第1半導体材料におけるキャリア密度が、第2半導体材料におけるキャリア密度よりも高い状態とされる。この場合には、例えば、Nb、Ta、SbもしくはFなどの不純物元素の添加量または酸素の欠損量によって、半導体材料におけるキャリア密度が調整され得る。このような構成が採用されても、例えば、同一の結晶構造を有する半導体材料をベースとして、キャリア密度が相違する第1領域A1,A1Bと第2領域A2,A2Bとを含む無機半導体層を形成することができる。これにより、例えば、光電変換素子10を構成している複数の層の材料の組合せなどにおける設計の自由度が高まり得る。
 ところで、例えば、上記第2実施形態から上記第5実施形態で示されるように、第1半導体材料と第2半導体材料とが、同一の結晶構造を有する同一の半導体材料を含有していれば、第1半導体材料と第2半導体材料との間で格子定数が実質的に同一となる。これにより、例えば、さらに高抵抗層3,3Bにおいて歪みが生じにくい。
 上記第1実施形態から上記第5実施形態のそれぞれにおいて、例えば、太陽電池素子100が、透明基板1上において、電気的に直列に接続された状態で複数の光電変換素子10が並ぶように位置していてもよい。この場合には、太陽電池素子100における出力が向上し得る。
 上記第1実施形態から上記第5実施形態のそれぞれにおいて、例えば、透明電極層2は、層状でなく、種々の形状を有する透明電極であってもよい。
 上記第1実施形態から上記第5実施形態および各種変形例をそれぞれ構成する全部または一部を、適宜、矛盾しない範囲で組み合わせることが可能であることは、言うまでもない。
 1 透明基板
 2 透明電極層
 3,3B 高抵抗層(無機半導体層)
 4,4C,4D 光吸収層
 5,5B キャリア輸送層
 6 裏面電極層
 10 光電変換素子
 31,31B 第1半導体層
 32,32B 第2半導体層
 100 太陽電池素子
 A1,A1B 第1領域
 A2,A2B 第2領域

Claims (5)

  1.  透明電極と、
     該透明電極上に位置しており且つ該透明電極よりも高い電気抵抗を有する透明な無機半導体層と、
     該無機半導体層上に位置している光吸収層と、を備え、
     前記無機半導体層は、前記透明電極側に位置している第1領域と、前記光吸収層側に位置している第2領域と、を有し、
     前記第1領域におけるキャリア密度が、前記第2領域におけるキャリア密度よりも高い状態にある、太陽電池素子。
  2.  請求項1に記載の太陽電池素子であって、
     前記無機半導体層は、前記第1領域を含む第1半導体層と、該第1半導体層上において該第1半導体層と接している状態で位置しており且つ前記第2領域を含む第2半導体層と、を有し、
     前記無機半導体層の厚さ方向におけるキャリア密度の変化は、前記第1半導体層と前記第2半導体層との界面において不連続な状態にある、太陽電池素子。
  3.  請求項1に記載の太陽電池素子であって、
     前記無機半導体層の厚さ方向において、前記第1領域から前記第2領域にかけてキャリア密度が連続的に変化している状態にある、太陽電池素子。
  4.  請求項1から請求項3の何れか1つの請求項に記載の太陽電池素子であって、
     前記第1領域と前記第2領域とが、同一の半導体材料を含有しており、
     前記第1領域と前記第2領域との間において、前記同一の半導体材料における不純物元素の含有量および元素の欠損量の少なくとも1つの量が相違していることで、前記第1領域におけるキャリア密度が、前記第2領域におけるキャリア密度よりも高い状態にある、太陽電池素子。
  5.  請求項3に記載の太陽電池素子であって、
     前記第1領域の第1半導体材料と前記第2領域の第2半導体材料とが、同一の結晶構造を有しており、
     前記第1領域と前記第2領域との間において、前記同一の結晶構造の半導体材料における不純物元素の含有量および元素の欠損量の少なくとも1つの量が相違していることで、前記第1領域におけるキャリア密度が、前記第2領域におけるキャリア密度よりも高い状態にある、太陽電池素子。
PCT/JP2019/022121 2018-06-07 2019-06-04 太陽電池素子 WO2019235461A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020523111A JP7042337B2 (ja) 2018-06-07 2019-06-04 太陽電池素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018109322 2018-06-07
JP2018-109322 2018-06-07

Publications (1)

Publication Number Publication Date
WO2019235461A1 true WO2019235461A1 (ja) 2019-12-12

Family

ID=68770959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022121 WO2019235461A1 (ja) 2018-06-07 2019-06-04 太陽電池素子

Country Status (2)

Country Link
JP (1) JP7042337B2 (ja)
WO (1) WO2019235461A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318718A (ja) * 1993-05-07 1994-11-15 Canon Inc 光起電力素子
JP2014053420A (ja) * 2012-09-06 2014-03-20 Sharp Corp 太陽電池
JP2016138303A (ja) * 2015-01-26 2016-08-04 住友化学株式会社 ZnO系透明導電膜
JP2018503971A (ja) * 2014-11-21 2018-02-08 エイチイーイーソーラー,エルエルシー ペルブスカイト材料の二層及び三層の界面層
WO2018057419A1 (en) * 2016-09-20 2018-03-29 The Board Of Trustees Of The Leland Stanford Junior University Solar cell comprising a metal-oxide buffer layer and method of fabrication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318718A (ja) * 1993-05-07 1994-11-15 Canon Inc 光起電力素子
JP2014053420A (ja) * 2012-09-06 2014-03-20 Sharp Corp 太陽電池
JP2018503971A (ja) * 2014-11-21 2018-02-08 エイチイーイーソーラー,エルエルシー ペルブスカイト材料の二層及び三層の界面層
JP2016138303A (ja) * 2015-01-26 2016-08-04 住友化学株式会社 ZnO系透明導電膜
WO2018057419A1 (en) * 2016-09-20 2018-03-29 The Board Of Trustees Of The Leland Stanford Junior University Solar cell comprising a metal-oxide buffer layer and method of fabrication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUMARI, N. ET AL.: "Optimization of TiO2/ZnO bilayer electron transport layer to enhance efficiency of perovskite solar cell", MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, vol. 75, 1 March 2018 (2018-03-01), pages 149 - 156, XP055661894, ISSN: 1369-8001, DOI: 10.1016/j.mssp.2017.11.030 *
WANG, D. ET AL.: "ZnO/SnO2 Double Electron Transport Layer Guides Improved Open Circuit Voltage for Highly Efficient CH 3NH3PbI3-Based Planar Perovskite Solar Cells", ACS APPLIED ENERGY MATERIALS, vol. 1, no. 5, 23 April 2018 (2018-04-23), pages 2215 - 2221, XP055661888, ISSN: 2574-0962, DOI: 0.1021/acsaem.8b00293 *

Also Published As

Publication number Publication date
JPWO2019235461A1 (ja) 2021-06-17
JP7042337B2 (ja) 2022-03-25

Similar Documents

Publication Publication Date Title
JP6689456B2 (ja) 透明トンネル接合を有する光起電力デバイス
KR101503557B1 (ko) 계면 층을 포함한 광기전 장치
US8084682B2 (en) Multiple band gapped cadmium telluride photovoltaic devices and process for making the same
JP6522684B2 (ja) 太陽電池
US9159850B2 (en) Back contact having selenium blocking layer for photovoltaic devices such as copper—indium-diselenide solar cells
JP2003515934A (ja) 殊に薄膜太陽光電池のためのダイオード構造体
US20160126401A1 (en) Tandem photovoltaic device
JP5901773B2 (ja) 直列接続部を含む薄膜ソーラーモジュール、及び、複数の薄膜ソーラーセルを直列接続する方法
JP2017028292A (ja) 太陽電池
JP2013510426A (ja) 太陽電池及びその製造方法
JP4394366B2 (ja) 両面受光太陽電池
US20170243999A1 (en) Solar cell
CN111656538A (zh) 太阳能电池、多结型太阳能电池、太阳能电池模块及太阳光发电系统
JP5624153B2 (ja) 太陽電池及びその製造方法
KR20160085121A (ko) 태양 전지
WO2019235461A1 (ja) 太陽電池素子
EP3300122A1 (en) Material structure for a solar cell and a solar cell comprising the material structure
WO2013099947A1 (ja) 光電変換装置
US20150136223A1 (en) Solar cell and method for manufacturing the same
KR20170013160A (ko) 태양 전지
JP6224532B2 (ja) 光電変換装置
JP2014067745A (ja) 光電変換装置の製造方法
KR20190049273A (ko) 태양 전지
JP2014127580A (ja) 光電変換装置の製造方法
JP2015095591A (ja) 光電変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523111

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814684

Country of ref document: EP

Kind code of ref document: A1