WO2019231249A1 - 시프트 바이 와이어 장치 및 이를 이용한 변속 방법 - Google Patents

시프트 바이 와이어 장치 및 이를 이용한 변속 방법 Download PDF

Info

Publication number
WO2019231249A1
WO2019231249A1 PCT/KR2019/006487 KR2019006487W WO2019231249A1 WO 2019231249 A1 WO2019231249 A1 WO 2019231249A1 KR 2019006487 W KR2019006487 W KR 2019006487W WO 2019231249 A1 WO2019231249 A1 WO 2019231249A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
shaft
shift
output shaft
controller
Prior art date
Application number
PCT/KR2019/006487
Other languages
English (en)
French (fr)
Inventor
민영대
김호영
오지환
김남규
Original Assignee
주식회사 현대케피코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 현대케피코 filed Critical 주식회사 현대케피코
Priority to DE112019002772.7T priority Critical patent/DE112019002772T5/de
Priority to CN201990000753.9U priority patent/CN215891078U/zh
Priority to US17/059,281 priority patent/US11391369B2/en
Publication of WO2019231249A1 publication Critical patent/WO2019231249A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/32Electric motors actuators or related electrical control means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • B62D5/005Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup means for generating torque on steering wheel or input member, e.g. feedback
    • B62D5/006Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup means for generating torque on steering wheel or input member, e.g. feedback power actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/08Range selector apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0206Layout of electro-hydraulic control circuits, e.g. arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/32Electric motors actuators or related electrical control means therefor
    • F16H2061/326Actuators for range selection, i.e. actuators for controlling the range selector or the manual range valve in the transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/08Range selector apparatus
    • F16H59/10Range selector apparatus comprising levers
    • F16H59/105Range selector apparatus comprising levers consisting of electrical switches or sensors

Definitions

  • the present invention relates to a shift by wire (SBW) device and a shift system using the same, and more particularly, to an actuator and a reducer structure of a shift by wire device.
  • SBW shift by wire
  • Shift-By-Wire which electronically controls the shifting control unit of the transmission, controls all the mechanically moving mechanisms electrically, and there is no mechanical operation unit (cable, mechanical manual valve) compared to the conventional SBC method. It has the advantage of reducing the weight (transmission) of the transmission and easy layout configuration.
  • SBW technology according to the prior art transmits the driver's shift will to the actuator through the controller, the final operation force is transmitted to the manual shaft side of the reducer and the shift output stage directly connected to the actuator.
  • the present invention has been proposed to solve the above problems, and an object thereof is to provide an SBW apparatus and a shifting system using the same, in which an SBW actuator and a reducer are integrated with a controller and an improved manual shaft position sensing structure.
  • the shift-by-wire device includes a housing, a motor generating torque through an applied current, a hollow rotor shaft, a reducer receiving torque of the motor and converting the torque to an output shaft, Encoder magnet is disposed at one end, and the other end is directly connected to the manual shaft, and is disposed in the output shaft shaft and the housing which transmits the increased torque by the reducer to the detent plate, and detects the position of the output shaft from the encoder magnet. It characterized in that it comprises a controller to.
  • a shift method using a shift-by-wire device includes receiving an operation request from a transmission controller according to a driver's selection of P, R, N, and D, and applying power to a motor to generate power. Rotating the output shaft shaft by the position of the gear stage and transmitting power to the manual shaft; and detecting the rotational position of the motor and the position of the output shaft in real time, stopping the motor driving, and transmitting the gear stage information to the transmission controller. Characterized in that.
  • the shift switch is sensed by detecting the position of the shift stage between the motor and the manual shaft and transferred to the transmission control unit (TCU).
  • TCU transmission control unit
  • the magnet is installed at the end of the SBW output shaft and the position sensor of the integrated controller detects this, thereby eliminating the inhibitor switch, thereby reducing the cost of reducing parts.
  • the motor rotation shaft is hollow and the output shaft extends through the inside to the controller position, it is possible to directly detect the position of the manual shaft, and to minimize the position error caused by the backlash of the reduction gear. There is a possible effect.
  • FIG. 1 is a cross-sectional view showing a separate controller type SBW apparatus according to the prior art.
  • FIG. 2 is a view showing a component configuration of the SBW device according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of an SBW device according to an embodiment of the present invention.
  • FIG. 4 is a side cross-sectional view of an SBW device according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a departure prevention structure of a sensing plate of an SBW device according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a shift method using an SBW device according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a separate controller type SBW apparatus according to the prior art.
  • the controller separate type SBW device comprises a motor (1), a rotor shaft (2), a rotor magnet (3), a reducer (4), a manual shaft (5), and a shift stage position as described above.
  • an inhibitor switch 6 is included for grasping.
  • the present invention has been proposed to solve the above-mentioned problems, and by detecting the position of the shift stage using a magnet and a controller side MR sensor attached to one end of the output shaft shaft, the controller can accurately determine the position of the current shift stage. Do.
  • the SBW apparatus includes a motor that generates torque, a speed reducer that converts torque to a level capable of driving a system (transmission device), and controls the driving of the motor and controls the positions of the motor and the output shaft. It is configured to include a controller for sensing and transmitting to the TCU, which will be described below with reference to FIGS. 2 to 4.
  • the SBW device is an air vent cover 20, gear cover 30, wave washer 40, O-ring 50, outer gear 60 , Bearing, output shaft shaft 80, inner gear 90, motor cover, insulator 110, stator core, busbar mold, busbar 140, housing 150, gasket, housing cover 170, rotor
  • the shaft 180, the rotor can 190, the rotor core 200, the motor magnet 210, the rotor magnet yoke 220, the motor sensor magnet 230, and the encoder magnet 240 are configured to be included.
  • the torque is received from the housing 150, the motor 300 generating torque through the applied current, the hollow rotor shaft 180, and the motor 300,
  • the reducer 400 converts it and transmits it to the output shaft, and penetrates the inside of the rotor shaft 180 and an encoder magnet 240 is disposed at one end thereof, and the other end is directly connected to the manual shaft, and is increased by the reducer 400. It is disposed in the output shaft shaft 80 and the housing 150 to transfer the torque to the detent plate, and comprises a controller 250 for detecting the position of the output shaft from the encoder magnet (240).
  • the controller 250 includes a position sensor 251 disposed to face the encoder magnet 240 and a hall sensor 252 disposed to face the motor sensor magnet 230.
  • Motor 300 is applied to a BLDC motor or SR motor.
  • the controller 250 includes a position sensor 251 and a hall sensor 252 and is disposed inside the housing 150 as described above, and is disposed adjacent to the motor 300.
  • the rotation position of the motor 300 is transmitted from the sensor magnet 230 to sense the position of the rotor.
  • the force (rotational speed) of the motor that rotates the rotor shaft 180 about the shaft is transmitted to the output shaft shaft 80 by the speed reduction through the reducer, and the encoder magnet 240 assembled at one end thereof is output shaft shaft 80.
  • the rotation angle information of the controller 250 is transmitted to the position sensor 251 of the controller 250.
  • the controller 250 embedded in the shift-by-wire device grasps the rotation angle position of the output shaft shaft 80 through the output value of the position sensor 251, and performs a function such as operation and stop to a specific position. Enables the user to shift from P to R / N / D or D to P and simultaneously provides (display) the current position angle position to the host controller and driver in the form of P / R / N / D.
  • the terminal introduces a current into the motor 300 through the controller 250, and the motor 300 generates torque (power) through an electromagnetic force generated between the current applied to the stator and the permanent magnet of the rotor.
  • stator, rotor, and other parts of the motor are assembled between the housing 150 and the motor cover, and external external force, moisture, and dust flow are blocked.
  • the rotor shaft 180 is involved in the torque of the motor 300, the output shaft shaft 80 is involved in the torque of the actuator, the rotor shaft 180 transmits the torque generated by the motor 300 through the hollow eccentric shaft do.
  • the reducer 400 includes a cycloidal gear that rotates according to the eccentricity, and transmits power according to the eccentricity to the output shaft.
  • the reducer 400 increases the torque transmitted from the motor 300 in accordance with the PCD and the gear ratio of the inner gear 90 and the outer gear 60, and transmits the increased torque to the output shaft.
  • the gear cover 30 of the reducer 400 supports the outer gear 60, and the bearing supports the inner gear 90 to allow rotation / fixation of the gear.
  • the inner gear 90 of the reducer 400 is eccentrically assembled so that the converted torque is transmitted to the output shaft according to the eccentricity.
  • the controller 250 detects the position of the output shaft from the encoder magnet 240 using the pre-learned reference data, determines the position of the current shift stage, and controls the operation of the motor 300. To control.
  • the encoder magnet 240 is installed at the end of the output shaft, the controller 250 integrated in the housing 150 detects the position of the output shaft from the encoder magnet 240, the inhibitor
  • the controller 250 integrated in the housing 150 detects the position of the output shaft from the encoder magnet 240, the inhibitor
  • the rotor shaft 180 is formed in a hollow shape, and the output shaft extends through the interior thereof to an area in which the controller 250 is located, so that the controller 250 of the manual shaft is directly connected to the output shaft shaft 80.
  • the position can be detected directly, thereby minimizing the error caused by the backlash of the reduction gear.
  • FIG. 5 is a diagram illustrating a departure prevention structure of a sensing plate of an SBW device according to an embodiment of the present invention.
  • the sensing plate may be disassembled in the axial direction due to vibration or external force, there is a problem in that the position of the motor for control is not checked and the shifting is impossible.
  • Sensing plate 260 is an interference fit assembly is performed between the emboss and the hole of the rotor core 200, is assembled between the rotor core 200 and the bearing, which is applied from the vibration or the outside It is strong from force and departure is prevented.
  • the motor sensor magnet 230 according to an embodiment of the present invention is a configuration that informs the Hall sensor 252 of the rotational position of the rotor, the motor sensor magnet 230 in the transverse direction When the position is out of position, control and shifting become impossible.
  • the sensing plate 260 is disposed in a bent shape at the end of the "b" shape, to prevent the lateral deviation of the motor sensor magnet 230.
  • FIG. 6 is a flowchart illustrating a shift method using an SBW device according to an embodiment of the present invention.
  • step S100 the transmission control unit (TCU) transmits lever R / N / D position fairy information to the selected position, and the SBW actuator controller receives the information.
  • TCU transmission control unit
  • SBW actuator controller (SCU, SBW Control Unit) is disposed inside the housing of the SBW device, generates a power by applying a current to the motor (S200).
  • step S200 the motor rotates the output shaft shaft by the generated power P, R, N, D position, and transmits power to the manual shaft.
  • the torque of the motor is transmitted through the hollow rotor shaft, and the torque increased by the reducer is transmitted to the detent plate through the output shaft shaft which is directly connected to the manual shaft through the inside of the rotor shaft.
  • the SBW actuator controller detects the rotational position of the motor and the position of the output shaft in real time, stops the driving of the motor at the promised position, and transmits the shift stage information to the transmission controller (S300).
  • the SBW actuator controller receives the rotational position of the motor from the motor sensor magnet disposed adjacent to the motor to detect the position of the rotor, and the position of the output shaft from the encoder magnet disposed at one end of the output shaft shaft.
  • the encoder magnet is installed at the end of the output shaft, and the SBW actuator controller integrated in the housing of the SBW device detects the position of the output shaft from the encoder magnet, thereby serving as an inhibitor switch.
  • the SBW actuator controller integrated in the housing of the SBW device detects the position of the output shaft from the encoder magnet, thereby serving as an inhibitor switch.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Gear-Shifting Mechanisms (AREA)

Abstract

본 발명은 시프트 바이 와이어(SBW, Shift By Wire) 장치에 관한 것으로, 보다 상세하게는 시프트 바이 와이어 장치의 액츄에이터 및 감속기 구조에 관한 것이다. 본 발명에 따른 시프트 바이 와이어 장치는 하우징과, 인가되는 전류를 통해 토크를 발생시키는 모터와, 중공형의 로터 샤프트와, 모터의 토크를 전달 받고, 이를 컨버팅하여 출력축으로 전달하는 감속기와, 로터 샤프트의 내부를 관통하며 그 일단에는 엔코더 마그넷이 배치되고, 타단은 매뉴얼 샤프트와 직결되며, 감속기에 의해 증대된 토크를 디텐트 플레이트로 전달하는 출력축 샤프트 및 하우징 내에 배치되며, 엔코더 마그넷으로부터 출력축의 위치를 감지하는 제어기를 포함하는 것을 특징으로 한다.

Description

시프트 바이 와이어 장치 및 이를 이용한 변속 방법
본 발명은 시프트 바이 와이어(SBW, Shift By Wire) 장치 및 이를 이용한 변속 시스템에 관한 것으로, 보다 상세하게는 시프트 바이 와이어 장치의 액츄에이터 및 감속기 구조에 관한 것이다.
최근 자동차 기술은 편의시설에 대한 소비자 요구에 편승하여 여러 기계 장치들이 전기 시스템으로 대체되는 기술적 경향을 보이고 있다.
기존 방식인 SBC(Shift-By-Cable) 방식은 차량 변속 레버를 이동하면 케이블에 의해 디텐트 레버가 회전하고, 그 회전에 의해 매뉴얼 밸브가 움직이며 밸브 바디 상의 P, R, N, D 유로를 열어준다.
변속기의 변속 조작부를 전자 제어화시킨 SBW(Shift-By-Wire)는 기계적으로 움직이던 기구부를 모두 전기로 제어하고, 기존의 SBC 방식에 비해 기구적 작동부(케이블, 기계식 매뉴얼밸브)가 없으므로, 변속기의 중량(무게)이 줄고 레이아웃 구성이 용이한 장점을 가지고 있다.
그러나 기계 구성품을 제거함으로 인해, 전기전자 신호 오류에 의한 액츄에이터 제어 불가와 같은 비상 상황이 발생될 수 있는 문제점이 있다.
종래 기술에 따른 SBW 기술은 운전자의 변속의지를 제어기를 통해 액츄에이터에 전달하고, 액츄에이터와 직결된 감속기 및 변속 출력단의 매뉴얼 샤프트측으로 그 최종 조작력이 전달된다.
이러한 종래 기술에서, 액추에이터의 포지션 센서마그넷 위치와 인히비터 스위치 센서 위치를 각각 센싱하는 것은 기계적/전기적 오차와 오류를 야기할 수 있는 문제점이 발생한다.
본 발명은 전술한 문제점을 해결하기 위하여 제안된 것으로, SBW 액츄에이터 및 감속기를 제어기와 일체화시키고, 매뉴얼 샤프트 위치 센싱 구조를 개선한 SBW 장치 및 이를 이용한 변속 시스템을 제공하는 데 그 목적이 있다.
본 발명에 따른 시프트 바이 와이어 장치는 하우징과, 인가되는 전류를 통해 토크를 발생시키는 모터와, 중공형의 로터 샤프트와, 모터의 토크를 전달 받고 이를 컨버팅하여 출력축으로 전달하는 감속기와, 로터 샤프트의 내부를 관통하며 그 일단에는 엔코더 마그넷이 배치되고, 타단은 매뉴얼 샤프트와 직결되며, 감속기에 의해 증대된 토크를 디텐트 플레이트로 전달하는 출력축 샤프트 및 하우징 내에 배치되며, 엔코더 마그넷으로부터 출력축의 위치를 감지하는 제어기를 포함하는 것을 특징으로 한다.
본 발명에 따른 시프트 바이 와이어 장치를 이용한 변속 방법은, 운전자의 P, R, N, D 선택에 따라, 변속기 제어기로부터 동작 요청을 수신하는 단계와, 모터에 전류를 인가하여 동력을 발생시켜, 선택된 변속단의 위치만큼 출력축 샤프트를 회전시키고 매뉴얼 샤프트에 동력을 전달시키는 단계 및 모터의 회전 위치와 출력축의 위치를 실시간 감지하여, 모터 구동을 중지시킨 후 변속단 정보를 변속기 제어기로 전달하는 단계를 포함하는 것을 특징으로 한다.
종래 SBC 및 제어기가 별체화된 SBW 방식은 변속단의 위치를 모터와 매뉴얼 샤프트 사이에 위치한 인히비터 스위치가 감지하여 TCU(Transmission Control Unit)로 전달하여 변속제어가 이루어지는 반면, 본 발명의 실시예에 따르면 제어기가 일체화된 SBW 방식으로서, SBW 출력축 끝단에 마그넷을 설치하고 일체화된 제어기의 위치 센서가 이를 감지함으로써, 인히비터 스위치를 삭제하여 부품 축소에 따른 원가 절감이 가능한 효과가 있다.
본 발명에 따르면, 모터 회전축을 중공으로 구성하고, 출력축이 그 내부를 관통하여 제어기 위치까지 연장됨으로써, 매뉴얼 샤프트의 위치를 직접 감지하는 것이 가능하며, 감속 기어의 백래시에 의한 위치 오차를 최소화하는 것이 가능한 효과가 있다.
본 발명의 효과는 이상에서 언급한 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 종래 기술에 따른 제어기 별체형 SBW 장치를 나타내는 단면도이다.
도 2는 본 발명의 실시예에 따른 SBW 장치의 부품 구성도를 나타내는 도면이다.
도 3은 본 발명의 실시예에 따른 SBW 장치의 단면도이다.
도 4는 본 발명의 실시예에 따른 SBW 장치의 측단면도이다.
도 5는 본 발명의 실시예에 따른 SBW 장치의 센싱 플레이트의 이탈 방지 구조를 도시하는 도면이다.
도 6은 본 발명의 실시예에 따른 SBW 장치를 이용한 변속 방법을 나타내는 순서도이다.
본 발명의 전술한 목적 및 그 이외의 목적과 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.
그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 이하의 실시예들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 목적, 구성 및 효과를 용이하게 알려주기 위해 제공되는 것일 뿐으로서, 본 발명의 권리범위는 청구항의 기재에 의해 정의된다.
한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성소자, 단계, 동작 및/또는 소자가 하나 이상의 다른 구성소자, 단계, 동작 및/또는 소자의 존재 또는 추가됨을 배제하지 않는다.
이하에서는, 당업자의 이해를 돕기 위하여 본 발명이 해결하고자 하는 종래 기술의 문제점에 대하여 먼저 서술하고, 이어서 본 발명의 바람직한 실시예에 대하여 설명하기로 한다.
도 1은 종래 기술에 따른 제어기 별체형 SBW 장치를 나타내는 단면도이다.
종래 기술에 따른 제어기 별체형 SBW 장치는 모터(1), 로터 샤프트(2), 로터 마그넷(3), 감속기(4), 매뉴얼 샤프트(5)를 포함하여 구성되며, 전술한 바와 같이 변속단 위치 파악을 위해, 인히비터 스위치(6)가 포함된다.
종래 기술에 따르면, 로터의 위치를 감지하여, 출력단의 최종 위치를 감지한다.
종래 기술에 따르면 인히비터 스위치 포함에 따라 원가 상승의 요인이 되는 문제점이 있으며, 감속기어의 백래시에 의한 위치 오차가 발생된다.
또한, 종래 기술에 따르면, 최종 출력단의 매뉴얼 샤프트의 위치를 직접 감지하지 못하고, 로터의 위치를 감지하고 추정함에 따라서, 위치 감지의 정확도가 떨어지는 문제점이 있다.
본 발명은 전술한 문제점을 해결하기 위하여 제안된 것으로, 출력축 샤프트 일단에 부착되는 마그넷 및 제어기 측 MR 센서를 이용하여 변속단의 위치를 감지함으로써, 제어기가 현 변속단의 위치를 정확히 파악하는 것이 가능하다.
본 발명의 실시예에 따른 SBW 장치는 토크를 발생시키는 모터와, 토크를 시스템(변속 장치) 구동이 가능한 수준의 토크로 증대하여 컨버팅하는 감속기와, 모터의 구동을 제어하고 모터와 출력축의 위치를 감지하여 TCU로 전달하는 제어기를 포함하여 구성되며, 이하 도 2 내지 도 4를 참조하여 설명하기로 한다.
도 2는 본 발명의 실시예에 따른 SBW 장치의 부품 구성을 나타내며, SBW 장치는 에어벤트 커버(20), 기어 커버(30), 웨이브 워셔(40), 오링(50), 외측 기어(60), 베어링, 출력축 샤프트(80), 내측 기어(90), 모터 커버, 인슐레이터(110), 고정자 코어, 버스바 몰드, 버스바(140), 하우징(150), 가스켓, 하우징 커버(170), 로터 샤프트(180), 로터 캔(190), 로터 코어(200), 모터 마그넷(210), 로터 마그넷 요크(220), 모터 센서 마그넷(230), 엔코더 마그넷(240)을 포함하여 구성된다.
본 발명에 따른 시프트 바이 와이어 장치는 하우징(150)과, 인가되는 전류를 통해 토크를 발생시키는 모터(300)와, 중공형의 로터 샤프트(180)와, 모터(300)의 토크를 전달 받고, 이를 컨버팅하여 출력축으로 전달하는 감속기(400)와, 로터 샤프트(180)의 내부를 관통하며 그 일단에는 엔코더 마그넷(240)이 배치되고, 타단은 매뉴얼 샤프트와 직결되며, 감속기(400)에 의해 증대된 토크를 디텐트 플레이트로 전달하는 출력축 샤프트(80) 및 하우징(150) 내에 배치되며, 엔코더 마그넷(240)으로부터 출력축의 위치를 감지하는 제어기(250)를 포함하여 구성된다.
제어기(250)는 엔코더 마그넷(240)에 대향되어 배치되는 포지션 센서(251) 및 모터 센서 마그넷(230)에 대향되어 배치되는 홀센서(252)를 포함한다.
본 발명의 실시예에 따르면, 전술한 바와 같이 출력축 샤프트(80) 일단에 부착되는 엔코더 마그넷(240) 및 제어기(250)를 이용하여 변속단의 위치를 감지함으로써, 기존 방식에 따른 인히비터 스위치의 역할을 수행할 수 있어 인히비터 스위치의 대체가 가능하므로, 원가 절감의 효과가 있다.
본 발명의 실시예에 따른 모터(300)는 BLDC 모터 또는 SR 모터가 적용된다.
본 발명의 실시예에 따른 제어기(250)는 전술한 바와 같이 포지션 센서(251) 및 홀센서(252)를 포함하며 하우징(150) 내부에 배치되는 것으로, 모터(300)에 인접하여 배치되는 모터 센서 마그넷(230)으로부터 모터(300)의 회전 위치를 전달 받아 로터의 위치를 감지한다.
로터 샤프트(180)를 축으로 회전하는 모터의 힘이 감속기를 통해 감속된 힘(회전 속도)은 출력축 샤프트(80)에 전달되며, 그 일단에 조립된 엔코더 마그넷(240) 이 출력축 샤프트(80)의 회전각 정보를 제어기(250)의 포지션 센서(251)에 전달한다.
이 때 시프트 바이 와이어 장치에 내장된 제어기(250)는 포지션 센서(251)의 출력값을 통해 출력축 샤프트(80)의 회전각 위치를 파악하고, 특정 위치로 동작 및 멈춤 등의 기능을 수행하여, 변속기가 P에서 R/N/D 단 또는 D단에서 P단으로 변속할 수 있게 함과 동시에 상위 제어기 및 운전자에게 현재 위치각 위치를 P/R/N/D 형태로 제공(디스플레이)한다.
터미널은 제어기(250)를 통해 전류를 모터(300)로 유입하고, 모터(300)는 고정자에 인가된 전류와 회전자의 영구자석 간에 발생된 전자기력을 통해 토크(동력)를 발생시킨다.
하우징(150)과 모터 커버 사이에는 모터의 고정자, 회전자 및 기타 부품들이 조립되며, 외부의 외력, 수분, 먼지류의 유입이 차단된다.
로터 샤프트(180)는 모터(300)의 토크에 관여하고, 출력축 샤프트(80)는 액츄에이터의 토크에 관여하는 것으로, 로터 샤프트(180)는 중공 편심축을 통해 모터(300)가 발생시킨 토크를 전달한다.
본 발명의 실시예에 따른 감속기(400)는 편심에 따라 회전하는 싸이클로이드 기어를 포함하여, 편심에 따른 동력을 출력축으로 전달한다.
감속기(400)는 내측 기어(90) 및 외측 기어(60)가 구성하는 PCD, 잇수에 따른 감속비에 따라 모터(300)로부터 전달된 토크를 증대시키고, 증대된 토크를 출력축으로 전달한다.
감속기(400)의 기어 커버(30)는 외측 기어(60)를 지지하고, 베어링은 내측 기어(90)를 지지하여, 기어의 회전/고정이 가능하도록 한다.
전술한 바와 같이, 감속기(400)의 내측 기어(90)는 편심 조립되어, 컨버팅된 토크가 편심에 따라 출력축으로 전달된다.
기어 커버(30)와 모터 커버(100) 사이에는 기어류 및 기타 부품들이 조립되는 공간이 제공되며, 외부의 외력, 수분, 먼지류의 유입이 차단된다.
본 발명의 실시예에 따른 제어기(250)는 기학습된 레퍼런스 데이터를 이용하여, 엔코더 마그넷(240)으로부터 출력축의 위치를 감지하고, 현 변속단의 위치를 파악하며, 모터(300)의 동작을 제어한다.
즉, 본 발명의 실시예에 따르면, 출력축의 끝단에 엔코더 마그넷(240)이 설치되고, 하우징(150) 내에 일체화된 제어기(250)는 엔코더 마그넷(240)으로부터 출력축의 위치를 감지하여, 인히비터 스위치의 역할을 수행함으로써, 종래 기술에 따른 인히비터 스위치를 대체하여 부품 축소에 따른 원가 절감을 기대할 수 있다.
전술한 바와 같이 로터 샤프트(180)는 중공형으로 구성되고, 출력축은 그 내부를 관통하여 제어기(250)가 위치한 영역까지 연장됨으로써, 제어기(250)는 출력축 샤프트(80)와 직결되는 매뉴얼 샤프트의 위치를 직접 감지할 수 있어, 감속 기어의 백래시에 의한 오차를 최소화할 수 있다.
도 5는 본 발명의 실시예에 따른 SBW 장치의 센싱 플레이트의 이탈 방지 구조를 도시하는 도면이다.
종래 기술에 따르면, 진동 또는 외부의 힘에 의해, 축방향으로 센싱 플레이트가 분해될 우려가 있으며, 분해 시 제어를 위한 모터의 포지션 확인이 불가하고, 변속이 불가능한 문제점이 있다.
본 발명의 실시예에 따른 센싱 플레이트(260)는 emboss와 로터 코어(200)의 홀 사이에 억지끼워맞춤 조립이 수행되어, 로터 코어(200)와 베어링 사이에 조립되어, 진동 또는 외부로부터 인가되는 힘으로부터 강건하고, 이탈이 방지된다.
도 2 내지 도 4를 참조하면, 본 발명의 실시예에 따른 모터 센서 마그넷(230)은 홀센서(252)에 로터의 회전 위치를 알려주는 구성으로서, 이러한 모터 센서 마그넷(230)이 횡방향으로 위치 이탈 시, 제어 및 변속이 불가능하게 된다.
본 발명의 실시예에 따른 센싱 플레이트(260)는 끝단이 "ㄴ"자 형으로 굽힘 형상으로 배치되어, 모터 센서 마그넷(230)의 횡방향 이탈을 방지한다.
도 6은 본 발명의 실시예에 따른 SBW 장치를 이용한 변속 방법을 나타내는 순서도이다.
도 6에 도시된 변속 방법에 앞서, P단 포지션이 감지되면, IG Start 신호가 입력되는지를 확인하고, IG 스타트 신호가 미입력되는 경우, 대기 상태로 들어가고, IG 스타트 신호가 입력되는 경우, 스타트 릴레이(Start Relay) 동작신호가 출력된다.
S100 단계에서 운전자의 R/N/D 선택이 이루어지면, 변속기 제어기(TCU, Transmission Control Unit)는 선택된 위치로 레버 R/N/D 위치 요정 정보를 전송하며, SBW 액추에이터 제어기는 이를 전송 받는다.
SBW 액추에이터 제어기(SCU, SBW Control Unit)는 SBW 장치의 하우징 내부에 배치되어, 모터에 전류를 인가하여 동력을 발생시킨다(S200).
S200 단계에서, 모터는 발생된 동력으로 P, R, N, D 위치만큼 출력축 샤프트를 회전시키고, 매뉴얼 샤프트에 동력을 전달시킨다.
이 때, 중공형의 로터 샤프트를 통해 모터의 토크가 전달되며, 로터 샤프트의 내부를 관통하여 매뉴얼 샤프트와 직결되는 출력축 샤프트를 통해, 감속기에 의해 증대된 토크가 디텐트 플레이트로 전달된다.
SBW 액추에이터 제어기는 모터의 회전 위치와 출력축의 위치를 실시간 감지하여, 약속된 위치에서 모터의 구동을 중지시킨 후, 변속단 정보를 변속기 제어기로 전달한다(S300).
이 때, SBW 액추에이터 제어기는 모터에 인접하여 배치되는 모터 센서 마그넷으로부터 모터의 회전 위치를 전달받아 로터의 위치를 감지하고, 출력축 샤프트의 일단에 배치된 엔코더 마그넷으로부터 출력축의 위치를 감지한다.
즉, 본 발명의 실시예에 따르면, 출력축의 끝단에 엔코더 마그넷이 설치되고, SBW 장치의 하우징 내에 일체화된 SBW 액추에이터 제어기가 엔코더 마그넷으로부터 출력축의 위치를 감지하여, 인히비터 스위치의 역할을 수행함으로써, 종래 기술에 따른 인히비터 스위치를 대체하여 부품 축소에 따른 원가 절감이 가능하다.
이제까지 본 발명의 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (10)

  1. 하우징;
    인가되는 전류를 통해 토크를 발생시키는 모터;
    중공형의 로터 샤프트;
    상기 발생된 모터의 토크를 전달 받고, 이를 컨버팅하여 출력축으로 전달하는 감속기;
    상기 로터 샤프트의 내부를 관통하며 그 일단에는 엔코더 마그넷이 배치되고, 타단은 매뉴얼 샤프트와 직결되며, 상기 감속기에 의해 증대된 토크를 디텐트 플레이트로 전달하는 출력축 샤프트; 및
    상기 하우징 내에 배치되며, 상기 엔코더 마그넷으로부터 상기 출력축의 위치를 감지하는 제어기
    를 포함하는 시프트 바이 와이어 장치.
  2. 제1항에 있어서,
    상기 제어기는 상기 엔코더 마그넷과 대향되어 배치되는 포지션 센서 및 모터 센서 마그넷과 대향되어 배치되는 홀센서를 포함하는 것
    인 시프트 바이 와이어 장치.
  3. 제2항에 있어서,
    상기 제어기는 상기 모터에 인접하여 배치되는 상기 모터 센서 마그넷으로부터 상기 모터의 회전 위치를 전달 받아 로터의 위치를 감지하는 것
    을 특징으로 하는 시프트 바이 와이어 장치.
  4. 제2항에 있어서,
    상기 모터 센서 마그넷은 로터 코어의 홀에 억지끼워맞춤 조립되며, 일단이 "ㄴ"자의 굽힘 형상으로 형성되는 센싱 플레이트에 의해 고정되어, 횡방향 이탈이 방지되는 것
    인 시프트 바이 와이어 장치.
  5. 제1항에 있어서,
    상기 로터 샤프트는 중공 편심축을 통해 상기 모터의 토크를 전달하는 것
    을 특징으로 하는 시프트 바이 와이어 장치.
  6. 제1항에 있어서,
    상기 감속기는 편심에 따라 회전하는 싸이클로이드 기어를 포함하여 편심에 따른 동력을 상기 출력축으로 전달하는 것
    을 특징으로 하는 시프트 바이 와이어 장치.
  7. 제1항에 있어서,
    상기 제어기는 기학습된 레퍼런스 데이터를 이용하여, 상기 엔코더 마그넷으로부터 상기 출력축의 위치를 감지하고, 현 변속단의 위치를 파악하며, 상기 모터의 동작을 제어하는 것
    을 특징으로 하는 시프트 바이 와이어 장치.
  8. (a) 운전자의 P, R, N, D 선택에 따라, 변속기 제어기로부터 동작 요청을 수신하는 단계;
    (b) SBW 액추에이터 제어기는, SBW 장치의 하우징 내부에 배치되어, 모터에 전류를 인가하여 동력을 발생시켜, 선택된 변속단의 위치만큼 출력축 샤프트를 회전시키고 매뉴얼 샤프트에 동력을 전달시키는 단계; 및
    (c) 상기 SBW 액추에이터 제어기는 모터의 회전 위치와 출력축의 위치를 실시간 감지하여, 모터 구동을 중지시킨 후 변속단 정보를 상기 변속기 제어기로 전달하는 단계
    를 포함하는 SBW 장치를 이용한 변속 방법.
  9. 제8항에 있어서,
    상기 (b) 단계는 중공형의 로터 샤프트를 통해 상기 모터의 토크를 전달하고, 상기 로터 샤프트의 내부를 관통하여 상기 매뉴얼 샤프트와 직결되는 출력축 샤프트를 통해 감속기에 의해 증대된 토크를 상기 디텐트 플레이트로 전달하는 것
    인 SBW 장치를 이용한 변속 방법.
  10. 제8항에 있어서,
    상기 (c) 단계는 상기 모터에 인접하여 배치되는 모터 센서 마그넷으로부터 상기 모터의 회전 위치를 전달받아 로터의 위치를 감지하고, 상기 출력축 샤프트의 일단에 배치된 엔코더 마그넷으로부터 출력축의 위치를 감지하는 것
    인 SBW 장치를 이용한 변속 방법.
PCT/KR2019/006487 2018-05-30 2019-05-30 시프트 바이 와이어 장치 및 이를 이용한 변속 방법 WO2019231249A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019002772.7T DE112019002772T5 (de) 2018-05-30 2019-05-30 Shift-by-wire-vorrichtung und übersetzungsverfahren, das dieselbe verwendet
CN201990000753.9U CN215891078U (zh) 2018-05-30 2019-05-30 线控换挡装置
US17/059,281 US11391369B2 (en) 2018-05-30 2019-05-30 Shift-by-wire device and transmission method using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0061910 2018-05-30
KR1020180061910A KR102105190B1 (ko) 2018-05-30 2018-05-30 시프트 바이 와이어 장치 및 이를 이용한 변속 방법

Publications (1)

Publication Number Publication Date
WO2019231249A1 true WO2019231249A1 (ko) 2019-12-05

Family

ID=68697092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006487 WO2019231249A1 (ko) 2018-05-30 2019-05-30 시프트 바이 와이어 장치 및 이를 이용한 변속 방법

Country Status (5)

Country Link
US (1) US11391369B2 (ko)
KR (1) KR102105190B1 (ko)
CN (1) CN215891078U (ko)
DE (1) DE112019002772T5 (ko)
WO (1) WO2019231249A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102239345B1 (ko) 2019-10-30 2021-04-12 주식회사 현대케피코 전자식 변속레버 장치
KR102311785B1 (ko) * 2020-03-30 2021-10-13 경창산업주식회사 Sbw 타입 변속 액추에이터 장치
KR20220059056A (ko) 2020-11-02 2022-05-10 주식회사 코렌스이엠 누수 요소를 최소화한 시프트 바이 와이어 장치
KR20220059057A (ko) 2020-11-02 2022-05-10 주식회사 코렌스이엠 기어박스 일체형 시프트 바이 와이어 장치
KR102441888B1 (ko) 2020-11-02 2022-09-08 주식회사 코렌스이엠 인서트 몰딩 구조의 링 기어를 구비한 시프트 바이 와이어 장치
KR20230006658A (ko) * 2021-07-01 2023-01-11 에스엘 주식회사 차량용 변속 장치
KR102645376B1 (ko) 2021-10-13 2024-03-08 주식회사 현대케피코 Sbw액추에이터의 회전각도 검출장치
KR102664783B1 (ko) 2021-11-11 2024-05-08 주식회사 현대케피코 Sbw 액추에이터
KR102680149B1 (ko) * 2021-11-11 2024-06-28 주식회사 현대케피코 Sbw 액추에이터

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040367A (ja) * 2005-08-02 2007-02-15 Denso Corp 車両制御システム
US20090078066A1 (en) * 2006-05-19 2009-03-26 Keiper Gmbh & Co. Kg Gear train for an actuator
KR101089861B1 (ko) * 2010-03-30 2011-12-05 엘지이노텍 주식회사 트랙션 모터 모듈
JP2016075364A (ja) * 2014-10-08 2016-05-12 アイシン精機株式会社 シフト装置
JP2016080078A (ja) * 2014-10-17 2016-05-16 三菱電機株式会社 レンジ切替装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1275886A3 (en) * 2001-07-02 2008-12-10 Isuzu Motors Limited Shift actuator for a transmission
US7084597B2 (en) * 2002-06-03 2006-08-01 Denso Corporation Motor control apparatus
JP2009008153A (ja) * 2007-06-27 2009-01-15 Denso Corp シフトレンジ切替装置
JP4433022B2 (ja) * 2007-09-04 2010-03-17 株式会社デンソー 電動モータ
JP2013096436A (ja) * 2011-10-28 2013-05-20 Denso Corp シフトバイワイヤシステム
PL2999903T3 (pl) * 2013-05-20 2018-11-30 Team Industries, Inc. Elektronicznie sterowana skrzynia biegów
JP6379014B2 (ja) * 2014-11-13 2018-08-22 株式会社東海理化電機製作所 シフト装置
JP6533167B2 (ja) * 2016-02-03 2019-06-19 株式会社東海理化電機製作所 シフト装置
KR101833627B1 (ko) * 2016-07-18 2018-04-13 현대다이모스(주) 더블 클러치 변속기의 기어 액추에이터
US10443709B2 (en) * 2017-09-22 2019-10-15 Honda Motor Co., Ltd. Dial shifter
US10890251B2 (en) * 2017-12-28 2021-01-12 Dura Operating, Llc Transmission shifter assembly with removable feedback
KR102402603B1 (ko) * 2017-12-29 2022-05-26 에스엘 주식회사 액츄에이터 및 이를 포함하는 차량용 변속 장치
JP7226092B2 (ja) * 2019-05-22 2023-02-21 株式会社デンソー シフトレンジ制御装置
KR20210030083A (ko) * 2019-09-09 2021-03-17 에스엘 주식회사 차량용 변속 장치
KR102213825B1 (ko) * 2019-09-20 2021-02-08 주식회사 현대케피코 전자식 변속레버 장치
KR102239345B1 (ko) * 2019-10-30 2021-04-12 주식회사 현대케피코 전자식 변속레버 장치
US11236818B2 (en) * 2019-12-10 2022-02-01 Kuster North America, Inc. Lever shifter with auto return to park and lock function

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040367A (ja) * 2005-08-02 2007-02-15 Denso Corp 車両制御システム
US20090078066A1 (en) * 2006-05-19 2009-03-26 Keiper Gmbh & Co. Kg Gear train for an actuator
KR101089861B1 (ko) * 2010-03-30 2011-12-05 엘지이노텍 주식회사 트랙션 모터 모듈
JP2016075364A (ja) * 2014-10-08 2016-05-12 アイシン精機株式会社 シフト装置
JP2016080078A (ja) * 2014-10-17 2016-05-16 三菱電機株式会社 レンジ切替装置

Also Published As

Publication number Publication date
US11391369B2 (en) 2022-07-19
DE112019002772T5 (de) 2021-02-25
CN215891078U (zh) 2022-02-22
KR102105190B1 (ko) 2020-04-27
US20210140540A1 (en) 2021-05-13
KR20190136331A (ko) 2019-12-10

Similar Documents

Publication Publication Date Title
WO2019231249A1 (ko) 시프트 바이 와이어 장치 및 이를 이용한 변속 방법
WO2017119584A1 (ko) 모터 및 이를 포함하는 전동식 조향장치
EP2417696A2 (en) Linear stepping motor
WO2012141383A1 (en) Anti-separating structure of sensing magnet for motor
WO2021091194A1 (ko) 스티어 바이 와이어식 조향장치
WO2018199606A1 (ko) 센싱장치
WO2020256426A1 (ko) 스티어 바이 와이어식 조향장치
WO2011062431A2 (en) Apparatus for detecting steering torque and steering angle and steering system having the same
WO2015152591A1 (ko) 전자식 주차 브레이크의 구동 유닛
US20020166410A1 (en) Vehicle speed sensor mounting structure for automatic transmission
CN113353145A (zh) 电动助力转向装置和制造方法
US7273067B2 (en) Reduced profile electromechanical valve actuator
CN114132375A (zh) 电动转向助力系统及其助力装置
WO2020231114A1 (ko) 자동차의 조향장치
FI117701B (fi) Laitteisto ja menetelmä hissin oven ohjaamiseksi
WO2020231111A1 (ko) 자동차 조향장치
WO2017007136A1 (ko) 차량용 변속 조작 장치
WO2019172697A1 (ko) 전자식 브레이크 일체형 인휠모터 구동장치
WO2021054681A1 (ko) 스티어 바이 와이어식 조향장치
WO2018074753A1 (ko) 자동수격방지 기능을 가지는 전기유압식 밸브 액추에이터 시스템
JP3889362B2 (ja) 動力車用のステアリングシステム
WO2021091193A1 (ko) 스티어 바이 와이어식 조향장치
WO2022145721A1 (ko) 모터 위치 검출 장치
WO2021172840A1 (ko) 자동차의 조향장치
WO2015167031A1 (ko) 입출력 위치피드백을 갖는 다입력방식 감속기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810036

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19810036

Country of ref document: EP

Kind code of ref document: A1