WO2019231295A1 - 전기구이판 - Google Patents

전기구이판 Download PDF

Info

Publication number
WO2019231295A1
WO2019231295A1 PCT/KR2019/006615 KR2019006615W WO2019231295A1 WO 2019231295 A1 WO2019231295 A1 WO 2019231295A1 KR 2019006615 W KR2019006615 W KR 2019006615W WO 2019231295 A1 WO2019231295 A1 WO 2019231295A1
Authority
WO
WIPO (PCT)
Prior art keywords
roasting plate
unit
heat generating
electric
electrode
Prior art date
Application number
PCT/KR2019/006615
Other languages
English (en)
French (fr)
Inventor
박한오
김재하
김준표
김지은
Original Assignee
(주)바이오니아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)바이오니아 filed Critical (주)바이오니아
Priority to US15/734,197 priority Critical patent/US20210168909A1/en
Priority to JP2020567034A priority patent/JP7261823B2/ja
Priority to EP19812553.6A priority patent/EP3804584A4/en
Priority to CN201980036851.2A priority patent/CN112203563B/zh
Publication of WO2019231295A1 publication Critical patent/WO2019231295A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J37/00Baking; Roasting; Grilling; Frying
    • A47J37/10Frying pans, e.g. frying pans with integrated lids or basting devices
    • A47J37/105Frying pans, e.g. frying pans with integrated lids or basting devices electrically heated
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/02Selection of specific materials, e.g. heavy bottoms with copper inlay or with insulating inlay
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/02Selection of specific materials, e.g. heavy bottoms with copper inlay or with insulating inlay
    • A47J36/04Selection of specific materials, e.g. heavy bottoms with copper inlay or with insulating inlay the materials being non-metallic
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J37/00Baking; Roasting; Grilling; Frying
    • A47J37/06Roasters; Grills; Sandwich grills
    • A47J37/067Horizontally disposed broiling griddles
    • A47J37/0676Horizontally disposed broiling griddles electrically heated
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J37/00Baking; Roasting; Grilling; Frying
    • A47J37/10Frying pans, e.g. frying pans with integrated lids or basting devices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/26Cellulose ethers
    • C09D101/28Alkyl ethers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/0252Domestic applications
    • H05B1/0258For cooking
    • H05B1/0261For cooking of food
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/007Heaters using a particular layout for the resistive material or resistive elements using multiple electrically connected resistive elements or resistive zones
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/016Heaters using particular connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/912Cookware, i.e. pots and pans

Definitions

  • the present invention relates to an electric roasting plate.
  • a gas range or a gas burner is commonly used as a device for cooking food or grilling meat at home or a restaurant.
  • Conventional heating device using this gas as energy has the advantage that the facility is well spread and easy to use fuel cost, but there is a limit to the use place because the gas piping facility is essential.
  • a device using gas as energy generates heat through direct combustion, there is a high risk of explosion or fire. Therefore, in recent years, a large number of heating devices using high-energy electric energy, such as electric roasting plates, are widely used in homes. There is a trend.
  • An electric roasting plate belongs to an electric heater that generates heat by receiving electric energy.
  • An electric heater typically has a heat transfer unit for generating heat by using electrical energy inside the main body, and a baking plate such as a metal plate or a stone plate is provided on the upper portion of the electric heater so that the heat of the heat transfer portion is transferred to the roasting plate on the upper portion.
  • Such an electric roasting plate can be used anywhere where only electric facilities are provided, and it is relatively very popular compared to gas piping facilities, and there is an advantage that there is almost no restriction on the use place. In addition, it is relatively high in safety and excellent in ease of use compared to a device using gas. Nevertheless, the use of electric roasting plate is significantly lower than the gas-based apparatus, which is mainly due to the deterioration of the cooking quality due to the relatively low thermal power.
  • the conventional electric roasting plate is provided with a heating plate at a predetermined distance spaced below the roasting plate and the roasting plate is usually a thick bulge plate of stone or metal material.
  • the heat transfer part used at this time is called a heating wire, and is arrange
  • the conventional electric roasting plate in which such a heating wire is used has a problem that heat energy applied to the roasting plate is not evenly transmitted.
  • there is a space formed between the roasting plate and the heating wire there is a problem that the heat loss is large due to the area that is not directly applied to the roasting plate. Due to these problems, the conventional electric roasting plate in which a heating wire is used has a slower heating rate than a device using a gas, and thus, the preheating time takes longer to cook at an appropriate temperature, and thus the cooking quality of the food is very poor.
  • An object of the present invention is to overcome the above-mentioned conventional problems, to provide an electric roasting plate having excellent thermal efficiency, fast reaction time to reach a target temperature, shortening preheating time and excellent cooking quality.
  • An electric roasting plate is an electric roasting plate including a roasting plate, a heat generating layer in contact with the roasting plate and an electrode in contact with the heat generating layer, wherein the heat generating layer is formed of a heat generating composition comprising a carbon nanotube and a silicon-based adhesive. .
  • the electrode may include a plurality of unit electrode pairs consisting of a positive electrode and a negative electrode, the unit electrode pairs may be spaced apart from each other.
  • the heat generating layer may include a unit heat generating region surface whose temperature is controlled differently by the unit electrode pairs, the other surface of the baking plate in contact with the heat generating layer corresponds to the unit heat generating region surface. It may include a plurality of unit roasting plate area surface, the temperature may be controlled independently of the unit roasting plate area surface.
  • the electric roasting plate according to an embodiment of the present invention may further include a temperature sensor in contact with the roasting plate or the heating layer.
  • the electric roasting plate according to an embodiment of the present invention may further include a plurality of temperature sensors contacting the unit heating region surfaces or the unit roasting plate region surfaces, and the temperature of the unit roasting plate region surface is independent through the temperature sensor. Can be controlled.
  • the unit heat generating region surfaces may have different compositions or composition ratios from each other, and the temperature of the unit heat generating region surfaces may be independently controlled by the composition or composition ratio difference.
  • the electric roasting plate according to an embodiment of the present invention may further include a temperature sensor in contact with the roasting plate or the heating layer.
  • the electric roasting plate according to an embodiment of the present invention may further include a power supply unit for independently applying power to the unit electrode pairs.
  • the power supply may be to apply a voltage of 5 to 240V to the heating layer.
  • the average thickness of the heating layer may be 10 ⁇ m to 2 mm.
  • the average thickness of the roasting plate may be 5 to 50 mm.
  • the heating composition is applied to cover the electrode.
  • the heat generating composition may be applied to one surface of the baking plate to form a heat generating layer.
  • the exothermic composition may further include a binder.
  • the exothermic composition is 1 to 50% by weight of carbon nanotubes, 1 to 30% by weight of the silicon-based adhesive, 1 to 20% by weight of the binder, 1 to 20% by weight of the dispersant and 1 to 90% by weight of the organic solvent. May contain%.
  • the binder may include any one or more organic binders selected from ethyl cellulose, nitrocellulose and the like, wherein the dispersing agent is a phosphorus ester salt of an amino-containing oligomer or polymer; Monoesters or diesters of phosphoric acid; Acidic dicarboxylic acid monoesters; Polyurethane-polyamine adducts; And polyalkoxylated monoamines or diamines; It may include any one or two or more selected from, and the organic solvent is acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethylformamide Dimethylacetamide, N-methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, dichlorobenzene, dimethylbenzene, trimethyl
  • Electric roasting plate according to the present invention is excellent in thermal efficiency by minimizing heat loss, the reaction time to reach the target temperature is fast, the preheating time is shortened and the cooking quality is excellent effect.
  • the electric roasting plate according to the present invention can substantially prevent the temperature deviation caused by the area of the roasting plate when the temperature rises, and has an effect of high durability and safety.
  • Example 1 is an actual image of the electric roasting plate prepared in Example 1.
  • Figure 2 is a thermal image of the electric grill plate prepared in Example 1 observed with a thermal imaging camera.
  • Figure 3 is a graph showing the temperature change of the roasting plate with time at each voltage of the electric roasting plate prepared in Example 1.
  • Figure 4 is a graph showing the temperature change of the roasting plate with time at each voltage change of the electric roasting plate prepared in Example 1.
  • Example 5 is a graph showing the temperature change rate of the roasting plate according to the thickness of the roasting plate of the electric roasting plate prepared in Example 1 and Example 2 at the same applied voltage.
  • Figure 6 is a graph showing the temperature change of the roasting plate over time at the same applied voltage of the electric roasting plate using a conventional heating wire as a control for the electric roasting plates prepared in Examples 1 and 2.
  • FIG. 7 is a perspective view showing an electric roasting plate according to an embodiment of the present invention, a perspective view when the lower portion of the electric roasting plate viewed from the lower side, that is, a perspective view when the other surface of the roasting plate is in contact with the heating layer is visible.
  • FIG 8 to 10 is a view showing a lower side of the electric grill plate, that is, a view from the lower side of the electric grill plate according to an embodiment of the present invention, the heating plate and the roasting plate on which the electrode is located.
  • FIG. 11 is a view showing the top surface of the electric roasting plate accommodated in the food roasting object according to an embodiment of the present invention, the top of the roasting plate viewed from above.
  • unit of% means weight% unless otherwise defined.
  • the term “layer”, “plate” or “film” means that each material is a continuum and has a dimension that is relatively small in width to length. Accordingly, in the present specification, the term should not be interpreted as a flat plane in two dimensions.
  • Electric roasting plate is a roasting plate; A heat generating layer in surface contact with the roasting plate; And an electrode in contact with the heat generating layer, wherein the heat generating layer is formed of a heat generating composition including carbon nanotubes and a silicon-based adhesive.
  • the electric roasting plate according to the present invention includes a roasting plate 10 which is in surface contact with a heat generating layer 20 formed of a heat generating composition including a carbon nanotube and a silicon-based adhesive, thereby minimizing heat loss, thereby achieving excellent thermal efficiency, and a target.
  • the reaction time to reach the temperature is fast to increase the temperature of the object to be transferred thermal energy.
  • the other surface of the roasting plate 10 which the heat generating layer 20 is in surface contact includes a region in which an object to which thermal energy is to be transferred is contacted and received.
  • the 'subject' is not limited as long as it is to be heat treated using an electric roasting plate, and may mean, for example, a food material.
  • the other surface of the baking plate 10 in contact with the heating layer may have a region surface that can be adjusted to different temperatures, so that a plurality of objects positioned on the region surfaces may be applied with different values of thermal energy.
  • the electrode 30 may include a plurality of unit electrode pairs 31, 32, 33, and 34 configured as a positive electrode and a negative electrode, and the unit electrode pairs 31, 32, 33, and 34 While contacting the surface of the baking plate 10 may be spaced apart from each other. In this case, by applying different amounts of power (voltage) to the unit electrode pairs 31, 32, 33, and 34 spaced apart from each other, the unit electrode pairs 31, 32, 33, and 34 are interposed between the heat generating layers 20.
  • the heat generating layer 20 may include a plurality of unit heat generating area surfaces which may have different temperatures. That is, the heat generating layer 20 may include unit heat generating region surfaces that may have different temperatures by controlling temperature differently by the unit electrode pairs 31, 32, 33, and 34. In this case, the unit heat generating region surfaces may have temperature deviations from each other, and the unit heat generating region surfaces corresponding to the heat generating layer 20 may be substantially the same material, or different materials having different compositions or composition ratios.
  • the unit heat generating region surfaces are different materials having different compositions or composition ratios, they may be adjacent to each other, that is, spaced apart from each other, or may be integral with each other, but may be integral in terms of manufacturing efficiency, but is not limited thereto. Of course.
  • the region located between the positive electrode and the negative electrode and the heating layer 20 including the same is generated by the voltage applied to the positive electrode and the negative electrode, wherein the region is It may mean the unit heat generating region surface described above. Accordingly, by adjusting the separation distance between the electrode pairs 31, 32, 33, and 34, the formation position and size of the unit heating region surfaces may be adjusted.
  • the other surface of the roasting plate 10 in contact with the heat generating layer may include a plurality of unit roasting plate area surfaces corresponding to the unit heat generating area surfaces. At this time, the plurality of unit roasting plate area surfaces may be partitioned or may not be partitioned. As described above, as the unit heat generating region surface is independently capable of temperature control, the roasting plate 10 to which thermal energy is transmitted may include the unit roasting plate region surface at which temperature is independently controlled. It is preferable that the unit baking sheet region surfaces are made of the same material, but it is also possible that the unit roasting plate areas are not the same material.
  • the other surface of the roasting plate 10 which the heat generating layer 20 is in surface contact may have a unit roasting plate area surface at a position corresponding to the unit heat generating area surfaces. That is, the roasting plate 10 may include a plurality of unit roasting plate area surfaces, and the unit roasting plate area surfaces may be temperature controlled independently of each other.
  • the heating layer 20 may include a first unit heating region surface to an n-th unit heating region surface
  • the roasting plate 10 may include a first unit grilling plate region surface to an n-th unit grilling plate region surface.
  • N is a natural number of two or more.
  • the first unit roasting plate area surface is a vegetable
  • the second unit roasting plate area surface is a seafood
  • the third unit roasting plate area surface is a meat
  • a fourth unit As an example of using the roasting plate area surface for the purpose of a source, etc., an electric roasting plate having unit roasting plate area surfaces partitioned according to the type of object can be provided.
  • the use described above is not only limited to the use, but is described as a preferred example, and various kinds of objects may be accommodated in each unit roasting plate surface.
  • one or more kinds of objects may be accommodated in each unit roasting plate area surface, for example, two or more objects may be accommodated in each unit roasting plate area surface.
  • a large food object may be accommodated in a large area area including two or more unit roasting plate area surfaces.
  • a step is formed between the two or more unit roasting plate area surfaces in the form of protrusions or depressions, the same effect as that of the food object is baked on the grill may be provided.
  • the narrower the width of the partition line can be improved the effect, such as baked food object on the grill.
  • the unit roasting plate area surfaces may or may not be partitioned.
  • the unit heat generating region surface when partitioned, it may be partitioned by a partition line formed between the unit roasting plate region surface, the structure is not limited significantly and may have various forms, for example, linear (Vertical, horizontal), concentric circles, concentric squares, grid (checkerboard), curved, etc. can be applied in various forms.
  • the area of the heat generating layer 20 including the unit heat generating region surface may be appropriately adjusted according to the size of the cooking vessel and the amount of the object.
  • the partition line is for dividing and partitioning the unit guiding plate area surfaces
  • the partition may be formed by a step in which the partition line protrudes or recesses, or may be partitioned by an identification member (paint layer, film layer, etc.) without the step. It is preferable that it is formed by a step.
  • the partition line when the partition line is formed to protrude, the object may be prevented from moving to another unit roasting plate area surface even when the object accommodated in the unit roasting plate area surfaces is liquid.
  • their separation distance, that is, the width of the partition line is not particularly limited and can be appropriately adjusted, for example, 2 to 50 mm, specifically 3 to 30 mm.
  • the protruding height or the depressed height is not particularly limited, and for example, 2 to 50 mm, specifically 3 to 30 mm. However, this is only a specific example, and the present invention is not limited thereto.
  • the unit roasting plate surface may have a step height different from each other.
  • the n + 1 unit roasting plate region surface may be formed at a height higher or lower than the nth unit roasting plate region surface, wherein n is a natural number of 1 or more.
  • the roasting plate 10 may include a protrusion line 10s surrounding the unit roasting plate area surface, for example, the outermost unit roasting plate area surface, similarly to the partition line in terms of stable reception of a food object.
  • the shape, structure, size, size, etc. of the protruding line are as described in the section line.
  • the heating layer 20 may be integrally formed, but the unit heating region surfaces may be spaced apart from each other.
  • the separation distance of the unit heat generating region surfaces i.e., the width of the spaced apart lines, is not particularly limited and may be appropriately adjusted, for example, 1 to 50 mm, specifically 1 to 30 mm. However, this is only a specific example, and the present invention is not limited thereto.
  • the partition line, the spaced line, and the spaced line may be formed in a straight line, a curved line, or a combination thereof, and the line or the middle portion of the line is partially broken or closed, such as a unit heating area surface, a unit roasting plate area surface, or an electrode ( Of course, some of the structures 30 may be connected without being spaced apart from each other.
  • a portion of the unit roasting plate area surface connected to each other without being separated from each other may be a discharge passage, and the liquid material discharged from the food object may be discharged to the through hole 10h or the like.
  • the electric roasting plate may further include a temperature sensor in contact with the roasting plate 10 or the heating layer 20.
  • the temperature of the roasting plate 10 may be measured in real time through a temperature sensor, and the temperature of the roasting plate 10 may be controlled by adjusting the amount of power applied to the heating layer 20 from the measured value. Specifically, when the heat energy is transferred from the roasting plate 10 set to the target temperature to the target, the temperature of the roasting plate 10 is instantaneously reduced, or the temperature of the roasting plate 10 is changed by other environmental conditions to heat the energy. It can be difficult to deliver precisely on demand.
  • the temperature of the roasting plate 10 can be measured in real time through the temperature sensor, so that the heating layer 20 can correct the amount of heat energy transferred to the roasting plate 10 in real time to maintain the target temperature. Precise control is possible.
  • the electric roasting plate according to the present invention has a structure in which the heating layer 20 is in surface contact with one surface of the roasting plate 10, it is possible to precisely measure the temperature without local temperature deviation with only one or a few temperature sensors The large area of the roasting plate 10 may be covered.
  • the temperature sensor may be provided with two or more, in this case, the temperature sensors may be spaced apart at predetermined intervals on the baking sheet 10 or the heating layer (20). Through this, it is possible to detect a local temperature deviation, it is possible to check whether the roasting plate 10 or the heating layer 20 is damaged, and precise temperature control is possible.
  • two or more temperature sensors may be used to independently control the temperature of a specific area surface of the roasting plate 10.
  • temperature sensors may be provided to correspond to the unit heat generating region surface or the old unit roasting plate region surfaces, respectively.
  • the electric roasting plate may further include a plurality of temperature sensors contacting the unit heating area surfaces or the unit roasting plate area surface, and the temperature of the unit heating area surfaces or the unit roasting plate area surfaces through the temperature sensor. May be independently controlled.
  • the temperature of each unit grill plate region surface of the grill plate 10 may be measured in real time through a temperature sensor, and the amount of power applied to each unit heating region surface or the electrode 30 is adjusted from the measured value.
  • the temperature of each unit grill plate area surface of can be controlled independently.
  • the unit heat generating region surfaces may have the same composition or composition ratio or may be different from each other. Even if the composition or the composition ratio of the unit heat generating region surfaces is the same or different, as described above, the temperature of each unit roasting plate region surface of the roasting plate 10 is adjusted by adjusting the amount of power applied to each unit heating region surface or the electrode 30. Can be controlled independently.
  • the baking plates 10 respectively corresponding to the unit heat generating region surfaces are due to different heat conversion efficiencies converted from electrical energy to thermal energy for each of the unit heat generating region surfaces. It is possible to automatically change the temperature of certain area surfaces of the. For example, the area surface of the roasting plate 10 corresponding to the unit heat generating area surface having high heat conversion efficiency maintains a higher temperature than the area surface of the roasting plate 10 corresponding to the unit heat generating area surface having low heat conversion efficiency. Therefore, even if the amount of power applied to the heating layer 20 or the amount of power applied to the heating layer 20 is the same, different temperatures may be provided for each of the area surfaces of the baking plate 10.
  • the heat generating layer 20 may be formed from the heat generating composition by varying the composition or composition ratio of the heat generating composition described later.
  • Various control means may be used to allow the user to adjust the temperature of the unit roasting plate area surface automatically from each temperature value measured from the temperature sensor or to automatically adjust the temperature of the unit roasting plate area surface. Since the specific structure and location of the control unit are well known techniques, reference may be made to known techniques, for example, but may be provided away from the inside, the outside, or the outside of the electric roasting plate, but is not limited thereto.
  • control unit may be an analog type, a digital type, or a combination thereof, and may further include a physical controller for easy control by a user.
  • the physical control unit may have a mechanical form such as a button type or a rotary type, or may be implemented in various forms such as an electronic type.
  • a heat conduction reduction member or the like may be further provided to minimize heat conducted from the roasting plate 10 through known means.
  • the electric roasting plate may further include a display unit for displaying a temperature value received from the temperature sensor. Since the specific structure and location of the display unit are well known technologies, reference may be made to known technologies, for example, but may be provided away from the outer surface or the outside of the electric roasting plate, but is not limited thereto.
  • the temperature sensor may be a contact sensor, a non-contact sensor, or both.
  • the temperature sensor is preferable in view of significantly improving the accuracy of temperature control.
  • the temperature sensor is not particularly limited in its type, for example, a semiconductor type, a thermocouple type, a resistance temperature sensor type (RTD), an NTC thermistor type. Etc. can be mentioned.
  • the electric roasting plate may further include a power supply unit for applying electric power to the electrode 30.
  • the power supply unit is a means capable of supplying electrical energy, and is not limited since it is known. Since the specific structure and the location of the power supply unit are well known technologies, reference may be made to known technologies, for example, but may be provided away from the inside, the outer surface, or the outside of the electric roasting plate, but is not limited thereto.
  • the electrode 30 may be any known electrode 30 material having conductivity, and a copper-based electrode 30 such as an electrolytic copper foil, a rolled copper foil, a copper copper foil may be mainly used, but in addition, various metals or conductive materials may be used. Materials can be used. In addition, since the shape and structure of the electrode 30 may be conductive, it is not limited.
  • the thickness of the electrode 30 may also be appropriately set as long as it can have suitable durability, and the thickness is not limited, for example, 1 to 1,000 ⁇ m. However, this is only described as a specific example, and the present invention is not necessarily limited thereto.
  • the electrode 30 may be in contact with the heat generating layer 20 by an electrode pair as the anodes 31a, 32a, 33a, 34a and the cathodes 31b, 32b, 33b, 34b. That is, the electrode 30 may include a plurality of unit electrode pairs 31, 32, 33, and 34 respectively contacting the unit heating region surfaces.
  • the first unit electrode pairs 31a and 31b may be provided to be spaced apart from each other to be in contact with the first unit heating region surface 21, and the second unit electrode pairs 32a and 32b may be spaced apart from each other.
  • the third unit electrode pairs 33a and 33b may be provided to be in contact with the third unit heating region surface 23 while being spaced apart from each other, and the fourth unit electrode pair 34a may be provided.
  • the unit electrode pairs 31, 32, 33, and 34 may be applied with power from the power supply unit independently of each other. That is, electric energy of different amounts of power may be applied to the unit electrode pairs 31, 32, 33, and 34 from the power supply unit.
  • the positive electrode or the negative electrode of the electrode pairs 31, 32, 33, and 34 may be in a form in which both ends are not connected, or in a closed form in which both ends are connected.
  • the opposite electrode positive electrode or negative electrode
  • the opposite electrode may be located in the internal empty space formed by connecting both ends.
  • a ring-shaped electrode anode or cathode
  • an opposite electrode cathode or anode
  • the electrode 30 is in contact with the heat generating layer 20 can be applied with electrical energy, its shape, structure and formation method is not particularly limited, as an example the following method may be illustrated.
  • a heating composition for forming the heating layer 20 is applied to cover the electrode 30 or the surface of the roasting plate 10.
  • a method in which the electrode 30 is formed on the heat generating layer 20 after the heat generating composition is applied to form the heat generating layer 20 is not particularly limited, as an example the following method may be illustrated.
  • the method in which the electrode 30 is formed (bonded) to the roasting plate 10 or the heat generating layer 20 may be attributable to bonding characteristics in the process of forming the heat generating layer 20 by curing the heat generating composition, It may be bonded by a known conductive adhesive composition.
  • a known conductive adhesive composition As an example of the conductive adhesive composition, an epoxy resin composition including a carbon nanotube-silver composite may be mentioned. However, this is only described as a preferred example, of course, the present invention is not limited thereto.
  • the heating plate is present in direct contact with one surface of the roasting plate 10 as a layer, compared to the conventional roasting plate 10
  • the contact area with the overheating unit is large, and high thermal energy can be quickly applied to the roasting plate 10.
  • the electric roasting plate according to an embodiment of the present invention may satisfy the following Equation 1.
  • a H is the area of the heat generating layer 20 in contact with the roasting plate 10
  • a T is the total area of the roasting plate (10).
  • the total area of the roasting plate 10' may refer to the total area of the roasting plate 10 through which heat is conducted, in which the thermal conductivity per unit area is similar or substantially the same, and specifically, the entire area in which the heat energy is transferred is accommodated.
  • the entire area of the roasting plate 10 corresponding to the area, that is, the entire area of the unit roasting plate area surface may be referred to.
  • the electric roasting plate is formed in the heating plate 10 is a heating wire heating plate is used as a bonding means as a bonding means between the heating wire and the baking sheet 10, there is a portion where the space between the heating wire and the baking sheet 10, or the initial Even if there is no such a region, as the long-term use, the separation space is likely to be formed later. Therefore, the electric roaster using a conventional heating wire has a very low thermal efficiency as well as a very low temperature increase rate.
  • the electric roasting plate according to the present invention includes a heat generating layer 20 formed of the heat generating composition, so that the roasting plate 10 and the heat generating layer 20 are directly bonded to each other to have high thermal efficiency, and the temperature raising rate is very high. There is.
  • the heat generating layer 20 is formed by surface contact with one surface of the roasting plate 10 as the heat generating composition, and one surface of the roasting plate 10 is not flat or smooth in the forming (manufacturing) process. Even if the surface roughness is somewhat high, it is formed with high adhesion and bonding strength. Therefore, since there is substantially no space between the heating layer 20 and the baking sheet 10, it is possible to implement high thermal efficiency and reaction speed. For example, even if one surface of the baking sheet 10 to be in contact with the heating layer 20 has a surface roughness of 100 to 1,000 ⁇ m without high spacing between the heating layer 20 and the baking plate 10 with high adhesion and bonding strength It is possible to manufacture.
  • the thickness of the roasting plate 10 and the heat generating layer 20 may be properly adjusted according to the required purpose and scale, but each thickness may have an average thickness in the following range.
  • the average thickness of the heating layer 20 may be 10 ⁇ m to 2 mm. If it satisfies this, it is possible to prevent a problem in which a high voltage is required by a too thin thickness and a problem that a crack is generated in the heat generating layer 20 or a sheet resistance is greatly lowered due to a too thick thickness, so that heat generation is practically difficult.
  • the average thickness of the roasting plate 10 may be 5 to 50 mm, specifically 5 to 30 mm. If it satisfies this, it is possible to minimize the problem that the heat retention is degraded by too thin thickness to easily lose heat to the outside, and the problem that the long preheating time and power consumption is increased by too thick thickness.
  • the material of the roasting plate 10 may be appropriately adjusted according to the type of the object to which the thermal energy is transferred. Specifically, any material having heat resistance that can withstand a long time at 5 to 350 ° C. and capable of thermal conduction by the heat generating layer 20 is not particularly limited.
  • the kind of the roasting plate 10 one containing at least one selected from a metal, a ceramic, a carbon, and a polymer may be used.
  • the metal-based may include any one or two or more selected from stainless steel, iron, copper, magnesium, aluminum, and alloys thereof.
  • Specific examples of the ceramic system may include various rocks or minerals such as granite, marble, volcanic stone, jade, and gypsum; Mineral-derived plastics such as glass, pyrex, quartz, ceramics, etc .; And oxides of metals selected from Ti, Mg, Cu, Au, Ag, Cr, Pt, Fe, Al, and Si; It may include any one or two or more selected from.
  • the carbon-based may include any one or two or more selected from graphite, carbon nanotubes, carbon fibers, diamonds, diamond-like carbon (UDC), graphene, and the like.
  • Specific examples of the polymer system may include any one or two or more selected from pulp, such as synthetic polymers, natural polymers, wood, and paper.
  • the roasting plate 10 may bake food ingredients, and if it has sufficient heat resistance to bake food ingredients, it is not particularly limited, but the above-mentioned rocks or minerals may be used to further improve the taste of food ingredients. Can be good at. However, this is only described as a specific example, and may be appropriately adjusted according to the specific type of the object to which the thermal energy is transferred, and thus the invention is not necessarily limited thereto.
  • the shape of the roasting plate is not limited, and of course, it may have a variety of forms, such as round, oval, n-square (n is 3 or more), the shape having a curved surface and a plane.
  • the electric roasting plate may further include an insulating layer covering the heating layer 20 and / or the electrode 30.
  • the insulating film covers the heat generating layer 20 and / or the electrode 30 to prevent electricity from flowing in an undesired path.
  • the insulating film preferably has a high electrical resistance.
  • a commonly known insulating paste may be applied and cured to form an insulating layer on the heat generating layer 20 and the electrode 30.
  • Specific examples of the insulating paste may include an insulating ceramic powder and an organic binder, and may have a viscosity of 1,000 to 80,000 cps at 25 ° C. However, this is only described as a preferred example, of course, the present invention is not limited thereto.
  • the voltage applied to the heat generating layer 20 can be controlled by various conditions such as the thickness of the heat generating layer 20, the separation distance between the electrodes 30, and can be appropriately adjusted as long as the target temperature can be reached.
  • it may be 5 to 240 V, but is not limited thereto.
  • the electric roasting plate according to an embodiment of the present invention may have a temperature increase rate of 8 to 30 ° C./min for an initial 10 minutes when a voltage is applied at 50 to 70 V.
  • the composition of the heating layer 20 there is an effect that can be used as a DC power supply of a low voltage of 12V.
  • the heat generating layer 20 is in contact with the roasting plate 10, and the heat generating layer is formed by a heat generating composition including a carbon nanotube and a silicon-based adhesive. Effects are implemented.
  • the heat conversion efficiency of the heat generating layer 20 may be different according to its composition or composition ratio, there is an effect of automatically maintaining different temperatures for each unit heat generating region surface.
  • composition / composition ratio of the exothermic layer 20, the exothermic composition forming the same, and a method of forming the same will be described in more detail.
  • the exothermic composition includes a carbon nanotube and a silicon-based adhesive.
  • the carbon nanotubes may be commonly used.
  • Specific examples of carbon nanotubes include single wall CNTs, double wall CNTs, and multi wall CNTs, and may include two or more thereof. have.
  • the average diameter and the average length of the carbon nanotubes are not particularly limited, and may be 0.9 to 3.0 nm and 0.1 to 30 ⁇ m, respectively. However, this is only a specific example, and the present invention is not limited thereto.
  • the silicon-based adhesive may be a polymer having a polysiloxane main chain in which silicon (Si) atoms and oxygen (O) atoms are alternately formed, and mainly two alkyl groups (methyl, ethyl, propyl, etc.) or phenyl groups (mainly on each silicon atom) -C 6 H 5 ) and the like may have a structure in which an organic atom group is bonded.
  • the silicon-based adhesive may have a hydrogen, hydroxy group, methyl group and / or phenyl group bonded to the polysiloxane backbone.
  • the content of the polysiloxane backbone, that is, SiO 2 may be 45 to 65% by weight, preferably 47 to 63% by weight based on the total weight of the silicon-based adhesive.
  • the silicon-based adhesive may have a silanol group having a hydroxyl group as a functional group, preferably 0.1 to 10% by weight, more preferably 1 to 6% by weight based on the total weight of the silicon-based adhesive. It may be good to be%. If this is satisfied, the bonding characteristics of the baking sheet and the heat generating layer 20 can be further improved, the thermal conductivity can be further improved, and the deterioration of dryness, strength, flexibility, and workability can be prevented. However, this is only described as a preferred example, of course, the present invention is not limited thereto.
  • the silicon-based adhesive may be in the ratio of the methyl group and the phenyl group in a certain range in order to further improve the thermal stability.
  • the ratio of the methyl group and the phenyl group may be 0.3 to 2.5 mole ratio of the phenyl group relative to 1 mole ratio of the methyl group, preferably 0.4 to 2.0 mole ratio of the phenyl group relative to 1 mole ratio of the methyl group. If it satisfies this, it is possible to further improve the durability of the electric roasting plate, specifically the roasting plate 10, can be used for a long time at a higher temperature, it is possible to reduce the durability degradation of the roasting plate due to a sudden temperature change. In addition, it is possible to prevent a decrease in mechanical strength and heat resistance and a decrease in water repellency and processability. However, this is only described as a preferred example, of course, the present invention is not limited thereto.
  • the silicon-based adhesive may be cured by bonding between functional groups by heating, and preferably, the crosslinking degree is 55 to 80%, and the weight average molecular weight is 1,000 to 400,000, in view of processability and mechanical properties.
  • the crosslinking degree is 55 to 80%
  • the weight average molecular weight is 1,000 to 400,000, in view of processability and mechanical properties.
  • this is only described as a preferred example, of course, the present invention is not limited thereto.
  • composition ratio of the composition is not particularly limited, but preferably 1 to 50% by weight of carbon nanotubes and 1 to 30% by weight of silicon-based adhesives, more specifically 3 to 40% by weight of carbon nanotubes and 2 to 20 silicon-based adhesives. It may include weight percent.
  • the composition may further include an organic solvent, the content of which may be used as the remaining amount.
  • the organic solvent is not limited, and for example, acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethylformamide, dimethylacetamide , N-methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acrylonitrile, octadecylamine, aniline, dimethyl sulfoxide It may include any one or two or more selected from the side, diethylene glycol ethyl ether, terpineol and the like.
  • the exothermic composition may further include any one or more selected from a binder and a dispersant.
  • a binder included in the exothermic composition, the processability of the exothermic composition is improved, and when the exothermic composition is applied to the roasting plate 10 to form the exothermic layer 20, adhesion to the roasting plate 10 may be more improved in this process. Can be.
  • the binder is not limited to a manufacturing method and the like, but having a range of viscosity may be good in terms of improving the applicability of the exothermic composition.
  • the binder may have a viscosity of 10 to 50,000 cps (centipoise) at 25 °C.
  • the binder may include any one or more organic binders selected from ethyl cellulose and nitrocellulose.
  • organic binder is resistant to high temperatures, has excellent adhesion and durability, and has an effect of efficiently generating heat even at a relatively low voltage.
  • this is only described as a preferred example, the present invention is not necessarily limited thereto.
  • the binder When the binder is included in the exothermic composition, it may be included in an amount of 1 to 20% by weight, preferably 3 to 15% by weight, based on the total weight of the exothermic composition. However, this is only described as a preferred example, of course, the present invention is not limited thereto.
  • the dispersing agent may be a phosphorus ester salt of an amino containing oligomer or polymer; Monoesters or diesters of phosphoric acid; Acidic dicarboxylic acid monoesters; Polyurethane-polyamine adducts; And polyalkoxylated monoamines or diamines; It may include any one or two or more selected from, etc., but the present invention is not limited thereto.
  • the dispersant when included in the composition, it may be included in 1 to 20% by weight, preferably 2 to 10% by weight based on the total weight of the composition. However, this is only described as a preferred example, of course, the present invention is not limited thereto.
  • the exothermic composition when the exothermic composition further comprises a binder, a dispersant and an organic solvent, the composition ratio thereof is 1 to 50% by weight of carbon nanotubes, 1 to 30% by weight of a silicon-based adhesive, 1 to 20% by weight of an organic binder. It may be desirable to include 1 to 20% by weight of dispersant and 1 to 90% by weight of organic solvent. However, this is only described as a preferred example, of course, the present invention is not limited thereto.
  • the heat generating layer 20 is not limited to the method of forming, for example, a method in which a heat generating composition comprising carbon nanotubes and a silicon-based adhesive is applied to one surface of the baking sheet 10, the heat generated There are various methods, such as a method in which a film made of the composition is bonded to one surface of the roasting plate 10 and formed.
  • the method of forming the heating layer 20 may be a method of coating and curing the heating composition on one surface of the baking sheet 10, a method of attaching a film prepared by curing the heating composition to one surface of the baking sheet 10, or the like.
  • the coating may use various known means, and for example, various methods such as a spray method, a dip coating method, and a coating method may be mentioned.
  • Curing can use various well-known methods, such as thermosetting, natural hardening, and photocuring, and what is necessary is just to use the method suitable for hardening of a heat generating composition.
  • the coating may be performed two or more times, and the heat generating layer 20 may be formed by stacking the film two or more times.
  • the exothermic composition may be in the form of a slurry or a film before the exothermic layer 20 is formed on the roasting plate 10. Specifically, when the exothermic composition is applied to one surface of the baking plate 10 to form the exothermic layer 20, the exothermic composition may be in the form of a slurry. When the exothermic composition is in the form of a slurry, in the process of forming the exothermic layer 20 on the baking sheet 10, the exothermic composition may have a viscosity in a state having an intermediate hardness between a solid and a liquid.
  • a stone plate (long product stone) having an area of 300 mm x 195 mm and a thickness of 20 mm was prepared as a roasting plate.
  • the surface of the baking sheet was washed with ethanol and heat treated at 250 ° C. for 30 minutes to remove debris and the like that may be present on the surface of the baking sheet.
  • the exothermic composition prepared in Preparation Example 1 was applied to a wet thickness of 600 ⁇ m on the lower surface of the heat-treated roasting plate, and thermally cured at 300 ° C. for 30 minutes to coat the exothermic layer on the roasting plate. This coating process was repeated one more time to finally prepare an electric roasting plate coated with a bottom surface of the roasting plate having a heating thickness of 1.2 mm. At this time, the area of the heating layer was 220 mm ⁇ 160 mm.
  • a pair of copper electrodes were bonded to both ends of the heat generating layer, respectively, and as shown in FIG. 7, a copper electrode having a width of 1 cm inward from the outermost end of the heat generating layer was lined with both ends in the longitudinal direction.
  • Epoxy silver paste (ELCOAT, CANS, Cat. No .: A-200) was used for bonding the copper electrode and the heating layer.
  • an insulating paste (AccuPaste TM Insulating Paste, Bioneer, Cat. No .: TC-5000) is applied to the copper electrode and the heating layer to form an insulating film. It was.
  • Example 1 was carried out in the same manner as in Example 1, except that instead of using a roasting plate of 20 mm thickness was used a roasting plate of 15 mm thickness.
  • the thermal imaging camera (TiS50, FLUKE) was used to measure the temperature of the stone plate of the electric roasting plate.
  • FIG. 3 is a graph showing the temperature of the stone plate with time at each applied voltage, from which it can be seen that the temperature of the stone plate increases as the applied voltage increases. Specifically, when the voltage was applied at 50 V, the time to reach 240 ° C. was about 43 minutes, about 18 minutes when the voltage was applied at 60 V, and about 12 minutes when the voltage was applied at 70 V. Comparing the heating rate from 0 to 10 minutes, the heating rate is about 9.5 ° C / min at 50V applied voltage, about 13.1 ° C / min at 60V applied voltage, and about 18 ° C / min at 70V applied voltage. It was confirmed to have.
  • Example 1 In order to evaluate whether the temperature of the electric roasting plate manufactured in Example 1 is kept constant according to the voltage, it is maintained for 10 minutes at an applied voltage of 70 V and then reduced to 40 V to apply a voltage for a total of 60 minutes to the thermal image
  • the temperature of the stone plate was measured with the camera (TiS50, FLUKE).
  • the temperature was increased to 240 ° C. by applying a voltage of 70 V to each of the electric roasting plates having different thicknesses prepared in Examples 1 and 2 only.
  • the heating plate has a temperature increase rate of 18 °C / min when the thickness of the grill plate is 20 mm, 24 °C / min of the grill plate thickness is 15 mm It can be seen that the temperature rise rate. As the thickness of the baking sheet becomes thinner, the preheating time of the baking sheet becomes shorter.
  • Example 1 In order to evaluate the thermal efficiency characteristics of the electric roasting plate prepared in Example 1 and the electric roasting plate using a conventional heating heater as a control, the temperature change of the roasting plate with time at a constant voltage was measured with a thermal imaging camera (TiS50, FLUKE).
  • Electric heating plate using a conventional heating wire heater is a method of installing the heating wire heater and placing the roasting plate on it. Since the conventional electric roasting plate only heats the heating heater, it was confirmed that it takes a long time to heat up the entire roasting plate.
  • the electric roasting plate according to the present invention has a relatively high thermal efficiency due to the relatively high speed of reaching the target temperature compared with the conventional electric roasting plate of the hot wire heater type even at a low voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Resistance Heating (AREA)
  • Baking, Grill, Roasting (AREA)

Abstract

본 발명에 따른 전기구이판는 구이판; 상기 구이판에 면 접촉하며, 탄소나노튜브 및 규소계 접착제를 포함하는 발열 조성물로 형성되는 발열층; 및 상기 발열층과 접하는 전극;을 포함하는 것으로, 열손실을 최소화하여 열효율이 우수하고, 목표 온도까지 도달하는 반응시간이 빨라 예열 시간이 단축되며 조리 품질이 우수한 효과가 있다. 뿐만 아니라, 온도 상승 시 구이판의 면적에 따른 온도 편차 발생을 실질적으로 방지할 수 있고, 내구성과 안전성이 높은 효과가 있다.

Description

전기구이판
본 발명은 전기구이판에 관한 것이다.
일반적으로 가정이나 음식점에서 음식물을 조리하거나 고기를 굽는 장치로는 통상 가스레인지 또는 가스버너가 많이 사용되고 있다. 이러한 가스를 에너지로 사용하는 종래의 발열 장치는 시설 보급이 잘 되어 있어 사용이 쉽고 연료비가 저렴한 장점이 있으나, 가스 배관 시설이 필수적이므로 사용 장소에 한계가 있다. 또한 가스를 에너지로 사용하는 장치는 직접 연소를 통해 열을 발생시키므로, 폭발이나 화재 위험성이 매우 높으므로, 최근 가정에서는 안전성이 높은 전기 에너지를 사용하는 발열 장치, 예를 들어 전기구이판이 많이 보급되고 있는 추세이다.
전기구이판는 전기 에너지를 공급받아 열을 발생시키는 전기 히터에 속한다. 전기 히터는 통상적으로 본체 내부에 전기 에너지를 이용하여 열을 발생시키는 전열부가 존재하며, 그 상부에 금속판이나 돌판 등의 구이판이 구비되어 전열부의 열이 상부의 구이판으로 전달되도록 구성된다.
이러한 전기구이판은 전기 시설만 갖춰진 곳이라면 어디서나 사용할 수 있으며, 가스 배관 시설과 비교하여 상대적으로 매우 보급이 잘 되어 있어, 사용 장소에 제한이 거의 없는 장점이 있다. 또한 가스를 이용하는 장치와 비교하여 상대적으로 안전성이 높은 것은 물론, 편이성도 우수하다. 그럼에도 불구하고 전기구이판은 가스를 이용하는 장치에 비하여 사용률이 현저히 낮은데, 이는 상대적으로 낮은 화력에 기인한 조리 품질의 저하가 주된 이유라 할 수 있다.
구체적으로, 종래의 전기구이판은 통상적으로 돌이나 금속재질의 두툼한 불판인 구이판과 상기 구이판의 하측으로 일정 간격이 떨어진 위치에 전열부가 구비된다. 이때 사용되는 전열부는 선상으로서 통상 열선이라 불리며, 지그재그 형태로 수차례 굽어진 상태로 배치된다. 이러한 열선이 사용된 종래의 전기구이판은 구이판에 인가되는 열에너지가 균일하게 전달되지 않은 문제가 있다. 또한 구이판과 열선 사이에 형성되는 이격공간이 존재하므로, 구이판에 직접 열이 가해지지 못하는 영역에 의해 열손실이 큰 문제가 있다. 이러한 문제들로 인하여 열선이 사용되는 종래의 전기구이판은 가스를 이용한 장치보다 승온속도가 매우 느림에 따라 적정온도에서 조리하기 위해서는 예열하는 시간이 길어지며, 따라서 음식의 조리 품질이 매우 떨어진다.
또한 국부적으로 열이 가해지기 때문에 구이판에 사용되는 물질의 종류에도 그 물질의 비열에 따라 한계가 있다. 예를 들어 돌판을 구이판으로 사용할 경우, 비교적 높은 비열로 인하여 국부적인 온도차가 심하며, 온도차가 심해질 경우, 돌판에 균열이 발생하는 치명적인 문제가 발생할 수 있다.
[선행기술문헌]
[특허문헌]
KR10-2014-0131757A (2014.11.14)
본 발명의 목적은 전술한 종래의 문제들을 극복하기 위한 것으로, 열효율이 우수하고, 목표 온도까지 도달하는 반응시간이 빨라 예열 시간이 단축되며 조리 품질이 우수한 전기구이판를 제공하는 것이다.
본 발명의 다른 목적은 온도 상승 시 구이판의 면적에 따른 온도 편차 발생을 실질적으로 방지할 수 있고, 내구성과 안전성이 높은 전기구이판를 제공하는 것이다.
본 발명에 따른 전기구이판은 구이판, 상기 구이판에 면 접촉하는 발열층 및 상기 발열층과 접하는 전극을 포함하는 전기구이판으로, 상기 발열층이 탄소나노튜브 및 규소계 접착제를 포함하는 발열 조성물로 형성된다.
본 발명의 일 예에 있어서, 상기 전극은 양전극 및 음전극으로 구성되는 복수의 단위 전극쌍을 포함할 수 있으며, 상기 단위 전극쌍들은 서로 이격하여 위치할 수 있다.
본 발명의 일 예에 있어서, 상기 발열층은 상기 단위 전극쌍들에 의해 온도가 달리 제어되는 단위 발열 영역면을 포함할 수 있으며, 상기 발열층과 접하는 구이판의 타면은 상기 단위 발열 영역면에 대응되는 복수의 단위 구이판 영역면을 포함할 수 있고, 상기 단위 구이판 영역면들이 서로 독립적으로 온도가 제어될 수 있다.
본 발명의 일 예에 따른 전기구이판은 상기 구이판 또는 상기 발열층에 접하는 온도센서를 더 포함할 수 있다.
본 발명의 일 예에 따른 전기구이판는, 상기 단위 발열 영역면들 또는 상기 단위 구이판 영역면들에 접하는 복수의 온도센서를 더 포함할 수 있으며, 상기 온도센서를 통해 상기 단위 구이판 영역면의 온도가 독립적으로 제어될 수 있다.
본 발명의 일 예에 있어서, 상기 단위 발열 영역면들은 서로 조성 또는 조성비가 서로 상이할 수 있으며, 상기 조성 또는 조성비 차이에 의해 상기 단위 발열 영역면들의 온도가 독립적으로 제어될 수 있다.
본 발명의 일 예에 따른 전기구이판는 상기 구이판 또는 상기 발열층에 접하는 온도센서를 더 포함할 수 있다.
본 발명의 일 예에 따른 전기구이판는, 상기 단위 전극쌍들에 독립적으로 전력을 인가하는 전원부를 더 포함할 수 있다.
본 발명의 일 예에 있어서, 상기 전원부는 상기 발열층에 5 내지 240 V의 전압을 인가하는 것일 수 있다.
본 발명의 일 예에 있어서, 상기 발열층의 평균두께는 10 ㎛ 내지 2 mm일 수 있다.
본 발명의 일 예에 있어서, 상기 구이판의 평균두께는 5 내지 50 mm일 수 있다.
본 발명의 일 예에 있어서, 상기 구이판의 일면에 상기 전극이 형성된 후에 상기 발열 조성물이 상기 전극을 덮어 도포되는 것일 수 있다.
본 발명의 일 예에 있어서, 상기 구이판의 일면에 상기 발열 조성물이 도포되어 발열층이 형성되는 것일 수 있다.
본 발명의 일 예에 있어서, 상기 발열 조성물은 바인더를 더 포함할 수 있다.
본 발명의 일 예에 있어서, 상기 발열 조성물은 탄소나노튜브 1 내지 50 중량%, 규소계 접착제 1 내지 30 중량%, 바인더 1 내지 20 중량%, 분산제 1 내지 20 중량% 및 유기용매 1 내지 90 중량%를 포함할 수 있다.
본 발명의 일 예에 있어서, 상기 바인더는 에틸셀룰로스 및 니트로셀룰로스 등에서 선택되는 어느 하나 이상의 유기 바인더를 포함할 수 있으며, 상기 분산제는 아미노 함유 올리고머 또는 폴리머의 포스포러스 에스테르염; 인산의 모노에스테르 또는 디에스테르; 산성 디카르복실산 모노에스테르; 폴리우레탄-폴리아민 부가물; 및 폴리알콕실화 모노아민 또는 디아민; 등에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있으며, 상기 유기용매는 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글리콜, 폴리에틸렌글리콜, 테트라하이드로퓨란, 디메틸포름아미드, 디메틸아세트아미드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드, 디에틸렌글리콜에틸에테르 및 터피네올 등에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있다.
본 발명에 따른 전기구이판은 열손실을 최소화하여 열효율이 우수하고, 목표 온도까지 도달하는 반응시간이 빨라 예열 시간이 단축되며 조리 품질이 우수한 효과가 있다.
또한 본 발명에 따른 전기구이판는 온도 상승 시 구이판의 면적에 따른 온도 편차 발생을 실질적으로 방지할 수 있고, 내구성과 안전성이 높은 효과가 있다.
본 발명에서 명시적으로 언급되지 않은 효과라 하더라도, 본 발명의 기술적 특징에 의해 기대되는 명세서에서 기재된 효과 및 그 내재적인 효과는 본 발명의 명세서에 기재된 것과 같이 취급된다.
도 1은 실시예 1에서 제조된 전기구이판의 실제 이미지이다.
도 2는 실시예 1에서 제조된 전기구이판을 열화상 카메라로 관찰한 열화상 이미지이다.
도 3은 실시예 1에서 제조된 전기구이판의 각 전압에서 시간에 따른 구이판의 온도 변화를 나타낸 그래프이다.
도 4는 실시예 1에서 제조된 전기구이판의 각 전압의 변화에서 시간에 따른 구이판의 온도 변화를 나타낸 그래프이다.
도 5는 동일한 인가전압에서 실시예 1 및 실시예 2에서 제조된 전기구이판의 구이판의 두께에 따른 구이판의 승온 속도 변화를 나타낸 그래프이다.
도 6은 실시예 1 및 실시예 2에서 제조된 전기구이판에 대한 대조군인 종래 열선을 이용한 전기구이판의 동일한 인가전압에서 시간에 따른 구이판의 온도 변화를 나타낸 그래프이다.
도 7은 본 발명의 일 예에 따른 전기구이판을 나타낸 사시도로서, 전기구이판의 하부를 하측에서 바라본 시점에서의 사시도, 즉, 발열층이 면 접촉하는 구이판의 타면이 보이는 시점에서의 사시도이다.
도 8 내지 도 10은 본 발명의 일 예에 따른 전기구이판에서, 발열층 및 전극이 위치하는 구이판의 하부를 하측에서 바라본 시점에서의 도면, 즉 전기구이판의 하면을 나타낸 도면이다.
도 11은 본 발명의 일 예에 따른 전기구이판에서, 식재료 대상이 수용되는 전기구이판의 상면을 나타낸 도면으로, 구이판의 상부를 상측에서 바라본 시점이다.
이하 첨부한 도면들을 참조하여 본 발명에 따른 전기구이판를 상세히 설명한다.
본 명세서에 기재되어 있는 도면은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 상기 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다.
본 명세서에서 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
본 명세서에서 사용되는 용어의 단수 형태는 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 해석될 수 있다.
본 명세서에서 특별한 언급 없이 사용된 %의 단위는 별다른 정의가 없는 한 중량%를 의미한다.
본 명세서에서 언급되는 “층”, “판” 또는 “막”의 용어는 각 재료가 연속체(continuum)를 이루며 폭과 길이 대비 두께가 상대적으로 작은 디멘젼(dimension)을 가짐을 의미하는 것이다. 이에 따라, 본 명세서에서 상기 용어에 의해, 2차원의 편평한 평면으로 해석되어서는 안 된다.
본 발명에 따른 전기구이판은 구이판; 상기 구이판에 면 접촉하는 발열층; 및 상기 발열층과 접하는 전극;을 포함하는 전기구이판으로, 상기 발열층이 탄소나노튜브 및 규소계 접착제를 포함하는 발열 조성물로 형성되는 것을 특징으로 한다.
본 발명에 따른 전기구이판은 탄소나노튜브 및 규소계 접착제를 포함하는 발열조성물로 형성되는 발열층(20)과 면 접촉하는 구이판(10)를 포함함으로써, 열손실을 최소화하여 열효율이 우수하고, 목표 온도까지 도달하는 반응시간이 빨라 열에너지가 전달될 대상의 온도를 빠르게 증가시킬 수 있다. 뿐만 아니라 온도 상승 시 구이판(10)의 면적에 따른 온도 편차 발생을 최소화하며, 내구성과 안전성이 높은 효과가 있다. 따라서 상기 전기구이판은 목표 온도까지 도달하는 반응시간이 빨라 예열 시간이 단축되고, 높은 화력으로 조리 대상에 높은 열에너지가 빠르게 전달됨으로써 조리 대상의 맛을 한층 업그레이드시킬 수 있다.
상기 발열층(20)이 면 접촉하는 구이판(10)의 타면은 열에너지가 전달될 대상이 접촉 및 수용되는 영역을 포함한다. 본 명세서에서 언급되는 ‘대상’은 전기구이판을 이용하여 열처리되어야 할 것이라면 제한되지 않으며, 일 예로 식재료를 의미할 수 있다.
상기 발열층과 접하는 구이판(10)의 타면은 서로 다른 온도로 조절될 수 있는 영역면을 가져, 상기 영역면들에 위치한 복수의 대상이 서로 상이한 값의 열에너지가 인가되도록 하는 것이 더 바람직할 수 있다. 이를 위한 수단으로, 전극(30)은 양전극 및 음전극으로 구성되는 복수의 단위 전극쌍(31, 32, 33, 34)을 포함할 수 있으며, 상기 단위 전극쌍(31, 32, 33, 34)들은 상기 구이판(10)의 면에 접하면서 서로 이격하여 위치할 수 있다. 이 경우, 서로 이격하여 위치한 단위 전극쌍(31, 32, 33, 34)들에 서로 다른 전력량(전압)을 인가함으로써, 발열층(20)에 단위 전극쌍(31, 32, 33, 34)간 이격공간에 의해 형성되는 이격라인을 기준으로, 발열층(20)에 국부적인 온도 편차를 유발할 수 있다. 이러한 수단을 통해, 발열층(20)은 서로 다른 온도를 가질 수 있는 복수의 단위 발열 영역면을 포함할 수 있다. 즉, 상기 발열층(20)은 상기 단위 전극쌍(31, 32, 33, 34)들에 의해 온도가 달리 제어되어 서로 다른 온도를 가질 수 있는 단위 발열 영역면들을 포함할 수 있다. 이때 상기 단위 발열 영역면들은 서로 온도 편차를 가질 수 있으며, 상기 발열층(20)에 대응되는 각 단위 발열 영역면들은 실질적으로 동일한 물질일 수도 있고, 조성 또는 조성비가 상이한 다른 물질일 수도 있다. 상기 단위 발열 영역면들이 조성 또는 조성비가 상이한 다른 물질일 경우, 이들은 서로 인접, 즉, 서로 이격하거나 서로 접하거나 또는 일체형일 수도 있으며, 제조 효율 측면에서 일체형인 것이 좋을 수 있으나, 이에 제한되지 않음은 물론이다.
일 전극쌍(31, 32, 33, 34)에서, 양전극 및 음전극 사이에 위치하는 영역 및 이를 포함하는 발열층(20)은 상기 양전극 및 상기 음전극에 인가되는 전압에 의해 발열되며, 이때 상기 영역은 전술한 단위 발열 영역면을 의미할 수 있다. 따라서 상기 전극쌍(31, 32, 33, 34)간 이격거리를 조절함으로써, 단위 발열 영역면들의 형성 위치 및 크기를 조절할 수 있다.
상기 발열층과 접하는 구이판(10)의 타면은 상기 단위 발열 영역면에 대응되는 복수의 단위 구이판 영역면을 포함할 수 있다. 이때 상기 복수의 단위 구이판 영역면은 구획되어 있을 수도 있고, 구획되어 있지 않을 수도 있다. 전술한 바와 같이, 단위 발열 영역면이 독립적으로 온도 제어가 가능함에 따라, 이로부터 열에너지가 전달되는 구이판(10)은 온도가 독립적으로 제어되는 단위 구이판 영역면을 포함할 수 있다. 상기 단위 구이판 영역면들은 서로 동일 물질인 것이 바람직하나, 동일 물질이 아닌 경우도 가능함은 물론이다.
상술한 바와 같이, 상기 발열층(20)이 면 접촉하는 구이판(10)의 타면은, 단위 발열 영역면들과 대응되는 위치에 단위 구이판 영역면이 형성될 수 있다. 즉, 구이판(10)은 복수의 단위 구이판 영역면을 포함할 수 있으며, 상기 단위 구이판 영역면들은 서로 독립적으로 온도가 제어되는 것일 수 있다. 구체적으로, 발열층(20)은 제1 단위 발열 영역면 내지 제n 단위 발열 영역면을 포함할 수 있고, 구이판(10)은 제1 단위 구이판 영역면 내지 제n 단위 구이판 영역면을 포함할 수 있으며, 상기 n은 2 이상의 자연수이다. 이렇게 독립적으로 온도 조절이 가능한 단위 구이판 영역면들을 포함하는 구조를 가질 경우, 예컨대 제1 단위 구이판 영역면을 채소류, 제2 단위 구이판 영역면을 해물류, 제3 단위 구이판 영역면을 고기류, 제4 단위 구이판 영역면을 소스류 등의 용도로 사용하는 것과 같은 예로서, 대상의 종류에 따라 구획된 단위 구이판 영역면들을 가지는 전기구이판을 제공할 수 있다. 그러나 위에서 설명한 용도는 바람직한 일 예로서 설명한 것일 뿐, 상기 용도로서 한정되는 것이 아니며, 각 단위 구이판 영역면에 다양한 종류의 대상이 수용될 수 있음은 물론이다. 나아가 각 단위 구이판 영역면 당 한 종류 이상의 대상이 수용될 수 있고, 예컨대 2 이상의 대상이 각 단위 구이판 영역면에 수용될 수도 있다.
뿐만 아니라 크기가 큰 식재료 대상이 2 이상의 단위 구이판 영역면을 포함하는 대면적 영역에 겹쳐 수용될 수도 있다. 이 경우, 2 이상의 단위 구이판 영역면 사이에 구획라인이 돌출 또는 함몰 형태로 단차가 형성될 경우, 식재료 대상이 그릴에 구워진 것과 같은 효과를 부여할 수 있다. 이때 구획라인의 폭이 좁아질수록 식재료 대상이 그릴에 구워진 것과 같은 효과가 더 향상될 수 있다.
전술한 바와 같이, 상기 단위 구이판 영역면들은 구획되지 않은 수도 있고, 구획될 수 있다. 구체적으로, 상기 단위 발열 영역면이 구획될 경우, 단위 구이판 영역면들 사이에 형성되는 구획라인에 의해 구획될 수 있으며, 그 구조는 크게 제한되는 것은 아니고 다양한 형태를 가질 수 있으며, 일 예로, 선형(세로형, 가로형), 동심원형, 동심사각형, 격자(바둑판)형,곡선형 등의 다양한 형태로서 적용될 수 있다. 또한 단위 발열 영역면을 포함하는 발열층(20)의 면적은 조리 용기의 크기, 대상의 양에 따라 적절히 조절될 수 있다.
상기 구획라인은 단위 구이판 영역면들을 구분하여 구획하기 위한 것으로, 구획은 구획라인이 돌출되거나 함몰되는 단차에 의해 형성될 수도 있고, 단차 없이 식별부재(페인트층, 필름층 등) 등으로 구획될 수도 있으며, 바람직하게는 단차에 의해 형성되는 것이 좋다. 바람직한 일 예로, 구획라인이 돌출되어 형성될 경우, 단위 구이판 영역면들에 수용되는 대상이 액상인 경우에도 대상이 다른 단위 구이판 영역면으로 이동하는 것을 방지할 수 있는 측면에서 좋다. 단위 구이판 영역면들이 서로 이격하여 형성될 경우, 이의 이격거리, 즉, 구획라인의 폭은 크게 제한되지 않고 적절히 조절될 수 있고, 예컨대 2 내지 50 mm, 구체적으로 3 내지 30 mm를 들 수 있다. 구획라인이 돌출되거나 함몰되어 형성될 경우, 돌출 높이 또는 함몰 높이는 크게 제한되는 것은 아니며, 예컨대 2 내지 50 mm, 구체적으로 3 내지 30 mm를 들 수 있다. 하지만 이는 구체적인 일 예로서 설명된 것일 뿐, 본 발명이 이에 제한되지 않음은 아니다.
또한 상기 단위 구이판 영역면들은 서로 간에 높이가 다른 단차를 가질 수 있다. 구체적인 일 예로, 제n 단위 구이판 영역면보다 높거나 낮은 높이로 제n+1 단위 구이판 영역면이 형성될 수 있으며, 상기 n은 1 이상의 자연수이다.
뿐만 아니라, 상기 구이판(10)은 식재료 대상의 안정적인 수용을 위한 측면에서 구획라인과 유사하게, 단위 구이판 영역면, 예컨대 최외곽 단위 구이판 영역면을 둘러싸는 돌출라인(10s)을 포함할 수 있다. 상기 돌출라인의 형태, 구조, 규격, 크기 등은 상기 구획라인에서 설명한 바와 같다.
상기 발열층(20)은 일체형인 것이 바람직할 수 있지만, 단위 발열 영역면들은 서로 이격되어 구획될 수도 있다. 단위 발열 영역면들의 이격거리, 즉, 이격된 선의 폭은 크게 제한되지 않고 적절히 조절될 수 있으며, 예컨대 1 내지 50 mm, 구체적으로 1 내지 30 mm를 들 수 있다. 하지만 이는 구체적인 일 예로서 설명된 것일 뿐, 본 발명이 이에 제한되지 않음은 아니다.
상기 구획라인, 상기 이격라인, 상기 이격된 선은 직선, 곡선 또는 이들이 조합되어 형성될 수 있으며, 라인 또는 선의 중간이 일부 끊어지거나 폐쇄된 형태, 예컨대 단위 발열 영역면, 단위 구이판 영역면 또는 전극(30)의 일부가 서로 이격하지 않고 연결되는 구조도 가능함은 물론이다. 단위 구이판 영역면에 대한 일 예로, 단위 구이판 영역면의 일부가 서로 이격하지 않고 연결되는 부분이 배출유로로서, 식재료 대상으로부터 배출되는 액상 물질이 관통홀(10h) 등으로 배출되도록 할 수 있다.
상기 전기구이판은 상기 구이판(10) 또는 상기 발열층(20)에 접하는 온도센서를 더 포함할 수 있다. 온도센서를 통해 구이판(10)의 온도를 실시간으로 측정할 수 있으며, 측정된 값으로부터 발열층(20)에 인가되는 전력량을 조절하여 구이판(10)의 온도를 제어할 수 있다. 구체적으로, 목적 온도로 기 설정된 구이판(10)으부터 대상에 열에너지가 전달될 때에 순간적으로 구이판(10)의 온도가 감소하거나, 기타 환경 조건에 의해 구이판(10)의 온도가 변하여 대상에 열에너지를 요구량으로 정밀하게 전달하기 어려울 수 있다. 하지만 상기 온도센서를 통해 구이판(10)의 온도를 실시간으로 측정할 수 있음에 따라, 발열층(20)이 구이판(10)로 전달하는 열에너지량을 실시간으로 보정할 수 있도록 함으로써 목적 온도를 유지하도록 하는 등의 정밀한 제어가 가능하다. 특히 본 발명에 따른 전기구이판은 상기 발열층(20)이 구이판(10)의 일면에 면 접촉되는 구조를 가짐에 따라, 1 개 또는 소수의 온도센서만으로도 국부적 온도 편차 없이 정밀하게 온도 측정이 가능하여 구이판(10)의 넓은 면적을 커버할 수 있다.
또한 상기 온도센서는 2 이상으로 구비될 수 있으며, 이 경우, 온도센서들은 구이판(10) 또는 발열층(20) 상에 소정 간격으로 이격하여 위치할 수 있다. 이를 통해 국부적인 온도 편차를 감지할 수 있고, 구이판(10) 또는 발열층(20)의 손상 여부 등의 확인이 가능하며, 정밀한 온도 제어가 가능하다.
나아가 상기 온도센서가 2 이상이 사용되어, 구이판(10)의 특정 영역면의 온도를 독립적으로 제어할 수 있다. 구체적으로, 단위 발열 영역면 또는 구단위 구이판 영역면들에 각각 온도센서들이 대응되어 구비될 수 있다. 즉, 상기 전기구이판는, 상기 단위 발열 영역면들 또는 상기 단위 구이판 영역면에 접하는 복수의 온도센서를 더 포함할 수 있으며, 상기 온도센서를 통해 상기 단위 발열 영역면들 또는 상기 단위 구이판 영역면들의 온도가 독립적으로 제어되는 것일 수 있다. 따라서 온도센서를 통해 구이판(10)의 각 단위 구이판 영역면들의 온도를 실시간으로 측정할 수 있으며, 측정된 값으로부터 각 단위 발열 영역면 또는 전극(30)에 인가되는 전력량을 조절하여 구이판(10)의 각 단위 구이판 영역면들의 온도를 독립적으로 제어할 수 있다.
상기 단위 발열 영역면들은 조성 또는 조성비가 동일할 수도 있고, 서로 상이할 수도 있다. 단위 발열 영역면들의 조성 또는 조성비가 동일하거나 또는 상이하여도, 전술한 바와 같이, 각 단위 발열 영역면 또는 전극(30)에 인가되는 전력량을 조절하여 구이판(10)의 각 단위 구이판 영역면들의 온도를 독립적으로 제어할 수 있다.
상기 단위 발열 영역면들이 조성 또는 조성비가 상이할 경우, 상기 단위 발열 영역면들마다 전기에너지로부터 열에너지로 변환되는 열전환 효율이 상이한 것으로 인해, 상기 단위 발열 영역면들에 각각 대응하는 구이판(10)의 특정 영역면들의 온도가 자동적으로 달라지도록 할 수 있다. 예를 들어, 열전환 효율이 높은 단위 발열 영역면에 대응하는 구이판(10)의 영역면은 열전환 효율이 낮은 단위 발열 영역면에 대응하는 구이판(10)의 영역면보다 높은 온도를 유지하게 된다. 따라서 발열층(20)에 인가되는 전력량의 조절 없이, 또는 발열층(20)에 인가되는 전력량이 동일하여도 구이판(10)의 영역면들마다 상이한 온도를 부여할 수 있다. 상기 단위 발열 영역면들의 조성 또는 조성비가 상이하도록 하는 수단으로서, 후술하는 발열 조성물의 조성 또는 조성비를 달리하여 발열 조성물로부터 발열층(20)이 형성됨으로써 가능하다.
상기 온도센서들로부터 상기 단위 구이판 영역면들 또는 단위 발열 영역면의 온도 정보를 수신하고, 상기 단위 발열 영역면들 또는 전극(30)에 인가되는 전력량을 독립적으로 조절하여, 상기 단위 구이판 영역면들의 온도를 독립적으로 제어하는 제어부를 더 포함할 수 있다. 온도센서로부터 측정된 각 온도 값으로부터 사용자가 단위 구이판 영역면의 온도를 조절하도록 하거나 또는 자동적으로 단위 구이판 영역면의 온도를 조절하도록 하는 다양한 제어 수단이 사용될 수 있다. 이러한 제어부의 구체적인 구조 및 구비되는 위치는 널리 공지된 기술이므로, 공지 기술을 참고하면 되며, 예컨대 전기구이판의 내부, 외부 또는 외부와 떨어져 구비될 수 있으나, 이에 제한되지 않음은 물론이다. 예를 들어, 제어부는 아날로그형, 디지털형 또는 이들의 혼합형일 수 있으며, 또한 사용자가 손쉽게 제어할 수 있도록 하는 물리 조절부가 더 구비될 수 있다. 상기 물리 조절부는 버튼식, 회전식 등의 기계적 형태를 가지거나, 전자식 등의 다양한 형태로 구현될 수 있다. 또한 경우에 따라 공지된 수단을 통해 구이판(10)로부터 전도되는 열을 최소화할 수 있는 열전도 감소 부재 등이 더 구비될 수도 있다. 뿐만 아니라 상기 전기구이판은 상기 온도센서로부터 수신된 온도 값을 표시하는 디스플레이부를 더 구비할 수 있다. 디스플레이부의 구체적인 구조 및 구비되는 위치는 널리 공지된 기술이므로, 공지 기술을 참고하면 되며, 예컨대 전기구이판의 외면 또는 외부와 떨어져 구비될 수 있으나, 이에 제한되지 않음은 물론이다.
상기 온도센서는 접촉식센서, 비접촉식센서 또는 이들 모두가 사용될 수 있으나, 바람직하게는 접촉식센서인 것이 온도 제어의 정밀도를 현저하게 향상시킬 수 있는 측면에서 좋다. 구체적으로, 온도센서는 그 종류에 크게 제한을 두지 않으며, 일 예로, 반도체(Semiconductor) 타입, 열전대형(Thermocouple) 타입, 저항온도센서 타입(Resistance temperature detector, RTD), NTC써미스터(NTC Thermistor) 타입 등을 들 수 있다.
상기 전기구이판는, 상기 전극(30)에 전력을 인가하는 전원부를 더 포함할 수 있다. 이때 전원부는 전기 에너지를 공급할 수 있는 수단으로서, 기 공지된 것이므로 제한되지 않는다. 전원부의 구체적인 구조 및 구비되는 위치는 널리 공지된 기술이므로, 공지 기술을 참고하면 되며, 예컨대 전기구이판의 내부, 외면 또는 외부와 떨어져 구비될 수 있으나, 이에 제한되지 않음은 물론이다.
상기 전극(30)은 전도성이 있는 공지된 전극(30) 재료라면 무방하며, 통상 전해동박, 압연동박, 구리동박 등의 구리계 전극(30)이 주로 사용될 수 있으나, 이 외에도 다양한 금속 또는 전도성이 있는 물질이 사용될 수 있다. 또한 전극(30)의 형태 및 구조도 전도성이 있으면 무방하므로 제한을 두지 않는다. 전극(30)의 두께 또한 적당한 내구성을 가질 수 있을 정도면 적절히 설정될 수 있는 것이므로 제한되지 않으며, 예컨대 1 내지 1,000 ㎛를 들 수 있다. 하지만 이는 구체적인 일 예로서 설명된 것일 뿐, 본 발명이 이에 반드시 제한되어 해석되는 것은 아니다.
상기 전극(30)은 양극(31a, 32a, 33a, 34a) 및 음극(31b, 32b, 33b, 34b)으로서 전극쌍으로 발열층(20)에 접할 수 있다. 즉, 전극(30)은 단위 발열 영역면들에 각각 접하는 복수의 단위 전극쌍(31, 32, 33, 34)을 포함할 수 있다. 구체적으로, 제1 단위 전극쌍(31a, 31b)은 서로 이격하여 제1 단위 발열 영역면(21)에 접하여 구비될 수 있으며, 제2 단위 전극쌍(32a, 32b)은 서로 이격하여 제2 단위 발열 영역면(22)에 접하여 구비될 수 있으며, 제3 단위 전극쌍(33a, 33b)은 서로 이격하여 제3 단위 발열 영역면(23)에 접하여 구비될 수 있으며, 제4 단위 전극쌍(34a, 34b)은 서로 이격하여 제4 단위 발열 영역면(24)에 접하여 구비될 수 있다. 이때 상기 단위 전극쌍(31, 32, 33, 34)들은 서로 독립적으로 전원부로부터 전력이 인가될 수 있다. 즉, 전원부로부터 각각 다른 전력량의 전기에너지가 단위 전극쌍(31, 32, 33, 34)들에 인가될 수 있다.
구체적인 일 예로, 전극쌍(31, 32, 33, 34)의 양전극 또는 음전극은 양단이 이어지지 않은 형태일 수도 있고, 양단이 이어진 폐쇄된 형태일 수도 있다. 양전극 또는 음전극이 폐쇄된 형태일 경우, 즉, 양단이 이어진 경우, 양단이 이어져 형성되는 내부 빈 공간에 반대전극(양전극 또는 음전극)이 위치할 수 있다. 이러한 구조를 가질 경우, 보다 효과적인 열효율 및 성능을 가질 수 있다. 보다 구체적으로, 도 9에 도시된 바와 같이, 폐쇄된 곡선을 가지는 링 형상의 전극(양극 또는 음극)과, 상기 전극 내부에 반대 전극(음극 또는 양극)이 위치할 수 있다.
상기 전극(30)은 발열층(20)과 접하여 전기에너지가 인가될 수 있다면 그 형태, 구조 및 형성 방법에 크게 제한을 두지 않으며, 일 예로 다음과 같은 방법이 예시될 수 있다. 구체적인 일 예로, 구이판(10)의 일면에 전극(30)이 형성된 이후에 발열층(20)을 형성하기 위한 발열 조성물이 상기 전극(30)을 덮어 도포되는 방법 또는 구이판(10)의 일면에 상기 발열 조성물이 도포되어 발열층(20)이 형성된 이후에 전극(30)이 상기 발열층(20)에 형성되는 방법 등을 들 수 있다. 이때 전극(30)이 구이판(10) 또는 발열층(20)에 형성(접합)되는 방법은, 발열 조성물이 경화되어 발열층(20)이 형성되는 과정에서의 접합 특성에 기인한 것일 수도 있으며, 공지된 전도성 접착 조성물에 의해 접합되는 것일 수도 있다. 전도성 접착 조성물의 일 예로, 탄소나노튜브-은 복합체를 포함하는 에폭시 수지 조성물을 들 수 있다. 하지만 이는 바람직한 일 예로서 설명된 것일 뿐, 본 발명이 이에 제한되지 않음은 물론이다.
본 발명에 따른 전기구이판는, 열선인 발열부가 구이판(10)에 형성된 종래의 전기구이판과 달리, 발열부가 층으로서 구이판(10)의 일면에 직접 면 접촉하여 존재함으로써, 종래와 비교하여 구이판(10)과 발열부와의 접촉 면적이 크고, 높은 열에너지를 빠르게 구이판(10)에 인가할 수 있다. 구체적인 일 예로, 본 발명의 일 예에 따른 전기구이판은 하기 관계식 1을 만족할 수 있다. 하기 관계식 1에서, A H는 구이판(10)과 접하는 발열층(20)의 면적이며, A T는 구이판(10)의 전체 면적이다. 여기서 ‘구이판(10)의 전체 면적’은 단위 면적당 열전도율이 비슷하거나 실질적으로 동일한, 열이 전도되는 구이판(10)의 전체 면적을 의미할 수 있으며, 구체적으로, 열에너지가 전달되는 대상이 수용되는 전체 영역에 대응하는 구이판(10)의 전체 면적, 즉, 상기 단위 구이판 영역면의 전체 면적을 의미할 수 있다.
[관계식 1]
0.5≤ A H/A G ≤ 1
열선인 발열부가 구이판(10)에 형성된 종래의 전기구이판은 열선과 구이판(10)과의 접착 수단으로 접합 조성물이 사용되며, 열선과 구이판(10) 사이에 이격공간이 존재하는 부위가 있거나, 초기에 상기 부위가 없더라도 장기간 사용됨에 따라 상기 이격 공간이 이후 형성될 확률이 높다. 따라서 종래의 열선을 이용한 전기구이판은 매우 낮은 열효율을 가지는 것은 물론, 승온 속도가 매우 낮은 등의 한계가 있다. 하지만 본 발명에 따른 전기구이판은 상기 발열 조성물로 형성되는 발열층(20)을 포함함으로써 구이판(10)과 발열층(20)이 직접 면 접합되어 높은 열효율을 가지는 것은 물론, 승온 속도가 매우 높은 효과가 있다.
본 발명에 따른 전기구이판은 상기 발열 조성물로 발열층(20)이 구이판(10)의 일면에 면 접촉하여 형성되며, 형성(제조) 과정에서 구이판(10)의 일면이 평탄하지 않거나 매끄럽지 않는 등의 표면조도가 어느 정도 높은 상태에서도 높은 밀착력 및 접합력으로 형성된다. 따라서 발열층(20)과 구이판(10) 간 이격 공간이 실질적으로 없음에 따라 높은 열효율 및 반응속도를 구현할 수 있다. 일 예로, 발열층(20)이 면 접촉되어야 할 구이판(10)의 일면이 100 내지 1,000 ㎛의 표면조도는 갖더라도 높은 밀착력 및 접합력으로 발열층(20)과 구이판(10) 간 이격 공간 형성 없이 제조 가능하다.
상기 구이판(10) 및 상기 발열층(20)의 두께는 요구 목적 및 규모에 따라 적절히 조절될 수 있는 사항이나, 각 두께는 후술하는 범위의 평균두께를 가지는 것이 바람직할 수 있다.
상기 발열층(20)의 평균두께는 10 ㎛ 내지 2 mm일 수 있다. 이를 만족할 경우, 너무 얇은 두께에 의해 고전압이 요구되는 문제 및 너무 두꺼운 두께에 의해 발열층(20)에 균열이 발생하거나 면저항이 크게 낮아져 발열이 현실적으로 어려운 문제를 방지할 수 있다.
상기 구이판(10)의 평균두께는 5 내지 50 mm, 구체적으로 5 내지 30 mm일 수 있다. 이를 만족할 경우, 너무 얇은 두께에 의해 보온성이 저하되어 외부로 열이 쉽게 손실되는 문제 및 너무 두꺼운 두께에 의해 긴 예열시간 및 전력 소모가 커지는 문제를 최소화할 수 있다.
상기 구이판(10)의 재질은 열에너지가 전달되는 대상의 종류에 따라 적절히 조절 될 수 있다. 구체적으로, 5~350℃에서 장기간 견딜 수 있는 내열성을 가지며, 발열층(20)에 의해 열전도가 가능한 물질이라면 크게 제한되지 않는다.
상기 구이판(10)의 종류로, 금속계, 세라믹계, 탄소계 및 고분자계 중에서 선택되는 어느 하나 또는 둘 이상을 포함하는 것이 사용될 수 있다. 상기 금속계의 구체적인 일 예로, 스테인레스, 철, 구리, 마그네슘, 알루미늄 및 이들의 합금 등에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있다. 상기 세라믹계의 구체적인 일 예로, 화강석, 대리석, 화산석, 옥돌, 곱돌 등의 각종 암석류 또는 광물류; 유리, 파이렉스, 석영, 도자기 등의 광물 유래 소성류; 및 Ti, Mg, Cu, Au, Ag, Cr, Pt, Fe, Al 및 Si 등에서 선택되는 금속의 산화물류; 등에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있다. 상기 탄소계의 구체적인 일 예로, 흑연, 탄소나노튜브, 탄소섬유, 다이아몬드, 다이아몬드유사카본(Diamond-like carbon, UDC) 및 그래핀 등에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있다. 상기 고분자계의 구체적인 일 예로, 합성 고분자류, 천연 고분자류, 목재류 및 종이 등의 펄프류 등에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있다. 상기 구이판(10)은 통상 식재료를 구울 수 있고, 식재료를 구울 수 있는 정도의 충분한 내열성을 가지는 것이라면 크게 제한되지 않으나, 전술한 암석류 또는 광물류가 사용되는 것이 식재료의 맛을 더 향상시킬 수 있는 측면에서 좋을 수 있다. 하지만 이는 구체적인 일 예로서 설명된 것일 뿐, 열에너지가 전달되는 대상의 구체적 종류에 따라 적절히 조절될 수 있으므로, 발명이 이에 반드시 제한되어 해석되는 것은 아니다.
상기 구이판의 형태는 제한되지 않으며, 원형, 타원형, n각형(n은 3 이상), 곡면과 평면을 가지는 형태 등 다양한 형태를 가질 수 있음은 물론이다.
상기 전기구이판은 발열층(20) 및/또는 전극(30)을 덮는 절연막을 더 포함할 수 있다. 절연막은 발열층(20) 및/또는 전극(30)을 덮어 요구되지 않는 경로로 전기가 흐르는 것을 방지할 수 있는 것으로서 전기 저항이 높은 것이 바람직하며, 이의 구체적 종류로는 공지된 문헌을 참고하면 된다. 구체적인 일 예로, 통상적으로 알려진 절연 페이스트를 도포하고 경화하여 절연층을 발열층(20) 및 전극(30) 상에 형성할 수 있다. 상기 절연 페이스트의 구체적인 예로, 절연 세라믹 분말 및 유기 바인더를 포함할 수 있으며, 25℃에서 1,000 내지 80,000 cps의 점도를 갖는 것을 들 수 있다. 하지만 이는 바람직한 일 예로서 설명된 것일 뿐, 본 발명이 이에 제한되지 않음은 물론이다.
상기 발열층(20)에 인가되는 전압은 발열층(20)의 두께, 전극(30)간 이격거리 등의 다양한 조건에 의해 제어될 수 있고, 목적 온도에 도달할 수 있을 정도라면 적절히 조절될 수 있으며, 예컨대 5 내지 240 V일 수 있으나 이에 제한되지 않음은 물론이다. 구체적으로 본 발명의 일 예에 따른 전기구이판은 전압이 50 내지 70 V로 인가될 시, 초기 10 분 동안 8 내지 30 ℃/min의 승온속도를 가질 수 있다. 또한 발열층(20)의 조성을 조절함으로써 12 V의 저전압의 DC 전원으로도 사용 가능한 효과가 있다.
전술한 바와 같이, 본 발명에 따른 전기구이판은 발열층(20)이 구이판(10)과 면 접촉하면서, 상기 발열층이 탄소나노튜브 및 규소계 접착제를 포함하는 발열 조성물에 의해 형성됨에 따라 상술한 효과들이 구현된다.
또한 상기 발열층(20)은 그 조성 또는 조성비에 따라 열전환 효율이 상이하도록 할 수 있음에 따라, 각 단위 발열 영역면들마다 서로 상이한 온도를 자동적으로 유지하도록 할 수 있는 효과가 있다.
이하 상기 발열층(20)과, 이를 형성하는 발열 조성물의 조성/조성비 및 이의 형성 방법을 보다 구체적으로 설명한다.
상기 발열 조성물은 탄소나노튜브 및 규소계 접착제를 포함한다.
상기 탄소나노튜브(carbon nano tube, CNT)는 통상적으로 알려진 것을 사용하면 무방하다. 탄소나노튜브의 구체적인 예로, 단일벽 탄소나노튜브(Single wall CNT), 이중벽 탄소나노튜브(Double wall CNT) 및 다중벽 탄소나노튜브(Multi wall CNT) 등을 들 수 있으며, 이들을 둘 이상 포함할 수도 있다. 탄소나노튜브의 평균직경 및 평균길이는 크게 제한되지 않으며, 일 예로 각각 0.9~3.0 nm 및 0.1~30 ㎛일 수 있다. 하지만 이는 구체적인 일 예로서 설명된 것일 뿐, 본 발명이 이에 제한되지 않음은 물론이다.
상기 규소계 접착제는 규소(Si) 원자와 산소(O) 원자가 교대로 되어있는 폴리실록산 주쇄를 가지는 고분자일 수 있으며, 주로 각각의 규소 원자에 통상 2 개의 알킬기(메틸, 에틸, 프로필 등) 또는 페닐기(-C 6H 5) 등의 유기 원자단이 결합되어 있는 구조를 가질 수 있다. 구체적인 일 예로, 규소계 접착제는 폴리실록산 주쇄에 수소, 히드록시기, 메틸기 및/또는 페닐기가 결합되어 있을 수 있다. 이때 폴리실록산 주쇄, 즉, SiO 2의 함량은 전체 규소계 접착제 전체 중량에 대하여 45 내지 65 중량%, 바람직하게는 47 내지 63 중량%인 이 바람직한 예일 수 있다.
바람직한 일 예로, 상기 규소계 접착제는 관능기인 히드록시기를 가지는 실라놀(silanol)기를 갖는 것이 좋을 수 있으며, 바람직하게는 규소계 접착제 전체 중량에 대하여 0.1 내지 10 중량%, 더욱 바람직하게는 1 내지 6 중량%인 것이 좋을 수 있다. 이를 만족할 경우, 구이판과 발열층(20)의 접합 특성을 보다 향상시킬 수 있고, 열전도율을 더욱 향상시킬 수 있으며, 건조성, 강도, 유연성, 가공성의 저하를 방지할 수 있다. 하지만 이는 바람직한 일 예로서 설명된 것일 뿐, 본 발명이 이에 제한되지 않음은 물론이다.
바람직한 일 예로, 상기 규소계 접착제는 열안정성을 더욱 향상시키기 위해 메틸기와 페닐기의 비율이 일정 범위에 속하는 것이 좋을 수 있다. 구체적으로, 상기 메틸기와 페닐기의 비율은 메틸기 1 몰비에 대하여 페닐기 0.3 내지 2.5 몰비, 바람직하게는 메틸기 1 몰비에 대하여 페닐기 0.4 내지 2.0 몰비인 것이 좋을 수 있다. 이를 만족할 경우, 전기구이판, 구체적으로 구이판(10)의 내구성을 보다 향상시킬 수 있고, 더 높은 온도에서 장기간 사용 가능하며, 급격한 온도 변화에 따른 구이판의 내구성 저하를 감소시킬 수 있다. 또한 기계적 강도 및 내열성의 하락과 발수성 및 가공성의 하락을 방지할 수 있다. 하지만 이는 바람직한 일 예로서 설명된 것일 뿐, 본 발명이 이에 제한되지 않음은 물론이다.
상기 규소계 접착제는 가열에 의해 관능기 간 결합이 발생하여 경화될 수 있으며, 바람직하게는 가교도 55 내지 80%, 중량평균분자량 1,000 내지 400,000인 것이 가공성 및 기계적인 물성 측면에서 바람직할 수 있다. 하지만 이는 바람직한 일 예로서 설명된 것일 뿐, 본 발명이 이에 제한되지 않음은 물론이다.
상기 조성물의 조성비는 크게 제한되는 것은 아니나, 바람직하게는 탄소나노튜브 1 내지 50 중량% 및 규소계 접착제 1 내지 30 중량%, 보다 구체적으로 탄소나노튜브 3 내지 40 중량% 및 규소계 접착제 2 내지 20 중량%를 포함할 수 있다. 이때 상기 조성물은 유기용매를 더 포함할 수 있으며, 이의 함량은 잔량으로서 사용될 수 있다.
상기 유기용매는 제한되지 않으며, 일 예를 든다면, 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글리콜, 폴리에틸렌글리콜, 테트라하이드로퓨란, 디메틸포름아미드, 디메틸아세트아미드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드, 디에틸렌글리콜에틸에테르 및 터피네올 등에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있다.
바람직한 일 예에 있어서, 상기 발열 조성물은 바인더 및 분산제 등에서 선택되는 어느 하나 이상을 더 포함하는 것이 좋을 수 있다. 상기 바인더가 발열 조성물에 포함될 경우, 발열 조성물의 가공성을 향상시키고, 발열 조성물이 구이판(10)에 도포되어 발열층(20)이 형성될 경우, 이 과정에서 구이판(10)와의 밀착성이 보다 향상될 수 있다.
상기 바인더는 제조 방법 등에 한정되지 않지만, 일정 범위의 점도를 가지는 것이 발열 조성물의 도포성을 향상시키는 측면에서 좋을 수 있다. 구체적인 일 예로, 상기 바인더는 25℃에서 10 내지 50,000 cps(centipoise)의 점도를 가질 수 있다.
상기 바인더는 에틸셀룰로스 및 니트로셀룰로스 등에서 선택되는 어느 하나 이상의 유기 바인더를 포함할 수 있다. 이러한 유기 바인더는 고온에 강하고, 접착 및 내구성이 우수할 뿐만 아니라, 상대적으로 낮은 전압에서도 효율적으로 발열 가능한 효과가 있다. 하지만 이는 바람직한 일 예로서 설명된 것일 뿐, 본 발명이 이에 반드시 제한되어 해석되는 것은 아니다.
상기 바인더가 발열 조성물에 포함될 경우, 발열 조성물 전체 중량에 대하여 1 내지 20 중량%, 바람직하게는 3 내지 15 중량%로 포함되는 것이 좋을 수 있다. 하지만 이는 바람직한 일 예로서 설명된 것일 뿐, 본 발명이 이에 제한되지 않음은 물론이다.
상기 분산제는 아미노 함유 올리고머 또는 폴리머의 포스포러스 에스테르염; 인산의 모노에스테르 또는 디에스테르; 산성 디카르복실산 모노에스테르; 폴리우레탄-폴리아민 부가물; 및 폴리알콕실화 모노아민 또는 디아민; 등에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있으나, 이에 본 발명이 제한되지 않음은 물론이다.
상기 분산제가 조성물에 포함될 경우, 조성물 전체 중량에 대하여 1 내지 20 중량%, 바람직하게는 2 내지 10 중량%로 포함되는 것이 좋을 수 있다. 하지만 이는 바람직한 일 예로서 설명된 것일 뿐, 본 발명이 이에 제한되지 않음은 물론이다.
바람직한 일 예에 있어서, 상기 발열 조성물이 바인더, 분산제 및 유기용매를 더 포함할 경우, 이의 조성비는 탄소나노튜브 1 내지 50 중량%, 규소계 접착제 1 내지 30 중량%, 유기 바인더 1 내지 20 중량%, 분산제 1 내지 20 중량% 및 유기용매 1 내지 90 중량%를 포함하는 것이 바람직할 수 있다. 하지만 이는 바람직한 일 예로서 설명된 것일 뿐, 본 발명이 이에 제한되지 않음은 물론이다.
상기 발열층(20)은 그 형성 방법에 제한을 두지 않으며, 일 예를 든다면, 탄소나노튜브 및 규소계 접착제를 포함하는 발열 조성물이 구이판(10)의 일면에 도포되어 형성되는 방법, 상기 발열 조성물로 제조된 필름이 상기 구이판(10)의 일면에 접합되어 형성되는 방법 등 다양한 방법이 있다. 구체적으로, 발열층(20)의 형성 방법은 발열 조성물을 구이판(10)의 일면에 코팅하고 경화하는 방법, 발열 조성물을 경화하여 제조된 필름을 구이판(10)의 일면에 부착하는 방법 등이 있다. 코팅은 공지된 다양한 수단을 이용하면 되며, 일 예로, 스프레이법, 딥 코팅법, 도포법 등 다양한 방법을 들 수 있다. 경화는 열경화, 자연 경화, 광 경화 등의 공지된 다양한 방법을 사용할 수 있으며, 발열 조성물의 경화에 적합한 방법을 사용하면 된다. 또한 코팅을 2 회 이상 수행할 수도 있고, 필름을 2단 이상 더 적층하여 발열층(20)을 형성할 수도 있다.
상기 발열 조성물은 구이판(10)에 발열층(20)이 형성되기 전에 슬러리상 또는 필름상일 수 있다. 구체적으로, 발열 조성물이 구이판(10)의 일면에 도포되어 발열층(20)이 형성될 경우, 상기 발열 조성물은 슬러리상일 수 있다. 발열 조성물이 슬러리상일 경우, 구이판(10)에 발열층(20)이 형성되는 과정에서, 발열 조성물은 고체와 액체의 중간 굳기를 갖는 상태의 점도를 가질 수 있다.
이하 본 발명을 실시예를 통해 상세히 설명하나, 이들은 본 발명을 보다 상세하게 설명하기 위한 것으로, 본 발명의 권리범위가 하기의 실시예에 의해 한정되는 것은 아니다.
[제조예 1]
<발열 조성물의 제조>
삼각플라스크에 탄소나노튜브((주)한화나노텍) 1.5 g을 넣고, 유기용매인 알파-터피네올(α-terpineol) 33.75g, 에틸셀룰로스(Ethylcellulose) 1.25 g, 규소계 접착제(RSN-0806, 다우코닝) 5 g 및 분산제(DISPERBYK-192, BYK) 0.75 g을 투입하였다. 이어서 상기 삼각플라스크를 교반기에 장착하여 60 분 동안 교반하여 충분히 분산되도록 하여 발열 조성물을 제조하였다.
[실시예 1]
300 mm × 195 mm의 면적과 20 mm의 두께를 가지는 돌판(장수곱돌)을 구이판으로 준비하였다. 구이판 표면을 에탄올로 세척하고 250℃에서 30 분 동안 열처리하여 구이판 표면에 존재할 수 있는 이물질 등을 제거하였다.
상기 열처리된 구이판의 하면에 상기 제조예 1에서 제조된 발열 조성물을 습윤두께 600 ㎛로 도포하고 300℃에서 30 분 동안 열경화하여 발열층을 구이판에 면 코팅하였다. 이러한 코팅 과정을 한 번 더 반복하여 최종적으로 습윤두께 1.2 mm의 발열층이 구이판의 하면에 면 코팅된 전기구이판를 제조하였다. 이때 상기 발열층의 면적은 220 mm × 160 mm였다.
그리고 상기 발열층의 양단부에 각각 구리 전극 한 쌍을 접합하였으며, 이때 도 7에 도시된 바와 같이 발열층의 최외곽 단부에서 안쪽 방향으로 1 cm가 되는 폭의 구리 전극이 양단부를 길이방향으로 하여 선상으로 접합되었다. 구리 전극과 발열층과의 접합은 에폭시 실버페이스트(ELCOAT, CANS, Cat. no. : A-200)를 사용하였다.
상기 구리 전극 및 발열층의 총 면적의 단열 및 절연을 위해, 절연페이스트(AccuPaste TM Insulating Paste, (주)바이오니아, Cat. no. : TC-5000)를 구리 전극 및 발열층에 도포하여 절연막을 형성하였다.
[실시예 2]
실시예 1에서 두께가 20 mm인 구이판 대신 두께가 15 mm인 구이판을 사용한 것을 제외하고, 실시예 1과 동일하게 수행하였다.
[실험예 1]
<전기구이판의 전압에 따른 승온속도 평가>
실시예 1에서 제조된 전기구이판의 전압에 따른 승온속도를 테스트하기 위해, 전기구이판의 전극의 양단에 슬라이닥스를 연결하여 인가 전압을 각각 50, 60 및 70 V로 인가하여 열화상카메라(TiS50, FLUKE)로 전기구이판의 돌판의 온도를 측정하였다.
그 결과, 도 2에 도시된 바와 같이, 일정전압을 인가했을 시 돌판이 고르게 발열되는 것을 확인할 수 있어, 면적에 따른 온도 편차 발생을 실질적으로 방지할 수 있었다.
도 3은 각 인가전압에서 시간에 따른 돌판의 온도를 나타낸 그래프로, 이로부터 인가전압이 증가할수록 돌판의 온도도 증가하는 것을 확인할 수 있다. 구체적으로, 50 V로 전압이 인가되었을 경우 240℃에 도달하는 시간이 약 43 분, 60 V로 전압이 인가되었을 경우 약 18 분, 70 V로 전압이 인가되었을 경우 약 12 분이 소요되었다. 0~10 분까지의 승온속도를 비교해 보면, 50 V의 인가전압에서 약 9.5 ℃/min, 60 V의 인가전압에서 약 13.1 ℃/min, 70 V의 인가전압에서 약 18 ℃/min의 승온속도를 가짐을 확인하였다.
[실험예 2]
<전기구이판의 전압에 따른 온도 유지 평가>
실시예 1에서 제조된 전기구이판의 온도가 전압에 따라 일정하게 유지되는지를 평가하기 위해, 70 V의 인가전압에서 10 분 동안 유지한 후 40 V로 감소시켜 총 60 분 동안 전압을 인가하여 열화상카메라(TiS50, FLUKE)로 돌판의 온도를 측정하였다.
그 결과, 도 4에 도시된 바와 같이, 약 45 분 이후 220℃를 유지하는 것을 확인하였다. 이로부터 실시예 1에서 제조된 전기구이판는 인가전압을 통해 정밀하게 온도를 제어할 수 있음을 알 수 있다.
[실험예 3]
<구이판의 두께에 따른 승온 속도 평가>
전기구이판의 구이판의 두께에 따른 승온 속도 평가를 위해 실시예 1 및 실시예 2에서 제조된 두께만 서로 다른 각 전기구이판에 70 V의 전압을 인가하여 240℃까지 승온되는 시간을 측정하였다.
그 결과, 도 5에서 보여준 것처럼 구이판의 두께가 20 mm인 경우는 240℃까지 도달 시간이 약 14분 정도가 소요되었으며, 구이판의 두께가 15 mm인 경우는 240℃까지 도달하는 시간이 10 분 내외로 승온속도가 더 빨라짐을 알 수 있다. 실시예 1 및 실시예 2에 대한 0~10 분까지의 승온속도를 비교해 보면, 구이판 두께가 20 mm 일 경우 18℃/min의 승온속도를 가지며, 구이판 두께가 15 mm 일 경우 24℃/min의 승온속도를 가짐을 알 수 있다. ㄸㆍ라서 전기구이판의 구이판 두께가 더 얇아짐에 따라 구이판의 예열시간이 더 짧아짐을 알 수 있다.
[실험예 4]
<종래 열선히터를 이용한 전기구이판과의 비교 평가>
실시예 1에서 제조된 전기구이판과 대조군으로 종래 열선히터를 이용한 전기구이판과의 열효율 특성을 평가하기 위해, 일정 전압에서 시간에 따른 구이판의 온도 변화를 열화상카메라(TiS50, FLUKE)로 측정하였다.
종래의 열선히터를 이용한 전기구이판는 열선히터를 설치하고 그 위에 구이판을 놓고 가열하는 방식이다. 이러한 종래의 전기구이판는 열선히터만 발열하기 때문에 구이판 전체를 승온시키는데 시간이 오래 걸리는 것을 확인할 수 있었다.
구체적으로, 도 6에 도시된 바와 같이, 종래의 전기구이판는 240℃에 도달하지 못하고 약 180℃를 유지하는 것을 확인하였다. 또한 최대온도에 도달하는 시간이 25 분이 넘어가는 것을 확인할 수 있었다. 반면 실시예 1 및 실시예 2에서 제조된 전기구이판는 종래의 열선히터를 이용한 전기구이판와 비교하여 240℃에 도달하는 승온속도가 현저히 높음을 도 6으로부터 확인할 수 있다.
따라서 본 발명에 따른 전기구이판는 저전압에서도 열선히터 방식의 종래의 전기구이판와 비교하여 목표 온도에 도달하는 속도가 상대적으로 빨라 열효율이 매우 우수함을 알 수 있다.
[부호의 설명]
10 : 구이판, 10s : 돌출라인,
10h : 관통홀, 20 : 발열층,
30 : 전극, 31a(31b) : 제1 단위 전극,
32a(32b) : 제2 단위 전극, 33a(33b) : 제3 단위 전극,
34a(34b) : 제4 단위 전극

Claims (15)

  1. 구이판, 상기 구이판에 면 접촉하는 발열층 및 상기 발열층과 접하는 전극을 포함하는 전기구이판으로,
    상기 발열층은 탄소나노튜브 및 규소계 접착제를 포함하는 발열 조성물로 형성되는 것을 특징으로 하는 전기구이판.
  2. 제1항에 있어서,
    상기 전극은 양전극 및 음전극으로 구성되는 복수의 단위 전극쌍을 포함하며,
    상기 단위 전극쌍들은 서로 이격하는 전기구이판.
  3. 제2항에 있어서,
    상기 발열층은 상기 단위 전극쌍들에 의해 온도가 달리 제어되는 단위 발열 영역면을 포함하며,
    상기 발열층과 접하는 구이판의 타면은 상기 단위 발열 영역면에 대응되는 복수의 단위 구이판 영역면을 포함하고, 상기 단위 구이판 영역면들이 서로 독립적으로 온도가 제어되는 전기구이판.
  4. 제3항에 있어서,
    상기 전기구이판는, 상기 단위 발열 영역면들 또는 상기 단위 구이판 영역면들에 접하는 복수의 온도센서를 더 포함하며,
    상기 온도센서를 통해 상기 단위 구이판 영역면의 온도가 독립적으로 제어되는 전기구이판.
  5. 제3항에 있어서,
    상기 단위 발열 영역면들은 서로 조성 또는 조성비가 서로 상이하며,
    상기 조성 또는 조성비 차이에 의해 상기 단위 발열 영역면들의 온도가 독립적으로 제어되는 전기구이판.
  6. 제1항에 있어서,
    상기 전기구이판은 상기 구이판 또는 상기 발열층에 접하는 온도센서를 더 포함하는 전기구이판.
  7. 제2항에 있어서,
    상기 전기구이판는, 상기 단위 전극쌍들에 독립적으로 전력을 인가하는 전원부를 더 포함하는 전기구이판.
  8. 제7항에 있어서,
    상기 전원부는 상기 발열층에 5 내지 240 V의 전압을 인가하는 전기구이판.
  9. 제1항에 있어서,
    상기 발열층의 평균두께는 10 ㎛ 내지 2 mm인 전기구이판.
  10. 제1항에 있어서,
    상기 구이판의 평균두께는 5 내지 50 mm인 전기구이판.
  11. 제1항에 있어서,
    상기 구이판의 일면에 상기 전극이 형성된 후에 상기 발열 조성물이 상기 전극을 덮어 도포되는 것인 전기구이판.
  12. 제1항에 있어서,
    상기 구이판의 일면에 상기 발열 조성물이 도포되어 발열층이 형성된 후에 상기 발열층에 상기 전극이 접착 조성물에 의해 접합되는 전기구이판.
  13. 제1항에 있어서,
    상기 발열 조성물은 바인더를 더 포함하는 전기구이판.
  14. 제13항에 있어서,
    상기 발열 조성물은 탄소나노튜브 1 내지 50 중량%, 규소계 접착제 1 내지 30 중량%, 바인더 1 내지 20 중량%, 분산제 1 내지 20 중량% 및 유기용매 1 내지 90 중량%를 포함하는 전기구이판.
  15. 제14항에 있어서,
    상기 바인더는 에틸셀룰로스 및 니트로셀룰로스 중에서 선택되는 어느 하나 이상의 유기 바인더를 포함하며,
    상기 분산제는 아미노 함유 올리고머 또는 폴리머의 포스포러스 에스테르염; 인산의 모노에스테르 또는 디에스테르; 산성 디카르복실산 모노에스테르; 폴리우레탄-폴리아민 부가물; 및 폴리알콕실화 모노아민 또는 디아민; 중에서 선택되는 어느 하나 또는 둘 이상을 포함하며,
    상기 유기용매는 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글리콜, 폴리에틸렌글리콜, 테트라하이드로퓨란, 디메틸포름아미드, 디메틸아세트아미드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드, 디에틸렌글리콜에틸에테르 및 터피네올 중에서 선택되는 어느 하나 또는 둘 이상을 포함하는 전기구이판.
PCT/KR2019/006615 2018-06-01 2019-05-31 전기구이판 WO2019231295A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/734,197 US20210168909A1 (en) 2018-06-01 2019-05-31 Electric roasting pan
JP2020567034A JP7261823B2 (ja) 2018-06-01 2019-05-31 電気焼物板
EP19812553.6A EP3804584A4 (en) 2018-06-01 2019-05-31 ELECTRIC ROASTING PLATE
CN201980036851.2A CN112203563B (zh) 2018-06-01 2019-05-31 电烤盘

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0063426 2018-06-01
KR1020180063426A KR102062600B1 (ko) 2018-06-01 2018-06-01 전기구이판

Publications (1)

Publication Number Publication Date
WO2019231295A1 true WO2019231295A1 (ko) 2019-12-05

Family

ID=68698332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006615 WO2019231295A1 (ko) 2018-06-01 2019-05-31 전기구이판

Country Status (6)

Country Link
US (1) US20210168909A1 (ko)
EP (1) EP3804584A4 (ko)
JP (1) JP7261823B2 (ko)
KR (1) KR102062600B1 (ko)
CN (1) CN112203563B (ko)
WO (1) WO2019231295A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110934513A (zh) * 2019-12-13 2020-03-31 上海纯米电子科技有限公司 煎烤机及其控制方法
CA3234521A1 (en) * 2021-10-05 2023-04-13 W.C. Bradley Co. Electric grill with smart power booster
CN114287805A (zh) * 2021-12-14 2022-04-08 广东美的厨房电器制造有限公司 烤盘和烤箱

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135243A (ja) * 1997-10-28 1999-05-21 Sharp Corp 面状発熱体
JP2006325948A (ja) * 2005-05-26 2006-12-07 Masayuki Takashima 加熱調理器及び飲食物用加熱装置
JP2007143804A (ja) * 2005-11-28 2007-06-14 Masayuki Takashima 飲食物加熱装置
KR20120027081A (ko) * 2010-09-12 2012-03-21 김경중 가열 용기 및 그 제조 방법
KR20140131757A (ko) 2013-05-06 2014-11-14 조은빛 조리용기 가열부가 별도로 구성된 전기그릴
JP2017057246A (ja) * 2015-09-14 2017-03-23 リンテック株式会社 柔軟性シート、熱伝導部材、導電性部材、帯電防止部材、発熱体、電磁波遮蔽体、及び柔軟性シートの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3027294B2 (ja) * 1994-04-14 2000-03-27 シャープ株式会社 調理用ホットプレート
US20060027555A1 (en) * 2004-06-25 2006-02-09 Integral Technologies, Inc. Low cost heating elements for cooking applications manufactured from conductive loaded resin-based materials
KR20100073630A (ko) * 2008-12-23 2010-07-01 주식회사 해피콜 탄소나노튜브 함유한 코팅층을 갖는 조리용기
DE102009029464B4 (de) * 2009-09-15 2015-02-12 BSH Bosch und Siemens Hausgeräte GmbH Garraumvorrichtung mit CNT-Heizelement
CN203263098U (zh) * 2013-05-17 2013-11-06 美的集团股份有限公司 用于电炊具的发热装置及具有其的煎烤机
KR101447478B1 (ko) 2013-07-12 2014-10-06 (주)바이오니아 탄소나노튜브 또는 탄소나노튜브-금속 복합체를 이용한 세라믹 페이스트 조성물 및 이를 포함하는 도전성 필름
CN105637977A (zh) 2013-11-22 2016-06-01 东洋德来路博株式会社 碳放热组合物及碳放热体
CA2955361A1 (en) * 2014-07-18 2016-01-21 Kim Edward ELVERUD Resistive heater
KR101870862B1 (ko) * 2016-05-04 2018-06-26 주식회사 대유홀딩스 전기밥솥용 보온히터
CN106419622A (zh) * 2016-11-07 2017-02-22 四川唯诺家私有限公司 一种加热烤漆的电热膜烤盘结构
CN107616680A (zh) * 2017-09-12 2018-01-23 张秋妹 一种使用方便、节能的一体式碳化硅陶瓷锅
IT201700109605A1 (it) * 2017-09-29 2019-03-29 Verniciature Bresciane S R L Piano cottura con rivestimento riscaldante

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135243A (ja) * 1997-10-28 1999-05-21 Sharp Corp 面状発熱体
JP2006325948A (ja) * 2005-05-26 2006-12-07 Masayuki Takashima 加熱調理器及び飲食物用加熱装置
JP2007143804A (ja) * 2005-11-28 2007-06-14 Masayuki Takashima 飲食物加熱装置
KR20120027081A (ko) * 2010-09-12 2012-03-21 김경중 가열 용기 및 그 제조 방법
KR20140131757A (ko) 2013-05-06 2014-11-14 조은빛 조리용기 가열부가 별도로 구성된 전기그릴
JP2017057246A (ja) * 2015-09-14 2017-03-23 リンテック株式会社 柔軟性シート、熱伝導部材、導電性部材、帯電防止部材、発熱体、電磁波遮蔽体、及び柔軟性シートの製造方法

Also Published As

Publication number Publication date
JP2021524791A (ja) 2021-09-16
US20210168909A1 (en) 2021-06-03
JP7261823B2 (ja) 2023-04-20
EP3804584A1 (en) 2021-04-14
EP3804584A4 (en) 2022-03-23
CN112203563A (zh) 2021-01-08
KR102062600B1 (ko) 2020-01-07
CN112203563B (zh) 2023-09-12
KR20190137352A (ko) 2019-12-11

Similar Documents

Publication Publication Date Title
WO2019231295A1 (ko) 전기구이판
FI87964B (fi) Uppvaermningselement och uppvaermningsenhet
US6960741B2 (en) Large area alumina ceramic heater
EP0790754A2 (en) Heating elements and a process for their manufacture
US20100003358A1 (en) Electric heating device for hot runner systems
EP0773557B1 (en) Heat-resistant electrical wire comprising a benzimidazole-based polymer coating
WO2019004589A1 (ko) 질화 알루미늄 소결체 및 이를 포함하는 반도체 제조 장치용 부재
US20100068331A1 (en) Electric heating device for hot runner systems
KR101777690B1 (ko) 세라믹 히터용 발열 조성물, 그를 이용한 세라믹 히터 및 융착벨트
JP2002170651A (ja) セラミックヒータ
WO2017117873A1 (zh) 一种双面高导热能力的厚膜发热元件
WO2013002571A2 (en) Vacuum heat treatment apparatus
WO2012144741A2 (ko) 온도 자가조절형 면상발열체를 적용한 스팀발생기용 히터 및 그 제조방법
JP2007305406A (ja) 絶縁構造と、その絶縁構造を有するデバイス及び絶縁シート
KR200399652Y1 (ko) 후막형 발열체가 구비된 핫 플레이트
CN2712034Y (zh) 一种电加热元件
JP2646083B2 (ja) セラミツクヒータ
KR101980822B1 (ko) 발열 잉크조성물을 이용한 발열장치
JP3885265B2 (ja) セラミックス回路基板の製造方法
US20230262846A1 (en) Screen printed thick film metal heater with protective top dielectric layer
WO2012148126A2 (ko) 특정한 저항온도계수를 갖는 면상발열체 조성물 및 이를 이용한 면상발열체
JP2001210450A (ja) ウエハ加熱装置
WO2008065702A1 (fr) Matériau thermo-isolant pour four de traitement thermique, unité de chauffage électrique pour four de traitement thermique, et four de traitement thermique
RU32953U1 (ru) Электронагреватель
JP4688363B2 (ja) ウエハ加熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567034

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019812553

Country of ref document: EP

Effective date: 20210111