WO2019235275A1 - 基板処理装置および基板処理方法 - Google Patents

基板処理装置および基板処理方法 Download PDF

Info

Publication number
WO2019235275A1
WO2019235275A1 PCT/JP2019/020811 JP2019020811W WO2019235275A1 WO 2019235275 A1 WO2019235275 A1 WO 2019235275A1 JP 2019020811 W JP2019020811 W JP 2019020811W WO 2019235275 A1 WO2019235275 A1 WO 2019235275A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
mixing
substrate processing
supply unit
additive
Prior art date
Application number
PCT/JP2019/020811
Other languages
English (en)
French (fr)
Inventor
興司 香川
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2020523641A priority Critical patent/JP7175310B2/ja
Publication of WO2019235275A1 publication Critical patent/WO2019235275A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the disclosed embodiment relates to a substrate processing apparatus and a substrate processing method.
  • the present disclosure provides a technique capable of etching one of two materials included in a film formed on a substrate with high selectivity.
  • a substrate processing apparatus includes a substrate processing unit, a hydrogen peroxide solution supply unit, an additive supply unit, a sulfuric acid supply unit, a first mixing unit, a second mixing unit, and a liquid supply unit.
  • the substrate processing unit performs liquid processing on the substrate.
  • the first mixing unit mixes the hydrogen peroxide solution supplied from the hydrogen peroxide solution supply unit and the additive supplied from the additive supply unit to generate a first mixed solution.
  • the second mixing unit mixes the first mixed solution generated in the first mixing unit and the sulfuric acid supplied from the sulfuric acid supply unit to generate a second mixed solution.
  • the liquid supply unit supplies the second mixed liquid to the substrate placed on the substrate processing unit.
  • one of the two types of materials included in the film formed on the substrate can be etched with high selectivity.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a substrate processing system according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating a specific configuration example of the processing unit.
  • FIG. 3 is a diagram showing an outline of the etching process in the first embodiment.
  • FIG. 4 is a diagram schematically showing the state of the wafer surface during etching in the first embodiment.
  • FIG. 5 is a diagram illustrating a configuration of the mixed liquid supply unit according to the first embodiment.
  • FIG. 6 is a graph showing the relationship between the etching rate of tungsten, the etching rate of titanium nitride, the etching selectivity, and the additive concentration in the first embodiment.
  • FIG. 7 is a diagram for explaining the details of the etching solution supply process according to the first embodiment.
  • FIG. 8 is a diagram illustrating a configuration of a mixed liquid supply unit according to a modification of the first embodiment.
  • FIG. 9 is a diagram illustrating a configuration of a mixed liquid supply unit according to the second embodiment.
  • FIG. 10 is a flowchart illustrating a substrate processing procedure executed by the substrate processing system according to the first embodiment.
  • FIG. 11 is a flowchart illustrating a substrate processing procedure executed by the substrate processing system according to the second embodiment.
  • a wiring material and a diffusion prevention film are included in a film formed on a substrate such as a semiconductor wafer (hereinafter also referred to as a wafer).
  • a substrate such as a semiconductor wafer (hereinafter also referred to as a wafer)
  • Etching techniques are known.
  • FIG. 1 is a diagram illustrating a schematic configuration of a substrate processing system 1 according to the embodiment.
  • the substrate processing system 1 is an example of a substrate processing apparatus.
  • the X axis, the Y axis, and the Z axis that are orthogonal to each other are defined, and the positive direction of the Z axis is the vertically upward direction.
  • the substrate processing system 1 includes a carry-in / out station 2 and a processing station 3.
  • the carry-in / out station 2 and the processing station 3 are provided adjacent to each other.
  • the loading / unloading station 2 includes a carrier placement unit 11 and a conveyance unit 12.
  • the transfer unit 12 is provided adjacent to the carrier placement unit 11 and includes a substrate transfer device 13 and a delivery unit 14 inside.
  • the substrate transfer device 13 includes a wafer holding mechanism that holds the wafer W. Further, the substrate transfer device 13 can move in the horizontal direction and the vertical direction and can turn around the vertical axis, and transfers the wafer W between the carrier C and the delivery unit 14 using the wafer holding mechanism. Do.
  • the processing station 3 is provided adjacent to the transfer unit 12.
  • the processing station 3 includes a transport unit 15 and a plurality of processing units 16.
  • the plurality of processing units 16 are provided side by side on the transport unit 15.
  • the transfer unit 15 includes a substrate transfer device 17 inside.
  • the substrate transfer device 17 includes a wafer holding mechanism that holds the wafer W. Further, the substrate transfer device 17 can move in the horizontal direction and the vertical direction and can turn around the vertical axis, and transfers the wafer W between the delivery unit 14 and the processing unit 16 using a wafer holding mechanism. I do.
  • the processing unit 16 performs predetermined substrate processing on the wafer W transferred by the substrate transfer device 17.
  • the substrate processing system 1 includes a control device 4.
  • the control device 4 is a computer, for example, and includes a control unit 18 and a storage unit 19.
  • the storage unit 19 stores a program for controlling various processes executed in the substrate processing system 1.
  • the control unit 18 controls the operation of the substrate processing system 1 by reading and executing the program stored in the storage unit 19.
  • Such a program may be recorded in a computer-readable storage medium and installed in the storage unit 19 of the control device 4 from the storage medium.
  • Examples of the computer-readable storage medium include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
  • the substrate transfer device 13 of the loading / unloading station 2 takes out the wafer W from the carrier C placed on the carrier placement unit 11 and receives the taken-out wafer W. Place on the transfer section 14.
  • the wafer W placed on the delivery unit 14 is taken out from the delivery unit 14 by the substrate transfer device 17 of the processing station 3 and carried into the processing unit 16.
  • the wafer W loaded into the processing unit 16 is processed by the processing unit 16, then unloaded from the processing unit 16 by the substrate transfer device 17, and placed on the delivery unit 14. Then, the processed wafer W placed on the delivery unit 14 is returned to the carrier C of the carrier placement unit 11 by the substrate transfer device 13.
  • FIG. 2 is a schematic diagram illustrating a specific configuration example of the processing unit 16.
  • the processing unit 16 includes a chamber 20, a substrate processing unit 30, a liquid supply unit 40, and a recovery cup 50.
  • the chamber 20 accommodates the substrate processing unit 30, the liquid supply unit 40, and the recovery cup 50.
  • An FFU (Fan Filter Unit) 21 is provided on the ceiling of the chamber 20.
  • the FFU 21 forms a down flow in the chamber 20.
  • the substrate processing unit 30 includes a holding unit 31, a support unit 32, and a driving unit 33, and performs liquid processing on the placed wafer W.
  • the holding unit 31 holds the wafer W horizontally.
  • pillar part 32 is a member extended in a perpendicular direction, a base end part is rotatably supported by the drive part 33, and supports the holding
  • the drive unit 33 rotates the column unit 32 around the vertical axis.
  • the substrate processing unit 30 rotates the support unit 32 by using the drive unit 33 to rotate the support unit 31 supported by the support unit 32, thereby rotating the wafer W held by the support unit 31. .
  • a holding member 311 for holding the wafer W from the side surface is provided on the upper surface of the holding unit 31 provided in the substrate processing unit 30.
  • the wafer W is horizontally held by the holding member 311 while being slightly separated from the upper surface of the holding unit 31.
  • the wafer W is held by the holding unit 31 with the surface on which the substrate processing is performed facing upward.
  • the liquid supply unit 40 supplies a processing fluid to the wafer W.
  • the liquid supply unit 40 includes a plurality of (here, two) nozzles 41 a and 41 b, an arm 42 that horizontally supports the nozzles 41 a and 41 b, and a turning lift mechanism 43 that turns and lifts the arm 42.
  • the nozzle 41a is connected to the mixed liquid supply unit 60 via the valve 44a and the flow rate regulator 45a. Details of the mixed liquid supply unit 60 will be described later.
  • the nozzle 41b is connected to a DIW supply source 46b via a valve 44b and a flow rate regulator 45b.
  • DIW DeIonized Water
  • the treatment liquid used for the rinsing process is not limited to DIW.
  • the 2nd liquid mixture supplied from the liquid mixture supply part 60 is discharged from the nozzle 41a. Details of the second mixed liquid will be described later.
  • the DIW supplied from the DIW supply source 46b is discharged from the nozzle 41b.
  • the collection cup 50 is disposed so as to surround the holding unit 31, and collects the processing liquid scattered from the wafer W by the rotation of the holding unit 31.
  • a drain port 51 is formed at the bottom of the recovery cup 50, and the processing liquid collected by the recovery cup 50 is discharged from the drain port 51 to the outside of the processing unit 16. Further, an exhaust port 52 for discharging the gas supplied from the FFU 21 to the outside of the processing unit 16 is formed at the bottom of the recovery cup 50.
  • IPA supply source that supplies IPA (IsoPropyl Alcohol) and a third nozzle connected to the IPA supply source may be provided, and IPA may be discharged from the third nozzle.
  • IPA IsoPropyl Alcohol
  • FIG. 3 is a diagram showing an outline of the etching process in the first embodiment
  • FIG. 4 is a diagram schematically showing the state of the surface of the wafer W during the etching in the first embodiment.
  • the film formed on the surface of the wafer W subjected to the etching process contains tungsten (W) and titanium nitride (TiN) of different materials.
  • the wafer W is carried into the chamber 20 of the processing unit 16 by the substrate transfer device 17.
  • the wafer W is held by the holding member 311 of the substrate processing unit 30 with the surface of the substrate processing facing upward. Thereafter, the holding member 311 is rotated together with the wafer W at a predetermined rotational speed by the drive unit 33.
  • an etching process using an etchant is performed.
  • the nozzle 41 a of the liquid supply unit 40 moves upward in the center of the wafer W.
  • valve 44a is opened for a predetermined time, whereby a second mixed liquid obtained by mixing sulfuric acid, hydrogen peroxide solution and an additive at a predetermined ratio with respect to the surface of the wafer W is supplied as an etching liquid.
  • the additive contained in the etching solution contains, for example, phosphonic acid, among tungsten and titanium nitride contained in the film formed on the wafer W, tungsten (more specifically, formed on the surface of tungsten).
  • the oxide film (WO 3 ) is easily adsorbed.
  • a rinsing process by DIW is performed.
  • the nozzle 41b of the liquid supply unit 40 moves to the upper center of the wafer W and the valve 44b is opened for a predetermined time, whereby room temperature DIW, which is a rinsing liquid, is supplied to the surface of the wafer W.
  • the DIW temperature in the rinsing process may be room temperature or higher than room temperature.
  • a drying process for drying the wafer W is performed.
  • the driving member 33 rotates the holding member 311 at a high speed to shake off DIW on the wafer W held by the holding member 311.
  • the wafer W may be dried by shaking off the IPA.
  • the processing unit 16 performs a carry-out process.
  • the wafer W is carried out from the processing unit 16 by the substrate transfer device 17.
  • a series of etching processes for one wafer W is completed.
  • FIG. 5 is a diagram illustrating a configuration of the mixed liquid supply unit 60 according to the first embodiment.
  • each part of the liquid mixture supply part 60 shown below is controllable by the control part 18.
  • FIG. 5 is a diagram illustrating a configuration of the mixed liquid supply unit 60 according to the first embodiment.
  • each part of the liquid mixture supply part 60 shown below is controllable by the control part 18.
  • the mixed solution supply unit 60 includes a hydrogen peroxide solution supply unit 100, an additive supply unit 110, a sulfuric acid supply unit 120, a first mixing unit 140, 2 mixing unit 150.
  • the hydrogen peroxide solution supply unit 100 supplies hydrogen peroxide solution.
  • the hydrogen peroxide solution supply unit 100 includes a hydrogen peroxide solution supply source 100a, a valve 100b, and a flow rate regulator 100c.
  • the hydrogen peroxide solution supply source 100a is connected to the first mixing unit 140 via the valve 100b and the flow rate regulator 100c. Accordingly, the hydrogen peroxide solution supply unit 100 can supply the hydrogen peroxide solution to the first mixing unit 140.
  • the additive supply unit 110 supplies a predetermined additive.
  • Such an additive has a property of easily adsorbing to the first film among the first film (for example, tungsten or aluminum oxide) and the second film (for example, titanium nitride) formed on the wafer W.
  • Such additives may include phosphonic acid, carboxylic acid or sulfonic acid.
  • a protective film is selectively formed on the tungsten or aluminum oxide that is the first film. be able to.
  • the additive supply unit 110 includes an additive supply source 110a, a valve 110b, and a flow rate regulator 110c.
  • the additive supply source 110a is connected to the first mixing unit 140 via the valve 110b and the flow rate regulator 110c. Accordingly, the additive supply unit 110 can supply the additive to the first mixing unit 140.
  • the sulfuric acid supply unit 120 supplies sulfuric acid.
  • the sulfuric acid supply unit 120 includes a sulfuric acid supply source 121a, a valve 121b, a flow rate regulator 121c, a tank 122, and a circulation line 123.
  • the sulfuric acid supply source 121a is connected to the tank 122 via a valve 121b and a flow rate regulator 121c. Accordingly, the sulfuric acid supply unit 120 can supply sulfuric acid from the sulfuric acid supply source 121 a to the tank 122 and store the sulfuric acid in the tank 122.
  • the circulation line 123 is a circulation line that exits from the tank 122 and returns to the tank 122.
  • the circulation line 123 is provided with a pump 124, a filter 125, a flow rate regulator 126, a heater 127, a thermocouple 128, and a switching unit 129 in order from the upstream side with respect to the tank 122.
  • the pump 124 forms a circulating flow of sulfuric acid that leaves the tank 122, passes through the circulation line 123, and returns to the tank 122.
  • the filter 125 removes contaminants such as particles contained in sulfuric acid circulating in the circulation line 123.
  • the flow rate regulator 126 regulates the flow rate of the sulfuric acid circulation flow through the circulation line 123.
  • the heater 127 heats sulfuric acid circulating in the circulation line 123.
  • the thermocouple 128 measures the temperature of sulfuric acid circulating in the circulation line 123. Therefore, the control unit 18 can control the temperature of sulfuric acid circulating in the circulation line 123 by using the heater 127 and the thermocouple 128.
  • the switching unit 129 is connected to the second mixing unit 150 of the mixed liquid supply unit 60 and can switch the direction of sulfuric acid circulating in the circulation line 123 to the tank 122 or the second mixing unit 150.
  • the tank 122 is provided with a pure water supply source 130a, a valve 130b, a flow rate regulator 130c, and a valve 130d.
  • the tank 122 is connected to the drain portion via a valve 130d, and the pure water supply source 130a is connected between the tank 122 and the valve 130d via a valve 130b and a flow rate regulator 130c.
  • the control unit 18 controls the valve 130b, the flow rate regulator 130c, and the valve 130d to dilute the sulfuric acid in the tank 122 to a predetermined concentration and then drain it. It can be discharged to the part.
  • the first mixing unit 140 mixes the hydrogen peroxide solution supplied from the hydrogen peroxide solution supply unit 100 and the additive supplied from the additive supply unit 110 to generate a first mixed solution.
  • the 1st mixing part 140 is a tank, and stores the 1st liquid mixture with which the hydrogen peroxide solution and the additive were mixed by the predetermined
  • the first mixing unit 140 that is a tank is provided with a circulation line 141 that exits from the first mixing unit 140 and returns to the first mixing unit 140.
  • the circulation line 141 is provided with a pump 142, a filter 143, a flow rate regulator 144, and a switching unit 145 in order from the upstream side with respect to the first mixing unit 140.
  • the pump 142 forms a circulation flow of the first mixed liquid that leaves the first mixing unit 140, passes through the circulation line 141, and returns to the first mixing unit 140.
  • the filter 143 removes contaminants such as particles contained in the first mixed liquid circulating in the circulation line 141.
  • the flow rate adjuster 144 adjusts the flow rate of the circulating flow of the first mixed liquid that passes through the circulation line 141.
  • the switching unit 145 is connected to the second mixing unit 150 of the mixed solution supply unit 60, and can switch the direction of the first mixed solution circulating in the circulation line 141 to the first mixing unit 140 or the second mixing unit 150. .
  • the circulation line 141 is provided with a branch line 146 that branches from between the filter 143 and the flow rate regulator 144 and is connected to the first mixing unit 140. Since the branch line 146 is provided with the concentration meter 147, the control unit 18 uses the concentration meter 147 to control the hydrogen peroxide solution and the additive in the first mixed liquid circulating in the circulation line 141. Concentration can be measured.
  • control unit 18 controls the hydrogen peroxide solution supply unit 100 and the additive supply unit 110 based on the measured concentrations of the hydrogen peroxide solution and the additive in the first mixed solution, The concentration of the hydrogen peroxide solution and the additive in can be controlled to a predetermined concentration.
  • the first mixing unit 140 is connected to the drain unit via the valve 148.
  • the control unit 18 controls the valve 148 when the first mixed solution in the first mixing unit 140, which is a tank, is replaced, and the first mixed solution in the first mixing unit 140 is removed from the drain unit. Can be discharged.
  • the second mixing unit 150 mixes the first mixed solution generated by the first mixing unit 140 and the sulfuric acid supplied from the sulfuric acid supply unit 120 to generate a second mixed solution.
  • the second mixing unit 150 is a place where a pipe extending from the first mixing unit 140 via the switching unit 145 and a pipe extending from the switching unit 129 of the sulfuric acid supply unit 120 merge.
  • a first valve 151 is provided between the sulfuric acid supply unit 120 and the second mixing unit 150
  • a second valve 152 is provided between the first mixing unit 140 and the second mixing unit 150.
  • the 2nd mixing part 150 is connected to the processing unit 16 via the valve
  • the mixed liquid supply unit 60 can supply the second mixed liquid in which sulfuric acid, hydrogen peroxide solution, and the additive are mixed at a predetermined ratio to the processing unit 16.
  • the sulfuric acid supply unit 120 is provided with the heater 127, and in the second mixing unit 150, the temperature of the second mixed solution rises due to the reaction between sulfuric acid and hydrogen peroxide solution.
  • the liquid mixture supply part 60 of 1st Embodiment can heat up a 2nd liquid mixture to desired temperature, and can supply it to the processing unit 16.
  • circulation lines 123 and 141, the branch line 146, and the like may be provided with valves or the like.
  • FIG. 6 is a graph showing the relationship between the etching rate of tungsten, the etching rate of titanium nitride, the etching selectivity, and the additive concentration in the first embodiment.
  • the experimental result shown in FIG. 6 is a measured value in the second mixed liquid in which the concentration of the additive is appropriately changed with respect to the liquid in which sulfuric acid and hydrogen peroxide water are mixed at a ratio of 10: 1.
  • the additive phosphonic acid was used. Etching of tungsten and titanium nitride was performed with a single material, respectively, and etching was performed with a second liquid mixture at 90 (° C.).
  • etching is performed by adding the additive to about 0.15 to 1 (vol.%) Compared to the condition where the additive is 0 (vol.%) (That is, no additive). It can be seen that the selection ratio is improved. This is because, as shown in FIG. 6, the etching rate of tungsten is greatly reduced as the additive is added to about 1 (vol.%).
  • the etching rate of tungsten can be reduced by adding an additive that is more easily adsorbed to tungsten than titanium nitride in the etching solution, so that titanium nitride can be etched with high selectivity. it can.
  • titanium nitride is etched with high selectivity by using the second mixed liquid containing 0.15 to 1 (vol.%) Of the additive as the etching liquid. be able to.
  • FIG. 7 is a diagram for explaining the details of the etching solution supply process according to the first embodiment.
  • the hydrogen peroxide solution greatly contributes to the etching of titanium nitride and tungsten. Therefore, in the second mixed liquid generated in the second mixing unit 150, when the ratio of the hydrogen peroxide solution is higher than the desired ratio, the etching of titanium nitride and tungsten may proceed excessively.
  • the controller 18 closes the second valve 152 and opens the first valve 151 as shown in FIG. 7A before supplying the second mixed liquid as the etching liquid to the wafer W. Then, sulfuric acid is supplied to the wafer W from the nozzle 41a.
  • sulfuric acid hardly contributes to the etching of titanium nitride and tungsten, it is possible to prevent the etching of titanium nitride and tungsten from proceeding excessively before the etching with the second liquid mixture is performed.
  • control unit 18 opens the first valve 151 and the second valve 152, so that the second mixed liquid generated by the second mixing unit 150 is applied to the wafer W. Then, the wafer W is etched.
  • the control unit 18 closes the second valve 152 and opens the first valve 151 as shown in FIG.
  • the wafer W is supplied from 41a. Thereby, it is possible to suppress the excessive etching of titanium nitride and tungsten after the etching with the second mixed solution.
  • the first valve 151 and the second valve 152 are controlled to prevent excessive etching of titanium nitride and tungsten. be able to.
  • FIG. 8 is a diagram illustrating a configuration of a mixed liquid supply unit 60 according to a modification of the first embodiment.
  • the mixed liquid supply unit 60 according to the modification is different from the first embodiment in the configuration of the hydrogen peroxide solution supply unit 100, the additive supply unit 110, and the first mixing unit 140.
  • the structure of the sulfuric acid supply part 120 and the 2nd mixing part 150 is the same as that of 1st Embodiment, description of this sulfuric acid supply part 120 and the 2nd mixing part 150 is abbreviate
  • the hydrogen peroxide solution supply unit 100 includes a hydrogen peroxide solution supply source 100a, a valve 100b, a flow rate regulator 100c, a tank 100d, and a circulation line 100e.
  • the hydrogen peroxide solution supply source 100a is connected to the tank 100d through the valve 100b and the flow rate regulator 100c.
  • the hydrogen peroxide solution supply unit 100 can supply the hydrogen peroxide solution from the hydrogen peroxide solution supply source 100a to the tank 100d and store the hydrogen peroxide solution in the tank 100d.
  • the circulation line 100e is a circulation line that exits from the tank 100d and returns to the tank 100d.
  • the circulation line 100e is provided with a pump 100f, a filter 100g, a flow rate regulator 100h, and a switching unit 100i in order from the upstream side with respect to the tank 100d.
  • the pump 100f forms a circulation flow of the hydrogen peroxide solution that leaves the tank 100d, passes through the circulation line 100e, and returns to the tank 100d.
  • the filter 100g removes contaminants such as particles contained in the hydrogen peroxide solution circulating in the circulation line 100e.
  • the flow rate adjuster 100h adjusts the flow rate of the circulating flow of the hydrogen peroxide solution that passes through the circulation line 100e.
  • the switching unit 100i is connected to the first mixing unit 140 of the mixed liquid supply unit 60, and can switch the direction of the hydrogen peroxide solution circulating in the circulation line 100e to the tank 100d or the first mixing unit 140.
  • the tank 100d is connected to the drain part via the valve 100j.
  • the control unit 18 can control the valve 100j to discharge the hydrogen peroxide solution in the tank 100d to the drain unit when replacing the hydrogen peroxide solution in the tank 100d.
  • the additive supply unit 110 includes an additive supply source 110a, a valve 110b, a flow rate regulator 110c, a tank 110d, and a pipe 110e.
  • the additive supply source 110a is connected to the tank 110d via the valve 110b and the flow rate regulator 110c. Thereby, the additive supply part 110 can supply an additive to the tank 110d from the additive supply source 110a, and can store an additive in the tank 110d.
  • the pipe 110e connects between the tank 110d and the first mixing unit 140 via the valve 110f and the flow rate regulator 110g.
  • the additive supply unit 110 can supply the first mixing unit 140 with an additive having a desired flow rate.
  • valve 110f may be a needle valve.
  • the additive which is a trace amount compared with the hydrogen peroxide solution can be supplied to the first mixing unit 140 with high accuracy.
  • the tank 110d is connected to the drain part via the valve 110h.
  • the control part 18 can discharge the additive in the tank 110d to the drain part by controlling the valve 110h when the additive in the tank 110d is replaced.
  • the first mixing unit 140 of the modified example is a place where the pipe extending from the switching unit 100i of the hydrogen peroxide solution supply unit 100 and the pipe 110e of the additive supply unit 110 merge.
  • the first mixing unit 140 is connected to the second mixing unit 150 via the second valve 152.
  • the mixed liquid supply unit 60 first mixes the hydrogen peroxide solution supplied from the hydrogen peroxide solution supply unit 100 and the additive supplied from the additive supply unit 110.
  • the first mixture is generated by mixing in the unit 140.
  • the liquid mixture supply part 60 of a modification mixes the 1st liquid mixture produced
  • the mixed liquid supply unit 60 of the modified example can supply the second mixed liquid to the processing unit 16 as an etching liquid.
  • the substrate processing apparatus (substrate processing system 1) according to the first embodiment includes a substrate processing unit 30, a hydrogen peroxide solution supply unit 100, an additive supply unit 110, a sulfuric acid supply unit 120, and a first mixing unit 140. And a second mixing unit 150 and a liquid supply unit 40.
  • the substrate processing unit 30 performs liquid processing on the substrate (wafer W).
  • the first mixing unit 140 mixes the hydrogen peroxide solution supplied from the hydrogen peroxide solution supply unit 100 and the additive supplied from the additive supply unit 110 to generate a first mixed solution.
  • the second mixing unit 150 mixes the first mixed solution generated by the first mixing unit 140 and the sulfuric acid supplied from the sulfuric acid supply unit 120 to generate a second mixed solution.
  • the liquid supply unit 40 supplies the second mixed liquid to the substrate (wafer W) placed on the substrate processing unit 30. Thereby, one of the two types of materials included in the film formed on the wafer W can be etched with high selectivity.
  • the substrate processing apparatus (substrate processing system 1) according to the first embodiment further includes a first valve 151, a second valve 152, and a control unit 18.
  • the first valve 151 is provided between the sulfuric acid supply unit 120 and the second mixing unit 150.
  • the second valve 152 is provided between the first mixing unit 140 and the second mixing unit 150.
  • the control unit 18 controls the first valve 151, the second valve 152, and the liquid supply unit 40.
  • the controller 18 opens the first valve 151 and the second valve 152 and supplies the second mixed liquid generated to the substrate (wafer W), and then opens the first valve 151 to supply sulfuric acid to the liquid supply unit. 40 is supplied to the substrate (wafer W). Thereby, it is possible to suppress the excessive etching of titanium nitride and tungsten after the etching with the second mixed solution.
  • the control unit 18 opens the first valve 151 and the second valve 152 before supplying the second mixed liquid generated to the substrate. Then, the first valve 151 is opened to supply sulfuric acid from the liquid supply unit 40 to the substrate. Accordingly, it is possible to suppress excessive etching of titanium nitride and tungsten before the etching with the second mixed liquid is performed.
  • the substrate (wafer W) includes a first film and a second film containing a material different from the first film.
  • the agent is more easily adsorbed to the first film than the second film.
  • the first film includes tungsten or aluminum oxide
  • the second film includes titanium nitride.
  • titanium nitride which is a 2nd film
  • the additive includes phosphonic acid, carboxylic acid, or sulfonic acid.
  • the first film formed on the wafer W is tungsten or aluminum oxide and the second film is titanium nitride, a protective film is selectively formed on tungsten or aluminum oxide that is the first film. be able to.
  • FIG. 9 is a diagram illustrating a configuration of the mixed liquid supply unit 60 according to the second embodiment.
  • the mixed liquid supply unit 60 includes a hydrogen peroxide solution supply unit 100, an additive supply unit 110, a sulfuric acid supply unit 120, and a mixing unit 200.
  • the hydrogen peroxide solution supply unit 100 includes a hydrogen peroxide solution supply source 100a, a valve 100b, and a flow rate regulator 100c.
  • the hydrogen peroxide solution supply source 100a is connected to the mixing unit 200 via the valve 100b and the flow rate regulator 100c. Thereby, the hydrogen peroxide solution supply unit 100 can supply the hydrogen peroxide solution to the mixing unit 200.
  • the additive supply unit 110 includes an additive supply source 110a, a valve 110b, and a flow rate regulator 110c.
  • the additive supply source 110a is connected to the mixing unit 200 via the valve 110b and the flow rate regulator 110c. Thereby, the additive supply unit 110 can supply the additive to the mixing unit 200.
  • the sulfuric acid supply unit 120 includes a sulfuric acid supply source 120a, a valve 120b, and a flow rate regulator 120c.
  • the sulfuric acid supply source 120a is connected to the mixing unit 200 via a valve 120b and a flow rate regulator 120c. Accordingly, the sulfuric acid supply unit 120 can supply sulfuric acid to the mixing unit 200.
  • the mixing unit 200 mixes the hydrogen peroxide solution supplied from the hydrogen peroxide solution supply unit 100, the additive supplied from the additive supply unit 110, and the sulfuric acid supplied from the sulfuric acid supply unit 120, A mixture is produced.
  • the mixing part 200 is a tank and stores the above-mentioned liquid mixture.
  • the mixing unit 200 that is a tank is provided with a circulation line 201 that exits from the mixing unit 200 and returns to the mixing unit 200.
  • the circulation line 201 is provided with a pump 202, a filter 203, a flow rate regulator 204, a heater 205, a thermocouple 206, and a switching unit 207 in order from the upstream side with respect to the mixing unit 200. .
  • the pump 202 forms a circulating flow of the mixed liquid that leaves the mixing unit 200, passes through the circulation line 201, and returns to the mixing unit 200.
  • the filter 203 removes contaminants such as particles contained in the mixed liquid circulating in the circulation line 201.
  • the flow rate regulator 204 adjusts the flow rate of the circulating flow of the mixed liquid passing through the circulation line 201.
  • the heater 205 heats the mixed liquid circulating in the circulation line 201.
  • the thermocouple 206 measures the temperature of the mixed liquid circulating in the circulation line 201.
  • the control part 18 can control the temperature of the liquid mixture which circulates through the inside of the circulation line 201 by using the heater 205 and the thermocouple 206.
  • FIG. Therefore, the mixed liquid supply unit 60 of the second embodiment can raise the mixed liquid to a desired temperature and supply it to the processing unit 16.
  • the switching unit 207 is connected to the processing unit 16 via the valve 44a and the flow rate regulator 45a, and can switch the direction of the mixed liquid circulating in the circulation line 201 to the processing unit 16 or the mixing unit 200.
  • the mixing unit 200 is provided with a pure water supply source 208a, a valve 208b, a flow rate regulator 208c, and a valve 208d.
  • the mixing unit 200 is connected to the drain unit via a valve 208d, and the pure water supply source 208a is connected between the mixing unit 200 and the valve 208d via a valve 208b and a flow rate regulator 208c.
  • control unit 18 controls the valve 208b, the flow rate regulator 208c, and the valve 208d when the liquid mixture in the mixing unit 200, which is a tank, is replaced. After being diluted to a concentration, it can be discharged to the drain part.
  • sulfuric acid, hydrogen peroxide solution, and additives are mixed together in the mixing unit 200, so that sulfuric acid, hydrogen peroxide solution, and additives are mixed.
  • a liquid mixture mixed at a predetermined ratio can be stably generated.
  • a concentration meter is provided in the circulation line 201 or the like, and the concentration of sulfuric acid, hydrogen peroxide solution, and additive in the mixed solution circulating through the circulation line 201 is measured by the concentration meter. May be. Thereby, the liquid mixture in which sulfuric acid, hydrogen peroxide solution, and additives are mixed at a predetermined ratio can be generated more stably.
  • the substrate processing apparatus (substrate processing system 1) according to the second embodiment includes a substrate processing unit 30, a hydrogen peroxide solution supply unit 100, an additive supply unit 110, a sulfuric acid supply unit 120, a mixing unit 200, A liquid supply unit 40.
  • the substrate processing unit 30 performs liquid processing on the substrate (wafer W).
  • the mixing unit 200 mixes and mixes the hydrogen peroxide solution supplied from the hydrogen peroxide solution supply unit 100, the additive supplied from the additive supply unit 110, and the sulfuric acid supplied from the sulfuric acid supply unit 120. A liquid is produced.
  • the liquid supply unit 40 supplies the mixed liquid to the substrate (wafer W). Thereby, one of the two types of materials included in the film formed on the wafer W can be etched with high selectivity.
  • FIG. 10 is a flowchart illustrating a substrate processing procedure executed by the substrate processing system 1 according to the first embodiment.
  • control unit 18 controls the mixed liquid supply unit 60 to mix the hydrogen peroxide solution and the additive in the first mixing unit 140, and the hydrogen peroxide solution and the additive are mixed at a predetermined ratio.
  • a 1st liquid mixture is produced
  • the first liquid mixture is generated by mixing the hydrogen peroxide solution supplied from the hydrogen peroxide solution supply unit 100 and the additive supplied from the additive supply unit 110 at a predetermined ratio. .
  • the controller 18 opens the first valve 151 and supplies sulfuric acid from the sulfuric acid supply unit 120 to the wafer W placed on the substrate processing unit 30 before the etching with the second mixed liquid is performed ( Step S102).
  • control unit 18 opens the first valve 151 and the second valve 152, and the second mixing unit 150 generates a second mixed liquid in which sulfuric acid, hydrogen peroxide solution, and an additive are mixed at a predetermined ratio. (Step S103). Then, the control unit 18 controls the valve 44a to supply the generated second mixed liquid to the wafer W (Step S104), and etch the wafer W with the second mixed liquid.
  • control unit 18 closes the second valve 152 and opens the first valve 151 to supply sulfuric acid to the wafer W (step S105).
  • control unit 18 closes the first valve 151 and the valve 44a, and stops the supply of sulfuric acid to the wafer W (step S106).
  • the controller 18 controls the valve 44b to supply the rinse liquid from the nozzle 41b to the wafer W (step S107). Then, the control unit 18 controls the substrate processing unit 30 to rotate the wafer W at a high speed so as to shake off the rinse liquid and spin dry the wafer W, or replace the rinse liquid with IPA and then shake off the IPA. IPA drying is performed (step S108), and the process is completed.
  • the substrate processing method includes a first mixing step (Step S101), a second mixing step (Step S103), and a liquid supply step (Step S104).
  • a hydrogen peroxide solution and an additive are mixed to generate a first mixed solution.
  • the second mixing step the first mixed solution and sulfuric acid are mixed to generate a second mixed solution.
  • the second mixed liquid is supplied to the substrate (wafer W) placed on the substrate processing unit 30. Thereby, one of the two types of materials included in the film formed on the wafer W can be etched with high selectivity.
  • FIG. 11 is a flowchart showing a substrate processing procedure executed by the substrate processing system 1 according to the second embodiment.
  • the control unit 18 controls the mixed liquid supply unit 60 to mix sulfuric acid, hydrogen peroxide solution, and additive in the mixing unit 200, and sulfuric acid, hydrogen peroxide solution, and additive are mixed at a predetermined ratio.
  • the mixed liquid is generated (step S201).
  • the liquid mixture includes hydrogen peroxide solution supplied from the hydrogen peroxide solution supply unit 100, an additive supplied from the additive supply unit 110, and sulfuric acid supplied from the sulfuric acid supply unit 120. Produced by mixing in proportions.
  • control unit 18 controls the switching unit 207 and the valve 44a to supply the generated mixed solution to the wafer W (step S202), and etch the wafer W with the mixed solution. And the control part 18 controls the valve
  • control unit 18 controls the valve 44b to supply the rinse liquid from the nozzle 41b to the wafer W (step S204). Then, the control unit 18 controls the substrate processing unit 30 to rotate the wafer W at a high speed so as to shake off the rinse liquid and spin dry the wafer W, or replace the rinse liquid with IPA and then shake off the IPA. IPA drying is performed (step S205), and the process is completed.
  • the substrate processing method includes a mixing step (step S201) and a liquid supply step (step S202).
  • a mixing step a hydrogen peroxide solution, an additive, and sulfuric acid are mixed to generate a mixed solution.
  • the liquid supply step the mixed liquid is supplied to the substrate (wafer W) placed on the substrate processing unit 30. Thereby, one of the two types of materials included in the film formed on the wafer W can be etched with high selectivity.
  • a 2nd mixing part 150 may comprise a tank.
  • Substrate processing system (an example of substrate processing equipment) 16 processing unit 18 control unit 30 substrate processing unit 40 liquid supply unit 60 mixed solution supply unit 100 hydrogen peroxide solution supply unit 110 additive supply unit 120 sulfuric acid supply unit 140 first mixing unit 150 second mixing unit 151 first valve 152 Second valve 200 mixing section

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Weting (AREA)

Abstract

本開示の一態様による基板処理装置は、基板処理部と、過酸化水素水供給部(100)と、添加剤供給部(110)と、硫酸供給部(120)と、第1混合部(140)と、第2混合部(150)と、液供給部とを備える。基板処理部は、基板に液処理を施す。第1混合部(140)は、過酸化水素水供給部(100)から供給される過酸化水素水と、添加剤供給部(110)から供給される添加剤とを混合して第1混合液を生成する。第2混合部(150)は、第1混合部(140)で生成される第1混合液と、硫酸供給部(120)から供給される硫酸とを混合して第2混合液を生成する。液供給部は、基板処理部に載置された基板に第2混合液を供給する。

Description

基板処理装置および基板処理方法
 開示の実施形態は、基板処理装置および基板処理方法に関する。
 従来、半導体ウェハ(以下、ウェハとも呼称する。)などの基板上に形成される膜に2種類の材料(たとえば、配線材料および拡散防止膜)が含まれる場合に、一方の材料を選択的にエッチングする技術が知られている(特許文献1参照)。
特開2008-285508号公報
 本開示は、基板上に形成される膜に含まれる2種類の材料のうち、一方の材料を高い選択性でエッチングすることができる技術を提供する。
 本開示の一態様による基板処理装置は、基板処理部と、過酸化水素水供給部と、添加剤供給部と、硫酸供給部と、第1混合部と、第2混合部と、液供給部とを備える。基板処理部は、基板に液処理を施す。第1混合部は、前記過酸化水素水供給部から供給される過酸化水素水と、前記添加剤供給部から供給される添加剤とを混合して第1混合液を生成する。第2混合部は、前記第1混合部で生成される前記第1混合液と、前記硫酸供給部から供給される硫酸とを混合して第2混合液を生成する。液供給部は、前記基板処理部に載置された前記基板に前記第2混合液を供給する。
 本開示によれば、基板上に形成される膜に含まれる2種類の材料のうち、一方の材料を高い選択性でエッチングすることができる。
図1は、第1実施形態に係る基板処理システムの概略構成を示す模式図である。 図2は、処理ユニットの具体的な構成例を示す模式図である。 図3は、第1実施形態におけるエッチング処理の概要を示す図である。 図4は、第1実施形態におけるエッチング時のウェハ表面の状態を模式的に示す図である。 図5は、第1実施形態に係る混合液供給部の構成を示す図である。 図6は、第1実施形態におけるタングステンのエッチングレート、窒化チタンのエッチングレートおよびエッチングの選択比と、添加剤濃度との関係を示した図である。 図7は、第1実施形態に係るエッチング液供給処理の詳細を説明するための図である。 図8は、第1実施形態の変形例に係る混合液供給部の構成を示す図である。 図9は、第2実施形態に係る混合液供給部の構成を示す図である。 図10は、第1実施形態に係る基板処理システムが実行する基板処理の手順を示すフローチャートである。 図11は、第2実施形態に係る基板処理システムが実行する基板処理の手順を示すフローチャートである。
 以下、添付図面を参照して、本願の開示する基板処理装置および基板処理方法の実施形態を詳細に説明する。なお、以下に示す各実施形態により本開示が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。さらに、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
 従来、半導体ウェハ(以下、ウェハとも呼称する。)などの基板上に形成される膜に2種類の材料(たとえば、配線材料および拡散防止膜)が含まれる場合に、一方の材料を選択的にエッチングする技術が知られている。一方で、2種類の材料の組み合わせによっては、所望の選択性を得ることが難しい場合があった。
 そこで、基板上に形成される膜に含まれる2種類の材料のうち、一方の材料を高い選択性でエッチングすることが期待されている。
<基板処理システムの概要>
 最初に、図1を参照しながら、実施形態に係る基板処理システム1の概略構成について説明する。図1は、実施形態に係る基板処理システム1の概略構成を示す図である。なお、基板処理システム1は、基板処理装置の一例である。以下では、位置関係を明確にするために、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸正方向を鉛直上向き方向とする。
 図1に示すように、基板処理システム1は、搬入出ステーション2と、処理ステーション3とを備える。搬入出ステーション2と処理ステーション3とは隣接して設けられる。
 搬入出ステーション2は、キャリア載置部11と、搬送部12とを備える。キャリア載置部11には、複数枚の基板、実施形態では半導体ウェハW(以下、ウェハWと呼称する。)を水平状態で収容する複数のキャリアCが載置される。
 搬送部12は、キャリア載置部11に隣接して設けられ、内部に基板搬送装置13と、受渡部14とを備える。基板搬送装置13は、ウェハWを保持するウェハ保持機構を備える。また、基板搬送装置13は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウェハ保持機構を用いてキャリアCと受渡部14との間でウェハWの搬送を行う。
 処理ステーション3は、搬送部12に隣接して設けられる。処理ステーション3は、搬送部15と、複数の処理ユニット16とを備える。複数の処理ユニット16は、搬送部15の両側に並べて設けられる。
 搬送部15は、内部に基板搬送装置17を備える。基板搬送装置17は、ウェハWを保持するウェハ保持機構を備える。また、基板搬送装置17は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウェハ保持機構を用いて受渡部14と処理ユニット16との間でウェハWの搬送を行う。
 処理ユニット16は、基板搬送装置17によって搬送されるウェハWに対して所定の基板処理を行う。
 また、基板処理システム1は、制御装置4を備える。制御装置4は、たとえばコンピュータであり、制御部18と記憶部19とを備える。記憶部19には、基板処理システム1において実行される各種の処理を制御するプログラムが格納される。制御部18は、記憶部19に記憶されたプログラムを読み出して実行することによって基板処理システム1の動作を制御する。
 なお、かかるプログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御装置4の記憶部19にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。
 上記のように構成された基板処理システム1では、まず、搬入出ステーション2の基板搬送装置13が、キャリア載置部11に載置されたキャリアCからウェハWを取り出し、取り出したウェハWを受渡部14に載置する。受渡部14に載置されたウェハWは、処理ステーション3の基板搬送装置17によって受渡部14から取り出されて、処理ユニット16へ搬入される。
 処理ユニット16へ搬入されたウェハWは、処理ユニット16によって処理された後、基板搬送装置17によって処理ユニット16から搬出されて、受渡部14に載置される。そして、受渡部14に載置された処理済のウェハWは、基板搬送装置13によってキャリア載置部11のキャリアCへ戻される。
<処理ユニットの構成>
 次に、処理ユニット16の構成について、図2を参照しながら説明する。図2は、処理ユニット16の具体的な構成例を示す模式図である。図2に示すように、処理ユニット16は、チャンバ20と、基板処理部30と、液供給部40と、回収カップ50とを備える。
 チャンバ20は、基板処理部30と、液供給部40と、回収カップ50とを収容する。チャンバ20の天井部には、FFU(Fan Filter Unit)21が設けられる。FFU21は、チャンバ20内にダウンフローを形成する。
 基板処理部30は、保持部31と、支柱部32と、駆動部33とを備え、載置されたウェハWに液処理を施す。保持部31は、ウェハWを水平に保持する。支柱部32は、鉛直方向に延在する部材であり、基端部が駆動部33によって回転可能に支持され、先端部において保持部31を水平に支持する。駆動部33は、支柱部32を鉛直軸まわりに回転させる。
 かかる基板処理部30は、駆動部33を用いて支柱部32を回転させることによって支柱部32に支持された保持部31を回転させ、これにより、保持部31に保持されたウェハWを回転させる。
 基板処理部30が備える保持部31の上面には、ウェハWを側面から保持する保持部材311が設けられる。ウェハWは、かかる保持部材311によって保持部31の上面からわずかに離間した状態で水平保持される。なお、ウェハWは、基板処理が行われる表面を上方に向けた状態で保持部31に保持される。
 液供給部40は、ウェハWに対して処理流体を供給する。液供給部40は、複数(ここでは2つ)のノズル41a、41bと、かかるノズル41a、41bを水平に支持するアーム42と、アーム42を旋回および昇降させる旋回昇降機構43とを備える。
 ノズル41aは、バルブ44aおよび流量調整器45aを介して混合液供給部60に接続される。かかる混合液供給部60の詳細については後述する。
 ノズル41bは、バルブ44bおよび流量調整器45bを介してDIW供給源46bに接続される。DIW(DeIonized Water:脱イオン水)は、たとえばリンス処理に用いられる。なお、リンス処理に用いる処理液はDIWに限られない。
 ノズル41aからは、混合液供給部60より供給される第2混合液が吐出される。かかる第2混合液の詳細については後述する。ノズル41bからは、DIW供給源46bより供給されるDIWが吐出される。
 回収カップ50は、保持部31を取り囲むように配置され、保持部31の回転によってウェハWから飛散する処理液を捕集する。回収カップ50の底部には、排液口51が形成されており、回収カップ50によって捕集された処理液は、かかる排液口51から処理ユニット16の外部へ排出される。また、回収カップ50の底部には、FFU21から供給される気体を処理ユニット16の外部へ排出する排気口52が形成される。
 なお、実施形態の処理ユニット16では、ノズルが2つ設けられる例について示したが、処理ユニット16に設けられるノズルの数は2つに限られない。たとえば、IPA(IsoPropyl Alcohol)を供給するIPA供給源と、かかるIPA供給源に接続された第3のノズルを設けて、かかる第3のノズルからIPAが吐出されるように構成してもよい。
<洗浄処理の詳細>
 次に、処理ユニット16におけるウェハWのエッチング処理の詳細について、図3および図4を参照しながら説明する。図3は、第1実施形態におけるエッチング処理の概要を示す図であり、図4は、第1実施形態におけるエッチング時のウェハW表面の状態を模式的に示す図である。
 なお、図4に示すように、かかるエッチング処理が行われるウェハWの表面上に形成される膜には、材質の異なるタングステン(W)および窒化チタン(TiN)が含まれているものとする。
 まず、基板搬送装置17により、ウェハWが処理ユニット16のチャンバ20内に搬入される。そして、ウェハWは、基板処理される表面を上方に向けた状態で基板処理部30の保持部材311に保持される。その後、駆動部33により、保持部材311がウェハWとともに所定の回転数で回転する。
 次に、処理ユニット16では、図3の(a)に示すように、エッチング液によるエッチング処理が行われる。かかるエッチング処理では、液供給部40のノズル41aがウェハWの中央上方に移動する。
 その後、バルブ44aが所定時間開放されることにより、ウェハWの表面に対して硫酸、過酸化水素水および添加剤を所定の割合で混合した第2混合液がエッチング液として供給される。
 ここで、エッチング液に含有する添加剤は、たとえばホスホン酸を含むことから、ウェハW上に形成される膜に含まれるタングステンおよび窒化チタンのうち、タングステン(より詳細には、タングステンの表面に形成される酸化膜(WO))に吸着しやすい性質を有する。
 これにより、図4に示すように、エッチング処理の際にタングステンの表面に添加剤の保護膜が形成されることから、ウェハW上に形成される膜に含まれるタングステンおよび窒化チタンのうち、窒化チタンを高い選択性でエッチングすることができる。
 次に、処理ユニット16では、図3の(b)に示すように、DIWによるリンス処理が行われる。かかるリンス処理では、液供給部40のノズル41bがウェハWの中央上方に移動し、バルブ44bが所定時間開放されることにより、ウェハWの表面に対してリンス液である室温のDIWが供給される。このリンス処理により、ウェハW上に残存するエッチング液やエッチングされた窒化チタンなどの残渣を除去することができる。なお、リンス処理におけるDIWの温度は、室温でも室温より高い温度でもよい。
 つづいて、処理ユニット16では、ウェハWを乾燥させる乾燥処理が行われる。かかる乾燥処理では、たとえば、駆動部33により保持部材311を高速回転させることによって、保持部材311に保持されるウェハW上のDIWを振り切る。なお、DIWを振り切る代わりに、DIWをIPAに置換させた後、かかるIPAを振り切ってウェハWを乾燥させてもよい。
 その後、処理ユニット16では、搬出処理が行われる。搬出処理では、ウェハWの回転を停止させた後、基板搬送装置17により、ウェハWが処理ユニット16から搬出される。かかる搬出処理が完了すると、1枚のウェハWについての一連のエッチング処理が完了する。
<第1実施形態における混合液供給部の構成>
 次に、第1実施形態において、基板処理システム1が備える混合液供給部60の構成について、図5を参照しながら説明する。図5は、第1実施形態に係る混合液供給部60の構成を示す図である。なお、以下に示す混合液供給部60の各部は、制御部18によって制御可能である。
 図5に示すように、第1実施形態に係る混合液供給部60は、過酸化水素水供給部100と、添加剤供給部110と、硫酸供給部120と、第1混合部140と、第2混合部150とを備える。
 過酸化水素水供給部100は、過酸化水素水を供給する。かかる過酸化水素水供給部100は、過酸化水素水供給源100aと、バルブ100bと、流量調整器100cとを有する。
 そして、過酸化水素水供給源100aは、バルブ100bおよび流量調整器100cを介して第1混合部140に接続される。これにより、過酸化水素水供給部100は、第1混合部140に過酸化水素水を供給することができる。
 添加剤供給部110は、所定の添加剤を供給する。かかる添加剤は、ウェハW上に形成される第1膜(たとえば、タングステンや酸化アルミニウム)および第2膜(たとえば、窒化チタン)のうち、第1膜に吸着しやすい性質を有する。
 かかる添加剤は、ホスホン酸、カルボン酸またはスルホン酸を含むとよい。これにより、ウェハW上に形成される第1膜がタングステンまたは酸化アルミニウムであり、第2膜が窒化チタンである場合に、第1膜であるタングステンまたは酸化アルミニウムに選択的に保護膜を形成することができる。
 添加剤供給部110は、添加剤供給源110aと、バルブ110bと、流量調整器110cとを有する。そして、添加剤供給源110aは、バルブ110bおよび流量調整器110cを介して第1混合部140に接続される。これにより、添加剤供給部110は、第1混合部140に添加剤を供給することができる。
 硫酸供給部120は、硫酸を供給する。かかる硫酸供給部120は、硫酸供給源121aと、バルブ121bと、流量調整器121cと、タンク122と、循環ライン123とを有する。
 そして、硫酸供給源121aは、バルブ121bおよび流量調整器121cを介してタンク122に接続される。これにより、硫酸供給部120は、硫酸供給源121aからタンク122に硫酸を供給し、タンク122に硫酸を貯留することができる。
 また、循環ライン123は、タンク122から出て、かかるタンク122に戻る循環ラインである。かかる循環ライン123には、タンク122を基準として、上流側から順にポンプ124と、フィルタ125と、流量調整器126と、ヒータ127と、熱電対128と、切替部129とが設けられる。
 ポンプ124は、タンク122から出て、循環ライン123を通り、タンク122に戻る硫酸の循環流を形成する。フィルタ125は、循環ライン123内を循環する硫酸に含まれるパーティクルなどの汚染物質を除去する。流量調整器126は、循環ライン123を通る硫酸の循環流の流量を調整する。
 ヒータ127は、循環ライン123内を循環する硫酸を加熱する。熱電対128は、循環ライン123内を循環する硫酸の温度を計測する。したがって、制御部18は、ヒータ127および熱電対128を用いることにより、循環ライン123内を循環する硫酸の温度を制御することができる。
 切替部129は、混合液供給部60の第2混合部150に接続され、循環ライン123内を循環する硫酸の向きをタンク122または第2混合部150に切り替えることができる。
 また、タンク122には、純水供給源130aと、バルブ130bと、流量調整器130cと、バルブ130dとが設けられる。タンク122は、バルブ130dを介してドレン部に接続され、純水供給源130aは、バルブ130bおよび流量調整器130cを介してタンク122とバルブ130dとの間に接続される。
 これにより、制御部18は、タンク122内の硫酸を交換する際などに、バルブ130b、流量調整器130cおよびバルブ130dを制御して、タンク122内の硫酸を所定の濃度に希釈してからドレン部に排出することができる。
 第1混合部140は、過酸化水素水供給部100から供給される過酸化水素水と、添加剤供給部110から供給される添加剤とを混合して、第1混合液を生成する。第1実施形態において、第1混合部140はタンクであり、過酸化水素水と添加剤とが所定の割合で混合された第1混合液を貯留する。
 また、タンクである第1混合部140には、かかる第1混合部140から出て、第1混合部140に戻る循環ライン141が設けられる。そして、かかる循環ライン141には、第1混合部140を基準として、上流側から順にポンプ142と、フィルタ143と、流量調整器144と、切替部145とが設けられる。
 ポンプ142は、第1混合部140から出て、循環ライン141を通り、第1混合部140に戻る第1混合液の循環流を形成する。フィルタ143は、循環ライン141内を循環する第1混合液に含まれるパーティクルなどの汚染物質を除去する。流量調整器144は、循環ライン141を通る第1混合液の循環流の流量を調整する。
 切替部145は、混合液供給部60の第2混合部150に接続され、循環ライン141内を循環する第1混合液の向きを第1混合部140または第2混合部150に切り替えることができる。
 また、循環ライン141には、フィルタ143と流量調整器144の間から分岐して、第1混合部140につながる分岐ライン146が設けられる。そして、かかる分岐ライン146には濃度計147が設けられることから、制御部18は、かかる濃度計147を用いて、循環ライン141を循環する第1混合液内における過酸化水素水および添加剤の濃度を計測することができる。
 さらに、制御部18は、計測された第1混合液内の過酸化水素水および添加剤の濃度に基づいて過酸化水素水供給部100および添加剤供給部110を制御し、第1混合液内における過酸化水素水および添加剤の濃度を所定の濃度に制御することができる。
 また、第1混合部140は、バルブ148を介してドレン部に接続される。これにより、制御部18は、タンクである第1混合部140内の第1混合液を交換する際などに、バルブ148を制御して、第1混合部140内の第1混合液をドレン部に排出することができる。
 第2混合部150は、第1混合部140で生成される第1混合液と、硫酸供給部120から供給される硫酸とを混合して第2混合液を生成する。第1実施形態において、第2混合部150は、第1混合部140から切替部145を介して延びる配管と、硫酸供給部120の切替部129から延びる配管とが合流する箇所である。
 また、硫酸供給部120と第2混合部150との間には第1バルブ151が設けられ、第1混合部140と第2混合部150との間には第2バルブ152が設けられる。
 そして、第2混合部150は、上述したバルブ44aおよび流量調整器45aを介して処理ユニット16に接続される。これにより、混合液供給部60は、硫酸と過酸化水素水と添加剤とが所定の割合で混ざった第2混合液を処理ユニット16に供給することができる。
 また、上述のように、硫酸供給部120にはヒータ127が設けられるとともに、第2混合部150では、硫酸と過酸化水素水が反応することによって第2混合液の温度が上昇する。これにより、第1実施形態の混合液供給部60は、第2混合液を所望の温度に昇温して処理ユニット16に供給することができる。
 なお、図5には図示していないが、循環ライン123、141や分岐ライン146などには、別途バルブなどが設けられていてもよい。
<実験結果>
 次に、第1実施形態の基板処理システム1において、タングステンのエッチングレートに対する窒化チタンのエッチングレートの割合(すなわち、エッチングの選択比)と、添加剤濃度との関係を求めた実験結果について、図6を参照しながら説明する。図6は、第1実施形態におけるタングステンのエッチングレート、窒化チタンのエッチングレートおよびエッチングの選択比と、添加剤濃度との関係を示した図である。
 なお、図6に示した実験結果は、硫酸と過酸化水素水とを10:1の割合で混ぜた液体に対して、添加剤の濃度を適宜変更した第2混合液での測定値であり、添加剤にはホスホン酸を用いた。また、タングステンおよび窒化チタンのエッチングはそれぞれ単独の材料で行い、90(℃)の第2混合液でエッチングを行った。
 図6に示すように、添加剤が0(vol.%)(すなわち、添加剤なし)の条件に比べて、添加剤を0.15~1(vol.%)程度まで添加することにより、エッチングの選択比が向上していることがわかる。これは、図6に示すように、添加剤を1(vol.%)程度まで添加するにしたがい、タングステンのエッチングレートが大きく減少しているのが要因である。
 すなわち、第1実施形態では、窒化チタンよりタングステンに吸着しやすい添加剤をエッチング液に含有させることにより、タングステンのエッチングレートを低減させることができることから、窒化チタンを高い選択性でエッチングすることができる。
 一方で、図6に示すように、添加剤を過剰に(たとえば、8(vol.%)程度)添加させた場合には、添加剤が付着しにくい窒化チタンにも保護膜が形成されることから、窒化チタンのエッチングレートも低下してしまう。したがって、第1実施形態において、添加剤を過剰に添加させた場合には、エッチングの選択比が逆に低下してしまう。
 ここまで説明したように、第1実施形態では、添加剤を0.15~1(vol.%)含有させた第2混合液をエッチング液に用いることにより、窒化チタンを高い選択性でエッチングすることができる。
<エッチング液供給処理の詳細>
 つづいて、第1実施形態においてウェハWにエッチング液を供給する処理の詳細について、図7を参照しながら説明する。図7は、第1実施形態に係るエッチング液供給処理の詳細を説明するための図である。
 第2混合液に含まれる硫酸、過酸化水素水および添加剤のうち、窒化チタン、タングステンのエッチングには過酸化水素水が大きく寄与する。したがって、第2混合部150で生成される第2混合液において、所望の割合より過酸化水素水の割合が高くなった場合、窒化チタン、タングステンのエッチングが過剰に進む恐れがある。
 そこで、第1実施形態では、以下に示す処理を実行することにより、窒化チタン、タングステンのエッチングが過剰に進むことを抑制することとした。最初に、制御部18は、エッチング液として第2混合液をウェハWに供給する前に、図7の(a)に示すように、第2バルブ152を閉め、第1バルブ151を開けることにより、硫酸をノズル41aからウェハWに供給する。
 なお、図7において、第1バルブ151または第2バルブ152が閉まっている場合は「C」と表記し、第1バルブ151または第2バルブ152が開いている場合は「O」と表記する。
 ここで、硫酸は窒化チタン、タングステンのエッチングにほとんど寄与しないことから、第2混合液によるエッチングが行われる前に、窒化チタン、タングステンのエッチングが過剰に進むことを抑制することができる。
 つづいて、制御部18は、図7の(b)に示すように、第1バルブ151および第2バルブ152を開けることにより、第2混合部150で生成された第2混合液をウェハWに供給し、ウェハWのエッチング処理を行う。
 そして、第2混合液によるウェハWのエッチングが終了すると、制御部18は、図7の(c)に示すように、第2バルブ152を閉め、第1バルブ151を開けることにより、硫酸をノズル41aからウェハWに供給する。これにより、第2混合液によるエッチングが行われた後に、窒化チタン、タングステンのエッチングが過剰に進むことを抑制することができる。
 ここまで説明したように、第1実施形態では、エッチング液を供給する際に、第1バルブ151および第2バルブ152を制御することにより、窒化チタン、タングステンのエッチングが過剰に進むことを抑制することができる。
<変形例>
 つづいて、第1実施形態の変形例にかかる混合液供給部60の構成について、図8を参照しながら説明する。図8は、第1実施形態の変形例に係る混合液供給部60の構成を示す図である。
 図8に示すように、変形例にかかる混合液供給部60は、過酸化水素水供給部100、添加剤供給部110および第1混合部140の構成が第1実施形態と異なる。なお、硫酸供給部120および第2混合部150の構成は第1実施形態と同様であることから、かかる硫酸供給部120および第2混合部150の説明は省略する。
 過酸化水素水供給部100は、過酸化水素水供給源100aと、バルブ100bと、流量調整器100cと、タンク100dと、循環ライン100eとを有する。
 そして、過酸化水素水供給源100aは、バルブ100bおよび流量調整器100cを介してタンク100dに接続される。これにより、過酸化水素水供給部100は、過酸化水素水供給源100aからタンク100dに過酸化水素水を供給し、タンク100dに過酸化水素水を貯留することができる。
 また、循環ライン100eは、タンク100dから出て、かかるタンク100dに戻る循環ラインである。かかる循環ライン100eには、タンク100dを基準として、上流側から順にポンプ100fと、フィルタ100gと、流量調整器100hと、切替部100iとが設けられる。
 ポンプ100fは、タンク100dから出て、循環ライン100eを通り、タンク100dに戻る過酸化水素水の循環流を形成する。フィルタ100gは、循環ライン100e内を循環する過酸化水素水に含まれるパーティクルなどの汚染物質を除去する。流量調整器100hは、循環ライン100eを通る過酸化水素水の循環流の流量を調整する。
 切替部100iは、混合液供給部60の第1混合部140に接続され、循環ライン100e内を循環する過酸化水素水の向きをタンク100dまたは第1混合部140に切り替えることができる。
 また、タンク100dは、バルブ100jを介してドレン部に接続される。これにより、制御部18は、タンク100d内の過酸化水素水を交換する際などに、バルブ100jを制御して、タンク100d内の過酸化水素水をドレン部に排出することができる。
 添加剤供給部110は、添加剤供給源110aと、バルブ110bと、流量調整器110cと、タンク110dと、配管110eとを有する。
 そして、添加剤供給源110aは、バルブ110bおよび流量調整器110cを介してタンク110dに接続される。これにより、添加剤供給部110は、添加剤供給源110aからタンク110dに添加剤を供給し、タンク110dに添加剤を貯留することができる。
 また、配管110eは、バルブ110fおよび流量調整器110gを介して、タンク110dと第1混合部140との間を接続する。これにより、添加剤供給部110は、所望の流量の添加剤を第1混合部140に供給することができる。
 たとえば、バルブ110fはニードルバルブであるとよい。これにより、過酸化水素水に比べて微量である添加剤を精度よく第1混合部140に供給することができる。
 また、タンク110dは、バルブ110hを介してドレン部に接続される。これにより、制御部18は、タンク110d内の添加剤を交換する際などに、バルブ110hを制御して、タンク110d内の添加剤をドレン部に排出することができる。
 また、変形例の第1混合部140は、過酸化水素水供給部100の切替部100iから延びる配管と、添加剤供給部110の配管110eとが合流する箇所である。そして、第1混合部140は、第2バルブ152を介して第2混合部150に接続される。
 ここまで説明したように、変形例の混合液供給部60は、過酸化水素水供給部100から供給される過酸化水素水と、添加剤供給部110から供給される添加剤とを第1混合部140で混合し、第1混合液を生成する。そして、変形例の混合液供給部60は、第1混合部140で生成される第1混合液と、硫酸供給部120から供給される硫酸とを第2混合部150で混合し、第2混合液を生成する。
 これにより、変形例の混合液供給部60は、処理ユニット16に第2混合液をエッチング液として供給することができる。
 第1実施形態に係る基板処理装置(基板処理システム1)は、基板処理部30と、過酸化水素水供給部100と、添加剤供給部110と、硫酸供給部120と、第1混合部140と、第2混合部150と、液供給部40とを備える。基板処理部30は、基板(ウェハW)に液処理を施す。第1混合部140は、過酸化水素水供給部100から供給される過酸化水素水と、添加剤供給部110から供給される添加剤とを混合して第1混合液を生成する。第2混合部150は、第1混合部140で生成される第1混合液と、硫酸供給部120から供給される硫酸とを混合して第2混合液を生成する。液供給部40は、基板処理部30に載置された基板(ウェハW)に第2混合液を供給する。これにより、ウェハW上に形成される膜に含まれる2種類の材料のうち、一方の材料を高い選択性でエッチングすることができる。
 また、第1実施形態に係る基板処理装置(基板処理システム1)は、第1バルブ151と、第2バルブ152と、制御部18とをさらに備える。第1バルブ151は、硫酸供給部120と第2混合部150との間に設けられる。第2バルブ152は、第1混合部140と第2混合部150との間に設けられる。制御部18は、第1バルブ151と、第2バルブ152と、液供給部40とを制御する。そして、制御部18は、第1バルブ151と第2バルブ152とを開けて生成される第2混合液を基板(ウェハW)に供給した後に、第1バルブ151を開けて硫酸を液供給部40から基板(ウェハW)に供給する。これにより、第2混合液によるエッチングが行われた後に、窒化チタン、タングステンのエッチングが過剰に進むことを抑制することができる。
 また、第1実施形態に係る基板処理装置(基板処理システム1)において、制御部18は、第1バルブ151と第2バルブ152とを開けて生成される第2混合液を基板に供給する前に、第1バルブ151を開けて硫酸を液供給部40から基板に供給する。これにより、第2混合液によるエッチングが行われる前に、窒化チタン、タングステンのエッチングが過剰に進むことを抑制することができる。
 また、第1実施形態に係る基板処理装置(基板処理システム1)において、基板(ウェハW)は、第1膜と、かかる第1膜とは異なる材料を含む第2膜とを有し、添加剤は、第2膜より第1膜に吸着しやすい。これにより、第1膜の表面に添加剤の保護膜を形成することができることから、第2膜を高い選択性でエッチングすることができる。
 また、第1実施形態に係る基板処理装置(基板処理システム1)において、第1膜は、タングステンまたは酸化アルミニウムを含み、第2膜は、窒化チタンを含む。これにより、これにより、ウェハWに含まれる第1膜および第2膜のうち、第2膜である窒化チタンを高い選択性でエッチングすることができる。
 また、第1実施形態に係る基板処理装置(基板処理システム1)において、添加剤は、ホスホン酸、カルボン酸またはスルホン酸を含む。これにより、ウェハW上に形成される第1膜がタングステンまたは酸化アルミニウムであり、第2膜が窒化チタンである場合に、第1膜であるタングステンまたは酸化アルミニウムに選択的に保護膜を形成することができる。
<第2実施形態>
 つづいて、第2実施形態にかかる混合液供給部60の構成について、図9を参照しながら説明する。図9は、第2実施形態に係る混合液供給部60の構成を示す図である。
 図9に示すように、第2実施形態に係る混合液供給部60は、過酸化水素水供給部100と、添加剤供給部110と、硫酸供給部120と、混合部200とを備える。
 過酸化水素水供給部100は、過酸化水素水供給源100aと、バルブ100bと、流量調整器100cとを有する。そして、過酸化水素水供給源100aは、バルブ100bおよび流量調整器100cを介して混合部200に接続される。これにより、過酸化水素水供給部100は、混合部200に過酸化水素水を供給することができる。
 添加剤供給部110は、添加剤供給源110aと、バルブ110bと、流量調整器110cとを有する。そして、添加剤供給源110aは、バルブ110bおよび流量調整器110cを介して混合部200に接続される。これにより、添加剤供給部110は、混合部200に添加剤を供給することができる。
 硫酸供給部120は、硫酸供給源120aと、バルブ120bと、流量調整器120cとを有する。そして、硫酸供給源120aは、バルブ120bおよび流量調整器120cを介して混合部200に接続される。これにより、硫酸供給部120は、混合部200に硫酸を供給することができる。
 混合部200は、過酸化水素水供給部100から供給される過酸化水素水と、添加剤供給部110から供給される添加剤と、硫酸供給部120から供給される硫酸とを混合して、混合液を生成する。
 すなわち、第2実施形態の混合液は、第1実施形態の第2混合液と同様に、硫酸、過酸化水素水および添加剤が所定の割合で混合されている。第2実施形態において、混合部200はタンクであり、上述の混合液を貯留する。
 また、タンクである混合部200には、かかる混合部200から出て、混合部200に戻る循環ライン201が設けられる。そして、かかる循環ライン201には、混合部200を基準として、上流側から順にポンプ202と、フィルタ203と、流量調整器204と、ヒータ205と、熱電対206と、切替部207とが設けられる。
 ポンプ202は、混合部200から出て、循環ライン201を通り、混合部200に戻る混合液の循環流を形成する。フィルタ203は、循環ライン201内を循環する混合液に含まれるパーティクルなどの汚染物質を除去する。流量調整器204は、循環ライン201を通る混合液の循環流の流量を調整する。
 ヒータ205は、循環ライン201内を循環する混合液を加熱する。熱電対206は、循環ライン201内を循環する混合液の温度を計測する。そして、制御部18は、ヒータ205および熱電対206を用いることにより、循環ライン201内を循環する混合液の温度を制御することができる。したがって、第2実施形態の混合液供給部60は、混合液を所望の温度に昇温して処理ユニット16に供給することができる。
 切替部207は、バルブ44aおよび流量調整器45aを介して処理ユニット16に接続され、循環ライン201内を循環する混合液の向きを処理ユニット16または混合部200に切り替えることができる。
 また、混合部200には、純水供給源208aと、バルブ208bと、流量調整器208cと、バルブ208dとが設けられる。混合部200は、バルブ208dを介してドレン部に接続され、純水供給源208aは、バルブ208bおよび流量調整器208cを介して混合部200とバルブ208dとの間に接続される。
 これにより、制御部18は、タンクである混合部200内の混合液を交換する際などに、バルブ208b、流量調整器208cおよびバルブ208dを制御して、混合部200内の混合液を所定の濃度に希釈してからドレン部に排出することができる。
 ここまで説明したように、第2実施形態の混合液供給部60では、硫酸、過酸化水素水および添加剤を混合部200において一括で混合することにより、硫酸、過酸化水素水および添加剤が所定の割合で混合された混合液を安定して生成することができる。
 なお、図9には図示されていないが、循環ライン201などに濃度計を設けて、かかる濃度計により循環ライン201を循環する混合液内における硫酸、過酸化水素水および添加剤の濃度を計測してもよい。これにより、硫酸、過酸化水素水および添加剤が所定の割合で混合された混合液をさらに安定して生成することができる。
 第2実施形態に係る基板処理装置(基板処理システム1)は、基板処理部30と、過酸化水素水供給部100と、添加剤供給部110と、硫酸供給部120と、混合部200と、液供給部40とを備える。基板処理部30は、基板(ウェハW)に液処理を施す。混合部200は、過酸化水素水供給部100から供給される過酸化水素水と、添加剤供給部110から供給される添加剤と、硫酸供給部120から供給される硫酸とを混合して混合液を生成する。液供給部40は、基板(ウェハW)に混合液を供給する。これにより、ウェハW上に形成される膜に含まれる2種類の材料のうち、一方の材料を高い選択性でエッチングすることができる。
<処理の手順>
 つづいて、各実施形態に係る基板処理の手順について、図10および図11を参照しながら説明する。図10は、第1実施形態に係る基板処理システム1が実行する基板処理の手順を示すフローチャートである。
 最初に、制御部18は、混合液供給部60を制御して、過酸化水素水および添加剤を第1混合部140で混合し、過酸化水素水および添加剤が所定の割合で混合された第1混合液を生成する(ステップS101)。たとえば、かかる第1混合液は、過酸化水素水供給部100から供給される過酸化水素水と、添加剤供給部110から供給される添加剤とを所定の割合で混合することにより生成される。
 次に、制御部18は、第2混合液によるエッチングが行われる前に、第1バルブ151を開けて、基板処理部30に載置されるウェハWに硫酸供給部120から硫酸を供給する(ステップS102)。
 その後、制御部18は、第1バルブ151および第2バルブ152を開けて、硫酸、過酸化水素水および添加剤が所定の割合で混合された第2混合液を第2混合部150で生成する(ステップS103)。そして、制御部18は、バルブ44aを制御して、生成された第2混合液をウェハWに供給し(ステップS104)、かかる第2混合液でウェハWをエッチング処理する。
 そして、第2混合液によるエッチング処理が終わると、制御部18は、第2バルブ152を閉めるとともに第1バルブ151を開けて、硫酸をウェハWに供給する(ステップS105)。次に、制御部18は、第1バルブ151およびバルブ44aを閉めて、ウェハWに対する硫酸の供給を停止する(ステップS106)。
 次に、制御部18は、バルブ44bを制御して、ノズル41bからリンス液をウェハWに供給する(ステップS107)。そして、制御部18は、基板処理部30を制御して、ウェハWを高速回転させることにより、リンス液を振り切ってウェハWをスピン乾燥するか、もしくはリンス液をIPAで置換した後にIPAを振り切るIPA乾燥を行い(ステップS108)、処理を完了する。
 第1実施形態に係る基板処理方法は、第1混合工程(ステップS101)と、第2混合工程(ステップS103)と、液供給工程(ステップS104)とを含む。第1混合工程は、過酸化水素水と、添加剤とを混合して第1混合液を生成する。第2混合工程は、第1混合液と、硫酸とを混合して第2混合液を生成する。液供給工程は、基板処理部30に載置された基板(ウェハW)に第2混合液を供給する。これにより、ウェハW上に形成される膜に含まれる2種類の材料のうち、一方の材料を高い選択性でエッチングすることができる。
 図11は、第2実施形態に係る基板処理システム1が実行する基板処理の手順を示すフローチャートである。最初に、制御部18は、混合液供給部60を制御して、硫酸、過酸化水素水および添加剤を混合部200で混合し、硫酸、過酸化水素水および添加剤が所定の割合で混合された混合液を生成する(ステップS201)。
 たとえば、かかる混合液は、過酸化水素水供給部100から供給される過酸化水素水と、添加剤供給部110から供給される添加剤と、硫酸供給部120から供給される硫酸とを所定の割合で混合することにより生成される。
 次に、制御部18は、切替部207およびバルブ44aを制御して、生成された混合液をウェハWに供給し(ステップS202)、かかる混合液でウェハWをエッチング処理する。そして、制御部18は、バルブ44aを制御して、ウェハWに対する混合液の供給を停止する(ステップS203)。
 次に、制御部18は、バルブ44bを制御して、ノズル41bからリンス液をウェハWに供給する(ステップS204)。そして、制御部18は、基板処理部30を制御して、ウェハWを高速回転させることにより、リンス液を振り切ってウェハWをスピン乾燥するか、もしくはリンス液をIPAで置換した後にIPAを振り切るIPA乾燥を行い(ステップS205)、処理を完了する。
 第2実施形態に係る基板処理方法は、混合工程(ステップS201)と、液供給工程(ステップS202)とを含む。混合工程は、過酸化水素水と、添加剤と、硫酸とを混合して混合液を生成する。液供給工程は、基板処理部30に載置された基板(ウェハW)に混合液を供給する。これにより、ウェハW上に形成される膜に含まれる2種類の材料のうち、一方の材料を高い選択性でエッチングすることができる。
 以上、本開示の各実施形態について説明したが、本開示は上記の各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。たとえば、上記の各実施形態では、第2混合液または混合液でウェハWをエッチングした後、リンス処理する例について示したが、エッチングした後の処理はリンス処理に限られず、どのような処理を行ってもよい。
 また、上記の第1実施形態では、第2混合部150が合流する配管で構成された例について示したが、第2混合部150の構成は合流する配管に限られず、たとえば、第2混合部150はタンクで構成されていてもよい。
 今回開示された各実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した各実施形態は多様な形態で具現され得る。また、上記の各実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
 W   ウェハ
 1   基板処理システム(基板処理装置の一例)
 16  処理ユニット
 18  制御部
 30  基板処理部
 40  液供給部
 60  混合液供給部
 100 過酸化水素水供給部
 110 添加剤供給部
 120 硫酸供給部
 140 第1混合部
 150 第2混合部
 151 第1バルブ
 152 第2バルブ
 200 混合部

Claims (9)

  1.  基板に液処理を施す基板処理部と、
     過酸化水素水供給部と、
     添加剤供給部と、
     硫酸供給部と、
     前記過酸化水素水供給部から供給される過酸化水素水と、前記添加剤供給部から供給される添加剤とを混合して第1混合液を生成する第1混合部と、
     前記第1混合部で生成される前記第1混合液と、前記硫酸供給部から供給される硫酸とを混合して第2混合液を生成する第2混合部と、
     前記基板処理部に載置された前記基板に前記第2混合液を供給する液供給部と、
     を備える基板処理装置。
  2.  前記硫酸供給部と前記第2混合部との間に設けられる第1バルブと、
     前記第1混合部と前記第2混合部との間に設けられる第2バルブと、
     前記第1バルブと、前記第2バルブと、前記液供給部とを制御する制御部と、
     をさらに備え、
     前記制御部は、
     前記第1バルブと前記第2バルブとを開けて生成される前記第2混合液を前記基板に供給した後に、前記第1バルブを開けて前記硫酸を前記液供給部から前記基板に供給する、請求項1に記載の基板処理装置。
  3.  前記制御部は、
     前記第1バルブと前記第2バルブとを開けて生成される前記第2混合液を前記基板に供給する前に、前記第1バルブを開けて前記硫酸を前記液供給部から前記基板に供給する、請求項2に記載の基板処理装置。
  4.  基板に液処理を施す基板処理部と、
     過酸化水素水供給部と、
     添加剤供給部と、
     硫酸供給部と、
     前記過酸化水素水供給部から供給される過酸化水素水と、前記添加剤供給部から供給される添加剤と、前記硫酸供給部から供給される硫酸とを混合して混合液を生成する混合部と、
     前記基板に前記混合液を供給する液供給部と、
     を備える基板処理装置。
  5.  前記基板は、第1膜と、当該第1膜とは異なる材料を含む第2膜とを有し、
     前記添加剤は、前記第2膜より前記第1膜に吸着しやすい請求項1~4のいずれか一つに記載の基板処理装置。
  6.  前記第1膜は、タングステンまたは酸化アルミニウムを含み、
     前記第2膜は、窒化チタンを含む請求項5に記載の基板処理装置。
  7.  前記添加剤は、ホスホン酸、カルボン酸またはスルホン酸を含む請求項1~6のいずれか一つに記載の基板処理装置。
  8.  過酸化水素水と、添加剤とを混合して第1混合液を生成する第1混合工程と、
     前記第1混合液と、硫酸とを混合して第2混合液を生成する第2混合工程と、
     基板処理部に載置された基板に前記第2混合液を供給する液供給工程と、
     を含む基板処理方法。
  9.  過酸化水素水と、添加剤と、硫酸とを混合して混合液を生成する混合工程と、
     基板処理部に載置された基板に前記混合液を供給する液供給工程と、
     を含む基板処理方法。
PCT/JP2019/020811 2018-06-07 2019-05-27 基板処理装置および基板処理方法 WO2019235275A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020523641A JP7175310B2 (ja) 2018-06-07 2019-05-27 基板処理装置および基板処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-109555 2018-06-07
JP2018109555 2018-06-07

Publications (1)

Publication Number Publication Date
WO2019235275A1 true WO2019235275A1 (ja) 2019-12-12

Family

ID=68770139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020811 WO2019235275A1 (ja) 2018-06-07 2019-05-27 基板処理装置および基板処理方法

Country Status (3)

Country Link
JP (1) JP7175310B2 (ja)
TW (1) TW202002053A (ja)
WO (1) WO2019235275A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286672A1 (ja) * 2021-07-16 2023-01-19 東京エレクトロン株式会社 基板処理装置、及び基板処理方法
JP7489885B2 (ja) 2020-01-23 2024-05-24 東京エレクトロン株式会社 基板処理装置、基板処理方法及び薬液

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340383A (ja) * 2002-05-27 2003-12-02 Shibaura Mechatronics Corp 処理液の供給装置、供給方法及び基板処理装置
JP2013045961A (ja) * 2011-08-25 2013-03-04 Dainippon Screen Mfg Co Ltd 基板洗浄方法、基板洗浄液および基板処理装置
CN104599950A (zh) * 2014-12-31 2015-05-06 南通富士通微电子股份有限公司 一种osp基板的蚀刻清洗设备及方法
US20150179510A1 (en) * 2013-12-24 2015-06-25 Erica J. Thompson Technology for selectively etching titanium and titanium nitride in the presence of other materials
JP2016163044A (ja) * 2015-03-05 2016-09-05 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 窒化チタン(TiN)膜エッチング液組成物およびそれを用いた金属配線の形成方法
JP2017199791A (ja) * 2016-04-27 2017-11-02 株式会社Adeka エッチング液組成物及びエッチング方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5992379B2 (ja) 2013-08-23 2016-09-14 東京エレクトロン株式会社 基板処理方法および基板処理装置
JP6493839B2 (ja) 2015-03-24 2019-04-03 株式会社Screenホールディングス 基板処理方法および基板処理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340383A (ja) * 2002-05-27 2003-12-02 Shibaura Mechatronics Corp 処理液の供給装置、供給方法及び基板処理装置
JP2013045961A (ja) * 2011-08-25 2013-03-04 Dainippon Screen Mfg Co Ltd 基板洗浄方法、基板洗浄液および基板処理装置
US20150179510A1 (en) * 2013-12-24 2015-06-25 Erica J. Thompson Technology for selectively etching titanium and titanium nitride in the presence of other materials
CN104599950A (zh) * 2014-12-31 2015-05-06 南通富士通微电子股份有限公司 一种osp基板的蚀刻清洗设备及方法
JP2016163044A (ja) * 2015-03-05 2016-09-05 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 窒化チタン(TiN)膜エッチング液組成物およびそれを用いた金属配線の形成方法
JP2017199791A (ja) * 2016-04-27 2017-11-02 株式会社Adeka エッチング液組成物及びエッチング方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7489885B2 (ja) 2020-01-23 2024-05-24 東京エレクトロン株式会社 基板処理装置、基板処理方法及び薬液
WO2023286672A1 (ja) * 2021-07-16 2023-01-19 東京エレクトロン株式会社 基板処理装置、及び基板処理方法
JP7483145B2 (ja) 2021-07-16 2024-05-14 東京エレクトロン株式会社 基板処理装置、及び基板処理方法

Also Published As

Publication number Publication date
TW202002053A (zh) 2020-01-01
JPWO2019235275A1 (ja) 2021-06-17
JP7175310B2 (ja) 2022-11-18

Similar Documents

Publication Publication Date Title
US20220172966A1 (en) Apparatus for treating substrate
KR20180075388A (ko) 기판 처리 방법, 기판 처리 장치, 기판 처리 시스템, 기판 처리 시스템의 제어 장치, 반도체 기판의 제조 방법 및 반도체 기판
WO2019235275A1 (ja) 基板処理装置および基板処理方法
KR102638072B1 (ko) 기판 처리 방법 및 기판 처리 장치
US11955352B2 (en) Substrate processing apparatus
JP6987244B2 (ja) 基板処理方法および基板処理装置
US11183396B2 (en) Substrate processing method and substrate processing apparatus
KR102152911B1 (ko) 기판 세정 조성물, 기판 처리 방법 및 기판 처리 장치
JP6914143B2 (ja) 基板処理方法、基板処理装置、基板処理システム、基板処理システムの制御装置および半導体基板の製造方法
JP6917807B2 (ja) 基板処理方法
JP2020170801A (ja) 基板処理方法および基板処理装置
JP2020140984A (ja) 基板処理装置および基板処理方法
US11049723B2 (en) Substrate processing method and substrate processing apparatus
JP7142461B2 (ja) 基板処理方法、基板処理装置および基板処理システム
TWI842714B (zh) 基板處理方法及基板處理裝置
JP2022165461A (ja) 基板処理装置および基板処理方法
WO2023166970A1 (ja) 基板処理方法
US20220301880A1 (en) Substrate processing method and substrate processing apparatus
US20220115249A1 (en) Substrate processing apparatus
US20220112603A1 (en) Substrate processing method and substrate processing apparatus
JP2017010959A (ja) 基板処理方法、基板処理装置および記憶媒体
JP2023133102A (ja) 基板処理方法および基板処理装置
JP2022063225A (ja) 基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523641

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815412

Country of ref document: EP

Kind code of ref document: A1