WO2019233399A1 - 一种水基润滑剂及其制备方法 - Google Patents

一种水基润滑剂及其制备方法 Download PDF

Info

Publication number
WO2019233399A1
WO2019233399A1 PCT/CN2019/089934 CN2019089934W WO2019233399A1 WO 2019233399 A1 WO2019233399 A1 WO 2019233399A1 CN 2019089934 W CN2019089934 W CN 2019089934W WO 2019233399 A1 WO2019233399 A1 WO 2019233399A1
Authority
WO
WIPO (PCT)
Prior art keywords
seed oil
rubber seed
mol
water
alcohol
Prior art date
Application number
PCT/CN2019/089934
Other languages
English (en)
French (fr)
Inventor
夏建陵
丁海阳
李守海
许利娜
杨小华
李梅
Original Assignee
中国林业科学研究院林产化学工业研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国林业科学研究院林产化学工业研究所 filed Critical 中国林业科学研究院林产化学工业研究所
Priority to JP2020509510A priority Critical patent/JP6813230B2/ja
Publication of WO2019233399A1 publication Critical patent/WO2019233399A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/6584Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms having one phosphorus atom as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/12Polysaccharides, e.g. cellulose, biopolymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/64Environmental friendly compositions

Definitions

  • the invention belongs to the field of lubricants, and particularly relates to a method for preparing a green and environment-friendly water-based lubricant.
  • Mineral oil-based lubricants are poorly biodegradable, and some are also ecologically toxic. With the continuous enhancement of human environmental awareness and environmental legislation, the environmental pollution caused by mineral oil-based lubricants has attracted more and more attention. Because water-based lubricants have the advantages of adapting to environmental protection requirements, wide resources, and low cost, they are the focus of current and future development of metalworking fluids and industrial equipment lubrication.
  • water-based lubricants have problems such as poor lubricity, stability, and corrosion resistance, and their use is limited.
  • the research of water-soluble lubricant additives with stable performance is the key to improve the performance of water-based lubricants and broaden their use.
  • most commercial water-based lubricants use mineral oil-based lubricant additives with poor biodegradability, as well as anti-rust agents and preservatives such as sodium nitrite and chromate that have carcinogenic effects on the human body. And the environment is more harmful. Therefore, it is of great significance to use renewable, biodegradable biomass resources for water-based lubricant additives.
  • the present invention provides a water-based lubricant and a preparation method thereof. effect.
  • a method for preparing a water-based lubricant which is obtained by the following steps in proportion: the first step, at a temperature of 100 to 120 ° C, accounts for 0.05% to 2% of the total mass of rubber seed oil and epichlorohydrin. Under the action of a quaternary ammonium salt catalyst, 1 mol of rubber seed oil and 6 to 10 mol of epichlorohydrin undergo an epoxy ring-opening reaction for 1 to 3 hours; at 50 to 70 ° C, a ring-closing reaction occurs under the action of 1 mol of sodium hydroxide and 10 g of calcium oxide.
  • An aqueous solution with a mass concentration of 2%, the rubber seed oil-based extreme pressure alcohol or rubber seed oil-based extreme pressure ether obtained in the third step is dissolved in a cellulose derivative aqueous solution at a mass concentration of 0.5% to 2.0%, and the hydrogen bonds are used for each other.
  • the effect is to obtain a stable green environmental protection water-based lubricant.
  • the quaternary ammonium salt catalyst in the first step is benzyltriethylammonium chloride.
  • the alcohol amine compound in the second step is ethanolamine or diethanolamine.
  • the phosphoryl chloride compound in the third step is phenoxyphosphoryl dichloride or pyrophosphoryl chloride.
  • the alcohol is triethylene glycol, tripropylene glycol, or polyethylene glycol 200
  • the ether is diethylene glycol ether or triethylene glycol monomethyl ether.
  • the cellulose derivative in the fourth step is at least one of hydroxyethyl cellulose, hydroxypropyl methyl cellulose or hydroxypropyl cellulose.
  • the inert organic solvent in the second and third steps is at least one of N, N-dimethylformamide, toluene, dichloromethane, tetrahydrofuran, acetone, and ethyl acetate.
  • the green and environment-friendly water-based lubricant prepared by applying the method of the present invention improve the performance and value of traditional products of biomass resources, and expand health Research direction of material resource industry chain.
  • the green and environmentally friendly water-based lubricant prepared by applying the method of the present invention has fatty acid segments, hydrophilic groups and ether bonds in the molecular structure, and contains extreme pressure phosphorus element, which has lubricity, environmental protection and extreme pressure resistance. Grind multiple effects.
  • Green environmental protection water-based lubricant has the characteristics of mild reaction conditions and simple process.
  • FIG. 1 is an infrared spectrum of a method for preparing a green environmentally friendly water-based lubricant.
  • the rubber seed oil-based extreme pressure alcohol obtained in the third step was dissolved in an aqueous solution of hydroxyethyl cellulose with a concentration of 2.0% by mass at a concentration of 2.0%, and a stable green environmental-friendly water-based solution was obtained by using hydrogen bonding interactions.
  • Lubricant The friction coefficient of the obtained water-based lubricant film was 0.048, and the maximum non-seizure load (extreme pressure value) was 950N.
  • the infrared spectrum of the rubber seed oil-based extreme-pressure alcohol prepared in this example is shown in Figure 1: the spectrum of the fatty acid in rubber seed oil at 1707 cm -1 is the characteristic peak of carboxyl group; in the rubber seed oil-based epoxy curve , at 1707 cm -1 absorption peak disappeared at 1738 cm -1 910 cm -1 appeared ⁇ the ester group and an epoxy group characteristic peaks characteristic peaks, an unsaturated double bond appeared at 1638 cm -1 absorption peak, described rubber seed oil fatty acids with epichlorohydrin undergone ring-opening closure reaction; oil-based polyol in the rubber curve amine, wherein the epoxy group peak (910 cm -1) disappears and a hydroxyl group and an amide at 3356 and 1621cm -1, respectively, Based on the characteristic absorption peak, it indicates that the alcohol amine compound has undergone a ring-opening reaction with the rubber seed oil-based epoxy to generate a rubber seed oil-based polyol amine.
  • the rubber seed oil-based extreme pressure alcohol obtained in the third step was dissolved in an aqueous solution of hydroxyethyl cellulose with a concentration of 0.5% by mass at a concentration of 0.5%, and a stable green environmental-friendly water-based solution was obtained by using hydrogen bonding interactions.
  • Lubricant The friction coefficient of the obtained water-based lubricant film was 0.091, and the maximum non-seizure load (extreme pressure value) was 480N.
  • step (1) In a 500 mL three-necked flask equipped with a heating jacket, a stirring device, and a thermometer, add 1 mol of rubber seed oil-based epoxy and 1 mol of ethanolamine obtained in step (1), and react at 60 ° C for 5 hours; then, reduce the pressure to -0.1 to -0.09 MPa, The solvent toluene was distilled off to obtain a rubber seed oil-based polyol amine;
  • the rubber seed oil-based extreme-pressure alcohol obtained in the third step was dissolved in an aqueous solution of 2% by mass of hydroxyethyl cellulose at a concentration of 1.0% by mass, and a stable green environmental-friendly water-based solution was obtained by using hydrogen bonding interactions.
  • Lubricant The friction coefficient of the obtained water-based lubricant film was 0.075, and the maximum non-seizure load (extreme pressure value) was 740N.
  • the rubber seed oil-based extreme pressure ether obtained in the third step was dissolved in an aqueous solution of hydroxyethyl cellulose with a concentration of 0.5% by mass at a concentration of 0.5%, and a stable green environmental-friendly water-based solution was obtained by using hydrogen bonding interactions.
  • Lubricant The friction coefficient of the obtained water-based lubricant film was 0.087, and the maximum non-seizure load (extreme pressure value) was 560N.
  • the rubber seed oil-based extreme pressure ether obtained in the third step was dissolved in an aqueous solution of hydroxyethyl cellulose with a concentration of 2.0% by mass at a concentration of 2.0%, and a stable green environment-friendly water-based solution was obtained by using hydrogen bonding interactions.
  • Lubricant The friction coefficient of the obtained water-based lubricant film was 0.062, and the maximum no-seize load (extreme pressure value) was 870N.
  • step (1) In a 500 mL three-necked flask equipped with a heating jacket, a stirring device, and a thermometer, add 1 mol of rubber seed oil-based epoxy and 1 mol of ethanolamine obtained in step (1), and react at 90 ° C for 2 hours; then, reduce the pressure to -0.1 to -0.09 MPa, The solvent toluene was distilled off to obtain a rubber seed oil-based polyol amine;
  • the rubber seed oil-based extreme pressure alcohol obtained in the third step was dissolved in an aqueous solution of hydroxyethyl cellulose with a concentration of 2.0% by mass at a concentration of 2.0%, and a stable green environmental-friendly water-based solution was obtained by using hydrogen bonding interactions.
  • Lubricant The friction coefficient of the obtained water-based lubricant film was 0.053, and the maximum no-seizure load (extreme pressure value) was 910N.
  • the rubber seed oil-based extreme pressure ether obtained in the third step was dissolved in an aqueous solution of hydroxyethyl cellulose with a concentration of 0.5% by mass at a concentration of 0.5%, and a stable green environmental-friendly water-based solution was obtained by using hydrogen bonding interactions.
  • Lubricant The friction coefficient of the obtained water-based lubricant film was 0.082, and the maximum non-seizure load (extreme pressure value) was 521N.
  • the rubber seed oil-based extreme-pressure alcohol obtained in the third step was dissolved in an aqueous solution of 2% by mass of hydroxyethyl cellulose at a concentration of 1.0% by mass, and a stable green environmental-friendly water-based solution was obtained by using hydrogen bonding interactions.
  • Lubricant The friction coefficient of the obtained water-based lubricant film was 0.073, and the maximum non-seizure load (extreme pressure value) was 700N.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Lubricants (AREA)
  • Polyethers (AREA)
  • Epoxy Resins (AREA)

Abstract

一种水基润滑剂及其制备方法,橡胶籽油与环氧氯丙烷进行环氧开环反应;氢氧化钠和氧化钙的作用下发生闭环反应,得橡胶籽油基环氧;将第一步所得橡胶籽油基环氧与醇胺化合物在惰性有机溶剂中开环反应;即得橡胶籽油基多元醇胺;将醇或醇醚与橡胶籽油基多元醇胺和磷酰氯化合物在惰性有机溶剂中酯化反应;得橡胶籽油基极压醇或橡胶籽油基极压醚;将橡胶籽油基极压醇或橡胶籽油基极压醚溶于纤维素衍生物水溶液中,利用氢键的相互作用即得稳定的绿色环保水基润滑剂。该水基润滑剂,兼有润滑性、环保和极压抗磨多重效果。

Description

一种水基润滑剂及其制备方法 技术领域
本发明属于润滑剂领域,具体涉及一种绿色环保水基润滑剂的制备方法。
背景技术
矿物油基润滑剂的生物降解性差,某些还具有生态毒性,随着人类环保意识和环保立法的不断增强,矿物油基润滑剂造成的环境污染问题越来越受到人们的关注。由于水基润滑剂具有适应环保要求、资源广阔及成本低廉等优点,是金属加工液及工业设备润滑当前和今后发展的重点。
目前水基润滑剂存在润滑性、稳定性、抗腐蚀性差等问题,使用受到限制。研究性能稳定的水溶性润滑添加剂是提高水基润滑剂性能和拓宽其使用范围的关键。但多数商品水基润滑液采用生物降解性能差的矿物油基润滑添加剂以及对人体有致癌作用的亚硝酸钠和铬酸盐等防锈剂和防腐剂,不仅其废液难以处理,并且对人类和环境有较大危害。因此,将可再生、生物降解性好的生物质资源用于水性润滑添加剂具有重要的意义。
利用来源丰富、可再生的木本油脂橡胶籽油和纤维素衍生物的特殊结构特征,将亲水基团和极压元素磷引入到橡胶籽油分子结构中,制备橡胶籽油基极压醇(醚),并分散于水/纤维素衍生物混合液中,制备绿色环保水基润滑剂,有利于提升生物质资源传统产品性能和价值,拓展生物质资源产业链的研究方向。因此研究绿色环保水基润滑剂具有重要的价值。
发明内容
解决的技术问题:为了解决传统极压润滑剂存在原料匮乏、环境污染、耐磨性差等问题,本发明提供了一种水基润滑剂及其制备方法,兼有环保、极压抗磨的双重效果。
技术方案:一种水基润滑剂的制备方法,按比例,由以下步骤制得:第一步,于100~120℃,在占橡胶籽油与环氧氯丙烷总质量0.05%~2%的季铵盐催化剂作用下,1mol橡胶籽油与6~10mol环氧氯丙烷进行环氧开环反应1~3h;于50~70℃,在1mol氢氧化钠和10g氧化钙的作用下发生闭环反应3~5h,经过滤氯化钠、减压蒸出多余的环氧氯丙烷,得橡胶籽油基环氧;第二步,于60~90℃,将第一步所得1mol橡胶籽油基环氧与1mol醇胺化合物在惰性有机溶剂中开环反应2~5h;然后减压蒸除惰性有机溶剂,即得橡胶籽油基多元醇胺;第三 步,于25℃,将1mol醇或醇醚与第二步所得1mol橡胶籽油基多元醇胺和1mol磷酰氯化合物在惰性有机溶剂中酯化反应10~15h;经过滤氯化钠、减压蒸出惰性有机溶剂,得橡胶籽油基极压醇或橡胶籽油基极压醚;第四步,于25℃,配制纤维素衍生物的质量浓度为2%的水溶液,将第三步所得橡胶籽油基极压醇或橡胶籽油基极压醚按质量浓度0.5%~2.0%溶于纤维素衍生物水溶液中,利用氢键的相互作用即得稳定的绿色环保水基润滑剂。
优选的,第一步中所述季铵盐催化剂为苄基三乙基氯化铵。
优选的,第二步中所述醇胺化合物为乙醇胺或二乙醇胺。
优选的,第三步中所述磷酰氯化合物为苯氧基磷酰二氯或焦磷酰氯。
优选的,第三步中所述醇为三乙二醇、三丙二醇或聚乙二醇200,所述醚为二乙二醇乙醚或三乙二醇单甲醚。
优选的,第四步中所述纤维素衍生物是羟乙基纤维素、羟丙基甲基纤维素或羟丙基纤维素中的至少一种。
优选的,第二步和第三步中所述惰性有机溶剂为N,N-二甲基甲酰胺、甲苯、二氯甲烷、四氢呋喃、丙酮、乙酸乙酯中的至少一种。
上述方法制得的水基润滑剂。
有益效果:1、应用本发明的方法制得的绿色环保水基润滑剂,其原料为可再生的木本油脂橡胶籽油和纤维素衍生物,提升生物质资源传统产品性能和价值,拓展生物质资源产业链的研究方向。2、应用本发明的方法制得的绿色环保水基润滑剂,其分子结构中具有脂肪酸链段、亲水基团醚键,又含有极压磷元素,兼有润滑性、环保和极压抗磨多重效果。3、绿色环保水基润滑剂具有反应条件温和、工艺简单的特点。
附图说明
图1为绿色环保水基润滑剂制备方法的红外光谱谱图。
具体实施方式
实施例1
(一)橡胶籽油基环氧的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,加入橡胶籽油1mol、环氧氯丙烷10mol,及占橡胶籽油与环氧氯丙烷总质量0.05%的苄基三乙基氯化铵为催化剂,升温至120℃,反应2h;50℃,在1mol氢氧化钠和10g氧化钙的作用下发生闭环反应4h,经过滤氯化钠、减压蒸出多余的环氧氯丙烷,得橡胶籽油基环氧。
(二)橡胶籽油基多元醇胺的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,加入步骤(一)所得橡胶籽油基环氧1mol和二乙醇胺1mol,在90℃反应2h;然后减压到-0.1~-0.09MPa,蒸除溶剂乙酸乙酯,即得橡胶籽油基多元醇胺;
(三)橡胶籽油基极压醇的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,将第二步所得橡胶籽油基多元醇胺1mol与苯氧基磷酰二氯1mol、三乙二醇1mol在二氯甲烷中酯化反应12h;经过滤氯化钠、减压蒸出二氯甲烷,得橡胶籽油基极压醇。
(四)绿色环保水基润滑剂的制备
25℃,将第三步所得橡胶籽油基极压醇按质量浓度2.0%溶于羟乙基纤维素质量浓度为2%的水溶液中,利用氢键的相互作用即得稳定的绿色环保水基润滑剂。制备所得的水基润滑剂膜摩擦系数为0.048,最大无卡咬负荷(极压值)为950N。
本实施例制备的橡胶籽油基极压醇,其红外光谱图如1所示:谱图中橡胶籽油中脂肪酸曲线中1707cm -1处为羧基特征峰;在橡胶籽油基环氧曲线中,1707cm -1处吸收峰消失,1738cm -1﹑910cm -1处分别出现了酯基特征峰和环氧基特征峰,在1638cm -1处出现了不饱和双键吸收峰,说明橡胶籽油中脂肪酸与环氧氯丙烷发生了开环闭环反应;在橡胶籽油基多元醇胺曲线中,环氧基团特征峰(910cm -1处)消失,在3356和1621cm -1处分别出现羟基和酰胺基特征吸收峰,说明醇胺化合物与橡胶籽油基环氧发生了开环反应,生成了橡胶籽油基多元醇胺;在橡胶籽油基极压醇曲线中,3356cm -1处羟基吸收峰消失,1250~930cm -1处出现了P-O-C吸收峰,说明橡胶籽油基多元醇胺与酰氯化合物、醇发生了酯化反应,证明橡胶籽油基极压醇合成成功。以下实施例制备的产物具有与实施例1的红外光谱类似,不再具体描述。
实施例2
(一)橡胶籽油基环氧的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,加入橡胶籽油1mol、环氧氯丙烷8mol,及占橡胶籽油与环氧氯丙烷总质量1%的苄基三乙基氯化铵为催化剂,升温至100℃,反应3h;70℃,在氢氧化钠1mol和氧化钙10g的作用下发生闭环反应3h,经过滤氯化钠、减压蒸出多余的环氧氯丙烷,得橡胶籽油基环氧。
(二)橡胶籽油基多元醇胺的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,加入步骤(一)所得橡胶籽油基环氧1mol和二乙醇胺1mol,在70℃反应5h;然后减压到-0.1~-0.09MPa,蒸除溶剂N,N- 二甲基甲酰胺,即得橡胶籽油基多元醇胺;
(三)橡胶籽油基极压醇的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,将第二步所得橡胶籽油基多元醇胺1mol与焦磷酰氯1mol、三丙二醇1mol在四氢呋喃中酯化反应10h;经过滤氯化钠、减压蒸出四氢呋喃,得橡胶籽油基极压醇。
(四)绿色环保水基润滑剂的制备
25℃,将第三步所得橡胶籽油基极压醇按质量浓度0.5%溶于羟乙基纤维素质量浓度为2%的水溶液中,利用氢键的相互作用即得稳定的绿色环保水基润滑剂。制备所得的水基润滑剂膜摩擦系数为0.091,最大无卡咬负荷(极压值)为480N。
实施例3
(一)橡胶籽油基环氧的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,加入橡胶籽油1mol、环氧氯丙烷6mol,及占橡胶籽油与环氧氯丙烷总质量2%的苄基三乙基氯化铵为催化剂,升温至110℃,反应1h;60℃,在氢氧化钠1mol和氧化钙10g的作用下发生闭环反应5h,经过滤氯化钠、减压蒸出多余的环氧氯丙烷,得橡胶籽油基环氧。
(二)橡胶籽油基多元醇胺的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,加入步骤(一)所得橡胶籽油基环氧1mol和乙醇胺1mol,在60℃反应5h;然后减压到-0.1~-0.09MPa,蒸除溶剂甲苯,即得橡胶籽油基多元醇胺;
(三)橡胶籽油基极压醇的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,将第二步所得橡胶籽油基多元醇胺1mol与焦磷酰氯1mol、聚乙二醇200 1mol在丙酮中酯化反应15h;经过滤氯化钠、减压蒸出丙酮,得橡胶籽油基极压醇。
(四)绿色环保水基润滑剂的制备
25℃,将第三步所得橡胶籽油基极压醇按质量浓度1.0%溶于羟乙基纤维素质量浓度为2%的水溶液中,利用氢键的相互作用即得稳定的绿色环保水基润滑剂。制备所得的水基润滑剂膜摩擦系数为0.075,最大无卡咬负荷(极压值)为740N。
实施例4
(一)橡胶籽油基环氧的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,加入橡胶籽油1mol、环氧氯丙烷7mol,及占橡胶籽油与环氧氯丙烷总质量0.05%的苄基三乙基氯化铵为催化剂,升温至110℃,反应3h;70℃,在氢氧化钠1mol和氧化钙10g的作用下发生闭环反应5h,经过滤氯化钠、减压蒸出多余的环氧氯丙烷,得橡胶籽油基环氧。
(二)橡胶籽油基多元醇胺的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,加入步骤(一)所得橡胶籽油基环氧1mol和二乙醇胺1mol,在80℃反应3h;然后减压到-0.1~-0.09MPa,蒸除溶剂甲苯,即得橡胶籽油基多元醇胺;
(三)橡胶籽油基极压醚的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,将第二步所得橡胶籽油基多元醇胺1mol与苯氧基磷酰二氯1mol、二乙二醇乙醚1mol在二氯甲烷中酯化反应11h;经过滤氯化钠、减压蒸出二氯甲烷,得橡胶籽油基极压醚。
(四)绿色环保水基润滑剂的制备
25℃,将第三步所得橡胶籽油基极压醚按质量浓度0.5%溶于羟乙基纤维素质量浓度为2%的水溶液中,利用氢键的相互作用即得稳定的绿色环保水基润滑剂。制备所得的水基润滑剂膜摩擦系数为0.087,最大无卡咬负荷(极压值)为560N。
实施例5
(一)橡胶籽油基环氧的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,加入橡胶籽油1mol、环氧氯丙烷9mol,及占橡胶籽油与环氧氯丙烷总质量2%的苄基三乙基氯化铵为催化剂,升温至120℃,反应2h;60℃,在氢氧化钠1mol和氧化钙10g的作用下发生闭环反应4h,经过滤氯化钠、减压蒸出多余的环氧氯丙烷,得橡胶籽油基环氧。
(二)橡胶籽油基多元醇胺的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,加入步骤(一)所得橡胶籽油基环氧1mol和二乙醇胺1mol,在70℃反应4h;然后减压到-0.1~-0.09MPa,蒸除溶剂乙酸乙酯,即得橡胶籽油基多元醇胺;
(三)橡胶籽油基极压醚的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,将第二步所得橡胶籽油基多元醇胺1mol与苯氧基磷酰二氯1mol、三乙二醇单甲醚1mol在四氢呋喃中酯化反应14h;经过滤氯化钠、减压蒸出四氢呋喃,得橡胶籽油基极压醚。
(四)绿色环保水基润滑剂的制备
25℃,将第三步所得橡胶籽油基极压醚按质量浓度2.0%溶于羟乙基纤维素质量浓度为2%的水溶液中,利用氢键的相互作用即得稳定的绿色环保水基润滑剂。制备所得的水基润滑剂膜摩擦系数为0.062,最大无卡咬负荷(极压值)为870N。
实施例6
(一)橡胶籽油基环氧的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,加入橡胶籽油1mol、环氧氯丙烷10mol,及占橡胶籽油与环氧氯丙烷总质量1%的苄基三乙基氯化铵为催化剂,升温至100℃,反应1h;50℃,在氢氧化钠1mol和氧化钙10g的作用下发生闭环反应3h,经过滤氯化钠、减压蒸出多余的环氧氯丙烷,得橡胶籽油基环氧。
(二)橡胶籽油基多元醇胺的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,加入步骤(一)所得橡胶籽油基环氧1mol和乙醇胺1mol,在90℃反应2h;然后减压到-0.1~-0.09MPa,蒸除溶剂甲苯,即得橡胶籽油基多元醇胺;
(三)橡胶籽油基极压醇的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,将第二步所得橡胶籽油基多元醇胺1mol与焦磷酰氯1mol、三乙二醇1mol在二氯甲烷中酯化反应13h;经过滤氯化钠、减压蒸出二氯甲烷,得橡胶籽油基极压醇。
(四)绿色环保水基润滑剂的制备
25℃,将第三步所得橡胶籽油基极压醇按质量浓度2.0%溶于羟乙基纤维素质量浓度为2%的水溶液中,利用氢键的相互作用即得稳定的绿色环保水基润滑剂。制备所得的水基润滑剂膜摩擦系数为0.053,最大无卡咬负荷(极压值)为910N。
实施例7
(一)橡胶籽油基环氧的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,加入橡胶籽油1mol、环氧氯丙烷8mol,及占橡胶籽油与环氧氯丙烷总质量1%的苄基三乙基氯化铵为催化剂,升温至110℃,反应2h;60℃,在氢氧化钠1mol和氧化钙10g的作用下发生闭环反应5h,经过滤氯化钠、减压蒸出多余的环氧氯丙烷,得橡胶籽油基环氧。
(二)橡胶籽油基多元醇胺的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,加入步骤(一)所得橡胶籽油基环氧1mol和二乙醇胺1mol,在80℃反应2h;然后减压到-0.1~-0.09MPa,蒸除溶剂N,N-二甲基甲酰胺,即得橡胶籽油基多元醇胺;
(三)橡胶籽油基极压醚的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,将第二步所得橡胶籽油基多元醇胺1mol与苯氧基磷酰二氯1mol、三乙二醇单甲醚1mol在丙酮中酯化反应12h;经过滤氯化钠、减压蒸出丙酮,得橡胶籽油基极压醚。
(四)绿色环保水基润滑剂的制备
25℃,将第三步所得橡胶籽油基极压醚按质量浓度0.5%溶于羟乙基纤维素质量浓度为2%的水溶液中,利用氢键的相互作用即得稳定的绿色环保水基润滑剂。制备所得的水基润滑剂膜摩擦系数为0.082,最大无卡咬负荷(极压值)为521N。
实施例8
(一)橡胶籽油基环氧的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,加入橡胶籽油1mol、环氧氯丙烷10mol,及占橡胶籽油与环氧氯丙烷总质量0.05%的苄基三乙基氯化铵为催化剂,升温至100℃,反应1h;50℃,在氢氧化钠1mol和氧化钙10g的作用下发生闭环反应3h,经过滤氯化钠、减压蒸出多余的环氧氯丙烷,得橡胶籽油基环氧。
(二)橡胶籽油基多元醇胺的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,加入步骤(一)所得橡胶籽油基环氧1mol和二乙醇胺1mol,在70℃反应4h;然后减压到-0.1~-0.09MPa,蒸除溶剂乙酸乙酯,即得橡胶籽油基多元醇胺;
(三)橡胶籽油基极压醇的制备
在装有加热套、搅拌装置、温度计的500mL三口烧瓶中,将第二步所得橡胶籽油基多元醇胺1mol与焦磷酰氯1mol、三丙二醇1mol在乙酸乙酯中酯化反应15h;经过滤氯化钠、减压蒸出乙酸乙酯,得橡胶籽油基极压醇。
(四)绿色环保水基润滑剂的制备
25℃,将第三步所得橡胶籽油基极压醇按质量浓度1.0%溶于羟乙基纤维素质量浓度为2%的水溶液中,利用氢键的相互作用即得稳定的绿色环保水基润滑剂。制备所得的水基润滑剂膜摩擦系数为0.073,最大无卡咬负荷(极压值)为700N。

Claims (8)

  1. 一种水基润滑剂的制备方法,其特征在于按比例,由以下步骤制得:
    第一步,于100~120℃,在占橡胶籽油与环氧氯丙烷总质量0.05%~2%的季铵盐催化剂作用下,1mol橡胶籽油与6~10mol环氧氯丙烷进行环氧开环反应1~3h;于50~70℃,在1mol氢氧化钠和10g氧化钙的作用下发生闭环反应3~5h,经过滤氯化钠、减压蒸出多余的环氧氯丙烷,得橡胶籽油基环氧;
    第二步,于60~90℃,将第一步所得1mol橡胶籽油基环氧与1mol醇胺化合物在惰性有机溶剂中开环反应2~5h;然后减压蒸除惰性有机溶剂,即得橡胶籽油基多元醇胺;
    第三步,于25℃,将1mol醇或醇醚与第二步所得1mol橡胶籽油基多元醇胺和1mol磷酰氯化合物在惰性有机溶剂中酯化反应10~15h;经过滤氯化钠、减压蒸出惰性有机溶剂,得橡胶籽油基极压醇或橡胶籽油基极压醚;
    第四步,于25℃,配制纤维素衍生物的质量浓度为2%的水溶液,将第三步所得橡胶籽油基极压醇或橡胶籽油基极压醚按质量浓度0.5%~2.0%溶于纤维素衍生物水溶液中,利用氢键的相互作用即得稳定的绿色环保水基润滑剂。
  2. 根据权利要求1所述水基润滑剂的制备方法,其特征在于第一步中所述季铵盐催化剂为苄基三乙基氯化铵。
  3. 根据权利要求1所述水基润滑剂的制备方法,其特征在于第二步中所述醇胺化合物为乙醇胺或二乙醇胺。
  4. 根据权利要求1所述水基润滑剂的制备方法,其特征在于第三步中所述磷酰氯化合物为苯氧基磷酰二氯或焦磷酰氯。
  5. 根据权利要求1所述水基润滑剂的制备方法,其特征在于第三步中所述醇为三乙二醇、三丙二醇或聚乙二醇200,所述醚为二乙二醇乙醚或三乙二醇单甲醚。
  6. 根据权利要求1所述水基润滑剂的制备方法,其特征在于第四步中所述纤维素衍生物是羟乙基纤维素、羟丙基甲基纤维素或羟丙基纤维素中的至少一种。
  7. 根据权利要求1所述水基润滑剂的制备方法,其特征在于第二步和第三步中所述惰性有机溶剂为N,N-二甲基甲酰胺、甲苯、二氯甲烷、四氢呋喃、丙酮、乙酸乙酯中的至少一种。
  8. 权利要求1~7任一所述方法制得的水基润滑剂。
PCT/CN2019/089934 2018-06-07 2019-06-04 一种水基润滑剂及其制备方法 WO2019233399A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020509510A JP6813230B2 (ja) 2018-06-07 2019-06-04 水系潤滑剤及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810579040.4A CN108624381B (zh) 2018-06-07 2018-06-07 一种水基润滑剂及其制备方法
CN201810579040.4 2018-06-07

Publications (1)

Publication Number Publication Date
WO2019233399A1 true WO2019233399A1 (zh) 2019-12-12

Family

ID=63691065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089934 WO2019233399A1 (zh) 2018-06-07 2019-06-04 一种水基润滑剂及其制备方法

Country Status (3)

Country Link
JP (1) JP6813230B2 (zh)
CN (1) CN108624381B (zh)
WO (1) WO2019233399A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108624381B (zh) * 2018-06-07 2020-12-22 中国林业科学研究院林产化学工业研究所 一种水基润滑剂及其制备方法
CN111100329B (zh) * 2018-10-29 2021-08-17 奕益实业股份有限公司 供作为树脂滑剂的化合物、其制备方法及用途与树脂滑剂

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1944487A (zh) * 2006-09-26 2007-04-11 蓝星化工新材料股份有限公司无锡树脂厂 低有机氯含量的环氧树脂活性稀释剂的制备方法
CN101906016A (zh) * 2010-07-02 2010-12-08 西南林业大学 一种橡胶籽油多元醇及其制备方法
CN102875394A (zh) * 2012-10-16 2013-01-16 中国林业科学研究院林产化学工业研究所 一种腰果酚胺基多元醇及其制备方法
CN106554493A (zh) * 2015-09-29 2017-04-05 中国林业科学研究院林产化学工业研究所 一种蓖麻油酸基阻燃聚醚多元醇的制备方法
CN107353965A (zh) * 2016-12-26 2017-11-17 中国林业科学研究院林产化学工业研究所 一种蓖麻油基极压水性润滑添加剂的制备方法
CN107353234A (zh) * 2017-06-30 2017-11-17 中国林业科学研究院林产化学工业研究所 一种脂肪酸基极压水性润滑添加剂的制备方法
CN108624381A (zh) * 2018-06-07 2018-10-09 中国林业科学研究院林产化学工业研究所 一种水基润滑剂及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7217779B2 (en) * 2003-03-14 2007-05-15 Nalco Company Phosphoric ester demulsifier composition
CN100487094C (zh) * 2006-03-15 2009-05-13 中国石油化工股份有限公司 一种磷酰胺酯类极压抗磨剂及其制备和应用
CN101805369B (zh) * 2010-03-30 2012-10-03 东南大学 二硬脂酰磷酰乙醇胺及其氨基聚乙二醇化衍生物的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1944487A (zh) * 2006-09-26 2007-04-11 蓝星化工新材料股份有限公司无锡树脂厂 低有机氯含量的环氧树脂活性稀释剂的制备方法
CN101906016A (zh) * 2010-07-02 2010-12-08 西南林业大学 一种橡胶籽油多元醇及其制备方法
CN102875394A (zh) * 2012-10-16 2013-01-16 中国林业科学研究院林产化学工业研究所 一种腰果酚胺基多元醇及其制备方法
CN106554493A (zh) * 2015-09-29 2017-04-05 中国林业科学研究院林产化学工业研究所 一种蓖麻油酸基阻燃聚醚多元醇的制备方法
CN107353965A (zh) * 2016-12-26 2017-11-17 中国林业科学研究院林产化学工业研究所 一种蓖麻油基极压水性润滑添加剂的制备方法
CN107353234A (zh) * 2017-06-30 2017-11-17 中国林业科学研究院林产化学工业研究所 一种脂肪酸基极压水性润滑添加剂的制备方法
CN108624381A (zh) * 2018-06-07 2018-10-09 中国林业科学研究院林产化学工业研究所 一种水基润滑剂及其制备方法

Also Published As

Publication number Publication date
CN108624381B (zh) 2020-12-22
JP6813230B2 (ja) 2021-01-13
JP2020527190A (ja) 2020-09-03
CN108624381A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
WO2019233399A1 (zh) 一种水基润滑剂及其制备方法
CN103396865B (zh) 一种环境友好高抗磨润滑油及其制备方法
Hossain et al. Development of catalyst complexes for upgrading biomass into ester-based biolubricants for automotive applications: a review
CN102471715A (zh) 由不饱和脂肪酸衍生物合成生物润滑酯
CN111088091B (zh) 一种汽油机油组合物及其制备方法
JP2014517123A (ja) エストリド基油を含むグリース組成物
CN102732365B (zh) 一种功能化离子液体辅助增效的水性环保切削液及其制备方法
CA2685291C (en) Hydraulic fluids and fire-resistant fluids comprising glycerin containing by-products
Liu et al. Novel internal emulsifiers for high biocontent sustainable pressure sensitive adhesives
CN107353965B (zh) 一种蓖麻油基极压水性润滑添加剂的制备方法
CN107541307B (zh) 一种植物油基胺类抗氧化添加剂及其制备方法
CN103880658A (zh) 一种直接酯化合成季戊四醇油酸酯的方法
CN111056944B (zh) 一种酚酯类化合物及其制备方法、用途
CN109913300B (zh) 一种可生物降解的环保型润滑剂及其制备方法
KR101533580B1 (ko) 수용성 절삭유용 리시놀레익산 고윤활 첨가제 및 그 제조방법
KR101265478B1 (ko) 윤활성 향상제
CN113604288B (zh) 桐油基水性极压润滑添加剂及其制备方法
CN111088092A (zh) 一种重负荷柴油机油组合物及其制备方法
CN112707817B (zh) 一种酯类化合物及其制备方法、用途
Babi et al. Preparation and properties of bio-lubricants of neopentylglycol esters from various acids
Zhang Plant Oil-based Polyurethanes
Sarno et al. A Tribochemical Boost for Cu Based Lubricant Nano-Additive
CN110819430B (zh) 一种绿色环保型全合成金属切削液及其制备方法
CN111088097B (zh) 一种车辆齿轮油组合物及其制备方法
CN115322361A (zh) 一种植物油基聚醚多元醇的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815469

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509510

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815469

Country of ref document: EP

Kind code of ref document: A1