WO2019230790A1 - 掃気装置及びそれを備えるロボットシステム並びに掃気方法 - Google Patents

掃気装置及びそれを備えるロボットシステム並びに掃気方法 Download PDF

Info

Publication number
WO2019230790A1
WO2019230790A1 PCT/JP2019/021268 JP2019021268W WO2019230790A1 WO 2019230790 A1 WO2019230790 A1 WO 2019230790A1 JP 2019021268 W JP2019021268 W JP 2019021268W WO 2019230790 A1 WO2019230790 A1 WO 2019230790A1
Authority
WO
WIPO (PCT)
Prior art keywords
scavenging
period
flow rate
protective gas
per unit
Prior art date
Application number
PCT/JP2019/021268
Other languages
English (en)
French (fr)
Inventor
暢啓 出村
新吾 大峪
真人 米山
明宏 得本
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to US17/059,532 priority Critical patent/US20210207805A1/en
Priority to EP19812368.9A priority patent/EP3804922A4/en
Publication of WO2019230790A1 publication Critical patent/WO2019230790A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0075Manipulators for painting or coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/247Preventing development of abnormal or undesired conditions, i.e. safety arrangements using mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0431Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation with spray heads moved by robots or articulated arms, e.g. for applying liquid or other fluent material to 3D-surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0075Means for protecting the manipulator from its environment or vice versa
    • B25J19/0079Means for protecting the manipulator from its environment or vice versa using an internal pressure system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/002Gaseous fuel
    • F23K5/007Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L5/00Blast-producing apparatus before the fire
    • F23L5/02Arrangements of fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07002Injecting inert gas, other than steam or evaporated water, into the combustion chambers

Definitions

  • the present invention relates to a scavenging device, a robot system including the scavenging device, and a scavenging method.
  • a scavenging device for scavenging by supplying a protective gas into a container that defines the peripheral edge of the internal pressure explosion-proof structure is known.
  • Such a scavenging device has been proposed, for example, in the industrial robot of Patent Document 1.
  • the scavenging process is performed when the stop time of the explosion-proof device is longer than the reference stop time.
  • the robot system is started after the air supply process is performed.
  • Patent Document 1 proposes improving the operating rate by not performing scavenging when it is considered that there is no problem in explosion prevention by starting immediately after the robot system is stopped.
  • the patent document has a problem that the scavenging period becomes long when scavenging is performed.
  • an object of the present invention is to provide a scavenging device, a robot system including the scavenging device, and a scavenging method capable of shortening the scavenging period.
  • a scavenging apparatus for supplying a protective gas into a container that defines a peripheral edge of an internal pressure explosion-proof structure to perform scavenging, and a protective gas supply source; A flow path for guiding the protective gas from the protective gas supply source into the container, a flow rate adjusting device for adjusting a flow rate of the protective gas supplied from the protective gas supply source into the container, A scavenging control device for controlling the flow control device to perform scavenging, and the scavenging control device controls at least two main periods and at least one sub-period by controlling the flow control device.
  • the protective gas is supplied into the container during the scavenging period to perform scavenging, and the main period and the sub period are alternately set on the time axis, and the maximum supply per unit time in the sub period is set.
  • the flow rate is 10% or less of the maximum supply flow rate per unit time in the main period immediately before and 10% or less of the maximum supply flow rate per unit time in the main period immediately thereafter. To do.
  • the maximum supply flow rate per unit time in the sub period is 10% or less of the maximum supply flow rate per unit time in the immediately preceding main period, and per unit time in the immediately following main period. It is possible to shorten the scavenging period by supplying the protective gas into the container during the scavenging period so as to be 10% or less of the maximum supply flow rate.
  • the scavenging control device intermittently supplies the protective gas into the container during the scavenging period by controlling the flow rate control device so that the maximum supply flow rate per unit time in the sub period is zero. Then, scavenging may be performed.
  • the scavenging control device controls the flow rate adjusting device so that the maximum supply flow rate per unit time in the first main period is larger than the maximum supply flow rate per unit time in the second main period.
  • scavenging may be performed by supplying the protective gas into the container.
  • the flow rate control device has a control valve provided on the flow path, and the scavenging control device controls the flow rate of the protective gas supplied into the container by adjusting the opening of the control valve. You may control.
  • the scavenging time can be shortened with a simple configuration.
  • a robot system is a robot system including any one of the scavenging devices described above and a robot having the internal pressure explosion-proof structure, wherein the robot includes a robot arm, An end effector attached to the tip of the robot arm; and the robot arm and a robot controller for controlling the end effector, wherein at least a part of the robot arm constitutes the container. It is characterized by that.
  • the scavenging time can be shortened in the robot system including the robot having the internal pressure explosion-proof structure by using the scavenging device.
  • the protective gas supply source, the scavenging control device, and the robot control device may be installed in the second region.
  • a scavenging method is a scavenging method for supplying a protective gas into a container that defines a peripheral edge of an internal pressure explosion-proof structure to perform scavenging.
  • the scavenging control device controls the flow rate control device to supply the protective gas into the container during the scavenging period including at least two main periods and at least one sub period.
  • a third step wherein the main period and the sub period are alternately set on a time axis, and the maximum supply flow rate per unit time in the sub period is 10% or less of the maximum supply flow rate per unit of the main period before time, and characterized in that its 10% or less of the maximum supply flow rate per unit time in the main period immediately after.
  • the maximum supply flow rate per unit time in the sub period is 10% or less of the maximum supply flow rate per unit time in the immediately preceding main period, and per unit time in the immediately following main period. It is possible to shorten the scavenging period by supplying the protective gas into the container during the scavenging period so as to be 10% or less of the maximum supply flow rate.
  • a scavenging device a robot system including the scavenging device, and a scavenging method capable of shortening the scavenging period.
  • FIG. 1 is a schematic diagram illustrating an overall configuration of a scavenging device according to an embodiment of the present invention and a robot system including the scavenging device. It is the schematic which shows a part of scavenging apparatus which concerns on one Embodiment of this invention, and the internal structure of a robot. It is a schematic graph for demonstrating the effect at the time of scavenging with the robot system which concerns on one Embodiment of this invention. It is a schematic diagram for demonstrating the effect at the time of scavenging with the robot system which concerns on one Embodiment of this invention. It is a schematic graph for demonstrating the effect at the time of scavenging in the modification of the robot system which concerns on one Embodiment of this invention.
  • FIG. 1 is a schematic diagram illustrating an overall configuration of a scavenging apparatus according to the present embodiment and a robot system including the scavenging apparatus.
  • the robot system 10 supplies a protective gas into a robot 20 that performs a painting operation in a first region where an explosive atmosphere exists, and a container 60 that defines the periphery of the internal pressure explosion-proof structure of the robot 20.
  • the robot system 10 further includes a partition unit 98 for partitioning the first region where the explosive atmosphere exists and the second region where the explosive atmosphere does not exist.
  • a flow rate adjusting device 76, a base 21, a robot arm 30, and an end effector 40, which will be described later, are installed in the first region.
  • a protective gas supply source 71 and a control device 90 described later are installed in the second region.
  • the robot 20 according to the present embodiment is a painting robot for painting an automobile or the like. Therefore, in this embodiment, the said 1st area
  • the atmosphere of the paint shop is a combustible gas (or explosive gas) by mixing the gas containing the organic solvent contained in the paint. If an electric device is used without taking any measures in such a first region, an explosion occurs due to a spark generated by energization.
  • the robot 20 is provided with a large number of electric devices such as a servo motor 32 described later in a container 60 that defines a part of the periphery of the robot 20. Therefore, before energizing the robot 20, it is necessary to remove the combustible gas that has entered the container 60. Therefore, scavenging is performed by supplying a protective gas into the container 60 using the scavenging device 70.
  • the robot 20 performs a painting operation by controlling the base 21, the robot arm 30 connected to the base 21, the end effector 40 attached to the tip of the robot arm 30, and the robot arm 30 and the end effector 40. And a robot control device 50.
  • the robot arm 30 has seven joint axes JT1 to JT7 and six links 31a to 31f sequentially connected by these joint axes.
  • Each of the joint axes JT1 to JT7 of the robot arm 30 is rotatably provided by a servo motor 32 described later.
  • the first joint shaft JT1 is connected by a servo motor 32a so that the distal end portion of the first link 31a and the proximal end portion of the second link 31b are rotatable about an axis extending in the vertical direction.
  • the second joint axis JT2 is a plane in which the front-rear direction and the vertical direction of the robot 20 intersect the distal end portion of the second link 31b and the proximal end portion of the third link 31c around the axis extending in the horizontal direction by the servo motor 32b. And is pivotally connected.
  • the third joint axis JT3 is a plane in which the front-rear direction and the vertical direction of the robot 20 intersect the distal end portion of the third link 31c and the proximal end portion of the fourth link 31d around the axis extending in the horizontal direction by the servo motor 32c. And is pivotally connected.
  • the fourth joint shaft JT4 connects the distal end portion of the fourth link 31d and the proximal end portion of the fifth link 31e so as to be twisted and rotated by the servo motor 32d.
  • the fifth joint shaft JT5 connects the distal end portion of the fifth link 31e and the proximal end portion of the sixth link 31f so as to be twisted and rotated by the servo motor 32e.
  • the sixth joint shaft JT6 connects the distal end portion of the sixth link 31f (that is, the distal end portion of the robot arm 30) and the proximal end portion of the end effector 40 so as to be twisted and rotated by the servo motor 32f. Then, the seventh joint axis JT7 is rotated by the servo motor 32g between the base 21 and the base end of the first link 31a in a plane where the horizontal direction and the vertical direction of the robot 20 intersect about the axis extending in the horizontal direction. Connect movably.
  • FIG. 2 is a schematic diagram showing a part of the scavenging device and the internal structure of the robot according to the present embodiment. As shown in FIG. 2, in this embodiment, a part of the base 21 and the robot arm 30 constitutes a container 60.
  • each of the servo motors 32a to 32c and 32g is connected to a joint shaft that is rotated by itself.
  • each of the servo motors 32d to 32f is rotated by itself. It is provided apart from the joint shaft to be moved.
  • each of the servo motors 32d to 32f is provided adjacent to each other in the vicinity of the third joint axis JT3, and rotates the joint axes separated via a harness. All of the servo motors 32a to 32g are provided in the container 60.
  • the end effector 40 is a paint gun for spraying paint supplied from a paint supply hose (not shown) onto the body of an automobile.
  • the robot control device 50 is provided in the control device 90 together with a scavenging control device 80 described later.
  • the specific configuration of the robot control device 50 is not particularly limited. For example, a configuration realized by a known processor (CPU or the like) operating according to a program stored in a storage unit (memory) may be used.
  • the scavenging device 70 is supplied into the container 60 from the protective gas supply source 71, a supply flow path 72 (flow path) for guiding the protective gas from the protective gas supply source 71 into the container 60, and the protective gas supply source 71.
  • the protective gas supply source 71 is provided in the second region.
  • air in the atmosphere may be used as the protective gas.
  • the supply flow path 72 extends from the protective gas supply source 71 provided in the second region to the inside of the container 60 of the robot 20 provided in the first region. Specifically, the supply flow path 72 is inserted into the container 60 through a through hole formed in the base 21 of the robot 20, and the deepest portion (that is, the third joint axis JT3) in the container 60. The protective gas is supplied from the front end portion.
  • the supply flow path 72 has a branch path extending to the vicinity of the servo motor 32b that rotates the second joint shaft JT2, and a protective gas is supplied from the front end thereof. Further, the supply flow path 72 further has a branch path extending to the servo motor 32g for rotating the seventh joint shaft JT7, and the protective gas is supplied from the distal end portion thereof.
  • discharge flow path 74 The protective gas supplied into the container 60 is discharged from the container 60 through the discharge channel 74.
  • the discharge channel 74 extends to the outside of the container 60 through a through hole formed in the base 21. Since the pressure in the container 60 is higher than the atmospheric pressure, the protective gas supplied into the container 60 from the supply flow path 72 is discharged to the outside of the container 60 so as to be sucked into the tip of the discharge flow path 74. Is done.
  • the flow rate adjusting device 76 includes a first control valve 77 (control valve) provided on the supply flow path 72 and a second control valve 78 provided on the discharge flow path 74.
  • the scavenging control device 80 is provided in the control device 90 together with the robot control device 50.
  • the specific configuration of the scavenging control device 80 is not particularly limited.
  • a known processor CPU or the like
  • a storage unit memory
  • the scavenging control device 80 controls the flow rate of the protective gas supplied into the container 60 by adjusting the opening of the first control valve 77. At this time, the scavenging control device 80 acquires the pressure value of the protective gas detected by a pressure sensor (not shown) provided on the supply flow path 72, the flow value of the protective gas detected by a flow sensor (not shown), and the like. Thus, the flow rate of the protective gas supplied into the container 60 may be controlled based on the pressure value, the flow rate value, and the like.
  • FIG. 3B shows a similar graph when scavenging is performed without changing the flow rate of the protective gas supplied into the container 60 as in the prior art.
  • the scavenging control unit 80 continues to supply a predetermined time protection gas chamber 60 from the start of the scavenging until time t 1. Then, scavenging control unit 80 stops the supply of protective gas from time t 1 to time t until 2 chamber 60, between the Then the time t 2 to time t 3 is in the container 60 Supply protective gas. Finally, the scavenging control unit 80 stops the supply of protective gas from time t 3 to time t 4 until the chamber 60, between the Then the time t 4 to time t 5 in the container 60 Supply protective gas.
  • the predetermined time during which the protective gas is continuously supplied after the start of scavenging (that is, time t 1 ) may be about 10 min.
  • the time for stopping the supply of the protective gas (that is, each of the time t 2 -t 1 and the time t 4 -t 3 ) may be about 30 seconds.
  • the time for supplying the protective gas again after stopping the supply of the protective gas (that is, each of time t 3 -t 2 and time t 5 -t 4 ) may be about 2 min.
  • the scavenging control device 80 controls the flow rate adjusting device 76 to perform scavenging by supplying a protective gas into the container 60 during the scavenging period including at least two main periods and at least one sub period.
  • the main period and the sub period are alternately set on the time axis.
  • the maximum supply flow rate per unit time in the sub period is 10% or less of the maximum supply flow rate per unit time in the main period immediately before, and the maximum supply flow rate per unit time in the main period immediately after that 10% or less.
  • the main period is a period during which new protective gas is actively supplied into the container 60.
  • the sub-period is a period of waiting for the protective gas existing in the container 60 to be evenly diffused in the container 60.
  • FIG. 3 (A) is the scavenging period from the start of the scavenging to time t 5. Furthermore, from the start of the scavenging until time t 1, from the time t 2 to time t 3, and, from time t 4 to time t 5 corresponds to the main period, respectively. Furthermore, from the time t 1 to time t 2, and, from time t 3 to time t 4 respectively correspond to sub-periods.
  • the scavenging control unit 80 by controlling the flow rate adjusting device 76, the sub-period (i.e., each period and from time t 3 from the time t 1 to time t 2 to time t 4) by assuming no maximum supply flow rate per unit time, the scavenging period performing scavenging by intermittently supplying protective gas into the container 60 in (i.e., from the start of the scavenging period to time t 5) Yes.
  • the scavenging device 70 has a maximum supply flow rate per unit time in the sub-period that is 10% or less of the maximum supply flow rate per unit time in the immediately preceding main period.
  • the protective gas is supplied into the container 60 during the scavenging period so that the scavenging period is 10% or less of the maximum supply flow rate per unit time in the main period immediately thereafter. This shortens the scavenging period by t′ ⁇ t 5 compared to the case where scavenging is performed without changing the flow rate of the protective gas supplied into the container 60 (the case shown in FIG. 3B). Can do.
  • the reason why the scavenging period can be shortened will be described with reference to FIG.
  • FIG. 4 is a schematic diagram for explaining the effect when scavenging is performed by the robot system according to the present embodiment.
  • 4A shows a state in which the protective gas is being supplied into the container 60
  • FIG. 4B shows a state in which the supply of the protective gas has been stopped in the container 60
  • FIG. The state immediately after restarting supply after stopping supply of protective gas in the container 60 is shown.
  • the robot 20 having the internal pressure explosion-proof structure is generally subjected to a scavenging accuracy test before shipment.
  • An example of the scavenging accuracy test will be described. First, through holes are drilled at several locations on the robot arm 30. Next, the suction part 100 is inserted from each of the through holes.
  • scavenging is performed until the concentration becomes a certain value or less.
  • the suction unit 100 inserted in the container 60 is used to suck the gas in the container 60 and the concentration measuring device (not shown) provided the concentration of the protective gas contained in the sucked gas outside. )
  • the concentration measuring device (not shown) provided the concentration of the protective gas contained in the sucked gas outside.
  • scavenging is performed until the concentration of carbon dioxide is filled as a protective gas and the concentration becomes a certain value or less.
  • the procedure for determining whether the throat of carbon dioxide has become a certain value or less is the same as in the case of the helium gas.
  • the suction unit 100 is often provided in an intricate space where protective gas does not flow easily or in the vicinity thereof.
  • a servo motor 32 can be cited as an example of the complicated space.
  • a spiral flow is created and a part of the protective gas remains.
  • the concentration of the protective gas such as helium or carbon dioxide contained in the gas to decrease to a predetermined value, so that the scavenging time becomes longer.
  • the protective gas is carbon dioxide
  • the concentration is particularly difficult to decrease because carbon dioxide is heavier than air.
  • the scavenging device 70 can reduce the scavenging time by supplying the protective gas into the container 60 that defines the periphery of the internal pressure explosion-proof structure.
  • the scavenging device 70 controls the flow rate adjusting device 76 by the scavenging control device 80 so that the maximum supply flow rate per unit time in the sub period is zero, so that the inside of the container 60 in the scavenging period.
  • plays can be made remarkable by supplying a protective gas intermittently and scavenging.
  • the scavenging control unit 80 by controlling the flow rate adjusting device 76, the first main period (i.e., from the start of the scavenging until time t 1 sub-period immediately after the supply flow rate per unit of time) of the time (i.e., the maximum duration is 10 times or more of the supply flow rate per unit time during the period) from time t 1 to time t 2 is the second time
  • the supply rate per unit time in the main period ie, the period from time t 3 to time t 4
  • the maximum supply per unit time in the immediately preceding sub-period ie, the period from time t 1 to time t 2 ).
  • Scavenging is performed by supplying a protective gas into the container 60 during the scavenging period so as to be longer than a period that is 10 times or more of the flow rate. Thereby, it is possible to perform scavenging by the scavenging device 70 while suppressing an increase in the time for filling the container 60 with the protective gas. As a result, it is possible to make the effect of this embodiment remarkable.
  • the scavenging control device 80 controls the flow rate of the protective gas supplied into the container 60 by adjusting the opening of the first control valve 77 (control valve). Thereby, it is possible to shorten the scavenging time with a simple configuration.
  • the scavenging time can be shortened in the robot system 10 including the robot 20 by using the scavenging device 70 for the robot 20 having the internal pressure explosion-proof structure.
  • the flow control device 76, the robot arm 30 and the end effector 40 are installed in the first area where the explosive atmosphere exists, and the protective gas is supplied to the second area where the explosive atmosphere does not exist.
  • a source 71, a scavenging control device 80, and a robot control device 50 are installed. Thereby, the safety of the robot system 10 can be ensured.
  • the scavenging method according to the present invention will be described taking as an example a case where the scavenging device 70 according to the above embodiment is used.
  • the first step of preparing the robot 20 having the internal pressure explosion-proof structure and the scavenging device 70 is performed. That is, the robot system 10 is prepared here.
  • the second step of attaching the scavenging device 70 to the robot 20 is performed. Specifically, the supply flow path 72 (flow path) and the discharge flow path 74 are inserted into the container 60 and attached. Further, the flow control device 76, the robot arm 30 and the end effector 40 are installed in the first region where the explosive atmosphere exists, and the protective gas supply source 71 and the scavenging control device 80 are installed in the second region where the explosive atmosphere does not exist. And the robot controller 50 is installed.
  • the scavenging control device 80 controls the flow rate adjusting device 76, so that the container 60 in the scavenging period including at least two main periods and at least one sub period.
  • a third step of supplying a protective gas and scavenging is performed.
  • the main period and the sub period are alternately set on the time axis.
  • the maximum supply flow rate per unit time in the sub period is 10% or less of the maximum supply flow rate per unit time in the main period immediately before, and the maximum supply flow rate per unit time in the main period immediately after that 10% or less.
  • the scavenging control device 80 controls the flow rate adjusting device 76 so that the maximum supply flow rate per unit time in the sub-period is zero (that is, the period from t 1 to t 2). and by the t 3 does not supply the protective gas to the container 60 within the respective period until t 4), it may be performed scavenging intermittently supplying protective gas into the container 60 in the scavenging period.
  • the scavenging control device 80 controls the flow rate adjusting device 76 so that the supply flow rate per unit time in the first main period becomes 10 of the maximum supply flow rate per unit time in the sub period immediately thereafter.
  • the period in which the supply flow rate per unit time in the second main period is longer than the period in which the maximum supply flow rate per unit time in the immediately preceding sub-period is 10 times or more (that is, 3 as the period from the start of the scavenging as shown in (a) until t 1 is longer than the period from t 2 to t 3), scavenging by supplying a protective gas into the container 60 in the scavenging period May be performed.
  • FIG. 5 is a schematic graph for explaining the effect when scavenging is performed in the modified example of the robot system according to the embodiment.
  • the scavenging control device 80 controls the flow rate adjusting device 76 so that the unit in the first main period (that is, the period from the start of scavenging to the time t 1 ).
  • the protective gas is contained in the container 60 so that the maximum supply flow rate per time becomes larger than the maximum supply flow rate per unit time in the second main period (that is, the period from time t 2 to time t 3 ). May be supplied for scavenging.
  • FIG. 5A shows a case where the maximum supply flow rate per unit time in the first main period is f + ⁇ , and the maximum supply flow rate per unit time in the second main period is f.
  • the scavenging device 70 By scavenging in this way, scavenging can be performed by the scavenging device 70 while suppressing an increase in the time for filling the container 60 with the protective gas. Thereby, compared with the case where scavenging is performed without changing the flow rate of the protective gas supplied into the container 60 (in the case shown in FIG. 3B), for example, only t′ ⁇ t 5 (or more). The scavenging period can be shortened. As a result, it is possible to make the effect of this embodiment remarkable. As shown in FIG. 5A, the maximum supply flow rate per unit time in the third main period may be f, and when there are four or more main periods, in the fourth and subsequent main periods. The maximum supply flow rate per unit time may be f.
  • the scavenging control device 80 controls the flow rate adjusting device 76 so that the maximum supply flow rate per unit time in the sub-period can be increased per unit time in the immediately preceding main period.
  • the protective gas may be supplied into the container 60 in each sub period so that it is 10% of the maximum supply flow rate and 10% of the maximum supply flow rate per unit time in the main period immediately after that.
  • the maximum supply flow rate per unit time in the first sub period ie, the period from time t 1 to time t 2
  • the second sub period ie, time t maximum supply flow rate per unit time in the period up to the time t 4 from 3
  • the maximum supply flow rate per unit time in the first main period that is, the period from the start of scavenging to time t 1
  • the second main period that is, maximum supply flow rate per unit time during the period
  • t′ ⁇ t is compared with the case where scavenging is performed without changing the flow rate of the protective gas supplied into the container 60 (the case shown in FIG. 3B).
  • the scavenging period can be shortened by 5 .
  • the scavenging control device 80 controls the flow rate adjusting device 76 to supply the protective gas into the container 60 during the scavenging period including at least two main periods and at least one sub period, thereby scavenging.
  • the period and the sub period are alternately set on the time axis, and the maximum supply flow rate per unit time in the sub period is 10% or less of the maximum supply flow rate per unit time in the immediately preceding main period, and If the maximum supply flow rate per unit time in the main period immediately after that is 10% or less, scavenging is performed in the scavenging period in a manner other than that shown in FIGS. 3 (A), 5 (A), and 5 (B). You may go.
  • the supply flow rate in each of the main period and the sub period may be changed.
  • the graph showing the relationship between the supply flow rate and time when supplying the protective gas into the container 60 shown in FIGS. 3 (A), 5 (A), and 5 (B) has a sinusoidal shape. It may be a shape that fluctuates irregularly, or may be another shape.
  • the maximum supply flow rate in each of at least two main periods may be different.
  • the flow control device 76 is arranged in the first region where the explosive atmosphere exists, but the present invention is not limited to this.
  • the flow control device 76 may be arranged in the second region where no explosive atmosphere exists.
  • a part of the flow control device 76 (for example, the first control valve 77) is disposed in the first region, and the remaining part of the flow control device 76 (for example, the second control valve 78) is disposed in the second region. You may do it.
  • region are the control valves which operate
  • the present invention is not limited to this case.
  • the present invention is not limited to this case.
  • at least a part of the robot arm 30 only needs to form the container 60.
  • the robot 20 is a painting robot for painting an automobile or the like, and the first region is a painting place.
  • the present invention is not limited to this case.
  • the robot 20 may be a robot that performs work at a gasoline filling station, and the first region may be the gasoline filling station.
  • the present invention is not limited to this, and the internal pressure explosion-proof structure may be provided in another electrical device. That is, the scavenging device 70 may be used for an internal pressure explosion-proof structure of electrical equipment other than the robot 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)

Abstract

内圧防爆構造の周縁を画定する容器内に保護気体を供給して掃気を行うための掃気装置であって、掃気制御装置は、流量調節装置を制御することで、少なくとも2つの主期間と少なくとも1つの副期間とを含む掃気期間において容器内に保護気体を供給して掃気を行い、主期間と副期間とは時間軸上において交互に設定されており、副期間における単位時間当たりの最大供給流量が、その直前の主期間における単位時間当たりの最大供給流量の10%以下であり、且つ、その直後の主期間における単位時間当たりの最大供給流量の10%以下であることを特徴とする。

Description

掃気装置及びそれを備えるロボットシステム並びに掃気方法
 本発明は、掃気装置及びそれを備えるロボットシステム並びに掃気方法に関する。
 従来から、内圧防爆構造の周縁を画定する容器内に保護気体を供給して掃気を行うための掃気装置が知られている。このような掃気装置が、例えば、特許文献1の工業用ロボットで提案されている。
 特許文献1の工業用ロボットでは、防爆装置の停止時間が基準停止時間よりも長いとき掃気処理が行われる。一方、防爆装置の停止時間が基準停止時間よりも短いとき、給気処理が行われたあと、ロボットシステムが立ち上げられる。
特開平9-168991号公報
 上記構成によれば、特許文献1では、ロボットシステムが停止したあと直ぐに起動することで防爆上問題が無いと考えられる場合に、掃気を行わないことで稼動率を向上させることが提案されている。しかし、特許文献では、掃気を行った場合に掃気期間が長くなってしまうという問題があった。
 そこで、本発明は、掃気期間を短縮することが可能な、掃気装置及びそれを備えるロボットシステム並びに掃気方法を提供することを目的とする。
 前記課題を解決するために、本発明に係る掃気装置は、内圧防爆構造の周縁を画定する容器内に保護気体を供給して掃気を行うための掃気装置であって、保護気体供給源と、前記保護気体供給源から前記容器内まで前記保護気体を導くための流路と、前記保護気体供給源から前記容器内に供給される前記保護気体の流量を調節するための流量調節装置と、前記流量調節装置を制御して掃気を行うための掃気制御装置と、を備えており、前記掃気制御装置は、前記流量調節装置を制御することで、少なくとも2つの主期間と少なくとも1つの副期間とを含む掃気期間において前記容器内に前記保護気体を供給して掃気を行い、前記主期間と前記副期間とは時間軸上において交互に設定されており、前記副期間における単位時間当たりの最大供給流量が、その直前の前記主期間における単位時間当たりの最大供給流量の10%以下であり、且つ、その直後の前記主期間における単位時間当たりの最大供給流量の10%以下であることを特徴とする。
 上記構成によれば、副期間における単位時間当たりの最大供給流量が、その直前の主期間における単位時間当たりの最大供給流量の10%以下であり、且つ、その直後の主期間における単位時間当たりの最大供給流量の10%以下であるように、掃気期間において容器内に保護気体を供給して掃気を行うことで、掃気期間を短縮することが可能となる。
 前記掃気制御装置は、前記流量調節装置を制御することで、前記副期間における単位時間当たりの最大供給流量を零とすることにより、前記掃気期間において前記容器内に前記保護気体を断続的に供給して掃気を行ってもよい。
 上記構成によれば、本発明が奏する効果を顕著にすることができる。
 前記掃気制御装置は、前記流量調節装置を制御することで、最初の前記主期間における単位時間当たりの最大供給流量が2回目の前記主期間における単位時間当たりの最大供給流量よりも大きくなるように、前記掃気期間において前記容器内に前記保護気体を供給して掃気を行ってもよい。
 上記構成によれば、本発明が奏する効果を顕著にすることができる。
 前記流量調節装置は、前記流路上に設けられる調節弁を有しており、前記掃気制御装置は、前記調節弁の開度を調節することで前記容器内に供給される前記保護気体の流量を制御してもよい。
 上記構成によれば、簡単な構成で掃気時間を短縮することが可能となる。
 前記課題を解決するために、本発明に係るロボットシステムは、上記いずれかの掃気装置と、前記内圧防爆構造を有するロボットと、を備えるロボットシステムであって、前記ロボットは、ロボットアームと、前記ロボットアームの先端部に取り付けられるエンドエフェクタと、前記ロボットアーム及び前記エンドエフェクタを制御するためのロボット制御装置と、を有しており、前記ロボットアームの少なくとも一部が前記容器を構成していることを特徴とする。
 上記構成によれば、掃気装置を用いることで、内圧防爆構造を有するロボットを備えるロボットシステムにおいて、掃気時間を短縮することができる。
 爆発性雰囲気が存する第1領域と、前記爆発性雰囲気が存しない第2領域とを仕切るための仕切部をさらに備えており、前記第1領域に前記ロボットアーム及び前記エンドエフェクタが設置されており、且つ、前記第2領域に前記保護気体供給源、前記掃気制御装置及び前記ロボット制御装置が設置されていてもよい。
 上記構成によれば、ロボットシステムの安全性を確保することが可能となる。
 前記課題を解決するために、本発明に係る掃気方法は、内圧防爆構造の周縁を画定する容器内に保護気体を供給して掃気を行うための掃気方法であって、前記内圧防爆構造と上記いずれかの掃気装置とを準備する第1ステップと、前記第1ステップを行ったあとで、前記内圧防爆構造に対して前記掃気装置を取り付ける第2ステップと、前記第1及び前記第2ステップを行ったあとで、前記掃気制御装置により前記流量調節装置を制御することで、少なくとも2つの主期間と少なくとも1つの副期間とを含む掃気期間において前記容器内に前記保護気体を供給して掃気を行う第3ステップと、を備えており、前記主期間と前記副期間とは時間軸上において交互に設定されており、前記副期間における単位時間当たりの最大供給流量が、その直前の前記主期間における単位時間当たりの最大供給流量の10%以下であり、且つ、その直後の前記主期間における単位時間当たりの最大供給流量の10%以下であることを特徴とする。
上記構成によれば、副期間における単位時間当たりの最大供給流量が、その直前の主期間における単位時間当たりの最大供給流量の10%以下であり、且つ、その直後の主期間における単位時間当たりの最大供給流量の10%以下であるように、掃気期間において容器内に保護気体を供給して掃気を行うことで、掃気期間を短縮することが可能となる。
 本発明によれば、掃気期間を短縮することが可能な、掃気装置及びそれを備えるロボットシステム並びに掃気方法を提供することが可能となる。
本発明の一実施形態に係る掃気装置及びそれを備えるロボットシステムの全体構成を示す概略図である。 本発明の一実施形態に係る掃気装置の一部及びロボットの内部構造を示す概略図である。 本発明の一実施形態に係るロボットシステムで掃気を行った場合の効果を説明するための概略的なグラフである。 本発明の一実施形態に係るロボットシステムで掃気を行った場合の効果を説明するための模式図である。 本発明の一実施形態に係るロボットシステムの変形例で掃気を行った場合の効果を説明するための概略的なグラフである。
 (全体構成)
 以下、本発明の実施形態に係る掃気装置及びそれを備えるロボットシステム並びに掃気方法について図面を参照して説明する。なお、本実施形態によって本発明が限定されるものではない。また、以下では、全ての図を通じて、同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
 (ロボットシステム10)
 図1は、本実施形態に係る掃気装置及びそれを備えるロボットシステムの全体構成を示す概略図である。図1に示すように、ロボットシステム10は、爆発性雰囲気が存する第1領域で塗装作業を行うロボット20と、ロボット20が有する内圧防爆構造の周縁を画定する容器60内に保護気体を供給して掃気を行うための掃気装置70と、ロボット20及び掃気装置70を制御するための制御装置90と、を備えている。
 本実施形態に係るロボットシステム10は、爆発性雰囲気が存する第1領域と、爆発性雰囲気が存しない第2領域とを仕切るための仕切部98をさらに備えている。そして、第1領域に後述する流量調節装置76、基台21、ロボットアーム30及びエンドエフェクタ40が設置されている。また、第2領域に後述する保護気体供給源71及び制御装置90が設置されている。
 本実施形態に係るロボット20は、自動車などに対して塗装を行うための塗装ロボットである。したがって、本実施形態において、上記第1領域は塗装場のことをいう。塗装場の雰囲気は、塗料に含まれる有機溶剤が気化したガスと混合され、可燃性ガス(又は爆発性ガス)になっていることが多い。このような第1領域で何ら対策を講じないまま電気機器を使用すると、通電により生じる火花などを原因に爆発が生じてしまう。
 ロボット20は、その周縁の一部を画定する容器60内に後述するサーボモータ32などの電気機器が多数設けられている。したがって、ロボット20に通電を行う前に、前記容器60内に侵入している可燃性ガスを排除することを要する。そこで、掃気装置70を用いて、容器60内に保護気体を供給して掃気が行われる。
 (ロボット20)
 ロボット20は、基台21と、基台21に連結されるロボットアーム30と、ロボットアーム30の先端部に取り付けられるエンドエフェクタ40と、ロボットアーム30及びエンドエフェクタ40を制御して塗装作業を行わせるロボット制御装置50と、を有している。
 (ロボットアーム30)
 ロボットアーム30は、7つの関節軸JT1~JT7と、これらの関節軸によって順次連結される6つのリンク31a~31fと、を有している。ロボットアーム30の関節軸JT1~JT7は、それぞれ、後述するサーボモータ32によって回動可能に設けられている。
 第1関節軸JT1は、サーボモータ32aによって、第1リンク31aの先端部と第2リンク31bの基端部とを鉛直方向に延びる軸回りに回動可能に連結する。第2関節軸JT2は、サーボモータ32bによって、第2リンク31bの先端部と第3リンク31cの基端部とを、水平方向に延びる軸回りにロボット20の前後方向と上下方向とが交わる平面において回動可能に連結する。
 第3関節軸JT3は、サーボモータ32cによって、第3リンク31cの先端部と第4リンク31dの基端部とを、水平方向に延びる軸回りにロボット20の前後方向と上下方向とが交わる平面において回動可能に連結する。第4関節軸JT4は、サーボモータ32dによって、第4リンク31dの先端部と第5リンク31eの基端部とを捻れ回動可能に連結する。第5関節軸JT5は、サーボモータ32eによって、第5リンク31eの先端部と第6リンク31fの基端部とを捻れ回動可能に連結する。第6関節軸JT6は、サーボモータ32fによって、第6リンク31fの先端部(すなわち、ロボットアーム30の先端部)とエンドエフェクタ40の基端部とを捻れ回動可能に連結する。そして、第7関節軸JT7は、サーボモータ32gによって、基台21と第1リンク31aの基端部とを、水平方向に延びる軸回りにロボット20の左右方向と上下方向とが交わる平面において回動可能に連結する。
 図2は、本実施形態に係る掃気装置の一部及びロボットの内部構造を示す概略図である。図2に示すように、本実施形態では、基台21及びロボットアーム30の一部が容器60を構成している。
 図2に示すように、サーボモータ32a~32c及び32gは、それぞれ、自らが回動させる関節軸に連結して設けられているが、一方で、サーボモータ32d~32fは、それぞれ、自らが回動させる関節軸から離間して設けられている。具体的には、サーボモータ32d~32fは、それぞれ、第3関節軸JT3の近傍に互いに隣接して設けられており、ハーネスを介して離間した関節軸を回動させている。そして、サーボモータ32a~32gの全ては、容器60内に設けられている。
 (エンドエフェクタ40)
 本実施形態では、エンドエフェクタ40は、図示しない塗料供給用ホースから供給される塗料を自動車の車体などに吹き付けるための塗装ガンである。
 (ロボット制御装置50)
 ロボット制御装置50は、後述する掃気制御装置80とともに制御装置90内に設けられている。ロボット制御装置50の具体的な構成は特に限定されないが、例えば、公知のプロセッサ(CPU等)が記憶部(メモリ)に格納されるプログラムに従って動作することにより実現される構成であってもよい。
 (掃気装置70)
 掃気装置70は、保護気体供給源71と、保護気体供給源71から容器60内まで保護気体を導くための供給流路72(流路)と、保護気体供給源71から容器60内に供給される保護気体の流量を調節するための流量調節装置76と、流量調節装置76を制御して掃気を行うための掃気制御装置80と、を備えている。
 (保護気体供給源71)
 保護気体供給源71は、第2領域に設けられている。本実施形態では、保護気体として例えば大気中の空気を用いてもよい。
 (供給流路72)
 図1、2に示すように、供給流路72は、第2領域に設けられる保護気体供給源71から第1領域に設けられるロボット20の容器60内まで延びている。具体的には、供給流路72は、ロボット20の基台21に穿設された貫通孔を通って容器60内挿入され、且つ、当該容器60内の最深部(すなわち、第3関節軸JT3の部分)まで延びており、その先端部から保護気体が供給される。
 なお、供給流路72は、第2関節軸JT2を回動させるサーボモータ32bの近傍まで延びる分岐路を有しており、その先端部から保護気体が供給される。また、供給流路72は、第7関節軸JT7を回動させるサーボモータ32gまで延びる分岐路をさらに有しており、その先端部から保護気体が供給される。
 (排出流路74)
 容器60内に供給された保護気体は、排出流路74によって容器60から排出される。排出流路74は、基台21に穿設された貫通孔を通って容器60の外部へと延びている。容器60内の圧力は大気圧よりも高いため、供給流路72から容器60内に供給された保護気体は、排出流路74の先端部に吸引されるようにして容器60の外部へと排出される。
 (流量調節装置76及び掃気制御装置80)
 流量調節装置76は、供給流路72上に設けられる第1調節弁77(調節弁)と、排出流路74上に設けられる第2調節弁78と、を有している。また、掃気制御装置80は、ロボット制御装置50とともに制御装置90内に設けられている。掃気制御装置80の具体的な構成は特に限定されないが、例えば、ロボット制御装置50と同様に公知のプロセッサ(CPU等)が記憶部(メモリ)に格納されるプログラムに従って動作することにより実現される構成であってもよい。
 そして、掃気制御装置80は、第1調節弁77の開度を調節することで容器60内に供給される保護気体の流量を制御する。このとき、掃気制御装置80は、供給流路72上に設けられる図示しない圧力センサで検出される保護気体の圧力値や、同じく図示しない流量センサで検出される保護気体の流量値などを取得して、当該圧力値や流量値などに基づき、容器60内に供給される保護気体の流量を制御してもよい。
 容器60内に供給される保護気体の流量と時間の関係を表したグラフを図3(A)に示す。また、従来のように容器60内に供給される保護気体の流量を変化させないで掃気を行った場合における同様のグラフを図3(B)に示す。
 図3(A)に示すように、掃気制御装置80は、掃気を開始してから時間tまで容器60内に保護気体を所定の時間供給し続ける。次に、掃気制御装置80は、時間tから時間tまでの間は容器60内への保護気体の供給を停止し、そのあと時間tから時間tまでの間は容器60内に保護気体を供給する。最後に、掃気制御装置80は、時間tから時間tまでの間は容器60内への保護気体の供給を停止し、そのあと時間tから時間tまでの間は容器60内に保護気体を供給する。
 例えば、掃気を開始してから保護気体を供給し続ける所定の時間(すなわち、時間t)は、10min程度であってもよい。また、保護気体の供給を停止する時間(すなわち、時間t-t及び時間t-tそれぞれ)は、30sec程度であってもよい。さらに、保護気体の供給を停止したあと再び供給を行う時間(すなわち、時間t-t及び時間t-tそれぞれ)は、2min程度であってもよい。
 掃気制御装置80は、流量調節装置76を制御することで、少なくとも2つの主期間と少なくとも1つの副期間とを含む掃気期間において容器60内に保護気体を供給して掃気を行う。ここで、主期間と副期間とは時間軸上において交互に設定されている。また、副期間における単位時間当たりの最大供給流量が、その直前の主期間における単位時間当たりの最大供給流量の10%以下であり、且つ、その直後の主期間における単位時間当たりの最大供給流量の10%以下である。
 ここで、上記主期間とは、新たな保護気体を積極的に容器60内に供給する期間である。また、上記副期間とは、容器60内に存する保護気体が容器60内で均等に拡散されるのを待つ期間である。
 図3(A)において、掃気を開始してから時間tまでが掃気期間である。また、掃気を開始してから時間tまで、時間tから時間tまで、及び、時間tから時間tまでがそれぞれ主期間に相当する。さらに、時間tから時間tまで、及び、時間tから時間tまでがそれぞれ副期間に相当する。
 図3(A)において、掃気制御装置80は、流量調節装置76を制御することで、副期間(すなわち、時間tから時間tまで及び時間tから時間tまでそれぞれの期間)における単位時間当たりの最大供給流量を零とすることにより、掃気期間(すなわち、掃気を開始してから時間tまでの期間)において容器60内に保護気体を断続的に供給して掃気を行っている。
 (効果)
 本実施形態に係る掃気装置70は、図3(A)に示すように、副期間における単位時間当たりの最大供給流量が、その直前の主期間における単位時間当たりの最大供給流量の10%以下であり、且つ、その直後の主期間における単位時間当たりの最大供給流量の10%以下であるように、掃気期間において容器60内に保護気体を供給して掃気を行っている。これにより、容器60内に供給される保護気体の流量を変化させないで掃気を行った場合(図3(B)に示す場合)と比較して、t´-tだけ掃気期間を短縮することができる。このように掃気期間を短縮できる理由を図4に基づき説明する。
 図4は、本実施形態に係るロボットシステムで掃気を行った場合の効果を説明するための模式図である。なお、図4(A)が容器60内に保護気体を供給している状態を示し、図4(B)が容器60内に保護気体の供給を停止した状態を示し、図4(C)が容器60内に保護気体の供給を停止したあとで供給を再開した直後の状態を示している。
 ここで、内圧防爆構造を有するロボット20は、一般に、出荷前に掃気精度の検定が行われている。当該掃気精度の検定の一例について説明する。まず、ロボットアーム30の数カ所に貫通孔を穿設する。次に、当該貫通孔それぞれから吸引部100を挿入しておく。
 そして、容器60内に保護気体としてヘリウムガスを充てんしてからその濃度が一定値以下になるまで掃気を行う。このとき、容器60内に挿入しておいた吸引部100を用いて容器60内の気体を吸引し、吸引した気体に含まれる保護気体の濃度を外部に設けられた濃度測定器(図示せず)によって測定することで、ヘリウムガスの濃度が一定値以下になったか否かを判定する。次に、保護気体として二酸化炭素を充填してからその濃度が一定値以下になるまで掃気を行う。このとき二酸化炭素ののどが一定値以下になったか否かの判定手順は、上記ヘリウムガスの場合と同様である。
 吸引部100は、保護気体が流れにくい入り組んだ空間又はその近傍に対して設けられることが多い。図4(A)~(C)に示すように、当該入り組んだ空間の一例として、サーボモータ32を挙げることができる。このような入り組んだ空間では、図4(A)に示すように、渦状の流れができて保護気体の一部が留まってしまう。これにより、気体に含まれる保護気体(上記したヘリウム又は二酸化炭素など)の濃度が所定の値まで低下するのに時間が掛かるので、掃気時間が長くなってしまう。なお、保護気体が二酸化炭素である場合、二酸化炭素は空気と比較して重たいため、濃度が特に低下しにくい。
 そこで、図4(B)に示すように、保護気体の供給を停止(その直前よりも10%以下)すると、入り組んだ空間(ここではサーボモータ32)に留まっていた保護気体が流出してくる。そして、停止していた保護気体の供給を再開(その直前よりも10倍以上)することで、図4(C)に示すように、入り組んだ空間から流出してきた保護気体が他の保護気体と共に排出流路74へと流れていく。これにより、保護気体を供給し続ける場合と比較して、入り組んだ空間又はその近傍の気体に含まれる保護気体の濃度を短い時間で低下させることができる。
 上記理由により、本実施形態に係る掃気装置70は、内圧防爆構造の周縁を画定する容器60内に保護気体を供給して掃気時間を短縮することができる。
 また、本実施形態に係る掃気装置70は、掃気制御装置80により流量調節装置76を制御することで、副期間における単位時間当たりの最大供給流量を零とすることにより、掃気期間において容器60内に保護気体を断続的に供給して掃気を行うことで、本発明が奏する効果を顕著にすることができる。
 また、本実施形態では、図3(A)に示すように、掃気制御装置80は、流量調節装置76を制御することで、最初の主期間(すなわち、掃気を開始してから時間tまでの期間)における単位時間当たりの供給流量がその直後の副期間(すなわち、時間tから時間tまでの期間)における単位時間当たりの最大供給流量の10倍以上である期間が、2回目の主期間(すなわち、時間tから時間tまでの期間)における単位時間当たりの供給流量がその直前の副期間(すなわち、時間tから時間tまでの期間)における単位時間当たりの最大供給流量の10倍以上である期間よりも長くなるように、掃気期間において容器60内に保護気体を供給して掃気を行っている。これにより、容器60内に保護気体を充填する時間が長くなることを抑制しながら、掃気装置70で掃気を行うことが可能となる。その結果、本実施形態が奏する効果を顕著にすることが可能となる。
 さらに、本実施形態では、掃気制御装置80が第1調節弁77(調節弁)の開度を調節することで容器60内に供給される保護気体の流量を制御している。これにより、簡単な構成で掃気時間を短縮することが可能となる。
 また、本実施形態では、内圧防爆構造を有するロボット20に対して掃気装置70を用いることで、当該ロボット20を備えるロボットシステム10において、掃気時間を短縮することができる。
 さらに、本実施形態では、爆発性雰囲気が存する第1領域に流量調節装置76、ロボットアーム30及び前記エンドエフェクタ40が設置されており、且つ、爆発性雰囲気が存しない第2領域に保護気体供給源71、掃気制御装置80及びロボット制御装置50が設置されている。これにより、ロボットシステム10の安全性を確保することが可能となる。
 (掃気方法)
 本発明に係る掃気方法について、上記実施形態に係る掃気装置70を用いて行う場合を例にして説明する。
 まず、内圧防爆構造を有するロボット20と掃気装置70とを準備する第1ステップを行う。すなわち、ここではロボットシステム10を準備している。
 次に、第1ステップを行ったあとで、ロボット20に対して掃気装置70を取り付ける第2ステップを行う。具体的には、供給流路72(流路)及び排出流路74を容器60内に挿入して取り付ける。また、爆発性雰囲気が存する第1領域に流量調節装置76、ロボットアーム30及び前記エンドエフェクタ40を設置し、且つ、爆発性雰囲気が存しない第2領域に保護気体供給源71、掃気制御装置80及びロボット制御装置50を設置する。
 最後に、第1及び第2ステップを行ったあとで、掃気制御装置80によって、流量調節装置76を制御することで、少なくとも2つの主期間と少なくとも1つの副期間とを含む掃気期間において容器60内に保護気体を供給して掃気を行う第3ステップを行う。このとき、主期間と副期間とは時間軸上において交互に設定されている。また、副期間における単位時間当たりの最大供給流量が、その直前の主期間における単位時間当たりの最大供給流量の10%以下であり、且つ、その直後の主期間における単位時間当たりの最大供給流量の10%以下である。
 なお、第3ステップにおいて、掃気制御装置80によって、流量調節装置76を制御することで、副期間における単位時間当たりの最大供給流量を零とすることにより(すなわち、tからtまでの期間及びtからtまでの期間のそれぞれで容器60内に保護気体を供給しないことにより)、掃気期間において容器60内に保護気体を断続的に供給して掃気を行ってもよい。
 また、第3ステップにおいて、掃気制御装置80によって、流量調節装置76を制御することで、最初の主期間における単位時間当たりの供給流量がその直後の副期間における単位時間当たりの最大供給流量の10倍以上である期間が、2回目の主期間における単位時間当たりの供給流量がその直前の副期間における単位時間当たりの最大供給流量の10倍以上である期間よりも長くなるように(すなわち、図3(A)に示すように掃気を開始してからtまでの期間がtからtまでの期間よりも長くなるように)、掃気期間において容器60内に保護気体を供給して掃気を行ってもよい。
 (変形例)
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。したがって、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 図5は、上記実施形態に係るロボットシステムの変形例で掃気を行った場合の効果を説明するための概略的なグラフである。
 上記実施形態では、主期間それぞれにおける単位時間当たりの最大供給流量が常にfで一定である場合について説明したが、これに限定されない。例えば、図5(A)に示すように、掃気制御装置80は、流量調節装置76を制御することで、最初の主期間(すなわち、掃気を開始してから時間tまでの期間)における単位時間当たりの最大供給流量が2回目の主期間(すなわち、時間tから時間tまでの期間)における単位時間当たりの最大供給流量よりも大きくなるように、掃気期間において容器60内に保護気体を供給して掃気を行ってもよい。図5(A)では、最初の主期間における単位時間当たりの最大供給流量がf+αであり、2回目の主期間における単位時間当たりの最大供給流量がfである場合を示してある。
 このように掃気を行うことで、容器60内に保護気体を充填する時間が長くなることを抑制しながら、掃気装置70で掃気を行うことが可能となる。これにより、容器60内に供給される保護気体の流量を変化させないで掃気を行った場合(図3(B)に示す場合)と比較して、例えばt´-tだけ(又はそれ以上)掃気期間を短縮することができる。その結果、本実施形態が奏する効果を顕著にすることが可能となる。なお、図5(A)に示すように、3回目の主期間における単位時間当たりの最大供給流量をfとしてもよいし、4回以上の主期間が存する場合、その4回目以降の主期間における単位時間当たりの最大供給流量をfとしてもよい。
 上記実施形態では、副期間における単位時間当たりの最大供給流量を零とすることにより、掃気期間において容器60内に保護気体を断続的に供給して掃気を行う場合について説明したが、これに限定されない。例えば、図5(B)に示すように、掃気制御装置80は、流量調節装置76を制御することで、副期間における単位時間当たりの最大供給流量が、その直前の主期間における単位時間当たりの最大供給流量の10%であり、且つ、その直後の前記主期間における単位時間当たりの最大供給流量の10%であるように、副期間それぞれにおいて容器60内に保護気体を供給してもよい。
 図5(B)では、最初の副期間(すなわち、時間tから時間tまでの期間)における単位時間当たりの最大供給流量がf/10であり、2回目の副期間(すなわち、時間tから時間tまでの期間)における単位時間当たりの最大供給流量もf/10である場合を示してある。そして、図5(B)では、最初の主期間(すなわち、掃気を開始してから時間tまでの期間)における単位時間当たりの最大供給流量がfであり、2回目の主期間(すなわち、時間tから時間tまでの期間)における単位時間当たりの最大供給流量もfである場合を示してある。
 このように掃気を行った場合でも、容器60内に供給される保護気体の流量を変化させないで掃気を行った場合(図3(B)に示す場合)と比較して、例えばt´-tだけ掃気期間を短縮することができる。
 なお、掃気制御装置80は、流量調節装置76を制御することで、少なくとも2つの主期間と少なくとも1つの副期間とを含む掃気期間において容器60内に保護気体を供給して掃気を行い、主期間と副期間とは時間軸上において交互に設定されており、副期間における単位時間当たりの最大供給流量が、その直前の主期間における単位時間当たりの最大供給流量の10%以下であり、且つ、その直後の主期間における単位時間当たりの最大供給流量の10%以下であれば、図3(A)、図5(A)及び図5(B)に示す以外の態様で掃気期間において掃気を行ってもよい。
 例えば、主期間及び副期間それぞれにおける供給流量が変動されてもよい。例えば、図3(A)、図5(A)及び図5(B)に示す容器60内に保護気体を供給するときの供給流量と時間の関係を表すグラフが正弦波の形状になってもよいし、不規則に変動する形状になってもよいし、又は、他の形状になってもよい。さらに、少なくとも2つの主期間それぞれにおける最大供給流量が異なっていてもよい。
 上記実施形態では、爆発性雰囲気が存する第1領域に流量調節装置76が配置される場合について説明したが、これに限定されない。例えば、爆発性雰囲気が存しない第2領域に流量調節装置76が配置されてもよい。或いは、第1領域に流量調節装置76の一部(例えば、第1調節弁77)を配置し、第2領域に流量調節装置76の残りの部分(例えば、第2調節弁78)を配置するようにしてもよい。この場合、第1領域に配置する調節弁などは、例えば、低電圧で動作する調節弁であることが好ましい。
 上記実施形態では、基台21及びロボットアーム30の一部が容器60を構成している場合について説明したが、この場合に限定されない。例えば、基台21内に電気機器が設けられていない場合、ロボットアーム30の少なくとも一部が容器60を構成していればよい。
 上記実施形態では、ロボット20が自動車などに対して塗装を行うための塗装ロボットであり、第1領域が塗装場である場合について説明したが、この場合に限定されない。例えば、ロボット20がガソリン給油所で作業を行うロボットであり、第1領域が前記ガソリン給油所であってもよい。
 上記実施形態では、内圧防爆構造がロボット20に備えられる場合について説明したが、これに限定されず、内圧防爆構造が他の電気機器に備えられていてもよい。すなわち、掃気装置70がロボット20以外の電気機器の内圧防爆構造に対して用いられてもよい。
 10 ロボットシステム
 20 ロボット
 21 基台
 30 ロボットアーム
 31 リンク
 32 サーボモータ
 40 エンドエフェクタ
 50 ロボット制御装置
 60 容器
 70 掃気装置
 71 保護気体供給源
 72 供給流路
 74 排出流路
 76 流量調節装置
 77 第1調整弁
 78 第2調整弁
 80 掃気制御装置
 90 制御装置
 98 仕切部

Claims (8)

  1.  内圧防爆構造の周縁を画定する容器内に保護気体を供給して掃気を行うための掃気装置であって、
     保護気体供給源と、
     前記保護気体供給源から前記容器内まで前記保護気体を導くための流路と、
     前記保護気体供給源から前記容器内に供給される前記保護気体の流量を調節するための流量調節装置と、
     前記流量調節装置を制御して掃気を行うための掃気制御装置と、を備えており、
     前記掃気制御装置は、前記流量調節装置を制御することで、少なくとも2つの主期間と少なくとも1つの副期間とを含む掃気期間において前記容器内に前記保護気体を供給して掃気を行い、
     前記主期間と前記副期間とは時間軸上において交互に設定されており、
     前記副期間における単位時間当たりの最大供給流量が、その直前の前記主期間における単位時間当たりの最大供給流量の10%以下であり、且つ、その直後の前記主期間における単位時間当たりの最大供給流量の10%以下であることを特徴とする、掃気装置。
  2.  前記掃気制御装置は、前記流量調節装置を制御することで、前記副期間における単位時間当たりの最大供給流量を零とすることにより、前記掃気期間において前記容器内に前記保護気体を断続的に供給して掃気を行う、請求項1に記載の掃気装置。
  3.  前記掃気制御装置は、前記流量調節装置を制御することで、最初の前記主期間における単位時間当たりの供給流量がその直後の前記副期間における単位時間当たりの最大供給流量の10倍以上である期間が、2回目の前記主期間における単位時間当たりの供給流量がその直前の前記副期間における単位時間当たりの最大供給流量の10倍以上である期間よりも長くなるように、前記掃気期間において前記容器内に前記保護気体を供給して掃気を行う、請求項1又は2に記載の掃気装置。
  4.  前記掃気制御装置は、前記流量調節装置を制御することで、最初の前記主期間における単位時間当たりの最大供給流量が2回目の前記主期間における単位時間当たりの最大供給流量よりも大きくなるように、前記掃気期間において前記容器内に前記保護気体を供給して掃気を行う、請求項1乃至3のいずれかに記載の掃気装置。
  5.  前記流量調節装置は、前記流路上に設けられる調節弁を有しており、
     前記掃気制御装置は、前記調節弁の開度を調節することで前記容器内に供給される前記保護気体の流量を制御する、請求項1乃至4のいずれかに記載の掃気装置。
  6.  請求項1乃至5のいずれかに記載の掃気装置と、前記内圧防爆構造を有するロボットと、を備えるロボットシステムであって、
     前記ロボットは、ロボットアームと、前記ロボットアームの先端部に取り付けられるエンドエフェクタと、前記ロボットアーム及び前記エンドエフェクタを制御するためのロボット制御装置と、を有しており、
     前記ロボットアームの少なくとも一部が前記容器を構成していることを特徴とする、ロボットシステム。
  7.  爆発性雰囲気が存する第1領域と、前記爆発性雰囲気が存しない第2領域とを仕切るための仕切部をさらに備えており、
     前記第1領域に前記ロボットアーム及び前記エンドエフェクタが設置されており、且つ、
     前記第2領域に前記保護気体供給源、前記掃気制御装置及び前記ロボット制御装置が設置されている、請求項6に記載のロボットシステム。
  8.  内圧防爆構造の周縁を画定する容器内に保護気体を供給して掃気を行うための掃気方法であって、
     前記内圧防爆構造と請求項1乃至5のいずれかに記載の掃気装置とを準備する第1ステップと、
     前記第1ステップを行ったあとで、前記内圧防爆構造に対して前記掃気装置を取り付ける第2ステップと、
     前記第1及び前記第2ステップを行ったあとで、前記掃気制御装置により前記流量調節装置を制御することで、少なくとも2つの主期間と少なくとも1つの副期間とを含む掃気期間において前記容器内に前記保護気体を供給して掃気を行う第3ステップと、を備えており、
     前記主期間と前記副期間とは時間軸上において交互に設定されており、
     前記副期間における単位時間当たりの最大供給流量が、その直前の前記主期間における単位時間当たりの最大供給流量の10%以下であり、且つ、その直後の前記主期間における単位時間当たりの最大供給流量の10%以下であることを特徴とする、掃気方法。
PCT/JP2019/021268 2018-05-29 2019-05-29 掃気装置及びそれを備えるロボットシステム並びに掃気方法 WO2019230790A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/059,532 US20210207805A1 (en) 2018-05-29 2019-05-29 Purging device, robot system including the same and purging method
EP19812368.9A EP3804922A4 (en) 2018-05-29 2019-05-29 SCANNING DEVICE, ROBOT SYSTEM EQUIPPED THEREOF, AND SCANNING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018102159A JP2019206051A (ja) 2018-05-29 2018-05-29 掃気装置及びそれを備えるロボットシステム並びに掃気方法
JP2018-102159 2018-05-29

Publications (1)

Publication Number Publication Date
WO2019230790A1 true WO2019230790A1 (ja) 2019-12-05

Family

ID=68698315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021268 WO2019230790A1 (ja) 2018-05-29 2019-05-29 掃気装置及びそれを備えるロボットシステム並びに掃気方法

Country Status (4)

Country Link
US (1) US20210207805A1 (ja)
EP (1) EP3804922A4 (ja)
JP (1) JP2019206051A (ja)
WO (1) WO2019230790A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024037704A1 (en) * 2022-08-15 2024-02-22 Abb Schweiz Ag Hermetically closed industrial robot comprising a gas conducting structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020179480A (ja) * 2019-04-26 2020-11-05 川崎重工業株式会社 掃気装置、ロボットシステム、及び掃気方法
US11701678B1 (en) * 2020-06-29 2023-07-18 Abb Schweiz Ag Painting robot

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183232A (ja) * 1983-04-01 1984-10-18 Matsushita Seiko Co Ltd 床下換気運転制御装置
JPH04310392A (ja) * 1991-04-09 1992-11-02 Fanuc Ltd 塗装ロボット
JPH09168991A (ja) 1995-12-20 1997-06-30 Tokico Ltd 工業用ロボット
JPH1085498A (ja) * 1996-09-17 1998-04-07 Toto Ltd 乾燥装置
JP2001355831A (ja) * 2000-06-13 2001-12-26 Yazaki Corp 内圧防爆構造を備えた装置
JP2006231408A (ja) * 2005-02-25 2006-09-07 Trumpf Werkzeugmaschinen Gmbh & Co Kg レーザ加工機の管路及び中空室又はそのいずれか一方を掃気する方法
JP2006326726A (ja) * 2005-05-25 2006-12-07 Yaskawa Electric Corp 内圧防爆システム及びその掃気方法
JP2008010348A (ja) * 2006-06-30 2008-01-17 Honda Motor Co Ltd 燃料電池システムおよび燃料電池の掃気方法
JP2013178077A (ja) * 2012-02-10 2013-09-09 Toshiba Corp 硫化水素除去装置および硫化水素除去方法
CN104626207A (zh) * 2013-11-13 2015-05-20 沈阳新松机器人自动化股份有限公司 工业机器人内压防爆系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH1335667A4 (de) * 1967-09-25 1969-01-31 Laser Tech Sa Verfahren zum Bohren von Uhrensteinen mittels Laserstrahlung
EP2184140B1 (en) * 2007-09-11 2012-04-18 Kabushiki Kaisha Yaskawa Denki Robot of internal pressure explosion-proof structure
JP6217855B2 (ja) * 2014-06-16 2017-10-25 村田機械株式会社 パージ装置、パージシステム、パージ方法及びパージシステムにおける制御方法
KR102305147B1 (ko) * 2016-02-12 2021-09-27 현대중공업지주 주식회사 내압방폭형 로봇의 퍼지 시스템 및 퍼지 제어방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183232A (ja) * 1983-04-01 1984-10-18 Matsushita Seiko Co Ltd 床下換気運転制御装置
JPH04310392A (ja) * 1991-04-09 1992-11-02 Fanuc Ltd 塗装ロボット
JPH09168991A (ja) 1995-12-20 1997-06-30 Tokico Ltd 工業用ロボット
JPH1085498A (ja) * 1996-09-17 1998-04-07 Toto Ltd 乾燥装置
JP2001355831A (ja) * 2000-06-13 2001-12-26 Yazaki Corp 内圧防爆構造を備えた装置
JP2006231408A (ja) * 2005-02-25 2006-09-07 Trumpf Werkzeugmaschinen Gmbh & Co Kg レーザ加工機の管路及び中空室又はそのいずれか一方を掃気する方法
JP2006326726A (ja) * 2005-05-25 2006-12-07 Yaskawa Electric Corp 内圧防爆システム及びその掃気方法
JP2008010348A (ja) * 2006-06-30 2008-01-17 Honda Motor Co Ltd 燃料電池システムおよび燃料電池の掃気方法
JP2013178077A (ja) * 2012-02-10 2013-09-09 Toshiba Corp 硫化水素除去装置および硫化水素除去方法
CN104626207A (zh) * 2013-11-13 2015-05-20 沈阳新松机器人自动化股份有限公司 工业机器人内压防爆系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3804922A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024037704A1 (en) * 2022-08-15 2024-02-22 Abb Schweiz Ag Hermetically closed industrial robot comprising a gas conducting structure

Also Published As

Publication number Publication date
JP2019206051A (ja) 2019-12-05
US20210207805A1 (en) 2021-07-08
EP3804922A1 (en) 2021-04-14
EP3804922A4 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
WO2019230790A1 (ja) 掃気装置及びそれを備えるロボットシステム並びに掃気方法
JP7021168B2 (ja) 少なくとも一つのロボットの動力学の適合
CN107532966A (zh) 检漏系统及使用该检漏系统的检漏方法
US4912650A (en) Off-line control execution method
US20160279796A1 (en) Robot control apparatus having function of detecting contact with object or person
JP5383860B2 (ja) ロボット塗布システム
JPWO2006006552A1 (ja) 電動機制御装置
JP2011067885A (ja) 電動ドライバの姿勢監視装置、および姿勢監視装置付き電動ドライバ
US11745357B2 (en) Robotic arm and robot having the same
CN109414820B (zh) 机器人的运转方法、储存部、及机器人系统
JP4496541B2 (ja) 内圧防爆システム及びその掃気方法
JP2003164780A (ja) 産業用ロボットの制御装置
KR20200091717A (ko) 커튼월 시공 보수를 위한 비행체 및 비행체를 이용한 커튼월 시공 보수방법
US11660479B2 (en) Internal pressure adjustment of a robot
JP2007319856A (ja) 要求される塗料の量を決定するための方法
JP2009137664A (ja) タイヤ式門型クレーン及びタイヤ式門型クレーンシステム、並びにタイヤ式門型クレーンの移動方法
KR101400603B1 (ko) 밸브내경의 형상에 관계없이 균일한 용접속도를 가지는 자동 밸브내면 육성용접장치
US20040205407A1 (en) Sequence controller and control method
EP3960400A1 (en) Scavenging device, robot system, and scavenging method
JPS5973245A (ja) 自動ねじ締め装置
JP3376000B2 (ja) シーリング作業用ロボットの制御装置及び制御方法
US6791053B2 (en) Cad/cam device for electric discharge machine
KR100559107B1 (ko) 연속식 자동 도장 시스템 및 방법
JPH11277472A (ja) 塗装ロボット
JPH0650784U (ja) 内圧防爆型ロボット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019812368

Country of ref document: EP

Effective date: 20210111