WO2019231226A1 - 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 - Google Patents

유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 Download PDF

Info

Publication number
WO2019231226A1
WO2019231226A1 PCT/KR2019/006416 KR2019006416W WO2019231226A1 WO 2019231226 A1 WO2019231226 A1 WO 2019231226A1 KR 2019006416 W KR2019006416 W KR 2019006416W WO 2019231226 A1 WO2019231226 A1 WO 2019231226A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
chemical formula
formula
sub1
mmol
Prior art date
Application number
PCT/KR2019/006416
Other languages
English (en)
French (fr)
Inventor
문성윤
이남걸
이선희
조민지
이정욱
Original Assignee
덕산네오룩스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 덕산네오룩스 주식회사 filed Critical 덕산네오룩스 주식회사
Priority to US17/059,030 priority Critical patent/US20210340103A1/en
Priority to CN201980031237.7A priority patent/CN112106215B/zh
Publication of WO2019231226A1 publication Critical patent/WO2019231226A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a compound for an organic electric device, an organic electric device using the same, and an electronic device thereof.
  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • An organic electric element using an organic light emitting phenomenon usually has a structure including an anode, a cathode, and an organic material layer therebetween.
  • the organic material layer is often formed of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic electric device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer.
  • Materials used as the organic material layer in the organic electric element may be classified into light emitting materials and charge transport materials such as hole injection materials, hole transport materials, electron transport materials, electron injection materials and the like according to their functions.
  • the LUMO and HOMO levels of the host material have a great influence on the efficiency and lifetime of the organic EL device. As a result, it is possible to prevent efficiency degradation and lifetime degradation due to charge balance control, dopant quenching, and light emission at the hole transport layer interface in the light emitting layer.
  • the energy transfer in the light emitting layer for thermal activated delayed fluorescent (TADF) and exciplex can be identified by the PL lifetime (TRTP) method.
  • the time resolved transient PL (TRTP) method is a method of observing a decay time of a spectrum after a pulsed light source is irradiated to a host thin film. It is a measuring method.
  • TRTP measurement is a measurement method that can distinguish between fluorescence and phosphorescence, and energy transfer method, exciplex energy transfer method, and TADF energy transfer method within a mixed host material.
  • the present invention has been proposed to solve the problems of the phosphorescent host material as described above, the charge balance control, efficiency and lifetime in the light emitting layer by adjusting the HOMO level for the host material of the phosphorescent organic electroluminescent device comprising a phosphorescent dopant Compound which can improve It aims at providing the organic electric element using this and its electronic device.
  • the present invention combines a specific first host material with a specific second host material as a main component to control efficient hole injection in the light emitting layer of the phosphorescent organic electroluminescent device, thereby reducing the energy barrier between the light emitting layer and the adjacent layer. It is possible to maximize the charge balance in the light emitting layer to provide high efficiency and long life of the organic electric element.
  • the present invention provides an organic electric device comprising a first electrode, a second electrode, and an organic material layer formed between the first electrode and the second electrode, wherein the organic material layer includes a light emitting layer, and the light emitting layer is a phosphorescent light emitting layer.
  • An organic electric device comprising a first host compound represented by 1 and a second host compound represented by Formula 2.
  • the present invention provides an organic electronic device using the compound represented by the above formula and an electronic device thereof.
  • the mixture according to the present invention as a phosphorescent host material, it is possible to achieve high luminous efficiency and low driving voltage of the organic electric element, and also to greatly improve the life of the element.
  • FIG. 1 is an exemplary view of an organic electroluminescent device according to the present invention.
  • halo or halogen as used herein is fluorine (F), bromine (Br), chlorine (Cl) or iodine (I) unless otherwise indicated.
  • alkyl or “alkyl group” has a single bond of 1 to 60 carbon atoms, unless otherwise indicated, and is a straight chain alkyl group, branched chain alkyl group, cycloalkyl (alicyclic) group, alkyl-substituted cyclo Radicals of saturated aliphatic functional groups, including alkyl groups, cycloalkyl-substituted alkyl groups.
  • heteroalkyl group means that at least one of the carbon atoms constituting the alkyl group has been replaced with a heteroatom.
  • alkenyl group As used herein, the terms “alkenyl group”, “alkenyl group” or “alkynyl group” have a double or triple bond of 2 to 60 carbon atoms, respectively, unless otherwise stated, and include straight or branched chain groups. It is not limited to this.
  • cycloalkyl refers to alkyl forming a ring having 3 to 60 carbon atoms, without being limited thereto.
  • alkoxyl group means an alkyl group to which an oxygen radical is attached, and unless otherwise specified, has a carbon number of 1 to 60, and is limited herein. It is not.
  • alkenoxyl group means an alkenyl group to which an oxygen radical is attached, and unless otherwise stated, it is 2 to 60 It has carbon number of, It is not limited to this.
  • aryloxyl group or “aryloxy group” means an aryl group to which an oxygen radical is attached, and unless otherwise specified, has a carbon number of 6 to 60, but is not limited thereto.
  • aryl group and “arylene group” have a carbon number of 6 to 60 unless otherwise stated, but is not limited thereto.
  • an aryl group or an arylene group means an aromatic of a single ring or multiple rings, and includes an aromatic ring formed by neighboring substituents participating in a bond or a reaction.
  • the aryl group may be a phenyl group, a biphenyl group, a fluorene group, a spirofluorene group.
  • aryl or "ar” means a radical substituted with an aryl group.
  • an arylalkyl group is an alkyl group substituted with an aryl group
  • an arylalkenyl group is an alkenyl group substituted with an aryl group
  • the radical substituted with an aryl group has the carbon number described herein.
  • an arylalkoxy group means an alkoxy group substituted with an aryl group
  • an alkoxylcarbonyl group means a carbonyl group substituted with an alkoxyl group
  • an arylcarbonylalkenyl group means an alkenyl group substituted with an arylcarbonyl group.
  • the arylcarbonyl group is a carbonyl group substituted with an aryl group.
  • heteroalkyl means an alkyl including one or more heteroatoms unless otherwise indicated.
  • heteroaryl group or “heteroarylene group” means an aryl group or arylene group having 2 to 60 carbon atoms, each containing one or more heteroatoms, unless otherwise specified. It may include at least one of a single ring and multiple rings, and may be formed by combining adjacent functional groups.
  • heterocyclic group includes one or more heteroatoms, unless otherwise indicated, and has from 2 to 60 carbon atoms, and includes at least one of single and multiple rings, heteroaliphatic rings and hetero Aromatic rings. Adjacent functional groups may be formed in combination.
  • heteroatom refers to N, O, S, P or Si unless otherwise stated.
  • Heterocyclic groups may also include rings comprising SO 2 instead of carbon forming the ring.
  • a “heterocyclic group” includes the following compounds.
  • aliphatic as used herein means an aliphatic hydrocarbon having 1 to 60 carbon atoms
  • aliphatic ring means an aliphatic hydrocarbon ring having 3 to 60 carbon atoms.
  • ring refers to a fused ring consisting of an aliphatic ring having 3 to 60 carbon atoms or an aromatic ring having 6 to 60 carbon atoms or a hetero ring having 2 to 60 carbon atoms or a combination thereof. Saturated or unsaturated rings.
  • heterocompounds or heteroradicals other than the aforementioned heterocompounds include, but are not limited to, one or more heteroatoms.
  • carbonyl used in the present invention is represented by -COR ', wherein R' is hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, and 3 to 30 carbon atoms. Cycloalkyl group, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or a combination thereof.
  • ether as used herein is represented by -RO-R ', wherein R or R' are each independently of each other hydrogen, an alkyl group having 1 to 20 carbon atoms, It is an aryl group, a C3-C30 cycloalkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, or a combination thereof.
  • substituted in the term “substituted or unsubstituted” as used in the present invention is deuterium, halogen, amino group, nitrile group, nitro group, C 1 ⁇ C 20 alkyl group, C 1 ⁇ C 20 alkoxyl group, C 1 ⁇ C 20 alkylamine group, C 1 ⁇ C 20 alkylthiophene group, C 6 ⁇ C 20 arylthiophene group, C 2 ⁇ C 20 alkenyl group, C 2 ⁇ C 20 alkynyl, C 3 ⁇ C 20 cycloalkyl group, C 6 ⁇ C 20 aryl group, of a C 6 ⁇ C 20 substituted by deuterium aryl group, a C 8 ⁇ C 20 aryl alkenyl group, a silane group, a boron Group, germanium group, and C 2 ⁇ C 20 It is meant to be substituted with one or more substituents selected from the group consist
  • the substituent R 1 when a is an integer of 0, the substituent R 1 is absent, that is, when a is 0, it means that all of the carbons forming the benzene ring are bonded to hydrogen. Omitted formulas and compounds may be omitted.
  • a is an integer of 1
  • one substituent R 1 is bonded to any one of carbons forming a benzene ring, and when a is an integer of 2 or 3, each of them is bonded as follows, and R 1 may be the same or different from each other.
  • a is an integer of 4 to 6
  • the present invention provides an organic electric device comprising a first electrode, a second electrode, and an organic material layer formed between the first electrode and the second electrode, wherein the organic material layer includes a light emitting layer, and the light emitting layer is a phosphorescent light emitting layer.
  • an organic electric device comprising a first host compound represented by 1 and a second host compound represented by Formula 2.
  • a and B ring are each independently C 6 -C 20 aryl or C 2 -C 20 heterocycle;
  • X 1 is S or O
  • X 2 is NL 7 -Ar 9 , O, S, or CR'R ",
  • R 'and R are each independently hydrogen; C 6 ⁇ C 60 aryl group; Fluorenyl group; C 3 ⁇ C 60 Heterocyclic group; C 1 ⁇ C 50 Alkyl group; and -L'-N (R a ) (R b ); selected from the group consisting of
  • R 'and R may combine with each other to form a ring as a spy
  • p and q are each independently an integer of 0 to 10
  • r is an integer of 0 to 3
  • s is an integer of 0 to 4
  • R 1 , R 2 , R 3 and R 4 are independently of each other hydrogen independently of each other; C 6 ⁇ C 60 Aryl group; Fluorenyl group; C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom of O, N, S, Si and P; Fused ring group of an aromatic ring of C 3 ⁇ C 60 of aliphatic rings and C 6 ⁇ C 60; C 1 ⁇ C 50 Alkyl group; C 2 ⁇ C 20 Alkenyl group; Alkynyl groups of C 2 to C 20 ; C 1 -C 30 alkoxyl group; C 6 -C 30 aryloxy group; And -L'-N (R a ) (R b );
  • R a and R b are each independently a C 6 -C 60 aryl group; Fluorenyl group; A fused ring group of an aliphatic ring of C 3 -C 60 and an aromatic ring of C 6 -C 60 ; And a C 2 -C 60 heterocyclic group including at least one heteroatom of O, N, S, Si, and P, and
  • L ' is a single bond; C 6 -C 60 arylene group; Fluorenylene groups; A fused ring group of an aliphatic ring of C 3 -C 60 and an aromatic ring of C 6 -C 60 ; And C 2 -C 60 heterocyclic group; It is selected from the group consisting of,
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 , Ar 6 , Ar 7 , Ar 8 and Ar 9 are each independently a C 6 -C 60 aryl group; C 2 -C 60 heterocyclic group including at least one heteroatom selected from the group consisting of O, N, S, Si and P; Fluorenyl group; A fused ring group of an aromatic ring of C 6 -C 60 and an aliphatic ring of C 3 -C 60 ; An alkyl group of C 1 -C 50 ; Alkenyl groups of C 2 -C 20 ; An alkynyl group of C 2 -C 20 ; An alkoxyl group of C 1 -C 30 ; C 6 -C 30 arylthio group; And an aryloxy group of C 6 -C 30 ; and Ar 1 and Ar 2 , Ar 3 and Ar 4 , and Ar 5 and Ar 6 may be bonded to each other to form a ring.
  • L 1 , L 2 , L 3 , L 4 , L 5 , L 6 and L 7 are each independently a single bond; C 6 -C 60 arylene group; Fluorenylene groups; A C 2 -C 60 heterocyclic group comprising at least one hetero atom of O, N, S, Si, and P; A fused ring group of an aliphatic ring of C 3 -C 60 and an aromatic ring of C 6 -C 60 ; And an aliphatic hydrocarbon group; selected from the group consisting of,
  • aryl group, fluorenyl group, arylene group, heterocyclic group, fluorenylene group, fused ring group, alkyl group, alkenyl group, alkoxy group and aryloxy group are each deuterium; halogen; Silane group; Siloxane groups; Boron group; Germanium group; Cyano group; Nitro group; Import alkylthio of C 1 -C 20; An alkoxyl group of C 1 -C 20 ; An alkyl group of C 1 -C 20 ; Alkenyl groups of C 2 -C 20 ; An alkynyl group of C 2 -C 20 ; Aryl group of C 6 -C 20 ; C 6 -C 20 aryl group substituted with deuterium; Fluorenyl groups; C 2 -C 20 heterocyclic group; A cycloalkyl group of C 3 -C 20 ; C 7 -C 20 arylalkyl group and C 8 -C 20
  • the present invention provides an organic electroluminescent device comprising a compound in which A or B in Formula 1 is any one selected from the group consisting of the following Formulas a-1 to a-7.
  • Z 1 to Z 48 are independently of each other CR c or N,
  • Z 1 to Z 48 bonded to L 1 to L 7 are carbon (C),
  • R c is the same as defined above for R a ,
  • the present invention provides an organic electroluminescent device comprising a compound represented by any one of L 1 to L 7 in Formula 1 or Formula 2 below.
  • Y is NL 8 -Ar 10 , O, S or CR'R ",
  • L 8 is the same as the definition of L 1 ,
  • Ar 10 is the same as the definition of Ar 1 ,
  • a, c, d, e are each independently an integer from 0 to 4, b is an integer from 0 to 6,
  • f and g are each independently an integer of 0 to 3
  • h is an integer of 0 to 2
  • i is an integer of 0 or 1
  • R 5 , R 6 and R 7 are each independently hydrogen; heavy hydrogen; Tritium; halogen; Cyano group; Nitro group; C 6 -C 60 aryl group; Fluorenyl group; C 2 -C 60 heterocyclic group including at least one heteroatom selected from the group consisting of O, N, S, Si and P; A fused ring group of an aliphatic ring of C 3 -C 60 and an aromatic ring of C 6 -C 60 ; An alkyl group of C 1 -C 50 ; Alkenyl groups of C 2 -C 20 ; An alkynyl group of C 2 -C 20 ; An alkoxyl group of C 1 -C 30 ; C 6 -C 30 aryloxy group; And -L a -N (R d ) (R e ); or when a, b, c, d, e, f and g are 2 or more, and h is 2 or more, respectively Plural same as or different from
  • L a is a single bond; C 6 -C 60 arylene group; Fluorenylene groups; A C 2 -C 60 heterocyclic group comprising at least one hetero atom of O, N, S, Si, and P; A fused ring group of an aliphatic ring of C 3 -C 60 and an aromatic ring of C 6 -C 60 ; And aliphatic hydrocarbon group of C 3 -C 60 ; It is selected from the group consisting of,
  • R d and R e are each independently of the C 6 -C 60 aryl group; Fluorenyl group; C 2 -C 60 heterocyclic group including at least one hetero atom selected from the group consisting of O, N, S, Si and P; Selected from the group consisting of a fused ring group of an aliphatic ring of C 3 -C 60 and an aromatic ring of C 6 -C 60 ,
  • Z 49 , Z 50 and Z 51 are independently of each other CR g or N,
  • At least one of Z 49 , Z 50 and Z 51 is N,
  • R g is hydrogen; heavy hydrogen; Tritium; halogen; Cyano group; Nitro group; C 6 -C 60 aryl group; Fluorenyl group; C 2 -C 60 heterocyclic group including at least one heteroatom selected from the group consisting of O, N, S, Si and P; A fused ring group of an aliphatic ring of C 3 -C 60 and an aromatic ring of C 6 -C 60 ; An alkyl group of C 1 -C 50 ; Alkenyl groups of C 2 -C 20 ; An alkynyl group of C 2 -C 20 ; An alkoxyl group of C 1 -C 30 ; And an C 6 -C 30 aryloxy group; adjacent R 5 and R g may be bonded to each other to form an aromatic ring or a heteroaromatic ring. ⁇
  • the present invention provides an organic electric device including at least one of Ar 1 to Ar 6 including a compound represented by Formula 1-2.
  • X 3 is NL 10 -Ar 11 , O, S or CR'R ",
  • L 9 and L 10 are the same as the definition of L 1 ,
  • Ar 11 is the same as the definition of Ar 1 ,
  • the present invention also provides an organic electric device, wherein the first host compound represented by Formula 1 includes a compound represented by Formula 3 or Formula 4 below.
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 , Ar 6 , L 1 , L 2 , L 3 , R 1 , R 2 are as defined above,
  • p ' is an integer of any one of 0-3
  • q' is an integer of any one of 0-2.
  • the present invention provides an organic electroluminescent device comprising a compound represented by the following formula (5) to the first host compound represented by the formula (1).
  • p ' is an integer of any one of 0-3
  • q' is an integer of any one of 0-2
  • o is an integer of any one of 0-4.
  • the first host compound represented by Formula 1 includes a compound represented by Formula 12 to Formula 21.
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 , Ar 6 , L 1 , L 2 , L 3 , R 1 , R 2 , p, q, X 1 , A, B are as defined above.
  • p ' is an integer of any one of 0-3
  • q' is an integer of any one of 0-2.
  • the compound represented by Chemical Formula 1 of the present invention includes the following chemicals 1-1 to 1-146.
  • the present invention also includes a compound in which the second host compound represented by Chemical Formula 2 is represented by any one of the following Chemical Formulas 22 to 25.
  • the second host compound represented by Chemical Formula 2 in the present invention includes a compound represented by the following Chemical Formula 26.
  • X 4 is the same as the definition of X 2 above,
  • R 8 and R 9 are the same as defined above R 3 and R 4 ,
  • u is the same as the definition of r and t is the same as the definition of s.
  • the second host compound represented by Formula 2 of the present invention includes a compound represented by the following Formula 27 to Formula 30.
  • the second host compound represented by Chemical Formula 2 includes the following compound.
  • the organic electric device 100 includes a first electrode 120, a second electrode 180, and a first electrode 120 and a second electrode formed on a substrate 110.
  • An organic material layer including a compound represented by Chemical Formula 1 is provided between 180.
  • the first electrode 120 may be an anode (anode)
  • the second electrode 180 may be a cathode (cathode)
  • the first electrode may be a cathode and the second electrode may be an anode.
  • the organic material layer may sequentially include the hole injection layer 130, the hole transport layer 140, the light emitting layer 150, the light emitting auxiliary layer 151, the electron transport layer 160, and the electron injection layer 170 on the first electrode 120. It may include. At this time, the remaining layers except for the light emitting layer 150 may not be formed.
  • the hole blocking layer, the electron blocking layer, the light emitting auxiliary layer 151, the electron transport auxiliary layer, the buffer layer 141 may be further included, and the electron transport layer 160 may serve as the hole blocking layer.
  • the organic electronic device according to the present invention may further include a protective layer formed on one surface of the first electrode and the second electrode opposite to the organic material layer.
  • the organic electroluminescent device may be manufactured using a PVD method.
  • a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode, and the hole injection layer 130, the hole transport layer 140, the light emitting layer 150, the electron transport layer 160 are disposed thereon.
  • the organic material layer including the electron injection layer 170 it can be prepared by depositing a material that can be used as a cathode thereon.
  • the light emitting auxiliary layer 151 may be further formed between the hole transport layer 140 and the light emitting layer 150, and an electron transport auxiliary layer may be further formed between the light emitting layer 150 and the electron transport layer 160.
  • the present invention includes at least one hole transport band layer between the first electrode and the light emitting layer, the hole transport band layer includes a hole transport layer, a light emitting auxiliary layer or both, the hole transport band layer It provides an organic electric device comprising the compound represented by the formula (1).
  • the present invention provides an organic electroluminescent device included in the light emitting layer by mixing the compound represented by Formula 1 and Formula 2 in any one ratio of 1: 9 to 9: 1, preferably 1: 9 to 5: 5, More preferably, it is mixed in the ratio of 2: 8 to 3: 7, and is contained in the said light emitting layer.
  • the organic electroluminescent device further includes a light efficiency improvement layer formed on at least one of one side of the first electrode opposite to the organic material layer or one side of the second electrode opposite to the organic material layer.
  • An organic electric device is provided.
  • the organic material layer is formed by any one of a spin coating process, a nozzle printing process, an inkjet printing process, a slot coating process, a dip coating process and a roll-to-roll process, the organic material layer according to the present invention can be formed in various ways Therefore, the scope of the present invention is not limited by the formation method.
  • the organic electric element according to an embodiment of the present invention may be a top emission type, a bottom emission type or a double-sided emission type according to the material used.
  • WOLED White Organic Light Emitting Device
  • Various structures for white organic light emitting devices mainly used as backlight devices have been proposed and patented. Representatively, a side-by-side method in which R (Red), G (Green), and B (Blue) light emitting parts are mutually planarized, and a stacking method in which R, G, and B light emitting layers are stacked up and down. And a color conversion material (CCM) method using photo-luminescence of an inorganic phosphor by using electroluminescence by a blue (B) organic light emitting layer and light therefrom. May also be applied to these WOLEDs.
  • CCM color conversion material
  • the present invention is a display device including the above-mentioned organic electric element; And a controller for driving the display device.
  • the organic electronic device provides an electronic device according to the present invention, wherein the organic electroluminescent device is at least one of an organic electroluminescent device, an organic solar cell, an organic photoconductor, an organic transistor, and a monochromatic or white illumination device.
  • the electronic device may be a current or future wired or wireless communication terminal, and includes all electronic devices such as a mobile communication terminal such as a mobile phone, a PDA, an electronic dictionary, a PMP, a remote controller, a navigation device, a game machine, various TVs, and various computers.
  • the compound represented by Formula 1 according to the present invention (final product 1) is synthesized by reacting Sub 1 and Sub 2, as shown in Scheme 1, but is not limited thereto.
  • Sub1 of Scheme 1 may be synthesized by the reaction route of Scheme 2, but is not limited thereto.
  • Hal 1 is Br, Cl and Hal 2 is selected from I, Br.
  • Sub1-I of Scheme 2 may be synthesized by the reaction route of Scheme 3, but is not limited thereto.
  • Sub1-Ie-1 (16.8 g, 46.8 mmol) was added to an excess of trifluoromethane-sulfonic acid, and stirred at room temperature for 24 hours. Then, water and pyridine (8: 1) were slowly added and refluxed for 30 minutes. . The temperature was lowered and extracted with CH 2 Cl 2 and water. The organic layer was dried over MgSO 4 , concentrated, and the resulting product was purified by Silicagel column and recrystallized to give 15.7 g (68% yield) of the product.
  • Sub1-I-1 (15.7 g, 32.0 mmol) was dissolved in Toluene (210 mL), then diphenylamine (10.8 g, 64.1 mmol), Pd 2 (dba) 3 (1.76 g, 1.92 mmol), P ( t -Bu ) 3 (26.0 g, 64.0 mmol), NaO t -Bu (12.3 g, 128 mmol) was added and stirred at 120 ° C. After the reaction was completed, the reaction was cooled to room temperature, and extracted with CH 2 Cl 2 and water. The organic layer was dried over MgSO 4 , concentrated and the resulting compound was purified by Silicagel column and recrystallized to give 13.7 g (64% yield) of the product Sub1-1.
  • Sub1-Ii-3 (14.3 g, 41.7 mmol) was added to an excess of trifluoromethane-sulfonic acid, and stirred at room temperature for 24 hours. Then, water and pyridine (8: 1) were slowly added and refluxed for 30 minutes. . The temperature was lowered and extracted with CH 2 Cl 2 and water. The organic layer was dried over MgSO 4 , concentrated and the resulting product was purified by Silicagel column and recrystallized to give 15.4 g (78% yield) of the product.
  • Sub1-Id-30 (20.1 g, 51.6 mmol) and Sulfuric acid (H 2 SO 4 ) (10 mL) were obtained using 15.5 g (84% yield) of the product using the synthesis method of Sub1-Ie-1.
  • Sub1-I-e-30 (15.5 g, 42.3 mmol) was added to an excess of trifluoromethane-sulfonic acid to obtain 16.0 g (yield 75%) of the product using the synthesis method of Sub1-I-1.
  • Sub1-I-i-33 (14.7 g, 49.3 mmol) was added to an excess of trifluoromethane-sulfonic acid to obtain 14.7 g (69% yield) of the product using the synthesis method of Sub1-I-3.
  • Sub1-II-33 (12.3 g, 23.7 mmol), N-phenyldibenzo [b, d] thiophen-3-amine (6.54 g, 23.7 mmol), Pd 2 (dba) 3 (0.65 g, 0.71 mmol), P ( t- Bu) 3 (4.83 g, 23.7 mmol) and NaO t -Bu (4.56 g, 47.5 mmol) were obtained using 12.2 g (yield 68%) of the product Sub1-33 using the synthesis method of Sub1-1.
  • Sub1-Id-46 (21.8 g, 62.9 mmol) and Sulfuric acid (H 2 SO 4 ) (11 mL) were obtained using the synthesis method of Sub1-Ie-1 to give 15.7 g (79% yield).
  • Sub1-I-e-46 (15.7 g, 50.0 mmol) was added to an excess of trifluoromethane-sulfonic acid, and the product 15.7 g (yield 71%) was obtained using the synthesis method of Sub1-I-1.
  • Sub1-I-i-53 (13.3 g, 37.3 mmol) was added to an excess of trifluoromethane-sulfonic acid to obtain 13.2 g (yield 72%) of the product using the above synthesis method of Sub1-I-3.
  • Sub1-Id-81 (24.4 g, 55.3 mmol) and Sulfuric acid (H 2 SO 4 ) (12 mL) were obtained using the synthesis method of Sub1-Ie-1 to give 18.0 g (yield 80%) of the product.
  • Sub1-I-e-81 (18.0 g, 44.1 mmol) was added to an excess of trifluoromethane-sulfonic acid to obtain 17.0 g (yield 71%) of the product using the synthesis method of Sub1-I-1.
  • Sub1-I-i-109 (12.5 g, 31.9 mmol) was added to an excess of trifluoromethane-sulfonic acid to obtain 11.7 g (yield 22.3%) of the product using the synthesis method of Sub1-I-3.
  • Sub1-I-20 (15 g, 35.1 mmol), N-phenylnaphthalen-1-amine (7.69 g, 35.1 mmol), Pd 2 (dba) 3 (0.96 g, 1.05 mmol), P ( t -Bu) 3 ( 7.17 g, 35.1 mmol) and NaO t -Bu (6.74 g, 70.2 mmol) were obtained using 12.5 g (yield 62%) of the product Sub1-II-133 using the synthesis method of Sub1-1.
  • Sub1-II-133 (12.5 g, 22.0 mmol), N-phenylquinolin-7-amine (4.85 g, 22.0 mmol), Pd 2 (dba) 3 (0.60 g, 0.66 mmol), P ( t -Bu) 3 ( 4.50 g, 22.0 mmol) and NaO t -Bu (4.23 g, 44.0 mmol) were obtained using the synthesis method of Sub1-1 above to obtain 10.9 g (66% yield) of product Sub1-133.
  • Sub1-Id-137 (31.7 g, 45.0 mmol) and Sulfuric acid (H 2 SO 4 ) (16 mL) were obtained using 19.9 g (82% yield) of the product using the synthesis method of Sub1-Ie-1.
  • Sub1-I-e-137 (19.9 g, 36.7 mmol) was added to an excess of trifluoromethane-sulfonic acid to obtain 17.4 g (yield 70%) of the product using the synthesis method of Sub1-I-1.
  • Sub1-I-137 (17.4 g, 25.8 mmol), Sub2-1 (4.36 g, 25.8 mmol), Pd 2 (dba) 3 (0.71 g, 0.77 mmol), P ( t -Bu) 3 (5.17 g, 25.8 mmol) and NaO t -Bu (4.96 g, 51.6 mmol) were obtained using 12.8 g (yield 65%) of the product Sub1-II-137 using the synthesis method of Sub1-1.
  • Sub1-II-137 (12.8 g, 16.8 mmol), Sub2-11 (3.69 g, 16.8 mmol), Pd 2 (dba) 3 (0.46 g, 0.51 mmol), P ( t -Bu) 3 (3.33 g, 16.8 mmol) and NaO t -Bu (3.24 g, 33.7 mmol) were obtained using 10.3 g (yield 65%) of the product Sub1-137 using the synthesis method of Sub1-1.
  • the compound belonging to Sub 1 may be, but is not limited to, the following compounds.
  • Table 1 shows FD-MS (Field Desorption-Mass Spectrometry) values of some compounds belonging to Sub 1.
  • Sub 2 of Scheme 1 may be synthesized by the reaction route of Scheme 4 below (as disclosed in Korean Patent Registration No. 10-1251451 (published on April 5, 2013) of the present applicant), but is not limited thereto.
  • Z 1 is Ar 1 or Ar 3
  • Z 2 is Ar 2 or Ar 4 .
  • Compounds belonging to Sub 2 may be the following compounds, but are not limited thereto, and Table 2 shows FD-MS (Field Desorption-Mass Spectrometry) values of some compounds belonging to Sub 2.
  • Sub 1-1 (13.7 g, 20.5 mmol) obtained in the above synthesis was dissolved in toluene (180 mL) in a round bottom flask, and then Sub 2-1 (3.48 g, 20.5 mmol), Pd 2 (dba) 3 (0.56 g , 0.62 mmol), P ( t -Bu) 3 (4.16 g, 20.5 mmol), NaO t -Bu (3.95 g, 41.1 mmol) were added and stirred at 120 ° C.
  • Sub 1-3 (14.4 g, 22.1 mmol) obtained in the above synthesis was dissolved in toluene (190 mL) in a round bottom flask, and then Sub 2-31 (5.74 g, 22.1 mmol), Pd 2 (dba) 3 (0.61 g , 0.66 mmol), P ( t -Bu) 3 (4.48 g, 22.1 mmol), NaO t -Bu (4.25 g, 44.3 mmol) were added and stirred at 120 ° C.
  • Sub 1-33 (12.2 g, 16.1 mmol) obtained in the above synthesis was dissolved in toluene (160 mL) in a round bottom flask, and then Sub 2-1 (2.73 g, 16.1 mmol) and Pd 2 (dba) 3 (0.44 g) , 0.48 mmol), P ( t -Bu) 3 (3.26 g, 16.1 mmol), NaO t -Bu (3.10 g, 32.2 mmol) were added and stirred at 120 ° C.
  • Sub 1-46 (9.77 g, 14.7 mmol) obtained in the above synthesis was dissolved in toluene (120 mL) in a round bottom flask, and then Sub 2-1 (2.49 g, 14.7 mmol) and Pd 2 (dba) 3 (0.40 g) , 0.44 mmol), P ( t -Bu) 3 (2.97 g, 14.7 mmol), NaO t -Bu (2.83 g, 29.4 mmol) were added and stirred at 120 ° C.
  • Sub 1-53 (11.0 g, 16.5 mmol) obtained in the above synthesis was dissolved in toluene (160 mL) in a round bottom flask, and then Sub 2-1 (2.80 g, 16.5 mmol) and Pd 2 (dba) 3 (0.45 g) , 0.50 mmol), P ( t -Bu) 3 (3.35 g, 16.5 mmol), NaO t -Bu (3.18 g, 33.1 mmol) were added and stirred at 120 ° C.
  • Sub 1-81 (15.3 g, 21.3 mmol) obtained in the synthesis was dissolved in toluene (200 mL) in a round bottom flask, then Sub 2-1 (3.61 g, 21.3 mmol), Pd 2 (dba) 3 (0.59 g , 0.64 mmol), P ( t -Bu) 3 (4.32 g, 21.3 mmol), NaO t -Bu (4.10 g, 42.7 mmol) were added and stirred at 120 ° C.
  • Sub 1-109 (10.9 g, 14.6 mmol) obtained in the above synthesis was dissolved in toluene (140 mL) in a round bottom flask, then Sub 2-1 (2.46 g, 14.6 mmol) and Pd 2 (dba) 3 (0.40 g , 0.44 mmol), P ( t -Bu) 3 (2.95 g, 14.6 mmol), NaO t -Bu (2.80 g, 29.1 mmol) were added and stirred at 120 ° C.
  • Sub 1-137 (10.3 g, 10.9 mmol) obtained in the synthesis was dissolved in toluene (140 mL) in a round bottom flask, then Sub 2-1 (1.84 g, 10.9 mmol), Pd 2 (dba) 3 (0.30 g , 0.33 mmol), P ( t -Bu) 3 (2.20 g, 10.9 mmol), NaO t -Bu (2.09 g, 21.8 mmol) were added and stirred at 120 ° C.
  • Compound represented by Formula 2 according to the present invention may be prepared by the reaction of Sub 3 and Sub 4, as shown in Scheme 5, but is not limited thereto.
  • Sub 1 (6) (44.6 g, 80 mmol) and Sub 2 (2) (30.9 g, 80 mmol) were obtained using the synthesis method of 1'-1 to obtain (43.2 g, 69%).
  • Sub 1 (27) (40.8 g, 80 mmol) and Sub 2 (9) (43.1 g, 80 mmol) were obtained using the synthesis method of 1'-1 to obtain the product (51.0 g, 72%).
  • Sub 1 (1) (34.7 g, 80 mmol) and Sub 2 (27) (37.0 g, 80 mmol) were obtained using the synthesis method of 1'-1 to obtain the product (42.3 g, 72%).
  • Sub 1 (38) (50.7 g, 80 mmol) and Sub 2 (24) (37.0 g, 80 mmol) were obtained using the synthesis method of 1'-1 to give the product (51.6 g, 69%).
  • Sub 1 (33) (36.0 g, 80 mmol) and Sub 2 (38) (35.7 g, 80 mmol) were obtained using the synthesis method of 1'-1 to obtain the product (41.1 g, 70%).
  • N 1- (naphthalen-2-yl) -N 4 , N 4 -bis (4- (naphthalen-2-yl (phenyl) amino) phenyl ) -N 1 -phenylbenzene-1,4-diamine (abbreviated as 2-TNATA) membrane was vacuum deposited to form a thickness of 60 nm.
  • 2,4-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviated as -NPD) was vacuum deposited to a thickness of 60 nm to form a hole transport layer.
  • a mixture of 60:40 of the inventive compound represented by Formula 1 and Formula 2 was used as a host on the hole transport layer, and as a dopant, Ir (ppy) 3 [tris (2-phenylpyridine) -iridium] was 95:
  • a light emitting layer having a thickness of 30 nm was deposited on the hole transport layer by doping with 5 weights.
  • BAlq (1,1'-bisphenyl) -4-oleito) bis (2-methyl-8-quinoline oleito) aluminum
  • BAlq the electron transport layer Tris (8-quinolinol) aluminum
  • Alq3 the electron transport layer Tris (8-quinolinol) aluminum
  • the electroluminescent (EL) characteristics of the Example and Comparative Example organic electroluminescent devices manufactured as described above were applied to the PR-650 of photoresearch by applying a forward bias DC voltage, and the measurement result was 5000 cd / m 2 .
  • the T95 lifetime was measured using a life-time measurement instrument manufactured by McScience Inc. at luminance.
  • the following table shows the results of device fabrication and evaluation.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using Comparative Compound A to Comparative Compound C as a host.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that Comparative Compound A, Comparative Compound C, and Compound 2 were used as a host.
  • Comparative Example 2 and Comparative Example 3 device results in which the amine group was substituted on the same core showed excellent electrical characteristics, and one amine group was substituted on the same core. Comparative Example 3 device having two amine groups substituted than Comparative Example 2 showed excellent electrical properties.
  • Examples 1 to 65 which are used as a host by mixing the compounds of Chemical Formula 1 and Chemical Formula 2 of the present invention as compared to the case of Comparative Examples 3 to 6, exhibit markedly improved device characteristics.
  • the inventors of the present invention determine that each of the substances of the compound of Formula 1 and the compound of Formula 2 have new characteristics other than those of the substances, based on the experimental results, the substance of Formula 1, the substance of Formula 2 , PL lifetime was measured using the mixture of the present invention, respectively.
  • the compounds of the present invention were mixed with Chemical Formula 1 and Chemical Formula 2, it was confirmed that a new PL wavelength was formed, unlike when using a single compound. It was confirmed that the decrease and disappearance time increased from about 60 times to as much as about 360 times. This means that not only electrons and holes are moved through the energy levels of each material when the compounds of the present invention are mixed, but also electrons, hole movements or energy due to exciplex new regions having new energy levels formed by mixing. The transmission is believed to increase efficiency and lifespan. As a result, when using the mixture of the present invention, it can be said that the mixed thin film exhibits an exciplex energy transfer and light emission process.
  • the combination of the present invention is superior to Comparative Examples 4 to 6 used as a phosphorescent host mixed with a comparative compound because of the introduction of Dibenzothiophene or Dibenzofuran between the amine groups, which has high hole transportability and stability, and Formula 2 having strong electron properties. It has a good electrochemical synergy with the compound represented by, and the charge balance in the light emitting layer of holes and electrons is increased, so that the light is well emitted inside the light emitting layer instead of the hole transport layer interface, and the deterioration of the HTL interface is also reduced. It is believed that the driving voltage, efficiency and lifespan are maximized. In other words, it is concluded that the combination of Chemical Formula 1 and Chemical Formula 2 has an electrochemical synergy to improve the performance of the entire device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 소자의 발광효율, 안정성 및 수명을 향상시킬 수 있는 신규 혼합물 및 이를 이용한 유기전기소자, 그 전자 장치를 제공한다.

Description

유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
본 발명은 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛 에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기전기소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기전기소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 등으로 이루어질 수 있다.
유기전기소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광재료와 전하수송 재료, 예컨대 정공주입 재료, 정공수송 재료, 전자수송 재료, 전자주입 재료 등으로 분류될 수 있다.
헤테로원자를 포함하고 있는 비스타입의 고리화합물의 경우 물질 구조에 따른 특성의 차이가 매우 커서 유기전기소자의 재료로 다양한 층에 적용되고 있다. 특히 환의 개수 및 fused위치, 헤테로원자의 종류와 배열에 따라 밴드 갭(HOMO, LUMO), 전기적 특성, 화학적 특성, 물성 등이 상이한 특징을 갖고 있어, 이를 이용한 다양한 유기전기소자의 층에 대한 적용 개발이 진행되어 왔다.
인광 발광 도펀트 재료를 이용하는 인광형 유기전기소자에 있어서 호스트 물질의 LUMO, 및 HOMO level은 유기전기소자의 효율 및 수명에 매우 큰 영향을 주는 요인으로서 발광층 내 전자 및 정공 주입을 효율적으로 조절 가능하냐에 따라 발광층 내 charge balance 조절, 도펀트 퀜칭(quenching) 및 정공수송층 계면에서의 발광으로 인한 효율 저하 및 수명 저하를 방지할 수 있다.
형광 및 인광 발광용 호스트 물질의 경우 최근들어 TADF(Thermal activatied delayed fluorescent), Exciplex 등을 이용한 유기전기소자의 효율 증가 및 수명 증가 등을 연구하고 있으며, 특히 호스트 물질에서 도펀트 물질로의 에너지 전달 방법 규명에 많은 연구가 진행되고 있다.
TADF (Thermal activated delayed fluorescent), exciplex에 대한 발광층 내 에너지 전달 규명은 여러 가지 방법들이 있지만, PL lifetime (TRTP) 측정법으로 손쉽게 확인할 수 있다.
TRTP (Time resolved transient PL) 측정법은 펄스 광원을 호스트 박막에 조사한 후, 시간에 따른 스펙트럼의 감소(Decay time)를 관찰하는 방식으로서 에너지 전달 및 발광 지연시간 관찰을 통해 에너지 전달 방식을 규명할 수 있는 측정방법이다. 상기 TRTP 측정은 형광과 인광의 구분 및 mixed 호스트 물질 내에서의 에너지 전달방식, exciplex 에너지 전달방식, TADF 에너지 전달 방식 등을 구분해 줄 수 있는 측정법이다.
이처럼 호스트 물질로부터 도펀트 물질로 에너지가 전달되는 방식에 따라 효율 및 수명에 영향을 주는 다양한 요인들이 존재하며, 물질에 따라 에너지 전달 방식이 상이하여, 아직까지 안정되고 효율적인 유기전기소자용 호스트 재료의 개발이 충분히 이루어지지 않은 상태이다. 따라서 새로운 재료의 개발이 계속 요구되고 있으며, 특히 발광층의 호스트 물질에 대한 개발이 절실히 요구되고 있다.
참고 선행기술문헌으로는 KR101170666 B1을 이용하였다.
본 발명은 상기와 같은 인광 호스트 물질의 문제점을 해결하기 위하여 제안된 것으로, 인광 도펀트를 포함하는 인광 발광형 유기전기소자의 호스트 물질에 대한 HOMO level 조절을 통한 발광층 내 charge balance 조절 및 효율, 수명을 향상시킬 수 있는 화합물 이를 이용한 유기전기소자 및 그 전자장치를 제공하는 것을 목적으로 한다.
본 발명은 인광 발광형 유기전기소자의 발광층 내 효율적인 정공 주입을 조절하기 위해 주성분으로서 특정의 제 1호스트 재료에 특정의 제 2호스트 재료를 조합하여 함유함으로써, 발광층과 인접층의 에너지 장벽을 작게 할 수 있고, 발광층 내 charge balance를 최대화시켜 유기전기소자의 고효율, 고수명을 제공하는 것이다.
본 발명은 제 1전극, 제 2전극, 및 상기 제 1전극과 상기 제 2전극 사이에 형성된 유기물층을 포함하는 유기전기소자에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 인광성 발광층으로서 화학식 1로 표시되는 제 1 호스트 화합물 및 화학식 2로 표시되는 제 2 호스트 화합물을 포함하는 것을 특징으로 하는 유기전기소자.
화학식 1 화학식 2
Figure PCTKR2019006416-appb-I000001
또한, 본 발명은 상기 화학식들로 표시되는 화합물을 이용한 유기전기소자 및 그 전자장치를 제공한다.
본 발명에 따른 혼합물을 인광 호스트 물질로 이용함으로써, 유기전기소자의 높은 발광효율, 낮은 구동전압을 달성할 수 있으며, 또한 소자의 수명을 크게 향상시킬 수 있다.
도 1은 본 발명에 따른 유기전기발광소자의 예시도이다.
100 : 유기전기소자 110 : 기판
120 : 제 1전극(양극) 130 : 정공주입층
140 : 정공수송층 141 : 버퍼층
150 : 발광층 151 : 발광보조층
160 : 전자수송층 170 : 전자주입층
180 : 제 2전극(음극)
이하, 본 발명의 실시예를 참조하여 상세하게 설명한다. 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성 요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
본 명세서 및 첨부된 청구의 범위에서 사용된 바와 같이, 달리 언급하지 않는 한, 하기 용어의 의미는 하기와 같다:
본 명세서에서 사용된 용어 "할로" 또는 "할로겐"은 다른 설명이 없는 한 불소(F), 브롬(Br), 염소(Cl) 또는 요오드(I)이다.
본 발명에 사용된 용어 "알킬" 또는 "알킬기"는 다른 설명이 없는 한 1 내지 60의 탄소수의 단일결합을 가지며, 직쇄 알킬기, 분지쇄 알킬기, 사이클로알킬(지환족)기, 알킬-치환된 사이클로알킬기, 사이클로알킬-치환된 알킬기를 비롯한 포화 지방족 작용기의 라디칼을 의미한다.
본 발명에 사용된 용어 "할로알킬기" 또는 "할로겐알킬기"는 다른 설명이 없는 한 할로겐으로 치환된 알킬기를 의미한다.
본 발명에 사용된 용어 "헤테로알킬기"는 알킬기를 구성하는 탄소원자 중 하나 이상이 헤테로원자로 대체된 것을 의미한다.
본 발명에 사용된 용어 "알켄일기", "알케닐기" 또는 "알킨일기"는 다른 설명이 없는 한 각각 2 내지 60의 탄소수의 이중결합 또는 삼중결합을 가지며, 직쇄형 또는 측쇄형 사슬기를 포함하며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "시클로알킬"은 다른 설명이 없는 한 3 내지 60의 탄소수를 갖는 고리를 형성하는 알킬을 의미하며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "알콕실기", "알콕시기", 또는 "알킬옥시기"는 산소 라디칼이 부착된 알킬기를 의미하며, 다른 설명이 없는 한 1 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "알켄옥실기", "알켄옥시기", "알켄일옥실기", 또는 "알켄일옥시기"는 산소 라디칼이 부착된 알켄일기를 의미하며, 다른 설명이 없는 한 2 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "아릴옥실기" 또는 "아릴옥시기"는 산소 라디칼이 부착된 아릴기를 의미하며, 다른 설명이 없는 한 6 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "아릴기" 및 "아릴렌기"는 다른 설명이 없는 한 각각 6 내지 60의 탄소수를 가지며, 이에 제한되는 것은 아니다. 본 발명에서 아릴기 또는 아릴렌기는 단일 고리 또는 다중 고리의 방향족을 의미하며, 이웃한 치환기가 결합 또는 반응에 참여하여 형성된 방향족 고리를 포함한다. 예컨대, 아릴기는 페닐기, 비페닐기, 플루오렌기, 스파이로플루오렌기일 수 있다.
접두사 "아릴" 또는 "아르"는 아릴기로 치환된 라디칼을 의미한다. 예를 들어 아릴알킬기는 아릴기로 치환된 알킬기이며, 아릴알켄일기는 아릴기로 치환된 알켄일기이며, 아릴기로 치환된 라디칼은 본 명세서에서 설명한 탄소수를 가진다.
또한 접두사가 연속으로 명명되는 경우 먼저 기재된 순서대로 치환기가 나열되는 것을 의미한다. 예를 들어, 아릴알콕시기의 경우 아릴기로 치환된 알콕시기를 의미하며, 알콕실카르보닐기의 경우 알콕실기로 치환된 카르보닐기를 의미하며, 또한 아릴카르보닐알켄일기의 경우 아릴카르보닐기로 치환된 알켄일기를 의미하며 여기서 아릴카르보닐기는 아릴기로 치환된 카르보닐기이다.
본 명세서에서 사용된 용어 "헤테로알킬"은 다른 설명이 없는 한 하나 이상의 헤테로원자를 포함하는 알킬을 의미한다. 본 발명에 사용된 용어 "헤테로아릴기" 또는 "헤테로아릴렌기"는 다른 설명이 없는 한 각각 하나 이상의 헤테로원자를 포함하는 탄소수 2 내지 60의 아릴기 또는 아릴렌기를 의미하며, 여기에 제한되는 것은 아니며, 단일 고리 및 다중 고리 중 적어도 하나를 포함하며, 이웃한 작용기기가 결합하여 형성될 수도 있다.
본 발명에 사용된 용어 "헤테로고리기"는 다른 설명이 없는 한 하나 이상의 헤테로원자를 포함하고, 2 내지 60의 탄소수를 가지며, 단일 고리 및 다중 고리 중 적어도 하나를 포함하며, 헤테로지방족 고리 및 헤테로방향족 고리를 포함한다. 이웃한 작용기가 결합하여 형성될 수도 있다.
본 명세서에서 사용된 용어 "헤테로원자"는 다른 설명이 없는 한 N, O, S, P 또는 Si를 나타낸다.
또한 "헤테로고리기"는 고리를 형성하는 탄소 대신 SO2를 포함하는 고리도 포함할 수 있다. 예컨대, "헤테로고리기"는 다음 화합물을 포함한다.
Figure PCTKR2019006416-appb-I000002
다른 설명이 없는 한, 본 발명에 사용된 용어 "지방족"은 탄소수 1 내지 60의 지방족 탄화수소를 의미하며, "지방족고리"는 탄소수 3 내지 60의 지방족 탄화수소 고리를 의미한다.
다른 설명이 없는 한, 본 발명에 사용된 용어 "고리"는 탄소수 3 내지 60의 지방족고리 또는 탄소수 6 내지 60의 방향족고리 또는 탄소수 2 내지 60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화고리를 포함한다.
전술한 헤테로화합물 이외의 그 밖의 다른 헤테로화합물 또는 헤테로라디칼은 하나 이상의 헤테로원자를 포함하며, 여기에 제한되는 것은 아니다.
다른 설명이 없는 한, 본 발명에 사용된 용어 "카르보닐"이란 -COR'로 표시되는 것이며, 여기서 R'은 수소, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 30의 아릴기, 탄소수 3 내지 30의 사이클로알킬기, 탄소수 2 내지 20의 알켄일기, 탄소수 2 내지 20의 알킨일기, 또는 이들의 조합인 것이다.
다른 설명이 없는 한, 본 발명에 사용된 용어 "에테르"란 -R-O-R'로 표시되는 것이며, 여기서 R 또는 R'은 각각 서로 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 30의 아릴기, 탄소수 3 내지 30의 사이클로알킬기, 탄소수 2 내지 20의 알켄일기, 탄소수 2 내지 20의 알킨일기, 또는 이들의 조합인 것이다.
또한 명시적인 설명이 없는 한, 본 발명에서 사용된 용어 "치환 또는 비치환된"에서 "치환"은 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕실기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴티오펜기, C2~C20의 알켄일기, C2~C20의 알킨일기, C3~C20의 시클로알킬기, C6~C20의 아릴기, 중수소로 치환된 C6~C20의 아릴기, C8~C20의 아릴알켄일기, 실란기, 붕소기, 게르마늄기, 및 C2~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환됨을 의미하며, 이들 치환기에 제한되는 것은 아니다.
또한 명시적인 설명이 없는 한, 본 발명에서 사용되는 화학식은 하기 화학식의 지수 정의에 의한 치환기 정의와 동일하게 적용된다.
Figure PCTKR2019006416-appb-I000003
여기서, a가 0의 정수인 경우 치환기 R1은 부존재하는 것을 의미하는데, 즉 a가 0인 경우는 벤젠고리를 형성하는 탄소에 모두 수소가 결합된 것을 의미하며, 이때 탄소에 결합된 수소의 표시를 생략하고 화학식이나 화합물을 기재할 수 있다. a가 1의 정수인 경우 하나의 치환기 R1은 벤젠 고리를 형성하는 탄소 중 어느 하나의 탄소에 결합하며, a가 2 또는 3의 정수인 경우 각각 다음과 같이 결합하며 이때 R1은 서로 동일하거나 다를 수 있으며, a가 4 내지 6의 정수인 경우 이와 유사한 방식으로 벤젠 고리의 탄소에 결합하며, 한편 벤젠 고리를 형성하는 탄소에 결합된 수소의 표시는 생략한다.
Figure PCTKR2019006416-appb-I000004
이하, 본 발명의 일 측면에 따른 화합물 및 이를 포함하는 유기전기소자에 대하여 설명한다.
본 발명은 제 1전극, 제 2전극, 및 상기 제 1전극과 상기 제 2전극 사이에 형성된 유기물층을 포함하는 유기전기소자에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 인광성 발광층으로서 화학식 1로 표시되는 제 1 호스트 화합물 및 화학식 2로 표시되는 제 2 호스트 화합물을 포함하는 것을 특징으로 하는 유기전기소자를 제공한다.
화학식 1 화학식 2
Figure PCTKR2019006416-appb-I000005
{상기 화학식 1 및 2에서,
1) A 및 B 환은 각각 독립적으로 C6-C20의 아릴 또는 C2-C20의 헤테로고리;이고,
2) X1은 S 또는 O이며,
3) X2는 N-L7-Ar9, O, S, 또는 CR'R"이고,
R' 및 R"는 각각 독립적으로 수소; C6~C60의 아릴기; 플루오렌일기; C3~C60의 헤테로고리기; C1~C50의 알킬기; 및 -L'-N(Ra)(Rb);으로 이루어진 군에서 선택되고,
R' 및 R"은 서로 결합하여 스파이로 고리를 형성할 수 있고,
4) p 및 q는 각각 독립적으로 0~10의 정수이고, r는 0~3의 정수이며, s은 0~4의 정수이고,
5) R1, R2, R3 및 R4는 서로 독립적으로 서로 독립적으로 수소; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕실기; C6~C30의 아릴옥시기; 및 -L'-N(Ra)(Rb);로 이루어진 군에서 선택되며,
상기 Ra 및 Rb는 서로 독립적으로 C6-C60의 아릴기; 플루오렌일기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; 및 O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기;로 이루어진 군에서 선택되고,
6) L'은 단일결합; C6-C60의 아릴렌기; 플루오렌일렌기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; 및 C2-C60의 헤테로고리기;로 이루어진 군에서 선택되고,
7) Ar1, Ar2, Ar3, Ar4, Ar5, Ar6, Ar7, Ar8 및 Ar9은 서로 독립적으로 C6-C60의 아릴기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; 플루오렌일기; C6-C60의 방향족 고리와 C3-C60의 지방족 고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕실기; C6-C30의 아릴티오기; 및 C6-C30의 아릴옥시기;로 이루어진 군에서 선택되고, 또한 Ar1과 Ar2, Ar3과 Ar4, 및 Ar5과 Ar6은 서로 결합하여 고리를 형성할 수 있으며,
8) L1, L2, L3, L4, L5, L6 및 L7은 서로 독립적으로 단일결합; C6-C60의 아릴렌기; 플루오렌일렌기; O, N, S, Si 및 P 중 적어도 하나의 헤테로 원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; 및 지방족 탄화수소기;로 이루어진 군에서 선택되고,
9) 여기서, 상기 아릴기, 플루오렌닐기, 아릴렌기, 헤테로고리기, 플루오렌일렌기, 융합고리기, 알킬기, 알케닐기, 알콕시기 및 아릴옥시기는 각각 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1-C20의 알킬싸이오기; C1-C20의 알콕실기; C1-C20의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C6-C20의 아릴기; 중수소로 치환된 C6-C20의 아릴기; 플루오렌일기; C2-C20의 헤테로고리기; C3-C20의 시클로알킬기; C7-C20의 아릴알킬기 및 C8-C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 또한 이들 치환기들은 서로 결합하여 고리를 형성할 수도 있으며, 여기서 '고리'란 C3-C60의 지방족고리 또는 C6-C60의 방향족고리 또는 C2-C60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다.}
본 발명은 상기 화학식 1에서 상기 A 또는 B가 서로 독립적으로 하기 화학식 a-1 내지 화학식 a-7로 이루어진 군에서 선택되는 어느 하나인 화합물을 포함하는 유기전기소자를 제공한다.
화학식 a-1 화학식 a-2 화학식 a-3 화학식 a-4
Figure PCTKR2019006416-appb-I000006
화학식 a-5 화학식 a-6 화학식 a-7
Figure PCTKR2019006416-appb-I000007
{상기 화학식 a-1 내지 화학식 a-7에서,
Z1 내지 Z48은 서로 독립적으로 CRc 또는 N이고,
단, L1 내지 L7에 결합하고 있는 Z1 내지 Z48은 탄소(C)이며,
Rc는 상기 Ra의 정의와 동일하고,
*는 축합되는 위치를 나타낸다.}
또한 본 발명은, 상기 화학식 1 또는 화학식 2에서 상기 L1 내지 L7이 하기 화학식 b-1 내지 b-13 중에 어느 하나로 표시되는 화합물을 포함하는 유기전기소자를 제공한다.
화학식 b-1 화학식 b-2 화학식 b-3 화학식 b-4 화학식 b-5 화학식 b-6
Figure PCTKR2019006416-appb-I000008
화학식 b-7 화학식 b-8 화학식 b-9 화학식 b-10
Figure PCTKR2019006416-appb-I000009
화학식 b-11 화학식 b-12 화학식 b-13
Figure PCTKR2019006416-appb-I000010
{상기 화학식 b-1 내지 화학식 b-13에서,
Y는 N-L8-Ar10, O, S 또는 CR'R"이고,
L8은 상기 L1의 정의와 동일하고,
Ar10은 상기 Ar1의 정의와 동일하고,
R' 및 R"는 상기에서 정의된 바와 동일하며,
a, c, d, e은 서로 독립적으로 0 내지 4의 정수이고, b은 0 내지 6의 정수이고,
f 및 g은 서로 독립적으로 0 내지 3의 정수이고, h는 0 내지 2의 정수이며, i는 0 또는 1의 정수이고,
R5, R6 및 R7은 서로 독립적으로 수소; 중수소; 삼중수소; 할로겐; 시아노기; 나이트로기; C6-C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕실기; C6-C30의 아릴옥시기; 및 -La-N(Rd)(Re);로 이루어진 군에서 선택되고, 또는 상기 a, b, c, d, e, f 및 g가 2 이상인 경우, 및 h가 2이상인 경우는 각각 복수로서 서로 동일하거나 상이하며 복수의 R5끼리 혹은 복수의 R6끼리 혹은 복수의 R7끼리 혹은 이웃한 R5과 R6 또는 R6과 R7은 서로 결합하여 방향족 고리 또는 헤테로방향족 고리를 형성할 수 있고,
여기서 상기 La는 단일결합; C6-C60의 아릴렌기; 플루오렌일렌기; O, N, S, Si 및 P 중 적어도 하나의 헤테로 원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족 고리의 융합고리기; 및 C3-C60의 지방족 탄화수소기;로 이루어진 군에서 선택되며,
상기 Rd 및 Re는 서로 독립적으로 C6-C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로 원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기;로 이루어진 군에서 선택되고,
Z49, Z50 및 Z51은 서로 독립적으로 CRg 또는 N이고,
Z49, Z50 및 Z51 중 적어도 하나는 N이며,
Rg은 수소; 중수소; 삼중수소; 할로겐; 시아노기; 나이트로기; C6-C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕실기; 및 C6-C30의 아릴옥시기;로 이루어진 군에서 선택되고, 이웃한 R5과 Rg는 서로 결합하여 방향족 고리 또는 헤테로방향족 고리를 형성할 수 있다.}
또 다른 예로, 본 발명은 상기 Ar1 내지 Ar6 중 적어도 하나가 화학식 1-2로 표시되는 화합물을 포함하는 유기전기소자를 제공한다.
화학식 1-2
Figure PCTKR2019006416-appb-I000011
{상기 화학식 1-2에서,
C 및 D는 상기 A의 정의와 동일하고,
X3는 N-L10-Ar11, O, S 또는 CR'R"이고,
L9 및 L10은 상기 L1의 정의와 동일하고,
Ar11은 상기 Ar1의 정의와 동일하며,
R' 및 R"은 상기에서 정의된 바와 동일하다.}
본 발명은 또한, 상기 화학식 1로 나타내는 제 1호스트 화합물이 하기 화학식 3 또는 화학식 4로 표시되는 화합물을 포함하는 유기전기소자를 제공한다.
화학식 3 화학식 4
Figure PCTKR2019006416-appb-I000012
Figure PCTKR2019006416-appb-I000013
{상기 화학식 3 또는 화학식 4에서,
Ar1, Ar2, Ar3, Ar4, Ar5, Ar6, L1, L2, L3, R1, R2의 정의는 상기에서 정의된 바와 같고,
p'은 0 내지 3 중 어느 하나의 정수이고, q'은 0 내지 2 중 어느 하나의 정수이다.}
보다 구체적으로, 본 발명은 상기 화학식 1로 나타내는 제 1호스트 화합물이 하기 화학식 5 내지 화학식 11로 표시되는 화합물을 포함하는 유기전기소자를 제공한다.
화학식 5 화학식 6
Figure PCTKR2019006416-appb-I000014
Figure PCTKR2019006416-appb-I000015
화학식 7 화학식 8
Figure PCTKR2019006416-appb-I000016
Figure PCTKR2019006416-appb-I000017
화학식 9 화학식 10
Figure PCTKR2019006416-appb-I000018
Figure PCTKR2019006416-appb-I000019
화학식 11
Figure PCTKR2019006416-appb-I000020
{상기 화학식 5 내지 화학식 11에서,
L1, L2, L3, Ar1, Ar2, Ar3, Ar4, Ar5, Ar6, R1, R2, X1의 정의는 상기에서 정의된 바와 같고,
p'은 0 내지 3 중 어느 하나의 정수이고, q'은 0 내지 2 중 어느 하나의 정수이고, o는 0 내지 4 중 어느 하나의 정수이다.}
본 발명에서, 상기 화학식 1로 나타내는 제 1호스트 화합물은 하기 화학식 12 내지 화학식 21로 표시되는 화합물을 포함한다.
화학식 12 화학식 13 화학식 14
Figure PCTKR2019006416-appb-I000021
Figure PCTKR2019006416-appb-I000022
Figure PCTKR2019006416-appb-I000023
화학식 15 화학식 16 화학식 17
Figure PCTKR2019006416-appb-I000024
Figure PCTKR2019006416-appb-I000025
Figure PCTKR2019006416-appb-I000026
화학식 18 화학식 19 화학식 20
Figure PCTKR2019006416-appb-I000027
Figure PCTKR2019006416-appb-I000028
Figure PCTKR2019006416-appb-I000029
화학식 21
Figure PCTKR2019006416-appb-I000030
{상기 화학식 12 내지 화학식 21에서,
Ar1, Ar2, Ar3, Ar4, Ar5, Ar6, L1, L2, L3, R1, R2, p, q, X1, A, B의 정의는 상기에서 정의된 바와 같고,
p'은 0 내지 3 중 어느 하나의 정수이고, q'은 0 내지 2 중 어느 하나의 정수이다.}
본 발명의 상기 화학식 1로 나타낸 화합물은 하기 화학물 1-1 내지 1-146를 포함한다.
Figure PCTKR2019006416-appb-I000031
Figure PCTKR2019006416-appb-I000032
Figure PCTKR2019006416-appb-I000033
Figure PCTKR2019006416-appb-I000034
Figure PCTKR2019006416-appb-I000035
Figure PCTKR2019006416-appb-I000036
Figure PCTKR2019006416-appb-I000037
Figure PCTKR2019006416-appb-I000038
Figure PCTKR2019006416-appb-I000039
Figure PCTKR2019006416-appb-I000040
Figure PCTKR2019006416-appb-I000041
Figure PCTKR2019006416-appb-I000042
Figure PCTKR2019006416-appb-I000043
Figure PCTKR2019006416-appb-I000044
Figure PCTKR2019006416-appb-I000045
Figure PCTKR2019006416-appb-I000046
Figure PCTKR2019006416-appb-I000047
Figure PCTKR2019006416-appb-I000048
Figure PCTKR2019006416-appb-I000049
Figure PCTKR2019006416-appb-I000050
Figure PCTKR2019006416-appb-I000051
Figure PCTKR2019006416-appb-I000052
Figure PCTKR2019006416-appb-I000053
Figure PCTKR2019006416-appb-I000054
Figure PCTKR2019006416-appb-I000055
Figure PCTKR2019006416-appb-I000056
Figure PCTKR2019006416-appb-I000057
Figure PCTKR2019006416-appb-I000058
Figure PCTKR2019006416-appb-I000059
Figure PCTKR2019006416-appb-I000060
Figure PCTKR2019006416-appb-I000061
Figure PCTKR2019006416-appb-I000062
Figure PCTKR2019006416-appb-I000063
Figure PCTKR2019006416-appb-I000064
Figure PCTKR2019006416-appb-I000065
Figure PCTKR2019006416-appb-I000066
Figure PCTKR2019006416-appb-I000067
또한 본 발명은, 상기 화학식 2로 나타내는 제 2호스트 화합물이 하기 화학식 22 내지 화학식 25 중 어느 하나로 표시되는 화합물을 포함한다.
화학식 22 화학식 23
Figure PCTKR2019006416-appb-I000068
화학식 24 화학식 25
Figure PCTKR2019006416-appb-I000069
{상기 화학식 22 내지 25에서,
X2, L4, L5, L6, Ar7, Ar8, R3, R4, r, s은 상기에서 정의된 바와 같다.}
구체적으로 본 발명에서 상기 화학식 2로 나타내는 제 2호스트 화합물은 하기 화학식 26으로 표시되는 화합물을 포함한다.
화학식 26
Figure PCTKR2019006416-appb-I000070
{상기 화학식 26에서,
X2, L4, L5, L6, Ar7, R3, R4, r, s는 상기에서 정의된 바와 같고,
X4는 상기 X2의 정의와 동일하고,
R8 및 R9는 상기 R3 및 R4의 정의와 동일하며,
u은 상기 r의 정의와 동일하고 t는 상기 s의 정의와 동일하다.}
또한 본 발명의 상기 화학식 2로 나타내는 제 2호스트 화합물은 하기 화학식 27 내지 화학식 30으로 표시되는 화합물을 포함한다.
화학식 27 화학식 28
Figure PCTKR2019006416-appb-I000071
화학식 29 화학식 30
Figure PCTKR2019006416-appb-I000072
{상기 청구항 27 내지 30에서,
X2, L4, L5, L6, Ar7, R3, R4, r, s는 상기 청구항 1에서 정의된 바와 같고,
X4, R8, R9, u, t는 상기에서 정의한 바와 같다.}
본 발명에서, 상기 화학식 2로 나타내는 제 2호스트 화합물은 하기 화합물을 포함한다.
Figure PCTKR2019006416-appb-I000073
Figure PCTKR2019006416-appb-I000074
Figure PCTKR2019006416-appb-I000075
Figure PCTKR2019006416-appb-I000076
Figure PCTKR2019006416-appb-I000077
Figure PCTKR2019006416-appb-I000078
Figure PCTKR2019006416-appb-I000079
Figure PCTKR2019006416-appb-I000080
Figure PCTKR2019006416-appb-I000081
Figure PCTKR2019006416-appb-I000082
Figure PCTKR2019006416-appb-I000083
Figure PCTKR2019006416-appb-I000084
Figure PCTKR2019006416-appb-I000085
Figure PCTKR2019006416-appb-I000086
Figure PCTKR2019006416-appb-I000087
Figure PCTKR2019006416-appb-I000088
Figure PCTKR2019006416-appb-I000089
Figure PCTKR2019006416-appb-I000090
Figure PCTKR2019006416-appb-I000091
Figure PCTKR2019006416-appb-I000092
Figure PCTKR2019006416-appb-I000093
Figure PCTKR2019006416-appb-I000094
Figure PCTKR2019006416-appb-I000095
Figure PCTKR2019006416-appb-I000096
Figure PCTKR2019006416-appb-I000097
Figure PCTKR2019006416-appb-I000098
Figure PCTKR2019006416-appb-I000099
Figure PCTKR2019006416-appb-I000100
Figure PCTKR2019006416-appb-I000101
Figure PCTKR2019006416-appb-I000102
Figure PCTKR2019006416-appb-I000103
Figure PCTKR2019006416-appb-I000104
Figure PCTKR2019006416-appb-I000105
Figure PCTKR2019006416-appb-I000106
Figure PCTKR2019006416-appb-I000107
Figure PCTKR2019006416-appb-I000108
Figure PCTKR2019006416-appb-I000109
Figure PCTKR2019006416-appb-I000110
Figure PCTKR2019006416-appb-I000111
Figure PCTKR2019006416-appb-I000112
Figure PCTKR2019006416-appb-I000113
Figure PCTKR2019006416-appb-I000114
Figure PCTKR2019006416-appb-I000115
Figure PCTKR2019006416-appb-I000116
Figure PCTKR2019006416-appb-I000117
Figure PCTKR2019006416-appb-I000118
Figure PCTKR2019006416-appb-I000119
Figure PCTKR2019006416-appb-I000120
Figure PCTKR2019006416-appb-I000121
Figure PCTKR2019006416-appb-I000122
Figure PCTKR2019006416-appb-I000123
Figure PCTKR2019006416-appb-I000124
Figure PCTKR2019006416-appb-I000125
Figure PCTKR2019006416-appb-I000126
Figure PCTKR2019006416-appb-I000127
Figure PCTKR2019006416-appb-I000128
Figure PCTKR2019006416-appb-I000129
Figure PCTKR2019006416-appb-I000130
Figure PCTKR2019006416-appb-I000131
Figure PCTKR2019006416-appb-I000132
Figure PCTKR2019006416-appb-I000133
Figure PCTKR2019006416-appb-I000134
Figure PCTKR2019006416-appb-I000135
Figure PCTKR2019006416-appb-I000136
Figure PCTKR2019006416-appb-I000137
Figure PCTKR2019006416-appb-I000138
Figure PCTKR2019006416-appb-I000139
Figure PCTKR2019006416-appb-I000140
Figure PCTKR2019006416-appb-I000141
Figure PCTKR2019006416-appb-I000142
Figure PCTKR2019006416-appb-I000143
Figure PCTKR2019006416-appb-I000144
Figure PCTKR2019006416-appb-I000145
Figure PCTKR2019006416-appb-I000146
Figure PCTKR2019006416-appb-I000147
Figure PCTKR2019006416-appb-I000148
Figure PCTKR2019006416-appb-I000149
Figure PCTKR2019006416-appb-I000150
Figure PCTKR2019006416-appb-I000151
Figure PCTKR2019006416-appb-I000152
Figure PCTKR2019006416-appb-I000153
Figure PCTKR2019006416-appb-I000154
Figure PCTKR2019006416-appb-I000155
Figure PCTKR2019006416-appb-I000156
Figure PCTKR2019006416-appb-I000157
Figure PCTKR2019006416-appb-I000158
Figure PCTKR2019006416-appb-I000159
도 1을 참조하여 설명하면, 본 발명에 따른 유기전기소자(100)는 기판(110) 상에 형성된 제 1전극(120), 제 2전극(180) 및 제 1전극(120)과 제 2전극(180) 사이에 화학식 1로 표시되는 화합물을 포함하는 유기물층을 구비한다. 이때, 제 1전극(120)은 애노드(양극)이고, 제 2전극(180)은 캐소드(음극)일 수 있으며, 인버트형의 경우에는 제 1전극이 캐소드이고 제 2전극이 애노드일 수 있다.
유기물층은 제 1전극(120) 상에 순차적으로 정공주입층(130), 정공수송층(140), 발광층(150), 발광보조층(151), 전자수송층(160) 및 전자주입층(170)을 포함할 수 있다. 이때, 발광층(150)을 제외한 나머지 층들이 형성되지 않을 수 있다. 정공저지층, 전자저지층, 발광보조층(151), 전자수송보조층, 버퍼층(141) 등을 더 포함할 수 있고, 전자수송층(160) 등이 정공저지층의 역할을 할 수도 있다.
또한, 미도시하였지만 본 발명에 따른 유기전기소자는 제 1전극과 제 2전극중 적어도 일면 중 상기 유기물층과 반대되는 일면에 형성된 보호층을 더 포함할 수 있다.
한편, 동일한 코어일지라도 어느 위치에 어느 치환기를 결합시키냐에 따라 밴드갭(band gap), 전기적 특성, 계면 특성 등이 달라질 수 있으므로, 코어의 선택 및 이에 결합된 서브(sub)-치환체의 조합도 아주 중요하며, 특히 각 유기물층 간의 에너지 level 및 T1 값, 물질의 고유특성(mobility, 계면특성 등) 등이 최적의 조합을 이루었을 때 긴 수명과 높은 효율을 동시에 달성할 수 있다.
본 발명의 일 실시예에 따른 유기전기발광소자는 PVD(physical vapor deposition) 방법을 이용하여 제조될 수 있다. 예컨대, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층(130), 정공수송층(140), 발광층(150), 전자수송층(160) 및 전자주입층(170)을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 또한, 정공수송층(140)과 발광층(150) 사이에 발광보조층(151)을, 발광층(150)과 전자수송층(160) 사이에 전자수송보조층을 추가로 더 형성할 수 있다.
이에 따라, 본 발명은 상기 제 1전극과 발광층 사이에 1층 이상의 정공수송대역층을 포함하고, 상기 정공수송대역층은 정공수송층, 발광보조층 또는 이 둘을 모두 포함하며, 상기 정공수송대역층이 상기 화학식 1로 표시되는 화합물을 포함하는 유기전기소자를 제공한다.
또한, 본 발명은 상기 화학식 1 및 상기 화학식 2로 나타내는 화합물이 1:9 내지 9:1 중 어느 하나의 비율로 혼합되어 상기 발광층에 포함되는 유기전기소자를 제공하며, 바람직하게는 1:9 내지 5:5로, 보다 바람직하게는 2:8 내지 3:7 비율로 혼합되어 상기 발광층에 포함된다.
본 발명은 상기 유기전기소자에서 상기 제 1전극의 일측면 중 상기 유기물층과 반대되는 일측 또는 상기 제 2전극의 일측면 중 상기 유기물층과 반대되는 일측 중 적어도 하나에 형성되는 광효율개선층을 더 포함하는 유기전기소자를 제공한다.
또한 본 발명에서 상기 유기물층은 스핀코팅 공정, 노즐 프린팅 공정, 잉크젯 프린팅 공정, 슬롯코팅 공정, 딥코팅 공정 및 롤투롤 공정 중 어느 하나에 의해 형성되며, 본 발명에 따른 유기물층은 다양한 방법으로 형성될 수 있으므로, 그 형성방법에 의해 본 발명의 권리범위가 제한되는 것은 아니다.
본 발명의 일 실시예에 따른 유기전기소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
WOLED(White Organic Light Emitting Device)는 고해상도 실현이 용이하고 공정성이 우수한 한편, 기존의 LCD의 칼라필터 기술을 이용하여 제조될 수 있는 이점이 있다. 주로 백라이트 장치로 사용되는 백색 유기발광소자에 대한 다양한 구조들이 제안되고 특허화되고 있다. 대표적으로, R(Red), G(Green), B(Blue) 발광부들을 상호평면적으로 병렬배치(side-by-side) 방식, R, G, B 발광층이 상하로 적층되는 적층(stacking) 방식이 있고, 청색(B) 유기발광층에 의한 전계발광과 이로부터의 광을 이용하여 무기형광체의 자발광(photo-luminescence)을 이용하는 색변환물질(color conversion material, CCM) 방식 등이 있는데, 본 발명은 이러한 WOLED에도 적용될 수 있을 것이다.
또한 본 발명은 상기한 유기전기소자를 포함하는 디스플레이장치; 및 상기 디스플레이장치를 구동하는 제어부;를 포함하는 전자장치를 제공한다.
또 다른 측면에서 상기 유기전기소자는 유기전기발광소자, 유기태양전지, 유기감광체, 유기트랜지스터, 및 단색 또는 백색 조명용 소자 중 적어도 하나인 것을 특징으로 하는 전자장치를 본 발명에서 제공한다. 이때, 전자장치는 현재 또는 장래의 유무선 통신단말기일 수 있으며, 휴대폰 등의 이동 통신 단말기, PDA, 전자사전, PMP, 리모콘, 네비게이션, 게임기, 각종 TV, 각종 컴퓨터 등 모든 전자장치를 포함한다.
이하에서, 본 발명의 상기 화학식 1 및 2로 표시되는 화합물의 합성예 및 본 발명의 유기전기소자의 제조예에 관하여 실시예를 들어 구체적으로 설명하지만, 본 발명의 하기 실시예로 한정되는 것은 아니다.
[ 합성예 1]
화학식 1의 합성
본 발명에 따른 화학식 1로 표시되는 화합물(final product 1)은 하기 반응식 1과 같이 Sub 1과 Sub 2를 반응시켜 합성되며, 이에 한정되는 것은 아니다.
<반응식 1>
Figure PCTKR2019006416-appb-I000160
I. Sub 1 합성
상기 반응식 1의 Sub1은 하기 반응식 2의 반응경로에 의해 합성될 수 있으나, 이에 한정되는 것은 아니다. (Hal1은 Br, Cl이고, Hal2는 I, Br에서 선택된다.)
<반응식 2>
Figure PCTKR2019006416-appb-I000161
또한 상기 반응식 2의 Sub1-I은 하기 반응식 3의 반응경로에 의해 합성될 수 있으나, 이에 한정되는 것은 아니다.
<반응식 3>
Figure PCTKR2019006416-appb-I000162
Sub 1 에 속하는 구체적 화합물의 합성예는 다음과 같다.
1. Sub1 -1 합성예
(1) Sub1 -I-1의 합성
Figure PCTKR2019006416-appb-I000163
[1] Sub1-I-c-1의 합성
(4-Bromo-2-(methylthio)phenyl)boronic acid (20 g, 246.91 mmol)에 3-bromo-5-iodophenol (24.2 g, 81.0 mmol), Pd(PPh3)4 (2.81 g, 2.43 mmol), NaOH (6.48 g, 162 mmol), THF (200 mL), H2O (100 mL)를 넣고 90℃에서 12시간 환류시킨다. 반응이 종료되면 반응물의 온도를 상온으로 식히고, CH2Cl2와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 Silicagel column및 재결정하여 생성물 25.5 g(수율 84%)를 얻었다.
[2] Sub1-I-d-1의 합성
Sub1-I-c-1 (25.5 g, 68.1 mmol)에 acetic acid (250 mL)를 넣고 35% Hydrogen peroxide (H2O2) (6.94 g)을 넣고 상온에서 교반한다. 반응이 종료되면 NaOH 수용액으로 중화시킨 뒤, EA(ethylacetate)와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 Silicagel column및 재결정하여 생성물 21.9 g (수율 82%)을 얻었다.
[3] Sub 1-I-e-1의 합성
Sub1-I-d-1 (21.9 g, 56.0 mmol)에 Sulfuric acid (H2SO4) (11 mL)를 넣고 상온에서 교반한다. 반응이 종료되면 NaOH 수용액으로 중화시킨 뒤, CH2Cl2와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 Silicagel column 및 재결정하여 생성물 16.8 g(수율 84%)을 얻었다.
[4] Sub1-I-1의 합성
Sub1-I-e-1 (16.8 g, 46.8 mmol)에 과량의 트리플루오로메탄술폰산(trifluoromethane-sulfonic acid)에 넣고 상온에서 24시간 교반한 다음 물과 피리딘(8:1)을 천천히 넣고 30분 환류한다. 온도를 내리고 CH2Cl2와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 생성물을 Silicagel column 및 재결정으로 생성물 15.7 g(수율 68%)을 얻었다.
(2) Sub1 -1의 합성
Figure PCTKR2019006416-appb-I000164
[1] Sub1-1의 합성
Sub1-I-1 (15.7 g, 32.0 mmol)을 Toluene (210 mL)으로 녹인 후에, diphenylamine (10.8 g, 64.1 mmol), Pd2(dba)3 (1.76 g, 1.92 mmol), P(t-Bu)3 (26.0 g, 64.0 mmol), NaOt-Bu (12.3 g, 128 mmol)을 첨가하고 120℃에서 교반하였다. 반응이 종료되면 반응물의 온도를 상온으로 식히고, CH2Cl2와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 Silicagel column 및 재결정하여 생성물 Sub1-1을 13.7 g (수율 64%) 얻었다.
2. Sub1 -3 합성예
Figure PCTKR2019006416-appb-I000165
Figure PCTKR2019006416-appb-I000166
[1] Sub1 -I-h-3의 합성
(4-bromo-2-hydroxyphenyl)boronic acid (20 g, 92.2 mmol)에 3-bromo-5-iodophenol (27.6 g, 92.2 mmol), Pd(PPh3)4 (3.20 g, 2.77 mmol), NaOH (7.38 g, 184.5 mmol), THF (200 mL), H2O (100 mL)를 넣고 90℃에서 12시간 환류시킨다. 반응이 종료되면 반응물의 온도를 상온으로 식히고, CH2Cl2와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 Silicagel column및 재결정하여 생성물 24.0 g(수율 76%)를 얻었다.
[2] Sub1 -I-i-3의 합성
Sub1-I-h-3 (24.0 g, 69.8 mmol)에 Pd(OAc)2 (0.78 g, 3.49 mmol), 3-nitropyridine (0.43 g, 3.49 mmol), BzOOt-Bu (tert-butyl peroxybenzoate) (27.1 g, 139.5 mmol), C6F6 (hexafluorobenzene) (160 mL), DMI (N,N’-dimethylimidazolidinone) (100 mL)을 넣고 90에서 3시간 환류시킨다. 반응이 종료되면 반응물의 온도를 상온으로 식히고, EA와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 Silicagel column 및 재결정하여 생성물 14.3 g(수율 60%)를 얻었다.
[3] Sub1 -I-3의 합성
Sub1-I-i-3 (14.3 g, 41.7 mmol)에 과량의 트리플루오로메탄술폰산(trifluoromethane-sulfonic acid)에 넣고 상온에서 24시간 교반한 다음 물과 피리딘(8:1)을 천천히 넣고 30분 환류한다. 온도를 내리고 CH2Cl2와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 생성물을 Silicagel column 및 재결정으로 생성물 15.4 g(수율 78%)을 얻었다.
[4] Sub1 -3의 합성
Sub1-I-3 (15.4 g, 32.4 mmol)을 Toluene (200 mL)으로 녹인 후에, diphenylamine (11.0 g, 64.8 mmol), Pd2(dba)3 (1.78 g, 1.94 mmol), P(t-Bu)3 (26.4 g, 64.8 mmol), NaOt-Bu (12.5 g, 130 mmol)을 첨가하고 120℃에서 교반하였다. 반응이 종료되면 반응물의 온도를 상온으로 식히고, CH2Cl2와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 Silicagel column 및 재결정하여 생성물 Sub1-3을 14.4 g (수율 68%) 얻었다.
3. Sub1 -30 합성예
Figure PCTKR2019006416-appb-I000167
Figure PCTKR2019006416-appb-I000168
[1] Sub1 -I-c-30의 합성
(5-Bromo-2-(methylthio)phenyl)boronic acid (20 g, 81.0 mmol), 3-bromo-5-iodophenol (24.2 g, 81.0 mmol), Pd(PPh3)4 (2.81 g, 2.43 mmol), NaOH (6.48 g, 2.43 mmol)를 상기 Sub1-I-c-1의 합성법을 이용하여 생성물 24.4 g(수율 81%)를 얻었다.
[2] Sub1 -I-d-30의 합성
Sub1-I-c-30 (24.4 g, 65.3 mmol), acetic acid (245 mL), 35% Hydrogen peroxide (H2O2) (6.66 g)을 상기 Sub 1-I-d-1의 합성법을 이용하여 생성물 20.1 g (수율 79%)을 얻었다.
[3] Sub 1-I-e-30의 합성
Sub1-I-d-30 (20.1 g, 51.6 mmol), Sulfuric acid (H2SO4) (10 mL)를 상기 Sub1-I-e-1의 합성법을 이용하여 생성물 15.5 g(수율 84%)을 얻었다.
[4] Sub1 -I-30의 합성
Sub1-I-e-30 (15.5 g, 42.3 mmol)에 과량의 트리플루오로메탄술폰산(trifluoromethane-sulfonic acid)에 넣고 상기 Sub1-I-1의 합성법을 이용하여 생성물 16.0 g(수율 75%)을 얻었다.
[5] Sub1 -30의 합성
Sub1-I-30 (15.5 g, 32.6 mmol), diphenylamine (11.0 g, 65.2 mmol), Pd2(dba)3 (1.79 g, 2.00 mmol), P(t-Bu)3 (26.4 g, 65.2 mmol), NaOt-Bu (12.5 g, 130 mmol)을 상기 Sub1-1의 합성법을 이용하여 생성물 Sub1-30를 14.0 g (수율 64.5%) 얻었다.
4. Sub1 -33 합성예
Figure PCTKR2019006416-appb-I000169
Figure PCTKR2019006416-appb-I000170
Figure PCTKR2019006416-appb-I000171
[1] Sub1 -I-h-33의 합성
(5-chloro-2-hydroxyphenyl)boronic acid (20 g, 116 mmol), 3-bromo-4-iodophenol (34.8 g, 116 mmol), Pd(PPh3)4 (4.03 g, 3.49 mmol), NaOH (9.30 g, 233 mmol)를 상기 Sub1-I-h-3의 합성법을 이용하여 생성물 27.2 g(수율 78%)를 얻었다.
[2] Sub1 -I-i-33의 합성
Sub1-I-h-33 (27.2 g, 90.7 mmol), Pd(OAc)2 (1.02 g, 4.54 mmol), 3-nitropyridine (0.56 g, 4.54 mmol), BzOOt-Bu (tert-butyl peroxybenzoate) (35.2 g, 181 mmol), C6F6 (hexafluorobenzene) (210 mL), DMI (N,N’-dimethylimidazolidinone) (135mL)을 상기 Sub 1-I-i-3의 합성법을 이용하여 생성물 14.7 g(수율 54%)를 얻었다.
[3] Sub1 -I-33의 합성
Sub1-I-i-33 (14.7 g, 49.3 mmol)에 과량의 트리플루오로메탄술폰산(trifluoromethane-sulfonic acid)에 넣고 상기 Sub1-I-3의 합성법을 이용하여 생성물 14.7 g(수율 69%)을 얻었다.
[4] Sub1 -II-33의 합성
Sub1-I-33 (14.7 g, 34.1 mmol), diphenylamine (5.77 g, 34.1 mmol), Pd2(dba)3 (0.94 g, 1.02 mmol), P(t-Bu)3 (6.83 g, 34.1 mmol), NaOt-Bu (6.56 g, 68.2 mmol)을 상기 Sub1-1의 합성법을 이용하여 생성물 Sub1-II-33를 12.3 g (수율 70%) 얻었다.
[5] Sub1 -33의 합성
Sub1-II-33 (12.3 g, 23.7 mmol), N-phenyldibenzo[b,d]thiophen-3-amine (6.54 g, 23.7 mmol), Pd2(dba)3 (0.65 g, 0.71 mmol), P(t-Bu)3 (4.83 g, 23.7 mmol), NaOt-Bu (4.56 g, 47.5 mmol)을 상기 Sub1-1의 합성법을 이용하여 생성물 Sub1-33를 12.2 g (수율 68%) 얻었다.
5. Sub1 -46 합성예
Figure PCTKR2019006416-appb-I000172
Figure PCTKR2019006416-appb-I000173
Figure PCTKR2019006416-appb-I000174
[1] Sub1 -I-c-46의 합성
(5-chloro-2-(methylthio)phenyl)boronic acid (20 g, 98.8 mmol), 4-bromo-3-iodophenol (29.53 g, 98.8 mmol), Pd(PPh3)4 (3.42 g, 2.96 mmol), NaOH (7.90 g, 198 mmol)를 상기 Sub1-I-c-1의 합성법을 이용하여 생성물 27.2 g(수율 84%)를 얻었다.
[2] Sub1 -I-d-46의 합성
Sub1-I-c-46 (27.2 g, 82.6 mmol), acetic acid (270 mL), 35% Hydrogen peroxide (H2O2) (8.43 g)을 상기 Sub 1-I-d-1의 합성법을 이용하여 생성물 21.8 g (수율 76%)을 얻었다.
[3] Sub 1-I-e-4의 합성
Sub1-I-d-46 (21.8 g, 62.9 mmol), Sulfuric acid (H2SO4) (11 mL)를 상기 Sub1-I-e-1의 합성법을 이용하여 생성물 15.7 g(수율 79%)을 얻었다.
[4] Sub1 -I-46의 합성
Sub1-I-e-46 (15.7 g, 50.0 mmol)에 과량의 트리플루오로메탄술폰산(trifluoromethane-sulfonic acid)에 넣고 상기 Sub1-I-1의 합성법을 이용하여 생성물 15.7 g(수율 71%)을 얻었다.
[5] Sub1 -II-46의 합성
Sub1-I-46 (15.7 g, 35.3 mmol), 9H-carbazole (5.91 g, 35.3 mmol), Pd2(dba)3 (0.97 g, 1.06 mmol), P(t-Bu)3 (7.17 g, 35.3 mmol), NaOt-Bu (6.79 g, 70.7mmol)을 상기 Sub1-1의 합성법을 이용하여 생성물 Sub1-II-46를 11.7 g (수율 62%) 얻었다.
[6] Sub1 -46의 합성
Sub1-II-46 (11.7 g, 22.0 mmol), diphenylamine (3.71 g, 22.0 mmol), Pd2(dba)3 (0.60 g, 0.66 mmol), P(t-Bu)3 (4.50 g, 22.0 mmol), NaOt-Bu (4.22 g, 43.9 mmol)을 상기 Sub1-1의 합성법을 이용하여 생성물 Sub1-46를 9.77 g (수율 67%) 얻었다.
6. Sub1 -53 합성예
Figure PCTKR2019006416-appb-I000175
Figure PCTKR2019006416-appb-I000176
[1] Sub1 -I-h-53의 합성
(2-bromo-6-hydroxy-4-methylphenyl)boronic acid (20 g, 86.6 mmol)에 3-bromo-5-iodophenol (25.9 g, 86.6 mmol), Pd(PPh3)4 (3.00 g, 2.60 mmol), NaOH (6.93 g, 173 mmol)를 상기 Sub1-I-h-3의 합성법을 이용하여 생성물 26.0 g(수율 84%)를 얻었다.
[2] Sub1 -I-i-53의 합성
Sub1-I-h-53 (26.0 g, 72.6 mmol)에 Pd(OAc)2 (0.82 g, 3.63 mmol), 3-nitropyridine (0.45 g, 3.63 mmol), BzOOt-Bu (tert-butyl peroxybenzoate) (28.2 g, 145 mmol), C6F6 (hexafluorobenzene) (170 mL), DMI (N,N’-dimethylimidazolidinone) (110 mL)을 상기 Sub 1-I-i-3의 합성법을 이용하여 생성물 13.3 g(수율 51%)를 얻었다.
[3] Sub1 -I-53의 합성
Sub1-I-i-53 (13.3 g, 37.3 mmol)에 과량의 트리플루오로메탄술폰산(trifluoromethane-sulfonic acid)에 넣고 상기 Sub1-I-3의 합성법을 이용하여 생성물 13.2 g(수율 72%)을 얻었다.
[4] Sub1 -53의 합성
Sub1-I-53 (13.2 g, 27.0 mmol), diphenylamine (9.14 g, 54.0 mmol), Pd2(dba)3 (1.48 g, 1.62 mmol), P(t-Bu)3 (22.0 g, 54.0 mmol), NaOt-Bu (10.4 g, 108 mmol)을 상기 Sub1-1의 합성법을 이용하여 생성물 Sub1-53를 11.0 g (수율 61%) 얻었다.
7. Sub1 -81 합성예
Figure PCTKR2019006416-appb-I000177
Figure PCTKR2019006416-appb-I000178
[1] Sub1-I-c-81의 합성
(3-bromo-2-(methylthio)phenyl)boronic acid (20 g, 81.0 mmol), 4-bromo-3-iodonaphthalen-1-ol (28.3 g, 81.0 mmol), Pd(PPh3)4 (2.81 g, 2.43 mmol), NaOH (6.48 g, 162 mmol)를 상기 Sub1-I-c-1의 합성법을 이용하여 생성물 29.0 g(수율 84%)를 얻었다.
[2] Sub1-I-d-81의 합성
Sub1-I-c-81 (29.0 g, 68.3 mmol), acetic acid (290 mL), 35% Hydrogen peroxide (H2O2) (6.96 g)을 상기 Sub 1-I-d-1의 합성법을 이용하여 생성물 24.4 g (수율 81%)을 얻었다.
[3] Sub 1-I-e-81의 합성
Sub1-I-d-81 (24.4 g, 55.3 mmol), Sulfuric acid (H2SO4) (12 mL)를 상기 Sub1-I-e-1의 합성법을 이용하여 생성물 18.0 g(수율 80%)을 얻었다.
[4] Sub1-I-81의 합성
Sub1-I-e-81 (18.0 g, 44.1 mmol)에 과량의 트리플루오로메탄술폰산(trifluoromethane-sulfonic acid)에 넣고 상기 Sub1-I-1의 합성법을 이용하여 생성물 17.0 g(수율 71%)을 얻었다.
[5] Sub1-81의 합성
Sub1-I-81 (17.0 g, 31.5 mmol), diphenylamine (10.7 g, 63.1 mmol), Pd2(dba)3 (1.73 g, 1.89 mmol), P(t-Bu)3 (25.6 g, 63 mmol), NaOt-Bu (12.1 g, 126 mmol)을 상기 Sub1-1의 합성법을 이용하여 생성물 Sub1-81를 15.3 g (수율 68%) 얻었다.
8. Sub1 -109 합성예
Figure PCTKR2019006416-appb-I000179
Figure PCTKR2019006416-appb-I000180
[1] Sub1 -I-h-109의 합성
(3-bromo-2-hydroxynaphthalen-1-yl)boronic acid (g, mmol)에 3-bromo-5-iodophenol (20 g, 74.9 mmol), Pd(PPh3)4 (22.4 g, 74.9 mmol), NaOH (6.00 g, 150 mmol)를 상기 Sub1-I-h-3의 합성법을 이용하여 생성물 23.1 g(수율 78%)를 얻었다.
[2] Sub1 -I-i-109의 합성
Sub1-I-h-109 (23.1 g, 58.5 mmol)에 Pd(OAc)2 (0.66 g, 2.93 mmol), 3-nitropyridine (0.36 g, 2.93 mmol), BzOOt-Bu (tert-butyl peroxybenzoate) (22.7 g, 117 mmol), C6F6 (hexafluorobenzene) (135 mL), DMI (N,N’-dimethylimidazolidinone) (90 mL)을 상기 Sub 1-I-i-3의 합성법을 이용하여 생성물 12.5 g(수율 54.5 %)를 얻었다.
[3] Sub1 -I-109의 합성
Sub1-I-i-109 (12.5 g, 31.9 mmol)에 과량의 트리플루오로메탄술폰산(trifluoromethane-sulfonic acid)에 넣고 상기 Sub1-I-3의 합성법을 이용하여 생성물 11.7 g(수율 22.3%)을 얻었다.
[4 Sub1 -109의 합성
Sub1-I-109 (11.7 g, 22.3 mmol), diphenylamine (7.55 g, 44.6 mmol), Pd2(dba)3 (1.22 g, 1.34 mmol), P(t-Bu)3 (18.0 g, 44.6 mmol), NaOt-Bu (8.57 g, 89.2 mmol)을 상기 Sub1-1의 합성법을 이용하여 생성물 Sub1-109를 10.2 g (수율 65%) 얻었다.
9. Sub1 -133 합성예
Figure PCTKR2019006416-appb-I000181
Figure PCTKR2019006416-appb-I000182
[1] Sub1 -II-133의 합성
Sub1-I-20 (15 g, 35.1 mmol), N-phenylnaphthalen-1-amine (7.69 g, 35.1 mmol), Pd2(dba)3 (0.96 g, 1.05 mmol), P(t-Bu)3 (7.17 g, 35.1 mmol), NaOt-Bu (6.74 g, 70.2 mmol)을 상기 Sub1-1의 합성법을 이용하여 생성물 Sub1-II-133를 12.5 g (수율 62%) 얻었다.
[2] Sub1 -133의 합성
Sub1-II-133 (12.5 g, 22.0 mmol), N-phenylquinolin-7-amine (4.85 g, 22.0 mmol), Pd2(dba)3 (0.60 g, 0.66 mmol), P(t-Bu)3 (4.50 g, 22.0 mmol), NaOt-Bu (4.23 g, 44.0 mmol)을 상기 Sub1-1의 합성법을 이용하여 생성물 Sub1-133를 10.9 g (수율 66%) 얻었다.
10. Sub1 -137 합성예
Figure PCTKR2019006416-appb-I000183
Figure PCTKR2019006416-appb-I000184
Figure PCTKR2019006416-appb-I000185
Figure PCTKR2019006416-appb-I000186
[1] Sub1 -I-c-137의 합성
(3-bromo-2-(methylthio)phenyl)boronic acid (20 g, 71.8 mmol), 4-bromo-3-iodonaphthalen-1-ol (41.9 g, 71.8 mmol), Pd(PPh3)4 (2.49 g, 2.15 mmol), NaOH (5.74 g, 144 mmol)를 상기 Sub1-I-c-1의 합성법을 이용하여 생성물 38.9 g(수율 79%)를 얻었다.
[2] Sub1 -I-d-137의 합성
Sub1-I-c-137 (38.9 g, 56.4 mmol), acetic acid (400 mL), 35% Hydrogen peroxide (H2O2) (5.75 g)을 상기 Sub 1-I-d-1의 합성법을 이용하여 생성물 31.7 g (수율 80%)을 얻었다.
[3] Sub 1-I-e-137의 합성
Sub1-I-d-137 (31.7 g, 45.0 mmol), Sulfuric acid (H2SO4) (16 mL)를 상기 Sub1-I-e-1의 합성법을 이용하여 생성물 19.9 g(수율 82%)을 얻었다.
[4] Sub1 -I-137의 합성
Sub1-I-e-137 (19.9 g, 36.7 mmol)에 과량의 트리플루오로메탄술폰산(trifluoromethane-sulfonic acid)에 넣고 상기 Sub1-I-1의 합성법을 이용하여 생성물 17.4 g(수율 70%)을 얻었다.
[5] Sub1 -II-137의 합성
Sub1-I-137 (17.4 g, 25.8 mmol), Sub2-1 (4.36 g, 25.8 mmol), Pd2(dba)3 (0.71 g, 0.77 mmol), P(t-Bu)3 (5.17 g, 25.8 mmol), NaOt-Bu (4.96 g, 51.6 mmol)을 상기 Sub1-1의 합성법을 이용하여 생성물 Sub1-II-137를 12.8 g (수율 65%) 얻었다.
[6] Sub1 -137의 합성
Sub1-II-137 (12.8 g, 16.8 mmol), Sub2-11 (3.69 g, 16.8 mmol), Pd2(dba)3 (0.46 g, 0.51 mmol), P(t-Bu)3 (3.33 g, 16.8 mmol), NaOt-Bu (3.24 g, 33.7 mmol)을 상기 Sub1-1의 합성법을 이용하여 생성물 Sub1-137를 10.3 g (수율 65%) 얻었다.
Sub 1에 속하는 화합물은 아래와 같은 화합물일 수 있으나, 이에 한정되는 것은 아니며, 표 1은 Sub 1에 속하는 일부 화합물의 FD-MS(Field Desorption-Mass Spectrometry) 값을 나타낸 것이다.
Figure PCTKR2019006416-appb-I000187
Figure PCTKR2019006416-appb-I000188
Figure PCTKR2019006416-appb-I000189
Figure PCTKR2019006416-appb-I000190
Figure PCTKR2019006416-appb-I000191
Figure PCTKR2019006416-appb-I000192
Figure PCTKR2019006416-appb-I000193
Figure PCTKR2019006416-appb-I000194
Figure PCTKR2019006416-appb-I000195
Figure PCTKR2019006416-appb-I000196
Figure PCTKR2019006416-appb-I000197
Figure PCTKR2019006416-appb-I000198
Figure PCTKR2019006416-appb-I000199
Figure PCTKR2019006416-appb-I000200
Figure PCTKR2019006416-appb-I000201
Figure PCTKR2019006416-appb-I000202
Figure PCTKR2019006416-appb-I000203
Figure PCTKR2019006416-appb-I000204
Figure PCTKR2019006416-appb-I000205
Figure PCTKR2019006416-appb-I000206
Figure PCTKR2019006416-appb-I000207
Figure PCTKR2019006416-appb-I000208
Figure PCTKR2019006416-appb-I000209
Figure PCTKR2019006416-appb-I000210
Figure PCTKR2019006416-appb-I000211
Figure PCTKR2019006416-appb-I000212
Figure PCTKR2019006416-appb-I000213
Figure PCTKR2019006416-appb-I000214
Figure PCTKR2019006416-appb-I000215
Figure PCTKR2019006416-appb-I000216
Figure PCTKR2019006416-appb-I000217
Figure PCTKR2019006416-appb-I000218
Figure PCTKR2019006416-appb-I000219
Figure PCTKR2019006416-appb-I000220
Figure PCTKR2019006416-appb-I000221
화합물 FD-MS 화합물 FD-MS
Sub1-1 m/z=666.13(C37H25F3N2O3S2=666.73) Sub1-2 m/z=756.14(C43H27F3N2O4S2=756.81)
Sub1-3 m/z=650.15(C37H25F3N2O4S=650.67) Sub1-4 m/z=831.18(C49H32F3N3O3S2=831.93)
Sub1-5 m/z=664.11(C37H23F3N2O3S2=664.72) Sub1-6 m/z=714.13(C41H25F3N2O3S2=714.78)
Sub1-7 m/z=742.16(C43H29F3N2O3S2=742.83) Sub1-8 m/z=666.13(C37H25F3N2O3S2=666.73)
Sub1-9 m/z=756.14(C43H27F3N2O4S2=756.81) Sub1-10 m/z=756.14(C43H27F3N2O4S2=756.81)
Sub1-11 m/z=700.16(C41H27F3N2O4S=700.73) Sub1-12 m/z=714.13(C41H25F3N2O3S2=714.78)
Sub1-13 m/z=648.13(C37H23F3N2O4S=648.66) Sub1-14 m/z=650.15(C37H25F3N2O4S=650.67)
Sub1-15 m/z=666.13(C37H25F3N2O3S2=666.73) Sub1-16 m/z=815.21(C49H32F3N3O4S=815.87)
Sub1-17 m/z=772.11(C43H27F3N2O3S3=772.88) Sub1-18 m/z=772.11(C43H27F3N2O3S3=772.88)
Sub1-19 m/z=664.11(C37H23F3N2O3S2=664.72) Sub1-20 m/z=648.13(C37H23F3N2O4S=648.66)
Sub1-21 m/z=743.15(C42H28F3N3O3S2=743.82) Sub1-22 m/z=716.14(C41H27F3N2O3S2=716.79)
Sub1-23 m/z=802.21(C49H33F3N2O4S=802.87) Sub1-24 m/z=691.12(C38H24F3N3O3S2=691.74)
Sub1-25 m/z=667.12(C36H24F3N3O3S2=667.72) Sub1-26 m/z=650.15(C37H25F3N2O4S=650.67)
Sub1-27 m/z=882.18(C53H33F3N2O4S2=882.97) Sub1-28 m/z=772.11(C43H27F3N2O3S3=772.88)
Sub1-29 m/z=740.16(C43H27F3N2O5S=740.75) Sub1-30 m/z=666.13(C37H25F3N2O3S2=666.73)
Sub1-31 m/z=726.18(C43H29F3N2O4S=726.77) Sub1-32 m/z=671.16(C37H20D5F3N2O3S2=671.76)
Sub1-33 m/z=756.14(C43H27F3N2O4S2=756.81) Sub1-34 m/z=904.20(C56H35F3N2O3S2=905.02)
Sub1-35 m/z=650.15(C37H25F3N2O4S=650.67) Sub1-36 m/z=716.14(C41H27F3N2O3S2=716.79)
Sub1-37 m/z=666.13(C37H25F3N2O3S2=666.73) Sub1-38 m/z=675.14(C38H24F3N3O4S=675.68)
Sub1-39 m/z=650.15(C37H25F3N2O4S=650.67) Sub1-40 m/z=772.11(C43H27F3N2O3S3=772.88)
Sub1-41 m/z=782.19(C46H33F3N2O3S2=782.90) Sub1-42 m/z=716.14(C41H27F3N2O3S2=716.79)
Sub1-43 m/z=700.16(C41H27F3N2O4S=700.73) Sub1-44 m/z=818.19(C49H33F3N2O3S2=818.93)
Sub1-45 m/z=648.13(C37H23F3N2O4S=648.66) Sub1-46 m/z=664.11(C37H23F3N2O3S2=664.72)
Sub1-47 m/z=651.14(C36H24F3N3O4S=651.66) Sub1-48 m/z=650.15(C37H25F3N2O4S=650.67)
Sub1-49 m/z=831.18(C49H32F3N3O3S2=831.93) Sub1-50 m/z=740.16(C43H27F3N2O5S=740.75)
Sub1-51 m/z=772.11(C43H27F3N2O3S3=772.88) Sub1-52 m/z=742.16(C43H29F3N2O3S2=742.83)
Sub1-53 m/z=664.16(C38H27F3N2O4S=664.70) Sub1-54 m/z=648.13(C37H23F3N2O4S=648.66)
Sub1-55 m/z=664.11(C37H23F3N2O3S2=664.72) Sub1-56 m/z=696.14(C38H27F3N2O4S2=696.76)
Sub1-57 m/z=666.13(C37H25F3N2O3S2=666.73) Sub1-58 m/z=766.21(C46H33F3N2O4S=766.84)
Sub1-59 m/z=700.16(C41H27F3N2O4S=700.73) Sub1-60 m/z=650.15(C37H25F3N2O4S=650.67)
Sub1-61 m/z=664.11(C37H23F3N2O3S2=664.72) Sub1-62 m/z=664.11(C37H23F3N2O3S2=664.72)
Sub1-63 m/z=690.18(C40H29F3N2O4S=690.74) Sub1-64 m/z=666.13(C37H25F3N2O3S2=666.73)
Sub1-65 m/z=700.16(C41H27F3N2O4S=700.73) Sub1-66 m/z=740.16(C43H27F3N2O5S=740.75)
Sub1-67 m/z=907.22(C55H36F3N3O3S2=908.03) Sub1-68 m/z=726.18(C43H29F3N2O4S=726.77)
Sub1-69 m/z=664.11(C37H23F3N2O3S2=664.72) Sub1-70 m/z=648.13(C37H23F3N2O4S=648.66)
Sub1-71 m/z=650.15(C37H25F3N2O4S=650.67) Sub1-72 m/z=833.20(C49H34F3N3O3S2=833.94)
Sub1-73 m/z=726.18(C43H29F3N2O4S=726.77) Sub1-74 m/z=818.19(C49H33F3N2O3S2=818.93)
Sub1-75 m/z=833.20(C49H34F3N3O3S2=833.94) Sub1-76 m/z=833.20(C49H34F3N3O3S2=833.94)
Sub1-77 m/z=817.22(C49H34F3N3O4S=817.88) Sub1-78 m/z=716.14(C41H27F3N2O3S2=716.79)
Sub1-79 m/z=700.16(C41H27F3N2O4S=700.73) Sub1-80 m/z=716.14(C41H27F3N2O3S2=716.79)
Sub1-81 m/z=716.14(C41H27F3N2O3S2=716.79) Sub1-82 m/z=700.16(C41H27F3N2O4S=700.73)
Sub1-83 m/z=716.14(C41H27F3N2O3S2=716.79) Sub1-84 m/z=700.16(C41H27F3N2O4S=700.73)
Sub1-85 m/z=700.16(C41H27F3N2O4S=700.73) Sub1-86 m/z=700.16(C41H27F3N2O4S=700.73)
Sub1-87 m/z=716.14(C41H27F3N2O3S2=716.79) Sub1-88 m/z=716.14(C41H27F3N2O3S2=716.79)
Sub1-89 m/z=716.14(C41H27F3N2O3S2=716.79) Sub1-90 m/z=700.16(C41H27F3N2O4S=700.73)
Sub1-91 m/z=700.16(C41H27F3N2O4S=700.73) Sub1-92 m/z=716.14(C41H27F3N2O3S2=716.79)
Sub1-93 m/z=716.14(C41H27F3N2O3S2=716.79) Sub1-94 m/z=700.16(C41H27F3N2O4S=700.73)
Sub1-95 m/z=700.16(C41H27F3N2O4S=700.73) Sub1-96 m/z=716.14(C41H27F3N2O3S2=716.79)
Sub1-97 m/z=700.16(C41H27F3N2O4S=700.73) Sub1-98 m/z=716.14(C41H27F3N2O3S2=716.79)
Sub1-99 m/z=716.14(C41H27F3N2O3S2=716.79) Sub1-100 m/z=700.16(C41H27F3N2O4S=700.73)
Sub1-101 m/z=716.14(C41H27F3N2O3S2=716.79) Sub1-102 m/z=716.14(C41H27F3N2O3S2=716.79)
Sub1-103 m/z=700.16(C41H27F3N2O4S=700.73) Sub1-104 m/z=716.14(C41H27F3N2O3S2=716.79)
Sub1-105 m/z=716.14(C41H27F3N2O3S2=716.79) Sub1-106 m/z=700.16(C41H27F3N2O4S=700.73)
Sub1-107 m/z=716.14(C41H27F3N2O3S2=716.79) Sub1-108 m/z=716.14(C41H27F3N2O3S2=716.79)
Sub1-109 m/z=700.16(C41H27F3N2O4S=700.73) Sub1-110 m/z=716.14(C41H27F3N2O3S2=716.79)
Sub1-111 m/z=700.16(C41H27F3N2O4S=700.73) Sub1-112 m/z=716.14(C41H27F3N2O3S2=716.79)
Sub1-113 m/z=700.16(C41H27F3N2O4S=700.73) Sub1-114 m/z=700.16(C41H27F3N2O4S=700.73)
Sub1-115 m/z=716.14(C41H27F3N2O3S2=716.79) Sub1-116 m/z=700.16(C41H27F3N2O4S=700.73)
Sub1-117 m/z=766.16(C45H29F3N2O3S2=766.85) Sub1-118 m/z=766.16(C45H29F3N2O3S2=766.85)
Sub1-119 m/z=750.18(C45H29F3N2O4S=750.79) Sub1-120 m/z=766.16(C45H29F3N2O3S2=766.85)
Sub1-121 m/z=766.16(C45H29F3N2O3S2=766.85) Sub1-122 m/z=750.18(C45H29F3N2O4S=750.79)
Sub1-123 m/z=766.16(C45H29F3N2O3S2=766.85) Sub1-124 m/z=796.17(C46H31F3N2O4S2=796.88)
Sub1-125 m/z=818.19(C49H33F3N2O3S2=818.93) Sub1-126 m/z=726.18(C43H29F3N2O4S=726.77)
Sub1-127 m/z=742.16(C43H29F3N2O3S2=742.83) Sub1-128 m/z=1058.25(C67H41F3N2O4S2=1059.19)
Sub1-129 m/z=868.20(C53H35F3N2O3S2=868.99) Sub1-130 m/z=892.26(C56H39F3N2O4S=892.99)
Sub1-131 m/z=1112.32(C72H43D4F3N2O3S2=1113.32) Sub1-132 m/z=834.16(C47H29F3N4O4S2=834.89)
Sub1-133 m/z=751.18(C44H28F3N3O4S=751.78) Sub1-134 m/z=1135.28(C71H44F3N5O3S2=1136.28)
Sub1-135 m/z=928.26(C59H39F3N2O4S=929.03) Sub1-136 m/z=994.25(C63H41F3N2O3S2=995.15)
Sub1-137 m/z=944.24(C59H39F3N2O3S2=945.09) Sub1-138 m/z=727.18(C42H28F3N3O4S=727.76)
II. Sub 2 합성
상기 반응식 1의 Sub 2는 하기 반응식 4의 반응경로에 의해 합성(본 출원인의 한국등록특허 제10-1251451호 (2013.04.05일자 등록공고)에 개시)될 수 있으나, 이에 한정되는 것은 아니다.
Z1은 Ar1 또는 Ar3이고, Z2는 Ar2 또는 Ar4이다.
<반응식 4>
Figure PCTKR2019006416-appb-I000222
Figure PCTKR2019006416-appb-I000223
Sub 2에 속하는 화합물은 아래와 같은 화합물일 수 있으나, 이에 한정되는 것은 아니며, 표 2는 Sub 2에 속하는 일부 화합물의 FD-MS(Field Desorption-Mass Spectrometry) 값을 나타낸 것이다.
Figure PCTKR2019006416-appb-I000224
Figure PCTKR2019006416-appb-I000225
Figure PCTKR2019006416-appb-I000226
Figure PCTKR2019006416-appb-I000227
Figure PCTKR2019006416-appb-I000228
화합물 FD-MS 화합물 FD-MS
Sub2-1 m/z=169.09(C12H11N=169.23) Sub2-2 m/z=174.12(C12H6D5N=174.26)
Sub2-3 m/z=245.12(C18H15N=245.33) Sub2-4 m/z=321.15(C24H19N=321.42)
Sub2-5 m/z=209.12(C15H15N=209.29) Sub2-6 m/z=215.08(C13H13NS=215.31)
Sub2-7 m/z=245.12(C18H15N=245.33) Sub2-8 m/z=194.08(C13H10N2=194.24)
Sub2-9 m/z=187.08(C12H10FN=187.22) Sub2-10 m/z=205.07(C12H9F2N=205.21)
Sub2-11 m/z=219.10(C16H13N=219.29) Sub2-12 m/z=219.10(C16H13N=219.29)
Sub2-13 m/z=269.12(C20H15N=269.35) Sub2-14 m/z=220.10(C15H12N2=200.28)
Sub2-15 m/z=170.08(C11H10N2=170.22) Sub2-16 m/z=167.07(C12H9N=167.21)
Sub2-17 m/z=217.09(C16H11N=217.27) Sub2-18 m/z=217.09(C16H11N=217.27)
Sub2-19 m/z=217.09(C16H11N=217.27) Sub2-20 m/z=285.15(C21H19N=285.39)
Sub2-21 m/z=285.15(C21H19N=285.39) Sub2-22 m/z=407.17(C31H21N=407.52)
Sub2-23 m/z=485.21(C37H27N=485.63) Sub2-24 m/z=334.15(C24H18N2=334.42)
Sub2-25 m/z=334.15(C24H18N2=334.42) Sub2-26 m/z=334.15(C24H18N2=334.42)
Sub2-27 m/z=334.15(C24H18N2=334.42) Sub2-28 m/z=384.16(C28H20N2=384.48)
Sub2-29 m/z=436.17(C30H20N4=436.52) Sub2-30 m/z=259.10(C18H13NO=259.31)
Sub2-31 m/z=259.10(C18H13NO=259.31) Sub2-32 m/z=261.09(C16H11N3O=261.28)
Sub2-33 m/z=275.08(C18H13NS=275.37) Sub2-34 m/z=275.08(C18H13NS=275.37)
Sub2-35 m/z=275.08(C18H13NS=275.37) Sub2-36 m/z=275.08(C18H13NS=275.37)
III. Final Product 1 합성
Sub 1 (1 당량)을 둥근바닥플라스크에 Toluene으로 녹인 후에, Sub 2 (1 당량), Pd2(dba)3 (0.03 당량), (t-Bu)3P (1 당량), NaOt-Bu (2 당량)을 120℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 Final product 1을 얻었다.
1. 1-1 합성예
Figure PCTKR2019006416-appb-I000229
상기 합성에서 얻어진 Sub 1-1 (13.7 g, 20.5 mmol)을 둥근바닥플라스크에 toluene (180 mL)으로 녹인 후에, Sub 2-1 (3.48 g, 20.5 mmol), Pd2(dba)3 (0.56 g, 0.62 mmol), P(t-Bu)3 (4.16 g, 20.5 mmol), NaOt-Bu (3.95 g, 41.1 mmol)을 첨가하고 120℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 1-1을 10.5 g (수율 74%) 얻었다.
2. 1-3 합성예
Figure PCTKR2019006416-appb-I000230
상기 합성에서 얻어진 Sub 1-3 (14.4 g, 22.1 mmol)을 둥근바닥플라스크에 toluene (190 mL)으로 녹인 후에, Sub 2-31 (5.74 g, 22.1 mmol), Pd2(dba)3 (0.61 g, 0.66 mmol), P(t-Bu)3 (4.48 g, 22.1 mmol), NaOt-Bu (4.25 g, 44.3 mmol)을 첨가하고 120℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 1-3을 12.3 g (수율 73%) 얻었다.
3. 1-32 합성예
Figure PCTKR2019006416-appb-I000231
상기 합성에서 얻어진 Sub 1-30 (14.0 g, 21.0 mmol)을 둥근바닥플라스크에 toluene (185 mL)으로 녹인 후에, Sub 2-21 (5.99 g, 21.0 mmol), Pd2(dba)3 (0.58 g, 0.63 mmol), P(t-Bu)3 (4.25 g, 21.0 mmol), NaOt-Bu (4.04 g, 42.0 mmol)을 첨가하고 120℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 1-32를 12.4 g (수율 74%) 얻었다.
4. 1-35 합성예
Figure PCTKR2019006416-appb-I000232
상기 합성에서 얻어진 Sub 1-33 (12.2 g, 16.1 mmol)을 둥근바닥플라스크에 toluene (160 mL)으로 녹인 후에, Sub 2-1 (2.73 g, 16.1 mmol), Pd2(dba)3 (0.44 g, 0.48 mmol), P(t-Bu)3 (3.26 g, 16.1 mmol), NaOt-Bu (3.10 g, 32.2 mmol)을 첨가하고 120℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 1-35를 9.80 g (수율 78%) 얻었다.
5. 1-49 합성예
Figure PCTKR2019006416-appb-I000233
상기 합성에서 얻어진 Sub 1-46 (9.77 g, 14.7 mmol)을 둥근바닥플라스크에 toluene (120 mL)으로 녹인 후에, Sub 2-1 (2.49 g, 14.7 mmol), Pd2(dba)3 (0.40 g, 0.44 mmol), P(t-Bu)3 (2.97 g, 14.7 mmol), NaOt-Bu (2.83 g, 29.4 mmol)을 첨가하고 120℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 1-49를 7.83 g (수율 78%) 얻었다.
6. 1-56 합성예
Figure PCTKR2019006416-appb-I000234
상기 합성에서 얻어진 Sub 1-53 (11.0 g, 16.5 mmol)을 둥근바닥플라스크에 toluene (160 mL)으로 녹인 후에, Sub 2-1 (2.80 g, 16.5 mmol), Pd2(dba)3 (0.45 g, 0.50 mmol), P(t-Bu)3 (3.35 g, 16.5 mmol), NaOt-Bu (3.18 g, 33.1 mmol)을 첨가하고 120℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 1-56을 8.03 g (수율 71%) 얻었다.
7. 1-89 합성예
Figure PCTKR2019006416-appb-I000235
상기 합성에서 얻어진 Sub 1-81 (15.3 g, 21.3 mmol)을 둥근바닥플라스크에 toluene (200 mL)으로 녹인 후에, Sub 2-1 (3.61 g, 21.3 mmol), Pd2(dba)3 (0.59 g, 0.64 mmol), P(t-Bu)3 (4.32 g, 21.3 mmol), NaOt-Bu (4.10 g, 42.7 mmol)을 첨가하고 120℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 1-89를 11.7 g (수율 74%) 얻었다.
8. 1-117 합성예
Figure PCTKR2019006416-appb-I000236
상기 합성에서 얻어진 Sub 1-109 (10.9 g, 14.6 mmol)을 둥근바닥플라스크에 toluene (140 mL)으로 녹인 후에, Sub 2-1 (2.46 g, 14.6 mmol), Pd2(dba)3 (0.40 g, 0.44 mmol), P(t-Bu)3 (2.95 g, 14.6 mmol), NaOt-Bu (2.80 g, 29.1 mmol)을 첨가하고 120℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 1-117을 7.91 g (수율 76%) 얻었다.
9. 1-141 합성예
Figure PCTKR2019006416-appb-I000237
상기 합성에서 얻어진 Sub 1-133 (10.9 g, 14.5 mmol)을 둥근바닥플라스크에 toluene (140 mL)으로 녹인 후에, Sub 2-33 (4.00 g, 14.5 mmol), Pd2(dba)3 (0.40 g, 0.43 mmol), P(t-Bu)3 (2.93 g, 14.5 mmol), NaOt-Bu (2.79 g, 29.0 mmol)을 첨가하고 120℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 1-141을 8.69 g (수율 68%) 얻었다.
10. 1-145 합성예
Figure PCTKR2019006416-appb-I000238
상기 합성에서 얻어진 Sub 1-137 (10.3 g, 10.9 mmol)을 둥근바닥플라스크에 toluene (140 mL)으로 녹인 후에, Sub 2-1 (1.84 g, 10.9 mmol), Pd2(dba)3 (0.30 g, 0.33 mmol), P(t-Bu)3 (2.20 g, 10.9 mmol), NaOt-Bu (2.09 g, 21.8 mmol)을 첨가하고 120℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 1-145를 7.50 g (수율 71%) 얻었다.
한편, 상기와 같은 합성예에 따라 제조된 본 발명의 화합물 1-1 내지 1-146의 FD-MS 값은 하기 표 3과 같다.
화합물 FD-MS 화합물 FD-MS
1-1 m/z=685.26(C48H35N3S=685.89) 1-2 m/z=775.27(C54H37N3OS=775.97)
1-3 m/z=759.29(C54H37N3O2=759.91) 1-4 m/z=850.31(C60H42N4S=851.08)
1-5 m/z=762.28(C53H38N4S=762.98) 1-6 m/z=733.26(C52H35N3S=733.93)
1-7 m/z=761.29(C54H39N3S=761.99) 1-8 m/z=761.29(C54H39N3S=761.99)
1-9 m/z=685.26(C48H35N3S=685.89) 1-10 m/z=775.27(C54H37N3OS=775.97)
1-11 m/z=775.27(C54H37N3OS=775.97) 1-12 m/z=801.32(C57H43N3S=802.05)
1-13 m/z=719.29(C52H37N3O=719.89) 1-14 m/z=733.26(C52H35N3S=733.93)
1-15 m/z=667.26(C48H33N3O=667.81) 1-16 m/z=717.28(C52H35N3O=717.87)
1-17 m/z=685.26(C48H35N3S=685.89) 1-18 m/z=834.34(C60H42N4O=835.02)
1-19 m/z=791.24(C54H37N3S2=792.03) 1-20 m/z=881.25(C60H39N3OS2=882.11)
1-21 m/z=683.24(C48H33N3S=683.87) 1-22 m/z=667.26(C48H33N3O=667.81)
1-23 m/z=762.28(C53H38N4S=762.98) 1-24 m/z=735.27(C52H37N3S=735.95)
1-25 m/z=821.34(C60H43N3O=822.02) 1-26 m/z=710.25(C49H34N4S=710.90)
1-27 m/z=686.25(C47H34N4S=686.88) 1-28 m/z=669.27(C48H35N3O=669.83)
1-29 m/z=901.31(C64H43N3OS=902.13) 1-30 m/z=791.24(C54H37N3S2=792.03)
1-31 m/z=759.29(C54H37N3O2=759.91) 1-32 m/z=801.32(C57H43N3S=802.05)
1-33 m/z=745.31(C54H39N3O=745.93) 1-34 m/z=674.31(C48H30D5N3O=674.86)
1-35 m/z=775.27(C54H37N3OS=775.97) 1-36 m/z=923.33(C67H45N3S=924.18)
1-37 m/z=834.34(C60H42N4O=835.02) 1-38 m/z=735.27(C52H37N3S=735.95)
1-39 m/z=703.25(C48H34FN3S=703.88) 1-40 m/z=694.27(C49H34N4O=694.84)
1-41 m/z=669.27(C48H35N3O=669.83) 1-42 m/z=791.24(C54H37N3S2=792.03)
1-43 m/z=884.35(C64H44N4O=885.08) 1-44 m/z=801.32(C57H43N3S=802.05)
1-45 m/z=735.27(C52H37N3S=735.95) 1-46 m/z=719.29(C52H37N3O=719.89)
1-47 m/z=837.32(C60H43N3S=838.09) 1-48 m/z=667.26(C48H33N3O=667.81)
1-49 m/z=683.24(C48H33N3S=683.87) 1-50 m/z=670.27(C47H34N3O=670.82)
1-51 m/z=669.27(C48H35N3O=669.83) 1-52 m/z=850.31(C60H42N4S=851.08)
1-53 m/z=849.30(C60H39N3O3=850.00) 1-54 m/z=791.24(C54H37N3S2=792.03)
1-55 m/z=761.29(C54H39N3S=761.99) 1-56 m/z=683.24(C48H33N3S=683.87)
1-57 m/z=667.26(C48H33N3O=667.81) 1-58 m/z=683.24(C48H33N3S=683.87)
1-59 m/z=667.26(C48H33N3O=667.81) 1-60 m/z=715.27(C49H37N3OS=715.92)
1-61 m/z=685.26(C48H35N3S=685.89) 1-62 m/z=785.34(C57H43N3O=785.99)
1-63 m/z=719.29(C52H37N3O=719.89) 1-64 m/z=821.34(C60H43N3O=822.02)
1-65 m/z=683.24(C48H33N3S=683.87) 1-66 m/z=683.24(C48H33N3S=683.87)
1-67 m/z=707.29(C51H37N3O=707.88) 1-68 m/z=685.26(C48H35N3S=685.89)
1-69 m/z=719.29(C52H37N3O=719.89) 1-70 m/z=775.27(C54H37N3OS=775.97)
1-71 m/z=731.24(C49H37N3S2=731.98) 1-72 m/z=735.27(C52H37N3S=735.95)
1-73 m/z=926.34(C66H46N4S=927.18) 1-74 m/z=745.31(C54H39N3O=745.93)
1-75 m/z=683.24(C48H33N3S=683.87) 1-76 m/z=667.26(C48H33N3O=667.81)
1-77 m/z=667.26(C48H33N3O=667.81) 1-78 m/z=852.33(C60H44N3S=853.10)
1-79 m/z=821.34(C60H43N3O=822.02) 1-80 m/z=837.32(C60H43N3S=838.09)
1-81 m/z=852.33(C60H44N3S=853.10) 1-82 m/z=852.33(C60H44N3S=853.10)
1-83 m/z=836.35(C60H44N3O=837.04) 1-84 m/z=852.33(C60H44N3S=853.10)
1-85 m/z=735.27(C52H37N3S=735.95) 1-86 m/z=719.29(C52H37N3O=719.89)
1-87 m/z=719.29(C52H37N3O=719.89) 1-88 m/z=735.27(C52H37N3S=735.95)
1-89 m/z=735.27(C52H37N3S=735.95) 1-90 m/z=719.29(C52H37N3O=719.89)
1-91 m/z=735.27(C52H37N3S=735.95) 1-92 m/z=719.29(C52H37N3O=719.89)
1-93 m/z=719.29(C52H37N3O=719.89) 1-94 m/z=719.29(C52H37N3O=719.89)
1-95 m/z=735.27(C52H37N3S=735.95) 1-96 m/z=735.27(C52H37N3S=735.95)
1-97 m/z=735.27(C52H37N3S=735.95) 1-98 m/z=719.29(C52H37N3O=719.89)
1-99 m/z=719.29(C52H37N3O=719.89) 1-100 m/z=735.27(C52H37N3S=735.95)
1-101 m/z=735.27(C52H37N3S=735.95) 1-102 m/z=719.29(C52H37N3O=719.89)
1-103 m/z=719.29(C52H37N3O=719.89) 1-104 m/z=735.27(C52H37N3S=735.95)
1-105 m/z=719.29(C52H37N3O=719.89) 1-106 m/z=735.27(C52H37N3S=735.95)
1-107 m/z=735.27(C52H37N3S=735.95) 1-108 m/z=719.29(C52H37N3O=719.89)
1-109 m/z=735.27(C52H37N3S=735.95) 1-110 m/z=735.27(C52H37N3S=735.95)
1-111 m/z=719.29(C52H37N3O=719.89) 1-112 m/z=735.27(C52H37N3S=735.95)
1-113 m/z=735.27(C52H37N3S=735.95) 1-114 m/z=735.27(C52H37N3S=735.95)
1-115 m/z=719.29(C52H37N3O=719.89) 1-116 m/z=735.27(C52H37N3S=735.95)
1-117 m/z=719.29(C52H37N3O=719.89) 1-118 m/z=735.27(C52H37N3S=735.95)
1-119 m/z=719.29(C52H37N3O=719.89) 1-120 m/z=735.27(C52H37N3S=735.95)
1-121 m/z=719.29(C52H37N3O=719.89) 1-122 m/z=719.29(C52H37N3O=719.89)
1-123 m/z=735.27(C52H37N3S=735.95) 1-124 m/z=719.29(C52H37N3O=719.89)
1-125 m/z=785.29(C56H39N3S=786.01) 1-126 m/z=785.29(C56H39N3S=786.01)
1-127 m/z=769.31(C56H39N3O=769.95) 1-128 m/z=785.29(C56H39N3S=786.01)
1-129 m/z=785.29(C56H39N3S=786.01) 1-130 m/z=769.31(C56H39N3O=769.95)
1-131 m/z=891.27(C62H41N3S2=892.15) 1-132 m/z=815.30(C57H41N3OS=816.04)
1-133 m/z=837.32(C60H43N3S=838.09) 1-134 m/z=745.31(C54H39N3O=745.93)
1-135 m/z=761.29(C54H39N3S=761.99) 1-136 m/z=1077.38(C78H51N3OS=1078.35)
1-137 m/z=887.33(C64H45N3S=888.15) 1-138 m/z=911.39(C67H49N3O=912.15)
1-139 m/z=1131.45(C83H53D4N3S=1132.47) 1-140 m/z=1018.35(C70H46N6OS=1019.24)
1-141 m/z=876.29(C61H40N4OS=877.08) 1-142 m/z=1155.41(C81H53N7S=1156.42)
1-143 m/z=947.39(C70H49N3O=948.18) 1-144 m/z=1049.36(C74H49F2N3S=1050.28)
1-145 m/z=963.36(C70H49N3S=964.24) 1-146 m/z=746.30(C53H38N4O=746.91)
[ 합성예 2]
본 발명에 따른 화학식 2로 표시되는 화합물(final product)은 하기 반응식 5와 같이 Sub 3과 Sub 4가 반응하여 제조될 수 있으며 이에 한정되는 것은 아니다.
<반응식 5>
Figure PCTKR2019006416-appb-I000239
1'-1의 합성예시
Figure PCTKR2019006416-appb-I000240
Sub 1(1) (34.7 g, 80 mmol)과 Sub 2(1) (30.9 g, 80 mmol), K2CO3 (19.3 g, 140 mmol), Pd(PPh3)4 (2.8 g, 2.4 mmol)를 둥근바닥플라스크에 넣은 후 THF와 물을 넣어 녹인 후 80℃에서 12시간 동안 환류시켰다. 반응이 종료되면 반응물의 온도를 상온으로 식히고, CH2Cl2로 추출하고 물로 닦아주었다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column을 이용하여 분리하여 원하는 생성물을 (37.4 g, 71%)를 얻었다.
1'-6의 합성예시
Figure PCTKR2019006416-appb-I000241
Sub 1(6) (44.6 g, 80 mmol)과 Sub 2(2) (30.9 g, 80 mmol)을 상기 1'-1의 합성방법을 이용하여 생성물을 (43.2 g, 69%)를 얻었다.
1'-12의 합성예시
Figure PCTKR2019006416-appb-I000242
Sub 1(12) (42.7 g, 80 mmol)과 Sub 2(33) (34.9 g, 80 mmol)을 상기 1'-1의 합성방법을 이용하여 생성물을 (42.7 g, 66%)를 얻었다.
1'-33의 합성예시
Figure PCTKR2019006416-appb-I000243
Sub 1(27) (40.8 g, 80 mmol)과 Sub 2(9) (43.1 g, 80 mmol)을 상기 1'-1의 합성방법을 이용하여 생성물을 (51.0 g, 72%)를 얻었다.
1'-44의 합성예시
Figure PCTKR2019006416-appb-I000244
Sub 1(28) (40.8 g, 80 mmol)과 Sub 2(10) (37.0 g, 80 mmol)을 상기 1'-1의 합성방법을 이용하여 생성물을 (45.4 g, 70%)를 얻었다.
1'-53의 합성예시
Figure PCTKR2019006416-appb-I000245
Sub 1(34) (44.0 g, 80 mmol)과 Sub 2(29) (29.6 g, 80 mmol)을 상기 1'-1의 합성방법을 이용하여 생성물을 (41.2 g, 68%)를 얻었다.
1'-64의 합성예시
Figure PCTKR2019006416-appb-I000246
Sub 1(37) (48.2 g, 80 mmol)과 Sub 2(34) (34.9 g, 80 mmol)을 상기 1'-1의 합성방법을 이용하여 생성물을 (45.6 g, 71%)를 얻었다.
1'-75의 합성예시
Figure PCTKR2019006416-appb-I000247
Sub 1(25) (34..7 g, 80 mmol)과 Sub 2(35) (41.8 g, 80 mmol)을 상기 1'-1의 합성방법을 이용하여 생성물을 (46.4 g, 73%)를 얻었다.
2-1의 합성예시
Figure PCTKR2019006416-appb-I000248
Sub 1(1) (34.7 g, 80 mmol)과 Sub 2(27) (37.0 g, 80 mmol)을 상기 1'-1의 합성방법을 이용하여 생성물을 (42.3 g, 72%)를 얻었다.
2-22의 합성예시
Figure PCTKR2019006416-appb-I000249
Sub 1(38) (50.7 g, 80 mmol)과 Sub 2(24) (37.0 g, 80 mmol)을 상기 1'-1의 합성방법을 이용하여 생성물을 (51.6 g, 69%)를 얻었다.
2-33의 합성예시
Figure PCTKR2019006416-appb-I000250
Sub 1(27) (40.8 g, 80 mmol)과 Sub 2(36) (49.2 g, 80 mmol)을 상기 1'-1의 합성방법을 이용하여 생성물을 (53.9 g, 70%)를 얻었다.
2-40의 합성예시
Figure PCTKR2019006416-appb-I000251
Sub 1(25) (34.7 g, 80 mmol)과 Sub 2(37) (43.1 g, 80 mmol)을 상기 1'-1의 합성방법을 이용하여 생성물을 (44.7 g, 69%)를 얻었다.
2-51의 합성예시
Figure PCTKR2019006416-appb-I000252
Sub 1(33) (36.0 g, 80 mmol)과 Sub 2(38) (35.7 g, 80 mmol)을 상기 1'-1의 합성방법을 이용하여 생성물을 (41.1 g, 70%)를 얻었다.
2-55의 합성예시
Figure PCTKR2019006416-appb-I000253
Sub 1(39) (42.1 g, 80 mmol)과 Sub 2(23) (37.0 g, 80 mmol)을 상기 1'-1의 합성방법을 이용하여 생성물을 (44.9 g, 68%)를 얻었다.
2-58의 합성예시
Figure PCTKR2019006416-appb-I000254
Sub 1(25) (34.7 g, 80 mmol)과 Sub 2(39) (47.9 g, 80 mmol)을 상기 1'-1의 합성방법을 이용하여 생성물을 (45.9 g, 66%)를 얻었다.
3-10의 합성예시
Figure PCTKR2019006416-appb-I000255
Sub 1(37) (28.6 g, 80 mmol)과 Sub 2(10) (37.0 g, 80 mmol)을 상기 1'-1의 합성방법을 이용하여 생성물을 (38.9 g, 74%)를 얻었다.
P-41의 합성예시
Figure PCTKR2019006416-appb-I000256
둥근 바닥 플라스크에 Core 2 (5 g, 14 mmol), Sub 1 (4.6 g, 15.2 mmol), Pd(PPh3)4 (0.5 g, 0.4 mmol), K2CO3 (5.7 g, 41.3 mmol), THF, 물을 첨가하고 90℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 P-41 4.6 g (수율: 57%)을 얻었다.
P-91의 합성예시
Figure PCTKR2019006416-appb-I000257
둥근 바닥 플라스크에 Core 1 (5 g, 14 mmol), Sub 9 (5.8 g, 15.4 mmol), Pd(PPh3)4 (0.5 g, 0.4 mmol), K2CO3 (5.8 g, 41.9 mmol), THF, 물을 첨가하고 90℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 P-91 4.7 g (수율: 51%)을 얻었다.
P-106의 합성예시
Figure PCTKR2019006416-appb-I000258
둥근 바닥 플라스크에 Core 1 (5 g, 14 mmol), Sub 16 (5.8 g, 15.4 mmol), Pd(PPh3)4 (0.5 g, 0.4 mmol), K2CO3 (5.8 g, 41.9 mmol), THF, 물을 첨가하고 90℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 P-106 5.8 g (수율: 63%)을 얻었다.
P-146의 합성예시
Figure PCTKR2019006416-appb-I000259
둥근 바닥 플라스크에 Core 11 (5 g, 14 mmol), Sub 2 (5.8 g, 15.4 mmol), Pd(PPh3)4 (0.5 g, 0.4 mmol), K2CO3 (5.8 g, 41.9 mmol), THF, 물을 첨가하고 90℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 P-146 4.7 g (수율: 51%)을 얻었다.
P-4의 합성예시
Figure PCTKR2019006416-appb-I000260
둥근 바닥 플라스크에 Core 1 (5 g, 14 mmol), Sub 6 (5.9 g, 15.4 mmol), Pd(PPh3)4 (0.5 g, 0.4 mmol), K2CO3 (5.8 g, 41.9 mmol), THF, 물을 첨가하고 90℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 P-4 6.1 g (수율: 66%)을 얻었다.
4-1의 합성예시
Figure PCTKR2019006416-appb-I000261
Sub 1-1' (50 g, 98.04 mmol)을 둥근바닥플라스크에 넣고 THF (359 mL)로 녹인 후, Sub 2-1'(52.51 g, 117.65 mmol), Pd(PPh3)4 (4.53 g, 3.92 mmol), K2CO3 (40.65 g, 294.12 mmol) 및 물 (180 mL)을 첨가하고 교반환류시킨다. 반응이 완료되면, ether와 물로 추출한 후, 유기층을 MgSO4로 건조하고 농축시킨다. 이후, 농축물을 실리카겔 칼럼에 통과시킨 후 재결정하여 생성물 64.61 g을 얻었다. (수율: 83%)
5-3의 합성예시
Figure PCTKR2019006416-appb-I000262
Sub 1-1” (60 g, 133.35 mmol)을 둥근바닥플라스크에 넣고 THF (489 mL)에 녹인 후에, Sub 2-3” (58.28 g, 160.01 mmol), Pd(PPh3)4 (6.16 g, 5.33 mmol), K2CO3 (55.29 g, 400.04 mmol), 물 (244 mL)을 첨가한 후, 교반 환류시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 73.40 g을 얻었다. (수율: 75%)
Figure PCTKR2019006416-appb-T000001
Figure PCTKR2019006416-appb-I000263
Figure PCTKR2019006416-appb-I000264
Figure PCTKR2019006416-appb-I000265
Figure PCTKR2019006416-appb-I000266
Figure PCTKR2019006416-appb-I000267
Figure PCTKR2019006416-appb-I000268
Figure PCTKR2019006416-appb-I000269
Figure PCTKR2019006416-appb-I000270
한편, 상기에서는 화학식 1 및 화학식 2로 표시되는 본 발명의 예시적 합성예를 설명하였지만, 이들은 모두 Buchwald-Hartwig cross coupling 반응, Miyaura boration 반응, Suzuki cross-coupling 반응, Intramolecular acid-induced cyclization 반응 (J. mater. Chem . 1999, 9, 2095.), Pd(II)-catalyzed oxidative cyclization 반응 (Org . Lett . 2011, 13, 5504) 및 PPh3-mediated reductive cyclization 반응 (J. Org . Chem. 2005, 70, 5014.)등에 기초한 것으로 구체적 합성예에 명시된 치환기 이외에 화학식 1 및 화학식 2에 정의된 다른 치환기 (X1 내지 X3, L1 내지 L7, Ar1 내지 Ar8, A, B, C, D, E, F, G 및 H 등의 치환기)가 결합되더라도 상기 반응이 진행된다는 것을 당업자라면 쉽게 이해할 수 있을 것이다.
유기전기소자의 제조평가
실험예 1) 그린 유기 발광 소자의 제작 및 시험
먼저, 유리 기판에 형성된 ITO층(양극) 위에 우선 홀 주입층으로서 N1-(naphthalen-2-yl)-N4,N4-bis(4-(naphthalen-2-yl(phenyl)amino)phenyl)-N1-phenylbenzene-1,4-diamine (2-TNATA로 약기함) 막을 진공증착하여 60 nm 두께로 형성하였다. 이어서, 4,4-비스[N-(1-나프틸)-N-페닐아미노]비페닐 (이하 -NPD로 약기함)을 60 nm 두께로 진공증착하여 홀 수송층을 형성하였다. 정공수송층 상부에 호스트로서 화학식 1과 화학식 2로 표시되는 상기 발명화합물을 60:40으로 혼합한 혼합물을 사용하였으며, 도판트로서는 Ir(ppy)3 [tris(2-phenylpyridine)-iridium]을 95:5 중량으로 도핑함으로써 상기 정공수송층 위에 30 nm 두께의 발광층을 증착하였다. 홀 저지층으로 (1,1'-비스페닐)-4-올레이토)비스(2-메틸-8-퀴놀린올레이토)알루미늄(이하 BAlq로 약기함)을 10 nm 두께로 진공증착하고, 전자수송층으로 트리스(8-퀴놀리놀)알루미늄(이하 Alq3로 약칭함)을 40 nm 두께로 성막하였다. 이후, 전자주입층으로 할로젠화 알칼리 금속인 LiF를 0.2 nm 두께로 증착하고, 이어서 Al을 150 nm의 두께로 증착하여 음극으로 사용함으로써 유기전기발광소자를 제조하였다.
이와 같이 제조된 실시예 및 비교예 유기전기발광소자들에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 그 측정 결과 5000 cd/m2 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95 수명을 측정하였다. 하기 표는 소자제작 및 평가한 결과를 나타낸다.
[ 비교예 1~3]
비교화합물 A 내지 비교화합물 C를 단독으로 호스트로 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[ 비교예 4 내지 비교예 6]
비교화합물 A 내지 비교화합물 C와 화학식 2로 표시되는 화합물을 혼합하여 호스트로 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.
비교화합물 A 비교화합물 B 비교화합물 C
Figure PCTKR2019006416-appb-I000271
  제 1 화합물 제 2 화합물 구동전압(V) 전류(mA/cm2) 휘도(cd/m2) 효율(cd/A) T(95) CIE
X Y
비교예1 비교화합물 A - 5.6 21.6 5000.0 23.2 61.7 0.32 0.62
비교예2 비교화합물 B - 5.9 15.7 5000.0 24.5 69.9 0.34 0.61
비교예3 비교화합물 C - 5.4 15.6 5000.0 32.1 77.5 0.32 0.64
비교예4 비교화합물 A 1'-25 4.9 15.1 5000.0 33.1 93.6 0.33 0.60
비교예5 비교화합물 B 1'-25 5.1 14.2 5000.0 35.2 97.5 0.35 0.63
비교예6 비교화합물 C 1'-25 4.9 13.6 5000.0 36.8 105.0 0.35 0.62
실시예1 1-1 1'-25 4.1 12.8 5000.0 39.0 127.6 0.32 0.63
실시예2 1-4 4.0 12.4 5000.0 40.4 124.6 0.34 0.64
실시예3 1-6 4.1 12.5 5000.0 39.9 134.1 0.30 0.61
실시예4 1-28 3.9 13.2 5000.0 37.8 129.2 0.30 0.62
실시예5 1-30 3.9 12.5 5000.0 40.1 127.1 0.35 0.64
실시예6 1-35 4.1 13.1 5000.0 38.1 128.3 0.34 0.61
실시예7 1-38 4.0 12.7 5000.0 39.3 128.1 0.31 0.63
실시예8 1-39 4.1 12.6 5000.0 39.7 128.4 0.33 0.60
실시예9 1-40 4.2 12.7 5000.0 39.4 126.5 0.32 0.61
실시예10 1-42 4.2 12.1 5000.0 41.4 124.2 0.34 0.61
실시예11 1-48 4.2 12.3 5000.0 40.7 127.8 0.32 0.61
실시예12 1-102 4.3 12.6 5000.0 39.7 128.9 0.34 0.64
실시예13 1-143 4.2 11.8 5000.0 42.2 123.3 0.34 0.62
실시예14 1-1 P-8 4.0 12.7 5000.0 39.3 125.7 0.34 0.64
실시예15 1-4 4.1 12.7 5000.0 39.3 125.4 0.33 0.60
실시예16 1-6 4.1 12.9 5000.0 38.7 128.0 0.33 0.63
실시예17 1-28 4.0 13.1 5000.0 38.2 129.9 0.32 0.64
실시예18 1-30 4.1 12.1 5000.0 41.4 123.9 0.34 0.62
실시예19 1-35 4.0 13.1 5000.0 38.2 132.7 0.30 0.64
실시예20 1-38 4.0 13.2 5000.0 37.9 131.2 0.32 0.61
실시예21 1-39 4.2 12.5 5000.0 40.0 129.0 0.30 0.65
실시예22 1-40 4.1 12.6 5000.0 39.6 120.9 0.31 0.64
실시예23 1-42 4.1 12.3 5000.0 40.7 125.1 0.34 0.62
실시예24 1-48 4.2 12.2 5000.0 41.1 124.0 0.33 0.60
실시예25 1-102 4.3 12.5 5000.0 40.1 125.6 0.30 0.60
실시예26 1-143 4.3 12.1 5000.0 41.3 126.7 0.32 0.61
실시예27 1-1 P-26 4.0 12.9 5000.0 38.9 128.1 0.31 0.62
실시예28 1-4 4.0 12.4 5000.0 40.4 125.2 0.31 0.61
실시예29 1-6 4.1 12.8 5000.0 39.2 131.5 0.33 0.63
실시예30 1-28 4.0 13.1 5000.0 38.1 130.8 0.34 0.65
실시예31 1-30 4.0 12.6 5000.0 39.6 124.4 0.33 0.63
실시예32 1-35 3.9 12.9 5000.0 38.8 132.2 0.31 0.64
실시예33 1-38 4.0 13.3 5000.0 37.6 128.7 0.30 0.65
실시예34 1-39 4.1 12.2 5000.0 40.9 128.7 0.32 0.61
실시예35 1-40 4.2 12.7 5000.0 39.4 122.2 0.34 0.62
실시예36 1-42 4.1 12.1 5000.0 41.2 123.6 0.33 0.63
실시예37 1-48 4.2 12.2 5000.0 41.1 127.8 0.31 0.65
실시예38 1-102 4.3 12.3 5000.0 40.5 126.9 0.31 0.64
실시예39 1-143 4.2 11.8 5000.0 42.4 126.9 0.31 0.64
실시예40 1-1 P-69 4.1 12.5 5000.0 39.9 130.1 0.33 0.60
실시예41 1-4 4.1 12.8 5000.0 39.1 130.5 0.31 0.60
실시예42 1-6 4.0 12.4 5000.0 40.5 130.2 0.33 0.61
실시예43 1-28 4.0 13.1 5000.0 38.0 133.3 0.34 0.62
실시예44 1-30 4.1 12.6 5000.0 39.6 124.1 0.35 0.62
실시예45 1-35 4.1 12.8 5000.0 39.0 133.3 0.30 0.62
실시예46 1-38 4.0 12.8 5000.0 39.1 131.6 0.35 0.64
실시예47 1-39 4.2 12.4 5000.0 40.4 129.5 0.32 0.63
실시예48 1-40 4.2 12.4 5000.0 40.5 120.4 0.31 0.62
실시예49 1-42 4.1 12.3 5000.0 40.8 121.8 0.32 0.61
실시예50 1-48 4.1 12.0 5000.0 41.7 120.9 0.35 0.61
실시예51 1-102 4.2 12.7 5000.0 39.5 128.7 0.34 0.61
실시예52 1-143 4.2 11.8 5000.0 42.2 126.4 0.33 0.63
실시예53 1-1 4-5 4.0 12.4 5000.0 40.2 126.2 0.31 0.64
실시예54 1-4 4.0 12.5 5000.0 40.1 131.2 0.33 0.61
실시예55 1-6 4.0 13.0 5000.0 38.6 133.4 0.31 0.62
실시예56 1-28 4.0 12.7 5000.0 39.3 134.2 0.34 0.62
실시예57 1-30 3.9 12.7 5000.0 39.5 127.3 0.35 0.61
실시예58 1-35 4.0 13.3 5000.0 37.6 131.7 0.30 0.64
실시예59 1-38 3.9 12.8 5000.0 39.1 132.9 0.35 0.64
실시예60 1-39 4.2 12.1 5000.0 41.3 125.8 0.31 0.65
실시예61 1-40 4.2 12.8 5000.0 38.9 126.8 0.32 0.60
실시예62 1-42 4.1 12.1 5000.0 41.4 120.4 0.33 0.63
실시예63 1-48 4.2 11.9 5000.0 41.8 121.4 0.34 0.64
실시예64 1-102 4.2 12.6 5000.0 39.6 124.6 0.32 0.61
실시예65 1-143 4.2 11.9 5000.0 42.0 125.6 0.30 0.61
실시예53 1-1 5-2 4.1 12.6 5000.0 39.7 127.9 0.32 0.62
실시예54 1-4 4.1 12.6 5000.0 39.7 128.9 0.34 0.60
실시예55 1-6 4.1 12.6 5000.0 39.8 131.4 0.34 0.61
실시예56 1-28 4.1 12.7 5000.0 39.4 133.1 0.33 0.65
실시예57 1-30 4.0 12.4 5000.0 40.4 125.0 0.34 0.64
실시예58 1-35 4.0 13.0 5000.0 38.4 130.6 0.34 0.65
실시예59 1-38 3.9 12.8 5000.0 39.1 131.4 0.35 0.63
실시예60 1-39 4.2 12.5 5000.0 39.9 127.5 0.30 0.63
실시예61 1-40 4.1 12.7 5000.0 39.4 124.1 0.31 0.60
실시예62 1-42 4.1 12.1 5000.0 41.5 125.7 0.34 0.61
실시예63 1-48 4.2 12.2 5000.0 40.8 127.4 0.34 0.61
실시예64 1-102 4.2 12.3 5000.0 40.5 125.5 0.32 0.63
실시예65 1-143 4.3 11.8 5000.0 42.2 123.9 0.34 0.63
상기 표 5의 결과로부터 알 수 있듯이, 화학식 1과 화학식 2로 표시되는 본 발명의 유기전기 발광소자용 재료를 혼합하여 인광 호스트로 사용할 경우 (실시예 1~65), 단일물질을 사용한 소자 (비교예 1~3) 또는 비교화합물과 혼합한 소자 (비교예 4~6)에 비해 구동전압, 효율 및 수명을 현저히 개선되는 것을 확인할 수 있었다.
우선, 동일한 다이벤조퓨란 코어를 갖는 비교화합물 중 코어에 치환되는 아민 개수가 증가할수록 구동, 효율 및 수명이 증가하는 것을 확인할 수 있다. 즉, 다이벤조퓨란에 3개의 카바졸이 치환된 비교예 1에 비해 동일한 코어에 아민기가 치환된 비교예 2, 비교예 3 소자 결과가 우수한 전기적 특성을 나타내었고, 동일한 코어에 아민기가 하나 치환된 비교예2 보다 아민기가 두 개 치환된 비교예 3 소자가 우수한 전기적 특성을 나타내었다. 이때, 비교화합물 A 내지 비교화합물 C와 화학식 2로 표시되는 화합물을 혼합하여 인광 호스트로 사용한 비교예 4 내지 비교예 6의 경우 단일물질을 사용한 비교예 1 내지 비교예 3의 소자의 모든 전기적 특성이 향상되었다. 이는 단일 호스트로는 소자 성능이 좋지 않은 화합물도 전하균형이 잘 맞는 화합물과 혼합했을 시에 소자의 전기적 특성을 개선시킬 수 있음을 확인할 수 있다.
그리고, 상기 비교예 3 내지 비교예 6의 경우보다 본 발명인 화학식 1과 화학식 2의 화합물을 혼합하여 호스트로 사용한 실시예 1 내지 실시예 65이 현저히 개선된 소자 특성을 나타내는 것을 확인할 수 있다.
본 발명자들은 상기 실험결과를 근거로 화학식 1의 물질과 화학식 2의 물질을 혼합한 물질의 경우 각각 물질에 대한 특성 이외의 다른 신규한 특성을 갖는다고 판단하여, 화학식 1의 물질, 화학식 2의 물질, 본 발명 혼합물을 각각 사용하여 PL lifetime을 측정하였다. 그 결과 본 발명 화합물인 화학식 1과 화학식 2를 혼합하였을 경우 단독 화합물일 때와 달리 새로운 PL 파장이 형성되는 것을 확인할 수 있었으며, 새롭게 형성된 PL 파장의 감소 및 소멸 시간은 화학식 1 및 화학식 1 물질 각각의 감소 및 소멸시간보다 작게는 약 60배에서 많게는 약 360배까지 증가하는 하는 것을 확인할 수 있었다. 이는 본 발명화합물을 혼합하여 사용할 경우 각각의 물질이 갖는 에너지 준위를 통해 전자와 정공이 이동되는 것뿐만 아니라, 혼합으로 인하여 형성된 새로운 에너지 준위를 갖는 신규 영역에 (exciplex) 의한 전자, 정공 이동 또는 에너지 전달로 효율 및 수명이 증가하는 것으로 판단된다. 이는 결과적으로 상기 본 발명 혼합물을 사용할 경우 혼합 박막이 exciplex 에너지 전달 및 발광 프로세스를 보이는 중요한 예라고 할 수 있다.
또한 비교화합물을 혼합한 인광호스트로 사용한 비교예 4~6보다 본 발명의 조합이 우수한 이유는 아민기들 사이에 Dibenzothiophene 또는 Dibenzofuran을 도입되어 정공 수송성과 안정성이 높은 화학식 1과 electron 특성이 강한 화학식 2로 표시되는 화합물과 전기화학적으로 좋은 시너지 작용을 하였고, 정공과 전자의 발광층 내 charge balance가 증가되어 정공수송층 계면이 아닌 발광층 내부에서 발광이 잘 이루어지고, 그로 인해 HTL 계면에 열화 또한 감소하여 소자 전체의 구동 전압, 효율 그리고 수명이 극대화 된다고 판단된다. 즉, 결론적으로 화학식 1과 화학식 2의 조합이 전기 화학적으로 시너지 작용을 하여 소자 전체의 성능을 향상된 것으로 사료된다.
실험예 2) 혼합비율별 그린 유기 발광 소자의 제작 및 시험
  제 1 화합물 제 2 화합물 혼합비율(제1호스트:제2호스트) 구동전압(V) 전류(mA/cm2) 휘도(cd/m2) 효율(cd/A) T(95)
실시예66 1-1 1'-25 7:3 4.1 12.2 5000.0 41.1 133.5
실시예67 5:5 3.9 12.6 5000.0 39.7 131.1
실시예68 4:6 3.8 12.9 5000.0 38.6 127.7
실시예69 3:7 4.1 13.6 5000.0 36.8 124.5
실시예70 1-40 P-26 7:3 4.1 12.2 5000.0 40.8 132.5
실시예71 5:5 3.9 12.7 5000.0 39.2 129.3
실시예72 4:6 3.8 12.8 5000.0 38.9 128.6
실시예73 3:7 4.0 13.7 5000.0 36.5 125.3
상기 표 6과 같이 본 발명의 화합물의 혼합물을 비율 별(7:3, 5:5, 4:6, 3:7)로 실험예 1과 동일하게 소자를 제작하여 측정하였다.
비율별로 측정한 결과 7:3의 경우에는 6:4로 측정한 실험 예1)의 결과와 유사했지만, 제 1호스트의 비율이 감소되면서 5:5, 4:6, 3:7의 경우에는 구동전압, 효율 및 수명의 결과가 점점 떨어지는 것을 확인하였다. 이는 7:3, 4:6과 같이 hole 특성이 강한 화학식 1로 표시되는 화합물이 적정한 양이 혼합될 경우, 발광층 내 charge balance가 극대화되기 때문이라 설명할 수 있다.
이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시 예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다.
본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술은 본 발명의 권리범위에 포함하는 것으로 해석되어야 할 것이다.
본 발명에 따르면, 고휘도, 고발광 및 장수명의 우수한 소자특성을 갖는 유기소자를 제조할 수 있어 산업상 이용가능성이 있다.

Claims (18)

  1. 제 1전극, 제 2전극, 및 상기 제 1전극과 상기 제 2전극 사이에 형성된 유기물층을 포함하는 유기전기소자에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 인광성 발광층으로서 화학식 1로 표시되는 제 1호스트 화합물 및 화학식 2로 표시되는 제 2호스트 화합물을 포함하는 것을 특징으로 하는 유기전기소자
    화학식 1 화학식 2
    Figure PCTKR2019006416-appb-I000272
    {상기 화학식 1 및 2에서,
    1) A 및 B 환은 각각 독립적으로 C6-C20의 아릴 또는 C2-C20의 헤테로고리;이고,
    2) X1은 S 또는 O이며,
    3) X2는 N-L7-Ar9, O, S, 또는 CR'R"이고,
    R' 및 R"는 각각 독립적으로 수소; C6~C60의 아릴기; 플루오렌일기; C3~C60의 헤테로고리기; C1~C50의 알킬기; 및 -L'-N(Ra)(Rb);으로 이루어진 군에서 선택되고,
    R' 및 R"은 서로 결합하여 스파이로 고리를 형성할 수 있고,
    4) p 및 q는 각각 독립적으로 0~10의 정수이고, r는 0~3의 정수이며, s은 0~4의 정수이고,
    5) R1, R2, R3 및 R4는 서로 독립적으로 수소; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕실기; C6~C30의 아릴옥시기; 및 -L'-N(Ra)(Rb);로 이루어진 군에서 선택되며,
    상기 Ra 및 Rb는 서로 독립적으로 C6-C60의 아릴기; 플루오렌일기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; 및 O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기;로 이루어진 군에서 선택되고,
    6) L'은 단일결합; C6-C60의 아릴렌기; 플루오렌일렌기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; 및 C2-C60의 헤테로고리기;로 이루어진 군에서 선택되고,
    7) Ar1, Ar2, Ar3, Ar4, Ar5, Ar6, Ar7, Ar8 및 Ar9은 서로 독립적으로 C6-C60의 아릴기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; 플루오렌일기; C6-C60의 방향족 고리와 C3-C60의 지방족 고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕실기; C6-C30의 아릴티오기; 및 C6-C30의 아릴옥시기;로 이루어진 군에서 선택되고, 또한 Ar1과 Ar2, Ar3과 Ar4, 및 Ar5과 Ar6은 서로 결합하여 고리를 형성할 수 있으며,
    8) L1, L2, L3, L4, L5, L6 및 L7은 서로 독립적으로 단일결합; C6-C60의 아릴렌기; 플루오렌일렌기; O, N, S, Si 및 P 중 적어도 하나의 헤테로 원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; 및 지방족 탄화수소기;로 이루어진 군에서 선택되고,
    9) 여기서, 상기 아릴기, 플루오렌닐기, 아릴렌기, 헤테로고리기, 플루오렌일렌기, 융합고리기, 알킬기, 알케닐기, 알콕시기 및 아릴옥시기는 각각 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1-C20의 알킬싸이오기; C1-C20의 알콕실기; C1-C20의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C6-C20의 아릴기; 중수소로 치환된 C6-C20의 아릴기; 플루오렌일기; C2-C20의 헤테로고리기; C3-C20의 시클로알킬기; C7-C20의 아릴알킬기 및 C8-C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 또한 이들 치환기들은 서로 결합하여 고리를 형성할 수도 있으며, 여기서 '고리'란 C3-C60의 지방족고리 또는 C6-C60의 방향족고리 또는 C2-C60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다.}
  2. 제 1항에 있어서, 상기 화학식 1에서 상기 A 또는 B가 서로 독립적으로 하기 화학식 a-1 내지 화학식 a-7로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 유기전기소자.
    화학식 a-1 화학식 a-2 화학식 a-3 화학식 a-4
    Figure PCTKR2019006416-appb-I000273
    화학식 a-5 화학식 a-6 화학식 a-7
    Figure PCTKR2019006416-appb-I000274
    {상기 화학식 a-1 내지 화학식 a-7에서,
    Z1 내지 Z48은 서로 독립적으로 CRc 또는 N이고,
    단, L1 내지 L7에 결합하고 있는 Z1 내지 Z48은 탄소(C)이며,
    Rc는 상기 청구항 1에서 Ra의 정의와 동일하고,
    *는 축합되는 위치를 나타낸다.}
  3. 제 1항에 있어서, 상기 화학식 1 또는 화학식 2에서 상기 L1 내지 L7이 하기 화학식 b-1 내지 b-13 중에 어느 하나로 표시되는 것을 특징으로 하는 유기전기소자.
    화학식 b-1 화학식 b-2 화학식 b-3 화학식 b-4 화학식 b-5 화학식 b-6
    Figure PCTKR2019006416-appb-I000275
    화학식 b-7 화학식 b-8 화학식 b-9 화학식 b-10
    Figure PCTKR2019006416-appb-I000276
    화학식 b-11 화학식 b-12 화학식 b-13
    Figure PCTKR2019006416-appb-I000277
    {상기 화학식 b-1 내지 화학식 b-13에서,
    Y는 N-L8-Ar10, O, S 또는 CR'R"이고,
    L8은 상기 청구항 1에서 L1의 정의와 동일하고,
    Ar10은 상기 청구항 1에서 Ar1의 정의와 동일하고,
    R' 및 R"는 상기 청구항 1에서 정의된 바와 동일하며,
    a, c, d, e은 서로 독립적으로 0 내지 4의 정수이고, b은 0 내지 6의 정수이고,
    f 및 g은 서로 독립적으로 0 내지 3의 정수이고, h는 0 내지 2의 정수이며, i는 0 또는 1의 정수이고,
    R5, R6 및 R7은 서로 독립적으로 수소; 중수소; 삼중수소; 할로겐; 시아노기; 나이트로기; C6-C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕실기; C6-C30의 아릴옥시기; 및 -La-N(Rd)(Re);로 이루어진 군에서 선택되고, 또는 상기 a, b, c, d, e, f 또는 g가 2 이상인 경우, 및 h가 2이상인 경우는 각각 복수로서 서로 동일하거나 상이하며 복수의 R5끼리 혹은 복수의 R6끼리 혹은 복수의 R7끼리 혹은 이웃한 R5과 R6 또는 R6과 R7은 서로 결합하여 방향족 고리 또는 헤테로방향족 고리를 형성할 수 있고,
    여기서 상기 La는 단일결합; C6-C60의 아릴렌기; 플루오렌일렌기; O, N, S, Si 및 P 중 적어도 하나의 헤테로 원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족 고리의 융합고리기; 및 C3-C60의 지방족 탄화수소기;로 이루어진 군에서 선택되며,
    상기 Rd 및 Re는 서로 독립적으로 C6-C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로 원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기;로 이루어진 군에서 선택되고,
    Z49, Z50 및 Z51은 서로 독립적으로 CRg 또는 N이고,
    Z49, Z50 및 Z51 중 적어도 하나는 N이며,
    Rg은 수소; 중수소; 삼중수소; 할로겐; 시아노기; 나이트로기; C6-C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕실기; 및 C6-C30의 아릴옥시기;로 이루어진 군에서 선택되고, 이웃한 R5과 Rg는 서로 결합하여 방향족 고리 또는 헤테로방향족 고리를 형성할 수 있다.}
  4. 제 1항에 있어서, 상기 Ar1 내지 Ar6 중 적어도 하나가 화학식 1-2로 표시되는 것을 특징으로 하는 유기전기소자.
    화학식 1-2
    Figure PCTKR2019006416-appb-I000278
    {상기 화학식 1-2에서,
    C 및 D는 상기 청구항 1에서 A의 정의와 동일하고,
    X3는 N-L10-Ar11, O, S 또는 CR'R"이고,
    L9 및 L10은 상기 청구항 1에서 L1의 정의와 동일하고,
    Ar11은 상기 청구항 1에서 Ar1의 정의와 동일하며,
    R' 및 R"은 상기 청구상 1에서 정의된 바와 동일하다.}
  5. 제 1항에 있어서, 상기 화학식 1로 나타내는 제 1호스트 화합물이 하기 화학식 3 또는 4로 표시되는 것을 특징으로 하는 유기전기소자.
    화학식 3 화학식 4
    Figure PCTKR2019006416-appb-I000279
    Figure PCTKR2019006416-appb-I000280
    {상기 화학식 3 또는 화학식 4에서,
    Ar1, Ar2, Ar3, Ar4, Ar5, Ar6, L1, L2, L3, R1, R2의 정의는 상기 청구항 1에서 정의된 바와 같고,
    p'은 0 내지 3 중 어느 하나의 정수이고, q'은 0 내지 2 중 어느 하나의 정수이다.}
  6. 제 1항에 있어서, 상기 화학식 1로 나타내는 제 1호스트 화합물은 하기 화학식 5 내지 화학식 11 중 어느 하나로 표시되는 것을 특징으로 하는 유기전기소자.
    화학식 5 화학식 6
    Figure PCTKR2019006416-appb-I000281
    Figure PCTKR2019006416-appb-I000282
    화학식 7 화학식 8
    Figure PCTKR2019006416-appb-I000283
    Figure PCTKR2019006416-appb-I000284
    화학식 9 화학식 10
    Figure PCTKR2019006416-appb-I000285
    Figure PCTKR2019006416-appb-I000286
    화학식 11
    Figure PCTKR2019006416-appb-I000287
    {상기 화학식 5 내지 화학식 11에서,
    L1, L2, L3, Ar1, Ar2, Ar3, Ar4, Ar5, Ar6, R1, R2, X1의 정의는 상기 청구항 1에서 정의된 바와 같고,
    p'은 0 내지 3 중 어느 하나의 정수이고, q'은 0 내지 2 중 어느 하나의 정수이고, o는 0 내지 4 중 어느 하나의 정수이다.}
  7. 제 1항에 있어서, 상기 화학식 1로 나타내는 제 1호스트 화합물은 하기 화학식 12 내지 화학식 21 중 어느 하나로 표시되는 것을 특징으로 하는 유기전기소자.
    화학식 12 화학식 13 화학식 14
    Figure PCTKR2019006416-appb-I000288
    Figure PCTKR2019006416-appb-I000289
    Figure PCTKR2019006416-appb-I000290
    화학식 15 화학식 16 화학식 17
    Figure PCTKR2019006416-appb-I000291
    Figure PCTKR2019006416-appb-I000292
    Figure PCTKR2019006416-appb-I000293
    화학식 18 화학식 19 화학식 20
    Figure PCTKR2019006416-appb-I000294
    Figure PCTKR2019006416-appb-I000295
    Figure PCTKR2019006416-appb-I000296
    화학식 21
    Figure PCTKR2019006416-appb-I000297
    {상기 화학식 12 내지 화학식 21에서,
    Ar1, Ar2, Ar3, Ar4, Ar5, Ar6, L1, L2, L3, R1, R2, p, q, X1, A, B의 정의는 상기 청구항 1에서 정의된 바와 같고,
    p'은 0 내지 3 중 어느 하나의 정수이고, q'은 0 내지 2 중 어느 하나의 정수이다.}
  8. 제 1항에 있어서, 상기 화학식 1로 나타낸 화합물이 하기 화학물 1-1 내지 1-146 중 어느 하나로 표시되는 것을 특징으로 하는 유기전기소자.
    Figure PCTKR2019006416-appb-I000298
    Figure PCTKR2019006416-appb-I000299
    Figure PCTKR2019006416-appb-I000300
    Figure PCTKR2019006416-appb-I000301
    Figure PCTKR2019006416-appb-I000302
    Figure PCTKR2019006416-appb-I000303
    Figure PCTKR2019006416-appb-I000304
    Figure PCTKR2019006416-appb-I000305
    Figure PCTKR2019006416-appb-I000306
    Figure PCTKR2019006416-appb-I000307
    Figure PCTKR2019006416-appb-I000308
    Figure PCTKR2019006416-appb-I000309
    Figure PCTKR2019006416-appb-I000310
    Figure PCTKR2019006416-appb-I000311
    Figure PCTKR2019006416-appb-I000312
    Figure PCTKR2019006416-appb-I000313
    Figure PCTKR2019006416-appb-I000314
    Figure PCTKR2019006416-appb-I000315
    Figure PCTKR2019006416-appb-I000316
    Figure PCTKR2019006416-appb-I000317
    Figure PCTKR2019006416-appb-I000318
    Figure PCTKR2019006416-appb-I000319
    Figure PCTKR2019006416-appb-I000320
    Figure PCTKR2019006416-appb-I000321
    Figure PCTKR2019006416-appb-I000322
    Figure PCTKR2019006416-appb-I000323
    Figure PCTKR2019006416-appb-I000324
    Figure PCTKR2019006416-appb-I000325
    Figure PCTKR2019006416-appb-I000326
    Figure PCTKR2019006416-appb-I000327
    Figure PCTKR2019006416-appb-I000328
    Figure PCTKR2019006416-appb-I000329
    Figure PCTKR2019006416-appb-I000330
    Figure PCTKR2019006416-appb-I000331
    Figure PCTKR2019006416-appb-I000332
    Figure PCTKR2019006416-appb-I000333
    Figure PCTKR2019006416-appb-I000334
  9. 제 1항에 있어서, 상기 화학식 2로 나타내는 제 2호스트 화합물이 하기 화학식 22 내지 화학식 25 중 어느 하나로 표시되는 것을 특징으로 하는 유기전기소자.
    화학식 22 화학식 23
    Figure PCTKR2019006416-appb-I000335
    화학식 24 화학식 25
    Figure PCTKR2019006416-appb-I000336
    {상기 화학식 22 내지 25에서,
    X2, L4, L5, L6, Ar7, Ar8, R3, R4, r, s은 상기 청구항 1에서 정의된 바와 같다.}
  10. 제 1항에 있어서, 상기 화학식 2로 나타내는 제 2호스트 화합물이 하기 화학식 26으로 표시되는 것을 특징으로 하는 유기전기소자.
    화학식 26
    Figure PCTKR2019006416-appb-I000337
    {상기 화학식 26에서,
    X2, L4, L5, L6, Ar7, R3, R4, r, s는 상기 청구항 1에서 정의된 바와 같고,
    X4는 상기 청구항 1에서 X2의 정의와 동일하고,
    R8 및 R9는 상기 청구항 1에서 R3 및 R4의 정의와 동일하며,
    u은 상기 청구항 1에서 r의 정의와 동일하고 t는 상기 청구항 1에서 s의 정의와 동일하다.}
  11. 제 1항에 있어서, 상기 화학식 2로 나타내는 제 2호스트 화합물이 하기 화학식 27 내지 화학식 30 중 어느 하나로 표시되는 것을 특징으로 하는 유기전기소자.
    화학식 27 화학식 28
    Figure PCTKR2019006416-appb-I000338
    화학식 29 화학식 30
    Figure PCTKR2019006416-appb-I000339
    {상기 청구항 27 내지 30에서,
    X2, L4, L5, L6, Ar7, R3, R4, r, s는 상기 청구항 1에서 정의된 바와 같고,
    X4는 상기 청구항 1에서 X2의 정의와 동일하고,
    R8 및 R9는 상기 청구항 1에서 R3 및 R4의 정의와 동일하며,
    u은 상기 청구항 1에서 r의 정의와 동일하고 t는 상기 청구항 1에서 s의 정의와 동일하다.}
  12. 제 1항에 있어서, 상기 화학식 2로 나타내는 제 2호스트 화합물이 하기 화합물 중 어느 하나인 것을 특징으로 하는 유기전기소자.
    Figure PCTKR2019006416-appb-I000340
    Figure PCTKR2019006416-appb-I000341
    Figure PCTKR2019006416-appb-I000342
    Figure PCTKR2019006416-appb-I000343
    Figure PCTKR2019006416-appb-I000344
    Figure PCTKR2019006416-appb-I000345
    Figure PCTKR2019006416-appb-I000346
    Figure PCTKR2019006416-appb-I000347
    Figure PCTKR2019006416-appb-I000348
    Figure PCTKR2019006416-appb-I000349
    Figure PCTKR2019006416-appb-I000350
    Figure PCTKR2019006416-appb-I000351
    Figure PCTKR2019006416-appb-I000352
    Figure PCTKR2019006416-appb-I000353
    Figure PCTKR2019006416-appb-I000354
    Figure PCTKR2019006416-appb-I000355
    Figure PCTKR2019006416-appb-I000356
    Figure PCTKR2019006416-appb-I000357
    Figure PCTKR2019006416-appb-I000358
    Figure PCTKR2019006416-appb-I000359
    Figure PCTKR2019006416-appb-I000360
    Figure PCTKR2019006416-appb-I000361
    Figure PCTKR2019006416-appb-I000362
    Figure PCTKR2019006416-appb-I000363
    Figure PCTKR2019006416-appb-I000364
    Figure PCTKR2019006416-appb-I000365
    Figure PCTKR2019006416-appb-I000366
    Figure PCTKR2019006416-appb-I000367
    Figure PCTKR2019006416-appb-I000368
    Figure PCTKR2019006416-appb-I000369
    Figure PCTKR2019006416-appb-I000370
    Figure PCTKR2019006416-appb-I000371
    Figure PCTKR2019006416-appb-I000372
    Figure PCTKR2019006416-appb-I000373
    Figure PCTKR2019006416-appb-I000374
    Figure PCTKR2019006416-appb-I000375
    Figure PCTKR2019006416-appb-I000376
    Figure PCTKR2019006416-appb-I000377
    Figure PCTKR2019006416-appb-I000378
    Figure PCTKR2019006416-appb-I000379
    Figure PCTKR2019006416-appb-I000380
    Figure PCTKR2019006416-appb-I000381
    Figure PCTKR2019006416-appb-I000382
    Figure PCTKR2019006416-appb-I000383
    Figure PCTKR2019006416-appb-I000384
    Figure PCTKR2019006416-appb-I000385
    Figure PCTKR2019006416-appb-I000386
    Figure PCTKR2019006416-appb-I000387
    Figure PCTKR2019006416-appb-I000388
    Figure PCTKR2019006416-appb-I000389
    Figure PCTKR2019006416-appb-I000390
    Figure PCTKR2019006416-appb-I000391
    Figure PCTKR2019006416-appb-I000392
    Figure PCTKR2019006416-appb-I000393
    Figure PCTKR2019006416-appb-I000394
    Figure PCTKR2019006416-appb-I000395
    Figure PCTKR2019006416-appb-I000396
    Figure PCTKR2019006416-appb-I000397
    Figure PCTKR2019006416-appb-I000398
    Figure PCTKR2019006416-appb-I000399
    Figure PCTKR2019006416-appb-I000400
    Figure PCTKR2019006416-appb-I000401
    Figure PCTKR2019006416-appb-I000402
    Figure PCTKR2019006416-appb-I000403
    Figure PCTKR2019006416-appb-I000404
    Figure PCTKR2019006416-appb-I000405
    Figure PCTKR2019006416-appb-I000406
    Figure PCTKR2019006416-appb-I000407
    Figure PCTKR2019006416-appb-I000408
    Figure PCTKR2019006416-appb-I000409
    Figure PCTKR2019006416-appb-I000410
    Figure PCTKR2019006416-appb-I000411
    Figure PCTKR2019006416-appb-I000412
    Figure PCTKR2019006416-appb-I000413
    Figure PCTKR2019006416-appb-I000414
    Figure PCTKR2019006416-appb-I000415
    Figure PCTKR2019006416-appb-I000416
    Figure PCTKR2019006416-appb-I000417
    Figure PCTKR2019006416-appb-I000418
    Figure PCTKR2019006416-appb-I000419
    Figure PCTKR2019006416-appb-I000420
    Figure PCTKR2019006416-appb-I000421
    Figure PCTKR2019006416-appb-I000422
    Figure PCTKR2019006416-appb-I000423
    Figure PCTKR2019006416-appb-I000424
    Figure PCTKR2019006416-appb-I000425
    Figure PCTKR2019006416-appb-I000426
  13. 제 1항에 있어서, 제 1전극과 발광층 사이에 1층 이상의 정공수송대역층을 포함하고, 상기 정공수송대역층은 정공수송층, 발광보조층 또는 이 둘을 모두 포함하며, 상기 정공수송대역층이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 하는 유기전기소자.
  14. 제 1항에 있어서, 상기 화학식 1 및 상기 화학식 2로 나타내는 화합물이 1:9 내지 9:1 중 어느 하나의 중량 비율로 혼합되어 발광층에 사용되는 것을 특징으로 하는 유기전기소자.
  15. 제 1항에 있어서, 상기 화학식 1 및 상기 화학식 2로 나타내는 화합물이 중량비 1:9 내지 5:5로 혼합되어 발광층에 사용되는 것을 특징으로 하는 유기전기소자.
  16. 제 1항에 있어서, 상기 화학식 1 및 상기 화학식 2로 나타내는 화합물이 중량비 2:8 내지 3:7로 혼합되어 발광층에 사용되는 것을 특징으로 하는 유기전기소자.
  17. 제1항에 따른 유기전기소자를 포함하는 디스플레이장치; 및 상기 디스플레이장치를 구동하는 제어부;를 포함하는 전자장치.
  18. 제 17항에 있어서, 상기 유기전기소자는 유기전기발광소자, 유기태양전지, 유기감광체, 유기트랜지스터, 및 단색 또는 백색 조명용소자 중 적어도 하나인 것을 특징으로 하는 전자장치.
PCT/KR2019/006416 2018-05-29 2019-05-29 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 WO2019231226A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/059,030 US20210340103A1 (en) 2018-05-29 2019-05-29 Compound for organic electric element, organic electric element using same, and electronic apparatus thereof
CN201980031237.7A CN112106215B (zh) 2018-05-29 2019-05-29 用于有机电气元件的化合物、使用所述化合物的有机电气元件及其电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0061061 2018-05-29
KR1020180061061A KR102617841B1 (ko) 2018-05-29 2018-05-29 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Publications (1)

Publication Number Publication Date
WO2019231226A1 true WO2019231226A1 (ko) 2019-12-05

Family

ID=68697040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006416 WO2019231226A1 (ko) 2018-05-29 2019-05-29 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Country Status (4)

Country Link
US (1) US20210340103A1 (ko)
KR (1) KR102617841B1 (ko)
CN (1) CN112106215B (ko)
WO (1) WO2019231226A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111718367A (zh) * 2020-07-28 2020-09-29 吉林奥来德光电材料股份有限公司 一种有机发光材料及其制备方法与应用
CN112159397A (zh) * 2020-10-20 2021-01-01 吉林奥来德光电材料股份有限公司 一种含呋喃类结构的电子传输材料及其制备方法与应用
DE102021132671A1 (de) 2020-12-11 2022-06-15 Beijing Summer Sprout Technology Co., Ltd. Organisches Elektrolumineszenzmaterial und Vorrichtung daraus
EP4019505A1 (en) * 2020-12-24 2022-06-29 LT Materials Co., Ltd. Heterocyclic compound, organic light emitting device comprising the same, method for manufacturing the same and composition for organic material layer of organic light emitting device
US11760761B2 (en) 2020-08-17 2023-09-19 Aligos Therapeutics, Inc. Methods and compositions for targeting PD-L1

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102559589B1 (ko) * 2018-07-06 2023-07-25 솔루스첨단소재 주식회사 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102599592B1 (ko) * 2018-08-30 2023-11-07 솔루스첨단소재 주식회사 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR102573176B1 (ko) * 2020-04-09 2023-09-04 주식회사 엘지화학 유기 발광 소자
KR102572372B1 (ko) * 2020-06-04 2023-08-30 엘티소재주식회사 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2021261977A1 (ko) * 2020-06-26 2021-12-30 주식회사 엘지화학 유기 발광 소자
KR102428785B1 (ko) * 2020-09-04 2022-08-03 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
US20230354706A1 (en) * 2020-10-22 2023-11-02 Lg Chem, Ltd. Organic light emitting device
CN114075176B (zh) * 2020-11-10 2023-09-12 陕西莱特光电材料股份有限公司 含氮化合物、有机电致发光器件和电子装置
KR20220089970A (ko) * 2020-12-22 2022-06-29 덕산네오룩스 주식회사 유기전기소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
CN114560832A (zh) * 2022-01-26 2022-05-31 盐城师范学院 一种合成二苯并呋喃化合物的方法
KR20230131696A (ko) * 2022-03-07 2023-09-14 엘티소재주식회사 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
KR20240054462A (ko) * 2022-10-18 2024-04-26 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131518A (ja) * 2011-12-20 2013-07-04 Konica Minolta Inc 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2013243266A (ja) * 2012-05-21 2013-12-05 Konica Minolta Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2016015815A1 (de) * 2014-07-28 2016-02-04 Merck Patent Gmbh Metallkomplexe
KR20160030402A (ko) * 2013-08-16 2016-03-17 코니카 미놀타 가부시키가이샤 유기 일렉트로루미네센스 소자, 전자 디바이스, 발광 장치 및 발광 재료
KR20170005853A (ko) * 2014-05-14 2017-01-16 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 유기 발광 다이오드 물질

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101170666B1 (ko) 2009-03-03 2012-08-07 덕산하이메탈(주) 비스카바졸 화합물 및 이를 이용한 유기전기소자, 그 단말
JP6007467B2 (ja) 2010-07-27 2016-10-12 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、
KR102580210B1 (ko) * 2016-09-20 2023-09-21 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR101857632B1 (ko) * 2018-02-02 2018-05-14 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102219645B1 (ko) * 2018-04-10 2021-02-24 삼성에스디아이 주식회사 조성물, 유기 광전자 소자 및 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131518A (ja) * 2011-12-20 2013-07-04 Konica Minolta Inc 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2013243266A (ja) * 2012-05-21 2013-12-05 Konica Minolta Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
KR20160030402A (ko) * 2013-08-16 2016-03-17 코니카 미놀타 가부시키가이샤 유기 일렉트로루미네센스 소자, 전자 디바이스, 발광 장치 및 발광 재료
KR20170005853A (ko) * 2014-05-14 2017-01-16 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 유기 발광 다이오드 물질
WO2016015815A1 (de) * 2014-07-28 2016-02-04 Merck Patent Gmbh Metallkomplexe

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111718367A (zh) * 2020-07-28 2020-09-29 吉林奥来德光电材料股份有限公司 一种有机发光材料及其制备方法与应用
US11760761B2 (en) 2020-08-17 2023-09-19 Aligos Therapeutics, Inc. Methods and compositions for targeting PD-L1
CN112159397A (zh) * 2020-10-20 2021-01-01 吉林奥来德光电材料股份有限公司 一种含呋喃类结构的电子传输材料及其制备方法与应用
DE102021132671A1 (de) 2020-12-11 2022-06-15 Beijing Summer Sprout Technology Co., Ltd. Organisches Elektrolumineszenzmaterial und Vorrichtung daraus
EP4019505A1 (en) * 2020-12-24 2022-06-29 LT Materials Co., Ltd. Heterocyclic compound, organic light emitting device comprising the same, method for manufacturing the same and composition for organic material layer of organic light emitting device
JP2022101491A (ja) * 2020-12-24 2022-07-06 エルティー・マテリアルズ・カンパニー・リミテッド ヘテロ環化合物、これを含む有機発光素子、その製造方法および有機物層用組成物

Also Published As

Publication number Publication date
US20210340103A1 (en) 2021-11-04
KR102617841B1 (ko) 2023-12-26
KR20190135707A (ko) 2019-12-09
CN112106215B (zh) 2023-12-12
CN112106215A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
WO2019231226A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016072691A1 (ko) 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
WO2017200320A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020032424A1 (ko) 이종 화합물의 혼합물을 호스트로 포함하는 유기전기소자 및 그 전자 장치
WO2017095075A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016072690A1 (ko) 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
WO2017122978A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017204556A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2013105747A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2013109027A1 (ko) 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2013081315A1 (ko) 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치
WO2017179875A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017010726A1 (ko) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
WO2018080066A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2021112403A1 (ko) 유기화합물을 포함하는 유기전기소자 및 이를 포함하는 전자 장치
WO2018026197A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020009467A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2015190867A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021010770A1 (ko) 신규한 보론 화합물 및 이를 포함하는 유기발광소자
WO2017191976A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020251183A1 (ko) 유기발광 소자용 화합물 및 이를 포함하는 유기발광소자
WO2019172623A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021230651A1 (ko) 유기전기소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
WO2010150988A2 (ko) 안트라센 유도체 및 이를 이용한 유기 전계 발광 소자
WO2018080067A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811856

Country of ref document: EP

Kind code of ref document: A1